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2.1 Introduction

Recent decades have seen a growing use of composite materials in various indus-
tries such as automotive, sports, civil and wind turbines, and, in particular, aero-
space structural components due to mass criterion’s crucial importance. The wide
use of composites should still be addressed despite several advantages they can
offer over metallic counterparts. Among their drawbacks, for instance, are their fra-
gility and complex response to impact. Hence, composite damage tolerance mainte-
nance practices should be standardized. In structural engineering, damage tolerance
refers to assessing a damaged structure’s ability to withstand loads before failing
catastrophically. This has also been defined by European certification JAR 25.571
(JAR 25, Part 1 requirements, part 2 acceptable means of compliance and interpre-
tations, n.d) as “the damage tolerance evaluation of a structure is intended to ensure
that should serious fatigue, corrosion or accidental damage occur within the opera-
tional life of the airplane, the remaining structure can withstand reasonable loads
without failure or excessive structural deformation until the damage is detected.”
There are two factors contributing to composite material’s impact damage
tolerance:

1. The impact-induced residual strength loss of the structure: Practically, the loss of strength
can reach 50%—75% of the strength without impact.

2. Impact detectability: Even though impact damage is visible on the nonimpacted side of a
composite structure before the impacted side, it is not detectable damage yet because, in
practice, “detectable impact damage” refers to the damage on the impacted side, as the
visual inspection of the nonimpacted side is not straightforward, for example, inside the
wing, or the fuselage, in aircraft systems (Bouvet & Rivallant, 2016).

A well-established method to evaluate impact damage tolerance in aerospace
composite structures is the visual inspection of the permanent indentation left on
the impacted side of a composite after the impact event. This can be used in asses-
sing the residual compressive strength and the level of the damage to determine
whether it is visible impact damage (VID) or barely visible impact damage (BVID).
Non-destructive Testing of Impact Damage in Fiber-reinforced Polymer Composites.
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Visual inspection can be defined, according to the FFA advisory circular AC 43-
204 (Erhart et al., 2004), as follows: “Visual inspection is the process of using the
eye, alone or in conjunction with various aids, as the sensing mechanism from
which judgment may be made about the condition of a unit to be inspected.” It is a
fast and inexpensive method for structural health monitoring (SHM) of engineering
systems, especially those with indentations or cracks on the surface. This process
does not only rely on the human eye but also includes sensory and cognitive factors
to enhance the accuracy of the tests and improve the visibility of the structure. For
example, the angle and intensity of the light, or illumination, can be a critical factor
in achieving high-quality visual inspection results. Test equipment may include but
is not limited to borescopes, cameras, digital video magnifiers and video bore-
scopes, and digital image correlation (DIC) facilities for improving detailed inspec-
tions (Zhong & Nsengiyumva, 2022) (see Fig. 2.1).

Figure 2.1 Examples of direct (in the center) and assisted visual inspection.
Sources: From PCTE. https://www.industrial-ndt.com and Aviation Pros. https://www.
aviationpros.com and Aerocorner. https://aerocorner.com.
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This chapter will present principles and different levels of visual inspection, fol-
lowed by highlighting the role of effective parameters in impact damage inspection.
Next, recent progress in the field is discussed and some case studies are highlighted.
Finally, the challenges and future research directions of this nondestructive evalua-
tion (NDE) method are reported and discussed.

2.2 Principles

In addition to the permanent indentation, impact loading can cause other types of
damage in composite structures. These can vary from microscale damages, such as
matrix cracks, to macroscale delamination and fiber breakage. In laminated compo-
sites, fiber breakage and delamination are often the dominant damage types affecting
the residual compressive strength and impact damage tolerance. Therefore, critically
identifying and categorizing different impact-induced damage types is of great inter-
est to develop meaningful relations between the internal invisible, surface visible
damages and remaining residual strength. Transverse loading causes matrix cracking
in a ply in the form of shear cracks and transverse cracks running parallel to the
fiber direction. These are the initial damage modes, taking place at an early stage of
impact and static indentation due to the relatively weak mechanical properties of the
resin. Cracks in the matrix do not significantly affect the laminate’s residual proper-
ties and transverse stiffness. Nevertheless, if accumulating over time, it can cause
more serious damages, such as delamination of adjacent plies. Contrary to other
matrix-dominated damage modes such as delamination, matrix cracks cannot be
detected by instrumented impact testing or conventional NDE techniques such as
ultrasonic inspection (Abisset et al., 2016; Sun & Hallett, 2017). Delamination
occurs due to high interlaminar shear and normal stresses exceeding the strength of
the laminate interface, especially at areas of discontinuities such as holes and free
edges or as a result of thermal loading during the curing process. This is more likely
to happen between the plies with dissimilar fiber orientations (Abdallah et al., 2009;
Sun & Hallett, 2018). Other impact-induced damage types are fiber breakage due to
high tensile stress at the nonimpacted side or compressive fiber failure at the
impacted side of the structure. These failure modes occur after matrix cracks and
delamination and are easier to detect by visual inspection. At this stage, a large
amount of energy is absorbed through fiber failure mechanisms, which significantly
reduces the load-bearing capability of the composite structure (Dubary et al., 2018;
Kristnama et al., 2021). The next section will explain how these damage types can
be connected to permanent indentation, which is known to be a practical damage
metric for visual inspection of impact damage in composite materials.

