TU DELFT

MASTER THESIS

Rule Induction on Multiple Instance
Learning Concepts

Author: Supervisor:
Robin VAN DER WAL Dr. DMJ TAX

A thesis submitted in fulfillment of the requirements
for the degree of Master of Computer Science

m the

Pattern Recognition & Bioinformatics
Pattern Recognition Lab

October 16, 2022

https://www.tudelft.nl/en/
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-bioinformatics/

TU DELFT

Abstract

EEMCS
Pattern Recognition Lab

Master of Computer Science

Rule Induction on Multiple Instance Learning Concepts

by Robin VAN DER WAL

Thesis supervisor: Dr. DMJ Tax
Second reader: Dr. H Wang
Thesis advisor: Prof.Dr.Ir. MJT Reinders

Multiple Instance Learning (MIL) is a type of semi-supervised machine learning
used recently in medical and multi-media fields. In MIL, instead of a single feature
vector, a set of feature vectors has to be classified. Standard MIL algorithms assume
that only some of these vectors are useful for building a classifier. This paper extends
the standard MIL assumption by combining propositional logic and classical MIL clas-
sifiers. Adding propositional logic allows for increased interpretability as it establishes
an if-then relationship between the input data and the output classes. This combina-
tion of logic and classical MIL classifiers will be called Concept Rule Induction (CRI).
CRI is tested on several artificial and real-life bird song data. CRI is shown to work
for these data sets, and the rules produced by propositional logic can be interpreted.

HTTPS://WWW.TUDELFT.NL/EN/
https://www.tudelft.nl/en/eemcs/
https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/intelligent-systems/pattern-recognition-bioinformatics/pattern-recognition-bioinformatics/

ii

Acknowledgements

I want to thank my supervisor Dr. David MJ Tax, for all his advice and patience
during the thesis period. David came up with the data set, and while the thesis took
more effort than expected, in the end, I gladly submitted this thesis. I would also
like to thank the people at my work in the advanced analytics and big data team
at KPMG NL for their encouragement and for bringing structure to my life when I
needed it the most. Lastly, I thank my family and friends for their support over the
last few weird years during the pandemic.

Contents

Abstract

Acknowledgements

List of Figures

1

Introduction
1.1 Multiple Instance Learning Concepts
1.2 Research question

Multiple Instance Learning

2.1 From machine learning to multiple instance learning
2.2 Multiple instance assumptions
2.3 Conceptstorules

Method: Concept Rule Induction

3.1 Concept detection algorithms
3.1.1 Multiple Instance Learning via Embedded Instance Selection .
3.1.2 k-Means clusteringo L
3.1.3 Why these concept detection algorithms

3.2 Rule induction by Prism 000

3.3 Considerations on Concept Rule Induction

Concept detection

4.1 MIL eXclusive OR toy problem
4.2 Conceptoverlap.
4.3 Noisy instances
4.4 Concept imbalance
4.5 Choosing a concept classifier 0oL,

Rule induction

5.1 Concept Rule Induction performance

5.2 MILMNIST rule sets examined
5.2.1 Rule set of pos-MILMNIST
5.2.2 Rule set of patch-MILMNIST

5.3 Limitations and use of rule analysis

Classification of multiple simultaneous bird species

6.1 CRI class performance on bird song
6.2 Rule visualization
6.3 Influence of the clustering parameter

iii

ii

14
14
16
16
17
18

19
19
20
20
22
22

Conclusion and discussion

MILES
A.1 Instance-based feature mapping
A.2 Sparse Support Vector Machine

Prism

Multiple Instance Learning MNIST toy data creation

C.1 A trivial MIL toy problem,
C.2 A positional-based sampling from MNIST: pos-MILMNIST
C.3 Random sampling patches from MNIST: patch-MILMNIST

Parameter optimization for the used concept detectors

D.1 MILES, the regularization parameter

D.2 MILES, the scaling parameter
D.2.1 Setting the scaling per instance
D.2.2 Binary similarity MILES

D.3 k-means, the number of clusters

iv

29

37
37
38

41

45
46
47
47

List of Figures

1.1

3.1

4.1

4.2

4.3

44

4.5

4.6

4.7

An example of a two-dimensional Multiple Instance Problem. There
are 4 bags for both classes. The positively labeled blue bags all have an
instance in the center, the negatively labeled bags do not. The center
here can be seen as the concept, which, when known, can be used to
label new bags.

Schematic of Concept Rule induction for Equation 2.7. B is a MIL
data set. Cpg is the bag concept matrix and rules sets R are split up
perclass. . .o e

The Multiple Instance eXclusive OR data set consisting of fifty positive
and negative bags. On the left: is the entire data set with positive bags
in blue, and negative bags in red. In the middle are five positively
labeled bags. On the right are five negatively labeled bags in different
colors which are negative. L.
MILES produced concepts. The chosen instances have a small green
diamond over them, the larger green circles indicate the decision bound-
ary of the concept classifiers. Note, though two concepts should have
been enough, the MILES classifier still produced five concepts.

An example of the MIL XOR problem where the distance between
the two concepts is reduced. At a lower distance, the concepts start
overlapping.
The performance of the k-means and MILES concept classifiers used in
CRI. . .
A noisy one concept MIL problem. A single concept exists in the mid-
dle of the graph. The size of this concept is increased for different
comparisons for both methods.
The performance of CRI on the noisy data set of Figure 4.5, with using
k-means or MILES as a concept classifier. MILES outperforms k-means
here. This is most likely due to the boundary between the concept and
other instances touches, meaning the clustering algorithm fails to find
meaningful concepts.
Concept imbalance XOR data set. In this example toy data set, the
amount of bags in a single concept for the XOR class varies. So at a
high concept ratio for concept A (left cluster), almost all bags are in
concept A, then slowly more bags appear in concept B (right cluster)
and fewer in concept A. This data set tests whether a concept classifier
can still identify the two concepts. At a ratio of one or two, the data

15

17

set is similar to the trivial MIL problem, which is shown in Appendix C. 18

4.8 The performance of Concept rule induction and MILES on a classifica-
tion problem with concept imbalance as seen in Figure 4.7. For CRI,
two different concept classifiers are used. The blue line uses k-means as
a concept classifier and the red line uses MILES as a concept classifier.
The black line is using base MILES algorithm without any rule induc-
tion. The base MILES algorithm does not perform well. CRI using
MILES misses a few testing points and k-means has a hundred percent
ACCUTACY. « « « v v e e e e et e e e e e e

5.1 The test class accuracies on the pos-MILMNIST data, using 50 training
and testing examples per class.o

5.2 The test class accuracies on the patch-MILMNIST data, using fifty
training and testing examples per class.

5.3 The concepts created for class zero and one, including the average
MILMNIST sample. The x and y positions are the cluster centers from
the sub-sampling. The green and red circles correspond respectively to
positive and negative inclusion in the rule sets created by Prism.

5.4 The rule sets generated for classes one and zero with examples. In this
image, C stands for the class, R stands for the rule number, O stands
for the original image, and S stands for the MIL sampled image. Each
concept has a number and a color. The green color corresponds to the
appearance of a concept, and the red color to the absence of it. The
concepts used in the rules are shown on the left-most scatter plot. In
the S images, the concepts found in the image are shown.

5.5 The generated concepts from using k& = 20 with k-means on patch-
MILMNIST data.

5.6 The rule set generated by Prism for patch-MILMNIST for class zero
and one. The green color indicates that a concept must appear in a bag,
and the red color indicates that a concept cannot appear in a bag. Note
that ones require some vertical concept but without a corner concept.

6.1 The sound data of bird songs, where the sound spectrogram is converted
to sound 'blobs’ using a gaussian filter, from [1].
6.2 Test class performance of all 19 bird classes from the Kaggle data set
using the competition train/test folds [2]. Because there are 19 classes,
the plot is divided into subplots.
6.3 The rules that apply for class one on a certain bag, which contains that
class shown on bounding boxes of instances on the original spectrogram
of 10 seconds of bird song. The rules are sounds that belong together
for a specific bird species. Original data from [2].
6.4 On the left: class co-occurrence of the bird data set. For each class
in the bird data set, the number of times another class occurs in the
same sound fragment, bag, is counted and then divided by the number
of times the original class occurs. On the right: similar, comparing the
rule sets produced by CRI and counting how many times rules overlap
between the class rule sets. It shows that there is no correlation between
co-occurrence and rule overlap

vi

21

22

6.5

C.1

C.2

C.3

C4

C.5

D.1

D.2

D.3

D4

D.5

D.6

On the top, the class test accuracy for different values of k£ used in k-
means CRI. In the middle, the average number of positive and negative
concepts used in the class rule sets for different values of kl. And on the
bottom, the average number of rules per class and the average number
of concepts for rules per class for different values of k. It seems that for

k > 450, the rules become made with fewer and fewer negative concepts.

MNIST examples pictures|3|. Each row corresponds to ten examples
from one of the classes from zero tonine.
The simple hello world MI data set consists of 50 positive and 50 neg-
ative bags. On the left is the entire data set with positive bags in blue,
and negative bags in red. In the middle: 5 different bags in different
colors which are positive. On the right: are 5 different bags in different
colors which are negative. L.
MILES produced concepts. The chosen instances have a small green
circle over them, the larger green circles indicate the decision boundary
of the concept classifiers. Note, though a single concept should have
been enough, the MILES classifier still produced two concepts.

MNIST examples [3]. The transformation from MNIST to a MIL data
set. A. The original image is a handwritten ‘one’. B. The deskewed
image. C. The sub-sampling of the deskewed image. And D. The
leftover instances after the background removal.
The thirteen instances generated by taking twenty random patches from
an MNIST image. On the left, an example image of a handwritten nine
is shown, with the patches plotted on the number. All smaller pictures
on the right are the generated instances from these patches. Only
thirteen instances are generated because the other instances contain an
average gray-scale value below the cut-off point. The cut-off instances
are almost entirely dark squares.

The number of concepts versus the regularization parameter for the
trivial and XOR miles problem.
The number of concepts versus the regularization parameter zoomed
in, with the desired number of concepts for both toy problems. On the
right axis, the MILES performance for both problems can be seen.

The influence of regularization parameter A on A: the number of unique
concepts. And B, the classification accuracy.
The concepts found for A = 0.13 on the MIL XOR problem. Note that
class 1 actually has two concepts here, but only one is found multiple
times. This seems to be due to that the regularization term forces the
solver to give back an undesired solution.
The number of non-zero weights, or in other words concepts, versus the
MILES parameter o on the left. On the right axis is the direct MILES
accuracy. Note that for the XOR problem MILES does not at any point
reaches an accuracy of 1. L.
The influence of MILES parameter ¢ on: A: the number of unique
concepts in the rule set and the number of unique concepts. And B,
the classification accuracy of PRISM.

vii

28

46

D.7 Concepts highlighted in green with their decision boundary for differ-
ent values of the MILES parameter . For ¢ = 0.01 and ¢ = 1.8 no
concepts are found, meaning the MILES optimiser only has zero values
for weights. For ¢ = 1.016 and ¢ = 1.2, the size of the concept clas-
sifiers starts to overlap with the negative Gaussian concept, meaning
classification performance starts plummeting.

D.8 The average value of o as a result of the number of neighbours n by
setting oy, for each instance ¥ individually. Note that the number of
neighbors can only be set to the total amount of instances.

D.9 The influence of the number of neighbors n when setting o on: A: the
number of unique concepts in the rule set and the number of unique
concepts. And B, the classification accuracy.

D.10 The number of concepts versus the regularization parameter A for the
trivial and XOR miles problem. Using the strict similarity for MILES
from Equation D.3. oo

D.11 The influence of regularization parameter A on A: the number of unique
concepts. And B, the classification accuracy. Using the strict similarity
for MILES from Equation D.3.

D.12 The number of concepts versus the MILES parameter ¢ for the trivial
and XOR miles problem. Using the strict similarity for MILES from
Equation D.3.o

D.13 The influence of MILES parameter ¢ on A: the number of unique con-
cepts. And B, the classification accuracy. Using the strict similarity
for MILES from Equation D.3.

D.14 The influence of different random initialization with the same k on
the concepts for the Trivial problems. The value of k is shown in
each subplot. #uc stands for the number of unique concepts used by
PRISM. And acc stands for the accuracy of the PRISM algorithm.
Cluster centers, which also act as concepts, are marked by a black
circle. Notice that the number of unique concepts always equals the
number of clusters for the trivial problem concepts in the right blob.

D.15 The influence of k-means parameter k on: A: the number of unique
concepts in the rule set and the number of unique concepts. And B,
the classification accuracy, which overlaps for both problems here. . . .

viii

o4

95

56

o7

Chapter 1

Introduction

Multiple Instance Learning (MIL) is a form of semi-supervised machine learning [4].
In 2008, Babenko gave a simple example [5] of a MIL problem. Imagine that there
is a set of key chains, each with multiple keys, and the objective is to open a door
with one of the key chains. The goal of a MIL algorithm is to identify the correct key
chains that can open the door. In order to solve this problem, a MIL algorithm has to
find the set of all keys that can open the door, while only knowing which key chains
open the door, and which ones do not

In recent years, MIL algorithms have been created for all kinds of tasks. The
notion of MIL is often employed for medical use cases such as tissue segmentation and
cancer classification [6, 7, 8, 9, 10, 11|. Here, images are split into a set of feature
vectors, in different ways such as segmentation or taking patches. MIL algorithms try
to identify whether an image contains diseased tissues.

MIL algorithms have even been used in the fight against COVID-19 [12, 13, 14].
Furthermore, MIL algorithms can be employed for video and sound data [4, 15, 16, 17].
MIL has been used in this space for example for deep fake detection [18, 19].

These new MIL algorithms work well to find which key chains can open the door,
as listed in the earlier example, however more and more new MIL algorithms make use
of deep learning [10, 11, 12, 16]. Despite deep learning success in the last decade, it is
often criticized for its black box approach [20]. Deep learning is mainly data-driven,
causing unpredictable and incomprehensible results [21, 22]. There has been work on
the understandability of deep networks, but these methods mainly work on image-
based deep neural networks such as convolutional neural networks [23, 24, 25, 26].

One way of improving interpretability in machine learning is to make use of rule
induction [27]. Rule induction has been used for MIL-like data sets before. For
example, in the year 2000, the first basic rule induction algorithm was published
[28, 29] to solve a mutagenicity (cancer-causing molecules) MIL classification problem.
However, while the data was MIL-like, the papers did not use any notions of MIL [4].

Another way to tackle understandability is the use of lazy learning methods, where
new data is compared to a training set. These algorithms are called BayesianKINN and
Citation-kNN and [4, 30]. These algorithms can give back the k closest examples in
the training set. But they do not use any underlying structure (except for a different
metric) for performance. In the key-chain example, these algorithms can give you
back the closest k key-chains to the key-chain that is being examined. However, these
algorithms will not provide the answer to whether an individual key opens a door or
give reasons why.

Instead of relying on another deep learning approach, this paper will go back to
the roots of MIL [4, 5]. In MIL nomenclature there is a well-known notion called the

Chapter 1. Introduction 2

concept. This paper will use this notion in combination with rule induction with the
main goal of interpretability. The next section will introduce the general MIL setup
in combination with concepts.

1.1 Multiple Instance Learning Concepts

An example of a toy multiple instance dataset can be seen in Figure 1.1. In this figure,
there are data points with two features. These data points are called instances in MIL
literature because these points are grouped together in sets, like the key chains. The
groups are shown by the blue and red circles. These groups of instances are called
bags in MIL literature. The bags are labeled and instances individually do not have
a label. In this example, there are two classes, the positive class in blue and the
negative class in red. So there are 4 negative labeled examples and 4 positive labeled
examples. The number of instances per bag can differ, in this case between 2 and 5
instances.

