
Machine-Learning for Optimal Fitness Function
Selection in Automated Testing

Daniela Toader
Supervisor(s): Annibale Panichella, Pouria Derakhshanfar, Mitchell Olsthoorn

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



ABSTRACT
The perpetual desire for more qualitative software has been an ex-
cellent incentive for software engineers to create automated tools
to ease and improve the process of software testing. EvoSuite is
an example of a state-of-the-art tool that synthesises test cases
automatically. It uses a genetic algorithm to produce test cases
based on given search targets. Previous studies have analysed the
performance of single or combinations of targets but have not yet
explored the differences between various combinations. In this re-
search, we compare the Weak Mutation + Branch setting to Branch
and the Default (combination of eight separate targets) of EvoSuite.
We aim to provide insightful information about their differences
in branch coverage and mutation scores. Moreover, we discuss
machine-learning models that can predict which combination has
the highest score (i.e., branch coverage, mutation score) based on
characteristics of the tested classes, such as the number of lines
of code. Our results highlight that the Weak Mutation + Branch
combination outperforms Branch for the mutation score metric
and Default for the branch coverage metric. They also show that
Weak Mutation + Branch is outperformed by the branch criterion
for Branch Coverage and by the Default combination for mutation
score. Our findings also cover the performance of the models, hav-
ing concluded that the Random Forest and Decision Tree classifiers
produce the best results and are feasible options for predicting the
best combinations from the ones analysed. Finally, static code met-
rics such as ’wmc’, ’loc’, and ’mathOperationsOty’ often appear as
relevant features for our models. We visualise how they influence
the most suitable combination of criteria through our Decision
Trees.

1 INTRODUCTION
Testing is an essential step in assuring the quality of software, as its
leading goal is finding potentially dangerous faults in source code.
Writing adequate and meaningful tests is an error-prone and costly
task that requires a significant amount of development time [1].
For this reason, different tools have been created to synthesize test
cases automatically. For example, EvoSuite [2] is a state-of-the-art
tool that generates unit-level test suites for code written in the
ubiquitous Java programming language. EvoSuite seeks to optimise
(a combination of) coverage criteria either at the test suite or at the
single test case level. For this research, test case level optimisation
is performed.

EvoSuite uses a genetic algorithm, DynaMOSA [3], which opti-
mises for multiple objectives simultaneously; each corresponding to
one test goal to achieve (e.g., branch coverage, statement coverage).
It aims to solve optimisation problems by generating tests based
on certain fitness functions (i.e., criteria). EvoSuite can optimise
eight different criteria (e.g., branch, line, mutation, etc.) [4]. Various
approaches have been proposed in literature to combine these cri-
teria with the ultimate goal of discovering combinations that will
lead to finding more bugs. However, the differences between such
combinations have not been extensively explored.

In this research, EvoSuite has been run alternatively with three
different optimisation criteria: Default, BranchCoverage and Branch

Coverage + Weak Mutation (bcwm). The criteria and their respec-
tive impact on the generated test cases are analysed and their results
employed to infer patterns between input static code metrics and
qualitative output measurements. It is not yet clear which metrics
are best given a specific class under test. Defaults have been chosen
mainly based on developers’ empirical experience.

The lack of concrete information that relates objectives to class
properties and consequently to coverage and fault-finding capabili-
ties has given rise to a research gap that needs further investigation.
The main aim of this research is to find how effective the different
state-of-the-art fitness functions are at guiding the search process
toward finding bugs. The goal is to create a model that predicts
which fitness function is best suited for the classes under test, based
on empirical results. Optimising the function selection can lead
to a better performance of the algorithm, which can, in turn, im-
prove the fault-finding capabilities of EvoSuite. This research is
relevant as tools for automated test generation can enhance the
quality assurance process by improving fault detection and saving
considerable amounts of coding time [5].

The goal of this research is to answer the following question:
when and how does Weak Mutation increase the number of bugs
detected when combined with Branch Coverage? It is reasonable to
answer by breaking it down into two sub-questions:

RQ1. To what extent does Weak Mutation in combination with
Branch Coverage affect structural coverage and fault detec-
tion capabilities for different search budgets?

RQ2. What is the relationship between class metrics and the
structural coverage and fault detection capabilities of the
test suites when using Weak Mutation in combination with
Branch Coverage?

For this research, we focus on two coverage criteria (and related
objectives), namely, Branch Coverage and Weak Mutation. The for-
mer is always targeted, as by covering more branches, we increase
the chance of finding bugs; the latter is specifically targeted for this
research because by making use of mutation, the aim is to optimise
fault detection over coverage, which can result in finding more
bugs. Weak Mutation also has an advantage over Strong Mutation
because it is significantly less expensive to perform while providing
good capabilities.

The empirical study we conducted firstly consists of data pro-
cessing: data gathering, data balancing, and class metrics extraction.
The class metrics become machine-learning model features. Before
training the models, we perform feature selection to reduce the
dimensions of our metrics. Furthermore, we focus on training the
models for inferring patterns. The patterns concern relationships
between the collected metrics and the best performing combination
of optimisation criteria for EvoSuite. All of the discussed models
are classifiers that analyse the best performing combination based
on branch coverage or mutation score results. We create classi-
fiers for every search budget initially used with EvoSuite. Finally,
we evaluate our models and provide visualisations of the inferred
relationships.