2.2.1 Damage metrics

For visual inspection of impact damage, permanent indentation is considered the
most practical damage metric. However, this is defined differently by various
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organizations (Bouvet et al., 2012). For example, based on the Airbus damage defini-
tion, “BVID is the minimum impact damage surely detectable by scheduled inspec-
tion. BVID corresponds to a probability of detection of 90% with an interval of
confidence of 95%. Two values for the BVID criterion are typically established
dependent on the visual inspection type: Detailed visual inspection (DVI) and general
visual inspection (GVI). Dent depth is the damage metric for transverse impact. For
an edge impact, where internal cracks and delamination become visible, the damage
metric is the dent depth and/or the crack length” (Fualdes, 2006). Boeing, however,
defines BVID as “small damages which may not be found during heavy maintenance
general visual inspections using typical lighting conditions from a distance of five
feet. The damage metric is typically a dent depth of 0.01 to 0.02 inches. Dent depth
relaxation must be accounted for” (Fawcett & Oakes, 2006). According to the inspec-
tor’s experience (Rouchon, 1990; Thomas, 1994), it is possible to say with 95% con-
fidence that a dent depth of 0.2—0.23 mm is detectable at a 2-m distance. Chen et al.
(2014) used the dent depth and diameter to optimize the inspection intervals for main-
taining high structural reliability and minimizing maintenance costs. According to
general guidelines, permanent indentations between 0.3 and 0.5 mm can indicate
BVID, whereas permanent indentations of 2 mm or perforations of 20 mm indicate
minor VID. Also, perforation with a diameter of 50 mm can be related to large VID
(Alhammad, et al., 2022b; Bouvet & Rivallant, 2016; Hasebe et al., 2022). Fig. 2.2
shows the evolution of impact damage and different visual inspection levels concern-
ing the permanent indentation size and impact energy level. At the first stage, the
dent size is so small, and damage happens in the form of matrix cracks. As impact
energy increases, damage appears in the form of delamination, and dent size becomes
larger. In the second stage, all three damage types can occur, and visual inspection
becomes easier due to a larger dent size (dent depth and diameter). The fiber break-
age in this stage can help achieve better inspection results. However, this can have a
detrimental effect on the residual strength after impact, which explains the complex-
ity of the interaction of different damage types during an impact event and the neces-
sity of detailed studies of damage mechanics during and after the impact (Bouvet &
Rivallant, 2016). To date, no damage metric can replace permanent indentation for
visual inspection purposes. Ideally, such alternative damage metrics would be easy to
implement and fast to assess with only a few tools needed. New SHM technologies
could be a promising alternative to visual inspection of the dent depth, especially in
the future of the aircraft industry. Recent progress in visual inspection of impact dam-
age will be discussed in the next sections.

2.2.2 Visual inspection levels

Visual inspection of impact damage can be categorized into four main levels. The
standard visual inspection aids are a flashlight, mirror, and magnification glass. For
special inspection tasks, further inspection aids may be required (Visual Inspection
of Composite Structures, 2009; Wang et al., 2021).
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Figure 2.2 Damage size in different (A) inspection levels and (B) impact energies.
Source: From Bouvet, C., & Rivallant, S. (2016). Damage tolerance of composite structures
under low-velocity impact (pp. 7—33). Elsevier BV. https://doi.org/10.1016/b978-0-08-

100080-9.00002-6.

2.2.2.1

Walk-around inspection

A general check is conducted from ground level to detect discrepancies and assess
general condition and safety. This inspection is conducted on a daily basis and is
expected to detect large visual impact damages such as fiber breakage.
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2.2.2.2 General visual inspection

It is made of an exterior with selected hatches and openings open or an interior,
when called for, to detect damage, failure, or irregularity. This inspection level is
expected to detect minor visual impact damage and may require suitable lighting
conditions, surface cleaning, and equipment such as a mirror.

2.2.2.3 Detailed visual inspection

An intensive visual evaluation of a specific area, system, or assembly to detect
damage, failure, or irregularity. This inspection level is expected to detect the
BVID and may require surface preparation and elaborate access procedures.

2.2.2.4 Special detailed visual inspection

An intensive evaluation of a specific item, installation, or assembly to detect dam-
age, failure, or irregularity. This inspection level may require intricate disassembly
and cleaning as well as specialized techniques and equipment.

2.3 Effective parameters

An early study by Megaw (1979) suggests that the four influential parameters
affecting the visual inspection are the inspector’s visual acuity, the workplace light-
ing conditions, the time available for inspection, and the provision of feedback or
knowledge of results to the inspector. In a study by Erhart et al. (2004), the visual
detectability of 0.05-inch deep dents was investigated by considering different para-
meters. A list of the variables that were identified for further research in aircraft
industries was provided accordingly. Comprehensive research by the European
Aviation Safety Agency characterized the influence of parameters mentioned in pre-
vious research in detail (Visual Inspection of Composite Structures, 2009). A list of
effective parameters and key findings for each parameter is presented and shown in
Fig. 2.3.