Instances in concept

X X
X Other instances

@ Positively labeled bags

©

w X

Negatively labeled bags

O 0O X 0O

©
X Concept
X X

S WNOZS

X
P

Figure 1.1: An example of a two-dimensional Multiple Instance
Problem. There are 4 bags for both classes. The positively labeled
blue bags all have an instance in the center, the negatively labeled
bags do not. The center here can be seen as the concept, which,
when known, can be used to label new bags.

If the objective is to classify the positive bags from the negative bags in Figure 1.1,
then you could look at what properties these positive bags have in common. These
properties should then not be shared with negative bags. In the figure, the positive
bags are all in the middle. So a possible classifier could check a bag for instance within
a region, which is indicated in green. This is the so-called concept that defines the
positive class and what distinguishes it from the negative class [4]. In the example of
the key chains, the concept would be keys that fit the lock of the door.

The assumption that a single instance is enough to correctly classify a bag is
sometimes not enough. Take the example described in [4], where a traffic controller
wants to automatically detect traffic jams from images from roads. If this problem
is tackled as a MIL problem, the objects in the images are instances and a bag is an
image from a road. It is clear that a car instance would contribute to traffic jams, but
a single car isn’t a traffic jam by itself. So detecting the concept of a car would not
be enough, but detecting this concept multiple times in combination with a threshold
can detect a traffic jam.

Chapter 1. Introduction 3

The summation of the same concept in combination with a threshold is still not
enough to classify all MIL problems. A clear example of the combination of multiple
concepts is given by Foulds and Frank [31]. Here the authors want to classify images
into three categories: desert images, ocean images, and beach images. Images are
segmented into multiple instances. A desert image should contain a sand segment, an
ocean image should contain a water segment and a beach image has to contain both
the water and the sand segment.

The combination of MIL concepts has been used before in MIL algorithms. One
generally well-performing MIL algorithm that does this is called MILES [4, 32]. This
algorithm produces linear weighted combinations of instances to classify MIL data.
This paper will show that there is a toy problem that can not be solved with just
linear combinations.

1.2 Research question

This paper will use a rule induction algorithm on MIL concepts to classify MIL prob-
lems [33]. This new algorithm will be called Concept Rule Induction (CRI). This
paper will look at how to produce concepts and rules from two existing techniques:
MILES and k-means [30, 32]. Then to tune CRI and understand its behavior, several
toy problems are created specifically for testing combined MIL concepts. Next, a real-
life audio data set of birds singing is used to examine CRI, with the goal of extracting
sound fragments of specific bird species from a longer mixed species sound fragment.

RQ 1: Is it possible to extend bag concept classifiers with propositional
logic to create a MIL classifier, with improved interpretability?

To help answer this question, this paper will dive into four sub-questions. Firstly,
the MIL exclusive OR problem is an example of a non-linear combination of concepts,
and solving this problem is a starting point for CRI. This is in combination with
the question of how to tune concept detection algorithms as, without good hyper-
parameters, the concepts cannot be found. After finding a suitable concept detection
algorithm, CRI can be used to produce rules. To interpret these rules, a toy data
set containing obvious rules can be used, here CRI should produce rules that are
contained in the toy data set. Lastly, CRI must also perform on a real-life data set,
to show that it can be used in real-life machine-learning settings. The sub-questions
are listed below explicitly.

RQ 1.1: Can simplified propositional logic in a bag classifier solve the MIL
XOR problem?

RQ 1.2: What is a usable concept classifier and how should it be tuned?

RQ 1.3: Can propositional logic on a concept classifier be used to generate
meaningful rules on data that contains structure?

RQ 1.4: Is it possible to use the concept assumption extension in a real
data set?

To start, the foundation of MIL and rules is described in chapter 2. Next, CRI
itself is proposed with two possible methods for concept detection, MILES and k-
means, and one method for rule induction, Prism, in chapter 3. The two methods for
rule induction are compared on several toy problems in section chapter 4, solving RQ

Chapter 1. Introduction 4

1.1 and RQ 1.2. Then after choosing a concept detection method, two new toy data
sets based on the MNIST data set are used to examine the rules produced by CRI in
chapter 5, solving RQ 1.3. This will give some insight into how to use the produced
rules. Then the information in both chapter 4 and chapter 5 will be combined to use
CRI on bird song real-life data set in chapter 6, solving RQ 1.4. Lastly. the conclusion
on RQ 1 is made in chapter 7, together with a discussion on improvements on CRI.

Chapter 2

Multiple Instance Learning

This section introduces Multiple Instance Learning (MIL) and some additional con-
cepts which are required for the new method of this paper. The first section zooms
in from basic machine learning to MIL. The first section can be skipped if the reader
is already well-versed in MIL. The next section will go over assumptions researchers
make on multi-instance data and how that can be extended. The last section will
discuss propositional logic used in a MIL setting.

2.1 From machine learning to multiple instance learning

Learning can be defined as the process where one increases their problem-solving
ability through experience [34]. In the age of computerized automation, machine
learning has been central in recent years. For this, researchers have been designing
algorithms for decades and many different sub-fields have sprung up [35, 36]. The
basis of machine learning is that experience is provided by training examples

Machine learning can be split into unsupervised and supervised algorithms. Su-
pervised algorithms are the most common set of machine learning algorithms. The
experience that the machine will consume to learn is labeled data. The data consist of
a set of feature vectors, which each describe a single data point in the data set. Each
data point has a label that describes its class. To abstract classification, the goal is
to find a function f which can predict a class y [37] on an object. If an object has d
features and there are () classes, then describe f as

I R — {y1,.y0}- (2.1)

However, labeling costs resources, often requiring experts to look at the data.
There have been attempts to mitigate this, for example crowd-sourcing the effort using
Amazon’s Mechanical Turk [38], but this approach comes with its own problems such
as label accuracy and missing expert feedback [39]. To still use data that is unlabeled,
researchers have developed unsupervised techniques. There are plenty of examples
of unsupervised machine learning. Most clustering algorithms (such as k-means [40])
don’t require any labeled data and use the structure of the data to learn patterns [41].

Between total unsupervised learning and supervised learning there is a field called
semi-supervised learning [42]. In semi-supervised learning, only part of the data is
labeled, and often a large part is not. The labeled data alone is not enough to build
a robust machine learning algorithm but, with the help of assumptions on structure
within the dataset, it can be possible to employ the unlabeled data as well. This is
the domain where Multiple Instance Learning fits.

Chapter 2. Multiple Instance Learning 6

Multiple Instance Learning (MIL) is a form of semi-supervised learning [43]. In
the case of MIL, instead of a single labeled data point, there can be multiple data
points & € R? that have a single class yq- This collection is called a bag B. The
notation for the jth instance in the ith bag in a set of bags is x;; € B;.

2.2 Multiple instance assumptions

In MIL classification only the bags are labeled and no additional label information on
the instances is given. One of the goals of MIL is to be able to classify new bags based
on a training set of other bags. Such an algorithm is called a bag classifier, which
can be written as g(B;) — {y1,..,yQ}. In order to create such a classifier, researchers
made assumptions about MIL data structures [4, 31, 43, 44|. This subsection will
introduce these assumptions and show examples of them.

The first assumption was introduced in 1998 [43], here was assumed that instances
are independent of each other, but there are some instances that do individually
contribute to the label. This assumption is still used as the starting point for papers
recently [45, 46].

From now on, only the two-class classification problem will be considered, where
there is a positive or negative class. A single instance that belongs to a positive class
will make the bag labeled as positive. The two-class notation will simplify notation
and can be extended back to a multi-class problem using a one-against-all approach.
Because instances here are independent, an instance classifier can be used, such as f
from Equation 2.1. This results in

g(B,) _ {1, ElXij S Bi : f(Xij) =1. (2.2)

—1, otherwise.

This assumption was based on the work of Dietterich et all [44]. In this paper,
scientists tried to predict molecule drug activity. A single molecule can have multiple
physical atom orientations based on its energy level. A different physical orientation
results in different molecular properties. As a test, the authors tried to predict if a
molecule would smell musky, based on all its physical configurations. As long a single
configuration would smell musky, the molecule, as a bag, would be labeled positive.

As discussed in the introduction, later MIL papers used the notion of MIL con-
cepts. If a single concept ¢ exists that can separate the positive and negative class of
a MIL problem, then the entire feature space R? can be divided into instances that
belong to the concept and those which do not.

i) = {1’ e (23)
—1, Xij ¢ C.

In the example of the musky molecules, a concept would be an example of a physical

molecule configuration that smells musky.

Equation 2.3 is enough to describe the key chain example from the introduction,
but slightly more notation is needed to formalize the other examples. Let’s continue
with the traffic jam example. Here, a single car in the image was not enough to count
as a traffic jam. Let f.,; be an instance classifier for cars, and add a threshold 6 which
indicates enough cars for a traffic jam. Then construct a MIL classifier for traffic jams

Chapter 2. Multiple Instance Learning 7

E B ?car :I’.Z > 0,

—1, otherwise,

with B; the traffic image as a MIL bag. This MIL bag classifier g(B;) allows for
the counting of concepts. Now, to include examples of deserts, oceans, and beaches
from the introduction, it is needed to have more than a single concept [47]. Let C be
the collection of concepts for a specific class and let f. be the instance classifier for
concept ¢, then Equation 2.4 can be extended as such:

1, VeeC: B felxis) > HC,
o(By= b TCEC en Il (25)
—1, otherwise.

In the case of the beach class, the set of concepts would be Cocean = {Cwater; Csand }-
With this bag classifier possible to move on to the use of rule induction for MIL
classification on concepts.

2.3 Concepts to rules

This section will go over the process to create if-then rules based on the extracted
concepts. To help with notation, this section will also introduce propositional logic.
Propositional logic is a set of formal definitions of axioms, where the goal is to evaluate
the truthfulness of specific statements [33].

With Equation 2.5, beaches can be classified with the two concept classifiers fgang
and fyater- However, the other two classes of ocean and desert cannot be classified
directly with the same concept classifiers. For example, take the ocean class. It is
possible to take the water classifier fyater, but an image of a beach would still classify
as an ocean because it contains the water concept. Here it would be better to use a
negative classifier for sand, f-gand = —fsand, and combine it with the water classifier.
Then introduce the negation operator (—) and the and operator (A) to combine these
concepts into propositional formulas.

A propositional formula for ocean could be rocean = fwater A —fsand, Which act as
a rule. This rule can then be tested against all instances of a bag B; and check for
both concepts if there is an instance x;; for which fyaser(;;) = 1 and no instance
x;, for which funa(x;,) = 1. If this rule is true for bag B;, then the bag B; can be
classified as a picture containing an ocean.

If the MIL problem needs more than a single rule made out of just concept clas-
sifiers, negation operators, and and operators, then these rules can be combined with
the or operator V. Let the set of all rules for a specific class y € @ a rule set be
defined as R, and evaluate a bag B; by writing r(B;), then predict and test for class
y as

R, —y < 3r,e Ry :ry(B;) = True. (2.6)

This can be brought back to the bag classifier g, for class y as follows:

1, 3Jrre Ry, : rp(B;) = True,
gy(Bi) = { 4 (27)

—1, otherwise.

While Equation 2.5 can be inverted for a simple case such as the non-beach clas-
sifier described above, it is not enough in case multiple concepts combinations such
as the eXclusive OR (XOR) problem. In the XOR problem, there are two concepts A

Chapter 2. Multiple Instance Learning 8

and B, and the positive class is an XOR operator applied to these two concepts. So
the rule set would consist of two rules:

ry: fA/\ﬁfB7
R = 2.8
XOR {Tg : _'fA A fB- ()

With the extension Equation 2.7 it is possible to create a bag classifier that can
handle the XOR problem of Equation 2.8. This method of combining concept clas-
sifiers with rule induction will be called Concept rule Induction and is described in
chapter 3.

Chapter 3

Method: Concept Rule Induction

This section will describe the proposed MIL classifier. This new method combines
a concept finder algorithm with a rule induction algorithm to create a bag classifier.
The method will be called Concept Rule Induction (CRI). Because CRI combines two
existing methods, this section will go over both the concept finder algorithm and the
rule inductions methods. After that, this section will also list the assumptions made
for the classification approach.

CRI will create a bag classifier using propositional logic described in section 2.3,
by first creating a bag-level feature based on concepts. This first part aims to find
a set of concepts C which can help discriminate between two classes and then check
for each bag if these concepts occur. This is similar to Equation 2.5, but the concept
classifier f. will be used on the entire bag B;. These concept classifiers f. will be
binary, with a 1 indicating the presence of a concept ¢ and a 0 indicating the absence
of ¢. If a concept detection method finds N, concepts, then for each bag, a binary
vector can be created as follows:

fe(Bi) = [f1(Bi), f2(Bi), - - - fn.(Bi)] - (3.1)

Starting from a MIL training data set B, the concepts can be extracted using
an existing MIL algorithm or a clustering algorithm. The data set B can then be
converted to a bag-level feature data set, which will be named the bag concept matrix
Cp. If there are Np training bags and there are N concepts found, then Cp looks
like:

fe(By) fi(B1) ... fno(By)
Cp = : = : : : (32)
fC(BNB) fl (BNB) fNC (BNB)

The bag concept matrix Cp represents the MIL training data B as a more regular
machine learning problem. Each row can be seen as a binary bag-level feature factor
and has a class label. The bag concept matrix can then be fed into rule induction
algorithms [48]. The rule inducting will extract the rule sets R per class by using a
one-versus-all approach. This approach is taken so that even in a multi-class setting,
the more straightforward situation of a positive and negative class can be used. CRI
is visualized in Figure 3.1.

Now that the outline is defined, the rest of this chapter will examine concept
classifiers and then the rule induction method used in this paper. In the end, this
section will discuss some assumptions made that have been made for the use of CRI
and how both components of CRI will be examined.

Chapter 3. Method: Concept Rule Induction 10

Relass 1

h 4

- Concept - Rule
Detection Induction
Algorithm Algorithm

Reclass q

_ Class Rule sets /

Figure 3.1: Schematic of Concept Rule induction for
Equation 2.7. B is a MIL data set. Cp is the bag concept matrix
and rules sets R are split up per class.

3.1 Concept detection algorithms

There are multiple concept-based algorithms in the multiple instance domain [4]. This
paper will look at two candidates: a common MIL algorithm called MILES and k-
means. The MILES algorithm is a staple tool to compare new MIL algorithms against
[4], and it has a built-in feature that can be used as a concept classifier. The k-means
approach, on the other hand, is a simple way to do clustering on a training data set to
identify clusters in the training space, which might be useful as concepts. This section
will show how to construct the bag concept matrix Cpg from each method and their
differences.

3.1.1 Multiple Instance Learning via Embedded Instance Selection

One of the most successful MIL concept-based algorithms is MILES [4]. MILES stands
for Multiple Instance Learning via Embedded Instance Selection and was devised in
2006 by Y. Chen et all. [32]. This section will describe the key details of MILES, but
additional information on MILES and how it was used in this paper can be found in
Appendix A.

