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ABSTRACT: Palaeo‐ice sheets are important analogues for understanding contemporary ice sheets, offering a record
of ice sheet behaviour that spans millennia. There are two main approaches to reconstructing palaeo‐ice sheets.
Empirical reconstructions use the available glacial geological and chronological evidence to estimate ice sheet extent
and dynamics but lack direct consideration of ice physics. In contrast, numerically modelled simulations implement
ice physics, but often lack direct quantitative comparison with empirical evidence. Despite being long identified as a
fruitful scientific endeavour, few ice sheet reconstructions attempt to reconcile the empirical and model‐based
approaches. To achieve this goal, model‐data comparison procedures are required. Here, we compare three
numerically modelled simulations of the former British–Irish Ice Sheet with the following lines of evidence: (a)
position and shape of former margin positions, recorded by moraines; (b) former ice‐flow direction and flow‐
switching, recorded by flowsets of subglacial bedforms; and (c) the timing of ice‐free conditions, recorded by
geochronological data. These model–data comparisons provide a useful framework for quantifying the degree of fit
between numerical model simulations and empirical constraints. Such tools are vital for reconciling numerical
modelling and empirical evidence, the combination of which will lead to more robust palaeo‐ice sheet
reconstructions with greater explicative and ultimately predictive power. Copyright © 2019 John Wiley & Sons, Ltd.

Introduction
Reconstructing the behaviour of palaeo‐ice sheets enables a
better understanding of the long‐term (centennial to millennial)
behaviour of ice sheets in the Earth system. The former extent
and behaviour of ice sheets can be inferred principally from
four main lines of evidence. First, relative sea‐level (RSL)
records (e.g. a raised beach or salt marsh) provide constraints
on the loading history of an ice sheet. Through the application
of a glacio‐isostatic adjustment (GIA) model, RSL data can be
used to infer palaeo‐ice sheet thickness and extent (e.g.
Bradley et al., 2011; Lambeck & Chappell, 2001; Peltier,
2004). Second, analysis of the properties and stratigraphic
sequence of sediments transported and deposited by palaeo‐
ice sheets can be used to infer ice sheet history at a given
location (e.g. Eyles & McCabe, 1989; Piotrowski & Tulaczyk,
1999). The geomorphological record, composed of landforms
such as drumlins and moraines, can be used to decipher
former ice‐flow directions and margin positions (e.g. Clark
et al., 2018; Hughes et al., 2014). Finally, the timing of
deposition of sediment and/or the time glacially transported or
eroded bedrock has been exposed, and by inference the timing
of formation of associated landforms, can be dated using
laboratory‐based techniques to produce the third line of
evidence, geochronological data (e.g. Duller, 2006; Libby
et al., 1949; Small et al., 2017a).

The body of empirical evidence related to palaeo‐ice sheets
is continually growing, producing an ever‐expanding library of
palaeo‐ice sheet data (e.g. Clark et al., 2012; Dyke, 2004;
Hughes et al., 2016; Stroeven et al., 2016). Producing a
glaciologically plausible empirical reconstruction of a palaeo‐
ice sheet is, however, a challenging process, with three main
limitations. First, evidence is often temporally and spatially
fragmented, thereby requiring some subjective inference to be
made about ice sheet behaviour between the data‐constraints
(Clark et al., 2012; Hughes et al., 2016). Second, all sources of
data have inherent uncertainties due to factors such as
preservation potential, inherent laboratory‐based uncertainties
and postdepositional modification (Hughes et al., 2016; Small
et al., 2017a). Finally, a mathematically and physically based
direct inversion from palaeo‐glaciological information to infer
past ice sheet characteristics (e.g. former ice‐flow velocities)
has remained elusive owing to the complexity of the processes
involved, meaning that all reconstructions are subjective
(albeit expert) inferences (Kleman & Borgström, 1996; Stokes
et al., 2015). Despite these limitations, empirical reconstruc-
tions typically provide a spatially coherent representation of
ice sheet activity, often portrayed as a series of palaeogeo-
graphical maps showing ice extent, flow geometry, ice divides
and their changes at any given time (or at several time‐steps).
As an alternative to the data‐driven approach of an empirical

reconstruction, numerical ice sheet models can be used to
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reconstruct palaeo‐ice sheet behaviour (e.g. Fisher et al., 1985;
Hubbard et al., 2009; Patton et al., 2017; Tarasov & Peltier,
2004). The approach here is to apply a numerical model based
on the understanding of ice sheet physics to produce a
modelled reconstruction of a palaeo‐ice sheet. Using this
physics‐based approach, information such as ice‐thickness
and velocity can be reconstructed across the entire model
domain in a manner that is consistent with model physics.
However, limitations with this approach mean that modelled
reconstructions may struggle to replicate the information and
detail provided by palaeo‐data. Numerical ice sheet models
require the specification of several input boundary conditions
and parameters. One of the most uncertain of these is the
climatic conditions used to determine the pattern of accumu-
lation and ablation over the model domain through time
(Stokes et al., 2015). Other factors relating to the nature of ice
sheet flow, such as basal friction, subglacial hydrology and
shear, may either rely upon poorly constrained model
parameters (due to a lack of physical understanding) or simply
be beyond the capabilities of the model (e.g. they operate at
scales below the spatial resolution of the model). Compound-
ing the problem, ice sheets exhibit instabilities, whereby small
perturbations to boundary conditions are amplified by the
instability and can affect the whole modelled ice sheet. Such
instabilities may lead to highly nonlinear responses that are
difficult to predict. One example is marine ice sheet instability
(Hughes, 1973; Schoof, 2007, 2012), which is an instability in
the position of the grounding‐line on a reverse bed slope that
occurs because of ice flux being proportional to ice thickness
at the grounding‐line.
A complementary approach to the above is to view ice sheet

behaviour as an expression of the weather/climate duality;
‘climate is what on an average we expect, weather is what we
actually get’ (Herbertson, 1908, p. 118). Restricting our
attention to NW Europe, over diurnal periods weather is quite
predictable, but this statement is false over periods of a few
days. By contrast, it is true to say that winter months will be
colder than summer months. The loss of predictability on a
weekly time‐scale arises from physical instabilities in the
atmospheric circulation (Lorenz, 1963), and decades of
observations have allowed scientists to make general state-
ments about the temporal and spatial scales associated with
these instabilities, improving predictability (Bauer et al., 2015).
Unfortunately, we do not have enough observations of ice