2.3.1 Lighting and illumination

Visual inspection relies heavily on light, as the human eye sees nothing but light
patterns. Visual Inspection of Composite Structures (2009) suggests that illumina-
tion can significantly influence damage visibility in composite structures. Visual
inspection of a damaged structure may require different lighting conditions, as each
damage type needs a specific lighting setup. In the automotive industry, for exam-
ple, it is important to inspect painted surfaces for paint defects, which are often
topographical. There are several methods to optimize lighting conditions for
inspecting small topographical defects on glossy surfaces (Lloyd, 1999). However,
the typical small paint defect is topographically different from an impact dent on a
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Figure 2.3 Effective parameters for visual inspection of impact damage in composite
materials.

composite surface. Light brightness is a crucial factor in test environments since
excessive light within the field of view leads to an unpleasant sensation called glare
that interferes with a clear view for the inspector (Zhong & Nsengiyumva, 2022).
The light intensity measured during the inspection can be evaluated by using the
inverse square law as follows:

E=— 2.1

where E shows the luminance, [ is the light intensity at the source, and d is the dis-
tance between the source and the surface of the test structure. This equation is accu-
rate within 0.5% when d is at least five times the maximum dimension of the
source (Zhong & Nsengiyumva, 2022). CAA, Safety Regulation Group (Aviation
Maintenance & Human Factors, 2003) identified four fundamental light characteris-
tics, which should be considered for maintenance tasks:

1. Light level: The use of task lighting allows for suitable illumination in most inspection
and maintenance tasks.

2. Color rendering: Color rendering measures the degree to which the perceived colors of
an object illuminated by various artificial light sources match the perceived colors of the
same object when illuminated by a standard light source (i.e., daylight). Color rendering
can be influenced by differences in the spectral characteristics of daylight, incandescent
lamps, fluorescent lamps, etc.
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3. Glare: Excessive lighting within the visual field can cause an unpleasant sensation called
glare, obscuring the visual impression of details and adversely affecting damage detect-
ability. This can be due to different reasons, for example, direct light sources in the visual
field, reflecting surfaces, or reflections from light objects. A viable method to rectify the
detrimental effects of glare is resorting to indirect lighting.

4. Reflectance: Another influential factor in the lighting conditions is the reflectance of
nearby surfaces. A high reflectance surface can improve luminaire effectiveness, but it
can also produce glare. Therefore, diffuse reflectance from a semimatte surface is often
preferred.

2.3.2 Human-related factors

Person-related factors can also be an influential parameter in visual damage inspec-
tion. For example, human eyesight, characterized by its color vision capability and
visual acuity, can affect visual inspection quality to a great extent. Colors and pat-
terns around the test structure can substantially influence the inspector’s attitude
during the inspection. For example, high contrast on the pattern being inspected can
cause eye fatigue and decrease inspection quality subsequently (Zhong &
Nsengiyumva, 2022). Adding high-resolution cameras to endoscopes and fiber-
scopes and projecting the inspection images on projection monitors are viable meth-
ods to reduce eye fatigue caused by the prolonged use of these devices. Also,
psychological factors such as tension may play a great role in the inspector’s perfor-
mance. The results of Visual Inspection of Composite Structures (2009) showed a
clear trend for persons with greater experience in composite structures and visual
inspection to find more damages on the same panel. This research also showed that
the age and gender of the inspector could influence the probability of damage
detection to a low extent.

2.3.3 Viewing distance and visual angle

Based on the viewing distance and viewing angle, visual inspection methods can be
categorized into two main groups: direct and remote-based inspections. In direct
visual inspection, the distance between the eye and the structure should not exceed
a radius of 610 mm, and the angle should not be less than 30 degrees. The influence
of the inspection angle is insignificant compared to other inspection parameters
(Visual Inspection of Composite Structures, 2009). However, some studies suggest
that an angle of 45 degrees can be slightly worse for inspection ability than an
inspection angle of 65 degrees.

2.3.4 Surface color and cleanliness

Cleanliness can help achieve a better visual inspection. However, compared to other
parameters, the influence of cleanliness is not significant. Literature suggests that
there is no clear indication of whether color influences the detectability of damage.
However, the subjective impression of the influence of color on damage
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detectability shows a clear advantage for the color red. Eight of the fifteen inspec-
tors in a survey found the red panel easier to inspect, and six gave the color as the
reason. Only one inspector found the blue panel easier to inspect (Erhart et al.,
2004).

2.4 Recent progress (case studies)

Various indirect visual inspection equipment, including video cameras, endoscopes,
borescopes, and unmanned aerial vehicles (UAVs), has been developed to inspect
hard-to-reach composite structures (Sun & Hallett, 2017). Recent advances in artifi-
cial intelligence (Al) systems have significantly decreased inspection costs and
increased inspection accuracy. Using new smart coatings to enhance the visual
inspection of impact damage has shown great potential. The development of com-
puter systems and digital storage technology has also improved the documentation
of inspection records (Zhong & Nsengiyumva, 2022). These inspection systems are
still being developed to address all related challenges. In the following, we present
the recent progress in visual inspection of impact damage, particularly in three pri-
mary areas:

2.4.1 Remote visual inspection

The detection of BVID in safety-critical composite structures like aircraft and wind
turbine blades is crucial. However, the current manual process is expensive and
labor-intensive (Bossi & Georgeson, 2020; Dafydd & Khodaei, 2020). Visual inspec-
tion heavily relies on the skills of the operator, and there is a growing need to cover
large areas that are typically difficult to access, thereby increasing costs, errors, and
health and safety risks (Siegel & Gunatilake, 1997; The International Air Transport
Association (IATA) Safety Report, AERO_Q207_article3.pdf boeing.com, n.d). For
instance, over 80% of inspections on large transport category aircraft are conducted
visually, and visual inspections for such aircraft can take up to 40,000 hours
(Mainblades, n.d.). The prevailing methods of visual inspection involve the use of
lift platforms for airplanes and rope access for wind turbine blades.