As its name implies, MILES chooses instances that act as potential concepts by
embedding MIL bag data using the instance data. The embedding is done by using
most-likely-cause estimator from the diverse density framework [49]. This estimator
s(x!, B;) is an indicator how far a training instance ! is from a bag B;. The most-
likely-cause estimator is defined as

112
s(x!, B;) = maxexp <||:z:”2:c||>7 (3.3)
J o
where o is the scaling factor that depends on the training data distribution. This
embedding is calculated for all bags and all their instances in the training data set.
After which a sparse linear classifier is used to select instances which act as concepts
[50].
The classification g; on a bag B; is defined as:

N
§; = sign (Z wys(xy, Bi) + b*> , (3.4)

=1

Chapter 3. Method: Concept Rule Induction 11

where V] is the number of instances in the training set B, s(x;, B;) the embedding of
bag B; on instance x; from the training set B and w; together with b* are the learned
weights of the sparse linear classifier. In Appendix A, there is an explanation on how
to transform Equation 3.4 to a linear program that acts as sparse linear classifier.
The sparse linear classifier introduces an additional parameter. This parameter is
called the regularisation parameter A, and during optimization, it forces the number
of non-zero weights down.

The learned weights can be used to create a concept classifier like that of Equa-
tion 3.1. The linear classifier is sparse, so most of the learned weights w; should be
zero. Select the training instances x. for which the corresponding weight is non-zero
|wk| > 0 to act as the center point of a concept. The most-likely-cause uses a pa-
rameter o as Gaussian weighting on the training instances. This parameter o can be
compared to the distance between the non-zero instances . and the instances from
the new bag B;. A single concept classifier f. is constructed in the following formula:

1 HwijEBi:Hmc—min<O‘, (3 5)
0 otherwise. '

f c (Bz) = {

All the non-zero learned weights from Equation 3.4 are used in Equation 3.5 to

create the bag concept matrix Cpg from Equation 3.2. Each row in this matrix is

a different bag B; € B from the training data. Each column represents a different

concept ¢ from |w}| > 0. And the individual matrix entries are the result of using the
concept classifier f. on bag B;.

3.1.2 k-Means clustering

Clustering algorithms group together clusters of data points. In MIL, bags contain
multiple instances, but these can be anywhere in the feature space. Using a clustering
algorithm on just the instances will allow for instances in a bag to be assigned to
multiple clusters. As a result, a cluster of instances could act as a concept. Each bag
can then get a binary indicator for which clusters it contains, making it possible to
create the bag concept matrix Cg from Equation 3.2. Plenty of clustering algorithms
exist, but to test CRI, a simple clustering algorithm would be adequate, such as
k-means [51].

k-Means is a well-known and relatively old algorithm. The name was first used
in a paper from 1956 [40]. k-Means initializes by taking k random cluster points in
the feature space. Then for each training point in the space, the distance between it
and the k cluster points is calculated, and each training point is assigned to its closest
cluster. After this step, the mean position of each set of data points per cluster point
is calculated, and this mean position is set to be the new cluster point. Repeat the
previous steps until no new assignments of clusters are made. The data points are
then divided into k clusters with k means.

To use k-means as a concept detector for a bag B;, let the k means act as concepts.
Next, check for each instance x;; € B;, which of the k¥ mean clusters concept is the
closest, then that mean cluster concept is present in bag B,;. Because a bag B;
contains multiple instances, it can contain multiple k-means cluster concepts. The
result is the bag concept matrix Cpg from Equation 3.2, which can then be fed to a
rule induction algorithm.

Chapter 3. Method: Concept Rule Induction 12

3.1.3 Why these concept detection algorithms

Both MILES and k-means are suitable candidates for concept detection in CRI. Both
methods can produce the bag concept matrix C'g needed for the rule induction step.
MILES itself is a staple MIL algorithm with great performance [4]. The instance
embedding step from Equation 3.3 in combination with the sparse linear classifier
used for Equation 3.4 creates a number of optimized concepts depending on the reg-
ularization parameter. And for k-means, the number of concepts is equal to the k
parameter. This means that both methods can be fined tuned on toy problems that
set the number of expected concepts. The result of CRI can then be examined by
these toy problems, which is why MILES and k-means were chosen.

The difference between MILES and k-means is that they construct concepts dif-
ferently. MILES uses a bag embedding step and relies more on the distances between
these bags. k-Means looks only at the instance data, without taking any of the proper-
ties of MIL into account. Both methods are expected to perform differently depending
on the input data, and examing where each method performs better will be the goal
of chapter 4. For now, let’s define the second part of CRI.

3.2 Rule induction by Prism

There are multiple rule induction algorithms that are suitable to process Cp [52].
However, to prove the validity of CRI, the most basic rule induction algorithm will be
used. Depending on the use case, a more sophisticated rule induction method could
be used in the future. The algorithm that will be used in this paper is the Prism
algorithm [53]. This section will give a brief outline of the algorithm, but a more
extended version can be found in Appendix B.

The Prism algorithm is a rule induction algorithm that can directly induce classi-
fication rules based on Cp. It does this by selecting a combination of attribute-value
pairs which maximize the coverage of the desired outcome class. This is also called
a sequential covering algorithm. The attribute-value pairs in Cp are f.(x., B) and
its negation —f.(x., Bt). In each step, Prism takes the best-ranking attribute-value
pair and adds it to a rule. The rank of an attribute-value pair is determined by how
many rows in C'g of the target class it covers and how many rows of other classes it
excludes. If adding additional attribute-value pairs does not increase the coverage on
the target class anymore, it will add the rule to the rule set R. Any rows from Cpg
which are covered by the rule are removed. This is done until Cg no longer contains
any rows which belong to the target class.

While this algorithm is simple in nature, it can easily be extended with different
selecting and stopping criteria. For example, the adding of the attribute value pairs
could be stopped earlier if the coverage on Cp does not increase significantly. This
would help with overfitting the training set. There are also multiple attempts to fine-
tune Prism rule induction on specific use cases over the years. Thus, if the base version
of Prism works, then it can be improved on particular cases in the future [52, 54, 55].

3.3 Considerations on Concept Rule Induction
For CRI several assumptions are made:

1. Concepts are separable. Concepts are assumed to be separable, so the classifica-
tion can identify the different concepts

Chapter 3. Method: Concept Rule Induction 13

2. Rules are non-probablistic. It is assumed that a combination of concepts can
uniquely define a class.

When using CRI on real-life data, it should be checked whether these two assump-
tions hold. If not, one could use a different concept detector or rule induction method,
but this is out of the scope of this paper. A consequence of these two assumptions is
that concepts have hard cut-off points. If concepts overlap in feature/space, they are
non-separable. If concepts are non-separable, CRI will not be able to find a concise
rule set and its performance will deteriorate.

Now that both components are defined, they will be examined on how to configure
them. In chapter 4, both MILES and k-means will be discussed on a simple toy
problem to see how they perform and what the pros and cons of each method are. To
follow that up, in chapter 5, the application of Prism on the bag concept matrix will
be examined on how the rules can be interpreted and used in combination with the
concepts. Then with information gained from those two sections, the application of
CRI on a real-life data set will be tested in chapter 6.

14

Chapter 4

Concept detection

To answer whether CRI can solve the MIL XOR problem, the concept classifiers
MILES and k-means can be used with default settings. To decide which concept
classifier is best, the methods have to be tuned well, which is discussed in Appendix D.
For MILES, the scaling factor o depends on the size of the expected concepts, and
the regularization parameter A should be set so that the optimizer can still find a
solution. For k-means, k£ should be set to the number of expected concepts, and if
not known, k should be increased till the performance of CRI plateaus. This section
shows that CRI can solve the XOR problem, and then tackles three more difficult
XOR-like problems to compare both concept detection algorithms.

4.1 MIL eXclusive OR toy problem

The MIL XOR toy problem is set up in the following way: there are two clusters,
which are called concept A and concept B. The property of the positive class is that
bags from it only contain instances in concept A or in concept B, but a positive bag
never contains instances that appear in both concepts. The clusters were generated
by two multi-variate distributions. The negatively labeled bags always have at least
one instance in both concepts. An example of this data set is in Figure 4.1. This
subsection will only examine MILES as a concept detector to show that CRI can

solve the XOR problem because it’s clear that k-means can find the correct cluster if
k=2

MI XOR data set+

Instances of 5 positive bags Instances of 5 negative bags

0.8

1.2 1

Kk |
x|
. 1 1.5 2 1 1.5 2
Feature 1 Feature 1 Feature 1

Feature 2
Feature 2

Figure 4.1: The Multiple Instance eXclusive OR data set
consisting of fifty positive and negative bags. On the left: is the
entire data set with positive bags in blue, and negative bags in red.
In the middle are five positively labeled bags. On the right are five
negatively labeled bags in different colors which are negative.

The concepts, or instances with non-zero weight from MILES, can be seen in Fig-
ure 4.2. These concepts were generated by using ¢ = 0.5 and A = 0.1. More concepts
are found that are needed, but further increasing the regularization parameter A would
not generate a valid solution with the linear program. The Prism algorithm can re-
duce the number of concepts needed for the final bag classifier. After running Prism

Chapter 4. Concept detection 15

the following rule set is retrieved:

T3
Rxor = ’
T : —|f1.

At first glance, Rxor seems sufficient to classify the positive class. r1 contains —f3
which is a concept classification function around concept A and ry contains —fy,
which comes from concept B. Thus, Rxor classifies as = f1 V = f3. However, RxoR is
different than the one defined in Equation 2.8 because it does not take the combination
of instances.

Concept visualization of class 1.

Feature 2

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Feature 1

Figure 4.2: MILES produced concepts. The chosen instances
have a small green diamond over them, the larger green circles
indicate the decision boundary of the concept classifiers. Note,

though two concepts should have been enough, the MILES classifier
still produced five concepts.

The case of the difference between two rule sets comes from the data supplied to
the Prism algorithm. In Equation 2.8, there is a hidden extra assumption, namely
that bags that contain instances outside these concepts are automatically excluded.
Another way to look at it is that Equation 2.8 invalidates the trivial solution of a bag
that has neither concept. This could for example be a bag with no instances or a bag
with noisy instances outside the defined concepts.

In order to ignore the trivial solution, it’s handy to add an additional bag By to
the bag concept matrix:

fi(B1) ... fng(B1)
e T . |
T n (Bng) -+ fNe (Bng) -
0 0 0

and set the label of By to the negative class. The Prism algorithm should now exclude
the zero solution because a rule set that excludes the zero solution is more precise. If
the Prism algorithm is then run again on the bag concept matrix, the following rule

set is generated:
1 fiAf3
Rxor = { ’

ro 2 f1 A f3,

Chapter 4. Concept detection 16

which is equal to Equation 2.8 if you take into account that f; refers to concept A
and f3 refers to concept B.

4.2 Concept overlap

By decreasing the distance of concepts in the MIL XOR problem, the difficulty of
finding the correct concepts increases. An example is shown in Figure 4.3. Because
of the overlapping instances from both classes, it becomes very tough for the concept
classifiers to find the actual concepts as soon as the concepts start connecting. It
could even be said that the XOR behavior is not present anymore if the concepts
completely overlap. Note that the accuracy starts at 0.5 because when the cluster
completely overlaps, both CRI methods will default to a single class, which is fifty
percent of the data.

XOR problem with different distances from cluster centers.

Concept distance: Concept dist: 5 C pt distance: Concept distance:
3 2 1 0.5
i AT, B R o gk
R A ".:yfq:,,} ot :ﬁ‘.‘.
i S i R PR
Rt T Rt R Ui

Figure 4.3: An example of the MIL XOR problem where the
distance between the two concepts is reduced. At a lower distance,
the concepts start overlapping.

The performance of both concept classifiers in CRI is shown in Figure 4.4. At
a distance of 2, the concepts are completely disconnected from each other. MILES
outperforms k-means until that point. This is because MILES uses a sparse weighted
linear classifier, which can find the concepts before they are totally separated. This
is because the distribution of both concepts differs enough at around a distance of 1,
which is equal to ¢ during training. After the concepts are separated, k-means will
provide a better split between the two concepts. This allows the rule induction step
to perform better.

Effect of di in XOR problem on k and MILES d
T T T T T

P Ny " ~

kmeans accuracy
MILES accuracy

Accuracy
o
®
T

o
o
T

[I I I I I
1 1.5 2 25 3 3.5 4
Distance between concept centers

o

IS
o
o
2l

Figure 4.4: The performance of the k-means and MILES concept
classifiers used in CRI.

4.3 Noisy instances

To test how both concept detection methods work in the presence of noise, this toy
example will add noise. Noisy instances are instances that don’t contribute to the
label. In the toy problem, there is a single cluster, which does not contain any noisy
instances, meaning that there is a clear separation between the two classes. The toy
problem is shown in Figure 4.5. The concept size will be increased, meaning the

Chapter 4. Concept detection 17

surface area of the noise will be reduced. Because the concept here is in direct contact
with the noise both methods will perform worse in identifying the concept.

Single concept with background, varying conceptsize

Concept size: Concept size: Concept size: Concept size:
0.6

LI TR

- ..'-&qh

N O)
‘g '\"-715'5 t.--a,. - '\"_'

Figure 4.5: A noisy one concept MIL problem. A single concept
exists in the middle of the graph. The size of this concept is
increased for different comparisons for both methods.

The performance is shown in Figure 4.6. It seems that the size of the concept here
does not matter that much as the performance of both methods seems reasonably
stable. It seems that for both methods the performance drops a bit when the concept
reaches size 1. At this point, the noise has shrunken to a very small area. For k-
means, this means that the clusters will be put in the corners because there is more
data there. And MILES cannot find a good solution to the linear program at this
point. Both methods perform better than a random method, which would have an
accuracy of 0.5.

14 Effect of concept size versus background.
. T T T T

1 e ﬁ\/ VTNV AN N T AN

Accuracy

0.8 —

0.7 - -
kmeans accuracy
0.6 1 L L 1 | 1 L L
10710 10 108 107 10® 10° 10 10% 102 107! 10
Size of concept radius

Figure 4.6: The performance of CRI on the noisy data set of
Figure 4.5, with using k-means or MILES as a concept classifier.
MILES outperforms k-means here. This is most likely due to the
boundary between the concept and other instances touches, meaning
the clustering algorithm fails to find meaningful concepts.

It is too hard for k-means to find a good separation between the cluster and the
noise because there are no separable clusters. At higher concept sizes the instances of
the negative bags start to form clusters in the corners, but this is still not enough for
CRI with k-means to perform well. This means that if there are more noisy instances,
MILES will outperform k-means as a concept classifier.

4.4 Concept imbalance

Finally, the ratio of the number of instances in each concept is changed in the XOR
problem, as can be seen in Figure 4.7. The performance of CRI can be seen in
Figure 4.8. The base MILES algorithm does not perform well for the normal MIL
XOR problem, which is expected because a linear combination of instances cannot
represent XOR. The performance of all concept detectors is perfect at a ratio of zero
and one for concept A. This is because at that point the XOR problem relaxes into
the trivial MIL toy problem, explained in Appendix C.

Chapter 4. Concept detection 18

Ratio of Concept A: Ratio of Concept A: Ratio of Concept A: Ratio of Concept A: Ratio of Concept A:
1 0.75 0.5 0.25 0

3

! %
':-.‘- .?
@
%5 ¥

R

Figure 4.7: Concept imbalance XOR data set. In this example
toy data set, the amount of bags in a single concept for the XOR
class varies. So at a high concept ratio for concept A (left cluster),
almost all bags are in concept A, then slowly more bags appear in
concept B (right cluster) and fewer in concept A. This data set tests
whether a concept classifier can still identify the two concepts. At a
ratio of one or two, the data set is similar to the trivial MIL problem,
which is shown in Appendix C.

