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Abstract

Recent works explain the DNN models that perform image classification tasks following the "attribution,
human-in-the-loop, extraction" workflow. However, little work has looked into such an approach for ex-
plaining of DNN models for language or multimodal tasks. To address this gap, we propose a framework that
explains and assesses the model utilizing both the categorical/numerical features and the text while optimiz-
ing the "attribution, human-in-the-loop, extraction" workflow. In particular, our framework deals with lim-
ited human resources, especially when domain experts are required for human-in-the-loop tasks. It provides
insight regarding which set of data should the human-in-the-loop tasks be brought in. We share the results of
applying this framework to a multimodal transformer that performs text classification tasks for compliance
detection in the financial context.
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1
Introduction

Deep neural networks(DNNs) are widely employed and yield state-of-the-art results on image and text clas-
sification tasks. The effectiveness of a DNN model is due to its ability to learn more complex structures by
extracting features at different levels of abstraction[Liu+22]. However, this effectiveness is accomplished at
the expense of its transparency; hence, understanding the DNN’s decision is a difficult task[Qia+22]. There-
fore, Users tend to be reluctant to utilize these models in high -stakes contexts due to their opacity[KPS20].
Therefore, the demand to understand the model’s reasoning increased for both the stakeholders and the de-
velopers for using and debugging purposes.

Recent works explain the DNN model following the "attribution, human-in-the-loop, extraction" work-
flow[NKH18][Sha+22][Sin+21][Bal+21]. The three stages of this workflow are: (1) Attribution: post-hoc local
explanations, the explanation of ML models that are not transparent by design, utilized after the model pre-
diction is made, is the most adopted method for explaining DNNs. Input attribution is the most popular
post-hoc local explanation method[Arr+20].It decomposes the model decision into contributions of its in-
put elements to observe which patches of pixels or words the model is paying attention to when making the
predictions. (2)Human-in-the-loop: the results of input attribution are annotated and analysed by human.
For example, in the image classification tasks, humans recognize the entities in the salient image areas and
compare them with the ground truths (addressed as human-model reason comparison henceforth). (3)Ex-
traction: through the human-model reason comparison, certain predefined types of failures or knowledges
are extracted. For example, Barlow framework defines and extracts two types of model failures, ScapelHS and
Pandora framework define and extract two types of model knowledge[Sin+21][Sha+22][NKH18]. These errors
and knowledge help to analyse and summerize the model at global level.

So far, this "attribution, human-in-the-loop, extraction" workflow is used to explain image classification
models, but it is only partially applicable to the NLP models. The explanation of NLP models lacks the ex-
traction part[LGM21]. Furthermore, while these works explain and assess the models that perform image
or NLP tasks, real-world datasets are usually multimodal, i.e., they involve categorical and numerical data
beside the pure text or images. To address these gaps, a framework is needed that explains and assesses the
model utilizing both the categorical/numerical features and the text while following the "attribution, human-
in-the-loop, extraction" workflow. Besides, it should be able to deal with limited human resources, especially
when domain experts are required. It should provide insight regarding which set of data should the Human-
in-the-loop tasks be brought in.

While designing and implementing this framework, the following research questions will be answered:

1. How do we utilize the numerical and categorical features in combination with the text to explain the
model?

2. How do we explain and assess the model in a time-and human resources efficient way?

3. How do we define and extract the knowledge for describing model behavior and failure through the
"attribution, human-in-the-loop, extraction" workflow?

This research explains a transformer model that performs a binary text classification task. It predicts
whether a certain email violates or has the potential to violate any rules or policies according to the bank,
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2 1. Introduction

i.e., being incompliant. The utilized transformer model is BERT(Bidirectional Encoder Representations from
Transformers), a transformer-based machine learning technique for natural language processing pre-training
developed by Google[Dev+18]. Our framework explains and assesses this model by incorporating the "attri-
bution, human-in-the-loop, extraction" workflow. Prior to this workflow, there is a Cohort Location step to
deal with the multimodality. Therefore, there are four steps in this framework: First, Cohort Location: Error
Analysis[NKH18], an analysing tool to define which feature value combinations lead to high or low error rates,
is run on the numerical/categorical features and the prediction results. Then we select the most significant
data cohorts from the result visualization of Error Analysis for further local level inspections, usually the co-
horts with the highest or lowest error rate, or those with inspiring characteristics. Second, Input Attribution:
the data inputs in each cohort are attributed so that for each word, an attribution score is generated. The
output is addressed as "model highlights, or "model reasoning" at the abstract level throughout this research.
Third, Human-in-the-loop: we perform the following inspections for the selected cohorts: (1) we strategically
select the data to let the experts annotate the words and phrases that indicate the incompliance. The anno-
tated words/phrases serve as the ground truths, also addressed as "human reasons" henceforth. Then we
perform human-model reason comparison at the local level. (2) we collect all phrases with positive attribu-
tion scores towards the incompliance and try to find the patterns. (3) we inspect the model or human reasons
individually when the other is absent and summarize its behavior. Finally, Extraction: with these inspection
methods we aim to find three types model reasons: Right Reason, which are the reasons the model gives for
its prediction that align with the human reasons. Wrong Reason, which are the reasons the model gives for its
prediction that does not align with the human reasons, and model Not Learned, which are the ground truth
reasons the model fails to give.

In summary, we provide the following contribution: a framework to explain models that work on mul-
timodal data, which incorporates "attribution, human-in-the-loop, extraction" workflow and extracts three
types of model reason with minimum human effort.

1.1. Report Outline
In Chapter 2, we introduce Error Analysis and Input Attribution methods, and discuss how other works com-
bine input attribution with Human-in-the-loop tasks to explain the model. The background, data and model
preparation are presented in Chapter 3. In Chapter 4, the proposed framework is presented step by step with
implementation details. In the end, the results are presented and discussed in Chapter 5 and 6.



2
Related Work

In this chapter, we introduce Error Analysis and the attribution methods as they are utilized in the first and
second step of our framework. Then we present prior works on DNN model explanation focusing on how they
combine the Input Attribution with Human-in-the-loop tasks and eventually perform Knowledge Extraction
to assess the model at the global level.

2.1. Error Analysis
Besmira Nushi introduced Error analysis[NKH18], which is the process of observing and diagnosing erro-
neous machine learning predictions by locating subgroups of data where the model performs weakly. Their
research proposes a framework called Pandora, which is a new systematic approach for describing and ex-
plaining system failure in machine-learning systems. The author points out that common evaluation meth-
ods such as accuracy rate, error rate, and F1 rate, which are single score summarizing measures that provide
an overall assessment of the model performance. Hence, they are helpful for the comparisons between dif-
ferent models. However, these scores do not provide insights into when and how the model fails. Therefore,
the model’s choices cannot be properly understood and the model itself cannot be optimized accordingly.
Pandora performs error analysis by modeling the relationships among input features and model erroneous
results to recognize the input characteristics most accountable for the model failure, then this characteristics
are visualized using a decision tree and serves as insights for model improvement.

Error analysis can be performed on data with apparent and non-apparent features. Apparent features
are the numerical model input fed into the model, such as age and weight. Non-apparent features are less
evident than apparent features. They could be model input such as images and text data, but sometimes they
can even be metadata or features that are not predefined[Sin+21].