sheet behaviour to make similar statements about the spatial
and temporal scales associated with glaciological variability.
Ice streams are a good example; the Kamb Ice Stream shut
down in the past two centuries (Retzlaff & Bentley, 1993), and
a myriad of ice streams with similar potential behaviour have
been identified from the geological record in North America
and Europe (Margold et al., 2015; Stokes & Clark, 1999).
Modelling has shown that ice streams can be generated by, for
example, instabilities in thermomechanical coupling (Hind-
marsh, 2009), but none of these models has been used to
match the extent of specific ice streams, due in part or largely
to lack of data. Another example, probably with greater spatial
extent, is marine ice sheet instability (MISI; Schoof, 2007),
which acts on marine ice sheets with grounding lines on
reverse slopes. Both ice streams and MISI can be viewed as
examples of ice sheet ‘weather’ – lack of predictability caused
by instabilities, in exactly the same way as atmospheric
weather is generated by instabilities.
This leads to a conundrum increasingly faced by geologists

and geomorphologists; is the unusual behaviour frequently
observed a signal from the whole ice sheet, or is it a signal of
local variability? This is where modellers can inform field
scientists, because modelling can give physically based

estimates of the spatial and temporal scale of unstable
behaviour.
To account for the above limitations and uncertainties of

modelled reconstructions, two general approaches have
been adopted which produce multiple ice sheet simula-
tions. The first involves sensitivity analyses (e.g. Boulton &
Hagdorn, 2006; Patton et al., 2016), whereby relevant
model parameters and boundary conditions are perturbed
to produce numerous simulations of the palaeo‐ice sheet in
question. Such tuning is conducted until a simulation is
generated that is perceived to ‘best fit’ the empirical
evidence, and is chosen as the modelled reconstruction.
The second adopts an ensemble approach (e.g. Gregoire
et al., 2012; Tarasov & Peltier, 2004), whereby a wide set
of plausible combinations of parameters are input into the
ice sheet model to produce an array of model outputs.
Data‐based constraints may then be used to rule out
unrealistic simulations from the bank of ensemble simula-
tions, leaving a combination of simulations that are yet to
be ruled out (e.g. Gregoire et al., 2016). The second
approach is to calibrate ensemble parameters against data
constraints, ruling out simulations and their associated
parameter sets based on acceptable fits to the data (e.g.
Tarasov & Peltier, 2004). The remaining simulations are
then supplemented by further simulations, which use the
calibrated parameters. The final modelled reconstruction in
this approach is a combination of calibrated model
simulations, from which the distribution of plausible
glaciological variables can be derived (e.g. mean ice
velocity) (Tarasov et al., 2012).
Ideally, palaeo‐ice sheet reconstructions should com-

bine the data‐rich empirical approach with physically
based modelled reconstructions. Indeed, this suggestion
was put forward in a landmark paper by Andrews (1982),
when numerical modelling was very much in its infancy,
and yet it has been very difficult to achieve. Ice sheet
model outputs are often compared to RSL data through GIA
modelling (e.g. Auriac et al., 2016; Kuchar et al., 2012;
Patton et al., 2017; Simpson et al., 2009), but quantitative
model–data comparisons using other forms of palaeo‐ice
sheet data have remained rare (but see Briggs & Tarasov,
2013; Patton et al., 2016). This is despite the development
(Li et al., 2007; Napieralski et al., 2006) and demonstration
(Napieralski et al., 2007) of tools for data–model com-
parison.
Adopting this approach may create new opportunities for

both empiricists and ice sheet modellers to drive the field
forward. Empiricists could use models to help reduce data
uncertainty and rule out physically implausible interpretations.
Modellers could use the data to score ensemble members and
improve model formulation (as per Tarasov & Peltier, 2004).
Here, we extend some recent advances in this area to outline a
procedure for comparing geochronological and geomorpho-
logical data with ice sheet model output. We illustrate this with
example model output of the British–Irish Ice Sheet (BIIS).
Given the expanding body of data constraining palaeo‐ice
sheet behaviour (e.g. Clark et al., 2018; Greenwood & Clark,
2009; Hughes et al., 2014; Small et al., 2017a), it is one of the
best ice sheets for model–data comparison. The primary
purpose of the model runs presented here is not to simulate
the intricacies of this palaeo‐ice sheet or advance our
understanding of the ice sheet, but simply to facilitate
methodological comparisons between model output and
empirical data. Meaningful and more accurate simulations of
the ice sheet are the subject of ongoing work as part of the
BRITICE‐CHRONO NERC consortium project (e.g. Gandy
et al., 2018).

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)
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Methods of model–data comparison
Of the four sources of data that might be used to constrain
palaeo‐ice sheet simulations (RSL, sedimentology, geochro-
nology and geomorphology), it is perhaps not surprising that
RSL has the longest tradition (Peltier et al., 1978; Quinlan &
Beaumont, 1982; Walcott, 1972). Sea‐level index points
provide a testable data set with definable uncertainty (e.g.
Engelhart & Horton, 2012). Furthermore, until recently, ice
sheet models were run at a low resolution of > 20‐km grid
size. This meant that modelled reconstructions could be
tested against RSL data, which has a lack of abrupt spatial
changes, through the use of a GIA model (e.g. Auriac et al.,
2016). The advent of faster and parallel processing means
that higher‐resolution simulations of continental ice sheets
are now achievable (~5 km), permitting comparison with
other sources of information. However, these data need to be
presented at a similar resolution to the model and will
perhaps provide definitive and quantifiable characteristics
that a model can predict. Ice sheet models are yet to have
adequate sediment production, transportation and deposition
laws to make predictions to the same level of detail that might
be observed in a sediment exposure. We here demonstrate
how to make meaningful model–data comparisons to the
remaining two classes of palaeo‐ice sheet data, geomorpho-
logical (ice‐margin position and ice‐flow direction) and
geochronological (in essence, the timing of ice‐free condi-
tions).