Effect of concept imbalance in XOR.
T T T

AN NN P Y N e VA e \\/*” -

o
o
T
L

Accuracy
o
3
T
I

=4
[
T

kmeans accuracy
MILES accuracy | |
base MILES

e
3
T

I I I I I
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of concept A

I
IS
o

Figure 4.8: The performance of Concept rule induction and
MILES on a classification problem with concept imbalance as seen in
Figure 4.7. For CRI, two different concept classifiers are used. The
blue line uses k-means as a concept classifier and the red line uses
MILES as a concept classifier. The black line is using base MILES
algorithm without any rule induction. The base MILES algorithm
does not perform well. CRI using MILES misses a few testing points
and k-means has a hundred percent accuracy.

While MILES as a concept classifier in CRI works almost perfectly here, k-means
does beat MILES. The concepts are easily separated and while MILES does try to
find some concepts it is not perfect. Other forms of MILES are further explored in
Appendix D, but from that, it seems that the base MILES still works best in CRI.

4.5 Choosing a concept classifier

MILES performs better than k-means when the concepts cannot be represented in
separable clusters or if the data set contains many noisy instances. In the next sec-
tions, chapter 5 and chapter 6, k-means will be used as the concept detector. This is
because the data in those sections contain separable clusters and the amount of noise
is relatively low. If CRI would be used for data that contains overlapping concepts or
clusters then it would be better to use MILES instead.

19

Chapter 5

Rule induction

An advantage of CRI is that the algorithm outputs a list of rules based on concepts.
These rules are if-then statements, and it is possible to dive into the "if" part of these
statements. For example, when an image number dataset is used, the "if" part of the
rules should correspond to identifiable parts of numbers. This section will explore the
output of CRI by using two different MIL toy data sets and also show that Prism can
produce rules as expected.

This chapter will use the MNIST handwritten digit data set and transform this
into two toy MIL data sets [3]. The chapter is then divided into two parts. In the first
part, the performance of CRI is examined on the two toy data sets. The second part
examines the rules generated for both toy problems. For all experiments, k-means is
used as a concept detection tool and Prism for rule induction.

5.1 Concept Rule Induction performance

The standard MNIST handwritten digit dataset will be modified to a MIL dataset [3].
The data set modification will be done in two different ways. The transformations are
discussed briefly in this section but the details are given in Appendix C.

The first transformation is based on position. Each image is divided into a seven-
by-seven grid, and the average gray-scale value is measured for each four-by-four cell.
Cells with a low average gray-scale values are thrown away with the idea that they
are part of the dark background and do not hold interesting visual information. The
features of each instance are the positional coordinates of the leftover cells. This
dataset is called pos-MILMNIST.

The second transformation is based on random patch sampling. From each image,
a set of random eight-by-eight patches is taken. These samples represent parts of the
original image, and each instance corresponds to the gray-scale values of each patch.
Again, dark patches are thrown away, and the leftover patches make up the instance
of the bag. This dataset is called patch-MILMNIST.

Different values of k are tried five times to measure the performance due to the ran-
dom initialization of k-means. And because Prism works by generating rules in a one-
against-all fashion, the performance metric will be class accuracy. For each class, fifty
examples are used for the train and test set. The class accuracy for pos-MILMNIST
for different values of k is shown in Figure 5.1, and that of patch-MILMNIST is shown
in Figure 5.2.

For pos-MILMNIST, identifying class zero against the rest is significantly easier.
Around k = 16, the testing accuracy stabilizes.

For patch-MILMNIST, the improvement in accuracy plateaus earlier at k = 12.
Again, class zero seems to outperform the other classes significantly. In both cases, the

Chapter 5. Rule induction 20

Value of k versus class accuracy.

Figure 5.1: The test class accuracies on the pos-MILMNIST
data, using 50 training and testing examples per class.

Value of k versus class accuracy.
T T T

{

Class accuracy
o o
[+ [+
T T

I
~
T

o
[N)
T

Figure 5.2: The test class accuracies on the patch-MILMNIST
data, using fifty training and testing examples per class.

average class accuracy holds at around 0.8. This performance is not as good as recent
algorithms for MNIST, which can achieve an accuracy above 0.99 [56]. However, this
section aims to see if the rules produced by CRI output conditions correspond to the
expected structure of the MNIST dataset so accuracy is not the main focus.

5.2 MILMNIST rule sets examined

The data used in this section will be different than that of the previous sub-section.
Each class added to the data set introduces more rules generated by Prism to differ-
entiate between all numbers. To keep the number of rules low, only classes zero, and
one will be included in the training and testing set here. To add to that, these classes
have apparent visual differences, making them good candidates for examining the IF
conditions of these rules.

5.2.1 Rule set of pos-MILMNIST

For pos-MILMNIST, the value of k is set to six. In Figure 5.3, it can be seen that
this is enough to generate simple rules. Six concepts are found due to the value of k,
which lies on the average positional values of the zero class. The rule set of the zero
class only needs a positive concept to the right, while the rule set of the one class
requires a negative concept.

Chapter 5. Rule induction 21

Average image, class 0 B All concepts 7 All used concepts 7 Positive 7 gati

6 ® 6 6 6

5 @ @ 5 @ 5 @ 5

4 P 4 41 4

3) 3 3 3

2 ® 2 2 2

1 1 1 1

12 3 4 5 6 7 12 3 4 5 6 7 12 3 45 6 7 12 3 4 5 6 7
Average image, class 1 ; All concepts 7 All used 7 Pe ; o

6 ® 6 6 6

5 @ @ 5 e 5 5 @

4 P 4 4 4

3) 3 3 3

2 ® 2 @ 2 @ 2

1 1 1 1

123 456 7 123 4567 123 4567 123 4567

Figure 5.3: The concepts created for class zero and one, including
the average MILMNIST sample. The = and y positions are the
cluster centers from the sub-sampling. The green and red circles

correspond respectively to positive and negative inclusion in the rule

sets created by Prism.

It is possible to further zoom in on these rule sets. Each class has a rule set
containing a single rule. See Figure 5.4 for the rules and some training examples
that apply to the rule. The rule for class one indicates that there must be a white
cell at the bottom middle of the original image, but there must not be a white cell
simultaneously on the right top of the picture. This rule makes sense because the
digit one can be written with a top line from the left before completing the vertical
line of the digit one itself.

7 C:0, R:1
0-1 S-1 0-2 S-2
6
5 5 2 T
6 5
4
3 2 1
2
1
12 3 45 67
7 C:1,R:i1
0-3 S-3 0-4 S-4
6
5 ®
4
3
5 1
1

12 3 4567

Figure 5.4: The rule sets generated for classes one and zero with
examples. In this image, C stands for the class, R stands for the rule
number, O stands for the original image, and S stands for the MIL
sampled image. Each concept has a number and a color. The green
color corresponds to the appearance of a concept, and the red color
to the absence of it. The concepts used in the rules are shown on the
left-most scatter plot. In the S images, the concepts found in the
image are shown.

Thus for pos-MILMNIST, the pipeline can find rules corresponding to the class
zero and one behavior.

Chapter 5. Rule induction 22

5.2.2 Rule set of patch-MILMNIST

For patch-MILMNIST, the value of £ = 20 was used. The cluster concepts can be
visualized as a small image, which can be seen in Figure 5.5. These cluster centers
seem to correspond to vertical lines and circle parts, which makes sense because most
ones are straight lines in the MNIST data, and a zero is a circle.

1 2*4.5 6 7 8 9 10
AIEZIECFEEIL =
11 12 13 14 15 16r17. 18 19 20
L RSN RIR- Ry N AR

Figure 5.5: The generated concepts from using k = 20 with
k-means on patch-MILMNIST data.

The rule sets for both classes can be seen in Figure 5.6. For class zero, there are
four different rules, each rule only has positive concepts, and there are all arches of
circles. The rule set of class one does contain negative concepts. Bags containing any
concept that indicates the negative concepts exclude a circle-like part. The positive
concepts must appear in a bag; in this case, the positive concepts are all vertical lines.

Rule set for class 1.
Rule set for class 0.
R:1,C:6 R:1,C:9
R:1,C:7

R:2,C: 11 R:2,C:6 R:2,C:7

R:3,C:1 R:3,C: 12 R:3,C:7

R:2,C:2

R:3, C: 13 R:3,C:5

R:4, C: 12 R:4,C:6

Figure 5.6: The rule set generated by Prism for
patch-MILMNIST for class zero and one. The green color indicates
that a concept must appear in a bag, and the red color indicates that
a concept cannot appear in a bag. Note that ones require some
vertical concept but without a corner concept.

Prism selects relevant patches which correspond naturally to parts of the two
digits.

5.3 Limitations and use of rule analysis

It must be noted that there are some limitations to this approach. When looking at
just two MNIST classes, it seems that k-means and Prism can generate rule sets that
align with the structure of those digits. The results become harder to analyze when
more classes are added. For example, instead of just looking at class zero and one
for patch-MILMNIST, the rule set for class zero has 36 rules with, on average, 11
concepts per rule. Other considerations are as follows:

Chapter 5. Rule induction 23

1. These examples can be easily visualized due to their low dimensionality or image
representation. Visualization is not always possible. MIL data sets often have
high dimensionality. Higher dimensional data makes analyzing the results of the
Prism algorithm non-trivial.

2. As seen, each representation of data needs a separate analysis. Comparing rules
must be made specifically for a data set.

3. For each training set in this section, only a portion of the total MNIST dataset
was used. Adding more training examples results in more variation, needing
more rules to separate the classes. Prism makes rules until it covers the entire
training set. The additional rules lead to over-fitting, and rule pruning is then
required. Several other algorithms focus on rule pruning, such as RIPPER [54],
but these bring more hyper-parameters to tune as a disadvantage.

4. The training and testing sets were sampled randomly per class from MNIST.
Each random sample can hold digits of slightly different shapes, resulting in
other rule sets.

In the following chapter, chapter 6, the rule output of CRI on an actual data set
is examined in a similar fashion to the MILMNIST data set of this chapter. The goal
will be to show that rules generated on a real-life high-dimensional MIL data set can
still be interpreted using k-means and Prism.

24

Chapter 6

Classification of multiple simultaneous bird
species

An example of real data for which CRI could be applicable is the bird-song data set
created by Brigs Et al. in [1|. This paper contains sound recordings of bird-song, where
multiple birds can sing in the same sound fragment. To transform sound data to a
MIL data set, sound fragments of a fixed time interval are exported to a spectrogram,
and then a Gaussian filter is used to create sound blobs. These blobs can be seen in
Figure 6.1.

o
|
|
x|
3 [
5 i
g Al]
= JL
ol o
o Time (seconds) 15
{a)A spectrogram in the segmentation training
set.
. ’
() [.
L]
o Time (seconds) 15

(b)The corresponding manually generated
time-frequency mask,

Figure 6.1: The sound data of bird songs, where the sound
spectrogram is converted to sound ’blobs’ using a gaussian filter,
from [1].

The data used for this paper was retrieved from a Kaggle competition from 2013
[2]. This dataset contained the bounding boxes of the blobs from Figure 6.1, which
will be helpful while examining the rule sets from CRI. The blobs are put through the
feature extraction pipeline described in the original paper by Brigs Et al. [1]. This
transformation creates a multi-instance multi-label data set, where each sound blob
represents an instance, and each bag is a sound fragment of ten seconds.

Again, the goal of this chapter, much like chapter 5, is to examine the rules
generated by CRI. This dataset is a good candidate because these sound blobs CRI
creates can be traced back to the sounds produced by birds. An expert could listen
to these smaller sound fragments in the IF conditions of rules and thus check the
generated rules. Unfortunately, the author of this paper is no bird song expert, so
instead, this paper will examine the rules created on the spectrogram.

Chapter 6. Classification of multiple simultaneous bird species 25

The next section will first look at the performance of the data set by looking
at the class accuracies. In the second section, a few examples are shown using the
spectrogram. One of the curiosities that occurred during testing is that the clustering
parameter k significantly influences how rules are produced. Thus in the third section,
the impact of the clustering parameter k is examined.

6.1 CRI class performance on bird song

The MIL data set is put through CRI as described in Figure 3.1. For the concept
classifier, k-means will be used, and this requires the instance features to be scaled
per feature between 0 and 1. For the rule induction, Prism will be used. Similarly
to section 5.1, average class accuracy will be used to evaluate the performance of k.
Each experiment will be run five times to account for the effect of different k-means
initialization.

Value of k versus class accuracy.
T T T

Class accuracy
o
o
T

o

Class:8
Class:9
Class:10
Class:11
Class:12
Class:13

e
o
T

Class accuracy

y

o

Class:14
Class:15
Class:16
T Class:17
/ ©— Class:18
/A Class:19

e
o
T

Class accuracy

o
o
o -
=
& -
[Ny
=]
IS
a

30

Figure 6.2: Test class performance of all 19 bird classes from the
Kaggle data set using the competition train/test folds [2]. Because
there are 19 classes, the plot is divided into subplots.

The class performance is shown in Figure 6.2. Firstly, at £ = 1, different class
performances are measured. The performance difference results from all class frequen-
cies not being the same. More prevalent classes will have a higher base class accuracy
because they appear more often. It seems that a performance plateau is reached when
k = 10. After this point, the testing accuracy is stable even when k approaches the
number of train instances. Notably, the performance of class 11 is significantly lower
than the rest, most likely because class 11 rarely appears alone.

The performance of CRI on the bird data performance is not as good as that of the
original paper [1]. CRI achieves an average class accuracy of 0.87, while the MILKNN
method managed an average class accuracy of 0.90. While the accuracy is slightly
lower for CRI, CRI does create rule sets. The following sections will look at the rules
that are produced.

Chapter 6. Classification of multiple simultaneous bird species 26

6.2 Rule visualization

Rule sets on real-life data have to be visualized differently than the MILMNIST data
sets. One way of doing this is to keep track of the position of instances in the original
spectrograms. The k-means concept classifier will assign one of the k-means clus-
ter centers to the closest instance for each bag. Because Prism uses these concept
presences to create rules, it is possible to see what rules apply to each bag.

A way to visualize this can be seen in Figure 6.3. Two rules from the class rule
set apply to this bag. The concept number is shown on the top left of each bag, and
the original instance sound blob is within the bounding box. Sound instances that
are required by a rule are marked green.

Rules that apply for class 1

((c

t 1==true)
t)))->((y) L

5 | I I

10 10
ho 10 # 10 A 1o, 0 s " 4

Frequency (kHz)

1 2 3 4 5 6 7 8 9 10
Time (5)

o 10 10 10 I+ #

Frequency (kHz)

1 2 3 4 5 6 7 8 9 10
Time (5)

Figure 6.3: The rules that apply for class one on a certain bag,
which contains that class shown on bounding boxes of instances on
the original spectrogram of 10 seconds of bird song. The rules are
sounds that belong together for a specific bird species. Original data
from [2].

It seems that for class 1, for other instances (not shown here), it is not enough to
have just concept 1. It seems that concept 5 and concept 4 also appear together with
class 1 in the training set. Also, note that rule 2 requires an additional restriction,
where concept 7 is not allowed.

A possible application of these rules would be to extract the sound fragments for
a specific class. Finding the sound fragments can be done by looking at the positive
concepts in the rules in each class. These sound fragments could then make up the
song of a bird. However, a value of £ = 10 is too low as many different negative
concepts are created here. We need to look at higher k values for this approach to
work.

6.3 Influence of the clustering parameter

As seen in the previous subsection, the cluster parameter k£ and the resulting class
accuracy stabilize for £ > 10, even though one might suspect that the 19 birds pro-
duce more than ten different sounds. So why can the CRI algorithm still get decent
performance for just £ = 107 This subsection will first check if class co-occurrence
is an issue. Class co-occurrence can result in CRI with only a few rules because it
only needs to recognize the co-occurrence. The second issue that will be examined is

Chapter 6. Classification of multiple simultaneous bird species 27

the appearance of negative concepts because it is unexpected to identify a bird song
without sounds.

