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A metric defines the distance between any two points. The “natural” metrics of
the digital world do not approximate the Euclidean metric of the continuous world
well. Skeletonization (sometimes named topology preserving shrinking or homotopic
thinning) is one example in which this leads to unacceptable results. In the present
work we propose and demonstrate skeletonization using path-based metrics which are
a better approximation of the Euclidean metric. Moreover, we achieve a good perfor-
mance on sequential processors by processing each pixel only once in the calculations
of binary (Hilditch) and grey-value (upper) skeletons.
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1. INTRODUCTION

Many image processing and analyzing methods use, either implicitly or explicitly,
a metric. A metric defines the distances between all pairs of points. Examples of
operations using metrics are erosion, dilation, distance transform, local minimum
and maximum filters and skeletonization. Commonly used metrics are the city
block and chessboard metric, arising from the connectivity of the grid. However,
in most cases the digital world should model the real world, which has a Euclidean
metric. We therefore emphasize as others have,'™* that our digital metric should
approximate the Euclidean metric as well as possible (we will define later what a
good approximation means).

Secondly, we will show that the use of better metrics does not have to seriously
affect our processing times. We will give algorithms for binary® and grey-value
skeletonization which process each pixel only once.

2. PATH-BASED METRICS

A metric on a set A is a function d from A x A to R. The function has to satisfy
three conditions:

e d(u,v) =0, if and only if u = »;
o d(u, v) = d(v, u);
o d(u, v) < d(u, w) +d(w, v).
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A local approach to implement metrics!:®7 defines the distance between two
. points as a minimum path length (path-based metrics). The path consists of a
series of vectors, each of which is taken from a limited set of vectors defined on the
grid, called prime vectors.® In turn, each of the vectors have a distance value associ-
ated with them (named chamfer or local distances®*). Figure 1 shows the minimal
paths between two points. Notice that, unlike in the continuous case, more than
one minimal path can exist.
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Fig. 1. The distance between u and v is defined as the minimum path length between u and
v, using a limited number of prime vectors. Note that more than one minimum path can exist
between two points.

It is easy to prove that this procedure implements a metric if the prime vectors
do not include transitions of a point to itself, if the distances associated with the
prime vectors are positive definite and equal for opposite vectors (see Appendix A,
from Ref. 9). Montanari! introduced the general name quasi-Euclidean for these
metrics since the error with respect to Euclidean distances can be made arbitrarily
small by increasing the neighborhoods (proof can be found in Ref. 10).

Each set of local distances will lead to a certain error in the distance between two
points with respect to the Euclidean distance between the points. We can optimize
the local distances so as to minimize that error. For skeletonization the maximum
error is an appropriate error measure (when deviations in the digital skeleton from
the continuous skeleton occur for the first time).

The set of prime vectors is usually limited to a 3 by 3 or 5 by 5 neighborhood
of a point (in 2 dimensions). In a 3 by 3 neighborhood there are 2 different types
of prime vectors, one type connects the central pixel with one of the north, east,
south or west neighbors, length dqg, the other with one of the north-east, south-
east, south-west or north-west neighbors, length d;;. In a 5 by 5 neighborhood the
so-called knight’s move, length d; is included. The other prime vectors in a 5 by 5
neighborhood can be written as two cascaded prime vectors of length dy¢ or dj;.

Good integér values for dyo and dy; are 5 and 7 (maximum error 4.21%7). The
traditional city block metric can be obtained by associating the distance value 1
with djo and 2 with dj;. The chessboard metric by associating the distance value
1 with both dyo and dy;. The maximum errors for both of these metrics is 17.16%.

We call the (5,7)-metric octagonal since “circles” in these metrics, being the set of
points which lie at equal distance to one point, form octagons (note that the “circles”
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of the city block metric are diamonds and that the “circles” of the chessboard metric
are squares, Fig. 2). Following the same argument, metrics obtained by using 5 by
5 neighborhoods are called hexadecagonal. Good integer values for dyo, d;1, and
dy2 are 5, 7 and 11 (maximum error 1.79%), or 9, 13 and 20 (1.52%).”

