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Abstract
Problem Statement. The responsibility problem in the AI field has been
taken seriously. The point of the problem is how to prevent AI systems from
making moral decisions for whom they cannot be held accountable. One of the
directions to address the responsibility problem is Meaningful Human Control
(MHC). Most of the work focused on theoretical definition and measurement ex-
plorations and few researchers investigate it by combining application scenarios.
Research Question. One of the previous works identified that explanations
could be used to improve the subjective feeling of MHC when the effect of con-
trol is delayed. Therefore, we wanted to study what type of explanations could
facilitate the improvement and how explanations achieved that. Method. We
conducted an expert study to obtain advice on selecting explanation types by
a ranking question questionnaire and structured questions. Due to the findings
that information sharing could improve Situation Awareness (SA), we conducted
a pilot study and a user study to study the effect of explanations on different
levels of SA and the human feeling of MHC. We used the Situation Awareness
Global Assessment Technique (SAGAT) and a Five-point Likert scale question-
naire to measure the effect of explanations on SA and MHC. Moreover, we
compared the effect of sub-explanations we used in the user study (consequen-
tial and counterfactual explanations) with a questionnaire. Results. It was
shown that the explanations help to get more overall SA and SA in the pro-
jection level. It was also shown that higher SA scores are associated with a
better feeling of MHC. However, our result showed that the explanations have
no significant effect on the subjective experience of MHC. The findings also in-
dicated that a high frequency of playing computer games can result in a good
subjective experience of control. Comparisons of the sub-explanations on quali-
tative and quantitative analysis demonstrated that counterfactual explanations
made a better impression on participants in most respects. Discussion and
Conclusion. From the results, we concluded that explanations do increase the
degree of SA of the task to a certain extent, but they do not affect the experi-
enced control. We also found that the computer gaming experience may provide
higher cooperation engagement and cohesion, resulting in increased experienced
control. As for the sub-explanations, the counterfactual ones were overall bet-
ter than the consequential ones by providing more information and making the
participants feel the robot’s intelligence.
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1

Introduction
Artificial Intelligence (AI) is increasingly employed in various industries and
businesses. Gartner Survey shows 37 percent of organizations have implemented
AI in some form in 2019, which grew 270 percent in the past four years [38].
Also in daily life, AI systems detect their surroundings, interpret what they see,
solve issues, and take action to assist in the completion of tasks, making life
simpler. AI-powered voice assistants are already used by 97 percent of mobile
users [20]. However, with the rapid development of AI at the same time there
are many problems, such as human trust, data privacy, and security. One of the
biggest problems is the problem of responsibility.

More and more AI agents are used to solve tasks that involve moral decisions,
like autonomous driving [24] and autonomous weapon systems [8]. There may be
problems where the attribution of responsibilities in the automation system is
not clear yet at the legal and moral level, which is called the “responsibility gap”
[45]. Matthias [73] first raised this problem in 2004 and the issue has received
considerable critical attention these years [45, 16]. It has been reported that
the manufacturer or operator cannot be responsible for the machines if they
cannot predict the action of the machines. If we want to use these machines,
we have to face the “responsibility gap”. Therefore, there is an urgent need to
find a way to address the responsibility gap in moral practice and legislation.
Gunkel [45] gave three directions to close or remediate the gap. The first one
is Instrumentalism 2.0, which suggests that only human beings should possess
rights and responsibilities. The second one, Machine Ethics, holds the view that
the machine should be capable of making ethical determinations. The third one,
which is called hybrid responsibility, utilizes a mixed strategy in the middle of
the two above.

More practical approaches continue to be explored along the lines of the the-
oretical ideas above. The theory of Artificial Moral Agents (AMA) is a continu-
ation of the idea of Machine Ethics. Cervantes et al. [21] gave the definition “an
AMA is a virtual agent (software) or physical agent (robot) capable of engaging
in moral behavior or at least of avoiding immoral behavior”. So it is required to
consider how to introduce morality into the agent. Allen et al. [1] provided two
strategies to develop AMA, which are top-down strategy and bottom-up strategy.
Agents based on top-down strategies include ethical guidelines that are often
developed from a certain ethical framework. This ethical framework is essen-
tially the AMA’s ethical decision-making norm. Bottom-up ethical agents, on
the other hand, do not impose a set of ethical principles drawn from a certain
ethical theory. Instead, they have a learning strategy by rewarding appropriate
decisions. However, it was also mentioned that the bottom-up strategy is more
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difficult to achieve because the goal of learning, i.e., “justice” or “ethics”, is
difficult to determine. In contrast, the implementation of a top-down strategy
would be more realistic.

Sio and van den Hoven [27] gave a solution to the responsibility gap philo-
sophically by raising Meaningful Human Control (MHC), and the core of this
idea is the same as the top-down strategy. They argued that humans should
ultimately remain in control of the whole system. They concluded the idea into
two aspects: “decision-making systems should track human-moral reasons” and
“the actions of the system should trace back to humans who have a proper moral
understanding of the system”. This way, the decision-making agents could follow
moral guidelines, which are defined by humans.

However, the concept was rather theoretical and just provided a research
direction. Many following studies were based on this theory for further theoreti-
cal definition and measurement explorations [25, 30, 37]. After these theoretical
attempts, some research also discussed and applied this concept under certain
Human-Agent Teamwork (HAT) context practically [50, 19, 97]. In order to
operationalize the concept of MHC and achieve a measurable notion, van der
Waa et al. proposed a measurement of MHC in HAT and performed simulation
experiments [97]. They provided three measurable components: the subjective
experience of human control in HAT, the behavioral compliance with ethical
guidelines, and the behavioral compliance with moral values. In their exper-
iment investigating the effects of different Team Design Patterns (TDP) on
MHC, they found that the experience of human control depends on how im-
mediate the observed effects were. In their experiment, the participants had
poor feedback on the situation that the reaction from the agent is not timely
after human control. Therefore, the researchers claimed that when the effects
of control are delayed, the agents can explain the consequences of the exercised
control. We propose that such explanations can improve the human awareness
of the future states of the team environment, which is the projection level of
Situation Awareness (SA).

SA was interpreted as three levels: perception, comprehension, and projec-
tion. The perception level contains the elements in the environment in a certain
time and space, the comprehension level includes the meaning of those elements,
and the projection part is presented as people being able to project the near fu-
ture actions of the elements in the environment [32]. To clarify the relationship
between SA and MHC, Calvert et al. claimed that SA is not part of control but
a key aspect of attaining MHC [16]. Combining this relationship and the exper-
iment result of van der Waa et al. [97], we hypothesize that the delayed effects
of control might negatively affect the projection of future events and states,
which is part of SA, and then reduce the MHC feeling. Some research showed
that information sharing can improve the SA of individuals in a team or sys-
tem [91, 57]. From the perspective of humans, intuitively the explanation from
agents is a type of information sharing. Lewis [67] also defined explanation: ”It
is a quantity of information about that event’s causes”. Therefore, we propose
that explanations could help humans get more SA. Also, in the experiment of
van der Waa et al. [97], they argued that explanations of the consequences of
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exercised control can improve the subjective experience of MHC.
Based on all this, we believe that when the effects of control are delayed,

explaining the effects of exercised control of the agents (such as explanations of
future states and events) will improve the projection level of SA, and also the
subjective experience of MHC. The goal of this work is to find a type of expla-
nation that could accomplish this improvement. Therefore, the main research
question is:

How can we use explanations to improve the subjective experience of
meaningful human control in delayed control situations?

And related sub-questions are:

• Why and when do humans need explanations in this context?

• What do explanations that could facilitate the improvement look like?

The rest part of the report is structured as follows: First, the related work
will be shown in Chapter 2. All the related concepts and background knowledge
are explained and given. In Chapter 3 Expert Study part, we investigated what
kinds of explanations are beneficial for humans to get a better experience of
control by asking the expert from the USAR field. We were also concerned
with improving the rationality of the background knowledge of the USAR task.
In Chapter 4 Experimental Study, we provided a simulated USAR scenario
with delayed control situations developed with MATRX in the experimental
study. We also investigated how the explanations affect the experience of MHC
and the SA of humans. In Chapter 5, the experimental results are presented,
including all the output from quantitative and qualitative analysis. Those results
are further discussed in Chapter 6. In the discussion, we will explore what the
results represent, the possible reasons for such results, and our limitations and
future work, which will lead to the conclusion in Chapter 7.
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2

Related Work

2.1 Human-Agent Teamwork (HAT)

2.1.1 Teamwork
Teamwork is the collaborative effort to achieve common performance goals [36].
Researchers from several fields have defined “team” in various ways. Katzenbach
and Smith [59] defined the team as “a small number of people with complemen-
tary skills who are committed to a common purpose, set of performance goals,
and working approach for which they hold themselves mutually accountable”.
They separated teams from work groups, which frequently lack important per-
formance requirements, real interdependence, and shared responsibility. Cohen
and Levesque [22] raised the joint intention theory in 1991, in which they ex-
plained teamwork as “a joint activity performed by individuals sharing certain
specific mental properties”. Furthermore, they gave a more operational definition
of the team as “a set of agents having a shared objective and a shared mental
state” [23]. The definition is based on the notion of joint intention, which re-
quires an agent to commit to telling other team members anytime it detects
that the shared objective has already been achieved, has become unattainable,
or has become irrelevant.

Lenoxt et al. [66] gave the characteristics of successful teams, including
self-awareness, within-team interdependence, feedback, performance monitor-
ing, clear communication of intentions, and assisting other team members when
necessary. These factors are not only applicable to human teamwork but also
to human-agent teamwork. In our work, we also applied some of them, such as
clear communication of intentions.

2.1.2 Human-Agent Teamwork
With the development of technology, agents such as software and robots are in-
creasingly involved in cooperation with humans [12]. Researchers began to think
about whether this form of collaboration met the requirements of teamwork and
what role the agents played in teamwork. According to Sycara and Lewis [86],
agents interacting with people have three key roles: supporting individual team
members in the completion of their own tasks, supporting the team as a whole,
and being equal team members.
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Software in HAT

Van der Waa and Haije [95] developed the Man Agent Teaming Rapid eXperi-
mentation Software package (MATRX) in 2019. As it facilitates the construction
of activities that involve cooperation, it enables fast trial of novel HAT concepts.
As Haije concluded, the architecture of MATRX consists of four components:
the GridWorld, the Objects, the Agents, and Scenarios [46]. The GridWorld is
presented as a 2D environment and the objects are items that can be placed
in the environment. Agents are autonomous entities that can perceive and act
on the environment and a scenario can be seen as a running environment after
configuration.

After the release of MATRX, many researchers have used this package to
complete HAT experiments. In the experiment of Haije [46], military unmanned
aerial vehicles (Agents) need to fly to a specific area (one part in the GridWorld),
perform reconnaissance, and return to their starting point. The agent must learn
how to discover a way to the reconnaissance site in a variety of scenarios that best
approximate the person anticipated to accomplish that mission. Since MATRX
is easy to set up, Haije could change the context variables and constraints to test
all conditions quickly. Moreover, van der Waa et al. [97] used MATRX to perform
a simulation experiment of a triage task to test the effect on MHC with different
Team Design Patterns (TDP) [98]. They built a 2D top-down environment and
enabled communication between the users and the triage robot. We also adopt
MATRX to develop our experiment environment.

Human-Agent Interaction

Intelligent agents are more skilled in numerical or symbolic processing (e.g., in-
formation fusion, data mining), whereas humans are experts in cognitive com-
puting, such as anomaly or emergency handling, multiple meta-level reflections,
and integrated situation assessment [36]. As humans and agents specialize in
different areas, and some of the functions even complement each other, it allows
the human-agent team to achieve better performance under proper cooperation
and interaction [51].