2.1.1. Error Analysis on Apparent Features
Performing error analysis on apparent features only requires statistical calculation. By using the Error Anal-
ysis function in the Responsible AI(RAI) tool, developed based on the Pandora framework[NKH18], one can
conclude on which combination of features value the model fails. For example, one possible conclusion from
error analysis could be that the face recognizer performs poorly when the age feature has a value smaller
than 6. Therefore, “Age < 6” is the characteristic of the data cohort that we should focus on when debugging
or optimizing the model. Such a characteristic is also addressed as the “failure mode”. Usually, a failure mode
is a combination of feature values, for example, “Age < 6” and “length < 110”. In Pandora[NKH18], the failure
modes are visualized using a decision tree as shown in Figure 2.1, the red color color of a cohort indicates its
high error rate. The path between two nodes indicates a splitting condition on some feature. For example,
the path leading to the selected leaf node represents a cohort with the following characteristics: posInChain
<= 1.5, length > 359.5, and Receiver <= 1.5.

2.1.2. Error Analysis on Non-apparent Features
When dealing with non-apparent features, the features that lead to mispredictions are not (directly) included
in the input data. It usually requires a manual inspection to identify and interpret them. In this case, human
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4 2. Related Work

Figure 2.1: Decision tree visualization for error analysis, generated using the Responsible AI toolbox.

knowledge and experience play an essential role in interpreting and evaluating error analysis results. For ex-
ample, suppose an image data set for the face recognizer does not contain a feature that describes the lighting
condition, after manually inspecting and observing the misclassified images, the researchers may happen to
discover that the lighting condition is poor on most of those images. Error analysis on non-apparent features
is less evident and certain than on apparent features while being more expensive and time-consuming.

2.2. DNN Model Explanation
Several studies introduce systematic and reproducible ways to explain the models that run images or text
classification tasks[Sin+21][Sha+22][LGM21]. They mainly incorporate Input Attribution and Human-in-the-
loop tasks. In an image classification problem, input attribution generates a saliency map to identify the
patches of pixels that are accountable for model prediction[SVZ13]. For a text classification problem, input
attribution generates a score for each word, indicating its importance when the model makes the prediction.
As the input is attributed, human efforts are required to: generate the ground truths, recognize the entities in
the salience areas, and compare the model’s reasons with the ground truths.

The explanation framework of image classification model usually defines a certain types of knowledge of
error, and during the Human-in-the-loop tasks, they extract them to assess the model at global level. Com-
bining with the Input Attribution and Human-in-the-loop, it forms a "attribution, human-in-the-loop, ex-
traction" workflow.

The frameworks following the "attribution, human-in-the-loop, extraction" workflow are presented in the
following paragraphs:

• The Barlow Framework. In the Barlow framework introduced by Sahil Singla[Sin+21], the model per-
forms an image classification task on ImageNet data, after which the saliency maps are generated.
However, according to Singla, the challenge is that “the visual attributes that machine learning pro-
duces pay attention to can be very different from the ones humans focus on.” This statement means that
it is possible that the silence areas in an image do not make sense to a human, in the sense that either
the human cannot recognize what has been highlighted or the highlighted area is irrelevant to the class
label. Therefore, it is the human task to recognize and interpret the entities in the salience areas for
each text image and judge whether the model provides correct reasoning. Then, for each class the top
20-features are selected to generate a decision tree like in Pandora framework. The clusters with high
error rates can be located by following the paths in the tree. This way, the major failure modes across
the entire dataset are presented.

The framework aims to find two types of failures: Spurious Correlations and Overemphasized Features.
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A Spurious Correlations is a feature that often co-occurs with the class label but is causally unrelated.
For example, for an image with the label “plate,” the salience map may highlight the food on the plate,
which means that the model predicts this image as a plate based on the food on it. On the other hand,
Overemphasized Features are the features that are causally related to the class but whose importance is
overrated so that the model would mispredict when they are absent.

In the end, the Barlow framework is evaluated by both crowdsourcers and machine learning practition-
ers on the usefulness and the interpretability of features.

• The Scalpel-HS Framework. Like Barlow, Scalpel-HS [Sha+22] involves an image classification task,
generates salience maps for model explanation and engages humans to interpret them. By recognizing
the entities in the saliency areas related to the class label, they identify what the model has learned from
the training data. For example, a chair has been highlighted on the salience map of a kitchen image,
which was wrongly classified as a conference room by the model. This indicates that the model has
learned that the appearance of a chair is an important characteristic of a conference room. Meanwhile,
it misses the relevant features such as microwave, oven, and sink, which are important to the true label
“kitchen.” With these two pieces of information, we understand how the model fails.

The Scalpel-HS framework defines two types of model knowledge, the model’s SHOULD-KNOWS and
REALLY-KNOWS. In the kitchen image case, the chair is the model’s REALLY-KNOW, hence the rea-
son for the model’s prediction. The microwave, oven, and sink are the model’s SHOULD-KNOWS, also
known as the ground truth. These ground truths are created by humans beforehand. They draw circles
around the areas, usually containing an object each, in the image, which are highly related to the class
label. Later these will be compared to the salience maps of the model. Then we can collect the two
types of knowledge and learn where the knowledge gap is.

By comparing the model SHOULD-KNOWS and REALLY-KNOWS, we can characterize unknown un-
knowns, which refer to the images for which a model is highly confident about its mispredictions[AIP11].
The research has proven that Scalpel-HS provides informative, easy-to-understand characterizations of
unknown unknowns that significantly boost state of the art in unknown unknowns’ detection by 31%.

Zhe Liu proposed an model explanation framework for sentiment analysis tasks[LGM21]. It incoporate
the Input Attribution and Human-in-the-loop but lacks an explicit Knowledge Extraction module.

• Error Detection Framework for Sentiment Analysis Zhe Liu attributes the input of sentiment analysis
by adopting LIME (Local Interpretable Model-agnostic Explanations), in which the perturbation-based
analysis is run to generate instance-level explanations [RSG16]. The reasoning behind this attribution
method is that if a word is important in defining the sentence’s positiveness, removing it should change
the prediction significantly. From the perturbation-based analysis, each word in a sentence receives a
contribution score in either a positive or negative direction, indicating the relevance of each word to
the model prediction. An example from the paper shows that the model wrongly classifies the sentence
“Panera gives me diarrhea.” At the same time, the word “Panera” receives a score of 0.576 in the pos-
itive direction and “diarrhea” gains 0.159 in the negative direction. This indicates that the model fails
because it wrongly considers the word “Panera” to be the most significant word in the sentence.

In order to extract more distilled knowledge with less human effort, for each word, the local scores of it
in each sentence are aggregated to form a global score for the Human-in-the-loop assessment module.
The top N important words are selected and evaluated by a group of English native speakers. They rate
each on a scale from 1 to 5, indicating the extent to which they agree with the score. The words that
have been disagreed by the majority correspond to the failure modes of this model since the model does
not understand these words correctly and, therefore will possibly misclassify the sentences containing
them. These failure modes indicate the potential prediction errors of this model and are easy to explain
to the users.

