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Abstract

Emulsions, characterized as a metastable dispersion of one liquid into a second one in the pres-
ence of surface-active agents, have complex rheology that interests both physicists and industries.
Depending on the volume fraction of the dispersed phase (φ), emulsions can display both solid-
like and liquid-like behavior. Rheometrical measurements of complex fluids usually yield several
flow curves, each corresponding to a certain volume fraction. Scaling analysis assists in investi-
gating the fundamental traits of those flow curves by rescaling the rheometrical data onto several
master curves described by a few non-dimensional variables.

Whereas experiments successfully scaled the data onto master curves are usually of three-
dimensional complex fluids, many numerical simulations are of low-cost two-dimensional flows,
lacking direct referable experimental data. Additionally, scenarios involving droplets, bubbles,
and particles trapped at the interface of two fluids inherently constitute a two-dimensional sys-
tem. Motivated by these considerations, the project aims to measure the rheology of emulsion
monolayers.

A cylindrical Couette ring configuration was built to facilitate the generation of monolayers and
rheometrical measurements. The image processing method was developed to deal with three
distinct scenarios, high φ, medium φ, and low φ, depending on the concentration of droplets. The
steady velocity profiles and the averaged packing fractions were acquired through image analysis.
Subsequently, the local rheology was deduced and compared with the macroscopic rheological
measurement at various packing fractions. While the densely packed emulsion monolayer is a
shear-thinning yield stress material, the spatial cooperativity (non-local effect) and capillary force
(wall effect) were found to have a profound influence on the rheology.
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1
Motivation

1.1. Introduction
An emulsion is a metastable dispersion of one liquid into a second one in the presence of surface-
active agents [1]. Emulsions are of two types, depending in principle on the nature of the dis-
persed phase and which kind of liquid forms the continuous phase: oil-in-water (O/W) and
water-in-oil (W/O) [2]. Other more complex emulsions are termed multiple emulsions, in which
the droplets of the dispersed phase themselves comprise emulsions. In many industries, includ-
ing foods, cosmetics, paints, pharmaceuticals, biological systems and other household products,
emulsions are commonly used and may be encountered throughout all stages of the industrial pro-
cess, both desirably and undesirably [3]. In the petroleum industry, for instance, produced water
from crude oil extraction, which consists mainly of an emulsion, has significant environmental
consequences and is in great demand for advanced treatment techniques [4].

Emulsions are complex systems. The measurement, adjustment, and prediction of the flow prop-
erties of emulsions have long been of interest to physicists and industry [5]. In industrial appli-
cations, the rheology of emulsions is vital and must be tuned to meet the requirements of the
products or processes [6]. For example, the stability of an emulsion is strongly associated with
its flow properties, which affects the product quality in the food, cosmetic and pharmaceutical
industries [7]. At a fundamental research level, obtaining a rigorous quantitative description of
the flow properties of emulsions is challenging. Emulsions can exhibit both solid-like and liquid-
like behavior depending on the volume fraction of the dispersed phase (φ). Below a critical value
φc, emulsions display non-Newtonian flow behavior. However, when φ exceeds φc, emulsions
become solid-like and only begin to flow when the yield stress is surpassed. This transition
from fluid-like to solid-like behavior is known as jamming, and the critical volume fraction φc

corresponds to the jamming point J. Similar rheological behavior is observed for other complex
fluids with the dispersion of one substance in a continuous phase, such as liquid foams, colloidal
suspensions and granular media[8]. Despite the fact that these complex fluids are composed
of substances with vastly varied physicochemical properties and length scales, researchers are
interested in determining whether there are generic descriptions for their rheological properties.

Rheometrical measurements of complex fluids usually yield several flow curves, each corre-
sponding to a certain volume fraction. One possible approach is to describe the flow curves
with several dimensionless variables, where the rheometrical data collapse onto several master
curves. Nordstrom et al. [9] and Paredes et al. [10] have successfully scaled their experimental
steady-flow data with respect to the distance to φc, ∆φ = φ − φc, into two master curves for
soft-colloid and emulsion systems, respectively. These master curves are plotted as σ/|∆φ|∆

1



2 Chapter 1. Motivation

versus γ̇/|∆φ|Γ, and the scaling exponents for the two systems are the same within numerical
uncertainty, with ∆ ≈ 2 and Γ ≈ 4. Similar results have been shown by Basu et al. [11] and
Dinkgreve et al. [12] for other complex systems, which further confirms the universality of the
flow properties near and across the jamming point of complex fluid systems with different inter-
particle interactions. The advantage of this scaling approach is that the flow properties of complex
fluids can be predicted using a small number of crucial variables, which allows for the identifi-
cation of universal flow behavior and can be used to better understand the underlying physics of
these systems. On the other hand, numerous simulations [13, 14, 15] have investigated the uni-
versality of the scaling as well, but their scaling exponents tend to differ from experiments. These
differences might indicate that the model of the numerical simulation does not fully describe the
experimental interparticle interactions [16].

Whereas experiments successfully scaled the data onto master curves are usually of three-
dimensional complex fluids, many numerical simulations are of low-cost two-dimensional
flows, lacking direct referable experimental data. Several two-dimensional experiments [17,
18, 19] have been performed to investigate the rheology of complex fluids and successfully
fitted experimental data with appropriate models, where 2D configurations allow simultaneously
measuring the macroscopic rheology and visualizing the local droplet motions. However, the
ranges of shear rates and packing fractions covered were limited by the stability of materials,
which were insufficient to perform universal scaling analysis. A detailed discussion is presented
in Section 2.4.

1.2. Research objectives
Previous two-dimensional experiments were performed on liquid foams with a confined plate
on top to improve the material stability, introducing an additional drag on the system and ham-
pering the rheometrical measurements. Instead, a monolayer of emulsion raft was generated
in our research, which was proven to be stable enough for the measurement. Flow properties
of two-dimensional emulsions can be measured by interfacial rheological technique. One main
challenge for interfacial rheological measurement is distinguishing between interfacial and bulk
contributions. Various set-ups such as biconical bobs, magnetic rods, and the double wall ring
(DWR, [20]) have been proposed to determine the interfacial properties. This thesis used a cylin-
drical Couette ring modified from DWR to measure the steady flow properties of bidisperse O/W
emulsion monolayers.

In this thesis, we aim to

1. Design a cylindrical Couette ring configuration that can contain sufficient emulsion
droplets, facilitate capturing droplet trajectories through the camera, and allow a wide
range of shear rates and volume fractions.

2. Measure the steady flow properties of emulsion monolayers at various volume fractions by
sweeping the shear stress and shear rate over several decades.

3. Perform image analysis to obtain the steady flow velocity profile and investigate the emul-
sion monolayers’ local rheology.

4. Fit the macroscopic and local rheometrical data to a possible constitutive model and inspect
whether flow curves could be rescaled onto master curves.



2
Background

2.1. Rheology
The term “Rheology”was invented by Professor Bingham of Lafayette College, Indiana. It means
the study of the deformation and flow of matter, where rhei is Greek for “to stream.” This section
presents an overview of basic rheology.

2.1.1. Viscosity
Given a steady shear flow, Isaac Newton hypothesized that the shear stress σ is proportional to
the shear rate (velocity gradient) γ̇, i.e.