Our study provided results in terms of both statistical signifi-
cance of score metrics results and also of F1-scores for every clas-
sifier. These two result categories delivered the answers to our
research questions and provided new information that can improve
function selection in EvoSuite. We investigated the significance of
the branch coverage and mutation score differences between the
chosen combinations and found out that over 200 classes showed
statistically significant differences with non-negligible (i.e., large,
medium and small) effect sizes across all configurations. Given
that a reasonable amount of our data proved to be significant, we
have continued by training four main models for predicting the
best combination from our selection. The assigned labels described
which combination was better and, if equivalent, which tuples are
equivalent. Labels were assigned by assessing the median scores
(i.e., branch coverage and mutation score) and picking the best
performing combination(s). We evaluated the models with average
F1-scores across different configurations of (0.91, 0.73, 0.94, 0.56)
for (Decision Tree, Support Vector Classifier, Random Forest and
Logistic Regression). Visualisations of the models provide informa-
tion on how to pick a combination based on the properties of the
tested classes.

The structure of the paper further consists of the following six
sections. Firstly, Section 2 describes different terms used through-
out the research. Secondly, Section 3 shows the methods used for
answering the main questions. Thirdly, Section 4 reveals findings
that emerged from applying the methods, which are discussed in
Section 5 along with some limitations. Moreover, threats to validity
frequently appear in research, and this paper is no exception, partic-
ularly receiving attention in Section 6. Furthermore, the responsible
research topic points to ethical implications outlined in Section 7.
Lastly, Section 8 draws conclusions and explores future work.

2 BACKGROUND
This section summarizes the main background concepts used in this
paper and describes their meaning in the context of the research.

Mutation testing. A form of testing that involves making syn-
tactic changes to statements to generate "mutants" of the original
source code. They are meant to behave similarly to real commonly
occurring faults. Each one of the mutants contains a single fault
and their goal is to make the tests fail to show the effectiveness and
robustness of the test suite. A mutant is said to be “killed” if the test
suite passes on the original program but fails on the mutant. This
indicates that the test suite is of “higher quality” as it can detect the
artificial fault. Instead, a mutant is “alive” if the test suite passes on
both the original and the mutated program [6].

Weak and Strong mutation. In weak mutation, a mutant is killed
“if the execution of the test on the mutant is observably different
from its execution on the original SUT, that is, if state infection is
reached by the test” [7], where SUT is the software under test. In
comparison, strong mutation additionally requires the program to
output a different result than expected. Thus the infected state must
propagate to the output and to the test assertion to be detected by
the test. It is more computationally intensive compared to weak
mutation [6].

Mutation score. The mutation score is defined as the number
of killed mutants (𝑀𝑘 ) divided by the number of total mutants
(𝑀𝑡 ) minus the equivalent mutants (𝑀𝑒𝑞 ): 𝑀𝑘

𝑀𝑡−𝑀𝑒𝑞
. The equivalent

mutants are the ones that cannot be killed by any test and are said to
be equivalent to the original program. They “change the program’s
syntax, but not its semantics, and thus are undetectable by any test”
[6]. The weak mutation objectives measure the distances of a test
case 𝑡 to weakly-kill each mutant injected in the program under test.
Hence, there is one search objective (to be optimised) per mutant.
The mutation score provides information about the fault detection
capabilities of the test suite.

DynaMOSA. The DynaMOSA algorithm is a many-objective
search-based evolutionary algorithm which dynamically focuses
the search on a subset of the uncovered targets based on the con-
trol dependency hierarchy [3]. Its distinguishing feature is that
it approaches each target (coverage criteria) independently, utilis-
ing a hierarchy of dependencies to dynamically focus on targets
during execution. More recently, Panichella et al. [8] proposed a
multi-objective version of DynaMOSA that leverages improved
hierarchial dependency analysis. The latter variant has been shown
to produce results with higher structural and mutation coverage
[9], and it is the default search algorithm employed by EvoSuite.

Related work. Research such as [4] and [10] combined differ-
ent testing criteria and looked at their effectiveness. [11] showed
that there is no combination of criteria that performs best for find-
ing faults and that firstly, the code structure needs to be observed
(through a criterion like branch) and secondly, supported by addi-
tional targets. They also showed that most criteria detect different
faults better and that depending on the types of faults, certain
criteria find more bugs. However, these insights have not yet pro-
vided complete comparisons of combinations, while also showing
clear patterns where specific criteria can have better results. This
corresponds to the research gap we are investigating in this paper.

3 METHODOLOGY
This section highlights the main steps we performed in the research
process. The methodology for measuring the impact of fitness func-
tion selection on the resulting branch coverage and mutation score
is discussed. Every step of the workflow is outlined in the subsec-
tions below.

3.1 Investigation and data gathering
Firstly, we have researched and analysed the EvoSuite fitness func-
tions. We investigated Weak Mutation, Branch Coverage and the
Default combination to allow an easier understanding of the results.
The default combination consists of the line, branch, weak muta-
tion, output, method, method no exception, and cbranch criteria.
Also, using the static code metrics, our goal was to link the bcwm
(i.e., Weak Mutation + Branch Coverage) combination to the classes
that can benefit most from it in terms of structural coverage and
mutation score.