Ice‐margin position

Mapping of moraines underpins empirical palaeo‐glaciology,
providing information on former ice margin position, the direction
of ice sheet retreat and the shape of the margin (Fig. 1A; Clark
et al., 2012). Palaeo‐ice sheet models can also predict these
characteristics of a margin through time. However, only the
largest moraines are likely to be of a sufficient scale to permit
meaningful comparison with ice sheet model output. To
compensate for this, neighbouring morainic ridges are often
grouped/interpreted into larger composite margin positions, which
collectively delineate ice margin retreat patterns (e.g. Fig. 1B).
Napieralski et al. (2006) developed an Automated Proximity

and Conformity Analysis (APCA) tool for comparing margin
positions from mapped moraines and ice sheet model outputs
(Table 1), later modified by Li et al. (2008). In this tool,
mapped margins are first coarsened to conform to the ice sheet
model grid size. Then, for each model‐output time‐slice, APCA
measures the distance of an ice margin determined based on
mapped moraines to the modelled ice margin (Fig. 1C). The
conformity of shape between margin positions determined
from moraines and the model output is defined as the standard
deviation of proximity for each cell occupied by a mapped
margin position (Li et al., 2008; Figure 1C). An ideal simulation
of a palaeo‐ice sheet would match the location and shape of
each moraine, which would be quantified by APCA as
simultaneous zero proximity and perfect conformity at some
point during the model run. However, model resolution

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)

(A) (B)

(C) (D)

Figure 1. (A) Mapped offshore moraines, Donegal Bay, Ireland, from Benetti et al. (2010). (B) Interpreted margin positions from A. (C) Schematic
representation of the Automated Proximity and Conformity Analysis (APCA), whereby the distance between modelled and mapped margin position
is measured. Proximity is defined as the mean of these measurements and conformity as the standard deviation (Li et al., 2008; Napieralski et al.,
2006). (D) Schematic output from APCA. Here, a model–data agreement is only declared when both proximity and conformity are below a defined
threshold.
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limitations mean that a perfect score is unlikely to occur.
Consequently, a more pragmatic approach would be to apply
a proximity and conformity threshold, below which an
acceptable level of model–data agreement occurs (Fig. 1D).
Only when both measures are below this predetermined
acceptance threshold will model–data agreement be declared,
that is the model matches the location and shape of the
mapped margin derived from mapped moraines sufficiently.
Where the relative sequence of moraine formation is known
(e.g. in a retreat sequence of concentric moraines), the timing
of margin matching could be considered. However, caution
should be taken if relative timing of moraine formation criteria
are utilized, so that simulations which produce readvances
that reoccupy margin positions are not excluded.

Ice‐flow direction

Subglacial bedforms record the ice‐flow directions within a
palaeo‐ice sheet (e.g. Clark, 1993; Ely et al., 2016; Kleman,
1990; Kleman & Borgström, 1996; Stokes et al., 2009). Where
cross‐cutting subglacial bedforms are superimposed on each
other, a sequence of flow directions is recorded (Clark, 1993).
Neighbouring subglacial bedforms with a similar morphology
and orientation can be grouped into flowsets – groups of
subglacial bedforms interpreted to form in the same phase of
ice‐flow (e.g. Clark, 1999; Kleman & Borgström, 1996). When
grouped in this way, cross‐cutting flowsets of subglacial
bedforms can reveal major shifts in the flow patterns of an
ice sheet, a consequence of shifting ice sheet geometry, ice‐
divide migration and ice‐stream (de)activation (e.g. Boulton &
Clark, 1990; Clark, 1999; Greenwood & Clark, 2009). While a
single flowset provides a spatially limited constraint on ice‐
flow direction, the sequence and spatial patterning of flowsets
across the former ice sheet bed can be used to reconstruct the
ice‐flow geometry of a palaeo‐ice sheet and the evolution of
that geometry through time (Boulton & Clark, 1990; Green-
wood & Clark, 2009; Hughes et al., 2014; Kleman
et al., 1997).
Li et al. (2007) developed an Automated Flow Direction

Analysis (AFDA) tool for comparing modelled and empirically
derived ice sheet flow directions. To measure flow correspon-
dence, AFDA calculates the mean residual angle and variance
of offset between modelled and empirically derived ice‐flow
directions (Fig. 2). Where detailed flowset reconstructions exist
(e.g. for the BIIS; Greenwood & Clark, 2009; Hughes et al.,
2014), the relative age of cross‐cutting flowsets can be used as
a further constraint by evaluating whether a model run re‐
creates a cross‐cutting sequence of flow directions in the
inferred order of time (Fig. 2). To do this, flow‐direction model
agreement would need to have occurred in the specified order,
beneath a predetermined (user‐specified) threshold which
corresponds to an acceptable level of model–data agreement
(Fig. 2B).

Ice‐free timing

The timing of ice‐free conditions can be derived from
geochronological techniques. These have been applied most
commonly to organic material in the case of radiocarbon
dating (Arnold & Libby, 1951; Libby et al., 1949; McCabe
et al., 2007; Ó Cofaigh & Evans, 2007), proglacial sands in the
case of luminescence dating (e.g. Bateman et al., 2018; Duller,
2006; Smedley et al., 2017), and glacially transported boulders
or glacially modified bedrock in the case of cosmogenic
nuclide dating (Fabel et al., 2012; Small et al., 2017b; Stone
et al., 2003). For some palaeo‐ice sheets, compilations of
thousands of dates recording ice‐free conditions relevant to the

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)
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timing of advance and retreat exist (Dyke, 2004; Hughes et al.,
2016; Small et al., 2017a). However, dating the activity of an
ice sheet is complex and, as such, not all dates are equally
reliable constraints (Small et al., 2017a). To account for this, an
assessment of data reliability, such as the traffic‐light system
proposed by Small et al. (2017a), should be conducted before
model–data comparison. This involves initially filtering out
ages irrelevant to the study period. The remaining ages are
then assigned a quality rating based upon the stratigraphic and
geomorphological context, supporting evidence and potential
for significant and unquantifiable geological uncertainty (Small
et al., 2017a). Depending on the stratigraphic setting of a dated
sample (e.g. above or below glacial sediment), this timing
constrains ice‐free conditions either before an advance of, or
following the retreat of, an ice sheet (Hughes et al., 2011).
Each site has an associated error, related to measurement
uncertainties. Because geochronological techniques only
record the timing of ice‐free conditions before (advance) or
after (retreat) the occupation of an area by an ice sheet, the

associated error can be considered as one‐sided (Fig. 3; Briggs
& Tarasov, 2013; Ely et al., 2019).
Ely et al. (2019) developed an Automated Timing Accor-

dance Tool (ATAT) for comparing ice sheet model output with
geochronological data. Ice‐free dates must first be grouped as
constraints on the retreat or advance of the ice sheet and then
gridded (rasterized) to the resolution of the ice sheet model
(Fig. 3). Loose constraints, for example ice‐free dates that are
thousands of years younger or older than those indicated by
the regional advance or retreat chronologies, can be ignored
when creating the geochronological grid because they provide
a poor test of the ice sheet model. ATAT produces several
statistics based on the agreement between ice‐free ages and
modelled deglacial chronologies. It categorizes dates as to
whether there is agreement within both model and data
uncertainty, including a procedure that considers whether a
dated site could have become ice‐free due to thinning of the
ice sheet surface (i.e. nunataks or emergent hills close to
margins). After classifying dates, ATAT calculates the route‐

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)

(A) (B)

Figure 2. (A) Schematic of Automated Flow Direction Analysis comparison technique (after Li et al., 2007). At this point in time, the model agrees
well with Flowset 1, but is flowing at right angles to the superimposed Flowset 2. For complete model–data agreement to occur, the model must
replicate the flow direction of Flowset 2 at a later stage. (B) Schematic output from AFDA for Flowsets 1 and 2 depicted in A. In this case, data–model
agreement occurs when both mean residual variance and the mean residual vector are below an applied threshold. As this occurs in the observed
sequence (Flowset 1 then Flowset 2), model–data agreement of this cross‐cutting relationship can be said to occur.