Therefore, there has been a shift towards remote visual inspection (RVI) systems
that utilize automated computer vision inspection with a combination of fixed and
moving cameras and deterministic image processing algorithms to detect BVID
(Ostachowicz et al., 2016). RVI, also known as enhanced visual inspection (Forsyth
et al., 1999), presents a promising alternative to traditional visual inspection methods
as it addresses safety concerns, reduces time and costs, and enhances detection accu-
racy. With the integration of Al and machine learning, RVI has made significant
advancements in detecting and characterizing impact damage in composite struc-
tures. The field of RVI has seen notable progress, ranging from simple borescopes
and endoscopes to videoscopes, thanks to the development of miniature cameras and
optical lenses that provide access to even small-bore locations like heat exchangers,
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drain headers, and stacks (Guo et al., 2008; Patel, 2022). Deterministic advance-
ments in computer vision are further complemented by machine learning techniques,
enabling reliable processing of large quantities of images (Wang et al., 2021) and
facilitating decision-making processes. However, these optical techniques and instru-
ments are typically heavy, require substantial power, and need stable positioning for
seconds to achieve the necessary in-depth resolution of approximately 0.1 mm, with
a typical in-plane size resolution in the range of 15—20 mm (Rice et al., 2018).

The use of automated UAV-based RVI systems can significantly reduce health and
safety risks and cost as little as 20% of manual visual inspections, as reported by
(Mainblades, n.d.), a company conducting inspection tasks for KLM Royal Dutch
Airlines and other asset owners. This cost reduction is achieved by improving accessi-
bility, facilitating immediate identification and assessment of damage, and providing
high-quality images and videos for documentation and processing, as depicted in
Fig. 2.4. The software utilized in these systems includes a dent-and-buckle feature,
which allows for recording and reviewing all structural damages on the exterior of the
aircraft, pinpointing the exact location of anomalies and damages.

Figure 2.4 (A) An image of the aircraft inspection by Mainblades, (B) unmanned aerial
vehicle, and (C) the software, and scanned surface of the aircraft.
Source: From Mainblades (n.d.). https://mainblades.com.
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The current state-of-the-art approaches for RVI suffer from limitations in mea-
surement resolution, making them unreliable for measurements below 1 mm (Papa
& Ponte, 2018). These limitations arise from issues such as insufficient sharpness,
exposure, high background noise, and the reliance on isolated frames and a prede-
termined visual trajectory for material state classification (Yang et al., 2020).

Drone-based photogrammetry, although used for RVI, exhibits an in-depth error
of 1.3 mm (standard deviation) (Zhang et al., 2020). Moreover, it has limited appli-
cability in detecting specific components like rivets (Miranda et al., 2019). While
state-of-the-art drone-based development utilizing on-board laser line scanners
offers a better in-depth resolution of 0.3 mm at a distance of 1.5 m, it is still insuffi-
cient for detecting the small BVID (Anisimov et al., 2021).

Furthermore, automated visual inspection systems lack the necessary reliability
to match the capabilities of the human visual system. These systems struggle to cre-
ate accurate 2.5D sketches solely from visual information, particularly when it
comes to depth defects on curved and uneven surfaces. Consequently, there is a
need for further research and development efforts to optimize inspection processes
and enhance the capabilities of RVI.

2.4.2 Self-reporting coatings

BVID can pose different risks to structural integrity, as discussed in Section 2.2. A
recent development is self-reporting mechanochromic coatings, which minimize
these risks, reduce inspection time, and provide live information on the condition of
a material. In response to external stimuli such as impact strikes, these chromogenic
materials produce optical signals (change in transparency, fluorescence, and color),
giving users a direct and eye-detectable indication of damage (Guo & Zhang,
2021). Many technology applications are possible with these self-reporting coatings,
including SHM in the aeronautics, automotive, and construction industries and as
sensors to inspect mechanical events such as impact (Calvino, 2021; Calvino et al.,
2017). Generally, mechanochromic coatings can be divided into two main groups:
chemical-based and physical-based. In the former, the color-changing process can
occur by incorporating dye-filled materials such as microcapsules or hollow fibers
that are ruptured upon impact damage. Alternatively, the polymer or fiber can
become “smart” by adding functional groups that are sensitive to mechanical stimu-
li (mechanophores), into them.