We ran EvoSuite on a set of 338 different classes belonging to
the SF110 corpus 1 as well as the Apache Commons 2. The former
1https://www.evosuite.org/experimental-data/sf110/
2https://commons.apache.org/



is composed of 110 projects of SourceForge, a popular open-source
repository. The latter is a project consisting of the most common
Java components. EvoSuite’s output provided the branch coverage
of the generated test suites as well as the mutation score results. We
also used the set of classes to extract static code metrics, process de-
scribed in Section 3.4. We ran the experiments using search budgets
of 60, 180 and 300 seconds for calculating the branch coverage and a
budget of 60 seconds for the mutation score for the selected classes.
The budgets have been chosen based on literature recommenda-
tions from [3], [12], [13], and [14]. EvoSuite has been independently
run ten times for each class to prevent outcome consistency issues.
Potential inconsistencies could come from the stochastic nature
of the evolutionary algorithm used by EvoSuite. Occasional differ-
ences in outputs can influence our results if variations are high,
thus we chose to alleviate such variations by reiterating the run.

3.2 Medians comparison
Secondly, we investigated EvoSuite’s output. We highlighted the
differences between the bcwm, branch and default combinations.
We did this by comparing median values of the branch coverage
and mutation score over ten runs for each class between bcwm
and the other two combinations. We first compared the forenamed
differences to gain insights into the overall performance without
looking at the properties of the examined classes. We did this for all
considered budgets of 60, 180 and 300 seconds for branch coverage
(branch_60, branch_180, branch_300) and of 60 seconds for the
mutation score (mutation_score).

3.3 Statistical significance and effect size
analysis

Furthermore, to construct a model that predicts which fitness func-
tion is most effective, we had to reason about the significance of
the score differences between bcwm and the others. We performed
the Wilcoxon signed-rank statistical test per class over ten runs
on the coverage and mutation score of bcwm vs branch and bcwm
vs default. This test provided the statistical significance of each
batch of ten runs per class of score differences. We were only in-
terested in the classes with a p-value smaller than 0.05, i.e., in the
classes with statistically significant differences in mutation score
(or branch coverage) among the different configurations.

To measure the effect size of the differences between bcwm and
the other two settings, we used the Vargha-Delaney Â12 statistical
method [15]. This metric allows us to understand the magnitude of
the score differences between the fitness functions. For example,
when looking at the branch coverage for a search budget of 60
seconds, Â12(bcwm10𝑟𝑢𝑛𝑠_𝑐𝑙𝑎𝑠𝑠1, default10𝑟𝑢𝑛𝑠_𝑐𝑙𝑎𝑠𝑠1) will provide
the Â12 statistics estimate and the magnitude of the effect size. If
the estimate is larger than 0.5, then bcwm dominates the other set of
results, which translates to bcwm having better results (i.e., branch
coverage and mutation score). The magnitude provides an insight
into how great the dominance is. Thus, samples with a "negligible"
magnitude are not of importance to our analysis, while a "large"
magnitude has high relevance. We simultaneously applied both
tests on each batch of ten runs per class. Through this method,
we gathered the significant classes with large, medium, and small

Figure 1: Sample of the class metrics correlation matrix

effect sizes for bcwm vs branch and bcwm vs default for all search
budgets for branch coverage and mutation score, respectively.

3.4 Class metrics extraction and feature
selection

To answer the research questions, it is important to understand in
which contexts (program characteristics) one configuration is better
than another. To discover these patterns, we relied on software
metrics and machine learning. To reason about the influence of the
input classes’ characteristics on the fitness function selection, we
have taken into account the input class metrics. We ran two metric
extraction tools to obtain the class properties: ck 3 and ckjm 4. The
former functioned better for our set of classes and resulted in more
metrics computed for most of them. We noticed the metrics have a
high dimensionality as there are 49 in total. They are also highly
correlated, as seen in the correlation matrix in Figure 1.

To avoid introducing bias into the models through highly cor-
related properties, we performed feature selection by using the
SelectKBest method of the sklearn.feature_selection mod-
ule. It has been applied with the f_classif parameter, which
compares samples by calculating the ANOVA F-value for the pro-
vided sample. The F-value estimates the degree of linear depen-
dencies between two random variables. Thus, it would calculate
the difference between the means of the class distributions [16],
[17]. The higher the difference, the better the feature discriminates
between the given classes. We chose this method thanks to its
ability to discriminate well between features. We have also ex-
amined the mutual_info_classif function, which measures the
joint mutual information, i.e., the amount of information about one
random variable one can extract from another random variable.
The mutual_info_classif relies on entropy estimations from k-
nearest neighbours distances [18], [19]. Empirical observations of
our models and datasets have shown similar scores for the final
models between the two selection approaches. As such, we mainly

3https://github.com/mauricioaniche/ck
4https://github.com/dspinellis/ckjm



considered the first one for the described experiment.We focused on
3, 5, 10 and 15 features to maintain model visualisation accessible.

3.5 Data balancing and deciding on models
Lastly, we chose to train four models to predict which fitness func-
tion to choose based on class properties: Decision Tree (DT), Ran-
dom Forest (RF), Support Vector Classification (SVC), and Logis-
tic Regression (LR). The class metrics are encoded into features
and the criteria combinations were turned into labels. The label
assigning procedure is detailed in Section 3.6. The dataset was con-
structed from the analysed significant classes and their properties.
To tackle the issue of especially imbalanced class distributions, we
performed data balancing techniques to prevent low accuracy/F1-
scores for the infrequent classes. The two performed techniques
were over and under sampling using the RandomOverSampler and
RandomUnderSampler from the imblearn.over_sampling library.
Oversampling is a technique that adds samples for the classes that
are in minority and undersampling removes samples of the majority
class samples to equalize the amount of samples across the classes
[20].