Starting with class co-occurrence, if several birds are only found in the same area,
then it would make sense they co-occur in the same sound fragments. In this case,
for birds with high co-occurrence, the same rules could be used to identify them. To
examine this, the class co-occurrence in the multi-label data set is here with the rule
overlap between class rule sets in Figure 6.4.

In the bird data set, there seem to be some bird classes that highly overlap, most
prominently classes 11 and 16. An example of a class usually appears alone is class 4.

Label overlap between classes for k = 10. Rule overlap between classes for k = 10.

1
5 0.8
0.6
10
0.4
15 0.2
0
5 10 15 5 10 15

class class

5

10

class
class

15

Figure 6.4: On the left: class co-occurrence of the bird data set.
For each class in the bird data set, the number of times another class
occurs in the same sound fragment, bag, is counted and then divided

by the number of times the original class occurs. On the right:
similar, comparing the rule sets produced by CRI and counting how
many times rules overlap between the class rule sets. It shows that

there is no correlation between co-occurrence and rule overlap

From Figure 6.4, there is no clear correlation between the overlap of rules and class
co-occurrence. The figure on the right is almost zero, meaning that there are nearly
no overlapping rules produced by CRI, even for the most co-occurring classes, 11 and
16. Thus the performance of CRI at £ = 10 is not explained by class co-occurrence.

The second part of CRI that can be checked is the negative concepts used in
the rules that CRI generates. Classifying birds with negative concepts would mean
that the classifier uses the absence of certain bird sounds to identify other birds.
Classification by absence can only happen if the presence of certain birds negates the
presence of other birds.

The number of clusters of k can also be further increased to examine how it affects
the number of negative concepts used in the rulesets. The average of all classes is
taken to keep the plot readable. This plot can be seen in Figure 6.5. For k, steps of
10 are chosen to give a clear line. Also, note that the test performance keeps improving
slightly and is the highest on k£ = 500.

The average number of positive concepts in a class rule set stabilizes around 10 for
k > 100. But the average number of negative concepts rises initially, then decreases
at k& > 450 to about one. There are 1003 instances in the training set, so roughly
two instances per cluster is a small cluster. At that point, CRI is looking specifically
at the individual instances. At k = 500, almost no negative instances are used any-
more, which might indicate that, at this point, concepts found are more likely to be
actual sound fragments produced by the birds of that class. The number of concepts
corresponds to the number of different bird sounds in the original competition [2].

Furthermore, in Figure 6.5, the rule complexity and the number of rules is also
plotted against k. While the number of rules needed stays roughly the same for each

Chapter 6. Classification of multiple simultaneous bird species 28

Average class accuracy versus k.
T T T

accuracy

0 ! ! | | ! | | ! !

0 50 100 150 200 250 300 350 400 450 500
Behaviour of number of concepts versus k.

T T T T I T T

T average number of positive concepts

1 average number of negative concepts | |

fiif_E;ﬂig;_}_l;_l;_f,;,______f 1

T
100 150 200 250 300 350 400 450 500

0% + = — o p—
0
Behavi of rule lexity versus k.
T T T T 1 T T T T 1
L e e I e
T “ T average number of rules

1 s

-
~ I B average number of concepts per rule |
L~ T N §

e T2
200 250 300 350 400 450 500

Figure 6.5: On the top, the class test accuracy for different values
of k used in k-means CRI. In the middle, the average number of
positive and negative concepts used in the class rule sets for different
values of kl. And on the bottom, the average number of rules per
class and the average number of concepts for rules per class for
different values of k. It seems that for k& > 450, the rules become
made with fewer and fewer negative concepts.

class, the number of concepts used goes down to around one. Since, at this point,
most concepts are positive, this means that rules now identify a single sound fragment
of that bird.

At lower k values, the CRI algorithm needs to use the absence of certain sounds to
classify classes correctly, but it does manage to have still a performance of an average
class accuracy of 0.87. At higher k values, the performance does not drop, so CRI
starts to identify instances (sound blobs) to belong to certain classes instead. All in
all, it seems that CRI can work for the bird dataset, but the meaning of the rules
changes for different values of k. Using CRI for a real-life data set, it is crucial to try
and investigate the rules produced by the algorithm to see if the rules make sense.

To conclude this chapter, the performance of CRI on the real-life bird song MIL
data set does not beat the original paper [1]|, but the rules generated allow us to
trace back classification results to sets of bird song fragments. The influence of the
clustering parameter k£ has high importance on the validity of the rules. If k is put
too low, the rule sets for a specific bird species will contain many negative (absent)
concepts, which does not make sense when trying to find the sound fragments of a
particular bird species song. At higher values of k, it is shown that these negative
concepts are no longer needed for Prism to cover classes and that actual combinations
of the sound fragment of bird song do occur. And lastly, it was shown that these
sound fragments have almost no overlap between bird species.

29

Chapter 7

Conclusion and discussion

Multiple Instance Learning data (MIL) sets only contain information on groups (bags)
of data points (instances). In MIL, This paper proposes a new MIL classifier called
Concept Rule Induction (CRI). The main research question of this paper is whether
CRI could create a MIL classifier with improved interpretability using concepts. The
idea behind a concept is that concepts are properties of a specific class that is shared
between bags of that class, and not shared between bags of other classes. CRI is a
two-step algorithm, that first detects concepts, and then performs rule induction on
those concepts. MILES and k-means were used as concept detection algorithms and
Prism was used as a rule induction algorithm. CRI was examined on several toy data
sets and a real-life data set on tuning, performance, and interpretability. This chapter
will go over the findings on CRI and discuss improvement points of CRI.

CRI was tested on the MIL eXclusive OR (XOR) toy problem, which is difficult
for classical MIL classifiers. This problem pitted the two concept classifiers, MILES
and k-means, against each other. The MIL XOR toy problem showed how to tune the
concept classifiers. CRI is able to solve MIL XOR perfectly, with MILES performing
better on noisy and overlapping instances and k-means performing better otherwise.

Next, the rule induction of CRI was tested on two MIL MNIST number toy classi-
fication problems and a real-life multi-label MIL bird song classification problem. For
all three problems, CRI is able to find interpretable rules. For the MIL MNIST num-
ber problems, CRI finds concepts that represent circles and lines that create numbers
and then combines them in a logical fashion to the final number classification. For the
MIL bird song data, CRI finds individual sound fragments which make up the song
of a specific bird. The performance of CRI is currently lower than state-of-the-art
algorithms, for the bird song data CRI managed an average class accuracy of 0.87
versus the 0.90 average class accuracy of the MILKNN algorithm used in the original
bird song paper. The performance reduction is a result of the use of hard cut-off
points in the concept detection algorithms. In conclusion, CRI does add improved
interpretability but at the cost of an accuracy loss.

To improve CRI, one could first look at the few tuneable parameters of the MILES
concept classifier. The MILES concept classifier did outperform the k-means classifier
in the presence of noise or class imbalance but was harder to fine-tune and k-means
did outperform miles on the MIL MNIST and bird song data. The optimization
constraints of the linear sparse classifier used by MILES can take class imbalance
into account. This could be useful in the bird song data set because some birds only
appear less than ten times, and others over a hundred times. By using the extended
optimization constraints that do take class imbalance into account the performance
of MILES should improve.

Chapter 7. Conclusion and discussion 30

Another parameter of MILES is the scaling factor o, which significantly influences
how the MILES concept classifier is defined. The scaling factor is used both in the
definition of similarity and in the concept classification. In the Appendix D, the
following two schemes were tried: setting the scaling factor per instance using instances
in its neighborhood and using a binary similarity method with o instead. These two
approaches did not seem to give better performance overall. If the similarity metric
could be improved, it would improve the performance of CRI when using MILES as
the concept classifier and MILES itself.

And as mentioned, one could look at other concept-generating algorithms. Diverse
Density would be an option, but it is computationally expensive. k-Means could be
adapted by only running it on the positive bags of a specific class, this would mean
that clustering must be done per class now, but it does more with the definition of
a concept. If there is a lot of noise, the clustering algorithm HDBSCAN specifically
adds noise protection as outliers instances are not clustered [57|. Using one of these
algorithms as a concept detector would reduce the number of rules CRI makes, but
the impact on performance must be studied.

The rule induction algorithm could be improved as Prism is just the baseline
rule inductor algorithm. There are more advanced rule induction algorithms such as
FURIA, that induce fuzzy rules [58]. Fuzzy rules would reduce interpretability, but
fuzzy rules could deal with concept overlap and noise. The amount of training data
can also be low, which might result in a weak rule set. These issues could be tackled
by making rules more general by changing the rule selection criterion. RIPPER would
be an example of this [59)].

To further extend the MIL assumption, it might be possible to look at temporal
logic. For example, sound fragments have an order in the bird-song MIL data set,
and a low-pitch sound might always be followed by a high-pitch sound and then some
silence for a specific bird species. In this case, it might be helpful to create temporal
logic in the rule sets to account for these kinds of sound patterns over time [60, 61].

31

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

F. Briggs, B. Lakshminarayanan, L. Neal, X. Z. Fern, R. Raich, S. J. Hadley, A. S.
Hadley, and M. G. Betts, “Acoustic classification of multiple simultaneous bird
species: A multi-instance multi-label approach,” The Journal of the Acoustical
Society of America, vol. 131, no. 6, pp. 4640-4650, 2012.

Y. Huang, F. Briggs, R. Raich, K. Eftaxias, and Z. Lei, “The ninth annual mlsp
data competition,” in 2018 IEEE International Workshop on Machine Learning
for Signal Processing (MLSP). 1EEE, 2013, pp. 1-4.

Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
http://yann.lecun.com/exdb/mnist/, 2010. [Online|. Available: http:
yann.lecun.com /exdb /mnist

M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon, “Multiple in-
stance learning: A survey of problem characteristics and applications,” Pattern
Recognition, vol. 77, pp. 329-353, 2018.

B. Babenko, “Multiple instance learning: algorithms and applications,” View
Article PubMed/NCBI Google Scholar, pp. 1-19, 2008.

P. Chikontwe, M. Kim, S. J. Nam, H. Go, and S. H. Park, “Multiple instance
learning with center embeddings for histopathology classification,” in Interna-
tional Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2020, pp. 519-528.

P. Sudharshan, C. Petitjean, F. Spanhol, L. E. Oliveira, L. Heutte, and
P. Honeine, “Multiple instance learning for histopathological breast cancer image
classification,” Ezpert Systems with Applications, vol. 117, pp. 103-111, 2019.

M. Lerousseau, M. Vakalopoulou, M. Classe, J. Adam, E. Battistella, A. Carré,
T. Estienne, T. Henry, E. Deutsch, and N. Paragios, “Weakly supervised mul-
tiple instance learning histopathological tumor segmentation,” in International
Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2020, pp. 470-479.

X. Wang, F. Tang, H. Chen, L. Luo, Z. Tang, A.-R. Ran, C. Y. Cheung, and
P.-A. Heng, “Ud-mil: uncertainty-driven deep multiple instance learning for oct
image classification,” IEEE journal of biomedical and health informatics, vol. 24,
no. 12, pp. 3431-3442, 2020.

J. Yao, X. Zhu, J. Jonnagaddala, N. Hawkins, and J. Huang, “Whole slide images
based cancer survival prediction using attention guided deep multiple instance
learning networks,” Medical Image Analysis, vol. 65, p. 101789, 2020.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY 32

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Ilse, J. M. Tomczak, and M. Welling, “Deep multiple instance learning for
digital histopathology,” in Handbook of Medical Image Computing and Computer
Assisted Intervention. Elsevier, 2020, pp. 521-546.

Z. Han, B. Wei, Y. Hong, T. Li, J. Cong, X. Zhu, H. Wei, and W. Zhang,
“Accurate screening of covid-19 using attention-based deep 3d multiple instance
learning,” IEFEE transactions on medical imaging, vol. 39, no. 8, pp. 2584-2594,
2020.

Z.Li, W. Zhao, F. Shi, L. Qi, X. Xie, Y. Wei, Z. Ding, Y. Gao, S. Wu, J. Liu et al.,
“A novel multiple instance learning framework for covid-19 severity assessment
via data augmentation and self-supervised learning,” Medical Image Analysis,
vol. 69, p. 101978, 2021.

W. Xue, C. Cao, J. Liu, Y. Duan, H. Cao, J. Wang, X. Tao, Z. Chen, M. Wu,
J. Zhang et al., “Modality alignment contrastive learning for severity assessment
of covid-19 from lung ultrasound and clinical information,” Medical image anal-
ysis, vol. 69, p. 101975, 2021.

Y. Wang, J. Li, and F. Metze, “A comparison of five multiple instance learning
pooling functions for sound event detection with weak labeling,” in ICASSP 2019-
2019 IEEFE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2019, pp. 31-35.

S. Mao, P. Ching, and T. Lee, “Deep learning of segment-level feature represen-
tation with multiple instance learning for utterance-level speech emotion recog-
nition.” in Interspeech, 2019, pp. 1686-1690.

M. Aktas, A. Bayramcavus, and T. Akgun, “Multiple instance learning for cnn
based fire detection and localization,” in 2019 16th IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance (AVSS). 1EEE, 2019,

pp. 1-8.

X. Li, Y. Lang, Y. Chen, X. Mao, Y. He, S. Wang, H. Xue, and Q. Lu, “Sharp
multiple instance learning for deepfake video detection,” in Proceedings of the
28th ACM international conference on multimedia, 2020, pp. 1864—1872.

T. Zhao, X. Xu, M. Xu, H. Ding, Y. Xiong, and W. Xia, “Learning self-consistency
for deepfake detection,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2021, pp. 15023-15 033.

G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint
arXiw:1801.00681, 2018.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiw:1812.6199, 2013.

A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 427-436.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing
systems, 2012, pp. 1097-1105.

BIBLIOGRAPHY 33

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818-833.

A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 3387-3395.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learn-
ing through probabilistic program induction,” Science, vol. 350, no. 6266, pp.
1332-1338, 2015.

Y. Fenjiro and H. Benbrahim, “Deep reinforcement learning overview of the state
of the art.” Journal of Automation, Mobile Robotics and Intelligent Systems, pp.
20-39, 2018.

Y. Chevaleyre and J.-D. Zucker, “Noise-tolerant rule induction from multi-
instance data,” in ICML 2000, workshop on attribute-value and relational learn-
ing. Citeseer, 2000.

A. Srinivasan, S. H. Muggleton, M. J. Sternberg, and R. D. King, “Theories
for mutagenicity: A study in first-order and feature-based induction,” Artificial
Intelligence, vol. 85, no. 1-2, pp. 277-299, 1996.

Z.-H. Zhou, “Multi-instance learning: A survey,” Department of Computer Sci-
ence & Technology, Nanjing University, Tech. Rep, vol. 1, 2004.

J. Foulds and E. Frank, “A review of multi-instance learning assumptions,” The
Knowledge Engineering Review, vol. 25, no. 1, pp. 1-25, 2010.

Y. Chen, J. Bi, and J. Z. Wang, “Miles: Multiple-instance learning via embed-
ded instance selection,” IEFEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 12, pp. 1931-1947, 2006.

H. K. Biining and T. Lettmann, Propositional logic: deduction and algorithms.
Cambridge University Press, 1999, vol. 48.

J. N. Washburne, “The definition of learning.” Journal of Educational Psychology,
vol. 27, no. 8, p. 603, 1936.

J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “An overview of machine
learning,” Machine learning, pp. 3-23, 1983.

X. Chen and T. Han, “Disruptive technology forecasting based on gartner hype
cycle,” in 2019 IEEE Technology €& Engineering Management Conference (TEM-
SCON). 1EEE, 2019, pp. 1-6.