To summarise, frameworks to explain models that run the image and text classification tasks share sim-
ilarities. They require Input Attribution to highlight the model’s reason and human effort to analyze them.
Some image classification model explaining frameworks define and extract certain types of knowledge to
assess the model, while the NLP classification model explanation frameworks lack an explicit form of this
module.
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2.3. Input Attribution Methods
To explain a model, there are intrinsic and post-hoc methods. Intrinsic interpretation methods are applied
to models with simple structures, such as decision trees or linear models[Mol20]. Therefore, for the complex
DNN models, post-hoc local explanations and feature relevance techniques are the most adopted explaining
methods[Arr+20]. Several methods are proposed to understand the models’ decision-making process by at-
tributing importance values to individual input features [RBS22]. In the following paragraphs, we introduce
perturbation-based and backpropagation-based attribution methods.

Perturbation-based methods perturb the inputs and observe the change in output, it attributes the input
features by removing, masking or altering them, and running a forward pass on the new input, measuring
the difference with the original output[Anc+17]. Examples of perturbation-based methods are LIME[RSG16],
RISE[PDS18] and SHAP[LL17]. While these methods estimate the marginal effect of a feature directly, they
are computational heavy as the number of features grow[Zin+17].

Backpropagation-based methods propagates a signal from the output layer of a neural network model
back to the input layer the input gradients by assigning an importance score to each neuron in each layer[Reb+20].
In this way the attributions for all input features are computed in a single forward pass through the network.
Therefore, backpropagation-based methods are generally faster then perturbation based methods[Anc+17].

One of the earliest backpropagation-based method was Saliency Map[SVZ13], it computes the image-
specific class saliency using the class score derivative. The class score function Sc is shown in Equation 2.1.
Knowing that I is the input image and w is the weight, the derivative of Sc , w, defines the attribution of the
corresponding pixels of I0 for the class c, presented in Equation 2.2.

Sc (I ) ≈ wT I +b (2.1)

2.1: A linear approximation of non-linear score model given class c, image I, class score function Sc (I ), weight w and bias b[SVZ13].

w = ∂Sc

∂I

∣∣∣∣
I0

(2.2)

2.2: Saliency map attribution method. Attribution score of pixel I0 on image I is computed by taking the derivative of the class score
function[SVZ13].

DeepLIFT(Deep Learning Important FeaTures)[SGK17] points out the saturation problem of the Saliency
Map – the gradient becomes zero at some point in a non-linear function, and a neuron can still be signaling
meaningful information even when its gradient is zero. DeepLIFT solves the saturation problem by intro-
ducing a "difference-from-reference" approach. The reference is the default or neutral state of a unit chosen
according to the domain knowledge. It is compared with the neuron activation and the attribution scores are
assigned according to the difference rather than the derivative of a single point, see Equation 2.3 and 2.4 for
the propagation details. This "difference-from-reference" approach avoids discontinuities in the gradients
and propagates the importance signal even when the gradient is zero[SGK17].

r (l )
i = Si (x)−Si (x) (2.3)

2.3: DeepLIFT attribution method. The attribution r (l )
i at neuron i in layer l is computed by comparing the neuron activation of input x

to the activation at some reference input x[Anc+17].

r (l )
i =∑

j

z j i − z j i∑′
i z j i −∑′

i z j i
r l+1

j (2.4)

2.4: DeepLIFT attribution method. r (l )
i is the attribution score of neuron i in layer l, z j i is the activation score of a neuron i onto neuron

j when input x in fed into the network, z j i is the activation of a neuron i onto neuron j when the baseline x is fed into the network. The
denominator is a normalization term. The normalized "difference from refference" is multiplied with the attribution score of neuron j
in layer l+1[Anc+17].
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Integraded Gradients proposes two axioms that each attribution method should satisfy and points out
that the former attribution methods, including DeepLIFT, fail to satisfy both axioms at the same time[STY17].
The first axiom is sensitivity, which is already addressed as the saturation problem in the DeepLIFT paper.
The second axiom is Implementation Invariance, i.e., the attributions are always identical for two function-
ally equivalent networks. DeepLIFT does not satisfy this axiom because it uses discrete gradients instead of
gradients and still backpropagates using the chain rule. Unfortunately, the chain rule does not hold for dis-
crete gradients, so the implementation invariance of the chain rule is lost in the DeepLIFT method. However,
gradients are invariant to implementation. Integrated Gradients computes the average gradient while the
input varies along a linear path from a baseline x to x, also defined as the path integral of the gradients, see
Equation 2.5. This way, Integrated Gradients satisfies the Implementation Invariance axiom.

Integ r atedGr adi ent si (x) = (xi −xi )×
∫ 1

α=0

∂F (x +α× (x −x)

∂xi
(2.5)

2.5: Integrated Gradients attribution method. α is the infinitetly small steps it takes along the path from F (x) to F(x), for each point
the gradient of F along the i th dimension is calculated. In the end, the accumulated gradient is multiplied with the "difference-from-
reference" of xi .





3
Background, Data and Model Preparation

This chapter introduces the use case, i.e., the ING email monitoring process, where the trader’s emails are
examined for incompliant content. We conducted a questionnaire to understand the concept of "incompli-
ance" better. Then the email data is introduced with the cleaning and feature engineering processes. In the
end, we present how the transformer models are trained on multimodal data, and how we select the model
for our framework.

3.1. ING Email Monitoring Process
This master thesis is in collaboration with ING, a Dutch multinational banking and financial services cor-
poration, department Trade and Communication Surveillance. This department performs electronic com-
munications monitoring according to certain trace surveillance policies, aiming to combat behaviors such
as bribery, coercion and intimidation, rumors, change of venue, front-running, and several other behaviors
that cause reputational and regulatory risk to ING. The monitored channels are chats, voice transcripts and
emails sent or received by its traders. This thesis only concerns email monitoring.

The current email monitoring process consists of two phases, keyword hit and manual reviewing. Both
are managed on Relativity Trace, a platform for enhancing company’s compliance programs with compre-
hensive surveillance technology. The keywords list is generated by industry experts who have extensive ex-
perience developing policies for global financial institutions. When an email contains any word(s) in the list,
it will be flagged in Relativity. These flagged emails required manual review by the First Line of Defense E-
communication Surveillance Alert Handler (1LOD), addressed as the "reviewers" henceforth. This team of
seven people decide whether an email should be further investigated, in that case, the email will be escalated
to the Regional Compliance (2LOD). Otherwise, it will be closed as false positive.

In real life, severe market manipulation behaviors are rare to detect via emails, often the reviewers deal
with the incompliant behaviors in a mild form. There are abundant rules and policies for the traders. To
understand the circumstances better, we conduct a survey to ask the reviewers the following questions and
we received answers from five reviewers:
Question 1: Which keywords appear the most often and have the largest possibility being escalated)?

The word "off-market" is mentioned five times; "Whatsapp" is mentioned 4 times; "front run", "viola-
tion", "colluding", "insider information" are mentioned twice.
Question 2: What are the most common issues that raise alert and require investigation?