3.6 Assigning labels
When constructing classifiers, an essential step is assigning labels
to each data point. For this work, we assign labels based on the
median of the structural coverage for a specific fitness function
across 10 runs. For example, if class X has the median coverages
< bcwm𝑚, branch𝑚, default𝑚 > = < 0.9, 0.3, 0.8 >, then that
class would be assigned the label bcwm. However, ambiguity sets
in when two values are equal. Since we pick classes based on the
statistical difference between pairs of combinations, it is possible
for any two coverages to be identical.

To assign labels to these ambiguous data points, we tested three
options: (1) removing the points from the data set altogether, (2)
assigning a random label, (3) deterministically assigning a label
based on the ordering or the fitness functions. We discarded the
first option on account of removing too many data points, which
would affect the robustness and generalisability of the results. We
also discarded the second option because of the flakiness of the
obtained results: a model trained on randomly generated labels does
not provide much value for real-world applications. Furthermore,
we also discarded deterministically assigning labels for ambiguous
points. This introduces certain biases according to the ordering we
choose and it affects the model’s performance. This ordering would
be used as a tie-breaker, but it is still significant, as it occurs in
53.1% of the selected data points.

Finally, we decided to solve the ties by designing for the equiv-
alence of the labels, namely approach (4). Thus, new labels have
been assigned for the equivalent scores: equivalent_bcwm_branch,
equivalent_bcwm_default, equivalent_branch_default, and
equivalent_equivalent_all. They provide a bias-free method
of breaking ties and are descriptive in terms of the ties occurring
during prediction.

3.7 Evaluating the models
To validate and evaluate how well the models generalise to indepen-
dent datasets, we used the k-fold cross-validation technique. This
method randomly splits the data set into 𝑘 equally sized so-called
folds, one of which is used as the test set. The model is trained on
the remainder 𝑘 − 1 folds, such that each fold serves as the test set
in exactly one iteration of the algorithm. The reported results are
the average F1-score of a nested k-fold cross-validation with Grid
Search to also tune each model’s hyperparameters. Grid Search is
an exhaustive search technique that aims to find the optimal model
hyperparameters and is widely used in practice [21], [22]. The outer
cross-validation has been done with 𝑘 = 10 runs performed over
the data sets, and the inner with 𝑘 = 3 to evaluate the Grid Search.

F1-score. The F1-scoremetric is used to compare the performance
of classifiers. It is defined as the harmonic mean of the precision
and recall of the model. Where precision is the number of true
positives (TP) divided by the number of false positives (FP) plus
true positives. Recall is the number of true positives divided by the
number of true positives plus false negatives (FN).

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

=
2 ∗𝑇𝑃

2 ∗𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

4 RESULTS
In this section, we answer the research questions put forward in
Section 1 by presenting the results of our empirical evaluation.

4.1 Impact of function selection on structural
coverage and fault detection capabilities

To capture how large the impact of choosing different fitness func-
tions on branch coverage and mutation score is, we have analysed
the performance and (per-class) significance of the score metrics.
For three of the 338 classes, EvoSuite did not produce results for all
configurations, and those are thus considered to yield 0.0 branch
coverage. Appendix A provides boxplots that reveal the distribu-
tions of the branch coverage and mutation scores for the available
search budgets for the analysed combinations. The results suggest
that there is a noticeable difference both in terms of mean and IQR
between budget_60 and the higher budget results, across all crite-
ria combinations considered. budget_180 and budget_300 show
very similar results of all tested statistics, both outperforming the
lowest budget dataset. Moreover, for all three budgets, it is apparent
that the differences across targets are rarely significant over the
three criteria. The highest discrepancy is when using the branch
criterion in the budget_60 setting, which marginally outperforms
its counterparts. The mutation score data indicates that EvoSuite
behaves similarly to the branch coverage scenario of the same time
budget, with the difference that default combination of criteria
marginally outperforms its counterparts in terms of mean score.

To better understand the (per-class) variations of the combi-
nations’ results, Table 1 shows the differences between the three
considered ones. bcwm produces better structural coverage than
branch in (43, 48, 44) instances, and worse in (105, 94, 84) for bud-
gets (60, 180, 300), respectively. On the other hand, bcwm performs
better than default in (124, 102, 82) cases, and worse in (33, 36, 30)
for budgets (60, 180, 300) seconds.



Optimising for bcwm produces better mutation scores than for

Table 1: Comparison of median structural coverage and mu-
tation score of bcwm against branch and default. The results
are obtained after 10 runs of EvoSuite per class, for all score
metrics.

Configuration Comparison bcwm better Equal bcwm worse

branch_60 vs branch 43 188 105
vs default 124 178 33

branch_180 vs branch 48 194 94
vs default 102 195 36

branch_300 vs branch 44 206 84
vs default 82 217 30

mutation_sc vs branch 134 113 72
vs default 50 105 163

branch in 134 instances, and worse in 72. On the other hand, bcwm
performs better than default in 50 cases, and worse in 163. This
indicates that there exists a large number of classes which might
benefit from the choice of an appropriate fitness function.

A notable point is the number of times bcwm gives similar results
in terms of structural coverage (over half of the time for every
budget) to branch and default. For configurations (branch_60,
branch_180, branch_300, mutation_score) the bcwm was equiv-
alent to branch in over (55%, 57%, 61%, 35%) of the comparisons
and to default in over (53%, 58%, 64%, 33%) of the comparisons.
There are many instances in which bcwm performs worse than the
other two criteria. This indicates that adding more criteria (i.e. weak
mutation) to optimise can harm the resulting coverage for certain
classes. In numerous cases, bcwm gives higher coverage. These ob-
servations provide an incentive to further look into the properties
of the input classes. Selecting the most effective fitness function can
depend on them and not only on the number of criteria to optimise.