σ = ηγ̇. (2.1)

The constant of proportionality η is called (dynamic) viscosity, which measures fluid resistance
to flow. The viscosity is constant for common flows like glycerine and water that obey Newton’s
postulate. However, for many other fluids, η is a function of the shear rate γ̇ and are therefore
called non-Newtonian. In most non-Newtonian fluids, the viscosity decreases with increased
shear rate, which is distinguished as shear thinning behavior. On the contrary, shear thickening
fluids experience an increasing viscosity with shear rate, see Figure 2.1(a).
A sketch of the flow curve of a shear thinning material is shown in Figure 2.1(b). The black
curve indicates that in the limit of very low shear rates, the viscosity is a constant, while in the
limit of high shear rates, the viscosity is again a substantially smaller constant. The asymptotic
viscosity values at very low and high shear rates are denoted as η0 and η∞, respectively. The
Cross equation [22] is commonly used to describe the shear-thinning material as

η − η∞
η0 − η∞

=
1

1 + (K1γ̇)m
, (2.2)

where K1 is a constant parameter with the dimension of time and m is dimensionless. Another
two common models are the Power law and Sisko models; both are simplified from the Cross
equation by making certain assumptions. The power law model is applicable for the case η & η0
and η ' η∞, where the Cross equation is reduced to

η = K2γ̇
n−1, (2.3)

withK2 = η0/Km
1 and n = 1−m. Further, if η & η0, we have

η = η∞ +K2γ̇
n−1, (2.4)

3
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Figure 2.1: (a) Flow curves σ(γ̇) of a shear thinning (green), Newtonian (black), and shear thickening (red) fluid.
(b) Typical behavior of a shear thinning liquid with zero shear viscosity (black) and yield stress (orange) (Figure
reproduced from [21]).

which is called the Siskomodel [23]. The benefits of adopting such equations are that it is possible
to describe the shape and curvature of a flow curve through a relatively small number of fitting
parameters and to predict behavior at unmeasured shear rates [21].

In addition, some materials respond elastically to small applied stress but flow once threshold
stress is exceeded. This threshold stress is called the yield stress (σy), and these types of materials
are yield stress materials. The emulsion is one classical yield stress material: for volume fraction
φ higher than the critical one, φc, yield stress emerges. The most commonly used model for
describing yield stress materials is the Herschel-Bulkley model [24], which presupposes well-
defined yield stress:

σ = σy +Kγ̇β, (2.5)

where K is called the consistency and both K and β are adjustable model parameters. After the
yield stress is overcome, β = 1 refers to Newtonian fluid; β < 1 indicates fluids have shear
thinning behavior; β > 1 is fluids with shear thickening behavior.

2.1.2. Viscoelastic
About ten years before Newton, Robert Hooke developed the well-known True Theory of Elas-
ticity that for an elastic medium, the shear stress and shear strain γ are related through:

σ = Gγ, (2.6)

with G the shear modulus.

Many materials show behavior somewhere between a viscous liquid and an elastic solid and are
therefore called viscoelastic. A simple method of describing viscoelastic is the mechanical mod-
els, where elastic deformation is represented by a spring with stiffnessG and viscous response by
a dashpot, characterized by η. One straightforward model is the Maxwell model, which results
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from a serial combination of the spring and the dashpot (with the same σ). Therefore, the total
strain is the sum of the strains on the dashpot and spring, i.e.,

γ =
σ

G
+

σ

η
· t. (2.7)

Another simple model is the Kelvin model, with the spring and the dashpot placed in parallel
(with the same γ) and the resulting total stress is

σ = Gγ + ηγ̇. (2.8)

2.1.3. Rheological measurement
The flow properties of fluids can be determined using rheological measurements, which are per-
formed using rheometers. Rheometers are apparatuses that either apply a torque along the axis
of a free-rotating rod and measure the resulting angular motion, or regulate the angular motion
and measure the resulting torque. Depending on the measuring geometry, torque and angular dis-
placement can be converted into shear stress and shear rate, respectively [25]. Figure 2.2 depicts
three normally used measurement geometries:

(a) (b) (c)

Figure 2.2: Measuring geometries: (a) cone-plate, (b) plate-plate and (c) Couette.

1. Cone-plate geometry. The gap between cone and plate increases linearly with radius, re-
sulting in a homogeneous shear rate.

2. Plate-plate geometry. The top plate is rotated to shear the fluid and the shear rate increase
linearly with the radius at a constant angular velocity.

3. Couette geometry. To reach a homogeneous shear stress, the inner wall’s radius needs to
be close to the outer wall.

A commonmethod to determine the yield stress is steady shear measurements, where shear stress
and shear rates sweeps are performed. The former determines the shear rate while applying
shear stress within a certain range, while the latter varies the shear rates within a particular range.
By fitting flow curves, i.e., shear stress as a function of the shear rate, to a rheological model,
the value extrapolated to zero shear rate is the yield stress. However, the accuracy of different
models when determining the yield stress depends on the lowest-measured shear rate used for the
extrapolation [26].
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2.2. Emulsion
Emulsions are thermodynamically unstable due to the dispersed system’s large positive interfa-
cial free energy, which decreases with the reduction of the interfacial area. The emulsion struc-
ture evolves with time due to drainage, flocculation, coalescence, and Ostwald ripening [27].
Drainage is essentially governed by the density difference between the two liquid phases, lead-
ing to a downward flow. Flocculation refers to the formation of droplet aggregates caused by
depletion attractions. Coalescence is the merging of two droplets resulting from the liquid film
rupture between them. Because the capillary pressure in the small droplet is higher than in the
larger droplets, a mass transfer from small to big droplets happens, called Ostwald ripening.
The flow properties of emulsions are influenced by several factors, such as the viscosity of the
liquids, type and concentration of the emulsifier, size distribution of the droplets, and temperature.
A parameter of paramount importance is the droplet concentration, normally called volume frac-
tion φ, given by the ratio of the dispersed phase’s volume to the emulsion’s total volume. When
φ is higher than a critical value φc, the dispersed droplets are no longer spherical, and the system
is jammed. An emulsion consisting of the same-sized droplets is called a monodisperse emulsion.
The critical volume fraction φc equals to π

2
√
3
≈ 0.9069 for two-dimensional monodisperse emul-

sions. However, as the droplet size variation (polydispersity) increases, a disordered emulsion
forms, with a lower critical volume fraction, around 0.84. In three dimension, a monodisperse
emulsion jams at φc =

π
3
√
2
and a polydisperse one at φc ≈ 0.64.