V. N. Vapnik, “An overview of statistical learning theory,” IFEFE transactions on
neural networks, vol. 10, no. 5, pp. 988999, 1999.

A. Sorokin and D. Forsyth, “Utility data annotation with amazon mechanical
turk,” in 2008 IEEE computer society conference on computer vision and pattern
recognition workshops. 1EEE, 2008, pp. 1-8.

P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon me-
chanical turk,” in Proceedings of the ACM SIGKDD workshop on human compu-
tation, 2010, pp. 64-67.

BIBLIOGRAPHY 34

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

H. Steinhaus, “Sur la division des corps matériels en parties,” Bull. Acad. Polon.
Sci, vol. 1, no. 804, p. 801, 1956.

G. E. Hinton, T. J. Sejnowski et al., Unsupervised learning: foundations of neural
computation. MIT press, 1999.

X. J. Zhu, “Semi-supervised learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, 2005.

O. Maron and T. Lozano-Pérez, “A framework for multiple-instance learning,”
Advances in neural information processing systems, pp. 570-576, 1998.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the multiple
instance problem with axis-parallel rectangles,” Artificial intelligence, vol. 89,
no. 1-2, pp. 31-71, 1997.

M.-A. Carbonneau, E. Granger, A. J. Raymond, and G. Gagnon, ‘“Robust
multiple-instance learning ensembles using random subspace instance selection,”
Pattern recognition, vol. 58, pp. 83-99, 2016.

Y. Xiao, B. Liu, and Z. Hao, “A sphere-description-based approach for multiple-
instance learning,” IEFE transactions on pattern analysis and machine intelli-
gence, vol. 39, no. 2, pp. 242-257, 2016.

N. Weidmann, E. Frank, and B. Pfahringer, “A two-level learning method for gen-
eralized multi-instance problems,” in Furopean Conference on Machine Learning.
Springer, 2003, pp. 468—479.

J. Mingers, “Expert systems—rule induction with statistical data,” Journal of the
operational research society, vol. 38, no. 1, pp. 39-47, 1987.

O. Maron, “Learning from ambiguity,” Ph.D. dissertation, Massachusetts Insti-
tute of Technology, 1998.

B. Meindl and M. Templ, “Analysis of commercial and free and open source solvers
for linear optimization problems,” Furostat and Statistics Netherlands within the
project ESSnet on common tools and harmonised methodology for SDC in the
ESS, vol. 20, 2012.

T. S. Madhulatha, “An overview on clustering methods,” arXiv preprint
arXiw:1205.1117, 2012.

C. Molnar, Interpretable Machine Learning. Lulu. com, 2020.

J. Cendrowska, “Prism: An algorithm for inducing modular rules,” International
Journal of Man-Machine Studies, vol. 27, no. 4, pp. 349-370, 1987.

W. W. Cohen, “Fast effective rule induction,” in Machine learning proceedings
1995. FElsevier, 1995, pp. 115-123.

J. R. Quinlan, “Discovering rules by induction from large collections of examples,”
Ezpert systems in the micro electronics age, 1979.

A. Baldominos, Y. Saez, and P. Isasi, “A survey of handwritten character recog-
nition with mnist and emnist,” Applied Sciences, vol. 9, no. 15, p. 3169, 2019.

BIBLIOGRAPHY 35

[57]

[58]

[59]

[60]

[61]

[62]

[63]

|64]

[65]

[66]

[67]

|68]

[69]

[70]

L. Mclnnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density based clus-
tering,” Journal of Open Source Software, vol. 2, no. 11, p. 205, 2017.

J. Hithn and E. Hiillermeier, “Furia: an algorithm for unordered fuzzy rule in-
duction,” Data Mining and Knowledge Discovery, vol. 19, no. 3, pp. 293-319,
2009.

M. Sasaki and K. Kita, “Rule-based text categorization using hierarchical cate-
gories,” in SM(C’98 Conference Proceedings. 1998 IEEFE International Conference
on Systems, Man, and Cybernetics (Cat. No. 98CHS36218), vol. 3. TEEE, 1998,
pp- 2827-2830.

A. Brunello, G. Sciavicco, and I. E. Stan, “Interval temporal logic decision tree
learning,” in Furopean Conference on Logics in Artificial Intelligence. Springer,
2019, pp. 778-793.

D. Bresolin, E. Cominato, S. Gnani, E. Munoz-Velasco, and G. Sciavicco, “Ex-
tracting interval temporal logic rules: A first approach,” in 25th International
Symposium on Temporal Representation and Reasoning (TIME 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Y. Chevaleyre and J.-D. Zucker, “Solving multiple-instance and multiple-part
learning problems with decision trees and rule sets. application to the mutagenesis
problem,” in Conference of the Canadian Society for Computational Studies of
Intelligence. Springer, 2001, pp. 204-214.

J. Novovicova, P. Pudil, and J. Kittler, “Divergence based feature selection for
multimodal class densities,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 18, no. 2, pp. 218-223, 1996.

R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial
intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.

A. Jain and D. Zongker, “Feature selection: Evaluation, application, and small
sample performance,” IEEFE transactions on pattern analysis and machine intel-
ligence, vol. 19, no. 2, pp. 153158, 1997.

N. Kwak and C.-H. Choi, “Input feature selection by mutual information based on
parzen window,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
vol. 24, no. 12, pp. 1667-1671, 2002.

P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection using fea-
ture similarity,” IFEF transactions on pattern analysis and machine intelligence,
vol. 24, no. 3, pp. 301-312, 2002.

M. Bressan and J. Vitria, “On the selection and classification of independent fea-
tures,” IEEFE transactions on pattern analysis and machine intelligence, vol. 25,
no. 10, pp. 1312-1317, 2003.

F. J. lannarilli Jr and P. A. Rubin, “Feature selection for multiclass discrimination
via mixed-integer linear programming,” IFEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 25, no. 6, pp. 779-783, 2003.

B. Krishnapuram, A. Harternink, L. Carin, and M. A. Figueiredo, “A bayesian
approach to joint feature selection and classifier design,” IEFE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1105-1111, 2004.

BIBLIOGRAPHY 36

[71]

[72]

73]

[74]

[75]

|76]

7]

(78]

[79]

[30]

[81]

[82]

[33]

[84]

M. H. Law, M. A. Figueiredo, and A. K. Jain, “Simultaneous feature selection
and clustering using mixture models,” IEFEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 9, pp. 1154-1166, 2004.

P. Somol, P. Pudil, and J. Kittler, “Fast branch & bound algorithms for optimal
feature selection,” IEFEFE Transactions on pattern analysis and machine intelli-
gence, vol. 26, no. 7, pp. 900-912, 2004.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.

J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Fea-
ture selection: A data perspective,” ACM Computing Surveys (CSUR), vol. 50,
no. 6, p. 94, 2018.

C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

A. J. Smola and B. Schélkopf, “A tutorial on support vector regression,” Statistics
and computing, vol. 14, no. 3, pp. 199-222, 2004.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267288,
1996.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM review, vol. 43, no. 1, pp. 129-159, 2001.

J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, “Dimensional-
ity reduction via sparse support vector machines,” Journal of Machine Learning
Research, vol. 3, no. Mar, pp. 1229-1243, 2003.

A. Smola, B. Scholkopf, and G. Ratsch, “Linear programs for automatic accu-
racy control in regression,” in 9th International Conference on Artificial Neural
Networks: ICANN. 1ET, 1999, pp. 575—580.

J. Zhu, S. Rosset, R. Tibshirani, and T. J. Hastie, “l1-norm support vector ma-
chines,” in Advances in neural information processing systems, 2004, pp. 49-56.

J. Durkin, “Expert systems: a view of the field,” IEEFE Intelligent Systems, vol. 11,
no. 02, pp. 56-63, 1996.

J. Liu, S. Ji, and J. Ye, SLEP: Sparse Learning with Efficient Projections,
Arizona State University, 2009. [Online|. Available: http://www.public.asu.edu
~jye02 /Software /SLEP

http://www.public.asu.edu/~jye02/Software/SLEP
http://www.public.asu.edu/~jye02/Software/SLEP

37

Appendix A

MILES

In 2006 Y. Chen et all. devised an algorithm that defined the concepts as Gaussian
blobs around the training instances [32]. The algorithm used a support vector machine,
where the weights indicated which of the Gaussian blobs contribute to the label of
the bag. These Gaussian blobs represent possible concepts ¢ € C. This algorithm was
called Multiple Instance Learning via Embedded Instance Selection (MILES). Part
of MILES will be used as a concept detector for the proposed MIL classifier in this
paper. This appendix will explain the history and inner workings of MILES.

MILES is inspired by the Diverse Density (DD) framework, which was first derived
in [43, 49]. DD tries to find a point « € R to act as a concept, with d being the number
of features. Thus the concepts can be any point in feature space & = ¢ € C = R?%. If
one assumes this concept is a single point it is possible to use probability theory to
find it by maximizing P(x = ¢|Bj,...,By). Finding this concept ¢ was done using
gradient decent in [49] and with the use of expectation maximization in [62]. However,
both these approaches do not guarantee global optimality and thus can get stuck in
local maxima. Therefore, many runs with different starting searching points are used,
making the algorithms using the DD framework time-consuming.

Y. Chen et all. interpreted this DD framework from a feature subset selection
viewpoint. Methods on feature subset selection are well studied in areas of machine
learning [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74|. These methods can be divided
into the following two categories: filter and wrapper based feature selection |64, 73, 74].
Filter-based methods are founded in information, similarity, or statistical theory [74].
These methods usually do not guarantee a good classifier performance and can select
features that are intercorrelated [32].

Wrappers, on the other hand, use the required classifier in the performance mea-
sure of the feature selection. This results in better generalization, but with twice the
computational cost [32, 64]. To combat the increased computational cost, MILES uses
a l-norm Support Vector Machine (SVM) to do feature selection and classification at
the same time. This 1-norm SVM is formulated as Linear Program (LP). Many free
and commercial solvers exist for efficient solving of these linear programs [50]. In order
to use a wrapper-based algorithm for MIL problems, the authors of MILES made use
of an instance-based feature mapping.

A.1 Instance-based feature mapping

While the DD framework tries to find a single concept, MILES allows for multiple
concepts to be identified. MILES does this by treating each instance as a potential
concept, with the shape of a Gaussian blob around the instance. Before the concept

Appendix A. MILES 38

identification step, MILES first uses an embedding on the training bags to measure
how potential concepts relate to the bags. To start this embedding step, index all n
instances of all N training bags as ¥, where [= 1,...,n. Because each instance a!
is a potential concept, C is now countable and limited to:

C={z':1=1,...,n}. (A1)

Next, MILES tries to relate the potential concepts ' to bags as P(x!|B;). In order
to estimate P(x!|B;) the authors of MILES used the most-likely-cause estimator from
the diverse density framework [49]. This estimator is defined as:

l ! _ |z — ']
P(z'|B;) < s(z', B;) = maxexp | ————5— |, (A.2)
J o

where o is the scaling factor that depends on the distribution of the data. Each bag
B; in the training data set is embedded into the concept space F¢ as

m(B;) = [s(z', B;), sz By),...,s(x", B,)] . (A.3)

Then, applying this embedding to the training set of n instances and N bags the
following matrix is created in concept space Fe:

[my,...,my]
= [m(By),...,m(By)]
s(xz',By) ... s(z!',By)
s(x",By) ... s(z",By)
so for a single row: s(x!,-) = [s(x!, B1),...,s(x!, By)] one obtains the embedding of

instance x* for all bags.

The idea behind this embedding is that if an instance ¥ has high similarity to bags
of some class and low similarity to some bags of other classes, then the information
introduced by the s(z¥,-) is useful in separation and labeling between the classes.
The next step is applying an SVM to do the classification.

A.2 Sparse Support Vector Machine

While CRI should be able to detect logic between concepts and class prediction with
multiple labels, this section will start with the two-class problem. This method can
be extrapolated to the multi-class setup, with @) classes, by using a so-called one-
versus-all combination scheme [75|, which fits with CRI creating rulesets per class.
This section will construct a linear program that can learn the weights of the sparse
linear classifier.

Let’s start with a linear classifier:

y = sign (me +b). (A.4)

Here y denotes the class label, which can be either +1 or —1 corresponding to the bag
label. The input is m, which is an embedded bag in concept space F¢ as discussed
earlier. Lastly, w and b are the weight vector and the offset.

Appendix A. MILES 39

A Support Vector Machine classifier is a linear classifier that optimizes w and b
by minimizing:

)\P[w] + gtraininga (A5)

where A is the regularization parameter and & qining is defined as the hinge loss:
Etraining = € = max{l — y(me +b),0}, (A.6)
and P[w] is a regularization term:
Plw] = wlw. (A7)

Regularization is used to keep the weights w small, as huge weights often lead to
overfitting on the training data [76, 77]. To add to that, if weights become zero, they
can be ignored in the concept detection step of CRI.

The goal of the sparse linear classifier is that points in feature space Fe which
contribute to the labeling of m will have non-zero weights in the optimal solution.
And the points in F¢ that do not contribute to the label will have zero weights. This
allows us to identify concepts from instances x!. In standard SVMs, the squared 2-
norm of the weight vector ||w]||3 is used as the regularization term as defined above.
MILES, however, uses the 1-norm of the weight vector instead, i.e.:

wlly = 3 . (A8)
l

The 1-norm formulation forces more weights to zero than the 2-norm regularizer. As
an added bonus, the 1-norm formulation is also linear instead of quadratic, making it
faster. This idea is also used in other techniques such as LASSO [78|, basis pursuit
[79] and drug discovery [80].

If there are ¢ positive samples and ¢~ negative samples in the training data set
and let m:r be an example of an embedding of a positive bag B;r , similarly m; for

a negative bag B;". Then the SVM training problem can be formulated as:

n VA Vo
min AZ‘MH—FC&Z&-{—CQZT]J‘
k=1 i=1 j=1

w7b7§7n
subject to (w'm} +b)+&>1, i=1,...,0T, (A.9)
T — . —
G >1 di=1,...0" j=1,...0,

here, £ and n are the hinge losses from equation (A.6) for the individual bags [32, 77,
81, 82]. C; and C are added to be able to punish false positives and false negatives
differently. This is done because in most MIL problems there is a class imbalance,
where the number of negative bags can be a lot larger than the number of positive
bags.

Using an LP solver, one can find the optimal solution [50]. The LP solver will
force most components of w* to zero. The magnitude of a component w; corresponds
to how far the /th instance is from the concept center. Thus the selected concepts can
be written as {s(z!,-) : [€ L}. Here L is:

L={l:|wf| >0}, (A.10)

Appendix A. MILES 40

or in other words, the index of nonzero entries in the vector w*. Then the label of a
new bag B; can be determined by Equation 3.4:

N
7; = sign (Z wl*s(a:l, B;) + b*) .

=1

To summarize, this method starts by embedding the training data into the concept
space F¢. Next, an LP is formulated to solve a two-class classification problem using a
sparse SVM. And finally, the nonzero weights of the LP indicate the index of instances
that represent potential concepts.

41

Appendix B

Prism

The rule induction algorithm Prism was designed to find if-then rules based on cat-
egorical data [52, 53]. This algorithm was originally developed for the creation of
expert systems, where the conditions listed in the IF part of the rules are properties
of the eyes, and the outcome is the best possible contact lens for those eyes [53, 83].
This appendix will explain the basic idea of Prism and then give the exact algorithm
used by the proposed MIL classifier called Concept Rule Induction (CRI).