In terms of (per-class) significance of the scores differences be-
tween bcwm and branch and bcwm and default, the Wilcoxon test
showed that in more than 59% of cases, the classes had a p-value
below 0.05 for all configurations. The results are presented in Ta-
ble 2. For configurations (branch_60, branch_180, branch_300),

Table 2: Comparison of the number of classes for which there
are statistically significant differences in branch coverage
and mutation score for bcwm when compared to branch and
default, respectively. The Inters. column gives the number
of classes for which there are statistical differences between
both pairs of objectives.

Configuration bcwm-branch bcwm-default Inters.
branch_60 228 213 182
branch_180 218 216 178
branch_300 275 200 178
mutation_sc 319 318 318

the class significance for bcwm compared to branch was (67%, 64%,
82%) of the analysed classes and for mutation_score, it was 100%.
Compared to the default combination (branch_60, branch_180,
branch_300), the significance results were (63%, 64%, 59%), while
for mutation_score they where 99%. This demonstrates that a rel-
atively large proportion of the initial dataset provides significant
results and can thus further be analysed and used in the machine-
learning models.

In terms of (per-class) significance of the scores differences between
bcwm and branch and bcwm and default, over 170 classes of every
configuration proved to not only be statistically significant (p < 0.05),
but also to have a large effect size, given by the Vargha-Delaney Â12
statistic. The numbers of statistically significant classes for each
configuration that satisfy both of the aforementioned conditions
are summarised in Table 3.

Table 3: Comparison of the number of classes for which there
are statistically significant differences and large effect sizes in
branch coverage andmutation score for bcwmwhen compared
to branch and default, respectively.

Configuration bcwm-branch bcwm-default Inters.
branch_60 189 174 139
branch_180 189 186 144
branch_300 238 176 137
mutation_sc 319 318 318

To further develop on the effect size of the analysed data, Ap-
pendix B (a), (b) illustrates the magnitude of the effects in terms
of the number of classes with "negligible", "small", "medium", and
"large" for each score metric and budget available. This visualisa-
tion represents the data before filtering on the p-value. For the
(branch_60, branch_180, branch_300, mutation_score) configura-
tions of bcwm vs default, over 65% of the classes have a large effect
size. Between 9% and 19% of the classes show negligible magnitude
and will not be taken into consideration for the machine-learning
models. The small and medium effect sizes together account for
between 4% and 13% of the data. For the branch coverage score
metric, the number of classes with large effect sizes increases along
with the search budget, reaching over 86% of the data. Appendix B
(c) and Appendix B (d) show that after applying filtering on p-value
< 0.05, most classes with negligible and small effect sizes have been
excluded. Between 1 and 5 classes with small magnitude, and over
195 classes with large magnitude are kept and further used for the
models. This means that over 60% of the data can be passed on for
all configurations.

The Â12 statistics provided not only the effect sizes but also the
dominance relationships between the different combinations for all
configurations. In Figure 2, we can observe that the branch setting
is better for all configurations in terms of branch coverage, while
for the mutation score, bcwm dominates in 113 cases, compared to
94 cases of being dominated. Against the default setting, as seen in
Figure 3, bcwm dominates for all configurations for branch coverage,
while for mutation score, it is dominated in 127 cases, compared
to 83 cases where it dominates. The Â12 statistics show similar



relationships with the results from Table 1, which backs up our
findings in terms of the significance of our dataset.

Figure 2: Dominating combinations in terms of numbers of
analysed classes filtered by p < 0.05 - bcwm vs branch

Figure 3: Dominating combinations in terms of numbers of
analysed classes filtered by p < 0.05 - bcwm vs default

For the tested instances, bcwm produces results that are worse
than or as good as branch in 86.5% of cases in terms of branch
coverage. bcwm also produces results that are at least as good as
default in 90.0% of cases. In terms of mutation score, bcwm is
at least as good as branch in 77.4% of instances and equal to or
worse than default in 84.2%.

4.2 The relationship between class metrics and
the structural coverage and fault detection
capabilities when using bcwm

To capture the relationship between the different fitness functions
and structural coverage and mutation score, we trained four classi-
fiers based on the static code metics of classes that show statistically
significant differences from our data set. We trained the following
models: a Decision Tree (DT) a Support Vector Classifier (SVC), a
Random Forest (RF), and a Logistic Regression (LR). We compared
their effectiveness using the standard F1-score. The results of k-
fold cross-validation are provided in Table 4. These results are the

product of approach (4) of assigning labels. The results are also
a product of hyperparameter optimisation through Grid Search
for every model and every configuration. The numbers of features
(static code metrics) considered were 3, 5, 10, and 15. The best
parameter settings can be found in Appendix C.

Table 4: Comparison of the the performance of four ML
models at the task of classifying the statistically significant
classes in terms of the best fitness function. The classifica-
tion is done on the basis of which combination of criteria
results in the best structural coverage for a class.

F1-Score of Model

Score Metric DT SVC RF LR
Branch 60 0.89 0.76 0.93 0.57
Branch 180 0.91 0.74 0.95 0.57
Branch 300 0.94 0.71 0.97 0.49

Mutation Score 0.90 0.71 0.93 0.63

The results indicate the DT and RF perform the best out of the four
alternatives. They both perform well with a maximum difference in
F1-score of 0.4 for all instances, with a minimum F1-score of 0.89.
SVC and LR perform worse, with F1-scores of between 0.49 and 0.74.
Across the different time budgets and also different score metrics,
the performance of the models varies between 0.04 and 0.14 per
classifier. The number of features selected in the preprocessing
step does not tremendously influence the score of the DT and RF,
having scores of at least 0.86 when selecting 3 features. On the
other hand, when using 3 or 5 features for SVC and LR, the best
scores are between 0.27 and 0.51 for all the configurations, which
is significantly worse than the other presented options.