Several kinds of force coexist to various degrees in flowing emulsions. Firstly, there are repul-
sive or attractive forces between particles. For instance, The former can arise from electrostatic
charges or surfactant material adsorbed on the droplet surfaces. The latter can arise from the Van
der Waals attraction. Secondly, the Brownian (thermal) forces triggered by thermal fluctuations
may affect the movement of droplets. In this thesis, however, emulsions are large (∼ 2mm)
enough to neglect the Brownian force. Thirdly, the viscous forces acting on the droplets need to
be considered, which are proportional to the local velocity difference between the droplets and
the surrounding fluid. Hence the emulsion viscosity is usually considered as the viscosity relative
to that of the continuous phase. For dilute dispersed emulsion, Einstein [28] showed that single
particles increased the viscosity of a liquid as a simple function of their volume fraction:

η = ηs(1 + b0φ), (2.9)

where b0 is an adjustable parameter, η is the viscosity of emulsion and ηs is the viscosity of
the solution. For concentrated Newtonian emulsions, the Krieger-Dougherty [29] equation is
commonly used to describe the emulsion viscosity,

η = ηs(1− φ/φc)
−m, (2.10)

againm is an adjustable parameter. Furthermore, for the binary mixture, the Krieger-Dougherty
equation becomes [30]

η = ηs(1− φ1/φc1)
−m1(1− φ2/φc2)

−m2 . (2.11)

2.3. Universal scaling analysis
Generally, Complex fluids are dispersions of one substance in a continuous phase, such as emul-
sions, foams and polymers. Thesematerials play an essential role in industrial processes and prod-
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ucts [3], and understanding and predicting the flow behavior of complex fluids is of remarkable
fundamental and practical importance [31]. Despite the significant differences in physicochemi-
cal properties and length scales between the complex fluids, these materials exhibit surprisingly
similar rheological properties, of which volume fraction φ is an important parameter.

Rheometrical measurements of complex fluids usually yield several flow curves, each corre-
sponding to a certain volume fraction. For instance, Nordstrom et al. [9] and Paredes et al.
[10] measured the rheology of colloidal gel particles and emulsions respectively, see Figure 2.3.
When φ > φc, complex fluids will not flow but deform elastically under small stresses unless the
yield stress is exceeded, whereas systems with φ < φc show Newtonian behavior at low shear
rates. When shear rates increase, shear thinning behavior gradually emerges for both φ > φc and
φ < φc.

(a) (b)

Figure 2.3: Shear stress versus strain rate given several different volume fractions (a) for colloidal gel particles
(Figure reproduced from [9]). The fluid is driven through the microfluidic channel by the pressure gradient. The
dashed lines are fit to the Hershel-Bulkley model, while the subcritical cases exhibit no yield stress and reduce
approximately to a power law. (b) for castor oil emulsion sheared in a cone-plate geometry. The solid lines represent
the Herschel-Bulkley fit and in the subcritical branches are the Cross fit. Black symbols and and blue symbols
correspond to samples with φ > φc and φ < φc respectively. (Figure reproduced from [10])

Furthermore, Nordstrom et al. and Paredes et al. respectively scaled the log-log flow curves
on two branches, see Figure 2.4: at low shear rates, the supercritical master curve approaches a
constant, which corresponds to the existence of the yield stress for a jammed system, whereas the
subcritical master curve is close to a straight line with a unit slope, as will be shown later, which
confirms the Newtonian behavior for φ < φc system. On the other hand, both two curves exhibit
shear thinning behavior, with slopes smaller than one at high shear rates. Two exponents,∆ andΓ,
need to be extrapolated from data fitting, and experiments for different complex systems provided
similar values (see Table 2.1), with∆ ≈ 2 and Γ ≈ 4. One implicit parameter, the critical volume
fraction φc, is also extrapolated from scaling analysis since it is nontrivial to reach the jamming
point with high precision in experiments. Consequently, researchers are equally keen to explore
the rheological behavior of complex fluids by numerical simulations, which can approach the
jamming point much more closely.

The scaling exponents predicted by different experiments and simulations are summarized in Ta-
ble 2.1. Whereas experimental research on the flow curves of yield-stress materials gave similar
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(a) (b)

Figure 2.4: Master curve showing collapse of flow curves onto two branches, one for samples with φ > φc and one
for samples with φ < φc when plotted as σ/|∆φ|∆ versus γ̇/|∆|Γ(a) for colloidal gel particles (Figure reproduced
from [9]). The first exponent uncertainties are statistical; the second are systematic. (b) for castor oil emulsion
sheared in a cone-plate geometry. Inset: Fit of the Newtonian viscosity to the Krieger-Dougherty equation, giving
ηs = 2.2× 10−3Pa · s andm = 1.71 with φc = 0.645. (Figure reproduced from [10])

scaling parameters for soft sphere systems with different interparticle interactions, numerical es-
timates of the scaling exponents were different from experiments. Dekker et al. [16] investigated
the discrepancy between simulations and experiments and gave two possible explanations: the
models used in simulations describe different material properties from experimental subjects and
the response window for two methodologies are different as simulations are able to approach the
jamming point much closer than in experiments and hence focus on situations where the accuracy
of experimental measurements is not achievable.

It is evident from the Table 2.1 that the experimental studies so far have not ventured into uni-
versal scaling analysis for two-dimensional complex fluids. Although some two-dimensional
experiments have been performed to study the rheological behavior of such materials, as will be
reviewed in Section 2.4, none gave universal scaling of flow curves, partly due to the limitations
of material stability. The potential and advantages of two-dimensional research are embodied in
the following aspects. Firstly, two-dimensional configurations allows simultaneously tracking
the position of all droplets (bubbles) and measuring rheological properties. While the rheometer
measures the global behavior of the complex fluid, the velocity profile produced from droplet
(bubble) trajectories allows the analysis of the behavior at a droplet (bubble) scale. Due to the
discrete nature of complex fluids, constructing a plausible connection between local and global
behaviors can provide more insight. Secondly, the previous two-dimensional experiments failed
to systematically distinguish the bulk flow contribution from the interfacial measurements. Only
in a small range of shear rates did investigators confirm a negligible drag contribution from bulk
flow, limiting the range of shear rates for measurements. As described in Section 2.5, the effect
of bulk flow on the measurement can be inhibited to a negligible degree by choosing a suitable
experimental geometry, and therefore the behavior of the monolayer substance dominates in the
measurement. Additionally, scaling exponents predicted by two-dimensional experiments can
serve as a reference for the 2D simulations. While numerous scaling exponents characterizing
geometry and mechanics are found to be the same in 2D and 3D [36], 2D simulations are of
preference since they are (comparatively) computationally inexpensive.
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Literature Systems Methods
Yield stress

∆

Shear rate
Γ

Shear thinning
β

Critical volume fraction
φc

K.N. Nordstrom, et al. [9]
Monodisperse

hydrogel particles,
microfluid channel

3D experiment

2.2± 0.4± 0.1 4.1± 0.6± 0.4 0.48± 0.03 0.635± 0.003

J. Paredes, et al. [10]
Monodisperse

mobile emulsion,
cone-plate

2.13± 0.11 3.84± 0.44 0.55± 0.07 0.645± 0.005

A.Basu, et al. [11]

Monodisperse
hydrogel particles,

cone-plate
2.6± 0.7 5.0± 1.0 0.52± 0.16 0.61± 0.03

Bidisperse
hydrogel particles,

cone-plate
2.6± 0.8 5.6± 1.0 0.46± 0.17 0.61± 0.03

M. Dinkgreve, et al. [12]

Monodisperse
rigid emulsion,
cone-plate

2.04± 0.13 3.80± 0.34 0.54± 0.06 0.64± 0.06

Monodisperse
aqueous foam

2.21± 0.21 3.75± 0.20 0.59± 0.07 0.68± 0.03

R.I. Dekker, et al. [16]
Monodisperse

mobile emulsion,
cone-plate

2.13± 0.15 3.84± 0.59 0.56± 0.05 0.64

P.Olsson, et al. [13]
Bidisperse

frictionless disks,
harmonic repulsion

2D simulation 1.2 2.85 0.42 0.8415

T.Hatano, et al. [32]