On the other hand, physical-based coatings are connected to the material’s shape
and refractive index and not to its chemical properties. Physical-based mechano-
chromism originates from how light is scattered and diffracted by random or peri-
odic structures. Structural color materials and thin-ply hybrid glass/carbon
composite sensors are prime examples of physical-based coatings. In the latter, the
changes in light absorption at the interfacial glass/carbon damaged area can gener-
ate a clear visual cue by which damage, such as BVID, can be detected as an early
warning to avoid catastrophic structural failure due to hidden damage. Some exam-
ples of recent progress in this area are highlighted in the following.
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Fundamental and interesting research has been conducted by Pang and Bond
(Norris et al., 2011a, 2011b; Pang & Bond, 2005a, 2005b; Williams et al., 2009).
Developing the “bleeding composites” idea, they introduced a class of dual-
function composites that could report damage by visual cues and heal it. Smart
fiber-reinforced polymer composites equipped with hollow fibers were examined
under low-velocity impact tests. Upon the fracture of the functionalized fibers, they
released a healing agent into the damaged area. Also, given the fluorescent charac-
teristics of the agent, a visual inspection of the BVID could be carried out. Kling
and Czigany (2014) reported a more efficient dual-function system based on the
application of very thin hollow fibers. The proposed SHM system could success-
fully visualize and heal the impact-induced damage with the help of a UV lamp.
Research has shown that applying mechanophores can be more efficient in the
interfacial area between the thermoset resin and reinforcing fibers, due to the mis-
match in mechanical properties of these two phases and the activation of different
damage modes. Lorcher et al. (2014) visually detected the BVID in carbon fiber-
reinforced polymer (CFRP) composites by applying a yellow fluorescent protein at
the resin/fiber interface (see Fig. 2.5A). Robb et al. (2016) demonstrated self-
reporting mechanisms in CFRPs equipped with a smart coating. The coating was
composed of 10 wt.% tetraphenylethylene (TPE) microcapsules and designed based
on the aggregation-induced emission (AIE) concept, which enables the visual detec-
tion of microscopic damage in a wide range of polymeric materials under illumina-
tion with an appropriate excitation light source. The fluorescence signal is
developed rapidly upon impact damage to polymeric coatings and reaches maxi-
mum intensity within minutes. This detection system does not rely on external or
intermolecular interactions to elicit a response and provides outstanding contrast
between intact and damaged regions with excellent sensitivity. Fig. 2.5B shows the
efficacy of this self-reporting system for enhancing the visual identification of
BVID in polymeric composite materials. Other studies also report the improvement
in visual inspection of impact damage in encapsulated polymer composite struc-
tures, where the quantitative assessment of the damage is a priori possible. For
example, as shown in Fig. 2.5C, the emission intensity in fluorescent polymeric
composites embedded with encapsulated excimer-forming dyes can be correlated to
the impact distance (impact energy) (Calvino et al., 2018, 2020). The BVID visual
inspection in glass fiber-reinforced polymer (GFRP) composites has been studied
by Shree et al. (2020), who used spiropyran (SP) as a self-reporting functional addi-
tive. SP mechanophores act through a reversible, mechanically-activated ring-open-
ing reaction which converts the colorless and nonfluorescent Spiropyran into the
highly colored and fluorescent merocyanine. It was observed that the GFRPs modi-
fied with Spiropyran could change their color from yellow to purple as a result of
periodic impact strikes. The number of impact strikes could also be related to the
color gradient (see Fig. 2.5D).

Fotouhi et al. (2023) applied a hybrid composite coating composed of a unidirec-
tional ultra-high modulus carbon (YS-90)/epoxy and an S-glass/epoxy on a quasiiso-
tropic  [45/0/90/ — 45]45 laminate fabricated from unidirectional T800 carbon/
MTM49—-3 epoxy prepreg (see Fig. 2.6). Fig. 2.6A and B show the hybrid composite
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Figure 2.5 Visual inspection of barely visible impact damage (BVID) in self-reporting
composites: (A) by means of fluorescent proteins. The yellow fluorescent protein stops
fluorescing after the occurrence of BVID, (B) by means of embedded TPE microcapsules.
The front face and back face images under white and UV light after impact show how using
microcapsules can improve BVID visual inspection, (C) by means of embedded encapsulated
excimer-forming dyes. Photographs recorded under UV illumination of microcapsules
impacted from distances between 1 and 44 cm, and (D) by means of SP additives. The BVID
in GFRP/SP composites can be visualized through periodic impact strikes.

Sources: (A) From Lorcher et al. (2014), (B) https://doi.org/10.1016/j.compositesa.2022.107236,
(C) Calvino and Weder (2018), and (D) Shree et al. (2020).


https://doi.org/10.1016/j.compositesa.2022.107236

56 Non-destructive Testing of Impact Damage in Fiber-reinforced Polymer Composites

Before impact After impact

(A)

Fractured carbon,
delaminated
carbon/glass
interface

(B) Side view

s
Glass
Low strain to failure carbon

Conventional Carbon

(C) (D)

C-scans Impacted face Back face 10 mm

Impacted surface —

Back surface

With integrated
carbon/glass sensing layers
in the back and front faces

Quasi-isotropic T800
carbon/epoxy laminate

Figure 2.6 Visual inspection of barely visible impact damage in self-reporting composites
by means of hybrid carbon/glass coatings: (A) schematic 3D view, (B) schematic side view
of the substrate and the integrated sensor, (C) C-scan results, and (D) impacted face and back
face images of specimens with (up) and without (bottom) carbon/glass coating.