As agents become more sophisticated and autonomous, the challenge of ac-
complishing a proper human-agent interaction increases. For example, the activ-
ities appearing in human interactions with basic teleoperated robotic platforms
are no more than controlling the robots from one location to another one. The
destination and, more significantly, the reasons for the journey remain entirely
in the operator’s head, who maintains continuous manipulation of the platform.
However, when more deductions and navigation about how to accomplish the
task are assigned to the robot itself, meanwhile the operator only provides oc-
casional supervisory feedback, there is a greater difficulty to maintain a smooth
interaction between the human and the robot [12]. Bradshaw et al. [12] also men-
tioned that coordination in HAT cannot take place without a sufficient basis for
shared situation awareness, and this need for situation awareness increases as
the degree of autonomy of agents increases.
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2.1.3 Situation Awareness
Situation awareness (SA) plays a significant role here to facilitate the collabo-
rative process in HAT [55]. In terms of the individuals in the human-AI system,
SA is the perceptual and cognitive framework of the individual human opera-
tors working within the human-AI system. SA is a term derived from aviation
psychology to define the components of tactical flight operations including the
pilot’s comprehension [32]. The definition of SA is interpreted by different re-
searchers, depending on how one goes about using it. As Durso and Gronlund
[29] concluded, at the most general level, scholars have used the term SA to refer
to the cognitive tasks required to function in or control a dynamic environment.
Sarter and Woods viewed SA as “a variety of cognitive processing activities” in
a broad way [88].

However, most researchers approached SA from a more detailed view. Vidulich
et al. [99] gave a more concrete definition as: “Continuous extraction of envi-
ronmental information, integration of this information with previous knowledge
to form a coherent mental picture, and the use of that picture in directing fur-
ther perception and anticipating future events”. Further, according to Endsley,
SA was defined as “the perception of the elements in the environment within
a volume of time and space, the comprehension of their meaning, and the pro-
jection of their status in the near future”. She also divided SA into three levels
according to the definitions above, which are perception, comprehension, and
projection. Among all definitions, we adopt the one defined by Endsley in further
discussion.

Situation Awareness Measurement

This information processing-based three-level model is generic and provides an
intuitive description of SA, but the most important part is the simplicity and
division of the SA into three layers, which allows it to be measured easily and ef-
ficiently [87]. Endsley raised a corresponding measurement, Situation Awareness
Global Assessment Technique (SAGAT), while she developed the three-level SA
model. One of the methods to access operator SA is freeze probe techniques
[33]. Typically, a task is frozen at random, all displays and screens are blanked,
and a series of SA questions about the present state at the moment of the freeze
is administered. Participants must respond to each question using their knowl-
edge and comprehension of the situation at the time of the freeze. At the end
of the trial, participant answers are compared to the ground truth state of the
environment at the time of the freeze, and an overall SA score is computed. The
main advantage is their supposedly direct and objective nature, which elimi-
nates the problems associated with collecting SA data after the experiment.
However, these methods are also known for their degree of interference with
mission performance (i.e., during mission freeze). Real-time probe approaches
were developed to avoid the high amount of task interference imposed by freeze
probe techniques. They entail the verbal administration of SA-related inquiries
online, but with no freezing of the task under analysis. Self-rating procedures
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involve the use of rating scales to obtain subjective judgments of participant SA.
They indicate how aware participants considered themselves to be while doing
a task.

The methods used today for SA measurement can be broadly divided into
two categories: objective and subjective measurements. The method that in-
cludes SAGAT and its variants is called objective measurement, which is a
highly sensitive, reliable, and predictable SA measurement that can be used in
a variety of fields and experimental settings [34]. Subjective opinions on SA are
easy to collect in a wide variety of settings. Behaviorally-based subjective rating
scales such as SABARS may provide a more suitable basis for ongoing observer
ratings of SA [11]. In the latest studies, SA has also been measured by physio-
logical indicators, but for now, it is only in the first stage [11]. In our study, we
choose objective methods to measure the SA because of its quantifiability.

In the measurement of SA, researchers are also concerned about the rela-
tionship between SA and task load [65, 61]. In the study by Lee et al. [65].
they analyzed the relationship between air controllers’ SA and their workload
at three air traffic levels. They concluded that SA and workload are inversely
related and more closely correlated when task load increases. Bolstad and End-
sley [10] also found that their shared displays can help to obtain more SA at
high task loads. It was shown that SA changed more significantly at high task
loads for the same conditions. Therefore, we will to use a task with a higher task
load, search and rescue, as our scenario, since it is always under time pressure
[92].

2.2 Search and Rescue
Search and Rescue (SAR) has multiple definitions, one of which is given by the
United States Defense Department. As the name of SAR suggests, it consists
of two parts, Search and Rescue. Where Search means “An operation using
available personnel and facilities to locate persons in distress”, and Rescue means
“An operation to retrieve persons in distress, provide for their initial medical
or other needs and deliver them to a place of safety” [78]. In the following
subsections, we will introduce how these two operations have evolved and how
they are now integrated to serve people with the help of robots. The SAR tasks
include many specialty sub-fields determined by the type of terrain the search is
conducted over. These include mountain SAR, urban SAR (USAR), cave SAR,
Maritime SAR, etc. In the next sections, we cover only the USAR as our target
task.

2.2.1 Search
An effective and efficient search theory is essential to the whole SAR task.
According to the report of the U.S. Coast Guard [94], in addition to those
SAR missions where the location is directly known, the process of determining
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the location in the remaining missions adds a great deal of uncertainty and
complexity to the search and rescue mission.

Koopman [60] first raised some math models about searching theory, which
are used in the U.S. Navy’s searching strategy in World War II. The basic prin-
ciples of search theory “classical search planning method” (CSPM) were first
applied to SAR planning around 1957 when the U.S. Coast Guard published its
search planning doctrine in a search and rescue manual. Because of the limita-
tions of computers at that time, the computation of the searching was simplified
to be feasible for hand calculation. Later, after continuous modifications, this
principle was able to be applied to more complex scenarios. The first implemen-
tation of computer support for search programs occurred around 1970, when
Richardson and Stone [84] successfully used a computer to calculate the distri-
bution of the Scorpion submarine. They first got a prior probability distribution
using Monte-Carlo procedures calculated by a computer. Then they updated the
posterior probability distribution by unsuccessful search results.

USAR scenarios include, but are not limited to, natural disasters such as
earthquakes and tsunamis and man-made disasters such as explosions and fires
[28]. Indoor search is a large part of these scenarios and the search strategies are
different, so indoor search theory is also what we need to consider. Traditional
search strategies like Deep First Search (DFS) and Breadth First Search (BFS)
can be applied in this scenario in the area of single-person search [72]. When a
rescuer adopts the BFS strategy in an operation, he will explore the neighbors
first, before moving to the next level neighbors. So it can be used to find the
shortest path to the target, which is also verified in [72]. DFS strategy starts
from the start point and explores as far as possible along each path before
backtracking. It can cover a larger search area compared to BFS. For multiple-
person strategies, Nguyen et al. [80] considered the firefighter’s route through the
building as an optimization problem and set modeling based on the coordination
between the firefighters.

2.2.2 Rescue
Rescue in USAR is a time-demanding task. According to research, the majority
of survivors of earthquake-induced building collapses are rescued during the
first 24 hours of the incident [56]. In the 1980 earthquake in Southern Italy, for
example, 94 percent of individuals were saved within the first 24 hours [26]. It[69]
is also claimed that the first 72 hours after the earthquake are the golden hours
to rescue. For fire, rescue corresponding time is more important. According to a
report by [42], on the one hand, the size of fire becomes exponentially larger with
time, on the other hand, the data proves that people’s survival rate decreases
rapidly after 20 minutes, and if the response time can be reduced by five minutes,
the number of deaths due to fire in the UK can be reduced by seven percent
every year. In section 3.1.2, we considered this time-demanding factor in our
design.
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2.2.3 SAR as HAT
SAR is never done by humans alone. Humans usually cooperate with other
agents, such as dogs, drones, and robots, and work as a human-agent team.
Definitions and concepts related to HAT can be found in section 2.1.

SAR with Dogs

It can be traced to 200 years ago when humans first used dogs to help with SAR
[15]. The employment of dogs in SAR operations takes advantage of dogs’ acute
sense of smell. The scent is more intense where it originates (i.e., the victim).
As the scent spreads, it gets less intense, generating a scent cone [15]. This way,
the dog can gradually find more dense places according to the scent and finally
find the survivors. Further research also combined dogs with other advanced
technology equipment to enhance the effectiveness of searching. Zeagler et al.
[103] raised wearable and mobile interfaces to help enable SAR dog and handler
teams to work together more effectively.

However, the inherent disadvantages of dogs cannot be avoided. First, dogs
that can engage in SAR need to pass 16-18 months of training, which is a long
time and does not guarantee good training [15]. Secondly, the dog’s sense of
smell is greatly affected by the environmental weather and so on, so there will
be limitations in the search terrain [41]. Drones and robots can avoid these two
drawbacks well.

SAR with Drones

The first drones were used for SAR to replace search helicopters. Its advan-
tages are that the operator does not need any SAR piloting experience, drones
are less affected by weather conditions and the drones can cruise automatically
[40]. Karaca et al. also compared searching by drones to searching on foot and
by snowmobile. The results showed that when compared to the traditional ap-
proach, drones could search a larger region faster [58]. The workflow of the search
is that these drones can monitor the situation from the air using a variety of
sensors and equipment, and then forward the information collected to operators
at ground stations for further action. The search technology of drones mostly
concerns how to identify objects. There are several broad categories: thermal
imaging to distinguish living and non-living things, computer vision for object
recognition, and the use of cell phone signals to locate humans in cities [44].

SAR with Robots

The main purpose of using SAR robots is to protect rescuers in a dangerous
and uncertain environment after a disaster. Moreover, the robot can explore
more areas that are inaccessible to humans due to its design [77]. The use of
the robot can be divided into four types: search robots, extraction robots, evac-
uation robots, and field treatment robots [101]. Search robots have the highest
technology maturity among these types, they will try to locate and report the
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location of any injured person. For extraction robots, they will carry the in-
jured person out of the disaster zone. Then, injured people will be evacuated to
a medical assistance location by evacuation robots, and then taken care of by
field treatment robots.

According to our experiment design part in Chapter 4, we will discuss extrac-
tion robots. One of the first applied extraction robots is PackBot [102] developed
in 2004. It was a modification of Unmanned Ground Vehicles (UGV), adding
a flexible stretcher. When the operator remotely maneuvers the robot to the
injured person, the injured person rolls onto the stretcher and is taken by the
robot to a safe area. However, the feasibility of this design depends on whether
the injured person or someone at hand is capable of securing the injured person
within the stretcher. Later robots, such as Battlefield Extraction-Assist Robot
(BEAR) [6], used robotic arms to avoid this problem. BEAR could reach its arms
under the injured person and hold him to a safe area. The disadvantage of such
robots with precisely operated robotic arms is that they are highly dependent
on communication effects, which are usually not guaranteed in post-disaster sce-
narios. Furthermore, it is not safe enough to work in complex and unstructured
environments [101].

The autonomy of robots necessarily needs to be improved if we want them to
be more adaptable to complex and unstructured environments [9]. For example,
Sun et al. [93] built an ontology model that enables SAR robots to understand
how to make intelligent decisions. The robots can infer the task to be performed
based on the state of the environment while obtaining semantic information
about the victim.

2.2.4 USAR as HAT
Rescue robotics has been cited by the DARPA/NSF study on human-robot
interaction as one of only two “Grand Challenge” applications [85]. Murphy et al.
have been working in this area since 2002 and have presented many theoretical
foundations and practical experiences [18, 77]. They summarized the robotics
applications in USAR and the issues that arise in the study in 2004.

They divided USAR into six groups, such as search, rescue, medical, etc.
Moreover, they said that the USAR physical and working environment consists
of three zones: the hot zones, the warm zones, and the cold zones. The Hot Zone
is the area of actual devastation and the Warm Zone is the surrounding area
where the rescuers assemble and prepare their equipment. The Cold Zone is
for the Incident Command headquarters, the press, and the media liaison. The
entire USAR process can be summarized as follows: When an incident occurs,
the first responders assume control of the site and establish the Hot, Warm, and
Cold Zones. They will protect from a second terrorist attack or an aftershock
and assess the site for additional safety risks. The first activity is to search the
Hot Zone by the search team. If survivors are found, The Rescue team would
be dispatched to extricate the victim based on optimal use of resources. After
finding a survivor, the Search team is likely to continue searching.

In these subtasks, robots were only used in the searching part due to the
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technological limitation by then. However, Liu and Nejat [70] have already men-
tioned the use of rescue robots which use simultaneous localization and mapping
(SLAM) based algorithms in 2013. Moreover, one robot needs to be operated
by two characters: the robot operator and the problem holder. The actions per-
formed by the robot operator are navigation-related and the problem holder is
expected to detect victims and maintain an understanding of the relevant state
of the world as opposed to the state of the robot.