Bidisperse
frictionless particles,
Hertzian interaction

3D simulation
1.8± 0.1 2.4± 0.1 0.75

0.6415± 0.0065

Bidisperse
frictionless particles,
harmonic interaction

1.2± 0.1 1.9± 0.1 0.63

B.P.Tighe, et al. [14]
Bidisperse

frictionless disks,
harmonic interaction

2D simulation
& model

2 4 0.5 0.8423

M.Otsuki, et al. [33]

Bidisperse
frictionless disks,

harmonic interaction
3D simulation 1 2.5 0.4 0.648

Polydisperse
frictionless disks,
Hertzian interaction

2-4D
simulation

1.5 2.75 0.54

D = 2, 0.8438

D = 3, 0.6446

D = 4, 0.4614

Table 2.1: Scaling exponents collected from experiments and simulations for systems with various interparticle
interactions. All experiments are three-dimensional and give similar predictions, ∆ ≈ 2, Γ ≈ 4, β ≈ 0.5 and
φc ≈ 0.64. Nevertheless, numerical simulations with different interparticle interactions and dimensions give various
predictions for exponents. Note that the most “classic” mixture of bidisperse packings is that large and small disks
with a 1.4:1 ratio of their radii are mixed in equal amounts [34]. The elastic forces between particles are modeled as
“one-sided springs”: fel ∼ δαel , where δ is the dimensionless compression of the spring and α = 1(3/2) corresponds
to harmonic (Hertzian) forces [35].

2.3.1. Methodology of universal scaling analysis on flow curves
This section summarizes a framework of universal scaling analysis for complex fluid flow curves.
Most of this section is adapted from Parades et al. [10], which could be a viable choice for
subsequent data fitting.

Empirical equations are usually adopted to describe the generic behavior of complex fluids, which
can fit the flow curves with a few parameters. For instance, the flow behavior of the concentrated
systems above the jamming point is often successfully described by the Herschel-Bulkley equa-
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tion (Equation 2.5), with β < 1 describing the shear thinning behavior. The Hershcel-Bulkley
model has a built-in yield stress which equals zero at the jamming point. Consequently, the van-
ishing of the yield stress with decreasing volume fraction is usually described as a power law in
the distance to the jamming:

σy = σ0|∆φ|∆, (2.12)

with∆φ = φ−φc. Belowφc, it has been reported [10] that the generically observedNewtonian-to-
shear-thinning behavior with increasing shear rate can be well described by a Cross-type equation:

σ =
ηN γ̇

1 + Cγ̇1−δ
, (2.13)

where C and δ (0 < δ < 1) are adjustable parameters. The Newtonian viscosity ηN is evaluated
from the Krieger-Dougherty equation (Equation 2.10). An equivalent power law expression is

ηN = η0|∆φ|−m, η0 = ηsφ
m
c . (2.14)

As shown in Figure 2.4, flow curves with respect to the volume fraction can be scaled into two
master curves, one for the supercritical and one for the subcritical volume fractions, by plotting
σ/|∆φ|∆ versus γ̇/|∆φ|Γ. Relations between parameters (∆, Γ, β, δ, K, m) in Paredes’s frame-
work could be derived by considering two limiting cases: γ̇ → 0 and γ̇ → ∞.

Case 1: γ̇ → 0,
σ = σy +Kγβ ≈ σy, φ > φc,

σ = ηN γ̇/(1 + Cγ̇1−δ) ≈ ηN γ̇, φ < φc.
(2.15)

Case 2: γ̇ → ∞,
σ = σy +Kγβ ≈ Kγ̇β, φ > φc,

σ = ηN γ̇/(1 + Cγ̇1−δ) ≈ ηN
C

γ̇δ, φ < φc.
(2.16)

At high strain rates, both supercritical and subcritical master curves approach an asymptotic line
log 10(σ/|∆φ|∆) = k1log 10(γ̇/|∆φ|Γ) + b1, which gives

φ > φc,
Kγ̇β

|∆φ|∆ = 10b1
(

γ̇

|∆φ|Γ

)k1

φ < φc,
ηN
C γ̇δ

|∆φ|∆ = 10b1
(

γ̇

|∆φ|Γ

)k1





⇒ β = δ =

∆

Γ
= k1, K =

ηN
C

= 10b1 . (2.17)

On the other hand, at very low strain rates, the master curve for φ < φc approach to another
asymptote log 10(σ/|∆φ|∆) = k2log 10(γ̇/|∆φ|Γ)+b2, while the other curve is close to a constant
b3:

φ > φc,
σy

|∆φ|∆ = 10b3

φ < φc,
ηN γ̇

|∆φ|∆ = 10b2
(

γ̇

|∆φ|Γ

)k2





⇒ σ0 = 10b3 , k2 = 1, η0 = 10b2 , m = Γ−∆.

(2.18)

An extra implicit variable, the critical volume fraction φc is determined from Equation 2.12 by
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extrapolating the yield stress to zero.

2.4. Two dimensional experiments on complex fluids
In the following chapter, we will describe experiments on the rheology of monolayer emulsions
(i.e., two-dimensional emulsions). Hence, this section will first review the relevant literature on
the rheological behavior of similar two-dimensional complex fluids. To be precise, all the ex-
perimental subjects in the reviewed literature are millimeter-sized two-dimensional liquid foams
due to their similar length scales and rheological properties to the emulsions used in the present
work.

For two-dimensional foams, three experimental configurations have been studied in the literature
with different boundary conditions: the Hele-Shaw cell, where bubbles are confined between two
glass plates [37], the bubble raft, where a monolayer of bubbles float freely at the surface of the
solution [38], and the confined bubble raft, where bubbles are confined between the surface of
the solution below and a glass plate on top [39]. It was found that confining bubbles with a
top plate significantly improved the stability of the foam [40], i.e., the foam rarely ruptured or
coalesced within experimental time scale and the confining plates served to suppress the vertical
deformation of the bubbles. However, there is still no consensus on what effect glass plates will
have on the rheology of two-dimensional foams. For instance, Debrégeas, Tabuteau, and Di

(a) (b)

Figure 2.5: Velocity profiles (a) for bidisperse foam confined in a Hele-Shaw geometry with inner wall rotating (•:
φ = 0.80; !: φ = 0.88; ": φ = 0.95). Note that it’s a log scale plot and the small plateau for 0 < r < 1 corresponds
to first row of bubbles, not shear rate discontinuity. (Figure reproduced from [37]) (b) for bidisperse bubble raft in a
cylindrical Couette configuration with outer wall rotating at Ω = 5× 10−3rad/s (•) and Ω = 8× 10−rad/s (#). The
inset shows a close look at the discontinuity of shear rates. (Figure reproduced from [17])