(A) (B)

Figure 3. (A) Schematic of the comparison between model and data made by ATAT (Ely et al., 2019). Example shows a deglaciating ice sheet model
output at 17.5 ka BP. The model replicates the ice‐free conditions recorded by the lower two sites and thus there is model–data agreement. However,
the model still produces ice cover at this time within the range of the date of 19.2 ± 0.6 ka BP. In this case, there is model–data disagreement. (B)
Example of comparison procedure for one site, dated to 18.5 ± 0.5 ka BP. Model predictions that occur before an ice‐free age, or during the
associated error, are considered to agree with the data. Adapted from Ely et al. (2019).
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mean square error (RMSE) between measured and modelled
ice‐free timings, with an additional weighted statistic which
accounts for the uneven spatial distribution of dates (wRMSE).
ATAT therefore measures both the number of dates that agree
with a simulation (% of dates that agree), and how close the
simulation gets to replicating the dates (wRMSE). Ideally, the
ice sheet model would simulate ice‐free conditions within the
error of each geochronological constraint. Given the limita-
tions of models, and the uncertainty associated with geochro-
nological dates, the statistics generated by ATAT can be used
more pragmatically to distinguish which model‐runs better
conform to the available geochronological archive (Ely et al.,
2019). For example, Ely et al. (2019) suggest that the measure
‘number of ice‐free dates agreed with within error’ is a good
indictor from which to initially sift model simulations. A further
application of ATAT is demonstrated in this paper.

Demonstration of approach using the BIIS
Model setup

Our primary aim is to demonstrate various approaches to
model–data comparison, and so we perform some simple
experiments with the aim of creating a range of outputs. We
therefore make numerous simplifications, especially regarding
our climate input. It is unimportant for the model experiments
to exactly replicate the detailed reconstructed history of the
BIIS (e.g. Clark et al., 2012). However, the model output serves
as a means for demonstrating how model–data comparison
tools could work. We use the Parallel Ice Sheet Model (PISM;
Winkelmann et al., 2011) to simulate the BIIS. PISM is a hybrid
shallow‐ice shallow‐shelf model which implements grounding
line migration using a subgrid interpolation scheme. Ice
movement is modelled as a combination of ice deformation
and basal sliding. Internal deformation is determined by a flow
law (Glen, 1952; Nye, 1953) with ice rheology altered by an
enthalpy scheme (Aschwanden et al., 2012). Basal sliding
occurs through a pseudo‐plastic sliding law once basal shear
stresses exceed yield stresses. Yield stress is determined to be a
function of till friction, with till friction being a function of
elevation and modelled basal effective pressure (Martin et al.,
2011). Effective pressure is determined by a local subglacial
hydrology model which relates overburden pressure to
subglacial melt rates while ignoring horizontal water transport
(Bueler & van Pelt, 2015; Tulaczyk et al., 2000). The model
allows ice shelves to form. Sub‐shelf melt is determined using
the parameterization of Beckmann and Goosse (2003)
perturbed by a melt factor (Martin et al., 2011), assuming that
basal ice temperature is at pressure‐melting point and ocean
temperatures are at the freezing point at the depth of the
ice–ocean interface (Martin et al., 2011). Calving rates are
proportional to horizontal strain rates and are determined by a
2D parameterization (Levermann et al., 2012; see also
Supporting Information Table S1 for key parameters).

We run the model at 5‐km resolution, using bed topography
gridded from the General Bathymetric Chart of the Oceans
(www.gebco.net; Weatherall et al., 2015). Although higher
resolution simulations of palaeo‐ice sheets are possible (e.g.
Seguinot et al., 2018), they are computationally expensive,
limiting the ability to run ensembles or sensitivity analyses.
Furthermore, larger palaeo‐ice sheets (e.g. the Laurentide),
where similar approaches could be conducted, require similar
or coarser resolutions. Topography is updated to account for
isostasy using a parameterization of viscoelastic Earth defor-
mation in response to loading (Bueler et al., 2007). Eustatic
sea‐level change is accounted for by applying a scalar offset
from the SPECMAP data (Imbrie et al., 1984).
To demonstrate differences between model simulations, we

limit our analyses to the output from three model simulations.
Parameters and boundary conditions are the same for all three
simulations, except that we vary the climate input. Climate is
represented in our simulation as a spatially continuous field
derived from multiple regression analysis of three sources of
climate data; two modern‐day records and one from a
palaeoclimate modelling experiment (Table 2; Braconnot
et al., 2012). Prescribed temperatures are perturbed over time
by a scalar offset derived from the Greenland ice core records
(Seierstad et al., 2014) and fed into a positive degree‐day
model to calculate surface mass balance (Calov & Greve,
2005). Precipitation is also corrected with reference to the
Greenland ice core record, with a 7.3% reduction in
precipitation per degree Celsius decrease in temperature
(Huybrechts, 2002). The model runs from 40 000 ka BP to
the present day. Model output was recorded at 100‐year
intervals. The maximum extent of ice generated by each model
simulation is shown in Fig. 4. As expected, none of the model
simulations performs well at replicating the reconstructed
extent of the BIIS (e.g. Clark et al., 2012; Figure 4). The
inability to reach these extents is probably a consequence of
the simplistic climate forcing and would therefore probably be
ruled out by visual assessment alone (e.g. Seguinot et al.,
2014). Such visual assessment is time consuming, especially as
an ensemble is likely to produce thousands of model
simulations. Furthermore, it may be that the parameters used
in one simulation produce a closer fit to the data than others,
guiding future models. It is therefore important to test
model–data tools against these simulated ice sheets.