• Change of communication channel: suggesting switching to unmonitored communication channels
such as Whatsapp, or mentioning there has been conversation going on on unmonitored channels.

• Financial files or content sent to personal email address.

• Content related to public relations, complaint or mistreatment that could affect company’s reputation.

Question 3: What are the factors that indicate an email should be closed as false positive?

• The keyword appears in the disclaimer.

• The email involves non-work related conversation.

9



10 3. Background, Data and Model Preparation

• Compliance people in the email CC.

• Discussion about meetings and schedules.

Question 4: What are the typical emails that are closed as false positive?

• Human resource related matters.

• IT related matters.

• Recurring reports.

• Automatic replies.

• Meeting invites.

From the collected answers we conclude that several most common incompliant issues are directly linked
to the presence of a certain keyword. However, there are less direct incompliant issues, such as "content
related to public relations, complaint or mistreatment that could affect company’s reputation". The answers
show that the rules and policies regarding compliancy are diverse and the reasons are sometimes difficult to
understand for non-expert.

3.2. Data
This section describes the data preparation for this thesis: measures to deal with class imbalance problem,
data splitting, data cleaning and feature engineering.

3.2.1. Class Imbalance
This thesis uses the ING traders’emails that are flagged by keywords, the reviewers examine the email and
decide whether to escalate the emails for further investigations. Only 1.4% of the flagged emails are escalated
to the 2LOD and the rest are considered false positives, which means that the distribution of classes in this
dataset is not uniform. Therefore, we are facing the class imbalance problem which leads to suboptimal clas-
sification performance[CJK04]. To combat the imbalanced nature of the data, We perform undersampling,
i.e., process of decreasing the amount of majority target instances[MRA20] by only using one month of false
positive emails while collecting escalated emails from January 2021, the beginning of their use of Relativity
Trace for email monitoring purpose, to March 2022. In this way we utilize all the escalated emails existed at
the time.

3.2.2. Terms and Data splitting
To avoid ambiguity, e.g., false positive emails in monitoring process versus model’s false positives, we will
address the escalated emails as "incompliant" emails and the false positive emails as "compliant" emails. In
the sense of binary classification, the incompliant emails forms the positive group as it is the minority of the
data[SWK09].

The data is split in the ratio 8:2. There are 17’947 emails in the train set, in which 16.38% - 2’940 emails
are incompliant. There are 4’487 emails in the test set, in which 16.89% 758 emails are incompliant.

3.2.3. Data Cleaning
We perform data cleaning on the email data downloaded from Relativity Trace. The original email data con-
tains its reply and forward history. Since one data point corresponds to one single email in this thesis, we
extract the current email and leave out the historical record. Besides, the original data contains non-English
emails. These are selected and left out by filtering on the language composition feature. The detection of the
language composition is done on Relativity Trace. We only select emails that contain more than 85% English.

In a later stage, we discovered that there are some flaws in the original data set, i.e., once an email is
escalated, the whole email chain (email that this email replied to, email that replied to this email, and so on)
are all escalated so that the 2LOD can get the full picture of it. Therefore, all emails on the email chain have
an "escalated" label, even if some do not contain any incompliant content at all. We address this issue as an
"incompliance in history" problem henceforth.
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3.2.4. Feature Engineering
Inspired by the 1LOD’s responses to the questionnaires, we decided that some of the metadata are also in-
teresting to be taken into account. Therefore, the email data contain not only the email title and body but
also the following features: 1, number of receivers (Receivers). 2, whether there is a personal (non-ING) email
address(es) in the receiver list (ReceiverPers). 3, whether the email is sent from a personal (non-ING) email
(SenderPers).4, the length of the email(length) 5, number of times the email has been forwarded or replied
(posInChain).

3.3. Bert Transformer for Text Classification
This project deals with not only text but also numerical and categorical features, i.g., length and number of
receivers. We tried two methods to let the transformer handle the extra modalities. The first way is to describe
the numerical and categorical features in a sentence, for example, "sent to 5 receivers, contains 100 words,
forwarded 3 times". This sentence is appended at the beginning of the email title and body. Then this piece
of concatenated text is fed into the transformer as input. Since the numerical and categorical features are
transformed into text, we call this method "Unimodal". The other way is to combine the output of the trans-
former model with numerical and categorical features. Then this combined multimodal representation is fed
into the task-specific final layers. This framework of Multimodal-Toolkit 1 is introduced by Ken Gu [GB21].
This research proposed seven feature combining methods. All the combining methods plus the Unimodal
method are tested on regression, binary classification, and multiclass classification tasks. Since this project
involves binary classification, we extract the results for binary classification task and present them in Table
3.1, where we learn that the best-performing methods are Unimodal and Weighted Sum, i.e., weighted fea-
ture sum on text, categorical, and numerical features. Equation 3.1 shows the details of the Weighted Sum
combining method.

F1 AUPRC

Text Only 0.957 0.992
Unimodal 0.968 0.995

Concat 0.958 0.992
MLP + Concat 0.959 0.992
Concat + MLP 0.959 0.992

Attention 0.959 0.992
Gating 0.961 0.994

Weighted Sum 0.962 0.994

Table 3.1: The F1 score and AUPRC score of different combining methods on binary classification problem[GB21].

We run both Unimodal and Weighted Sum on the ING email data. For the Unimodal approach we use
HuggingFace’s Bert transformer. HuggingFace2 is an open-source library of carefully engineered state-of-the-
art Transformer architectures and a collection of pre-trained models under a unified API [Wol+19]. For the
Weighted Sum approach, we use Multimodal-Tookit.

W ei g htedSum m = x +wc
⊙

Wc c +wn
⊙

Wnn (3.1)

3.1: Equation for Weighted Sum combining method, where x is the text features outputted from a Transformer model. c is the prepro-
cessed categorical features and n is the preprocessed numerical features. m is the combined multimodal representation. W represents a
weight matrix. Lower case letters represent 1D vectors[GB21].

The performance of both methods is shown in table 3.2. We conclude that Unimodal has an overall higher
score than Weighted Sum, except that it has a lower precision score. The Unimodal transformer identifies 511
of the 758 non-compliant emails in the test set, which leads to a recall score of 0.67. Besides, 610 emails
are predicted as non-compliant, of which 511 are true positives; hence the model precision is 0.84. Further-
more, the F1 score is 0.75. Since the data is imbalanced - 16.38% of the train set and 16.89% of the test set is
non-compliant emails, we also calculated the AUPRC score as it is more informative than the ROC-AUC score

1https://github.com/georgian-io/Multimodal-Toolkit
2https://github.com/ huggingface/transformers
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when evaluating binary classifiers on imbalanced datasets [SR15]). The Unimodal gains an AUPRC score of
0.839. For this thesis, we use the Unimodal method and its results for further inspection.

Unimodal Multimodal - Weighted Sum

Precision 0.84 0.99
Recall 0.67 0.2

F1 0.75 0.33
Accuracy 0.92 0.86
AUPRC 0.839 0.606

Table 3.2: Performance of Unimodal and Multimodal transformer using Weighted Sum combining method.
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Approach

This chapter presents our framework, which starts with Cohort Location to locate the significant data subsets.
Then it follows the "attribution, human-in-the-loop, extraction" workflow to explain the transformer model:
the input data is attributed by Integrated Gradients, and we define and extract three types of model reason
through diverse ways of inspection.