Fig. 2. “Circles” for different metrics. (a) City block (b) Chessboard (c) Euclidean (d) Octagonal
(e) Hexadecagonal.

3. PROPAGATING DISTANCES

Several algorithms have been proposed to employ path length metrics. Two cat-
egories can be discerned. The first type of algorithm processes an image in two
scans.}34® The second type of algorithm propagates wave fronts through the im-
age. The propagation order can be dependent on the connectivity!:11:1® or the
metric.® Propagation methods which are dependent on the metric process each
pixel only once in order of increasing distance. The propagation methods which
are dependent on the connectivity do not in general obey this ordering principle
(in some applications, such as constrained distance transformation,!!:12 these al-
gorithms therefore cannot guarantee that each pixel is processed only once!3). A
further advantage of processing pixels in order of increasing distance is that we can
do additional processing at the same time. In this paper the additional processing
is conditional erosion or conditional minimum filtering. This is in contrast with
another approach, which first stores all distances and then extracts the skeleton
from the distance image.?
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Fig. 3. The bucket algorithm. Candidate pixels with distance d are the 4-connected neighbors of
pixels with distance d — d1o and the 8-connected neighbors of pixels with distance d — dy1, the
coordinates of which are stored in the buckets labeled “d — d1o” and “d — d;;”. The candidates
will receive distance d, and their coordinates stored in bucket ‘d’, if they have not already received
a lower distance value. This is easily checked by comparing their distance with d. Alternatively,
if the distances are not stored, a status bit will suffice, indicating “has received a distance value”,
which -will be set for each pixel which coordinates are stored in a bucket. Not storing distance
values is of course only useful if other processing is done at the same time, e.g. skeletonization, see
next section.

Pixels are addressed in order of increasing distance by storing all the coordinates
of the pixels® with the same distances in a bucket.® Pixels with a certain distance
to a specified set of points (e.g. the background in a binary image or the set of
lower valued pixels in a grey-value image, see Sec. 5) can be found by using the
coordinates of the pixels with lower distances. Specifically, the pixels with distance
d are those pixels which have not yet received a distance value and which lie to the
north, east, south or west of the pixels with distance value d — djo or to the north-
east, south-east, south-west or north-west of pixels with distance value d — dy; or a
knight’s move away from pixels with distance value d—d;2. We say the latter pixels
generate the former. Note that the coordinates one has to store are limited to the
coordinates of pixels with distance values between d — d;; and d. The procedure
starts with the set to which distances have to be calculated, whose pixels have per
definition the distance value 0. The procedure is outlined graphically in Fig. 3.

2 Actually pointers to pixels are faster. In this case the edge of the image has to receive special
treatment though.

PThe algorithm described finds pixels with the same distance simultaneously, the algorithm in
Ref. 13, which uses bucket sorting as well, does not.
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The number of neighbors checked can be limited if directional information is used.
If the coordinates of a pixel with a certain distance value are retrieved from a bucket
the appropriate neighbors which can be reached via a path of shorter length from
the pixel which generated the retrieved pixel need not be checked; that pixel or its
relative direction was stored together with the coordinates of the retrieved pixel.
Figure 4(a) shows one possible case. We are looking for pixels with distance d. The
central pixel is retrieved from the bucket “d —d,¢”. Possible candidates for distance
d are the shaded pixels. Normally we would have to check all four 4-connected
neighbors. But if we know from what direction the central pixel was generated, say
from the bounded box, only 1 of the 4 candidates needs to be checked. Because the
other three will all have received a lower distance value already.