Ice margin position

We derived 189 ice margin positions from moraines reported
in the BRITICE v.2 database (Clark et al., 2018) and compared
these using APCA (Li et al., 2008) against our modelled ice
margin positions (Fig. 5). To determine reasonable thresholds
of proximity and conformity beyond which model–data
agreement can be declared, we conducted sensitivity analysis
validated by visual inspection (Fig. 5B). We found that a
proximity threshold of 15 km and a conformity threshold of
3 km sufficiently identified modelled ice margin positions that

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)

Table 2. Multiple regression fields for climate. lat = latitude, lon = longitude, topg = surface topography (i.e. elevation in metres above present‐
day sea‐level).

Simulation Precipitation (mm a–1) Mean annual temperature (°C) July temperature (°C) Source of climate data

A 374.6 + 10.1 × lat −26.0
× lon

25.3–0.004 × topg −0.294 × lat
−0.035 × lon

32.2–0.004 × topg −0.316 × lat
−0.009 × lon

www.worldclim.org/

B 81.1 + 0.116 × lat −1.502
× lon

35.8–0.005 × topg −4.97 × lat
−0.07 × lon

34.2–0.004 × topg −0.343 × lat +
0.112 × lon

www.cru.uea.ac.uk/data

C 159.8–16.545 × lat −12.342
× lon

33.7–0.007 × topg −0.674 × lat
−0.218 × lon

39.358–0.007 × topg −0.621 × lat +
0.18 × lon

pmip3.lsce.ipsl.fr/
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Figure 4. The maximum extent of the three model simulations. Note that these simulations are only driven by climate and are not calibrated to any
empirical evidence of the ice sheet. Thus, they do not achieve a state which resembles the empirically reconstructed ice sheet. Reconstructed extents
at 27 ka BP (white line) and 23 ka BP from Clark et al. (2012) are shown for comparison.

(A) (B)

(C)

Figure 5. (A) Generalized margin positions tested, derived from moraines reported in Clark et al. (2018). Merged bathymetry and topography from
the General Bathymetric Chart of the Oceans 2014 grid (GEBCO; Weatherall et al., 2015). (B) Modelled ice sheet thickness at 19.1 ka BP from
simulation A, centred on north‐west Scotland with ice margin positions plotted on top. The example moraine considered in C is highlighted in green.
Location of this panel is the dashed box on A. (C) Output of proximity and conformity analysis for the example moraine shown in B for the duration
of simulation A (40–10 ka BP). Note there are several periods when both proximity and conformity indicate model–data agreement, the most recent
being at 19.1 ka BP. Note that the axis for ‘Proximity’ is logarithmic.
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visually agreed with the shape and location of each moraine
(Fig. 5B,C). These thresholds could be used in similar
experimental setups. A similar proximity measure (15 km)
was reported by Napieralski et al. (2007). Figure 5b shows an
example of a margin position where data–model agreement
occurred. Data–model agreement occurred several times
during the course of the simulation for this particular margin,
as both measures of proximity and conformity fell below the
agreement threshold on multiple occasions (Fig. 5C). Marine‐
based ice sheets, such as the BIIS, are prone to readvances
(Kingslake et al., 2018; Schoof, 2007). The potential to
readvance means that we cannot make the simple assumption
that moraines closer to the ice sheet centre are older, meaning
that we do not consider time sequences of margin occupation
as a test here.
Table 3 shows the percentage of margins matched by each

model run. The most common reason for model–data
mismatch was that margins were not reached by the simulated
ice extent, meaning that they scored too low on the proximity
score of APCA. This is unsurprising given that two out of three
of the models do not reach the extent of all considered margins
(Figs. 4 and 5A). To test whether the model agrees with the
observed shape and proximity of margins that are within
modelled extent, we calculated a second statistic, which
considered only those observed margins within the maximum
extent of a given model simulation (Figs. 4 and 5A; Table 3).
This shows that each simulation has model–data agreement
with over 50% of the margins reached and their shape
replicated by the model simulation (i.e. excluding mismatches
for margins that are outside the maximum extent of the model
simulation) (Table 3). However, direct comparisons between
simulations become problematic when restricting the analysis
to only moraines within the maximum extent, as this changes
the number of data that are being compared (Table 3). We
therefore created a third metric, the extent of margins matched
within the extent of simulation C, the simulation which
produced the smallest ice extent (Table 3; Fig. 4).

Ice‐flow direction

A total of 103 flowsets from Britain and Ireland were
compared to our model simulations using AFDA (Li et al.,
2007) (Fig. 6A). These were assembled from Greenwood and
Clark (2009) and Hughes et al. (2014) and include 32 cross‐
cutting relationships. Combined, the datasets of Greenwood
and Clark (2009) and Hughes et al. (2014) have over 150
flowsets. However, given the horizontal resolution of the
models (5 km), small (< 20 km wide) flowsets were excluded
from the analysis (n = 39). Flowsets identified as time‐
transgressive (i.e. formed asynchronously) were either
divided into the stages of formation identified by Green-
wood and Clark (2009) and Hughes et al. (2014), or
excluded from the analysis (n = 20). Flow vectors were
derived from the empirically derived depiction of a flowset,
rather than individual bedforms, because the orientation
of these may vary on a sub‐grid scale. For data–model
agreement to occur, we applied a threshold of 10 ° mean
residual vector, and 0.03 in mean variance. These values
were initially derived by visually comparing the model and
data and determining whether a modelled ice flow direction
was sufficiently similar to a mapped flowset. These thresh-
old values are consistent with those reported by Napieralski
et al. (2007), and could be used to declare model–data
agreement in similar experimental setups. To get a cross‐
cutting relationship registered to be in data–model agree-
ment, the last occurrence of model conformity for the first

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)

Ta
bl
e
3.

Su
m
m
ar
y
of

re
su
lts

fr
om

m
od

el
–
da

ta
co

m
pa

ri
so
ns
.
N
ot
e
th
at

w
he

n
m
ea

su
re
s
ar
e
re
st
ri
ct
ed

to
th
e
m
od

el
le
d
ic
e
ex

te
nt
,
th
e
nu

m
be

r
of

co
m
pa

ri
so
ns

ch
an

ge
s,

lim
iti
ng

th
e
ab

ili
ty

to
co

m
pa

re
be

tw
ee

n
si
m
ul
at
io
ns
.