Meglio [37] sheared a bidisperse foam in a Hele-Shaw cell with a cylindrical Couette geometry
and to reduce the effect of the viscous friction between the bubbles and the confining plates, they
restricted their study to quasistatic flows, where bubbles were sheared at sufficiently low strain
rates and “the associated timescale is slower than kinematic relaxation times”. The measured
average azimuthal velocity profiles were shown to be independent of the shear rate within a
range of driving velocities, supporting their quasistatic assumption because changes in velocity
differences should result in different magnitudes of friction. In addition, the velocity profile
exhibiting a rapid exponential decay to zero over a few bubble diameters is the so-called shear
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localization behavior, see Figure 2.5 (a), and this localization of velocity becomes closer to the
driving wall as the liquid fraction (φl = 1− φ) decreases.
The nature of exponential decay reported by Debrégeas et al. implies a continuous strain rate,
but this is contrary to the conclusions from Lauridsen et al. [41, 17], where the authors sheared a
polydisperse bubble raft in a cylindrical Couette geometry at low strain rates and showed a nons-
mooth averaged velocity profile, suggesting the shear rate is discontinuous in the radius direction.
The velocity data were then fitted with a power-law model for viscosity (Equation 2.3), which
gives a good fit between the inner wall ri and a critical radius rc but fails after that, where the
shear rate discontinuity starts (the solid lines in Figure 2.5(b)). This discontinuity is called shear
banding. It should be noted that in Lauridsen and his colleagues’ experiments, the outer cylinder
was rotated, and hence the existence of rc implied that a portion of the bubble raft followed the
outer cylinder wall as if it were a solid. In addition, this critical radius was seen to be dependent
on the driving velocity, which contradicts the rate independence at low shear rates claimed by
Debrégeas et al. [37]. Gilbreth et al. [42] observed a similar shear banding for the bubble raft,
which exhibits the coexistence of a power-law fluid and a rigid body, with a discontinuity in
the shear rate. The following constitutive equation first stemmed from three-dimensional exper-
iments on emulsions [43] and foams [44], could be used to describe the coexistence of flowing
and solid-like regions:

γ̇ = 0 for γ̇ < γ̇c,

σ = µ(γ̇/γ̇c)
n, for γ̇ > γ̇c,

(2.19)

where γ̇c refers to the non-zero limit of γ̇ at rc. Another model, Herschel-Bulkley equation men-
tioned before, has a built-in yield stress and hence describes the transition from fluid-like to
solid-like behavior as well. However, this model is explicitly continuous in the shear rate and
fails to predict the discontinuity of shear rates at rc [42].
One may attribute differences in the velocity profiles in the Hele-Shaw cell and the bubble raft,
i.e., whether the shear rate is continuous and whether the velocity profile is independent of the
shear rate, to the existence of the confining plates. Interestingly, Katgert et al. [40] came to
a completely different conclusion from Debrégeas et al. and Lauridsen et al. Although, again,
bidisperse bubbles are sheared in the two-dimensional cylindrical Couette geometry, his results
showed that the velocity profiles with top plate exhibit rate dependence, whereas the velocity
profile for bubble rafts are approximately γ̇ independent, see Figure 2.6. Continuous transitions
in the shear rate and shear localization were observed in both cases. However, the shear localized
velocity profile for the bubble raft is due to the fact that stresses decay as 1/r2 in the Couette ge-
ometry, as we will see later, while for bubbles with a top plate, the much stronger rate-dependent
shear localization is the result of both geometry’s curvature and the difference in magnitude be-
tween bubble-bubble drag and bubble-plate drag. Note that at higher driving velocity, the velocity
profile has a wider localized region.
Instead of cylindrical Couette geometry, Wang et al. [18] investigated the role of the confining
plate in a plane-Couette geometry, where monolayers of monodisperse bubbles were sheared
linearly by two counter-propagating belts at low shear rates. If the quasistatic assumption is
viable, the velocity profiles should be similar for different boundary conditions; however, as
shown in Figure 2.7, the velocity profile exhibits rate independence both with and without a
top plate, but the shapes are rather distinct. The velocity profile of the bubble raft is close to a
straight line, resembling the continuous steady flow between two parallel plates. However, the
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(a) (b)

Figure 2.6: Velocity profiles for the bidisperse foam sheared in a Taylor-Couette geometry (a) with top plate: the
curves exhibit trong shear banding and rate-dependence. (b) without top plate: the curves are approximately rate-
independent velocity profiles and the shear banding is due to the curved geometry(Figures reproduced from [40]).

confined bubble flow shows shear localization, where the velocity decays exponentially. The
difference between velocity profiles has evidenced the crucial role played by the confining plate
and indicates that only considering the nonuniform stress imposed by the plane-Couette geometry
is not sufficient to explain the formation of shear localization with exponential decaying velocity
[45], similar to the case of the cylindrical Couette geometry discussed before, see Figure 2.6.

(a) (b)

Figure 2.7: Velocity profiles for the linearly sheared monodisperse foams (a) without top plate: the curves are close
to linear; (b) with top plate: the curves show strong shear banding behavior (Figures reproduced from [18]). Note
that both cases result in rate-independent velocity profiles.

Furthermore, Katgert et al. [46] gave a comparable outcome for the confined monodisperse foam
in the linear sheared geometry (Figure 2.8(a)), and they further claimed that the bidispersity of
the liquid foams contributed to the rate dependence of the velocity profile (Figure 2.8(b)). By
defining an averaged viscous friction between bubbles that balances the viscous friction between
bubbles and top plate and scaling two types of viscous friction to velocity difference∆v, Katgert,
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Tighe and Hecke [35] found that inter-bubble friction scales as Fv ∼ ∆v0.67 for monodisperse
foams and Fv ∼ ∆v0.36 for bidisperse foams. Consequently, the rate dependence of the veloc-
ity profile is attributed to the bidispersity of the foams, which “enhances the averaged viscous
dissipation inside the foam with respect to the monodisperse case”.

(a) (b)

Figure 2.8: (a) Velocity profiles of the linearly sheared monodisperse foam with a top plate, exhibiting rate-
independence for 0.083mm/s (black curve), 0.26mm/s (dark gray curve), and 0.83mm/s (light gray curve). (b)
Velocity profiles for the linearly sheared bidisperse foam with a top plate, which is rate dependent. Figures are
reproduced from [46].

To summarize, the confining plate serving to suppress the buckling of the monolayer bubbles
imposes an extra bubble-wall viscous friction to the system and hence brings about the strong
shear localized velocity profile, which cannot be fully explained by the nonuniform stress im-
posed by cylindrical Couette geometry (Figure 2.5(a), Figure 2.6(a)) and plane Couette geome-
try(Figure 2.7 (b)). Besides, by scaling analysis, the bidispersity is found to enhance the dissipa-
tion of the averaged inter-bubble friction, contributing to the rate dependence of velocity profiles
(Figure 2.6(a), Figure 2.8(b)). However, for the monodisperse foams where the competition be-
tween bubble-bubble friction and bubble-plate friction is not comparable, the velocity profiles
may remain rate-independent (Figure 2.6(b), Figure 2.8(a)). However, most two-dimensional
foam experiments investigated the rheological behavior at a fixed volume fraction. Although
very few have explored the effect of the packing fraction, they were performed at very low shear
rates due to the quasistatic limit. Such a range of volume fractions and shear rates is insufficient
to predict a universal scaling law of the two-dimensional complex fluid as in three-dimensional
experiments. Yet a plausible explanation for the shear discontinuity displayed by the bubbles
floating freely in the cylindrical Couette geometry is still expected; an appropriate model to fit
the velocity profile should be carefully chosen once this shear banding occurs. Furthermore, all
the velocity profiles shown above are both spatially and temporally averaged, neglecting the dis-
continuity nature of complex fluid; still, how the instantaneous movement of bubbles (droplets)
affects the global measurements needs further investigation.