As for the issues that need to be solved, they mentioned that reducing the
human-robot ratio is an important one. One proposed solution is to transfer
sections of both roles to the robot so that it may be performed by one actor.
This setting is also used in our subsequent designs. The solution also relies on
a higher level of autonomy. However, as robots become more autonomous, the
ethical issues that arise from them deserve our consideration.

2.2.5 Ethics in SAR
Rescue activities in disaster zones can be plagued with ethical problems. The
usage of robots will certainly add new ethical issues. We will only discuss those
issues raised by using robots in SAR. Battistuzzi, Recchiuto, and Sgorbissa [7]
gave a review about ethical concerns in rescue robotics in 2021. They divided
the ethical issues into seven categories: fairness and discrimination, false or
excessive expectations, labor replacement, privacy, responsibility, safety, and
trust. Among all these issues, we elaborate on fairness and discrimination, and
responsibility as they are closely related to our work.

Fairness and Discrimination

Fairness and discrimination issues are unavoidable since search and rescue tasks
include the order in which victims are rescued. Amigoni and Schiaffonati [3]
mentioned fairness in their ethical framework for robot systems. They said that
benefits and risks should be allocated equitably among the subjects involved
to eliminate the possibility of certain subjects experiencing only risks while
others enjoy only benefits. They also gave an example for the claim in the SAR
task: The robots may make decisions about prioritizing the order in which the
detected victims are reported to the human rescuers or about which detected
victim it should try to transport first. Brandão [13] proposed a new fairness-
aware method for coverage path planning, which mainly focuses on the speed
and order of covering social groups. In their previous work [14], they provided a
practical illustration of the problem. The authors describe hypothetical scenarios
in which drones are used to search for victims and deliver medications after a
disaster. Because the distribution of urban residents is not uniform in terms
of density, age, race, and gender, the authors went on to state that planned
drone routes would have a skewed distribution of these characteristics. It will
particularly target young people, who are more likely to survive than elderly
individuals residing in other areas. As a result, while the drone will be effective
in discovering as many individuals as possible, it will not adhere to the principle
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of distributive justice. We will cover solutions to fairness and discrimination in
the section 3.1.2.

Responsibility

The assignment of responsibility for human-robot cooperation in SAR is tricky,
especially when it comes to the ethical part. Harbers et al. [49] focused on
responsibility assignment problems, which can arise when robots act with no
human supervision. If the robot malfunctions, makes a mistake or causes harm,
it may be unclear who is responsible for the damage caused: the operator, the
programmer, the manufacturer, or the robot itself. They also mentioned that
the problem will be more difficult when the robots are getting more degrees of
autonomy, self-learning, and decision-making capabilities. This unclear attribu-
tion of responsibilities in the automation system at the legal and moral level is
called the “responsibility gap” [45], which was first raised by Matthias in 2004
[73]. Our task assignment of humans and robots in SAR can be seen in section
3.1.3.

2.3 Meaningful Human Control
In order to solve this “responsibility gap”, different researchers gave different
insights. Carlsen et al. [17] introduced the concept of “man in the middle”. Pre-
vious owners, as well as the designers, manufacturers, and users of such robots,
may be held responsible for any issues they create. Furthermore, the concept
of “Meaningful Human Control”(MHC) is raised to avoid the responsibility gap
from a control perspective.

2.3.1 Definition
Although MHC has already been studied in many areas, such as autonomy sys-
tems [25] and HAT [97], its definition is still not uniformly agreed upon, and
each researcher has a corresponding interpretation in his field. Since the con-
cept of MHC came from the field of automated weapons at the beginning, the
very first definitions are all in this field. Article36 [5] listed the requirements for
meaningful human control over individual attacks as contextual information,
positive action from humans, and accountability. Another definition from the
Center for a New American Security [52] claimed that MHC has three key com-
ponents, which are informed and conscious decisions, sufficient information, and
weapons are designed and tested and humans are well trained. With the study
by Sio and van den Hoven in 2018 [27], MHC has evolved as a concept that
can be applied to autonomous systems in general. They provided a philosoph-
ical account of how autonomous systems can be designed in such a way as to
make MHC possible. Specifically, they argued that humans should ultimately
remain in control of the whole system. They concluded the idea into two as-
pects: “decision-making systems should track human-moral reasons” and “the
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actions of the system should trace back to humans who have a proper moral
understanding of the system”.

However, according to the finding of Amoroso and Tamburrini [4], the flaws
in these uniform control approaches imply that addressing the MHC problem
with a single formula is implausible. Differentiated policies for MHC are in-
troduced into many fields, such as automated weapons [4] and surgical robots
[37]. According to the degree of autonomy of the surgical robot, Ficuciello et al.
[37] divided the MHC into five levels, and they also claimed that in the future,
the autonomy level of the robot can be automatically selected according to the
surgical needs, dynamically adjusting the human vigilance but not reducing the
MHC.

After these theoretical attempts, not much research discussed and applied
this concept under certain HAT contexts practically [50, 74]. Mecacci et al.[74]
demonstrated how MHC can be designed and embedded into automated systems
and systematically applied MHC theory to dual-mode vehicles, with some case
studies.

2.3.2 Measurement
As for the measurement of MHC, very few studies proposed concrete meth-
ods. To operationalize the concept of MHC and achieve a measurable notion,
van der Waa et al. [97] raised three measurable components of MHC, which
are subjective experience of control by humans in HAT (experienced MHC),
behavioral compliance with ethical guidelines, and behavioral compliance with
moral values. They said that the second component compares the entire be-
havior of HAT with the ethical guidelines of the task. And for the other two
components, user interviews are required for the measurement. In our study,
we focus mainly on measuring the subjective experience of MHC by question-
naires. In their experiments, explanations were used to influence control. They
claimed that explanations allow humans to better estimate when and which
control should be performed and thus achieve MHC.

2.4 Explanation
Lewis [67] defined explanation as “a quantity of information about that event’s
causes”. This information is beneficial to HAT in different ways but the main
goal is to improve coordination in human-agent teams [48]. Neerincx et al. [79]
also emphasized the need for mutual communication between humans and agents
about the intent and basis of their actions, and explanations as necessary for hu-
mans to understand the performance of the agents. We will discuss explanations
from two aspects: content and format.
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2.4.1 Explanation Content
In this section, we listed all popular explanations used by other researchers and
elaborate on why and why not they fit in our study. One of the purposes of our
study is to find explanations that could improve the subjective experience of
MHC.

Consequential Explanations

Since we wanted to provide extra information to help humans obtain control in
the delayed control situations, it was intuitive to explain the unobserved events
in the near future, which are the consequential explanations. Van der Waa et
al. [97] mentioned that when the effect of human control is delayed in HAT,
the agent could explain the consequence of exercised control of humans, which
is the unobserved event. However, the effect of this explanation has not been
verified, which would also be part of our work.

Contrastive Explanations

Lipton analyzed contrastive explanations in detail from a philosophical point
of view in 1990 [68]. He claimed that a contrastive phenomenon consists of a
fact and a foil, and the same fact may have several different foils. When we
ask contrastive why-questions, we actually not only need the fact (the answer
“Why”), but also need one specific foil to answer “Why the fact rather than
the foil”. The advantage of contrastive explanations is that they are more in-
herently intuitive to humans to both produce and comprehend [54]. Although
the ability to explain a decision contrastively is claimed to lead to responsible
decision-making [31], the downside is that identifying a foil from multiple foils
can be difficult [96]. Agents are now unable to effectively infer the contrast from
the open-ended question ”Why this decision?” due to the intricacy of morally
important activity [97].

Counterfactual Explanations

Counterfactual explanations describe events or states of the world that have not
occurred and implicitly or explicitly contradict factual world knowledge and
then give the consequence of states or events change. According to Ginsberg
[39], a counterfactual is a conditional statement of the form “If P, then Q”
where P is “expected to be false”. This kind of explanation can be seen as
contrastive by nature. Counterfactual explanations specify necessary minimal
changes in the input so that a contrastive output is obtained. The difference is
that the antecedent P did not occur in reality. Compared to the foil in contrastive
explanations, antecedent P is easier to implement and more suitable for our task,
which we will describe in detail in section 3.1.4.
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Feature Attribution

Feature attribution methods are one of the most popular approaches for explain-
ing the decisions of complex AI models. The methods evaluate how strongly each
feature contributed to the model’s choice for each given instance. With feature
attribution methods, the relevant features can be obtained and presented as
explanations about why the model made certain decisions [47].

Confidence Explanations

Confidence Explanations are used to provide confidence estimations that help
humans to decide whether to trust the agent. Larasati et al. [64] examined
the impact of interpreter trust in AI medical support using four explanations,
including confidence explanations. However, we don’t plan to include this type.
Miller claimed that appealing to probabilities or statistical correlations is not as
effective as referring to causes [75]. Besides, our task is not focused on human
trust in robots.

2.4.2 Explanation Format
As Mohseni et al. concluded [76], identifying suitable explanation formats for
the desired system and user group is the first step in delivering explanations
to end-users. The design process can take into account various levels of com-
plexity, duration, and presentation state (e.g., permanent or on-demand). The
type of target user also needs to be taken into account, for example, Lage et al.
[63] proved that AI novices prefer more basic explanation and representation
interfaces.

Schoonderwoerd et al. [89] compared different explanations and correspond-
ing UI design patterns used on decision support systems in medical diagnosis.
In these design patterns, they use techniques such as the parallel coordinates
technique [53] to visualize data, allowing features and other data to be displayed
visually.

Besides, the combination can also be seen as a format. Researchers use hybrid
explanations to gain the benefits of different explanations [62, 90]. We also used
combinations of different explanations as our potential options in the expert
study. As for the interface of explanations, we use some visual images to replace
text information and use both images and text for important information. Paivio
[81] found that images have two codes: verbal and visual, and each is stored in
a different place in the brain. The dual-coding character could increase the
probability that people will remember.
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3

Expert Study
Our expert study was concerned with improving the design of explanations and
the rationality of the background knowledge of the USAR task. The study ob-
tained permission from the Human Research Ethics committee of the Technical
University of Delft. The participant was a firefighter who had basic SAR knowl-
edge and experience with USAR tasks. In this study, we provided the grounded
theory and the background of our task and gave different explanation exam-
ples in the scenario. We collected the expert’s responses by questionnaires and
structured questions.

3.1 Design
We provide design and background knowledge relevant to the task in this section.

3.1.1 SAR Organization
We introduced the organization for a better understanding of the whole task and
the parties involved. Referring to Murphy’s rescue organization and personnel
structure [77], we simplified the structure to obtain the organization shown in
Figure 3.1. There were two teams led by the task leader: Rescue Team and
Search Team, which were separately led by two team leaders. Each team had
its own crew, including professionals (humans) and robots.

Figure 3.1: The organization of SAR
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3.1.2 Moral Value Elicitation and Victim Characteristics
As we mentioned in section 2.3, humans should be able to remain in control of
HAT, which means humans should make moral-related decisions. In the SAR
task, the rescue part is more explicit about the ethical requirements, since prior-
itizing certain victims over others is strongly related to making moral decisions.

We mentioned that the rescue task is time-critical and can be slow if a human
completes the decision for each rescue. So we referred to van der Waa et al. [97]
in the patient triage task and used a moral value elicitation approach to reduce
the workload of humans and improve moral-decision-making efficiency.

Victim Characteristics

To enable the rescue team to set moral values, we selected five ethically relevant
characteristics that rescuers are concerned about for each victim: gender, age,
vital sign, difficulty to rescue, and distance [2, 71, 83]. For each characteristic,
there are several categories so that certain types of victims can be prioritized
for rescue according to different types of moral value elicitation. The levels are
shown in Figure 3.2.