Fig. 4. The centrals pixel are the generating pixels. The pixels which generated them (their
parents) are indicated by the bounded boxes. Possible successors are shaded: (abc) 4-connected,
(def) 8-connected, (ghi) knight’s move. The arrows indicate the successors which need to be
checked. Note that the other possible candidates can be reached via other paths of shorter or
equal length from the parent.

In Fig. 4 all possible cases are shown. Note that a reduction in addressing by a
factor of 8 (12.5% of the total) is achieved in storing a directional field (assuming
all prime vectors having the same probability: for the 10-neighbors (4-connected)
and 11-neighbors (8-connected) instead of 4, on the average only 1 x 4/16 + 0 x
4/16 +1 x 8/16 = 3/4 neighbors have to be addressed, for the 12-neighbors instead
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of 8, on the average 0 x 4/16 + 0 x 4/16 + 1 x 8/16 = 1/2).° In the case that a
pixel can be reached via two paths of equal length only one has to be evaluated. If
two pixels are separated by the vector (3,1), one can either make a d;o transition
followed by a d21 transition, or the other way around. The same applies for a (3,2)
difference with dq; and ds; transitions. In skeletonization the order is important
(see the next section). The choice made in drawing Fig. 4 was based on that.

4. BINARY SKELETON
4.1. Homotopic Thinning
Serra'? gives four general conditions for discrete skeletonization:

(i) the topology should not be changed;

(ii) the result should be one pixel thick;
(iii) the result is a medial axis (object can be reconstructed);
(iv) the result is based on a digital distance.

Serra also gives two examples which show that these four conditions are too much
to ask for in the digital world. Homotopic thinning is then defined as a thinning
operation which keeps conditions (i) and (iv) and drops condition (iii). In patho-
logical cases condition (ii) will also be violated (Fig. 5).!> We have implemented
homotopic thinning with the chamfer metric and with the topology preserving tests
as proposed by Hilditch.!® Note that the propagation method as proposed in the
preceding section could also be used to implement other algorithms, for example
the algorithm proposed by Montanari! which drops (i) or the algorithm proposed
by Borgefors'” which drops (ii).

Since we have used a sequential processor to implement the bucket algorithm
it is advantageous to use a recursived thinning algorithm. Hilditch!® proposed an
algorithm which uses 3 by 3 neighborhoods to test if removal of the central pixel
will change the topology of the objects being thinned.

Different types of nonrecursive and (partially) recursive neighborhoods are used
to achieve different goals: nonrecursive neighborhoods to preserve topology and
to avoid erosion of one pixel thick lines from the end; recursive neighborhoods to
reduce two pixel thick lines to one pixel thick lines; partially recursive neighborhoods
to avoid erosion of two pixel thick lines from the end. For a fixed scan direction

©This procedure is applicable with any number of dimensions, with savings improving dramatically
with dimension. For example, in three dimensions with a 5 by 5 by 5 neighborhood: 100-neighbors
(sometimes called 6-connected neighbors, but denoting neighbors by vectors is less confusing) have
54 relevant successors on a total of 6 successors times 98 possible directions. 110-neighbors 108,
111-neighbors 56, 210-neighbors 120, 211-neighbors 72 and 221-neighbors 24:

54 + 108 + 56 + 120 + 72 + 24

X 98 = 4.5%
6+12+8+244+24+24

dA recursive neighborhood is a neighborhood in which the values of the pixels are the values as
known at the time of calculation, not what they were when the iteration started.
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Fig. 5. Pathological image in which conditions (i) and (ii) are in conflict.

from top-left to bottom-right two partially recursive neighborhoods are required, in
which the values of the north and the west neighbor are substituted recursively. In
an earlier paper!® we showed that four partial recursive neighborhoods have to be
used if a fixed order cannot be guaranteed: successively recursive values of all 4-
connected neighbors have to be tested in the otherwise nonrecursive neighborhood.