2.5. Experimental set-up for interfacial rheology
The rheological properties of monolayer emulsions will be determined by interfacial rheological
measurements in this work. Interfacial properties can be classified as dilatation or shear, and we
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will only focus on the shear behavior of emulsions. This section presents several devices and
measuring probes available for interfacial rheological measurements.

(a) (b)

Figure 2.9: (a) Corss section of bi-cone geometry (Figure reproduced from [47]). (b)Cross section of the DWR
setup (Figure reproduced from [20].

One of the main challenges in designing an interfacial rheometer is distinguishing between the
bulk and interface contributions as they both influence the surface flow behavior. The Boussinesq
number (Bo) [48] is defined to describe the importance of the surface drag to the bulk as:

Bo =
surface drag
subpahse drag

=
ηI · V

LI
· PI

ηs · V
Ls

· As

=
ηI

ηs ·G
, (2.20)

where ηI is the surface shear viscosity (units: Pa s m), ηs is the average bulk viscosity (units: Pa
S), LI and Ls are the characteristic length scale over which the characteristic velocity V decays
at the interface and in the subphase, respectively. A length scale G is defined as AsLI

PILs
where PI

is the contact perimeter between the surface probe and the interface and As is the contact area.
When |Bo| ' 1, the contribution from the surface dominates themeasurement and forces coming
from the bulk owing to the velocity gradients in the surrounding fluid phases are negligible. This
can be achieved by minimizing the length scale G in Equation 2.20, which is dependent only on
the geometry of the measurement system. Figure 2.9 presents some common used measurement
geometries. The magnetic rod rheometer [49] imposes an interfacial shear flow by placing a
thin rod at the interfaces driven by a magnetic field. The simple geometry is a good design for
minimizingG, but the dynamic range is limited because sufficient buoyancy and surface tension
are required for the rod to float. On the other hand, bi-cone [50] geometry consisting of a disk
with a small cone angle attached to a conventional rheometer can provide a large dynamic range.
However, the length scale G is large due to its geometry.
The 2D equivalent of a double-wall Couette geometry is the double-wall ring (DWR) introduced
by Vandebril et al. [20]. It takes advantage of certain aspects of the magnetic rod and bi-cone
geometry: the length scale G is minimized, and the device can be mounted onto a conventional
rheometer easily, enabling a wide dynamic range. As depicted in Figure 2.9(b), the sample is
contained in a double-wall trough, and a square-shaped ring is positioned at the interface and
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connected to a rheometer. Sometimes openings on the ring are designed to ensure a homogeneous
surface pressure in and outside the ring. The interfacial perimeter PI = 2π(R5 + R6) and the
contact area As =

π(R2
6−R2

5)
cos(π/4) , thus the length scale G is given as

G =
LI

Ls

R6 −R5√
2

. (2.21)

However, the flow field in DWR is ill-defined. Therefore, a Couette ring modified from DWR
will be presented in the next chapter, specifically designed to measure both the macroscopic and
local rheological properties of monolayer emulsions.



3
Experimental setup and methods

3.1. Design Targets
Our experiments were designed to measure the steady flow curves of emulsion monolayers,
which, similar to Figure 2.3, consists of three main components, the shear stress σ, the shear rate
γ̇ and the volume fraction φ, with the shear rate derivable from the velocity profile. In a rheolog-
ical measurement, well-defined flow configurations are typically implemented so that, with only
geometry information and force measurement, an analytical solution exists for either the shear
stress or the velocity profile, regardless of the measured material. As discussed in the previous
chapter, a two-dimensional configuration facilitates the visualization of dispersed phases while
simultaneously measuring the rheology, and is therefore well-suited for experimentally investi-
gating the rheology of complex fluids. One of the main challenges in designing an interfacial
rheometer is distinguishing between the bulk and interface contributions as they both influence
the surface flow behavior, which can be evaluated by Boussinesq number (Equation 2.20). To
summarize, three design targets should be achieved for our experiments:

• A well-defined flow field.

• An interfacial drag dominant configuration.

• A clear visualization of droplet motions and packings.

3.2. Experimental setup
The experimental setup is shown in Figure 3.1. Two needles connected with a syringe pump
are inserted vertically to create droplets with two diameters. Oil droplets are blew into surfac-
tant solution, floating between the inner ring and the cup wall. The inner ring is connected to
the rheometer and shears the emulsion monolayers from the side, forming a cylindrical Couette
configuration. At the bottom, the LED light sheds from the side and generates a pure white back-
ground light through the glass diffuser. On the top there is a mirror tilted at 45 degrees to increase
the imaging distance from the camera. For a two-dimensional Couette configuration, the shear
stress and shear rates are calculated by

σ =
T

2πr2
, (3.1)

and
γ̇ =

vθ
r
− ∂vθ

∂r
, (3.2)
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where T is the torque measured by rheometer, vθ is the steady angular velocity, and r is the radial
position. The units for interfacial shear stress is Pa ·m.

Rheometer

Camera

Ring

Mirror

Cup

Monolayer

Needle

LED stripe

Syringe pump

Tube

Diffuser

Figure 3.1: Sketch of Couette ring configuration used in this experiment.

3.2.1. Couette-ring cup
To ensure high-quality imaging, the droplet reservoir requires a transparent bottom to optimize the
light transmission. Given that the 3D printingmaterial we utilized lacked the desired transparency,
a modular design was adopted, allowing for the separate manufacturing of the cup’s components.
The body of the cup was 3D printed using clear resin, while the mirror support and inner ring
were printed with blue resin. A circular plate fashioned from a transparent acrylic sheet (4mm)
serves as the cup bottom, with two small holes for the needles to pass through. Furthermore, the
primary body of the cup features a slanted wall to mitigate the shadowed region arising from
light refraction, see Figure 3.2(a). As depicted in Figure 3.2(b), the shadowed region emerges in
a standard beaker with a vertical wall, hampering the imaging analysis.

The modular assembly with all components connected through screws facilitates the iterative
design of the device but poses a challenge of waterproofing as well. A ring-shaped mould was
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designed to prevent leakage, which can be filled with Polydimethylsiloxane (PDMS) material
to form a waterproof ring, see the dark blue ring in Figure 3.2(c).In addition, a thin layer of
Vaseline was applied at the screw mouth and the contact area between the cup’s bottom and wall
to further enhance the waterproofing. The cross-section of the wall and ring are square-shaped
with a sharp edge to create a planar interface as much as possible. Both the inner ring and the
outer wall are grooved with 2mm grooves, and the tip of grooves is defined as the wall boundary,
with Ri = 35.0 mm and Ro = 48.9 mm, see Figure 3.3(b).

(a)

(b)

(c)

Figure 3.2: (a) A SolidWorks model of the slanted cup wall. The cup and the mirror support are connected by
screws. (b) An image of the shadow region caused by light refraction in a normal beaker with a vertical wall. (c) A
photo of the PDMS ring (dark blue) used to seal the gap between the 3d printed cup wall and the acrylic cup bottom.