4.1. Cohort Location
We perform Error Analysis on the test set prediction results (see Chapter 3) using the Responsible AI toolbox1,
a suite of tools for model debugging and responsible decision-making, developed as a collaboration between
Microsoft Research Aether Committee and Azure Machine Learning. It leverages model performance statis-
tics, counterfactual explanations and exploratory data analysis to debug and assess the model. In this project,
we only use the Error Analysis functionality (see Section 2.1), which requires numerical features, ground truth
labels and model predictions. As the text data is not applicable to this functionality, we input the emails meta
data features and discarded the text data.

Error Analysis outputs a decision tree that learns the model’s failure conditions by finding the best splitting
feature value regarding the model performance. Each node represents a cohort of data, and the path to the
node defines a specific feature condition in the data, indicating the characteristics of the cohort. For example,
in Figure 2.1 the highlighted leaf node represents the data subset where emails have been forwarded or replied
less than or equal to 1.5 times, contain more than 359.5 words and have less than or equal to 1.5 receivers. The
fraction inside the node represents the total number of emails and the number of wrongly predicted emails in
each of a cohort. For each cohort, the error rate and error coverage are calculated. Error rate is the ratio of the
number of wrongly predicted emails to the total number of emails in the cohort. Error coverage is the ratio of
the number of wrongly predicted emails in the cohort to the total number of wrongly predicted emails in the
test set. For example, the error rate of the highlighted leaf node in Figure 2.1 is 0.52% (3/572), and the error
coverage is 0.88% (3/346).

Through Error Analysis, the test set is segmented into several cohorts. For further inspection, we could
then focus on the significant cohorts, i.e., cohorts with either highest or lowest error coverage/rate, since
cohorts as such provide insights to the model behavior and initiate hypotheses and questions prior to the
local level inspection. The cohort-based inspection will also save the human effort since we do not need to
inspect the entire test set.

4.2. Input Attribution
Error Analysis provides high level understanding of the model’s performance, i.e., which combination of fea-
ture values lead to high or low error rate/coverage. After selecting the significant cohorts, we dive into each
of them with some hypothesis and questions related to the cohort characteristics. To enable local level in-
spection, we use transformers-interpret2, which is a model explainability tool exclusively designed for Hug-
gingface Transformers. The core attribution method of transforemer-interpret is Integrated Gradients (see

1https://github.com/microsoft/responsible-ai-toolbox
2https://github.com/cdpierse/transformers-interpretmultilabel-classification-explainer

13
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Section 2.3). The MultiLable Classification Explainer from this toolbox takes the trained Transformer model
and text as input, generates attribution score for each word in the text. From such scores we understand at
which words or phrases in an email the model looks at when making the prediction. The attribution scores
are visualized using highlights on the text. The higher the score, the darker the shade.

4.3. Human-in-the-loop
In this section we introduce how the inspection is done after the Cohort Location and Input Attribution. We
incorporate Human-in-the-loop to annotate the ground truths and perform the human-model reason com-
parison. We define three types of model reason and provide a systematic way to extract them.

4.3.1. Ground Truth Generation
We select a set of emails in the test set and have the reviewers highlighted the phrases that support their de-
cision to escalate the emails. These highlighted emails serve as the ground truth and will be used to evaluate
the model’s reasoning, i.e., whether the model really knows why an email is incompliant.

This highlighting task can only be done by the reviewers, as the usual crowdsourcers will not have the ex-
pert knowledge. The reviewer team agree to mark 250 ground truths emails. Since there are 758 incompliant
emails in the test set, we can collect ground truths for one third of them. In this case, the 250 emails should
be strategically selected. We did this with the help of the Cohort Location, sometimes the characteristics of
a cohort decide that its ground truths are less important than the others. The set of selected emails and the
reason will be stated in the result section.

4.3.2. Three Types of Model’s Reason Extraction
In the SECA framework, the annotators recognized and described the entities represented by the salient pixels
to describe what the model has learned.[Bal+21]. This type of knowledge is addressed as model’s REALLY-
KNOWS in the Scalpal-HS framework[Sha+22]. This framework also advocates another type of knowledge,
i.e., the model’s SHOULD-KNOW, which represents what the model should have learned but has not. These
two types of knowledge are used to characterize model’s unknown unknowns, which are the cases where
the model is confident about its wrong predictions[AIP11]. On top of the SHOULD-KNOW AND REALLY-
KNOWS, this thesis also pays attention to what the model has learned but is incorrect when analyzing the
model’s behaviour. Therefore, we introduces three types of model’s reason: Right Reason, Wrong Reason, and
Not Learned, in which Right Reason and Not Learned correspond to REALLY-KNOWS and SHOULD-KNOW.

• Right Reason
When the model correctly identifies the incompliant emails, and the highlighted phrases, generated by
Integrated Gradients, align with the human reasoning. These phrases are the Right Reasons that model
gives for its predictions.

• Wrong Reason
There are two types of Wrong Reason; i.e., (1), When the model correctly identifies the incompliant
emails, but the highlighted phrases, generated by Integrated Gradients, do not align with human rea-
soning. (2), When the model predicts compliant emails as incompliant. The phrases highlighted by
Integrated Gradients in these two cases are Wrong Reasons.

• Not Learned
When the model predicts incompliant emails as compliant, or when it correctly identifies the incompli-
ant emails but provides Wrong Reasons, the actual human reasons, i.e., the ground truths, for the email
incompliancy are model’s Not Learned.

Taking an incompliant email related to some violation as an example (see Figure 4.1). If the model predicts
it as incompliant email and the phrase "cause many violations" in the email body is highlighted, it is a piece of
Right Reason. If the phrase "Let’s discuss this later" is highlighted, it is a piece of Wrong Reason. If the model
predicts it as compliant email, and the ground truth reason is "cause many violations", then this is model’s
Not Learned.

Each cohort can be divided into four groups according to the confusion matrix: true positives, true neg-
atives, false positives, and false negatives. Each group provides us different perspective regarding what the
model has learned. The four groups, the reason type(s) each of them contains, and where to extract them are
summerized in Table 4.1 and Figure 4.2.
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Figure 4.1: Examples of the three types of model’s reason in an incompliant email for both prediction classes.

Group Reason Type Where To Extract

TP All three types model highlights - ground truth comparison, model highlights only
FP Wrong Reason model highlights only
FN Not Learned ground truths only
TN - -

Table 4.1: Each of the four groups corresponding to the confusion matrix contains different reason types. Model highlights, ground
truths, or both are required to extract these reason types.

• The true positive group contains incompliant emails that the model has successfully identified. It in-
forms us about what the model has learned regarding incompliancy, i.e., by the presence of which
phrases an email should be defined as incompliant. The reasons the model provides for its prediction
could be either Right Reasons or Wrong Reasons. To judge the correctness of the model’s reasons, it
requires ground truth for the comparison. Although, sometimes using common sense and looking at
the highlights only will be enough to judge.