Given the DT model has shown valuable scores, we have chosen
it to visualise the final patterns between static code metrics of the
examined classes and the best combination to select between bcwm,
branch and branch. To display two examples of the produced pat-
terns, Figure 4 illustrates how metrics ("loc", "mathOperationsQty"),
and ("loc", "wmc", "mathOperationsQty") lead to labels default
and bcwm, respectively. We chose two of the best DTs with 5 and 3
features, respectively, to showcase the essential features in an easy-
to-visualise fashion. The left model of Figure 4 had an F1-score of
0.90 and represents the branch_180 configuration. The right model
scored 0.87 for the branch_60 configuration. Given such diagrams,
one can efficiently discover relationships between metrics and the
most suitable functions. Some of the best performing models also
included the "cbo", "fanout", "rfc", "returnQty", "loopQty", "compar-
isonsQty", and "abstractMethodsQty" metrics. All results can be
found under the project’s public repository 5.

The DT and RF classifiers can effectively predict which of the three
fitness functions would produce the coverage for a given class
with a mean F1-score of between 0.89 and 0.97. The SVC and LR
models perform worse with scores between 0.49 and 0.76. The
most commonly selected features are "loc", "wmc", "mathOpera-
tionsQty", "cbo", "fanout", "rfc".

5https://github.com/danielatoader/research-project



Figure 4: Decision Tree path examples of the default and
bcwm labels for the branch_180 and branch_60 configurations,
respectively

5 DISCUSSION
Our analysis indicates that based on the bcwm, branch, and default
combinations, one can on average achieve the best results by us-
ing branch rather than bcwm when aiming to achieve the highest
branch coverage. When the goal is achieving the highest mutation
score, one should choose bcwm instead of branch. After observing
the bcwm and default results, we recommend using bcwmwhen tar-
geting the highest branch coverage and default for mutation score.
We concluded that adding more functions to the combinations does
not guarantee better performance, and the selection should depend
on more factors than simply the number of optimised criteria. The
models we trained, for instance, the Decision Trees, can provide
insight into the conditions under which combinations of criteria are
most effective. Such conditions reflect in class metrics such as the
class complexity, their mathematical contents, their length, and so
on. The models can be incorporated into EvoSuite and help software
developers produce appropriate test cases for their specific needs.
Like in most research, we encountered limitations that prevented
us from having a more extensive analysis such as computational
power and time shortages. These mainly showed up during training
and performing the nested k-fold cross-validation with Grid Search.
Our results can potentially see improvements once the scripts are
run on more powerful machines. An additional limitation is not
being able to link our models to EvoSuite, which means a lack of
performance guarantees in practice. This could be overcome by
extending the research, checking the linkage results, and reporting
the outcome.

6 THREATS TO VALIDITY
Threats to internal validity concern factors that can significantly
influence our results. One threat commonly shared by most ML
approaches is the randomness associated with the underlying mod-
els and the distribution of the data used as training and testing
instances. Even for deterministic models like decision trees, the
manner in which the data is partitioned can significantly affect
the quality of the results. To minimize those effects, we validated
our models using the standard k-fold cross-validation technique.
In total, we performed ten runs for each model. Another source of
instability for many ML models originates from tuning the algo-
rithm’s parameters. To limit the influence of parameter settings,
we opted for default parameter settings recommended by the ML
framework wherever possible.

Threats to external validity concern the degree to which our
results are generalisable. We selected a subset of 338 Java classes
from the SF110 data set and Apache Commons and ran the models
on the statistically significant subsets of sizes of approximately 200
samples with a "large" effect magnitude. This data set lends itself
naturally to our work, as it has been used in many previous works
on test case generation [12], [6], [23]. However, a broader set of
benchmarks that extends beyond this data set would improve the
robustness of the results.

Threats to conclusion validity concern factors that may influence
the connection between our approach and our conclusion. We
performed statistical tests in selecting classes from the SF110 data
set that had statistically significant differences between at least
one pair of different fitness functions. We also performed statistical
tests to draw conclusions based on the F1-scores of the different
models we obtained using k-fold cross-validation. The conclusions
we drew are based on the statistical significance obtained using the
Wilcoxon test and on the Vargha-Delaney A statistics.

7 RESPONSIBLE RESEARCH
Ethical implications of our software concern the manner in which
end usersmight utilize ourwork. In a real-world setting, the decision-
maker could either use the output of our models to choose a specific
configuration for the intended classes under test manually or dele-
gate the decision process to our application entirely. In either case,
the user should be aware that our models are statistically driven and
imperfect. As such, there are no guarantees of optimality for our
results. However, given the stochastic nature of the evolutionary
search algorithms underlying EvoSuite, we believe that this is a
reasonable proposition: providing statistical guarantees for such
stochastic algorithms on arbitrary inputs is beyond the scope of
this work.

Reproducibility concerns the degree to which our experiments
and results can be recreated. Our benchmark instances are selected
from a widely used and open-source data set, and as such can easily
be retrieved and reused. The tools used to extract the features from
these instances are also open sources. Furthermore, we will make
the code used to generate, train, and validate the models publicly
available. Instances of the code where pseudo-random number
generators are used will be seeded such that the results can be
replicated precisely.