4.2. Basic Idea

The basic idea in using improved, path-based metrics is to remove pixels in order
of quasi-Euclidean distance to the background. We uncouple the metric from the
connectivity of the grid. The connectivity of the grid is essential as it preserves
the topology of the object. But there is no need, as we have seen in the previous
section, to let the connectivity determine the metric and the processing order.
The propagation method of Sec. 2 addresses pixels in order of quasi-Euclidean
distance. In a continuous world this would lead to “perfect” skeletons, perfect with
respect to the conditions listed in Sec. 4.1. In a discrete world however, removing
pixels in order of increasing distance does not always result in a skeleton which
lies in the middle of an object, where middle is defined according to the metric
used. Figure 6 gives an example. The cause of this effect is the anisotropy of the
grid. In diagonal directions the sampling frequency is lower. We have found that
a small modification of the algorithm solves the problem. Pixels generated from
4-connected skeleton pixels should not be removed. The motivation is that pixels
generated from pixels which are skeleton pixels, casu quo lie in the middle of the
object, are bound to be skeleton pixels as well. Only 4-connected pixels should be
taken into account since otherwise whole areas would become skeleton: two points
are linked by a number of paths, not by only one as in the continuous world (see
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not-processed yet

~—
background skeleton so far

Fig. 6. Removing pixels in order of increasing distance does not lead to skeletons which lie in the
middle of an object: diagonals are preferred directions (pixel valued “105”) is removed instead of
the pixel valued “106”, since it has a lower value: but 105 lies closer to the middle of the object.?

Fig. 1). This also requires a special order in which successors are generated. In
the case of paths of equal length the paths which starts with the largest chamfer
distance is chosen. In that case 4-connected neighbors are the first to generate
SUCCESSOrs.

The pseudo code of the algorithm can be found in Appendix B.

4.3. Results

The example of Fig. 7 highlights the improvements of the hexadecagonal skeleton
compared to the city-block skeleton. As expected, the more isotropic the algorithm,
the more isotropic the result.

Figure 8 lists the processing times required to process a number of 256 by 256
test images. All timings were performed on a SUN Sparcstation IPX.

The city-block skeleton uses the algorithm published in Ref. 18. It is faster when
applied to the random image because it takes a worst case approach to memory
management. It preallocates a buffer large enough to store all the coordinates of all
the points. In the case of a random image all the object pixels are very close to the
background pixels so that approach is advantageous; the hexadecagonal algorithms
allocates memory in chunks and needs an amount in the order of the length of the
contours in image, since only the coordinates of the contours are stored. This is
normally negligible compared to the memory the image itself occupies.

For both algorithms the processing times are roughly linear to the number of
object pixels to be processed in the images. This is as expected since each pixel
is processed only once (apart from the first scan to find the object pixels, which
accounts for the 0.2 seconds necessary to process an empty image).
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© @

Fig. 7. An example highlighting the importance of metrics in skeletonization. (The circle in the
middle of the images is part of the background) (a) Skeleton using city-block (b) Skeleton using
hexadecagonal metric (c) Intermediate image — after 20 iterations — during calculation of (a) (d)
Intermediate image — after distance 20 — during calculation of (b).

5. GREY-VALUE SKELETON

The natural analogy of skeletons in grey-value images are watersheds. Watersheds
divide the images in domains of attraction of rain falling over the grey-value land-
scapes. A watershed can be obtained from a grey-value skeleton by pruning the end
pixels from a skeleton while preserving the original topology. Dyer and Rosenfeld!?
made a first approach to generalize the concept of connectivity to functions (grey-
value images) where the topology is dictated by the landscape (sinks and summits).
Goetcharian?® contributed to this field by translating the Arcelli?! algorithm to
grey-value functions using local minimum and maximum filters resulting in the so-
called lower skeleton. A survey and formal description of grey-value skeletons is
presented by Serral®.