Figure 3.2: Characteristic categories

Moral Value Elicitation

In our specific task, we made the following settings: Before the rescue team
started to rescue, the rescue team leader would rank these five characteristics
by priority according to his/her moral values. For each characteristic, there were
two options. For the age, there were older preferred and younger preferred. For
the gender, the two options were male preferred and female preferred. For the
vital sign, difficulty to rescue, and distance, low/short and high/long options
were provided. The moral value elicitation workbench is shown in Figure 3.3.
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Figure 3.3: Moral value elicitation workbench

3.1.3 SAR Workflow
After introducing the parties involved in the SAR task and the most concerning
part, we briefly presented the workflow to clarify the assignment of responsibili-
ties of humans and robots in SAR. Referring to the workflow of USAR defined by
Murphy [77], we developed our workflow shown in Figure 3.4. From the search
team’s perspective, first, the search team went inside the devastating area and
tried to find the victims. Once a victim was found, the search team sent the
location and information of the victim back to the rescue team, who stayed in
the surrounding area. The search crew kept searching until completing all the
coverage. We assumed that the search task was completed by other teams and
we mainly focused on the rescue task in our study. From the rescue team’s point
of view, the rescue team leader deployed the team in the surrounding area, and
the leader started moral value elicitation. When the leader could detect the ex-
istence of victims on the remote screen, he/she could arrange robots to rescue
them. The robots followed the moral values set by the leader and selected the
highest priority victim to rescue first. The whole task would be finished until
all victims were rescued. In our further study, we focused mostly on the rescue
phase and rescue team.
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Figure 3.4: The workflow of SAR

3.1.4 Explanations
The purpose of providing explanations was to let the robot give feedback on
its understanding of the moral value elicitation and what actions it would take
based on it, ideally giving the team leader a better subjective control experience.
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Explanation Types

We chose consequential explanations as our first basic type since we want to ver-
ify if explaining the consequence of exercised control of humans could help with
the subjective experience of control. Further, we chose counterfactual explana-
tions, instead of contrastive ones, as the other basic type. Events that did not
occur but were contrary to the knowledge of the factual world in counterfactual
explanations could be mapped to hypothetical changes in moral values. These
changes, while not taking place in the real world, provide more information and
may have implications for the future moral setting of the same person, which
we will also look into later.

As for the combinations, we used consequential explanations to combine with
other types we mentioned in section 2.4 except for the confidential ones, because
it was said that confidence explanations were not effective in referring causes.
We provided the following explanation types to our expert.

• Consequential: Based on your elicitation before, if I have to decide to
rescue A or B on the picture, I will rescue A.

• Counterfactual: If you prioritized younger age over gender, my decision
would have been rescuing B rather than A.

• Consequential + Contrastive: Based on your elicitation before, if I
have to decide to rescue A or B on the picture, I will rescue A because
you prioritize distance the most and victim A has a closer distance than
victim B.

• Consequential + Feature attribution: Based on your elicitation be-
fore, if I have to decide to rescue A or B on the picture, I will rescue A.
For the most important value – distance, A has a short distance.

• Consequential + Counterfactual: Based on your elicitation before, if
I have to decide to rescue A or B on the picture, I will rescue A. If you
prioritized younger age over gender, my decision would have been rescuing
B rather than A.

Time of Explanation

We also considered the effect of the timing of the explanations on MHC. To
explain the delayed effect of control, the robot could provide explanations af-
ter the moral value elicitation, during the whole task, and at the end of the
task. We asked our expert to discuss and judge different task settings, and then
determined a suitable one.

3.2 Participants
We recruited one expert from the firefighter group in the Netherlands on LinkedIn.
The expert was a part-time firefighter who had basic USAR knowledge and years
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of experience with USAR tasks.

3.3 Scenario
The expert played the role of rescue team leader in our task. When a disaster
struck, he led his rescue team to the scene, deployed outside the danger zone
on standby, and began the moral value elicitation on the robots. Meanwhile,
search teams continued finding victims and marking their locations. He could
see the location and status of victims remotely and then he arranged for a robot
to rescue them. The robot would follow his moral value and choose victims by
priority to rescue. The task would finish until all victims were safely rescued.

The robot would give its own explanation of moral value elicitation at three
different times. The explanation included the information of two example victims
and a statement of the robot’s actions and possible reasons for choosing them,
shown in Figure 3.5.

Figure 3.5: Robot explanation example

3.4 Measurement
Since one of the main purposes of the expert study was to select the appropriate
explanation types for subsequent user experimentation studies, we created a
questionnaire based on that used by van der Waa et al. [97] to examine the
usefulness of explanations (the questionnaire is shown in appendix A). The
expert was asked to rank the explanations above by how well they matched the
description of the questions.
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Ranking Question Questionnaire
This explanation provides the most new information

The explanation provides the most reasons about decisions made by the robot
The explanation helps me to understand the causality

I can understand the explanation best
The explanation shows the robot’s understanding of my moral value elicitation best

This explanation matches my expectations best

Table 3.1: Questionnaire in expert study

For the structured questions in Table 3.2, we hoped that we could get the
expert’s subjective thoughts and direct feedback on the design.

Structured Questions in Expert Study
What do you think are the differences between moral value elicitation and direct control?

What information do you think is important for the team leader to know
in the rescue task?

Do these explanations cover the information?
Which type of explanation do you think is better to help
increase the subjective experience of human control? Why?
What do you think is the proper explanation time? Why?

Table 3.2: Structured Questions in Expert Study

3.5 Procedure
The expert study was conducted in person lasting about 30 minutes and was
divided into two parts: the introduction session and the interview session.

In the introduction session, the expert first filled in the informed consent
forms. Then the instructor introduced the design of settings, such as the process
and organization structure of SAR and the moral value elicitation. Moreover,
the instructor presented the scenario that the participants would face and some
different types of explanations that would appear in the scenario.

The interview session started with a ranking question questionnaire about
explanations. The expert considered what type of explanations fit the scenario
and matched the description of the questions, and ranked the explanations from
the most relevant one to the least relevant one. Besides, the instructor also asked
some structured questions to the expert, which are shown in table 3.2.

3.6 Results

3.6.1 Explanation Choice
As for the ranking questions questionnaire, the rank of explanations on each
question corresponded to a score, for example, the first place corresponded to
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five points, the second place corresponded to four points, and so on. Then, we
got the chart that presented the total scores of all the explanations shown in
Figure 3.6.

Out of a total of seven questions, The Consequential + Counterfactual ex-
planation was ranked first in four of them, including: “This explanation provides
the most new information”, “The explanation provided the most reasons about
decisions made by the robot”, “I can predict what the robot will do after send-
ing it for rescue best” and “I can feel the most control about the system with
the explanation”. For questions “I can understand the explanation best” and
“The explanation matches my expectations best”, the Consequential explana-
tion was probably ranked first due to its simplicity. In contrast, the performance
of the Consequential + Counterfactual explanation on these two questions was
not ideal, only ranking fifth and third respectively. Finally, for the question
“The explanation shows the robot’s understanding of my moral value elicita-
tion best”, the experts felt that the Consequential + Contrastive explanation
performed best.

Figure 3.6: Scores of all types of explanations on the ranking questionnaires, the
details about the questions are in the appendix A

3.6.2 Feedback
On a general level, the evaluation of the overall design from the expert was pos-
itive. The expert said that the design of moral value elicitation would “provide
some improvement in terms of efficiency” but required accuracy in the setup. He
also thought that the kinds of victim information I provided, such as difficulty
to rescue and level of injury, were important to rescuers and could “help with
rescue decisions”. For the explanations, he thought the explanations basically
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covered the information and the Consequential + Counterfactual one helped
him increase the subjective experience of control most. For the proper time to
provide explanations, he said it was not that useful to provide them at the end
of the task, the leader needed more help with explanations during the task than
after the task was over.

Besides, the expert gave some useful inputs for improving the design and
user-friendliness. For example, I was using distance rather than the difficulty to
reach in the design part, however, he said that the distance could not reflect
the difficulty well since there might be many obstacles during the short distance
to the victim. Moreover, he suggested that a unified measurement for all char-
acteristics (low, middle, and high) was useful and friendly for the rescue team
leader to understand the victim information, but until then the measurements
I used were different (short and long, low and high, easy and hard). In order to
distinguish the levels more clearly, we could use different colors to mark them.

Figure 3.7: Characteristic categories after expert study
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Figure 3.8: Moral value elicitation workbench after expert study
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4

Experimental Study
In the experimental study, we first conducted a pilot study on a small number
of participants (two for each group) to identify the flaws in our design and
improved it according to the feedback. Then, we recruited more people for the
user study.

4.1 Pilot Study
After the pilot study, we found a ceiling effect, which meant every participant
could achieve top performance on the task. We have three rounds in the ex-
periment and investigate one level of SA at the end of each round. All the
participants could get a full score on the SA level1 in the first round. We fig-
ured that there were two reasons: The first one was that the task itself was too
easy for the participant to keep an overview, such as only a few victims ex-
isted at the same time and the moving speed of the robot was low. The second
one was that some questions in the questionnaire were too straightforward and
lacked a process that allowed participants to think. Finally, the questions did
not differentiate between the two groups of participants.

To solve the problem, we iterated our design:

• Hid the victim information, the participants could only see the information
by hovering over the victims (see Figure 4.4).

• Increased the workload by increasing the speed of the robots and the
number of victims from three to four in the first two rounds.

• Not allowed the participants to recheck the situation after pausing the
task prior to SA measurement, instead directly asked the questions in the
first two rounds and only leave ten seconds to check the situation in the
third round.

• Changed the straightforward questions in the questionnaire, for example,
instead of asking the participants to estimate the time that the next rescue
task will cost, asked them how long it would take for the robot to reach,
rescue, and bring the next victim back.
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Null hypothesis (H0) Alternative hypothesis (H1)
Providing combination explanations does
not increase the subjective experience

of MHC

Providing combination explanations
can increase the subjective experience

of MHC

Table 4.1: Hypothesis

4.2 Design

4.2.1 Conceptual Model and Hypothesis
To design our experiment, we abstracted our research into a conceptual model
shown in Figure 4.1. There was one independent variable (explainability) with
two levels (consequential + counterfactual explanations vs. no explanations).
The mediating variable was the Situation Awareness of participants and the
dependent variable was their subjective experience of MHC. We also listed some
potential moderating variables: age, gender, education level, and computer game
experience.

The experiment followed a between-subject design. According to our inde-
pendent variables, we constructed two conditions: There were two groups of
participants, one performed the task without explanations (baseline group) and
the other conducted it with the combination of two explanations (conditional
group).

Further, we give our null hypothesis and alternative hypothesis shown in
Figure 4.1.

Figure 4.1: Conceptual Model

4.2.2 Environment Architecture
As we mentioned in section 2.1.2, the architecture of MATRX consists of four
components: scenarios, GridWorld, objects, and agents. In our experiment, the
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scenario was the rescue task performed by the rescue team leader and rescue
robots. The GridWorld was the danger zone where the victims were searched and
rescued. The objects were the items shown in the GridWorld, like the obstacles.

There were four agents in this experiment, which were the robot, the rescue
team leader, the search team, and the god.

Rescue team leader: The rescue team leader set the moral values and
supervised the task in the workbench environment and was the role taken by
the participants.

Robot: The robot automatically rescued the victims following the moral
values set by the rescue team leader. The logic was: Among all the victims
found so far, check the highest priority characteristic first in the selected moral
values of each victim, if a prior victim can be selected according to it, then the
robot will go to rescue him/her; if not, then proceed to check the second priority
characteristic in selected moral values, and so on.

Search team: The search team would find the victims in the danger zone
and send their information to the workbench for the rescue team leader, here
we only kept the part where the information was sent back since we focus on
the rescue task.

God: The god could be seen as the instructor who could control the exper-
iment and do some configurations.

4.2.3 Environment Interface
Each agent had an interface view on the experiment, but the god view (Figure
4.2) and rescue team leader view (Figure 4.3) were what we mainly used in
the experiment. The instructor could monitor the danger zone, start/pause the
experiment and configure the explanations type in the god view.

Compared to the god view, there were more components in the rescue team
leader view such as the menu panel, victim information, moral values, robot
explanation, and a view of the danger zone.

Menu panel: In the menu panel, there was a button “Moral Value” that
could be tapped for moral value elicitation, as shown in Figure 3.8. Besides, the
timer would count the total time spent on the task so far.

Victim information: Once a victim was found by the search team, his/her
information was shown here, and the information disappeared after he/she was
rescued by the robot. The colors represented different levels, low levels were
green, middle ones were yellow and high ones were red.

Moral values: The moral values of the rescue team leader were shown here
after the elicitation. The purpose was to give a reminder to the leader.