8 CONCLUSION AND FUTUREWORK
This research has analysed how class metrics of a subset of classes
from the SF110 data set and the Apache Commons influence struc-
tural coverage and fault detection capabilities given the Weak Mu-
tation combined with Branch Coverage fitness function bcwm when
using EvoSuite.

In this research, we focused on bringing insights into the impact
of the Weak Mutation + Branch Coverage setting of EvoSuite on
the tests’ capabilities of finding bugs. To reach such insights, we
ran EvoSuite 10 times on a collection of 338 classes from the SF110
and Apache Commons datasets for budgets of 60, 180 and 300
seconds. We then compared Weak Mutation + Branch Coverage to
the branch and default settings in terms of branch coverage and
mutation score. Further, we analysed the significance and effect size
of the comparisons. We filtered the classes on significance and on
large, medium and small effect sizes, thus discarding the negligible
effect size classes. Using the filtered data, we trained machine-
learning models to infer relationships between static code metrics
of the classes and their most suitable combination in EvoSuite. To
gather the metrics, we ran extraction tools and performed data
balancing techniques to prevent introducing bias into our models.

We also performed feature selection to ensure the resulting rela-
tionships are visualisable. Our results highlighted that the Weak
Mutation + Branch Coverage combination is a better option on aver-
age than the default for branch coverage, and better than branch
for mutation score. The machine-learning models had F1-scores of
between 0.89 and 0.93 for all configurations for the Decision Tree
and Random Forest. The Support Vector Classifier and Logistic Re-
gression had worse scores (SVC between 0.71 and 0.76, LR between
0.49 and 0.63. depending on the configuration. As they were clearly
outperformed by the other two, they received less attention in this
experiment, but their results can be found in the project repository
6. The Decision Tree was chosen for means of visualisation, while
the Random Forest had the highest F1-scores.

Further possible improvements include performing more fea-
ture selection or feature extraction methods on the calculated class
metrics and adding more models to the analysis. It would also be
intriguing to consider even more search budgets. The experiments
could be performed on a broader range of instances to provide more
robust and generalisable insight. The experiments could also be
replicated with additional fitness functions for comparison pur-
poses.

REFERENCES
[1] Frederick P Brooks Jr. The mythical man-month: essays on software engineering.

Pearson Education, 1995.
[2] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for

object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering, pages
416–419, 2011.

[3] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated
test case generation as a many-objective optimisation problem with dynamic
selection of the targets. IEEE Transactions on Software Engineering, 44(2):122–158,
2017.

[4] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea
Arcuri. Combiningmultiple coverage criteria in search-based unit test generation.
In International Symposium on Search Based Software Engineering, pages 93–108.
Springer, 2015.

6https://github.com/danielatoader/research-project

[5] Alberto Bacchelli, Paolo Ciancarini, and Davide Rossi. On the effectiveness
of manual and automatic unit test generation. In 2008 The Third International
Conference on Software Engineering Advances, pages 252–257. IEEE, 2008.

[6] Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based generation
of whole test suites. Empirical Software Engineering, 20(3):783–812, 2015.

[7] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. A detailed
investigation of the effectiveness of whole test suite generation. Empirical
Software Engineering, 22(2):852–893, 2017.

[8] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Incremental
control dependency frontier exploration for many-criteria test case generation.
In International Symposium on Search Based Software Engineering, pages 309–324.
Springer, 2018.

[9] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. An empirical evaluation of evolutionary algorithms for unit test suite
generation. Information and Software Technology, 104:207–235, 2018.

[10] Gregory Gay. Generating effective test suites by combining coverage criteria.
In International Symposium on Search Based Software Engineering, pages 65–82.
Springer, 2017.

[11] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness
function for the job: Automated generation of test suites that detect real faults.
Software Testing, Verification and Reliability, 29(4-5):e1701, 2019.

[12] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. A large
scale empirical comparison of state-of-the-art search-based test case generators.
Information and Software Technology, 104:236–256, 2018.

[13] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. Generating
highly-structured input data by combining search-based testing and grammar-
based fuzzing. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 1224–1228. IEEE, 2020.

[14] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie Van Deursen, and
Annibale Panichella. Good things come in threes: Improving search-based
crash reproduction with helper objectives. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 211–223. IEEE, 2020.

[15] András Vargha and Harold D Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132, 2000.

[16] Kevin J Johnson and Robert E Synovec. Pattern recognition of jet fuels: com-
prehensive gc× gc with anova-based feature selection and principal component
analysis. Chemometrics and Intelligent Laboratory Systems, 60(1-2):225–237, 2002.

[17] Hao Lin and Hui Ding. Predicting ion channels and their types by the dipeptide
mode of pseudo amino acid composition. Journal of theoretical biology, 269(1):64–
69, 2011.

[18] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Erratum: esti-
mating mutual information [phys. rev. e 69, 066138 (2004)]. Physical Review E,
83(1):019903, 2011.

[19] Brian C Ross. Mutual information between discrete and continuous data sets.
PloS one, 9(2):e87357, 2014.

[20] Bee Wah Yap, Khatijahhusna Abd Rani, Hezlin Aryani Abd Rahman, Simon Fong,
Zuraida Khairudin, and Nik Nik Abdullah. An application of oversampling,
undersampling, bagging and boosting in handling imbalanced datasets. In
Proceedings of the first international conference on advanced data and information
engineering (DaEng-2013), pages 13–22. Springer, 2014.