Si
m
ul
at
io
n

%
of

m
ar
gi
ns

m
at
ch

ed
(n

=
18

9)

%
of

m
ar
gi
ns

m
at
ch

ed
w
ith

in
m
ax

im
um

m
od

el
le
d

ex
te
nt

%
of

m
ar
gi
ns

m
at
ch

ed
w
ith

in
ex

te
nt

of
si
m
ul
at
io
n
C

%
of

flo
w
se
ts

m
at
ch

ed
(n

=
10

3)

%
of

flo
w
se
ts

m
at
ch

ed
w
ith

in
m
ax

im
um

m
od

el
le
d

ex
te
nt

%
of

flo
w
se
ts

m
at
ch

ed
w
ith

in
ex

te
nt

of
si
m
ul
at
io
n
C

%
of

cr
os
s‐

cu
ts
m
at
ch

ed

%
of

da
te
s
w
he

re
m
od

el
–
da

ta
ag

re
em

en
t

oc
cu

rs
(n

=
10

8)

w
R
M
SE

of
m
od

el
–
da

ta
di
ffe

re
nc

e
fo
ri
ce

‐c
ov

er
ed

da
te
s

w
he

re
m
od

el
–
da

ta
ag

re
em

en
t

oc
cu

rs
(y
ea

rs
)

A
60

76
(n

=
15

1)
61

9
21

(n
=
41

)
26

0
41

18
98

B
36

54
(n

=
12

5)
43

16
19

(n
=
88

)
21

0
9

11
82

C
43

66
(n

=
12

4)
66

3
8
(n

=
39

)
8

0
89

20
57

PROGRESS IN ICE SHEET MODELLING 953



flowset in a sequence needs to occur before the last
occurrence of model conformity for the overprinted flowset.
Table 3 summarizes the comparison between model

output from the three simulations and the assembled flowset
database (Fig. 6A). Overall, model–data agreement was low,
with most flowsets not replicated by the model simulations
(Table 3). Similar to the margin comparison, this is partly a
consequence of the models computed ice‐covered area not
replicating the full area covered by the BIIS (Fig. 4). We
therefore produced a second metric that restricted the
analysis to those flowsets occurring within the modelled
ice extent. This was done to see if model–data mismatch was
a consequence of ice extent (in which a high number of ice‐
covered data points would be matched), or due to
model–data mismatch even over the ice‐covered area.
However, note the caveat that this limits the ability to
compare between simulations owing to the changing
number of data in the model–data comparison. A third
metric, the percentage of flowsets matched within the extent
of simulation C (the simulation with the smallest ice extent),
allows for comparison between model runs. Even when this
approach is adopted, the degree of model–data agreement
for flowsets remains low, with simulation A being the best
performing, matching 26% of flowsets within the extent of

simulation C (Table 3). Furthermore, no models were able to
replicate an observed cross‐cutting relationship (Table 3).
Figure 6B,C provides an example of a matched flowset.
Here, ice flow of sufficient coherence (a variance measure)
in an agreed direction (vector orientation measure) is
achieved towards the end of the model run (Fig. 6C).

Ice‐free timing

Simulated ice sheet retreat timing from the model was
compared to 108 published dated sites of ice sheet retreat
using the ATAT (Ely et al., 2019). Only sites with a green or
amber quality rating from the traffic light system of Small et al.
(2017a) were used. This means that the quality control
considerations of dating techniques and stratigraphic contexts
were deemed to be high quality (green) or acceptable (amber).
Sites flagged with ‘caution when interpreting (red)’, due to
specific site or technique uncertainty, were not considered
here (see Fig. 7A for the location of sites used). For each model
run, we report the percentage of dates where model–data
agreement occurs (i.e. when a model re‐creates the ice‐free
timing recorded by geochronological data) and a spatially
weighted root‐mean square error (wRMSE) between data‐
based and model‐based deglaciation timing (Ely et al., 2019;

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)

(A) (B)

(C)

Figure 6. (A) Flowsets used to compare to model simulations, with colours indicating different flowsets. Background from GEBCO (Weatherall
et al., 2015). Overlapping regions are regions of cross‐cutting [from Greenwood and Clark (2009) and Hughes et al. (2014)]. (B) An example of a
matched flowset, highlighted in blue, from simulation B at 17.1 ka BP. Other flowsets are indicated by coloured lines encompassed by black boxes.
This panel is located by the dashed box on A. (C) Output from AFDA for model simulation B (40–10 ka BP), showing periods of model–data
agreement over time for the flowset shown in B.
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Table 3). These measures consider the uncertainty in model‐
margin timing and the vertical uncertainty introduced when
comparing low‐resolution modelled ice‐surface topography to
geochronological data collected at a point location (Ely
et al., 2019).
Simulation B performs poorly in replicating the timing of

ice‐free conditions, with data–model conformity occurring
for only 9% of the dates (Table 3). Simulations A and C
have higher scores of this metric, with 41% and 89% of the
dates agreeing with the modelled timing of ice‐free
conditions, respectively (Table 3). However, these model
runs also have high wRMSE scores (Table 3), meaning that
although ice‐free conditions correctly occur, they are far
from the mean age recorded by the geochronological data.
For example, in simulation C this indicates that although

model–data agreement has occurred (i.e. the model has
deglaciated an area before the empirical evidence in-
dicates ice‐free conditions), the timing of modelled ice‐free
conditions is ~2000 years earlier on average than that
recorded in the data. This pattern of premature deglaciation
is apparent in Fig. 7D.

Discussion
Model–data fit

Integration of the empirically based and model‐based
approaches of ice sheet reconstruction requires tools for
quantifying the degree of fit between models and data.

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)

(A) (B)

(C) (D)

Figure 7. (A) Dated locations assembled from Small et al. (2017a) that have a quality rating of green or amber. (B–D) Simulated timing of ice‐free
conditions from model simulations A–C. Note that these simulations are uncalibrated to any empirical evidence, and a better fit may be achieved by
tuning parameters and boundary conditions.
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Comparisons between the varied constraints of margin
position, flow direction and timing, such as those con-
ducted above, are a step towards achieving this goal. A
model‐based reconstruction is likely to be more robust if it
involves multiple (hundreds to thousands) model simula-
tions, rather than just the three illustrated here. However,
given that none of these individual simulations is likely to
match every piece of available evidence, the question
‘which simulations adequately recreate the available
geological data?’ must be addressed. By addressing this
question, an investigator may be able to find the optimum
model reconstruction (e.g. Napieralski et al., 2007; Patton
et al., 2016; Seguinot et al., 2016). Alternatively, these
model–data tests could be incorporated as additional
calibration criteria for ensemble simulations (e.g. Tarasov
et al., 2012), which could potentially reduce the produced
uncertainty of an ensemble model reconstruction.
Despite only using three model runs, our comparison