Robot explanation: According to the expert study, we chose Consequential
+ Counterfactual explanations as explanations for the rescue robots. In the
consequential sub-explanation, the robot explained which victim it would rescue
among all the victims and which characteristic it was based on to make the
decision. In the counterfactual sub-explanation, the robot explained another
situation in which it would rescue another victim if the moral values would have
changed.
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View of the danger zone: In this view, the rescue team leader could
supervise the robot, and check the location of the victims found by the search
team.

Figure 4.2: God view

4.3 Scenario Settings
The participants played the role of rescue team leader, which was the same as in
the expert study. There were three rounds of rescuing. In each round, the robot
saved three victims by the priority of moral values. The robot explanations were
shown on the interface (see Figure 4.3) and changed depending on the available
victims.

4.4 Measurement
We measured the mediating variable (SA) and the dependent variable (sub-
jective experience of MHC) by quantitative analysis. Moreover, a qualitative
analysis was conducted to compare different sub-explanations.
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4.4.1 Measurement for SA
In section 2.1.3, we mentioned that the simplicity to measure is one of the
advantages of the three-layer SA model. We chose SAGAT [33], the most widely
used measurement method, as our measurement for SA.

SAGAT should include queries about all operator SA requirements, including
level 1 (perception of data), level 2 (comprehension of the meaning), and level 3
(projection of the near future) components. An in-depth cognitive task analysis
is required for each domain in which SAGAT is used to determine queries.
Combined with our task, we provided some queries on the three levels in Table
4.2. All questions of the questionnaires we used in the experiment study were
shown in the appendix C.

4.4.2 Measurement for the Subjective Experience of MHC
We used a Five-points Likert scale to measure the subjective experience of MHC.
Van der Waa et al. [97] created a questionnaire to measure participants’ con-
trol over task performance in a human-agent context. We referred to that and
adapted it to our context. The questions included the controllability of the sys-
tem, the responsibility to the victims, and the robot understandability, which
were shown in Table 4.3.

4.4.3 Measurement for Comparing Sub-explanations
We concluded that consequential + counterfactual explanations were more suit-
able for our scenario than other forms of explanations according to the expert
study. However, we wanted to further study the effect and difference between
these two sub-explanations. Therefore, we provided some questions for quali-
tative analysis as shown in Table 4.4, which was based on the statements for
measuring the usefulness of explanation types in the study of van der Waa et
al. [97].
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Measurement on the subjective experience of MHC
It is simple for me to keep an overview of the whole task.
I feel responsible for the well-being of the victims.
I feel all comfortable with all decisions in the task.
The robot’s rescue choice matches what I thought.
I can feel control over the system.

Table 4.3: Questions for measuring subjective experience of MHC

For these two sub-explanations, which one:
can be understood better.

helps me to understand the causality better.
shows the robot’s understanding of my moral value elicitation better.

help me predict what the robot will do next.

Table 4.4: Questions for sub-explanations

4.5 Participants
For the pilot study, we recruited four participants and tow for each group. For
the user study, We recruited 34 participants (17 men, 16 women, and one who
preferred not to say) through advertising on the TU Delft campus and personal
contacts, 17 for the baseline group and 17 for the conditional group. There
were 25 participants (73.5%) who had an age range of 18-24 and nine of them
(26.5%) were between 25 and 34. With respect to the education level, three
of them obtained some college credits but no degree, 25 of them had already
got a bachelor’s degree, and six of them had a master’s degree. In terms of
computer game experience, 13 of the participants played several times a year,
ten participants several times a month, three participants several times a week
and eight participants played on a daily basis. Detailed participant information
can be found in appendix F.

4.6 Hardware and Software
To run the experiment, we used a MacBook Pro 13” laptop and the Human-
Agent Teaming Rapid Experimentation (MATRX) software that we mentioned
in section 2.1.2. The experiment was compiled and run on a local server. The
participants performed the experiment through the interface shown on the
Google Chrome browser. Meanwhile, the Situation Awareness questionnaire
from Qualtrics and the information survey and control questionnaire from Mi-
crosoft Forms were also shown on the Google Chrome browser.
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4.7 Procedure
The experiment was conducted in person lasting about 25 minutes and was
divided into three parts: the introduction session, the experiment session, and
the information and feedback session.

In the introduction session, the participants first filled in the informed con-
sent forms. Then, the instructor introduced some background knowledge about
SAR tasks, such as the workflow and organization of SAR. The instructor also
presented the scenario that the participants were going to face.

During the experiment session, the participants set their moral values and
conducted three rounds of rescuing by supervising rescue robots. They were also
asked to fill in the questionnaire about SA after finishing each round of rescuing
(one round corresponded to one level of SA). In the third round, the participants
had 10 more seconds to check the task information sources and then answered
the corresponding SA questions in the projection level.

The third session came after all the victims were rescued. Basic informa-
tion, such as age and gender, was collected. Moreover, all participants filled
out the questionnaire about the subjective experience of MHC. Besides, par-
ticipants from the conditional group also needed to answer several questions
about explanations. We also asked some unstructured questions about control
and explanations according to their answers.

4.8 Data Processing
We collected our data from the measurements in section 4.4. In the questionnaire
of SAGAT, we had eight questions for the first level, two questions for the second
level, and six questions for the third level. We calculated the participants’ correct
answer rate for each level and used the number of percent as the SA score (range
0-100). So, we got SA score on level 1 (SA score 1), level 2 (SA score 2), level 3
(SA score 3), and the average score on all levels (average SA score).

In measuring the subjective experience of MHC (shown in the appendix
C), we had five questions about control for both groups and one more question
about explanations for the conditional group. We mapped the level of agreement
on the five questions about control to 1-5 ranging from “strongly disagree” to
“strongly agree”. This way, we could calculate the average score on the subjective
experience of MHC (avg. control score) in both groups.

There was no participant who played computer games several times a week
in the baseline group. In order to analyze this moderating variable, we added
a category called gaming frequency by combining “several times a week” and
“daily” into “high frequency” and “several times a month” and “several times a
year” into “low frequency”. Then, for all moderating variables, we re-coded them
by assigning numerical values to the levels of categorical variables, to adapt to
further analysis. For example, our gender variable had three categories so we
re-coded “prefer not to say” as 0, “female” as 1, and “male” as 2.
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5

Results

5.1 Moderating Variables
We assigned participants based on balancing the distribution of different mod-
erating variables between the two groups. For each of the above variables, we
tried to make the frequency distribution in the two groups the same as pos-
sible to remove the influence of the participants’ demographics. We used the
Kolmogorov-Smirnov two-sample test because the distribution was non-normal.
Moreover, since the data followed a non-continuous distribution, a bootstrap
version test was performed. The results showed that the frequency distributions
of gender (D(17) = 0.056, p = .917), age (D(17) = 0.059, p = .836), educa-
tion level (D(17) = 0.176, p = .368), and computer game experience (D(17) =
0.176, p = .628), were not significantly different. Therefore, we excluded the
effect of the above moderating variables on the experiment due to their similar
distribution in the two groups.

5.2 Effects of Explanations
In this part, we examined the effect of explanations on the different levels of
SA and the subjective feeling of control. First, we used the Shapiro-Wilk test to
check the normality of all data (shown in table 5.1). The distributions of all data
except for the SA score in level2 (W = 0.765, p < .001) and level3 (W = 0.915,
p = .012) were normal. Next, we used F-tests to check that the variances of two
groups on SA score 1 (F(1,16) = 0.554, p = .248), average SA score (F(1,16)
= 1.407, p = 0.503) and average control score (F(1,16) = 0.547, p = 0.238)
were homogeneous. With the distribution normality and the homogeneity of
variances, we used the Two-Sample t-test on the SA score 1, average SA score,
and average control score. In contrast, we conducted the Wilcoxon rank-sum
test on SA score 2 and SA score 3 to examine the difference between the two
groups. The results showed that there was a significant difference in SA score
3 (W = 85.5, p = .036) between the baseline (M = 26.47, SD = 0.18) and
explanation (M = 40.20, SD = 0.16) conditions. For average SA score, there
was also a significant difference between the baseline group (M = 30.39, SD =
12.32) and the conditional group (M = 41.01, SD = 14.62); t(32) = 2.290, p =
.029. However, for the average control score, there was no significant difference
between the baseline (M = 3.12, SD = 0.70) and explanation (M = 3.10, SD =
0.52) conditions (t(32) = 0.166, p = .869). The next sections will show further
analysis of the relationship between the explanations and scores.
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Variables W P
SA score 1 0.962 .277
SA score 2 0.766 <.001 ***
SA score 3 0.915 .012 *

avg SA score 0.972 .507
avg control score 0.947 .098

* <.05, ** <.01, ** <.001.

Table 5.1: Normality check on all scores

In the conditional group, we asked participants if they thought the explana-
tions would help them with their next value elicitation. The majority of them
were positive, with 41.2 percent of all participants strongly agreeing and 35.3
percent agreeing with the statement. Only 5.9 percent of people had a negative
view.

5.3 Correlation Analysis
We ran a correlation analysis to examine the relationship between SA scores
and the average control score. First, we used scatter plots (see Figure 5.1) to
check the relationships. We couldn’t tell if they were linear relationships at a
constant rate. Moreover, because of outliers and the small scale of data, we
chose the non-parametric Spearman’s rank-order correlation. We found that
there was a significant, moderate positive correlation between SA score 3 and
average control score (rs = 0.42, p = .015), and between average SA score and
average control score (rs = 0.50, p < .001).

5.4 Regression Analysis
Since we found that there was a significant difference between high (M = 3.44,
SD = 0.42) and low (M = 2.96, SD = 0.63) frequency gamers on average con-
trol score (t(32) = 2.631, p = .014), we used linear regression to investigate
whether we could predict average control score and SA scores based on the
predictors game experience and explanations. The GVLMA package was used
to test the linear model assumptions of normality, heteroscedasticity, linearity,
and uncorrelatedness.

We used a multiple linear regression model to predict the average control
score. The predictor variables were: SA score 1, score 2, and score 3, game
frequency, and explanations. According to the GVLMA, all model assumptions
were acceptable. It was shown that the model statistically significantly predicted
the average control score (F(5,28) = 3.514, p = .013, adj. R2 = .276). However,
only the SA score 3 (p < .001) contributed statistically significantly to the
prediction, with a 10 points increase in SA score 3 (range 1-100) being linked
with a 0.17 point improvement in the average control score (range 1-5).
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Figure 5.1: Correlation between SA scores and avg control score, the blue line is
the fitted smooth curve and the grey part means 95 percent confident interval
around the smooth curve.

Then, we used gaming frequency and explanations to predict SA scores. We
checked the independence of explanations and game frequency. The chi-squared
test showed that they were independent of each other (p = .464). The results
showed that SA score 3 (F(2,31) = 3.396, p = .046, adj. R2 = .127) and average
SA score (F(2,31) = 3.418, p = .046, adj. R2 = .128) could be significantly
predicted. However, only explanations (p = .039) added statistically significantly
to the prediction of the SA score 3, with adding explanations improving 0.13
point on SA score 3, while neither of the predictor variables had a significant
contribution to predicting the average SA score.

5.5 Evaluation of Sub-explanations
We mentioned that we used a few statements to measure the usefulness of two
different sub-explanations in section 4.4.3. The results showed that in terms of
understandability (52.9% vs 47.1%) and predictability (47.1% vs 52.9%), the
performances of the consequential and counterfactual explanations were simi-
lar, and the participants did not show a preference. However, counterfactual ex-
planations had a better performance in helping people understand the causality
(82.4%) and showing the robot’s understanding of human moral values (64.7%).

We also did a quantitative analysis on sub-explanations. We checked the
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normality of the distribution of statement scores on both explanations with the
Shapiro-Wilk test. The results showed that the distributions were non-normal
(p = .682). Therefore, we used the paired-samples Wilcoxon test to examine the
difference between sub-explanations because it was evaluated within subjects.
However, it showed that there is no significant difference between the scores of
the sub-explanations (p = .270).

5.6 Qualitative analysis
We analyzed the answers to the unstructured questions based on grounded the-
ory [100]. We broke answers into excerpts and grouped these excerpts into codes,
and then combined similar codes into categories. We could come up with a more
reliable theory by combing the text. The results are shown in figure 5.3. We also
counted the frequency of descriptive codes with a bar chart as shown in figure
5.2.