Source: From Fotouhi, S., Jalalvand, M., Wisnom, M. R., & Fotouhi, M. (2023). Smart
hybrid composite sensor technology to enhance the detection of low energy impact damage
in composite structures. Composites Part A: Applied Science and Manufacturing, 172.
https://doi.org/10.1016/j.compositesa.2023.107595.

sensor integrated on both the impacted face and back face of a quasiisotropic compos-
ite plate (cured together). An example of the impacted-face, back-face and c-scans for
samples subjected to a 12 J drop tower test can be seen in Fig. 2.6C and D. The
c-scan shows significant delamination damage for both samples, while the delamina-
tion size is slightly higher in the original sample compared to the sample with hybrid
carbon/glass coating. However, there is no change in the appearance of the original
sample on either the front or back faces. In contrast, a visible color change is observ-
able on both faces for the sample with coating. These color changes are due to damage
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induced in the hybrid coating layer. The size of the visible damage area on the front
face corresponds to the impact energy level. An in-depth discussion on self-reporting
coatings is presented in a comprehensive review by Tabatabaeian et al. (2022b).

2.4.3 Artificial intelligence

Impact damage is traditionally assessed through manual feature parameter extrac-
tion, which is sometimes time-consuming and inaccurate. This has opened an ave-
nue for new Al-based impact damage detection methods, such as vibration-based,
acoustic-based, and image-based techniques to be applied to complex impact-
related problems (Qing et al., 2022; Tabian et al., 2020). The AI algorithm is
trained and validated using a dataset and then tested on an unseen dataset. These
learning algorithms are divided into different types, each of which can solve a spe-
cific problem. An excellent feature of an Al-based inspection method is its adapt-
ability, meaning that it can be tested and modified several times to achieve an
accurate and efficient damage pattern recognition function. Moreover, some Al-
based algorithms can benefit from few-shot learning and transfer learning methods
(Saeed et al., 2019). The former is a machine learning technique that uses a pre-
trained model to accelerate the training of a new model on a related task, by reusing
features learned from some other tasks. However, these networks often have many
layers with many trainable parameters that need to be estimated only from the data,
which can become a problem in scenarios without access to big datasets (Azimi
et al., 2020). Few-shot learning is a subfield of machine learning that deals with the
problem of learning from a limited amount of labeled data. Therefore, thanks to
these approaches, Al-based algorithms can work well with a small set of available
data, and convey complex and qualitative empirical knowledge that is difficult to
describe with mathematical formulas or conventional visual inspection practices.
Unsupervised and supervised algorithms can be trained to perform different tasks
such as damage detection, localization, classification, and severity estimation.
However, unsupervised learning is mostly used for damage detection and super-
vised learning for all mentioned tasks (Yuan et al., 2020). As reported in Nelon
et al. (2022), artificial neural networks are the most popular machine learning algo-
rithms for damage evaluation applications. In the case of BVID visual inspection,
where dealing with an image-based dataset, a more complex family of neural net-
works, such as convolutional neural networks (CNNs), might be needed. CNNs dif-
fer from other neural network architectures because of their convolutional layers
(Bang et al., 2020; Gu et al., 2018; Sony et al., 2021; Wang et al., 2021). Recent
examples of Al-based research in visual inspection of impact damage in composite
materials are presented in the following.

Fotouhi et al. (2021) collected a diverse image dataset of both microscale dam-
age (matrix cracking) and macroscale damage (impact and erosion damages) from
the literature to train a CNN and explore the possibility of automating the visual
recognition of damage. Particularly, they used a pretrained AlexNet for accomplish-
ing three different tasks, including identifying damage type (impact, erosion, or
undamaged), damage severity (low-energy impact or high-energy impact), and
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damage location (impacted side or nonimpacted side). The network could identify
the macroscale damage type with a validation accuracy of 93%. The damage sever-
ity was identified on images of the impacted and nonimpacted sides with a valida-
tion accuracy of 96% and 87%, respectively. The third task achieved a validation
accuracy of 78% for low-energy impact and 73% for high-energy impact datasets.
These outcomes suggested that CNNs, in conjunction with transfer learning
approaches, have a great potential for automating the visual inspection of impact-
induced damage in composite materials. The authors also suggested developing
high-quality datasets for different damage types in composite structures to correlate
the damage extent to the residual lifetime of the structure in the next stages.
Tabatabaeian et al. (2022a), conducted low-velocity impact tests with energies from
3 to 128 J, collecting an image dataset of the impacted and nonimpacted sides of
damaged and undamaged composite panels. Then, a deep neural network adapted
from (Haselmann et al., 2018) was used to classify the dataset into damaged and
undamaged categories. This was an unsupervised method, meaning that no image
masks were provided to the network at any stage of the process. The network’s
error was mainly due to a light reflection on the surface of some undamaged panels,
giving the network the wrong impression of the presence of damage. The authors
reported an accuracy of 81% and highlighted the importance of a high-quality data-
set in training the Al-based algorithms for visual SHM. In another research
(Tabatabaeian et al., 2023), two sets of composite panels, labeled as ’reference’ and
"sensor-integrated’ samples were subjected to low-velocity impact tests at varying
energy levels. Subsequently, the outcomes, along with C-scan and visual inspection
images, were scrutinized to establish the range of BVID and construct an original
image dataset. Following this, four different deep-learning models were developed,
trained, and tested for their ability to identify BVID exclusively from images
depicting both impacted and nonimpacted surfaces. The results demonstrated the
proficiency of all four networks in learning and detecting BVID. Notably, the inclu-
sion of the sensor led to a reduction in training time and an improvement in the
accuracy of the deep-learning models. Among all networks, ResNet stood out as the
top performer, achieving an accuracy rate of 96.2% on the back-face of reference
samples and 98.36% on sensor-integrated samples. Alhammad, et al. (2022b) con-
ducted low-velocity impact tests on CFRPs with [45/ — 45/90/0/90/0/90/ — 45/45]
configuration. Then, pulsed thermography (PT) technology was applied to obtain
healthy and defective datasets from custom-designed composite samples having
similar dimensions but different thicknesses (1.6 and 3.8 mm). Two different meth-
ods were used to capture images, namely “reflection mode” and “transmission
mode” as shown in Fig. 2.7. After that, a support vector machine algorithm was
trained and tested to predict damaged and undamaged areas. This machine learning
method was identified as the algorithm that provided the highest predictive accu-
racy in previous research by the authors Alhammad et al. (2022a). The results
showed an accuracy of 93.5% and 82.1% for the reflection mode in thin and thick
samples, and 79.4% and 78.7% for the transmission mode in thin and thick samples.
This suggests that in Al-based impact damage detection when having a dataset of
thermal images, the images of the impacted side would be preferred over the
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(A)