According to Serra, two functions can be considered homotopically equivalent
if the supports of divides (sinks) and channels (summits) are jointly homotopic.
The cells created by the divides and channels should have the same relationship
to each other with respect to inclusion and intersection in both functions. Each
sink constitutes a watershed tile and is surrounded by a divide. By duality, in the
complement of the image each summit belongs to a hill and is surrounded by a
channel.
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Grey-value thinning can be achieved by applying binary operations to the re-
sults of thresholding at subsequent grey-values. Depending on the processing order
we can distinguish two types of grey-value thinning'*: lower thinning and upper
thinning (which correspond by duality respectively to lower thickening and upper
thickening).

5.1. Lower Skeleton

The lower skeleton owes its name to the fact that the resulting divides do not
always follow the surface of the grey-value landscape. Due to the order in which
the pixels are processed from the highest grey level to the lowest — the divides can
penetrate the landscape. When a ridge surrounds a watershed tile (a crater), all
pixels belonging to that watershed tile get assigned the lowest value present in the
valley.

Due to the processing order from the highest to the lowest value, pixels present
in a certain grey level are also present in all subsequent levels. This implies that
pixel values can be changed more than once and multiple passes through the image
are required to achieve the final result.

Algorithms

Lower thinning can be implemented in two principle ways: The first approach makes
multiple passes through the image and applies a skeleton test to pixels at all levels.
The second works strictly at one level and makes exactly one pass through the
image per grey level.

Goetcharian?® gives an example of the first approach. He extended the Arcelli?!
skeleton — which is a parallel algorithm — to grey-value images. For each iteration,
a set of eight masks have to be applied to the image. This must be repeated until
stabilization occurs. This algorithm is mainly intended for processor arrays.

Along the same lines, a straightforward extension of the Hilditch skeleton!® to
grey-value images can be made by applying a threshold to the current 3 by 3 neigh-
borhood at the level of the central pixel. If the Hilditch test applied to the thresh-
olded values allows removal of the current pixel, the value of the central pixel
is replaced by the minimum value of its 4-connected neighbors. Unfortunately,
one cannot employ a fast implementation of the Hilditch skeleton to speed up
calculations.

The second approach allows an implementation better suited for sequential ma-
chines. Duin and Verbeek?? used a binary anchor skeleton with the Hilditch connec-
tivity test as described in the section about binary skeletons. The anchor skeleton
as proposed by Verbeek and Duin? is a variant of the skeleton that requires two
input images, one containing the binary mask to be skeletonized and one with pix-
els that are per definition skeleton pixels (the anchor). The lower skeleton can be
obtained by skeletonizing a grey-value image level by level, starting at the highest
grey level. The skeleton pixels of an upper level are anchor pixels in a lower level.
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Initially the binary input image, the anchor image and the grey-value output im-
age are cleared. For all grey levels —starting with the highest level — the following
steps have to be taken:

e Threshold the input image at the current level and store the result in the binary
input image.

e Apply the anchor skeleton to the binary input image.

e Find all new skeleton pixels and set their values in the output image to the current
level. When operating at the level of a sink, all pixels belonging to that watershed
tile are surrounded by a divide in the anchor image. This anchor prevents those
pixels from being removed. This way all points of the watershed tile receive the
sink’s value.

e Copy the intermediate skeleton result to the anchor image.

The algorithm produces a grey-value image which is. homotopic equivalent to the
original image. The binary quasi-Euclidean skeleton presented in the preceding
section can be easily modified to an anchor skeleton as demonstrated by Van Vliet
and Verwer.!®

5.2. Upper Skeleton

As opposed to the lower skeleton the divides produced by the upper skeleton always
run over the surface of the grey-value landscape. Consequently, this technique can
be used for the detection of ridges and ruts. The upper skeleton starts at the lowest
level and completes all operations on that level before moving on to the next grey
level. Using this characteristic we propose an algorithm for upper thinning in which
each pixel is processed only once.