Figure 5.2: Frequency of Descriptive Codes in the Answers to Unstructured
Questions
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6

Discussion

6.1 Effects of Explanations
According to the results of the effects of explanations, it was shown that the
explanations could result in a significantly higher projection level of SA and
overall SA, which was in line with what we expected in section 1. The regression
analysis also showed that participants who received explanations had more SA
in projection level and overall SA during the task.

Both in the correlation and regression analysis, the projection level of SA and
overall SA had a strong association with the average control score. It suggests
that participants who got more SA tended to feel more in control during the
task.

From the qualitative analysis, it can be seen that the participants were pos-
itive about the role of explanation in providing information (four participants
mentioned it) and understanding the robot (one participant mentioned it). How-
ever, there was one participant who thought that the explanations could not help
with predicting the actions of the robot.

6.2 Subjective Experience of MHC
Our results showed some positive effects from the explanations. However, the
results showed no significant difference in the subjective experience of MHC
between the two groups, which suggests that explanations may not affect the
feeling of exercised control. This result was inconsistent with our hypothesis, so
we made the following possible suggestions.

First, as we mentioned in section 4.1, there was a ceiling effect that almost all
participants could achieve high performance on the task. Therefore, we increased
the difficulty of the task by adding more victims in each round and speeding up
the movement of the robot. However, this increased pace led to another problem:
participants sometimes ignored parts of the explanation due to time pressure.
As shown in figure 5.2, four participants mentioned that they missed part of
information sometimes. We conjectured that the role of explanations, in this
case, was not fully reflected, so it might lead to a lack of increase in people’s
subjective experience of control.

Furthermore, the explanations provided no real control over the operation,
such as changing the robot’s operation and modifying the participant’s own
moral values again. This resulted in the participant always being in the position
of a supervisor after completing the moral value elicitation and the task started.
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Six participants mentioned that they felt a lack of participation in the task.
One participant indicated “During the mission, all I could do was to observe
the robot’s actions, and I could not override its choice of victim.”

According to the study of van der Waa et al. [97], none of the experts felt
that they had the capacity to control the value elicitation process. The experts
stated that they believed the agents acted in accordance with the ethical values
evoked, but that this did not result in a sense of being controlled. However, we
found some findings that were inconsistent with their conclusions, with some
participants feeling a sense of involvement and control in the value elicitation
process, and thus scoring high on the sense of control for the entire task. One
of the baseline group participants said: “I think the ethical settings section is
important and I have found that the bot operation follows my settings. The
reason I felt control was that my input in the task, i.e., my morality, got an
output that satisfied me, i.e., the correct rescue operation of the robot.”

Based on the above discussion, we think that explanations do increase the de-
gree of SA of the task to a certain extent, but they do not affect the experienced
control. Combined with the analysis of answers to unstructured questions, we
consider that the feeling of exercised control more likely depends on the partic-
ipants themselves, such as their ability to handle multiple tasks simultaneously
(five people mentioned that they were distracted by different tasks but two peo-
ple said it was easy to keep an overview). Finally, we believe that the subjective
feeling of control is more influenced by whether the participants think the moral
value elicitation is important and reflected by the robot actions.

6.3 Computer Game Experience
Although the explanations do not affect the feeling of exercised control, we
found that one of the moderating variables, computer gaming frequency, has a
significant effect on it. The results showed that people who play computer games
frequently have a significantly higher subjective feeling of control. We suggest
two possible reasons for this. One is that frequent game players have higher
cooperative engagement and feelings of cohesion. Ewoldsen et al. found that
playing cooperative video games can influence subsequent cooperative behavior
[35]. Further, Greitemeyer and Cox raised that cooperative team play boosted
emotions of togetherness, which in turn triggered trust, which in turn improved
cooperative conduct [43]. So we think that, while working with the robot, players
who had more experience with cooperative behavior were able to become more
immersed in the cooperation and had more trust in the robot, resulting in a
better control experience.

Another potential reason is that frequent game players have relatively better
cognitive skills [82]. They can process information well even under time pressure,
so the explanations might have been better understood and utilized by them.
The full use of explanations could result in a better feeling of overview and
exercised control experience, which is in line with the result that the high-
frequency gaming group had a significantly higher rating on the question “It is
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simple for me to keep an overview of the whole task”. Van der Waa et al. [97]
reported that participants were not motivated to take over the role of supervisors
when they had stress and lacked an overview during the task [97]. Therefore,
we suggest that the participants who played computer games frequently could
feel better when supervising the task and also process the explanations better.

6.4 Comparison of Sub-explanations
From the qualitative analysis comparing the consequential explanations with
the counterfactuals, it was shown that the explanations can help participants
in their next moral value elicitation. Although the quantitative analysis didn’t
show a significant difference, the qualitative results showed that counterfactual
explanations were evaluated better in some aspects; e.g., interpreting the causal-
ity and showing the robot’s understanding of human morality, while in others
it was close to the evaluation of consequential explanations. Although this con-
clusion was reached when some participants of the conditional group sometimes
did not read the second part of the explanation, i.e., the counterfactual, we still
believe that since we provided complete explanatory content in the question-
naire, this could help participants to recall the task scenarios and reduce the
impact of the lack of reading.

The above discussion is also consistent with the analysis of the answers to
the unstructured questions. Participants thought the consequential explanations
helped understand the robot’s actions and were easy to read and understand.
Although some participants believed that reading counterfactual explanations
was less useful than observing robot actions, it was said that these explana-
tions could provide more information and make the participants feel the robot’s
intelligence.

6.5 Limitations
We identify a few limitations of our study. First, from the feedback of some
participants, it was mentioned that they couldn’t finish reading all the explana-
tions due to time pressure. One possible reason was that the explanation itself
did contain too much information since counterfactual explanations described
what the robot would do in two kinds of situations. Another problem might
be that the explanations still contained a lot of text, even if we utilized figures
and signs to replace part of it. Therefore, we should use more graphic elements
instead of text messages.

Another limitation concerned the experiment interface. We underestimated
the effect of the experimental environment interface on the results. One of the
participants mentioned, “I need to not only focus on the actions of the robot
but also the update of explanations. It took me much time to divert my sight
because the explanations part was so far from the robot.” This may also affect
the participants’ incomplete readings. Moreover, some participants claimed that
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we should enlarge the figures of the victims since they couldn’t remember the
correct victim while doing the SA questionnaire.

6.6 Future Work
We identify some possible directions for future work. The design of the explana-
tion was not perfect, neither on the content nor on the interface. More concise
explanations instead of a combination of different types of explanations might
be worthwhile to use. Moreover, more pictorial and well-placed explanations in
the interface might be necessary to help the user to gain more feeling of exercised
control.

We are still interested in what will affect the subjective feeling of MHC.
Some possible factors can be human trust in the robots and the cognitive skills
of the humans. Therefore, more experiments could be designed to investigate
the influence.

Van der Waa et al. [97] raised three components for measuring MHC besides
the subjective feeling. We could also investigate the link between explanations
and the other two components: compliance with ethical guidelines and compli-
ance with moral values. For example, we could use appropriate explanations to
make the humans think the agent is more ethical.

44



7

Conclusion
In this research, we aimed to determine whether explanations could help with
improving the subjective experience of Meaningful Human Control (MHC) in
delayed control situations. If so, we would like to know which kind of explana-
tions can reach the goal. We chose the Search and Rescue task as our scenario
to answer the research question and specified the task settings and workflow.
We asked a firefighter as the expert to conduct our expert study, in which we
chose the proper explanation types from some previously used ones by other
researchers and their combinations. We also improved our experimental design
with our expert’s advice. After the pilot study, we recruited participants to test
our experiment, analyzed the results, and drew the following conclusions.

The role of explanations was overall positive as seen in the evaluations of the
participants. The explanations could help humans on their next value elicitation
and get more SA, especially on the projection level. Moreover, higher SA scores
were associated with a better feeling of MHC. However, there was no clear
evidence that the subjective experience of MHC could be affected by displaying
explanations. Computer game frequency had a significant effect on the subjective
feeling of MHC, as higher frequent gaming might result in a higher cooperative
engagement and more trust in the robots. We also compared different sub-
explanations on their performance, such as understandability and predictability.
It was shown that counterfactual explanations seemed to perform better in
general.
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Ranking Questions for Explanations

Here are 5 explanations that could be provided by the robot, rank these explanations in
order of relevance to the following statements.

Example A: Based on your elicitation before, if I have to decide to rescue A or B on the
picture, I will rescue A.

Example B: If you prioritized younger age preferred over gender, my decision would
have been rescuing B rather than A.

Example C: Based on your elicitation before, if I have to decide to rescue A or B on
the picture, I will rescue A. because you prioritize distance the most, and victim A has
a closer distance than victim B.

Example D: Based on your elicitation before, if I have to decide to rescue A or B on
the picture, I will rescue A. For the most important value – distance, A has a short
distance.

Example E: Based on your elicitation before, if I have to decide to rescue A or B on the
picture, I will rescue A. If you prioritized younger age preferred over gender, my
decision would have been rescuing B rather than A.

Q1: This explanation provides the most new information



Q2: The explanation provides the most reasons about how to make decisions

Q3: I can understand the explanation best

Q4: The explanation shows the best robot's understanding of my moral value
elicitation

Example A

Example B

Example C

Example D

Example E

Example A

Example B

Example C

Example D

Example E

Example A

Example B

Example C

Example D

Example E

Example A

Example B

Example C

Example D
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Q5: This explanation matches my expectations best

Q6: I can predict how the robot will do after arranging it for rescue best

Q7: I can feel the most control about the system with the explanation

Example E

Example A

Example B

Example C

Example D

Example E

Example A

Example B

Example C

Example D

Example E

Example A

Example B

Example C

Example D

Example E
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info

Q0. What is the group number and participant number? (Ask the instructor, eg: 1 2)

First Pause

Q1. How many victims were there in the danger zone?

Q2. Can you point out which place does Marielle  stuck in?

1
2
3
4
5
6
7



Q3. What is Pleun's level of injury?

Q4. What is Marielle's difficulty to rescue?

Q5. What is Franciska's  difficulty to reach?

Q6. Why do you think the robot will rescue Pleun  among them in this situation?

1
2
3
4
5
6

low
middle
high

low
middle
high

low
middle
high

Because of the gender
Because of the age
Because of the level of injury
Because of the difficulty to reach
Because of the difficulty to rescue



Second Pause

Q7. How many seconds does it take for the robot to reach this victim?

Q8. How many seconds does it take for the robot to rescue this victim?

Third Pause

Q9. Who do you think the robot will rescue next?

Q10. Why do you think the robot will rescue
${q://QID11/ChoiceGroup/SelectedChoices}?

None of above (please answer why)

3-5
6-8
9-11
12-14
15-17
18-20

3-5
6-8
9-11
12-14
15-17
18-20

Robbie

Lena

Simone

Because of the gender



Powered by Qualtrics

Q11. How many seconds do you think it will take for the robot to reach
${q://QID11/ChoiceGroup/SelectedChoices}? (answer a number)

Because of the age
Because of the level of injury
Because of the difficulty to reach
Because of the difficulty to rescue

None of above (please answer why)
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info

Q0. What is the group number and participant number? (Ask the instructor, eg: 1 2)

First Pause

Q1. How many victims were there in the danger zone?

Q2. Can you point out which place does Marielle  stuck in?

1
2
3
4
5
6
7



Q3. Could you fill in his level of characteristics?

  

Q4. Could you fill in her level of characteristics?  

 

1
2
3
4
5
6

     low middle high

  

  

  



Q5. Could you fill in her level of characteristics? 

 

Q6. Why do you think the robot will rescue the second victim among them in this
situation?

Second Pause

     low middle high

  

  

  

     low middle high

  

  

  

Because of the gender
Because of the age
Because of the level of injury
Because of the difficulty to reach
Because of the difficulty to rescue

None of above (please answer why)



Q7. How many seconds does it take for the robot to reach this victim?

Q8. How many seconds does it take for the robot to rescue this victim?

Third Pause

Q9. Who do you think the robot will rescue next?

Q10. Why do you think the robot will rescue
${q://QID11/ChoiceGroup/SelectedChoices}?