[21] Iwan Syarif, Adam Prugel-Bennett, and Gary Wills. Svm parameter optimiza-
tion using grid search and genetic algorithm to improve classification perfor-
mance. TELKOMNIKA (Telecommunication Computing Electronics and Control),
14(4):1502–1509, 2016.

[22] Fabrício José Pontes, GF Amorim, Pedro Paulo Balestrassi, AP Paiva, and
João Roberto Ferreira. Design of experiments and focused grid search for neural
network parameter optimization. Neurocomputing, 186:22–34, 2016.

[23] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an
empirical investigation in search-based software engineering. Empirical Software
Engineering, 18(3):594–623, 2013.



A COVERAGE AND MUTATION SCORE

(a) Coverage 60 (b) Coverage 180

(c) Coverage 300 (d) Mutation Score



B EFFECT SIZE GRAPHS

(a) Magnitudes of effect per configuration in terms of numbers of
analysed classes - bcwm vs branch

(b) Magnitudes of effect per configuration in terms of numbers of
analysed classes - bcwm vs default

(c) Magnitudes of effect per configuration in terms of numbers of
analysed classes filtered by p < 0.05 - bcwm vs branch

(d) Magnitudes of effect per configuration in terms of numbers of
analysed classes filtered by p < 0.05 - bcwm vs default



C BEST GRID SEARCH PARAMETERS

Table 5: Best Decision Tree parameters as evaluated by the Grid Search

Best parameters of DT

Configuration DT

Branch 60 - 15 features ”𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛” : ”𝑒𝑛𝑡𝑟𝑜𝑝𝑦”, ”𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ” : 20, ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : ”𝑠𝑞𝑟𝑡”, ”𝑚𝑎𝑥_𝑙𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒𝑠” : 𝑛𝑢𝑙𝑙
Branch 180 - 15 features ”𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛” : ”𝑒𝑛𝑡𝑟𝑜𝑝𝑦”, ”𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ” : 15, ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : ”𝑠𝑞𝑟𝑡”, ”𝑚𝑎𝑥_𝑙𝑒𝑎𝑓𝑛𝑜𝑑𝑒𝑠” : 𝑛𝑢𝑙𝑙
Branch 300 - 15 features ”𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛” : ”𝑒𝑛𝑡𝑟𝑜𝑝𝑦”, ”𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ” : 15, ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : ”𝑠𝑞𝑟𝑡”, ”𝑚𝑎𝑥_𝑙𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒𝑠” : 𝑛𝑢𝑙𝑙

Mutation Score - 15 features ”𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛” : ”𝑔𝑖𝑛𝑖”, ”𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ” : 𝑛𝑢𝑙𝑙, ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : 4, ”𝑚𝑎𝑥_𝑙𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒𝑠” : 𝑛𝑢𝑙𝑙

Table 6: Best Support Vector Classifier parameters as evaluated by the Grid Search

Best parameters of SVC

Configuration SVC

Branch 60 - 15 features ”𝑘𝑒𝑟𝑛𝑒𝑙” : ”𝑙𝑖𝑛𝑒𝑎𝑟”, ”𝐶” : 1.0
Branch 180 - 15 features ”𝑘𝑒𝑟𝑛𝑒𝑙” : ”𝑙𝑖𝑛𝑒𝑎𝑟”, ”𝐶” : 1.0
Branch 300 - 3 features ”𝑘𝑒𝑟𝑛𝑒𝑙” : ”𝑙𝑖𝑛𝑒𝑎𝑟”, ”𝐶” : 1.0

Mutation Score - 10 features ”𝑘𝑒𝑟𝑛𝑒𝑙” : ”𝑙𝑖𝑛𝑒𝑎𝑟”, ”𝐶” : 1.0

Table 7: Best Random Forest parameters as evaluated by the Grid Search

Best parameters of RF

Configuration RF

Branch 60 - 15 features ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : 2, ”𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠” : 20
Branch 180 - 15 features ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : 2, ”𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠” : 50
Branch 300 - 15 features ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : 2, ”𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠” : 50

Mutation Score - 10 features ”𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠” : 2, ”𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠” : 50

Table 8: Best Logistic Regression parameters as evaluated by the Grid Search

Best parameters of LR

Configuration LR

Branch 60 - 15 features ”𝐶” : 0.1, ”𝑝𝑒𝑛𝑎𝑙𝑡𝑦” : ”𝑙2”, ”𝑠𝑜𝑙𝑣𝑒𝑟” : ”𝑛𝑒𝑤𝑡𝑜𝑛 − 𝑐𝑔”
Branch 180 - 15 features ”𝐶” : 1𝑒 − 05, ”𝑝𝑒𝑛𝑎𝑙𝑡𝑦” : ”𝑛𝑜𝑛𝑒”, ”𝑠𝑜𝑙𝑣𝑒𝑟” : ”𝑛𝑒𝑤𝑡𝑜𝑛 − 𝑐𝑔”
Branch 300 - 15 features ”𝐶” : 0.1, ”𝑝𝑒𝑛𝑎𝑙𝑡𝑦” : ”𝑙2”, ”𝑠𝑜𝑙𝑣𝑒𝑟” : ”𝑛𝑒𝑤𝑡𝑜𝑛 − 𝑐𝑔”

Mutation Score - 15 features ”𝐶” : 100, ”𝑝𝑒𝑛𝑎𝑙𝑡𝑦” : ”𝑙2”, ”𝑠𝑜𝑙𝑣𝑒𝑟” : ”𝑙𝑖𝑏𝑙𝑖𝑛𝑒𝑎𝑟”