Algorithms

In an initialization pass through the image the coordinates of all pixels are stored in
alist. Then the list is sorted by increasing grey level, allowing pixels to be processed
in order of grey level quickly. Since the coordinates of each pixel are stored only
once, and pixels are processed only when they are retrieved from the list, each pixel
will be processed only once as with the binary skeleton.

Initially all pixels in the binary output image are labeled “skeleton”. For all grey
levels starting with the lowest level a twofold procedure is applied.

First, insert new holes in the binary output image for all sinks at the current grey
level, i.e. at places where all 4-connected neighbors have a value greater or equal
than the pixel to be processed. This can be considered an initialization step for
each grey level. Note that direct addressing allows processing of pixels of interest
only. The image is not scanned.

Secondly, if necessary, the algorithm of Sec. 4, Appendix B is applied, on plateaus
of pixels with the same grey-value. The points on the plateau are ordered, as
shown in Fig. 9, by increasing distance to the lower levels. The algorithm again
only addresses pixels of interest by propagating over the plateau from the pixels
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Fig. 9. On a plateau points which are closer to a lower level are considered lower than points
which are further away from the lower levels.

connected to lower levels. If a pixel is removed from the binary image its grey value
is replaced by the minimum value of its 4-connected neighbors.

Since the resulting skeleton will be 8-connected, the pixels of a watershed tile
should be 4-connected. Pixels reached with the di; and d;5 prime vectors may only
be processed if the 4-connected pixels in-between are also part of the same level
(Fig. 10). This complication makes the directional information introduced in Sec. 2
redundant, so the simple version of the propagation method is used.

(2 (®) ()
Fig. 10. (a) and (b) For a d;; transition, one shaded pixel should be on the plateau (4-connected
path outlined) (c) For a d; transition, both shaded pixels should be on the plateau.

The algorithm produces a binary output image containing the divides and a grey
value image that is homotopic equivalent to the input image. Apart from the first
pass each pixel is processed once. Appendix C gives a pseudocode of the algorithm.

Figure 11(a) shows an electron microscope image containing gold particles em-
bedded in glass. Grey value skeletons are very sensitive to minor local variations
in grey level producing spurious craters and divides in the resulting skeleton. To

335



1300 B. J. H. VERWER, L. J. VAN VLIET & P. W. VERBEEK

Fig. 11. (a) 64 x 64 image of gold particles in glass after contrast sketch (b) Smoothed with
o = 2.25 (c) Upper skeleton (d) Ridges of upper skeleton (e) Lower skeleton (f) Ridges in lower
skeleton: the arrow points at a position in the lower skeleton where the ridge goes into the landscape
of the original, as can be seen by the low grey value on the ridge.

reduce this side-effect we filtered the image with a low pass filter before skeletoniza-
tion (Fig. 11(b)). The difference between the upper and lower skeletons is indicated
in Figs. (c) through (f). In Fig. 11(e) it is clearly visible that the ridge penetrates
the landscape, whereas is does not in Fig. 11(c).

5.3. Isotropy

The position of the grey value skeletons is mainly dictated by the grey levels. The
combination of the grey levels with the skeletonization can give rise to preferential
directions (see Fig. 6 of the binary skeleton and read the distances there as grey
levels). This explains the preference for diagonals in Fig. 11(c). On plateaus the
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(a) (b)

(c) (d)

Fig. 12. (a) Artificial landscape with plateau; black shows the ridges found with the upper skeleton
using a hexadecagonal metric. (b) Same using a city block metric (c) Original, notice the peak in
the lower left corner which is the start of the ridge (d) Top view showing the error introduced by
the city-block metric.

metric starts to play its role. Figure 12 shows an artificial image from which the
same conclusion as in Sec. 4 can be drawn: the metric is important and should be

uncoupled from the topology testing.
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5.4. Processing Times

The processing times for the various algorithms will differ considerably. To obtain
the upper skeleton each pixel in the image is processed only once. Therefore the
processing times are linear in the number of pixels— O(N?) —and independent of
the number of grey levels.