Prism is an example of a sequential covering algorithm. Sequential covering algo-
rithms try to induce rules one by one, where each new rule covers a new part of the
data set. The outcome of a rule is limited to a single option or class in the classifica-
tion setting. This continues until all examples in the data set are covered by at least
one rule in the rule set for a specific class. This is why CRI uses a one-against-all
approach as these rules only apply to a single class.

Prism will be used on the concept bag matrix Cpg as described in Equation 3.2. The
rows of this matrix correspond to which concepts are in each bag B; of the training
set B. The columns of this matrix correspond to different concepts [c1..cn.] € C,
where C is the set of No concepts found by the concept algorithm in section 3.1. The
entries of C'g are binary. The (ith, k:th) position corresponds to presence of concept
Cl in bag BZ‘.

In CRI the label sets of each bag are reduced to a two-class problem for each
different class in a one-versus-all fashion: a target class ¢ is chosen and then bag B;
is given the label y; = 1 if the target class q appears in the label set of B;, y; = 0
otherwise. Let Y2 be the vector of all binary labels produced this way for the training
set B. As defined in section 2.3, R, will be the output of the Prism algorithm for the
target class q.

Rules in Prism are built using conditions on the output of the concept detection
algorithm. Let f.(B;) be the condition that concept ¢ appears in bag B;, mean-
ing f.(B;) = True. Let —f.(B;) be the opposite, —f.(B;) = True when the con-
cept ¢ does not appear in bag B;. Then define the following function getBestCondi-
tion(CB, Y@, fl1, fl), which gives back the best condition of the conditions f/; and
f!5 based on the concept bag matrix and the binary labels, see algorithm 1.

The conditions in getBestCondition are ranked first on the highest ratio of the
number of lines that give the target class implication. Then if ratios are equal, the
conditions are ranked on the highest number of target class implications. And lastly,
if the number of target class implications is equal as well, the condition with the
lowest amounts of false implications (f (B;) = True A y] = False) is chosen. This
makes getBestCondition return the condition f/, which is the largest cover of the
target class while avoiding conditions that do contribute to the target class. If one

Appendix B. Prism

42

Algorithm 1: GetBestCondition function, compares two conditions on the
concept bag matrix and its labels to see which condition is a better fit.

© o N o

10
11
12
13
14
15
16

Input : The concept bag matrix Cp, the binary label vector Yz, the
previous best condition f; and the condition to be tested fls.
Output: The best of the two conditions fpest-

getBestCondition(Cp, YB? s Flo)

// Get the number of implications; given the condition is true,
does it imply the target label?

let Iy = ng’ [1if fl, (B;) = True Ay} = True, 0 otherwise]
let I.o = g? [1if fly (B;i) = True Ayl = True, 0 otherwise]

// Get the number of true conditions; how many times does the
condition hold?

let Hep = ng [1if f/, (B;) = True, 0 otherwise]
let Hep = gf [1if fl, (B;) = True, 0 otherwise]
// Get the ratio between implications and number of true

conditions

let P,y = 1.1+ Hey if Hep # 0, 0 otherwise
let Poo = I.o + Heo if Heo # 0, 0 otherwise
if
(Pc2 > Pc1) Vv
(P2 = Po1 Nga > Ich) V
(Po2 = Poi Nog = Ici NHep < Hep)
then
| return f,
else
| return [}
end

Appendix B. Prism 43

of the conditions is equal to the empty condition @), then it will return the other new
condition.

A rule r € R, is made up several conditions f/. Because this paper only uses
simplified propositional logic, each condition is True. Adding a new condition to a
rule does not always add more coverage to the target class ¢q. At that point, the
rule is done, and no further conditions can be added to improve the rule. Prism
moves on to the next rule by removing the rows that are covered by rule r from the
concept bag matrix. To check if a new condition f. adds coverage a rule r the function
increasesCoverage(Cp, T, f) is used. The increasesCoverage function return True if
more rows from Cg) are covered by adding the condition to the rule, False otherwise.

Algorithm 2: Prism, a sequential covering rule induction algorithm, adapted
to be used in combination with Concept Rule Induction.

Input : The concept bag matrix C'p and the binary one-versus-all bag label
vector Yz for target class g.

Output: The rule set R,, which contains a set of simplified propositional
logic rules which can be used to classify new bags, given the
presence of concepts of the concept set C.

1 Prism (Cg,YZ)

2 let Ry =0

3 while 3y, € Y2 | yi=1do

4 let ¢/ =

5 let Ppew = 0

6 while ¢’ # () do

7 let fbest =0

8 foreach c € C' do

9 foreach f. € [f.,~f.] do

10 if increasesCoverage(Cp, Tnew, f.) then

11 ‘ foest = getBestCondition(Cg, Y&, frest, [t)
12 end

13 end

14 end

15 if frest # 0 then

16 add fpest tO Thew

17 remove ¢ € fpest from C’

18 else

19 ‘ break

20 end
21 end
22 if 7,00 # 0 then

23 add Tpew to Iy

24 remove rows B; from Cg and YB? that are covered by 7pew
25 else

// Adding more rules would decrease coverage

26 break
27 end
28 end

29 return R,

Appendix B. Prism 44

At this point, the Prism algorithm can be described in algorithm 2. The original
Prism algorithm was primarily used for categorical data [53, 54|, so it had to check
all the options in each category separately. In this paper categories correspond to
concepts, so only Prism only has to check whether to concept appears in a bag or not.

45

Appendix C

Multiple Instance Learning MNIST toy data
creation

In this appendix, three MIL toy problems are discussed. The first problem is known
as the trivial MIL problem. The other two are based on the MNIST data set. MNIST
stands for the Modified data set from the National Institute of Standards and Tech-
nology [3]. This data set contains handwritten numbers. Some example images can
be seen in Figure C.1.

MNIST examples.

EEDBOEBREEEHAH
/BN N/ /L
EEEREBEEBRHR
EHBESHBEHBBRBS
C N CR Rl C oG
HFAEANMAANAN
HEEHEBEEHEHBAHN

Figure C.1: MNIST examples pictures|3|. Each row corresponds
to ten examples from one of the classes from zero to nine.

The MNIST data set is not a MIL data set. Each image is 28 by 28 pixels, or 784
pixels, with a single gray-scale value from 0 to 255. To transform this single feature
vector per image into a MIL data set two approaches are taken. These two data sets
are called pos-MILMNIST and patch-MILMNIST and their exact transformations are
described below.

Appendix C. Multiple Instance Learning MNIST toy data creation 46

C.1 A trivial MIL toy problem

The hello world example of multiple instance data sets which in this paper is called
the trivial problem, still uses two concepts. There are two classes in the data set. The
first, and positive, class always contains instances from both concepts A and B. The
second, and negative class, contains concepts from only concept A. This means only

the line between concept A and B has to be found to classify all data correctly. This
data set is visualized in Figure C.2.

Instances of 5 negative bags

: i

Feature 2

o o

o o

g1 + -

L i 8 %
0.8 0.8

1 1.5 2 1

1.5 2
Feature 1

Feature 1

Feature 1

Figure C.2: The simple hello world MI data set consists of 50
positive and 50 negative bags. On the left is the entire data set with
positive bags in blue, and negative bags in red. In the middle: 5
different bags in different colors which are positive. On the right: are
5 different bags in different colors which are negative.

A rule set that can classify the positive class would only need to check for the

appearance of concept B in a bag. In Figure C.3, the concepts that the MILES
algorithm produces can be seen. The Prism algorithm produces the following ruleset:

Rtrivial = {Tl : fl

Note that while in the example concept B is given the name B, the algorithm can
only each non-zero weight and assign a number based on chronological order in the
training set to the concept. Nevertheless, this is the expected rule set.

Concept visualization of class 1.
1.5

Feature 2

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Feature 1

Figure C.3: MILES produced concepts. The chosen instances
have a small green circle over them, the larger green circles indicate
the decision boundary of the concept classifiers. Note, though a
single concept should have been enough, the MILES classifier still
produced two concepts.

Appendix C. Multiple Instance Learning MNIST toy data creation 47

C.2 A positional-based sampling from MNIST: pos-MILMNIST

A low-dimensional transformation on MNIST can be done by averaging the grayscale
values of small patches together with the positional coordinates of those patches. If
this value is black, it can be left out of the representative bag. This results in instances
of just two dimensions, the z and y positional values. This data set will be called
pos-MILMNIST, which stands for positional - Multiple Instance Learning MNIST.
The precise transformation is as follows:

1. A common pre-process step of deskewing the MNIST images is done. This
process tries to straighten the images because some handwritten digits are more
slanted than others. The process is the same as the authors described in the
original MNIST paper [3].

2. The images are sub-sampled to reduce the total amount of instances. The images
are divided up into a 7 by 7 grid of 4 by 4 pixels. This creates a maximum of
49 instances per image. For the pixel value, the average of the 4 by 4 pixels is
taken.

3. Using a threshold, very dark instances are excluded from the bag. These very
dark instances don’t visually contribute much so they are ignored to further
reduce the average amount of instances per image.

4. Every image is seen as a bag, with the digit number being the bag label. The
x, y positions of the sub-sampling are the features.

This creates a MIL data set that includes the spatial coordinates of pixel values,
which will result in being able to compare rule sets of different numbers. And because
the x and y values of the sub-sample are features, it is straightforward to visualize
the rule sets as well. The transformation for a single digit is shown in Figure C.4.

A: Original image. B: Deskewed image. C: Sub-sampled image. D: Sub-sampled image with cutoff

Figure C.4: MNIST examples [3]. The transformation from
MNIST to a MIL data set. A. The original image is a handwritten
‘one’. B. The deskewed image. C. The sub-sampling of the deskewed
image. And D. The leftover instances after the background removal.

C.3 Random sampling patches from MNIST: patch-MILMNIST

A more visual approach to generate a MIL MNIST data set is to take a set of random
patches from the MNIST images. The idea behind this approach is that these patches
will contain parts of numbers, such as lines, circles, and corners. A one, for example,
should only contain lines, while a zero should only contain circles or part of circles.

Appendix C. Multiple Instance Learning MNIST toy data creation 48

Let’s call this data set patch-MILMNIST, as a continuation of MILMNIST. The data

set is created by executing the following steps:

1. To start, like the pos-MILMNIST data set, the images are deskewed as described
in the original MNIST paper [3]. This makes the problem slightly easier to solve,
reducing the number of generated PRISM rules.

2. Then, select some number of random patches of the same size. In all following
examples patches of 8 by 8 pixels are taken for a total instance feature size of 64
dimensions. Each instance feature corresponds to the gray-scale value of that
pixel.

3. Each image from MNIST is sampled for all patches. A bag corresponds to a
single image, and its instances are then 8 by 8 pixels from each patch.

4. Each instance that only contains very dark pixels (pixel gray-scale values below
25) is thrown away. These patch instances are mostly dark and don’t contribute
visually much to the classification.

In this procedure, there is no need to normalize the values as with pos-MILMNIST.
Because the only features used here are gray-scale values, which are all in the same
range of 0 to 255. An example of instances generated from a handwritten digit can
be seen in Figure C.5.

PO Aril274
d 20NN

Figure C.5: The thirteen instances generated by taking twenty
random patches from an MNIST image. On the left, an example
image of a handwritten nine is shown, with the patches plotted on the
number. All smaller pictures on the right are the generated instances
from these patches. Only thirteen instances are generated because
the other instances contain an average gray-scale value below the
cut-off point. The cut-off instances are almost entirely dark squares.

49

Appendix D

Parameter optimization for the used con-
cept detectors

In order to find concepts, both MILES and k-means have parameters that have to be
set correctly. In this appendix, the parameters of the concept classifiers are examined
in their behavior.

MILES advertises only a single parameter, the scaling factor o, but there is actually
a hidden parameter, which is the regularization parameter \ of the sparse classifier
used in MILES [32]. This parameter has an impact on the number of concepts found,
and it might even result in not finding any concepts at all. This appendix will look at
the regularization parameter A and the scaling factoro from MILES first, after which
the amount of clusters parameter & from k-means is examined.

D.1 MILES, the regularization parameter

The regularization parameter A from MILES depends on the implementation of the
sparse linear classifier. MILES is formulated as a linear program. For linear programs,
many solvers exist. This paper used the SLEP package, where SLEP stands for Sparse
Learning with Efficient Projections [84]. This package was chosen because it achieved
good and fast results on the data sets in this paper, furthermore, it was free. From
this package, the sparse logistic classifier was chosen. This classifier minimizes the
following loss with regularization parameter \:

N;
mi{}Zlog (1 + exp (—ys(wT s(-, By) 4+ b)) + Awl, (D.1)
i=1

)

where y; is the label of bag B; and s(-, B;) is the MILES similarity embedding vector
of that bag on the training instances. NV; is the total number of training bags. And
w and b are the optimization variables. T' is the transpose operator in this equation,
so that the weight vector w can be used for the inner product multiplication with
the embedding vector. The regularization term A|w| uses the Li-norm of the weight
vector w. Note that w; € w corresponds to training instance ;.

If X\ is higher, the norm w has a larger influence on the minimization term. At
some point, the regularization term influence will get so high that it is no longer
possible to find a good minimization of Equation D.1. For the toy example it is easy
the define a good o as it is good enough to capture instances in one of the clusters,
so let’s set it to o = 0.5. First, A is varied exponentially in Figure D.1. It is no longer
possible to find any concepts after A > 1. Here, all weights w; € w are zero, meaning

Appendix D. Parameter optimization for the used concept detectors o0

that no instances were selected as possible concepts. This results in a useless MILES
classifier, and it is not possible to continue with any rule induction.

Regularization parameter)\ versus number of concepts.
_ A: Trivial i - S _ BXOR

o

Number of concepts
Number of concepts

0 T g
10 107 10° 102 107 10°

Figure D.1: The number of concepts versus the regularization
parameter for the trivial and XOR miles problem.

It seems to be possible to find a A that results in finding the desired number of
concepts. After zooming in on Figure D.1 in Figure D.2, these values can be found.
These values are different depending on the problem. For the trivial toy example A
can be a bit higher with a value around Agvial = 0.232 gives 1 concept and for the
XOR example a value around Ayxor = 0.1336 gives 2 concepts.

Regularization parameter \ versus number of concepts.

A: Trivial B: XOR
50 T v 50 .

11 11

IS
S

)
®
o
®

o
o
MILES accuracy
o @
3 8
—+ -
_
MILES accuracy

)
=
Number of concepts

Number of concepts

L) [0.4
10 [o Trva =, 02 10 4+ XOR 0.2
Trivial desired N XOR desired

trivial MILES accuracy XOR MILES accuracy

‘ D0 0
0.1 0.15 0.2 025 0.1 015 0.2 0.25
A A

Figure D.2: The number of concepts versus the regularization
parameter zoomed in, with the desired number of concepts for both
toy problems. On the right axis, the MILES performance for both
problems can be seen.

Another way of judging the influence of A is by looking at the rule induction and
classification results. This can be seen in Figure D.3. For the rule induction, it can be
seen that something interesting happens around A > 0.1. Here the number of unique
concepts in the rule set suddenly shoots up. It seems this is because the optimizer
at this point cannot find a good minimal solution, and it seems like the MILES only
choices concepts in one of the two concepts blobs. In Figure D.4, the concepts that are
found at A = 0.13 are visualized. Because the concepts are only from one side of the
XOR problem identified, the concept stage does not capture the problem correctly.
The rule "garbage in, garbage out" applies here. If the rule induction algorithm is fed
non-separable data, it won’t be able to classify accurately.