Figure 2.7 Methods for image capture presented in Alhammad et al. (2022). Reflect mode
(A) captures the image from the impacted side and transmission mode (B) captures images of
the nonimpacted side.

Source: From Alhammad, Avdelidis, Ibarra-Castanedo, Torbali, Genest, Zhang, Zolotas, and
Maldgue (2022). Automated impact damage detection technique for composites based on
thermographic image processing and machine learning classification. Sensors, 22(23). https://
doi.org/10.3390/s22239031.

nonimpacted side because the crack in the samples is on the surface. Another exam-
ple of using PT to construct datasets for the training of Al classification models is
presented in (Deng et al., 2023), where authors used ResNet-50 to classify captured
thermal photos from the nonimpacted side into different groups according to their
corresponding impact energy levels, finding a relationship between BVID in CFRP
materials and the related impact energy level. The results showed the best classifi-
cation accuracy of 99.75%, suggesting that damage patterns introduced by slightly
different energies (4 and 6 J) can sometimes be confused, negatively impacting the
model’s performance. Therefore, developing strategies to generate more diverse
damage patterns is of interest for future work.

Hasebe et al. (2022) used three machine learning models, namely “ridge regres-
sion,” “logistic regression” and “random forest,” on a dataset extracted from low-
velocity impact tests on CFRP composites. The aim was to study the possibility of
inferring BVID information from the surface damage profiles. The low-velocity
impact tests were conducted on 246 specimens under three different impact factors.
The first factor was stacking sequence, where two different classes, cross-ply and
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quasiisotropic, were considered. The second factor was the impactor shape with six
different classes, and the third was the impact energy with several classes. A total
of 104 impact conditions were created accordingly. After analyzing the surface and
C-scan images and dent measurements, the input data for machine learning models
were prepared, and three impact factors, impactor shape, delamination area, and
delamination length, were estimated, accordingly. The results showed that dent
depth was the most effective feature for impactor shape prediction, the local
deformed volume for the delamination area, and the projected dent area with a steep
slope in addition to the delamination length in all laminates. It was also observed
that the models could infer approximately 80% of results correctly using dent depth
and the volume of indentation. As for further research, they suggested directly using
the surface profiles as features without reducing raw data (surface profile) to
human-designed features (depth, volume, etc.). Also, they suggested studying
whether Al models are effective even if the target contains paint or other features,
which may be found in real structures but not in laboratory-level research. In
another study, they developed a multitask learning algorithm based on decision
trees. The new algorithm was effective when the problem involved multiple objec-
tive variables related to each other or when it was difficult to collect numerous
datasets. Furthermore, in addition to improving the prediction accuracy of objective
variables, this model can also be used to find the features that contribute to the
model by investigating the model detail (Hasebe et al., 2023).

2.5 Challenges and future path

Visual inspection offers several advantages over other NDE methods. For example,
it does not require high-tech and expensive testing facilities or advanced testing
setup, and its testing instruments are portable. Moreover, it is easy to train while
providing fast inspection with reliable accuracy for surface damages. Nevertheless,
there are some challenges in visual inspection of impact damage that can be
addressed in future research. These challenges can be classified into three primary
groups: accessibility, visibility, and human dependency (Boyiik et al., 2021; Zhong
& Nsengiyumva, 2022).