3.2.2. Background illumination system
The background illumination system serves the dual purpose of providing uniform bright light
and accommodating the connection to the rheometer, centering the cup, and simultaneously al-
lowing the passage of needles. Figure 3.3(a) depicts the detailed structure of the backlight device,
consisting of a centering ring, a diffusing paper, a glass diffuser, a reflecting paper, a LED stripe,
a light container and a connector to the rheometer. A 6000K cold white LED stripe, affixed to
the light container, surrounds a glass diffuser to ensure a consistent and bright light. An opaque
white paper below the glass diffuser directs light upwards, while a diffusing paper above further
enhances light uniformity. The component at the bottom is connected to the rheometer through
three screws, with a large channel in the center to allow the passage of needles. A centering ring
is adopted to bridge the gap between the light container and the cup base.
During the manufacturing process, we encountered a challenge with the dimensions of the
light container exceeding the 3D printer’s workspace. In addition, the limited distance from
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the rheometer’s side wall to the center of the cup constrained the space for the light container
and LED stripe. Therefore, we changed the design from a concentric circular structure to an
eccentric structure, see photos on the right in Figure 3.1. Instead of 3D printing the container
and the centering ring, we manufactured them layer by layer with the laser cut technique on a
4mm acrylic plate, assembled those plate components, and sprayed them with black paste. As
shown in Figure 3.2(b), the resulting design provides a bright and well-centered background
illumination system.

(a) (b)

Figure 3.3: (a) A SolidWorks model of the background illumination system. From top to bottom are a centering
ring, a diffusing paper, a glass diffuser, a reflecting paper, a LED stripe, a container and a connector to the rheometer.
(b) An example of the experimental image.

3.2.3. Emulsion preparation
A bidisperse monolayer of emulsion is created in our experiments. The emulsion is required to be
sufficiently stable to minimize the occurrence of coalescence, as the measurement takes a consid-
erable amount of time. The sunflower oil droplets are blown through two different-sized needles
and float on the surface of a sodium dodecyl sulfate (SDS) solution with a 5.4% (w/v) concentra-
tion. The image processing results, which will be discussed in detail in Chapter 4, confirm the
bidispersity of monolayers, which statistically consist of droplets of 1.4± 0.1 and 1.9± 0.1 mm
diameter, with an average diameter< d >= 1.6mm for all droplets, see Figure 3.4(a). Although
the coarsening and coalescence cannot be entirely ruled out during the experiment, it remains con-
fined within an acceptable range, as evidenced by the consistent distribution of droplet diameters
over one revolution at rotational speed Ω̇ = 0.0086 (rad/s).
Meanwhile, two needles connected to a syringe pump are inserted vertically into the solution
(Figure 3.4(b)), which was found to improve the reproducibility of experiments, as droplets of
similar diameter distribution were created for different experiments. Initially, horizontal nee-
dles were adopted for their ease of waterproofing, but we encountered a critical issue where oil
droplets would crawl along the needle as they grew, remaining attached until achieving sufficient
buoyancy. We observed that the crawling time and the droplet size were hard to control during ex-
periments mainly due to a manufacturing precision issue: the diameter of the hole through which
the needle passes slightly exceeds the needle diameter, causing an uncontrollable tilt in the ac-
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tual experiment. Such deviations from the horizontal plane, approximately within the range of
−15◦ ≤ θ ≤ 15◦, would result in undesirably significant variations in oil droplet size, rendering
experimental control difficult. On the other hand, this manufacturing defect has less effect on
vertically inserted needles within the uncertainty range of −15◦ ≤ θ − 90◦ ≤ 15◦, as droplets
left the needle directly. In addition, Vaseline was employed to seal the outside of the hole, and
all tubes were meticulously fixed to prevent falling during the experiment.

(a) (b)

!

(c)

Figure 3.4: (a) The distribution of droplet diameters over one revolution at rotational speed Ω̇ = 0.0086 (rad/s).
The bidisperse monolayer consists of droplets of 1.4 ± 0.1 and 1.9 ± 0.1 mm diameter, with an average diameter
< d >= 1.6 mm for all droplets. (b) An experimental photo of two vertical needles with different diameters. (c) A
sketch of the deviation angle from the horizontal plane.

3.3. Experimental methods
As previously discussed, our experiments aim to measure the steady flow curves of bidisperse
emulsion monolayers, necessitating the coverage of a wide range of packing fraction φ and shear
rates γ̇. To establish an optimal experimental procedure, we conducted several trials to address
the following questions concerning

• the duration of measurement. Due to the manufacturing defect, components like the inner
ring and the cup are not perfectly symmetric in the azimuthal direction. Therefore the
measurement duration should last at least one complete revolution for each rotational speed
at a given droplet packing. By averaging the measured data over one period, we could
mitigate the impact of azimuthal asymmetry and obtain representative results for the steady
flow behavior. Our investigation delved into whether a single revolution measurement is
sufficient to capture the steady flow properties and if the driving torque applied to the
monolayer significantly breaks its structure, leading to changes in flow properties over
time. A detailed discussion on this matter is presented in Section 3.3.1.

• the range of measurable torque. The torque involved in driving the emulsion monolayer
is usually extraordinarily low, particularly at low rotational speeds (T ≈ 10−1µN · m).
Although the rheometer we adopted, Anton PaarMCR302e, claims aminimummeasurable
torque of 1nN · m, special care was taken to measure such low torques accurately, see
Section 3.3.2.

• the range of the packing fraction φ and the rotational speed Ω̇. While our setup allows
for a wide range of φ and Ω̇, we specifically focused on exploring droplet packing around
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and above the jamming point. In addition, we were curious to find whether we could
reach the yield region in a macroscopic rheometrical measurement. The outcomes of these
investigations will be presented in Section 3.3.3.

3.3.1. Measurement duration
To determine the necessary measurement duration, torque measurements were performed over
twelve revolutions at different rotational speeds with a data acquisition frequency of 10 Hz, see
Figure 3.5. Twelve repeating periods are observed at different rotational speeds, suggesting that
the flow properties remain consistent throughout the long-duration measurements. Hence we

Figure 3.5: Torque measurements over twelve revolutions at different rotational speeds: Ω̇ = 0.3479, 0.1210,
0.0421 (rad/s) respectively. The x-axis represents time normalized by the rotational speed, where 12 revolutions are
equivalently represented by 24π. The y-axis is the measured torque, with varying ranges in the three plots: as the
rotational speed decreases, the measured torque also decreases. The blue solid line represents the original data at
a measurement frequency of 10 Hz, with the removal of outliers using a Hamper identifier. The red dashed line is
the smoothed data obtained by filtering the measurements through a Savitzky-Golay finite impulse response (FIR)
smoothing filter, which reveals 12 repeating periods.

infer that one complete revolution is sufficient to represent the steady rheological properties of
the emulsion monolayer.
On the other hand, the consistency of results over 12 periods at different rotational speeds cor-
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roborates the stability of the emulsion monolayer, as the coalescence and coarsening induced by
droplet motion have a marginal effect on the bulk torque measurement.

3.3.2. Low torque adjustment
In our experiments, a standard adjustment to the rheometer involves three essential steps:

1. Adjust the drive inertial without the measuring system.
2. Adjust the inertial of measuring system, i.e., the inner ring.
3. Adjust the upper motor with the measuring system.