highlights some difficulties in answering the above question.
For margin positions, all models performed reasonably well,
matching over 50% of the margins within the modelled ice
sheet extent and, in the case of simulation A, 75% (Table 3).
Therefore, if looking at margin position in isolation from other
metrics, simulation A would be considered the best performing
model‐run. Because all models perform well at replicating ice‐
marginal positions, our results, albeit limited to a small sample
of three simulations, suggest that the margin metric is the least
stringent test of the ice sheet simulations (Table 3). One
possible reason for this is that models are better at replicating
margin shapes and positions than other data‐based character-
istics. However, a second interpretation is that that the
generalization of margin shape to a 5‐km grid removes any
complexity in margin shape, thus promoting conformity
between model and data. Future work, which considers ice
sheet models and margin data at different resolutions, should
be undertaken to examine this in more detail.
All three model simulations do not replicate the maximum

extent of the BIIS derived from observations. The maximum
extent of an ice sheet is generally well known, and some of
these moraines record the maximum extent across different
sectors of the BIIS (e.g. Bradwell et al., 2008; Clark et al.,
2012). Therefore, future work may adopt a procedure of testing
ice sheet models against only those margins derived from
moraines which demark maximum palaeo‐ice sheet extent and
glaciated continental shelf‐breaks (e.g. Patton et al., 2017;
Seguinot et al., 2016), to identify simulations and glacio‐
climatic parameter combinations which achieve a reasonable
ice sheet extent, before attempting to replicate margin
positions occupied during ice retreat. A model which fits
maximum ice extent margins in some places may be able to
interpolate between these constraints in a more consistent
manner than empirical interpretations (e.g. Bowen et al., 1986;
Clark et al., 2012; Patton et al., 2017; Seguinot et al., 2016).
All three simulations performed poorly at replicating the

flow direction recorded by subglacial bedforms (Table 3). This
is surprising given that the direction of many flowsets appears
to be governed by the subglacial topography in Britain
(Hughes et al., 2014), which is also likely to steer ice flow
directions in numerical models that use that topography. One
possibility is that this is due to the coarse (5 km) resolution of
our model grid. Perhaps this model–data mismatch is also a
consequence of the model being unable to fully replicate other
conditions which determine ice flow direction such as basal
thermal regime, subglacial hydrological conditions and the
overall ice‐sheet geometry (e.g. location of ice divides and
domes). Areas with subglacial bedforms indicate warm‐based
ice, where basal sliding/subglacial till deformation is the

dominant control upon ice discharge. The most common
reason for model–data mismatch in flow direction was the low
mean residual variance scores. In other words, the model did
not produce consistent flow directions across the entire area of
the flowset. Therefore, model–data mismatch is at least
partially due to the model being unable to adequately simulate
the dimensions of ice‐streams and outlet glaciers, perhaps due
to simplifications of physics (Hindmarsh, 2009; Stokes &
Tarasov, 2010), poorly constrained patterns of basal sliding
parameters (Bueler & Brown, 2009), or incomplete knowledge
of basal sliding (Stearns & van der Veen, 2018). Climate
uncertainties will also influence the ability of an ice sheet
model to replicate empirically derived flow directions, as these
impact the overall geometry of the modelled ice sheet. Since
these factors are a large uncertainty in ice sheet modelling
(Gladstone et al., 2017; Ritz et al., 2015), flowset direction is
likely to be a robust test of ice sheet models. A question
remains regarding how long flowing ice must occupy an area
to produce lineated flowsets; if this time is decadal (e.g.
Dowling et al., 2016) rather than centennial, it indicates that
flowset matching is not of the highest priority for ice sheet
models which typically have a lower temporal resolution.
None of the three model simulations adequately replicated a

cross‐cutting relationship between flowsets. Such cross‐cuts
can be used to decipher the geometry of a palaeo‐ice sheet
and how it changes through time (Boulton & Clark, 1990),
including factors such as ice‐divide migration and margin
position change (e.g. Greenwood & Clark, 2009; Hughes et al.,
2014). This means, in addition to the problems of matching a
single flowset mentioned above, deglacial climate must be
adequately simulated for cross‐cuts caused by climatically
driven ice‐divide migration to be matched. In addition, the
model must also adequately represent the internal processes
which cause ice‐divide migration (e.g. flow piracy, ice stream
initiation, saddle collapse). A further uncertainty is introduced
by our ignorance of ice stream dynamics and how ice stream
velocity and orientation can change over centennial and even
decadal timescales. Given these potential difficulties at
matching cross‐cuts, they can be thought of as an even sterner
test of an ice sheet model than the number of flowsets
replicated alone.
None of the three model simulations performed well when

compared to the assembled database of ice‐free dates
(Table 3). Simulation C has agreements with many sites
(Table 3), but simulated deglaciation occurs thousands of years
before the age indicated by the geochronological record at
many sites, suggesting that retreat occurs too early and rapidly.
Other modelling simulations have qualitatively demonstrated a
better fit to deglacial chronologies by visually comparing the
pattern and timing of modelled reconstructions to empirically
based reconstructions (e.g. Patton et al., 2017). However,
replicating the timing of ice‐free conditions across an ice sheet
requires adequately constraining all internal and external
forcing through time, as well as the interactions between the
two. Therefore, our approach of site‐by‐site comparison to
modelled deglacial timing provides a more stringent test of
model–data fit than qualitative comparisons.

An approach to measuring model–data fit

As a consequence of the above complexity in model–data
comparison, we suggest the following pragmatic approach to
reconciling empirical reconstructions and model reconstruc-
tions, summarized in Fig. 8. Here, the investigator starts with
an ensemble of ice sheet model simulations; the number of
simulations considered is progressively diminished by remov-
ing those which rank lowest against a particular metric (Fig. 8).

Copyright © 2019 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 36(5) 946–960 (2021)
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This builds on the suggestion of Napieralski et al. (2007) who
used APCA to rule out most simulations, then AFDA to further
evaluate model performance. Our order of rankings (Fig. 8) is
based upon what we ascertain from the above discussion to be
progressively more stringent tests of a model simulation.
Indeed, the order of these rankings is likely to change between
users who are interested in specific aspects of a palaeo‐ice
sheet (e.g. more weighting may be given to flowset direction if
studying ice‐flow patterns). An alternative is to combine scores
derived from the model–data comparison techniques for each
simulation, and then rank simulations to either heavily weight
the highest scoring simulations when producing a probabilistic
output from an ensemble (e.g. Tarasov et al., 2012), or to rule
out the lowest scoring simulations. In this case, the order that
tests are applied is irrelevant.
The original ensemble of simulations is likely to contain