• The false positive group contains compliant emails that are predicted as incompliant emails by the
model. In this case, wherever the highlights are, they are Wrong Reasons. Also, ground truths do not
exist for compliant emails. Therefore, We only inspect the highlights to extract Wrong Reasons.

• The false negative group contains incompliant emails predicted as compliant emails by the model. For
this group there will be no model’s highlights. The ground truths are the model’s Not Learned.

• The true negative group contains compliant emails that have been correctly predicted by the model. It
is the majority of the test set due to the imbalanced nature of the data of this thesis. It is also the least
interesting group to study since it does not contain any type of Reasons.

4.3.3. Inspecting Methods
The following inspection methods are used to extract the three types of model reason:

• Human-model Reasoning Comparison
For the set of data where the ground truths and model’s highlights are both present, we compare the
model’s highlights with the ground truth marked by the 1LOD to judge whether the model’s reasons
align with the human’s.

• Phrase List Generation
For the set of data where the ground truth is absent, we extract all the phrases with positive attribution
scores, then categorize them and examine them manually to try to judge their correctness.
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Figure 4.2: Each of the four groups corresponding to the confusion matrix contains different reason types. Some reason types are not
applicable to, i.e., do not exist for, some group.

• Manual Inspection
For the set of data where the ground truth is absent, we perform manual the inspection on the model’s
highlights per email to find the pattern or to verify some hypotheses. For the set of data where the
model’s highlights are absent (false negatives), we perform the manual inspection on the ground truth.



5
Results

This chapter describes which cohorts of the test data are selected based on the result of Error Analysis for fur-
ther local-level inspection. For each cohort, we perform manual inspection, generate phrase lists or human-
model reasons comparison to analyze what the model has (not) learned, and judge the correctness of the
model reasons.

5.1. Significant Cohorts Selection on Error Analysis Results
The results of Error Analysis visualized as a decision tree are shown in figure 5.1. The root’s left subtree con-
sists of nodes with a low error rate, which is reported on the node as a fraction between wrongly predicted
emails and the total number of emails in the node. However, we also find out that these nodes are mostly
true negatives, which are less interesting to inspect according to Table 4.1. On the right subtree, we select two
significant cohorts:

Cohort 1: Test data where posInChain feature has a value larger than 13.5 (see Figure 5.1).
Reason: This cohort has the second-lowest error rate in the right subtree. However, whereas cohorts with low
error rates on the left subtree are mostly true negatives, this cohort is mostly true positives (see table 5.1).In
a binary classification problem, the true positives are more interesting since true negatives are the majority.
Furthermore, we do not analyze this cohort’s left or right children nodes because they split further on the
same feature posInChain and do not differ much.

Cohort 2: Test data where posInChain feature has a value larger than 1.5 and smaller than or equal to 13.5 (see
figure 5.2).
Reason: This cohort has the highest error coverage and contains nearly half of the test set, which make it a
representative cohort.

TP FN FP TN error rate error coverage

Cohort 1 194 0 1 8 0.99% 0.58%
Cohort 2 257 205 77 1706 12.85% 84.1%

Table 5.1: Numbers of true positives, false negatives, false positives and true negatives in cohorts 1 (posInChain larger than 13.5) and
cohort 2(posInChain larger than 1.5 and smaller than or equal to 13.5), and their error rate and error coverage.

5.2. Inspection Results on Cohort 1
Some insights and questions related to cohort 1’s general statistics emerge before the local level inspection.
We answer these questions and collect the three types of model knowledge in this section.

Insight: 95% of the emails are incompliant, while the general rate of in-compliance in the test data is 16.89%.
The first insight we learned is the positive correlation between the feature posInChain and the chance of be-
ing incompliant, i.e., the more frequently the email is forwarded and replied to, the more likely it is a case to

17
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Figure 5.1: Decision tree generated by Error Analysis. Cohort where posInChain feature is larger than 13.5 is selected.

Figure 5.2: Decision tree generated by Error Analysis. Cohort where posInChain is larger than 1.5 and smaller than or equal to 13.5 is
selected.
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which the surveillance department should pay attention.

Question 1: Does the model only considers the posInChain feature and disregards the email content?
Question 2: Emails with high posInChain are not always predicted as non-compliant. There are a few true
negatives in cohort 1, see Table 5.1. Why did the model predict them to be compliant?

To answer question 1, we sampled 46 emails from the 194 true positive emails from cohort 1. According
to Table 4.1, for the true positives, we could have the reviewers generate the ground truth and perform the
human-model reason comparison. However, since we only want to know whether the model only highlights
the posInChain feature, we perform the manual inspection to save the human-in-the-loop tasks for other
cohorts.

For each email, we observed whether the model only highlights the posInChain feature. The observation
is that for all the emails in this group, the posInChain feature is highlighted. The emails can be further divided
into four cases (see Table 5.2). In the first case, the email body is rather empty – often when replying to or
forwarding an email and the only highlight locates on the posInChain feature. The second case is when there
is content in the email body, but there is no highlight on the text. Only posInChain feature is highlighted. The
third case is when some phrases or words are highlighted on the email body, but they are either insignificant,
i.e., the shades are too light, or they do not make sense at all. The fourth case is when there are highlights in
the text that make some sense. The number of appearances of these cases are shown in Table 5.2.

Cases Appearance

empty email body, highlight only on posInChain 4
no highlights on text, only on posInChain 17

some highlights on text but too low or do not make sense 18
some highlights on text 5

Table 5.2: Results of the manual inspection for cohort 1 question 1.

From this result, we can conclude that the feature posInChain is a strong indicator of email’s in-compliance
according to the model. For the first three cases, posInChain is the only reason the model predicts the emails
as incompliant. However, judging an email by its posInChain does not align with human reviewing reasoning,
as the reviewers do not look at how often an email is replied to or forwarded to decide whether to escalate it.
Therefore, judging an email’s compliance by its posInChain leads to the model Wrong Reasons.

Now we know that the model is mostly only looking at the posInChain feature. Question 2 becomes inter-
esting – why are they predicted as compliant emails while having a high posInChain? To answer question 2,
we inspect the 8 true negatives. We discovered that some of these emails involve mandatory online training
modules. They have "mandatory training" or "training modules" on their titles, and these words are high-
lighted instead of the posInChain feature, see Table 5.3, which means that the model understands that the
reminders of online training modules are compliant, even if they have high posInChain’s. This aligns with
reviewers reasoning, hence a model Right Reason.

forwarded 14 times, RE: Mandatory training | MiFID - Introduction To Investor Protection And Trans-
parency,
forwarded 14 times, RE: OUTSTANDING TRAINING MODULES,

Table 5.3: Examples of the training-related email titles.

5.3. Inspection Results on Cohort 2
Insight: Cohort 2, unlike cohort 1, is quite general. It contains 2’245 emails, more than half of the entire test
data set. It has the highest error coverage - 84.1% of the wrongly predicted emails are in this cohort.

Quetion: The questions for this cohort are general, what are the model’s Right Reasons, Wrong Reasons and
Not Learned?