3-5
6-8
9-11
12-14
15-17
18-20

3-5
6-8
9-11
12-14
15-17
18-20

Robbie

Lena

Simone

Because of the gender
Because of the age
Because of the level of injury
Because of the difficulty to reach
Because of the difficulty to rescue



Powered by Qualtrics

Q11. How many seconds do you think it will take for the robot to reach, rescue and
bring ${q://QID11/ChoiceGroup/SelectedChoices} back? (answer a number)

Q12. What would the robot do if Robbie 's level of injury was high rather than
middle?

Q13. What would the robot do if Lena 's difficulty to rescue was low rather than
high?

Q14. What would the robot do if Simone 's level of injury was high rather than
low?

None of above (please answer why)

Robot will save him first
Robot will save him second
Robot will save him third

Robot will save her first
Robot will save her second
Robot will save her third

Robot will save her first
Robot will save her second
Robot will save her third
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Information - for group 1

Information

What is your number? (ask the instructor)1.

Woman

Man

Non-binary

Prefer not to say

What is your gender?2.

Under 18

18-24

25-34

35-44

45-54

above 55

What is your age?3.



High school diploma or less

Some colledge, no degree

Bachelor's degree

Master's degree

PhD

What is your education level?4.

Several times a year

Several times a month

Several times a week

Daily

What is your experience with computer games?5.



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

Experience

Read following statements and select which option matches your feeling.6.

Strongly
disagree Disagree Neutral Agree

Strongly
agree

It is simple
for me to
keep an
overview of
the whole
task.

I feel
responsible
for the
well-being
of the
victims.

I feel
comfortable
with all
decisions
made in the
task.

The robot's
rescue
choice
matches
what I
thought.

I can feel
control over
the system.



Information - for group 2

Information

What is your number? (ask the instructor)1.

Woman

Man

Non-binary

Prefer not to say

What is your gender?2.

Under 18

18-24

25-34

35-44

45-54

above 55

What is your age?3.



High school diploma or less

Some colledge, no degree

Bachelor's degree

Master's degree

PhD

What is your education level?4.

Several times a year

Several times a month

Several times a week

Daily

What is your experience with computer games?5.



Experience

Read following statements and select which option matches your feeling.6.

Strongly
disagree Disagree Neutral Agree

Strongly
agree

It is simple
for me to
keep an
overview of
the whole
task.

I feel
responsible
for the
well-being
of the
victims.

I feel
comfortable
with all
decisions
made in the
task.

The robot's
rescue
choice
matches
what I
thought.

I can feel
control over
the system.

I feel the
explanation
helped for
my next
value
elicitation.



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

Read following statements and select which sub explanation is 
more consistent with the statements.

7.

Based on
your value
elicitation,
if I have to

decide
rescue

between
victimA and
victimB, I
will rescue

victimA
because of
characterist

icA.

If you
would have
swapped

characterist
icA and

charactertis
cticB, my
decision

would have
been

rescuing
victimB

rather than
victimA.

can be
understood
better.

helps me to
understand
the
causality
better.

shows the
robot's
understandi
ng of my
moral value
elicitation
better.

helps me
predict
what the
robot will
do next
better.



E

Victim Data

69



In
de

x
N

am
e

G
en

de
r

A
ge

D
iffi

cu
lt

y_
to

_
re

ac
h

D
iffi

cu
lt

y_
to

_
re

sc
ue

Lo
ca

ti
on

Le
ve

l_
of

_
in

ju
ry

0
Pl

eu
n

M
al

e
15

m
id

dl
e

m
id

dl
e

12
,1

5
lo

w
1

M
ar

ie
lle

Fe
m

al
e

18
m

id
dl

e
lo

w
22

,1
5

hi
gh

2
Fr

an
ci

sk
a

Fe
m

al
e

60
lo

w
hi

gh
22

,4
lo

w
3

M
an

fr
ed

M
al

e
89

lo
w

m
id

dl
e

11
,1

4
m

id
dl

e
4

A
al

t
M

al
e

67
lo

w
lo

w
22

,2
1

m
id

dl
e

5
Lu

cy
Fe

m
al

e
60

lo
w

hi
gh

25
,6

m
id

dl
e

6
W

ilh
el

m
us

M
al

e
19

m
id

dl
e

m
id

dl
e

22
,1

6
hi

gh
7

Ja
yd

en
M

al
e

23
m

id
dl

e
m

id
dl

e
11

,1
5

hi
gh

8
R

ob
bi

e
M

al
e

82
m

id
dl

e
lo

w
22

,1
5

m
id

dl
e

9
Le

na
Fe

m
al

e
69

hi
gh

hi
gh

23
,2

2
m

id
dl

e
10

Si
m

on
e

Fe
m

al
e

66
hi

gh
lo

w
12

,2
4

lo
w

70



F

Participant Data

71





Bibliography
[1] Allen, C., Smit, I., and Wallach, W. Artificial morality: Top-down,

bottom-up, and hybrid approaches. Ethics and Information Technology 7,
3 (9 2005), 149–155.

[2] Alley, E. E. 26 Problems of search and rescue in disasters. Tech. rep.,
1992.

[3] Amigoni, F., and Schiaffonati, V. Ethics for robots as experimental
technologies: Pairing anticipation with exploration to evaluate the social
impact of robotics. IEEE Robotics & Automation Magazine 25, 1 (2018),
30–36.

[4] Amoroso, D., and Tamburrini, G. Autonomous Weapons Systems and
Meaningful Human Control: Ethical and Legal Issues. Current Robotics
Reports (2020), 1–8.

[5] Article36. Key areas for debate on autonomous weapons systems.

[6] Barb Ruppert. Robots to rescue wounded on battlefield, 11 2010.

[7] Battistuzzi, L., Recchiuto, C. T., and Sgorbissa, A. Ethical con-
cerns in rescue robotics: a scoping review, 2021.

[8] Bellaby, R. W. Can AI Weapons Make Ethical Decisions? Criminal
Justice Ethics 40, 2 (2021), 86–107.

[9] Bogue, R. Disaster relief, and search and rescue robots: the way forward.
Industrial Robot 46, 2 (5 2019), 181–187.

[10] Bolstad, C. A., and Endsley, M. R. Shared Mental Models and
Shared Displays: An Empirical Evaluation of Team Performance. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting
43, 3 (9 1999), 213–217.

[11] Bracken, B., Tobyne, S., Winder, A., Shamsi, N., and Ends-
ley, M. R. Can Situation Awareness Be Measured Physiologically? In
Advances in Neuroergonomics and Cognitive Engineering (Cham, 2021),
H. Ayaz, U. Asgher, and L. Paletta, Eds., Springer International Publish-
ing, pp. 31–38.

[12] Bradshaw, J. M., Feltovich, P., and Johnson, M. Human-Agent
Interaction. Tech. rep., 2002.

[13] Brandão, M. Socially Fair Coverage: The Fairness Problem in Coverage
Planning and a New Anytime-Fair Method. Tech. rep., 2021.

73



[14] Brandão, M., Jirotka, M., Webb, H., and Luff, P. Fair navigation
planning: A resource for characterizing and designing fairness in mobile
robots. Artificial Intelligence 282 (5 2020).

[15] Bulanda, S. Ready!: Training the Search and Rescue Dog. Fox Chapel
Publishing, 2012.

[16] Calvert, S. C., Heikoop, D. D., Mecacci, G., and van Arem, B. A
human centric framework for the analysis of automated driving systems
based on meaningful human control. Theoretical Issues in Ergonomics
Science 21, 4 (7 2020), 478–506.

[17] Carlsen, H., Johansson, L., Wikman-Svahn, P., and Dreborg,
K. H. Co-evolutionary scenarios for creative prototyping of future robot
systems for civil protection. Technological Forecasting and Social Change
84 (5 2014), 93–100.

[18] Casper, J., and Murphy, R. R. Human-robot interactions during
the robot-assisted urban search and rescue response at the World Trade
Center. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 33, 3 (6 2003), 367–385.

[19] Cawthorne, D., and Robbins-van Wynsberghe, A. An Ethical
Framework for the Design, Development, Implementation, and Assessment
of Drones Used in Public Healthcare. Science and Engineering Ethics 26,
5 (10 2020), 2867–2891.

[20] Caylin White. How AI is Changing the Future of Digital Marketing, 11
2021.

[21] Cervantes, J.-A., López, S., Rodríguez, L.-F., Cervantes, S.,
Cervantes, F., and Ramos, F. Artificial Moral Agents: A Survey of
the Current Status. Science and Engineering Ethics 26, 2 (2020), 501–532.

[22] Cohen, P., and Levesque, H. J. Teamwork. Tech. Rep. 4, 1991.

[23] Cohen, P. R., Levesque, H. J., and Smith, I. A. On team formation.
Synthese Library (1997), 87–114.

[24] Conitzer, V., Sinnott-Armstrong, W., Borg, J. S., Deng, Y.,
and Kramer, M. Moral Decision Making Frameworks for Artificial In-
telligence. Tech. rep.

[25] Daniël D. Heikoop, Marjan Hagenzieker, Giulio Mecacci, Fil-
ippo Santoni de Sio, Simeon Calvert, and Bart van Arem. Mean-
ingful Human Control over Automated Driving Systems. Tech. rep., 2018.

[26] De Bruycker, M., Greco, D., Annino, I., Stazi, M. A., de Rug-
giero, N., Triassi, M., de Kettenis, Y. P., and Lechat, M. F.
The 1980 earthquake in southern Italy: rescue of trapped victims and
mortality. Bulletin of the World Health Organization 61, 6 (1983), 1021.

74



[27] de Sio, F. S., and van den Hoven, J. Meaningful human control over
autonomous systems: A philosophical account. Frontiers Robotics AI 5,
FEB (2018).

[28] D.M. McGuigan, B.L. Deam, and D.K. Bull. USAR and the role of
the engineer. NZSEE 2002 Conference (2002).

[29] Durso, F. T., and Gronlund, S. D. Situation awareness. Handbook
of applied cognition (1999), 283–314.

[30] Ekelhof, M. Moving Beyond Semantics on Autonomous Weapons:
Meaningful Human Control in Operation. Global Policy 10, 3 (9 2019),
343–348.

[31] Elzein, N. The demand for contrastive explanations. Philosophical Stud-
ies 176, 5 (2019), 1325–1339.

[32] Endsley, M. R. Situation Awareness in Aircraft Systems: Symposium
Abstract. Proceedings of the Human Factors Society Annual Meeting 32,
2 (10 1988), 96–96.

[33] Endsley, M. R. Measurement of Situation Awareness in Dynamic Sys-
tems. Tech. Rep. 1, 1995.

[34] Endsley, M. R. A systematic review and meta-analysis of direct objec-
tive measures of situation awareness: a comparison of SAGAT and SPAM.
Human factors 63, 1 (2021), 124–150.

[35] Ewoldsen, D. R., Eno, C. A., Okdie, B. M., Velez, J. A.,
Guadagno, R. E., and Decoster, J. Effect of playing violent video
games cooperatively or competitively on subsequent cooperative behav-
ior. Cyberpsychology, Behavior, and Social Networking 15, 5 (5 2012),
277–280.

[36] Fan, X., and Yen, J. Modeling and simulating human teamwork be-
haviors using intelligent agents. Physics of Life Reviews 1, 3 (12 2004),
173–201.

[37] Ficuciello, F., Tamburrini, G., Arezzo, A., Villani, L., and Si-
ciliano, B. Autonomy in surgical robots and its meaningful human con-
trol. Paladyn 10, 1 (2019), 30–43.

[38] Gartner, I. Gartner Survey Shows 37 Percent of Organizations Have
Implemented AI in Some Form, 1 2019.

[39] Ginsberg ML. counterfactuals. Artificial intelligence 30, 1 (1986), 35–79.

[40] Graham-Rowe, D. Cheap drones could replace search-and-rescue heli-
copters. New Scientist 207, 2769 (2010), 20.

75



[41] Greatbatch, I., Gosling, R. J., and Allen, S. Quantifying search
dog effectiveness in a terrestrial search and rescue environment. Wilder-
ness & environmental medicine 26, 3 (2015), 327–334.

[42] Greenstreet Berman. Fire and Rescue Service response times: Fire
Research Series., 2009.