Inspection of very large or geometrically complex structures in hazardous environ-
mental conditions in real-life applications can be challenging because there should be
access to critical parts of the structure to have a direct observation. For example,
access to damaged areas in wind turbine blades through the small passages or open-
ings can pose health and safety risks to the inspector. Also, sometimes the whole sys-
tem should be shot down or disassembled for a thorough visual inspection of a
specific area, causing downtime issues and expenses. A viable method to deal with
access restrictions that limit the inspection view is to use RVI and optical aids tools
such as UAVs, magnifying devices, microscopes, borescopes, videoscopes, and ther-
mal imaging cameras. This equipment can improve inspection safety, efficiency, and
accuracy in a wide range of industries, including manufacturing, aviation, energy, and
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healthcare, particularly in areas that are difficult or dangerous to access. Another con-
cern is that using such technologies might be expensive. Therefore, an area for future
work would be to develop RVI strategies and devices that are both cost-effective and
reliable, allowing for visual inspection of hard-to-reach or hazardous areas, without
requiring direct access by an inspector.

Another major challenge of visual inspection, especially for impact damage
detection is damage visibility. The application of this method is mainly limited to
the inspection of surface damages, and subsurface damages cannot be monitored
unless the structure has a transparent/translucent surface and the damage is large
enough to be visually detected. Even in translucent materials such as glass fibers, in
thick or painted sections, or where the surface layer has lost the resin due to envi-
ronmental conditions, detecting and evaluating the severity of impact damage is
complicated. In addition to the difficulties due to a small and barely visible damage
pattern, surface illumination can also cause challenges in damage visibility. For
example, shadows, glare, or uneven lighting conditions can obscure impact damage
areas, making visual inspection difficult or impossible. In such cases, care should
be taken to adjust the light source at an angle that minimizes glare, shadow, or
uneven lighting. Moreover, additional tools such as borescopes, magnifiers, or
microscopes can be used to perform a more detailed and accurate visual inspection.

As discussed earlier, permanent indentation or dent depth is considered a well-
known impact damage metric. However, this cannot provide much information about
the severity of the damage. Also, dent depth could be influenced by different para-
meters such as impactor shape and can decrease over time as a result of fatigue and
humidity due to viscoelasticity (Thomas, 1994). In some cases, the initial dent depth
just after impact is three times greater than at the end of life. To make it even worse,
the decrease of dent depth over time can vary in different materials, too (Thomas,
1994). Some papers in the literature report that higher energy impact damage from a
larger diameter hemispherical object results in damage with a lower depth and
greater delamination than lower energy impact damage from a smaller diameter
object (Cook, 2009). Therefore, BVID sizing tests should be carried out at end-of-
life dent depth to use permanent indentation as a reliable damage metric. Also,
visual inspection detection thresholds such as BVID must not be considered in terms
of either dent depth or width alone. As a minimum, both the indentation width and
depth are required to determine detectability thresholds. In general, for the most
part, visual inspection can only detect VID, and BVID might be left undetected. A
potential route for future studies might be developing smart coatings, which can gen-
erate larger and more visible damage patterns. This can be achieved by managing
the damage mechanisms on the surface layer through the proper design of the smart
coating layer (self-reporting coatings) (Tabatabaeian et al., 2022b).

Finally, a serious limitation of visual inspection stems from its dependency on
an inspector, meaning that depending on the experience, age, gender, eyesight, and
fatigue of the inspector, results may vary significantly, leading to missing or
wrongly identifying BVID. In order to mitigate such problems, new SHM methods
can be developed by combining visual inspection with other NDE techniques, espe-
cially by automating the inspection process using machine learning algorithms.
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This can also help move from a qualitative to a quantitative and more accurate
impact damage assessment.

2.6 Summary and conclusions

The chapter content can be summarized as follows:

1.

Visual inspection is a widely utilized nondestructive testing method for assessing low-
velocity impact damage in composite structures. It offers several advantages such as low
cost, minimal equipment requirements, ease of training, portability, versatility, and the
ability to inspect irregular shapes in the field. However, it has limitations in detecting
BVID and relies on the skills of the inspector, as well as factors like fatigue, lighting, and
surface conditions.

. State-of-the-art RVI approaches also face limitations in measurement resolution and reli-

ability. These techniques struggle to provide precise measurements below 1 mm, encoun-
tering challenges related to sharpness, exposure, background noise, and material state
classification. Despite the exploration of drone-based methods such as photogrammetry
and laser line scanning, achieving the necessary precision for detecting the smallest BVID
remains a challenge. Furthermore, automated visual inspection systems have not yet
matched the reliability and capabilities of the human visual system, particularly for com-
plex surfaces. Therefore, further research and development efforts are necessary to opti-
mize inspection processes and enhance the capabilities of RVIL.

. In order to improve real-life damage detection and evaluation systems, it is recommended

to extend Al learning algorithms and models. By combining these algorithms with spe-
cific engineering damage detection and assessment systems, improvements can be made.
This can include preprocessing input test data to enhance algorithm performance, classify-
ing different damage detection scenarios, applying optimization modules for better results,
and establishing reasonable classification criteria for damage assessment. The combina-
tion of multiple Al learning algorithms in different scenarios can enhance detection effi-
ciency and improve the classification of damage features.

. Color-changing coatings, such as the hybrid glass/carbon sensing technology can enhance

the performance of visual inspection reliability by providing a higher contrast between
damaged and undamaged areas. These smart coatings can also improve the accuracy of
Al solutions and reduce their training time, thereby enhancing the computational effi-
ciency of Al-based damage detection systems.
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