We studied the true positive, false positive and false negative groups to collect the three types of reason.
According to Table 4.1, we generate the phrase list and perform model-human reasons comparison for the
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true positive group. For the false positive group, we will only generate the phrase list since there are no ground
truths for compliant emails. For false negatives, we have the ground truths only since there are no model
reasons when the model predicts the emails as compliant. Since we could select around 250 emails to let
the reviewer generate the ground truth, we randomly sampled 144 true positive emails and 114 false negative
emails in cohort 2.

5.3.1. Human-model Reasoning Comparison for True Positives
True Positives Emails with Ground Truths

There are 70 emails in which the reviewers were able to highlight the reasons for their decision to escalate
the email. After comparing the reviewer’s and model’s highlights on these emails, we evaluate the model’s
reasoning by dividing them into three categories: (1) model gives right reasons. (2) model gives partial right
reasons. (3) model fails to give right reasons. These categories take up 77%, 10% and 13% of these 70 emails ,
respectively.

• Model gives right reasons, i.e., when the model’s highlights cover the important parts of the ground
truth.

We find out that the model usually gives correct reasoning, especially for the most common incompli-
ant issues, such as violation, off-market, and un-monitored communication channels (see Table 5.3).
Besides, if the ground truth reason has to do with certain types of issues, problems, trouble or discus-
sion, the model can correctly recognize them.

We notice that it is not only the most essential words that are highlighted but the phrase or sentence
containing the words. For example, the model highlights "contact (you) via WhatsApp" instead of just
"WhatsApp", "found out the bigger issue" instead of "issue" (line 8 and 11 of Table 5.3). Therefore,
we believe the model understands the context to some extent, rather than only performing the key-
word search. Other than ground truth reasons, some highlighted words and phrases were interspersed
throughout the text. Sometimes they are valid reasons that are not in the ground truth, for example, in
row 6 in Table 5.3, the model highlighted "at non market prices". Some other times, they seem to be
quite random and do not make sense, for example, the "case" and "closely" (row 3 and 11 in Table 5.3).

Except for the most common incompliant issues, the model also works well on some less common
incompliant content (Table 5.4). For example, "invalid LEI status" and "technical breach" are kinds of
violation that are less explicit, but the model still catches them.

• Model gives partial right reasons, i.e., when the model highlights only a part of the ground truth reasons
and miss some important words or phrases.

In a few emails, the model misses some essential words or phrases. For example, in an email where
ground truths are "for your eyes only" and "keep it for myself ", the model only gives the former as the
escalation reason.

• Model fails to give right reasons, i.e., when the model completely misses the ground truth reasons.

In these emails, the model reasons are quite different from the ground truth reasons, and they are
usually too random to analyze what the model has wrongly learned regarding what is incompliant.

Sometimes some words in the ground truth reasons are highlighted by the model, but they are not the
most essential words. For example, the models highlighted "not" and "pricing" (row 4 in Table 5.5),
while the most important words are "cover up".

We conclude that for the true positive emails for which the ground truths are present, the model gives
(at least partially) Right Reasons most of the time, i.e., more than 87% of the cases. The model performs
well on emails with common incompliant issues. It is due to the large enough number of samples in
the training data. The model provides Right Reasons for some of the less common incompliant issues
as well.

True Positives Emails without Ground Truths
There are 74 emails in which the reviewers could not highlight the incompliant reasons. The two main causes
are: (1) The reasons are too complex. (2) The reasons are not in the current email but somewhere in the
forwarding and replying history.
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Figure 5.3: Model gives right reasons on common incompliant issues. The green highlights and dashed box show the model’s reason,
and the phrases in bold are the ground truth marked by the reviewers.

Figure 5.4: Model gives right reasons on less common incompliant issues. The green highlights and dashed box show the model’s reason,
and the phrases in bold are the ground truth marked by the reviewers.
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Figure 5.5: Model fails to give right reasons. The green highlights and dashed box show the model’s reason, and the phrases in bold are
the ground truth marked by the reviewers.

1. Reasons too complex:

There are 21 emails where the reasons of escalation are too complicated to be indicated by quoting the
email content. In this case, the reviewers will briefly describe the reason in a sentence. Some emails
were escalated due to its "off-market nature". Some emails are escalated because the members of the
compliance department are not included in the CC while they should be. Some are escalated because
the email content involves internal data and files but sent to non cooperate emails.

It is understandable the model did not predict these emails correctly. In our data, the attached files are
disregarded, so the model will not know when internal files are sent to non cooperate emails. Although
the model is supposed to learn that sending any work-related content to non -cooperate emails is in-
compliant, we do not see evidence in the test data confirming that the model understands this. It is
probably due to the lack of data. Besides, we do not have "compliance member in CC" as a feature, this
information is missing in our data. Even if we add in this feature, it is highly possible that we do not
have enough data to train the model.

2. Reasons not in Current Email:

There are 28 emails where the incompliant content appears somewhere else in the email chain than
the current one. It is a flaw in our data set that once an email is escalated for its in-compliance, all the
emails in the chain, i.e., emails that reply to/forward this email or being replied to/forwarded by this
email, are escalated.

3. Other: There are 24 emails that either have a wrong label according to the reviewer during the high-
lighting process, or the transformers-interpret tool can not run on them due to RAM and Tokenizer
problems.

For the emails that are without ground truths due to the first two reasons, we did not expect the model to
predict them as incompliant emails. For some cases in "Reasons too Complex" it is not possible for the model
to learn the rules due to the lack of information in the data, and for the cases in "Reasons not in Current
Email", there is nothing incompliant about the email in the first place. However, the model still predicts
them as incompliant emails. We can not conclude what exactly has gone wrong from the model’s highlights.
Except from the "posInChain feature domination" problem we discovered in cohort 1.

5.3.2. Phrase List Inspection
We generated phrase lists (see 4.3.3) for cohort 2 true positive and false negative groups and studied them
separately by manual inspections.

True Postivie Phrase List Insepction Results
Lots of phrases highlighted by transformers-interpret are valid reasons for email’s incompliancy. The model
is able to identify the most common compliance issues. Some examples of violation, off-market, issue, and
unmonitored channels related reasons are shown in Table 5.5. The phrases in bold letter are the model’s
highlights. For better understanding, the surrounding words are also given.
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There are also cases where the highlighted phrases are unlikely the actual reasons for escalation, pre-
sented in Table 4.4. For these phrases, we do not need professional knowledge to define them as model’s
Wrong Reasons. However, it is important to notice that there are usually several phrases highlighted in an
email. Therefore, providing one Wrong Reason does not mean that the model does not provide any Right
Reason somewhere else in the email.

Violation-related Model Right Reasons

the trade has been also initiated by the us sales location , it seems as a real violation.
could you please explain why we have still a violation?
as this has taken so long and has created so many violations for such a small client

Off market-related Model Right Reasons

however in accordance with section 9 (trading at non - market prices) of the fm sales
the other 2 are still outstanding as quite significantly off market
the price to client is off market . can we check why please?

Issue-related Model Right Reasons

indeed there was an issue with the logic that sends the prices to rfq, apologies for all the inconvenience
caused.
we also need to know how long this has been an issue for, as that is likely to be a factor in any punish-
ment we may face.
or if it was a technical problem with the system and he is not at fault.