The two strategies for the lower skeleton are of a higher order of complexity. The
first method requires O(N) passes through the image making the algorithm O(N3).
The second method needs as many passes as there are different grey levels present
in the image. The complexity of this algorithm is O(N?2 2bitsPerPixel)

To illustrate the remarkable speed of our implementation of the upper skeleton
we compared the processing times of our upper skeleton with the processing times
of the lower skeleton using the anchor skeleton. A straightforward implementation
of the upper skeleton — a complete pass through the image for each grey level — will

be of the same order of complexity as the lower skeleton. The processing times on
a SUN SPARC station IPX are given in Table 1.

Table 1. Processing times of upper and lower skeleton in seconds on a SUN SPARC station IPX.

Upper skeleton (s)  Lower skeleton (s)

gold (256 x 256) 8 bits 1.6 1211
gold (128 x 128) 8 bits 0.4 28.9
gold (128 x 128) 4 bits 0.4 1.9

6. CONCLUSIONS

We have shown the importance of metrics in image processing and applied it to
one specific type of application, skeletonization. Using a path based metric, better
approximations of the Euclidean metric can be achieved. Processing times are low
because the number of pixels addressed is kept to a minimum. This applies to both
binary skeletonization and the upper grey-value skeleton.
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APPENDIX A

Recall the conditions for a metric:

e d(u, v) =0, if and only if u = v; (1)
e d(u, v) = d(v, u); (2)
e d(u, v) < d(u, w) +d(w, v). 3)
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e Define a set P of prime vectors on the grid:

P‘_‘:{pb'“;pl} (4)

e Define a path @ as a sequence of prime vectors:

Q=(Piu---,Pim),1SikS1 (5)

o Assign local distances d; to the prime vectors p; and define the length L of the
path @ as:

L@Q)= '}; Z d;, (6)
k=1

where s is a constant, real-valued scale factor, useful if we constrain the local
distances d; to be integer valued. If only relative distances are used, as in skele-
tonization, s is not of importance.

e Let the length of the empty sequence be zero:

L(@) =0 (1)

e Define the chamfer distance d. between two points u and v on the grid as the
minimum path length of all paths between u and v (Fig. 1):

de(u, v) = min{(L(Q)} (8)

The local distances d; are generally chosen to minimize the difference between
dc(u,v) and the Euclidean distance d.(u, v):

de(u, v) = 9)

where u; and v; are the coordinates of u and v in the space with dimension N.
Let p; be a prime vector connecting point a with point b. Then p;/, with local
distance d;, is defined as the prime vector connecting b with a.

Theorem 1. If Vi : d; > 0 and d; = d;, then d.(u, ) is a metric.

Proof condition (1).

If u = v, dc(u, ¥) = 0 by definition (7) and (8), if u # v, the path from u to v #
@ and d.(u, v) > 0 since Vid; > 0.

Proof condition (2).

If @1 = (Piys ---» Pin)s 1 < < lis a minimum path from u to v, then we can

construct a path Q; from v to w: Q2 = (pi,,, ..., p},), 1 <4 <1 IfQzisa
minimum path, d.(u, v) = d.(v, u).

Suppose @ is not a minimum path but Q3 = (pj,, ..., Pj,), 1 < jr <, from
v to u is. Then we can construct a path Q4 = (pj,, ..., Pj,), 1 < jk <!, fromu
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to v. L(Qs) = L(Q3) < L(Q2) = L(Q:). Contradiction since Q; was a minimum
path.

Proof condition (3).

Let Q1 be the minimum path fromu tov. £ Q; = (pi,, ..., Pi,.), 1 <ix <lisa
minimum path from w, and Q3 = (pj,, ..., Pj,), 1 < it <! is a minimum path
from w to v, then the concatenation Q4 = Q2Qs = (pi,, --- , Pi,., Piys -+ Pjn )

has a length d.(u, w) + d.(w, v).
Suppose d(u, v) > d.(u, w) + d.(w, v), then L(Q;) > L(Q,), but Q, was a
minimum path. Contradiction.