hundreds of members and may have involved some prior tuning
of parameters to broadly replicate ice sheet extent (e.g. Boulton &
Hagdorn, 2006). Since margin position seems a comparatively
simple metric with which an ice sheet model result must
conform, we suggest that the first sets of models to be ruled out
are those that perform lowest in the APCA tests against margins
(Li et al., 2008; Napieralski et al., 2006; Figure 8). The
topperforming simulations are then compared to timing through
the ATAT tool (Ely et al., 2019; Figure 8). ATAT will produce
statistics on the number of dated positions matched, and how
close overall the simulation gets to replicating the timing of ice‐
free conditions (wRMSE). Thresholds of acceptance should be
applied for each, so that only simulations that replicate an
adequate number of dates within a reasonable time window from
the data will remain in the ‘not‐ruled out’ category of simulations
(Fig. 8). This will rule out simulations which perform badly at
replicating the timing and rate of palaeo‐ice sheet retreat
recorded in geochronological data. Since flowset conformity is
likely to be a demanding test of ice sheet models, with the ability
to produce cross‐cutting flow even more demanding, we suggest
remaining simulations should then be ranked according to their
performance according to the AFDA (Li et al., 2007; Figure 8).
After application of these tests, the original ensemble of

simulations will be much reduced, to a set which is yet to be
ruled out (Fig. 8). Given that it is unlikely that a perfect score
will be found in these models, model–data mismatch between
‘best‐fit’ models should be further investigated. It may be that
certain areas of empirical evidence consistently produce
model–data mismatch, and this may motivate further simula-

tions if spatial or temporal patterns are clear. For example, a
climate driver may under‐represent a particular stadial, there-
by producing a simulated timing which disagrees with the
data. By contrast, if all surrounding empirical evidence is met,
and a particular data point or subset of data cannot be
replicated by the model, this may warrant re‐evaluation of the
data in question (Fig. 8). In an analogous manner to climate
modelling (Collins, 2017), it remains open as to whether all
models which pass a threshold acceptance barrier should be
incorporated into an acceptable set of reconstructions (i.e. a
model democracy; Knutti, 2010) or whether a ‘best‐fit’ model
which performs best against all constraints should be identified
and used for further research. In either case, the procedure
outlined above can help reduce model uncertainty and
produce more robust palaeo‐ice sheet reconstructions.

Suggestions for future developments

The model–data comparison conducted here has highlighted
some areas where comparison tools and procedures require
further development. Some required developments are listed
below and may aid in the reduction of both model and data
uncertainty.
When comparing modelled and empirically derived margins

using APCA, the occupied side of a moraine is not considered. In
situations where ice‐flow geometry is likely to be simple, for
example in a deep trough or at the continental shelf break, this is
unlikely to matter. However, in more complex settings, for
example where two ice sheets converge such as in the North
Sea, this may introduce false positives whereby a mapped margin
is recorded to be matched by ice flowing from the wrong direction.
Our margin comparison was also conducted throughout both the
advance and the retreat of the ice sheet. Again, this may introduce
false positives, as moraines known to have formed in retreat may
be matched during ice advance. We therefore suggest that future
adaptations of APCA should consider ice flow direction and the
trajectory of the modelled ice margin (advance or retreat). For the
latter, this is unlikely to be as simple as restricting analysis to a
certain time period from which deglaciation commences, as
maximum extents may be asynchronous (e.g. Patton et al., 2016;
Seguinot et al., 2018) and readvances may occur (e.g. Kingslake
et al., 2018). Future work should also consider penalizing a model
for extending beyond a well‐known limit of ice extent (i.e.
producing an ice sheet i.e., too large). Furthermore, given the
uncertainty in the data, it is worth considering how certain the
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Figure 8. Proposed procedure for comparing
multiple model runs to geochronological data.
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origin of each moraine system is when applying these tools. For
example, could a moraine have formed during ice advance, and
been preserved beneath cold‐based ice?
For ice‐flow direction comparison, our analysis shows that a key

problem is replicating the synchronous flow directions recorded in
some flowsets, and whether the model resolves the timescales
involved in bedform formation. Given that there is some evidence
that drumlins can form rapidly (Dowling et al., 2016) and the
pattern of drumlins within a flowset can evolve with time (Ely
et al., 2018), another way of extracting more information from a
model–data comparison would be to compare the direction of
individual bedforms to modelled‐flow directions. If neighbouring
bedforms match within a reasonable time difference, then the
model could be used to classify bedforms into flowsets that could
then be compared to those which are empirically derived (e.g.
Greenwood & Clark, 2009; Hughes et al., 2014). Interpolating
directions between modelled time‐slices may also help improve
model–data comparison of flow direction, potentially capturing the
flow direction of some bedforms which form between model
output timesteps.
Although influenced by overall ice sheet geometry, both

margin and flow direction are predominantly constraints upon
the horizontal dimension of an ice sheet. Given that the
thickness of ice is a vital variable for determining sea‐level
contribution and impacts upon the landscape, vertical
constraints are also important. As stated above, our compar-
ison would ideally be conducted alongside the use of a GIA
model which compares to RSL data (e.g. Auriac et al., 2016;
Kuchar et al., 2012; Patton et al., 2017). ATAT also has a
procedure for identifying whether an ice‐free date is positioned
higher than the modelled ice elevation (Ely et al., 2019), for
example if a nunatak is predicted. Given the importance of
these vertical constraints on ice‐sheet geometry, perhaps future
comparisons should isolate these data as a separate test of
model performance.

Conclusions
Progress towards an integration of empirically based and
numerical model‐based reconstructions of palaeo‐ice sheets
have proven to be slow since being first suggested (Andrews,
1982; Stokes et al., 2015). Here, we have outlined a procedure
of model–data comparison designed to score the degree of fit
between ice sheet model simulations and palaeo‐ice sheet data,
which aims to further integrate these two approaches. We
compared three ice sheet model simulations against the three
data constraints of margin position (from moraines), flow
direction (from subglacial bedforms) and timing of ice‐free
conditions (from geochronological data). In doing so, we
highlighted the complexities of such model–data comparisons.
As ice sheet models are unlikely to reproduce all the
information provided at each constraint, we pragmatically
suggest a hierarchical system for scoring ice sheet models,
whereby successive tests are applied to the ice sheet model,
progressively ruling out model runs which perform the poorest
against each constraint. This procedure could be used to
ascertain best‐fit models or used to calibrate models. Future
work could consider in more depth the relative importance of
the different data‐based constraints. Furthermore, we argue that
this approach could lead to models more frequently being used
to test the plausibility of data interpretations. In future work, this
comparison should ideally be made in conjunction with other
data‐based constraints such as RSL data through GIA modelling
and sedimentological observations. In this manner, an integra-
tion of empirical and model‐based approaches to palaeo‐ice

sheet reconstruction can occur. The BIIS is a data‐rich
environment for conducting such model–data integration.
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