Unmonitored Channels- related Model Right Reasons

the response I have received from Corporate Comms in relation to your request to use Twitter to com-
ment
I’ve tried to contact you via WhatsApp and Teams but have not received a reply yet.
I sent you a whatsapp message telling you to

Table 5.4: Model Right Reasons in Cohort 2 True Positives.

Model Wrong Reasons
Which time suits you best?
... since it seems he was active and performed.
following the comment you kindly provided on ...
I have no objections to his collaboration with ...
The only thing I recall from these discussion is that the support team ...

Table 5.5: Model’s Wrong Reasons in Cohort 2 True Positives.

The numerical features, described in a sentence and appended before an email, are frequently high-
lighted. The posInChain features are highlighted most frequently(208 times), usually the "re:", which means
"reply", at the beginning of the email title, is also highlighted. However, not only high posInChain values are
highlighted, as one may assume after learning the results from cohort 1, but also the low posInChain. Besides,
the feature length has been highlighted 108 times and Receiver 34 times. These numbers do not add up to 298,
as stated in Table 5.6, because some phrases span two to three features, i.g.,"sent to 2 receivers, contains 50
words, forwarded 3 times". Besides, the other features, senderPers and receriverPers did not appear in the
phrase list. These two features are used due to the rule "one should not send or receive work-related content
from private email". It is possible that due to the small sample size of this type of incompliant email, the
model has not learned this rule.

Next to the usual phrases and numerical features, there are phrases of unexpected types.For example,
some phrases contain only dates, names, country or city names, while others are only numbers and punctu-
ation. The appearance of each of these types is calculated and presented in Table. 5.6

Country names have been highlighted 31 times in 22 emails, and person names have been highlighted 38
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Types Appearance

Date/Country/Name 82
Numerical Features 298

Numbers and Punctuation Only 155
Phrases 387

Table 5.6: Types of phrases that are highlighted on in cohort 2 true positive group.

times in 31 emails. These two types of phrases appear mostly in the sender’s signature (both 55% of the cases)
at the end of an email, where the sender information such as office , title and phone numbers are listed. Most
of the time the attribution scores of these phrases are low (55% and 66% of the cases, respectively). Besides,
phone numbers (appear in Numbers and Punctuation Only) and email suffices in sender’s signature are also
frequently highlighted.

Defining whether an email is compliant by the sender’s information does not align with the reviewer’s
reasoning, hence it is model Wrong Reasons.

False Postivie Phrase List Insepction Results
The composition of the False Positive phrase list is similar to the one of the True Positives, i.e., there are

numerical features, dates, names and numbers/punctuation next to the usual phrases. We discovered that in
around 30% of the cases, the model reasons resemble those Right Reasons in true positives emails and seem to
be valid. Some examples are shown in Table 5.7. These fractions of different emails appear to be incompliant
while they are not, this implies two data set characteristics: (1) inconsistency. The issue described in an email
may have already been resolved by the time the reviewer reviewed it, which means that an email could have
different labels based on what the reviewers know rather than only the context. (2) complexity. It could be
declared somewhere else in the email that the described issue does not need to be escalated, i.g., compliance
people are already aware of the issue, or there is no incompliant content at all.

RE: Violations on PS Limit
I don’t know the exact reason for this violation;
Quick question with regard the below violation:
FW: Little incident on Friday,
Portability is wildly off market for a company of this size and without history.
to ensure off market levels do NOT affect your ratings.
I can’t find your number on WhatsApp. . . .

Table 5.7: Model’s Wrong Reasons in Cohort 2 False Positives that seem to be Right Reasons.

I will send you a MS Teams invitation shortly.
FW: You have new held messages,
I have sent over the details of the project to check if they have any concerns.
FW: Approach for uncollateralized client facing summit trades
how are you doing? Indeed the situation is improving in the UK.
Its one of the priority Open Trading items on our list.
Thanks for the investigation and the confirmation that something was show visually from your side.

Table 5.8: Model’s Wrong Reasons in Cohort 2 False Positives.
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Conclusion and Discussion

The proposed framework explains the model utilizing both the categorical/numerical features and the text. It
starts with a Cohort Location module followed by the "attribution, human-in-the-loop, extraction" workflow.
Besides, it deals with limited human resources by providing insights regarding which set of data should the
human-in-the-loop tasks be brought in.

This framework incorporates the numerical and categorical features in two aspects, since (1) Error Anal-
ysis run on numerical and categorical features to locate the cohorts, and (2) They are encoded in the text and
run by the Bert model. Hence they can be attributed, i.e., we can examine which features were important for
the model when making the decision.

Besides preserving the information in the numerical and categorical features, cohort location has two
other advantages. (1) It organizes the test data into cohorts, provides insights into them, and initiates ques-
tions and hypotheses. For example, it helps us to discover that cohort 1 contains mainly true positives. See-
ing the positive correlation between the posInChain feature and the incompliance, we wondered whether
the model only looks at the posInChain feature. With this hypothesis in mind, we inspect the emails in the
cohort one by one to check where the model’s highlights are. In this way, the cohort location directs our local
inspections so that we know where to focus. (2) It helps us to sample the limited data for the human-in-the-
loop tasks. In this research, we could select around 250 emails to have the reviewers mark the incompliance
phrases. Since the inspection on cohort 1 could be done without ground truth, we only check whether the
model is only looking at one feature and neglecting the text. We choose not to select the data in cohort 1 but
focus on other cohorts.

The proposed framework defines three types of model reasons and argues how they are collected from the
four groups according to the confusion matrix in Section 4.3.2. Model’s Right Reasons, Wrong, Reasons and
Not Learned help to understand the model’s behavior from different perspectives. Following this process,
we found out that the model gives right reasons for the most common incompliant issues most of the time,
although it leads to some false positives, i.e., compliant emails with phrases that seem incompliant that the
model cannot distinguish. Some typical Wrong Reasons are the posInChain feature, dates, and information
in sender signature as incompliance reasons, which does not align with human reasoning. We also found
some types of incompliance reasons that the model does not know, i.g., when the reasons are related to the
attachments and when the compliance people are already aware of the issues, which are the model’s Not
Learned. These three types of reasons provide us with a global understanding and assessment of the model,
as well as insights for model improvement.

6.0.1. Limitation and Future Work
Our framework explains a multimodal transformer when the numerical and categorical features are trans-
formed into text. However, there are different methods to combine the text with the numerical and cat-
egorical features in Gu’s study[GB21]. This framework is not directly applicable to some combine feature
methods (see Table 3.1), where the text features outputted from a Transformer model are added with the nu-
merical/categorical features. In that case, the attribution method does not work since it cannot distinguish
the features from each other. Some combine feature methods do not add up but concatenate the numeri-
cal/categorical features with text. For these methods, one only needs to write a compatible version of the
attribution method.
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Future work will refine the attribution method so that it can deal with different types of combine feature
methods and apply this framework to multimodal image classification problems. One could combine the im-
age data with categorical and numerical data as in multimodal-transfrmer[GB21], then make the attribution
method compatible with different combine methods. The other part of this framework, i.g, human-in-the-
loop tasks and three types of model reason extraction, is directly applicable to image classification problems.
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