APPENDIX B
// Pseudo code for binary skeleton

for all background pixels // initialization
label pixel “treated” -
if pixel is 4-connected to object pixel
store coordinates of pixel in bucket “0”
store direction “none” in bucket “0”
endif
endfor

for d is djo to infinity
if all buckets are empty then exit

// first find all pizels with distance value d
for all generating pixels in bucket “(d — dyo) mod (djo+1)”
recall direction generating pixel
if direction generating pixel is “none” then // background pizel
for successor is all 4-connected neighbors
if successor is not labeled “treated” then
label successor “treated”
store coordinates successor in bucket “d mod(di2+1)”
store direction successor with respect to
generating pixel in bucket “d mod (d;2+1)”
endif
endfor
else
let successor be 4-connected neighbor to which dashed arrow in
Fig. 4(a) points (dependent on the direction of generating pixel)
if successor exists and is not labeled “treated”
label successor “treated”
store coordinates of successor in bucket “d mod (di2+1)”
store direction successor with respect to generating
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pixel in bucket “d mod (di2+1)”
endif
endif
endfor
for all pixels in bucket d — d;; analogous (see Fig. 4(b)).
for all pixels in bucket d — dy2 analogous (see Fig. 4(c)).

// check topology conditions
for all pixels in bucket d
if pixel may be removed without changing topology
label pixel “candidate for removal”
// label used as recursive value in neighborhood
endif
endfor
for all pixels in bucket d // update image
if pixel is labeled “candidate for removal”
label pixel “removed”
endif
endfor
endfor

APPENDIX C

// Pseudo code for upper (grey-value) skeleton

make histogram of image
allocate an array Ag for each grey-level to store the coordinates of pixels of
that grey-level

// length of Ay known from histogram

for all image pixels  // initialization
if grey value g of pixel != 0
label pixel “skeleton” // will remove these everywhere ezcept from
real skeleton pizels
put coordinates of pixel in array Ay
endif
endfor

for all grey values g, starting with 1 to maximum grey-value

for all pixel with grey value g (found in array Ag)
if pixel 4-connected to lower grey value
store coordinates of pixel in bucket 0 // edge of plateau to
lower level
else
remove label “skeleton” // if local minimum, permanently,
else temporarily
endfor
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// first determine ordering of pizels on plateau
for d is dyo and up, until buckets are empty

// find all pizels with distance value d
for all pixels in bucket “(d — dyo) mod (dy2 + 1)”
/] first one is 0, the modulo is to reuse memory space
for successor is all 4-connected neighbors
if grey value of successor = g // successor is on plateau :
label successor “skeleton” // next usage of same bit
store coordinates successor in bucket “d mod(d;2 + 1)”
store coordinates successor in Ag // 2nd usage
endif
endfor
endfor
idem for all pixels in bucket “(d — d11) mod (djz + 1)”
// but make sure connecting pizels are on plateau too, Fig. 10
idem for all pixels in bucket “(d — d12) mod (dy2 +1)”

save number of pixels with distance d found
/] so we can trace in A, where the different distance sequences start

endfor // all pizels with grey value g, except local minima, have their “skeleton”
bit set again

// now skeletonization
for d is 0 to maximum distance on plateau
for all pixels with distance d // stored in A,
if pixel may be removed without changing topology
// check neighbors “skeleton” and “candidate for removal” labels
label pixel “candidate for removal”
// label used as recursive value in neighborhood
endif
endfor
for all pixels with distance d // go through Ay again
if pixel is labeled “candidate for removal”
remove label “skeleton”
remove label “candidate for removal”
assign pixel minimum of the grey values of its 4-connected
neighbors
endif
endfor
endfor
endfor
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