[43] Greitemeyer, T., and Cox, C. There’s no ”I” in team: Effects of
cooperative video games on cooperative behavior. European Journal of
Social Psychology 43, 3 (4 2013), 224–228.

[44] Grogan, S., Montréal, P., and Gamache, M. The use of unmanned
aerial vehicles and drones in search and rescue operations – a survey. Tech.
rep., 2018.

[45] Gunkel, D. J. Mind the gap: responsible robotics and the problem of
responsibility. Ethics and Information Technology 22, 4 (12 2020), 307–
320.

[46] Haije, T. Learning Human Intention for Taskable Agents.

[47] Hara, S., Ikeno, K., Soma, T., and Maehara, T. Feature Attribution
As Feature Selection.

[48] Harbers, M., Bradshaw, J. M., Johnson, M., Feltovich, P., Van
Den Bosch, K., and Meyer, J.-J. Explanation in Human-Agent Team-
work. Tech. rep., 2012.

[49] Harbers, M., de Greeff, J., Kruijff-Korbayová, I., Neerincx,
M. A., and Hindriks, K. V. Exploring the ethical landscape of robot-
assisted search and rescue. In A World with Robots. Springer, 2017, pp. 93–
107.

[50] Heikoop, D. D., Hagenzieker, M., Mecacci, G., Calvert, S., San-
toni De Sio, F., and van Arem, B. Human behaviour with automated
driving systems: a quantitative framework for meaningful human control.
Theoretical Issues in Ergonomics Science 20, 6 (11 2019), 711–730.

[51] Hoffman, R. R., Ford, K. M., Feltovich, A., Woods, D. D., Fel-
tovich, P. J., and Klein, G. A Rose by Any Other Name…Would
Probably Be Given an Acronym. IEEE Intelligent Systems 17, 4 (2002),
72–80.

[52] Horowitz, M. C., and Scharre, P. MEANINGFUL HUMAN CON-
TROL in WEAPON SYSTEMS: A Primer. Tech. rep., 2015.

[53] Inselberg, A. Multidimensional detective. In Proceedings of VIZ’97:
Visualization Conference, Information Visualization Symposium and Par-
allel Rendering Symposium (1997), IEEE, pp. 100–107.

76



[54] Jacovi, A., Swayamdipta, S., Ravfogel, S., Elazar, Y., Choi, Y.,
and Goldberg, Y. Contrastive Explanations for Model Interpretability.

[55] Jiang, J., and Karran, A. A Situation Awareness Perspective on
Human-Agent Collaboration: Tensions and Opportunities.

[56] Jones, P. Urban Search and Rescue Training in Australia. Fire Engineers
Journal 57 (1997), 11–13.

[57] Kaber, D., Kaber, D. B., and Endsley, M. R. Team situation aware-
ness for process control safety and performance Team Situation Awareness
for Process Control Safety and Performance zyx. Tech. rep.

[58] Karaca, Y., Cicek, M., Tatli, O., Sahin, A., Pasli, S., Beser,
M. F., and Turedi, S. The potential use of unmanned aircraft systems
(drones) in mountain search and rescue operations. American Journal of
Emergency Medicine 36, 4 (4 2018), 583–588.

[59] Katzenbach, J. R., and Smith, D. K. The discipline of teams. Harvard
Business Press, 2008.

[60] Koopman, B. O. The theory of search. I. Kinematic bases. Operations
research 4, 3 (1956), 324–346.

[61] Kring, J., and Mouloua, M. Workload, Situation Awareness, and
Teaming Issues for UAV/UCAV Operations Cite this paper Human-Cent
ered Design of Unmanned Aerial Vehicles. Tech. rep., 2001.

[62] Kuorikoski, J., and Ylikoski, P. External representations and scien-
tific understanding. Synthese 192, 12 (2015), 3817–3837.

[63] Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Gershman,
S. J., and Doshi-Velez, F. Human Evaluation of Models Built for
Interpretability. Tech. rep., 2019.

[64] Larasati, R., De Liddo, A., and Motta, E. The Effect of Explanation
Styles on User’s Trust. Tech. rep., 2020.

[65] Lee, Y. H., Jeon, J.-D., and Choi, Y.-C. Air Traffic Controllers’
Situation Awareness and Workload under Dynamic Air Traffic Situations.
Transportation Journal 51, 3 (7 2012), 338–352.

[66] Lenoxt, T., Payne, T., Hahnt, S., Lewist, M., and Sycara, K.
MokSAF: How should we support teamwork in human-agent teams? Tech.
rep., 1999.

[67] Lewis, D. K. Causal Explanation. 214–240.

[68] Lipton, P. Contrastive Explanation. Royal Institute of Philosophy Sup-
plement 27 (3 1990), 247–266.

77



[69] Liu, X., Chi, H.-y., and Xu, X.-d. Seismic emergency organizational
structure and technical support platform for 72-hour gold rescue time.
In Proceedings of International Conference on Information Systems for
Crisis Response and Management (ISCRAM) (2011), IEEE, pp. 542–547.

[70] Liu, Y., and Nejat, G. Robotic urban search and rescue: A survey from
the control perspective, 11 2013.

[71] Lunde, A., and Tellefsen, C. Patient and rescuer safety: Recom-
mendations for dispatch and prioritization of rescue resources based on a
retrospective study of Norwegian avalanche incidents 1996-2017. Scandi-
navian Journal of Trauma, Resuscitation and Emergency Medicine 27, 1
(1 2019).

[72] Lutvica, K., Velagic, J., Kadic, N., Osmic, N., Dzampo, G., and
Muminovic, H. Remote path planning and motion control of mobile
robot within indoor
}maze environment. In 2014 IEEE International Symposium on Intelligent
Control, ISIC
}2014, Juan-les-Pins, France, October 8-10, 2014 (2014), IEEE, pp. 1596–
1601.

[73] Matthias, A. The responsibility gap: Ascribing responsibility for the
actions of learning automata. Ethics and INformation Technology (2004),
175–183.

[74] Mecacci, G., and Santoni de Sio, F. Meaningful human control as
reason-responsiveness: the case of dual-mode vehicles. Ethics and Infor-
mation Technology 22, 2 (6 2020), 103–115.

[75] Miller, T. Explanation in artificial intelligence: Insights from the social
sciences, 2 2019.

[76] Mohseni, S., Zarei, N., and Ragan, E. D. A Multidisciplinary Survey
and Framework for Design and Evaluation of Explainable AI Systems.
ACM Transactions on Interactive Intelligent Systems 11, 3-4 (12 2021),
1–45.

[77] Murphy, R. R. Human-Robot Interaction in Rescue Robotics. Tech.
rep., 2004.

[78] National Search and Rescue Supplement. National Search and
Rescue Plan of the United States. Tech. rep., 2007.

[79] Neerincx, M. A., van der Waa, J., Kaptein, F., and van Digge-
len, J. Using Perceptual and Cognitive Explanations for Enhanced
Human-Agent Team Performance. In Engineering Psychology and Cog-
nitive Ergonomics (Cham, 2018), D. Harris, Ed., Springer International
Publishing, pp. 204–214.

78



[80] Nguyen, H. T., Topolsky, N. G., Tarakanov, D. V., and Mok-
shantsev, A. V. Multicriteria analysis of firefighter routes in buildings
in the case of a fire. The Journal of Defense Modeling and Simulation
(2020), 1548512920948611.

[81] Paivio, A. Mental representations: A dual coding approach. Oxford
University Press, 1990.

[82] Quwaider, M., Alabed, A., and Duwairi, R. The Impact of Video
Games on the Players Behaviors: A Survey. Procedia Computer Science
151 (1 2019), 575–582.

[83] Raitio, R., and Leppävaara, L. Human Rights in Urban Search and
Rescue. Tech. rep., 2016.

[84] Richardson, H. R., and Stone, L. D. Operations analysis during the
underwater search for Scorpions. Naval Research Logistics Quarterly 18
(1971), 141–157.

[85] Rogers, E., Murphy, R., and Burke, J. Nsf/darpa study on human-
robot interaction. IEEE Transactions on Systems, Man and Cybernetics,
special issue on Human-Robot Interaction (2004).

[86] Salas, E. E., and Fiore, S. M. Team cognition: Understanding the
factors that drive process and performance. American Psychological As-
sociation, 2004.

[87] Salmon, P. M., Stanton, N. A., Jenkins, D. P., Walker, G. H.,
Young, M. S., and Aujla, A. LNAI 4562 - What Really Is Going on?
Review, Critique and Extension of Situation Awareness Theory. Tech.
rep., 2007.

[88] Sarter, N. B., and Woods, D. D. Situation awareness: A critical but
ill-defined phenomenon. The International Journal of Aviation Psychology
1, 1 (1991), 45–57.

[89] Schoonderwoerd, T. A., Jorritsma, W., Neerincx, M. A., and
van den Bosch, K. Human-centered XAI: Developing design patterns
for explanations of clinical decision support systems. International Journal
of Human-Computer Studies 154 (10 2021), 102684.

[90] Smith-Renner, A., Fan, R., Birchfield, M., Wu, T., Boyd-
Graber, J., Weld, D. S., and Findlater, L. No explainability without
accountability: An empirical study of explanations and feedback in inter-
active ml. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (2020), pp. 1–13.

[91] Stanton, N. A., Salmon, P. M., Walker, G. H., and Jenkins, D. P.
Is situation awareness all in the mind? Theoretical Issues in Ergonomics
Science 11, 1-2 (1 2010), 29–40.

79



[92] Statheropoulos, M., Agapiou, A., Pallis, G. C., Mikedi, K.,
Karma, S., Vamvakari, J., Dandoulaki, M., Andritsos, F., and
Thomas, C. L. P. Factors that affect rescue time in urban search and
rescue (USAR) operations. Natural Hazards 75, 1 (2015), 57–69.

[93] Sun, X., Zhang, Y., and Chen, J. High-level smart decision making
of a Robot based on ontology in a search and Rescue Scenario. Future
Internet 11, 11 (11 2019).

[94] U.S. Coast Guard Research and Development Center. RE-
VIEW OF SEARCH THEORY: ADVANCES AND APPLICATIONS TO
SEARCH AND RESCUE DECISION SUPPORT. Tech. rep., 2001.

[95] van der Waa, J., and Haije, T. MATRX Software, 2019.

[96] van der Waa, J., Robeer, M., van Diggelen, J., Brinkhuis, M.,
and Neerincx, M. Contrastive Explanations with Local Foil Trees.

[97] van der Waa, J., Verdult, S., van den Bosch, K., van Diggelen,
J., Haije, T., van der Stigchel, B., and Cocu, I. Moral Decision
Making in Human-Agent Teams: Human Control and the Role of Expla-
nations. Frontiers in Robotics and AI 8 (5 2021).

[98] Van Diggelen, J., and Johnson, M. Team design patterns. In HAI
2019 - Proceedings of the 7th International Conference on Human-Agent
Interaction (9 2019), Association for Computing Machinery, Inc, pp. 118–
126.

[99] Vidulich, M., Dominguez, C., Vogel, E., and McMillan, G. Sit-
uation awareness: Papers and annotated bibliography. Tech. rep., 1994.

[100] Walker, D., and Myrick, F. Grounded theory: An exploration of
process and procedure. Qualitative health research 16, 4 (2006), 547–559.

[101] Williams, A., Sebastian, B., and Ben-Tzvi, P. Review and Analysis
of Search, Extraction, Evacuation, and Medical Field Treatment Robots.
Journal of Intelligent and Robotic Systems: Theory and Applications 96,
3-4 (12 2019), 401–418.

[102] Yamauchi, B. PackBot: A Versatile Platform for Military Robotics.
Tech. rep., 2004.

[103] Zeagler, C., Byrne, C., Valentin, G., Freil, L., Kidder, E.,
Crouch, J., Starner, T., and Jackson, M. M. Search and rescue:
dog and handler collaboration through wearable and mobile interfaces. In
Proceedings of the Third International Conference on Animal-Computer
Interaction (2016), pp. 1–9.

80


	Introduction
	Related Work
	Expert Study
	Experimental Study
	Results
	Discussion
	Conclusion
	Ranking questions for Explanation in Expert Study
	SA Questionnaire Before pilot study
	SA Questionnaire
	Information Survey and Control Questionnaire
	Victim Data
	Participant Data
	Bibliography