However, what is good is that for lower values of A the Prism algorithm seems
to be able to prune the many concepts down to two rules and concepts for the XOR
problem and only one for the trivial problem. Thus, the regularization parameter A
should be set so that MILES can find a minimal solution that has non-zero weights,
and then the rule induction algorithm can prune additional concepts.

Appendix D. Parameter optimization for the used concept detectors 51

o\ regularization parameter versus number of unique concepts in PRISM. B: izati versus accuracy.

\ Trivial number of unique concepts 1
L XOR number of unique concepts |
40 | —_—
| 08
[

Number of unique concepts

[005 0.1 0.15 0.2 025 03 0 0.05 0.1 0.15 02 025 0.3

Figure D.3: The influence of regularization parameter A on A: the
number of unique concepts. And B, the classification accuracy.

Concept visualization of class 1.

Feature 2

Figure D.4: The concepts found for A = 0.13 on the MIL XOR
problem. Note that class 1 actually has two concepts here, but only
one is found multiple times. This seems to be due to that the
regularization term forces the solver to give back an undesired
solution.

D.2 MILES, the scaling parameter

The other parameter of the pipeline is the MILES scaling o. This parameter is from
a similarity metric from the MIL diverse density framework [49] and is used during
the MILES embedding step in the following formula:

. k12
s(z¥, B;) = max exp <_||351302113||>’ (D.2)

where s(z*, B;) is the embedding of instance 2* on bag B;. This metric is also called
the most-likely-cause estimator. As can be observed, o acts as a scaling parameter,
and needs to be set depending on the distances between instances in the data set.

Like in the previous section, let’s first look at the number of concepts the MILES
classifier produces depending on different values of o. Note that the standard deviation
of the Gaussian concepts in both the trivial problem and the xor problem is have a
rather small standard deviation. Setting ¢ = 0.5 would capture the majority of
points from these distributions. In Figure D.5, it can indeed be seen that the number
of concepts is the largest around 0.5 for both problems.

Then, when looking at the rule induction and classification accuracy, there should
be parabolic behavior. When o is too small, one or two concepts should not be
enough to entirely capture the toy problems’ behavior, thus more concepts or rules
would be needed during rule induction. When o is just right, only the minimal amount

Appendix D. Parameter optimization for the used concept detectors 52

Dissimilarity parameter o versus number of concepts.

A: Trivial B: XOR
60 60

©— XOR
7 \ \ XOR desired
XOR MILES accuracy

50 [

@
S

—&— Trivial
Trivial desired
Trivial MILES accuracy

o
£y
o
®

IS
S

0.6

Number of concepts
@
8
MILES accuracy
Number of concepts
@
8
MILES accuracy

N
5]

N 02 10

Figure D.5: The number of non-zero weights, or in other words

concepts, versus the MILES parameter ¢ on the left. On the right

axis is the direct MILES accuracy. Note that for the XOR problem
MILES does not at any point reaches an accuracy of 1.

of concepts for the toy problems are needed. And, when o is too large it will start
overlapping with the other Gaussian concept, incorrectly classifying the negative class
as positive. This results in using more concepts in rules to classify correctly. This
behavior can be fully seen in Figure D.6.

25 A: dissimilarity parameter o versus PRISM results. B: dissimilarity o versus Y.

Trivial number of unique concepts 1

| XOR number of unique concepts F
20 - | 1

Accuracy

hl Trivial accuracy
XOR accuracy

- | s N n . L L L
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
o o

Figure D.6: The influence of MILES parameter o on: A: the
number of unique concepts in the rule set and the number of unique
concepts. And B, the classification accuracy of PRISM.

It seems that if o is set too small, then PRISM cannot find good rules that actually
classify correctly. In the trivial problem in Figure D.6, it can clearly be seen that if o is
too large it will overlap with the negative class concept. In Figure D.7, this behaviour
can be seen. In this case, it might be worth separating the concept classifier MILES
o from the concept decision boundary from Equation 3.5.

Thus it seems that the optimal value of ¢ is highly dependent on the data set,
but if set correctly in the valley as seen inFigure D.6 Prism can handle the output of
MILES as a concept classifier.

D.2.1 Setting the scaling per instance

The MILES parameter ¢ is dependent on the data set according to the previous
sections. So perhaps this parameter can be initialized automatically depending on
the data set behavior. Because instances are chosen as the concept centers, it seems
that only the local behavior of data would need to be taken into account.

One way is by looking at the distances from the n nearest neighbors. Let X be the
set of all instances. The parameter o5 can then be estimated for a specific instance

¥ € X by calculating the pair-wise euclidean distances between all instances X.

Appendix D. Parameter optimization for the used concept detectors 53

o =0.01. o =0.1535. o =0.2755.
+ #* ey 4
t %r 1.2 12t 2 % 12‘
o o o o
o o T A e J#f
E ++ ERR S5 1 Ahel S
I Hi © © @
& e 8 g ¥ 8
0.8 0.8 i
+y +y ¥ - .
1 15 2 1 15 2 ‘ 115 2
Feature 1 Feature 1 Feature 1
o=0.5. o =1.016. o=1.8.

Feature 2
Feature 2
Feat_\jre 2
Feature 2

1 15 2 25 3

1 1.5 2 25 .
Feature 1 Feature 1 Feature 1 Feature 1

Figure D.7: Concepts highlighted in green with their decision
boundary for different values of the MILES parameter o. For
o = 0.01 and o = 1.8 no concepts are found, meaning the MILES
optimiser only has zero values for weights. For ¢ = 1.016 and
o = 1.2, the size of the concept classifiers starts to overlap with the
negative Gaussian concept, meaning classification performance starts
plummeting.

Next, sort these distances and take the average distance from the n nearest neighbors.
ok can then be plugged in Equation D.2 for every instance z*.

Now there is a separate scaling factoroy for each instance x*. By averaging the
scaling factors for different amounts of neighbors it is possible to see how they relate. It
is expected that the average value would increase if more neighbors are added because

more points in concepts are taken into account. This can be seen in Figure D.8.

06 of nei yurs n versus dissimilarity o
- T T T

Average ¢
o I o
w > [
T T T

o
1%}
T

0.1 -
Trivial average o

XOR average o

| 1 | 1 | 1 L
0
0 20 40 60 80 100 120 140 160

Figure D.8: The average value of o as a result of the number of
neighbours n by setting o, for each instance * individually. Note
that the number of neighbors can only be set to the total amount of
instances.

The effect can also be seen in the number of rules and concepts generated by
PRISM and the classification results. See Figure D.9. This is similar to Figure D.6,
where parabolic behavior occurs for the XOR, problem.

Unfortunately, using this local behavior around the instances seems to not have
the desired impact. The best results from Figure D.9 seem to occur when almost the
entire data set is taken into account, losing the local behavior of setting a oy, for each
instance xy.

Appendix D. Parameter optimization for the used concept detectors 54

A: n o versus PRISM results. B: n versus accuracy.
Trivial number of unique concepts
Trivial number of rules

XOR number of unique concepts
XOR number of rules ‘

i T

Trivial accuracy

I ’ XOR accuracy
0 I . . L . . . 0 !

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160

o
©

#
_
Accuracy
o
>

o
~

o
N

Figure D.9: The influence of the number of neighbors n when
setting o on: A: the number of unique concepts in the rule set and
the number of unique concepts. And B, the classification accuracy.

D.2.2 Binary similarity MILES

Another way to construct a concept classifier would be to stick with MILES but change
the similarity metric from Equation D.2 to be more in line with the concept definition
from Equation 3.5. Thus s(x*, B;) becomes

s(z¥, B;) = max
J

{1 E|$ij€Bi3 Hmk_mUH <U” (D3)

0 otherwise.

The advantage of this approach is that similarity now matches the concept defi-
nitions. The similarity is now more strict, which should prevent small concepts such
as those from Figure D.7. These small concepts clearly don’t capture the entire don’t
capture the actual concept. This approach still has the two other parameters from
MILES so let’s look at o and A for the similarity metric from Equation D.3.

The regularization parameter \ has slightly less influence here if it is low enough
compared to those of regular MILES in Figure D.2. In Figure D.10, similar behavior
to normale MILES can be found, but if when zoomed in as for Figure D.11 it seems
that the new similarity metric is stable for larger values of A for the same problems.

Regularization

A versus of

300 —

150 —

Number of concepts
3
38
T

©—— Trivial ||
—+— XOR
i Lol um‘k L umr‘k L uw‘k L umr‘k L uw‘k Coiinnl
0 40° 104 103 102 107 10° 10' 102 103 104 10° 108
A

Figure D.10: The number of concepts versus the regularization
parameter A for the trivial and XOR miles problem. Using the strict
similarity for MILES from Equation D.3.

In Figure D.11A there is a large peak of the number of concepts for the XOR-
problem that PRISM uses during classification. It seems that at that point the con-
cepts again appear only on one of the two actual concept blobs. It seems again though
that there is no clear correlation for the regularization parameter, and that has to be
experimentally determined to which point it does not revert to the trivial null solution.

Appendix D. Parameter optimization for the used concept detectors 95

150, A: regularization parameter versus number of unique concepts in PRISM. B: regularization parameter) versus accuracy.

Tl rumber ofuicue cancepts Bl
XOR number of unique concepts

Number of unique concepts

0 005 01 015 0.2 025 03 0 005 01 015 02 025 03
A A

Figure D.11: The influence of regularization parameter A on A:
the number of unique concepts. And B, the classification accuracy.
Using the strict similarity for MILES from Equation D.3.

For the similarity parameter o from Equation D.3. it seems that taking a value
that is too low now increases the number of concepts, but as soon as o is large enough
to cover most of the concept blobs from both toy problems, the number of concepts
required by PRISM goes down again. This can be seen in Figure D.12, where roughly a
o = 0.5 would be ideal. Though it seems that more concepts are still identified when
that number is reached (about 50). This might be due to that the regularization
parameter here is not high enough.

IS

S

]
1

Dissimilarity parameter o versus number of concepts.

©— Trivial
Trivial desired —

@
&
3

XOR
XOR desired

2 300 ‘
a
3 %
8 250 - % il
s 3
8
5 200 - " ; -
% 1 ‘ %
£ 150 - ‘ ‘ é;%% -
5
z

100 - ‘) il

IL PR S
S et T,
50 T
(’*@“ﬁ%
WP i x e i

=

®
o |3
>

Figure D.12: The number of concepts versus the MILES
parameter ¢ for the trivial and XOR miles problem. Using the strict
similarity for MILES from Equation D.3.

In Figure D.13 it can be seen that when o approaches 1, the accuracy slightly
dips again for the trivial toy problem. This is because at that point instances from
negative bags enter the positive concept. When compared to the original MILES
concept detection algorithm it does seem that this binary similarity performance is
slightly better in the rule induction step. But this approach does lose the gaussian
behavior of MILES and many more concepts are produced than with the regular
similarity metric.

A: dissimilarity parameter o versus PRISM results. B: dissimilarity parameter o versus accuracy.

Trivial number of Unique concspts m
~ XOR number of unique concepts | | oy n | | |
| Y

ool
3 | |

0.8

Trivial acoura oy
XOR accuracy

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure D.13: The influence of MILES parameter ¢ on A: the
number of unique concepts. And B, the classification accuracy. Using
the strict similarity for MILES from Equation D.3.

Appendix D. Parameter optimization for the used concept detectors 56

D.3 k-means, the number of clusters

The k-means algorithm uses random initialization for its k cluster centers. This can
have an effect on finding different concept classifiers. In Figure D.14 some different
values of k are plotted for the trivial problem. Note that in this figure for the trivial
problem the number of unique concepts used by PRISM is equal to the number of
clusters on the right blob. It should also be remarked that, while for the trivial
problem only a single concept is needed, two concepts are still required for meaningful
classification, because the k-means clustering algorithm has no cut-off distance and
will always put any point into the closest cluster.

k=1, #uc=1, acc=0.5 k=1, #uc=1, acc_05 k=1, #uc=1, acc=0.5

e

*f,.

~

k=2, #uc=1, acc=1

F

k=3, #uc=1, acc=1

®

k=4, #uc=3, acc=1

-

k=2, #uc=1, acc_1

C

I~

k=3, #uc=2, acc-1

o

e

k=4, #uc=1, acc 1

00

i
-

k=5, #uc=3, acc=1

N &

k=5, #uc=1, acc 1

2!
o i

k=6, #uc=2, acc=1

k=6, #uc=1, acc=1

O

ﬂ

e

k=2, #uc=1, acc=1

C

’:

k=3, #uc=2, acc=1

Qat

k=4, #uc=3, acc=1
\d
00

&~

£ ®

k=5, #uc=2, acc=1

k=6,#uc=2,acc:1

Figure D.14: The influence of different random initialization with
the same k on the concepts for the Trivial problems. The value of k
is shown in each subplot. #uc stands for the number of unique
concepts used by PRISM. And acc stands for the accuracy of the
PRISM algorithm. Cluster centers, which also act as concepts, are
marked by a black circle. Notice that the number of unique concepts
always equals the number of clusters for the trivial problem concepts

in the right blob.

Using k-means does introduce the k parameter, but this is a single parameter
compared to two of the MILES concept detection. The toy examples from Appendix C
are defined as two clusters, so k = 2 should be the optimal value. In Figure D.15,
it can be seen that if k increases more concepts are needed by PRISM to get the
correct classification. This is because the division of the blob concepts increases if
k increases. Though at a certain point, some clusters will only contain instances
from negative bags, which is why the line in Figure D.15A is not entirely linear to k.

Appendix D. Parameter optimization for the used concept detectors o7

The classification accuracy is equal to 1 after reaching the required two concepts to
differentiate between the two classes.

A: Value of k versus number of unique concepts in PRISM. B: Value of k versus accuracy.

Trwvial 1k

2 XOR e

|
Accuracy

mt
B

vvvvvvvvvvvvv

Figure D.15: The influence of k-means parameter k on: A: the
number of unique concepts in the rule set and the number of unique
concepts. And B, the classification accuracy, which overlaps for both

problems here.

Thus, having some knowledge about the data set helps to determine the perfect
value for k. Additionally, it is important to do several initializations of the clustering
algorithm to see if there is a weak initialization. If using k-means has a significant
variance of performance for different initializations in CRI, then there are no clearly
defined clusters in the data set. Then a more fuzzy approach like MILES would be a
better choice as a concept detector.

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Multiple Instance Learning Concepts
	Research question

	Multiple Instance Learning
	From machine learning to multiple instance learning
	Multiple instance assumptions
	Concepts to rules

	Method: Concept Rule Induction
	Concept detection algorithms
	Multiple Instance Learning via Embedded Instance Selection
	k-Means clustering
	Why these concept detection algorithms

	Rule induction by Prism
	Considerations on Concept Rule Induction

	Concept detection
	MIL eXclusive OR toy problem
	Concept overlap
	Noisy instances
	Concept imbalance
	Choosing a concept classifier

	Rule induction
	Concept Rule Induction performance
	MILMNIST rule sets examined
	Rule set of pos-MILMNIST
	Rule set of patch-MILMNIST

	Limitations and use of rule analysis

	Classification of multiple simultaneous bird species
	CRI class performance on bird song
	Rule visualization
	Influence of the clustering parameter

	Conclusion and discussion
	MILES
	Instance-based feature mapping
	Sparse Support Vector Machine

	Prism
	Multiple Instance Learning MNIST toy data creation
	A trivial MIL toy problem
	A positional-based sampling from MNIST: pos-MILMNIST
	Random sampling patches from MNIST: patch-MILMNIST

	Parameter optimization for the used concept detectors
	MILES, the regularization parameter
	MILES, the scaling parameter
	Setting the scaling per instance
	Binary similarity MILES

	k-means, the number of clusters