(a)

(b)

Figure 3.6: Comparison of torque measurements in two independent experiments: experiment A was performed
without motor adjustment given φ = 0.9213 ± 0.0039 and experiment B was performed with motor adjustment
given φ = 0.9188± 0.0043. (a) Torque measured over one revolution at a low rotational speed Ω̇ = 0.0030 (rad/s).
The left plot presents the results of experiment A, featuring a negative torque region and six smaller periods within
one revolution. In contrast, the right plot displays the results of experiment B, demonstrating a more consistent trend
within one revolution, attributed to the application of motor adjustment. The steady torque of two measurements
vary significantly. (b) Torque measured over one revolution at a high rotational speed Ω̇ = 0.2052 (rad/s). The
steady torques of two experiments are comparable.
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Typically, the first two steps are sufficient for a rheological measurement of common materials.
However, in the case of interfacial rheological measurements, especially when dealing with ex-
tremely low torque, the extra third step is necessary to improve the reliability of the experimental
data. To investigate the impact of motor adjustment on torque measurements, we conducted two
independent experiments with similar packing fractions. Experiment A was performed without
motor adjustment at a given packing fraction φ = 0.9213 ± 0.0039, while experiment B was
performed with motor adjustment at φ = 0.9188 ± 0.0043. The evolution of the shear torque at
both low and high rotational speeds is illustrated in Figure 3.6(a) and (b).
Experiment A, without motor adjustment, exhibits six smaller periods within one revolution at
both low and high rotational speeds, raising doubts about whether they can be used for the anal-
ysis of steady flow properties. In contrast, experiment B presents a more consistent trend. A
steady torque is defined as the medium value of the smoothed data. At high rotational speeds
(Figure 3.6(b)), the steady torques of both experiments are comparable, although experiment A
has a larger uncertainty (fluctuation range). However, at low rotational speeds (Figure 3.6(a)),
the steady torque measurements vary significantly, and experiment A even displays a negative
torque region, which highlights the necessity of motor adjustment to accurately measure low
torques, reduce measurement uncertainty, and eliminate the occurrence of the smaller periods.

3.3.3. Range of Ω̇ and φ
To cover a range of Ω̇ and φ which is sufficient for analyzing the steady flow of emulsion mono-
layers, the final rheological measurement consisted of two alternating parts:

• continuously generating oil droplets and mixing the emulsion monolayer at a constant ro-
tational speed 0.25 rad/s;

• Measuring the steady flow behavior at a set of logarithmically decreasing rotational speeds
when the pump is stopped. The time interval between each stop is constant.

Figure 3.7: Steady torque vs. rotational speed (blue square) with packing fraction φ = 0.9537±0.0023. The yellow
line represent the lowest rotational velocity chosen for the final measurement, and the red line represents the highest.

However, two things remain to be determined: the range of rotational speeds and the lowest pack-
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ing fraction for measurement, i.e., the first time for stopping the pump. Although in Section 3.3.1
we have shown that one revolution is sufficient for measuring the steady flow properties, the
measurement lasts long, particularly at a low rotational speed. For instance, one revolution takes
about 105 minutes at the Ω̇ = 0.001 (rad/s). Therefore, the total duration is a concern since
the measurements cover multiple packing fractions. Nevertheless, to investigate whether the
macroscopic rheometrical measurement could reach the yield region of emulsion monolayers, a
preliminary experiment covering rotational speeds of 0.001751− 0.3480 (rad/s) was performed,
see Figure 3.7. While the droplet packing is dense, around 0.95, the rotational speeds are not
sufficiently low to measure the yield stress. Hence, the rotational speed region is reduced to
0.0086− 0.3480 (rad/s), focusing on the shear thinning region, and later in the local rheological
measurement (Chapter 5), yield behavior is observed. On the other hand, rotational speeds higher
than 0.3480 (rad/s) are excluded because the fast-rotating oil droplets may detach from the inner
ring, invalidating the no-slip boundary condition. Table 3.1 lists the final Ω̇ array.

An interesting phenomenon during the droplet-filling process is that the droplets prefer to first
accumulate near the inner ring or the outer wall, i.e., they are “attracted” by the walls, known
as the Cheerios effect [51]. The buoyancy of a floating droplet and the capillary force leads
to the deformation of the liquid interface between droplets and between droplets and the wall,
which manifests as attractive forces. Initially, the droplets clustering near the inner ring move
together with the ring, while the droplets accumulating at the outer wall remain resting. Since
two groups can not see each other, the solid-body rotation of the inner cluster mainly contributes
to the torque measured by the rheometer. As droplets keep filling the surface, the gap between
the two clusters decreases. When the inner cluster touches the outer cluster, the static packing is
sheared to flow, implying a transfer of shear stress (drag) from the inner ring to the outer packing.
Consequently, the measured torque increases dramatically once the outer packing is involved in
shear flow. Figure 3.8 depicts the torque evolution over the droplet-filling process, mixing at a
constant rotational speed 0.25 (rad/s). The evolution of torque experiences roughly two phases,
with a slowly increasing phase followed by a steeply increasing phase.

Figure 3.8: Torque evolution over the droplet-filling process, mixing at a constant rotational speed 0.25 (rad/s). The
red pentagram represents the first time for stopping the pump.
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The lowest packing fraction for measurement is the moment slightly after the transition from
slow to steep increase, see the red pentagram in Figure 3.8. However, the exact moment for
this transition and the distance of the first measurement point to the transition point cannot be
quantified during the experiment because there is no communication between the pump and the
rheometer. One practical choice is stopping the pump when the gap is close to vanishing at
the mixing rotational 0.25 rad/s, as presented in Figure 3.9(a), so that the inner packing merely
touches the outer packing at the lowest rotational velocity for the given number of droplets, see
Figure 3.9(b). Section 5.1 will further illustrate such dependence of packing fraction on the
rotational speeds: as the inner cluster rotates, the centrifugal force tends to push those droplets
outside, competing with the attractive force from the wall.

(a)

(b)

Figure 3.9: The experimental image for the first measured droplet packing at (a) the highest rotational speed. (b)
the lowest rotational speed.

3.3.4. Final experiments
In summary, the experiment consisted of two alternating parts:

• continuously generating oil droplets and mixing the emulsion monolayer at a constant ro-
tational speed 0.25 rad/s; The flow rate is 0.1 ml/min for 30 ml syringe.
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• Measuring the steady flow behavior at a set of logarithmically decreasing rotational speeds
(Table 3.1) when the pump is stopped. The time interval between each stop is 60 seconds.

While measuring one revolution is sufficient for investigating the steady flow behavior, the pro-
cess for each rotational speed lasted 1.2 revolutions in experiments to eliminate the inertia caused
by the instantaneous changes between rotational speeds, and data taken after 0.2 cycles were used
in the subsequent result processing.

Test No. 1 2 3 4 5 6 7 8
Ω̇ (rad/s) 0.3480 0.2052 0.1210 0.0714 0.0421 0.0248 0.0146 0.0086

v0 (mm/s) 11.88 7.00 4.13 2.44 1.44 0.85 0.50 0.29

Table 3.1: Rotational speeds and corresponding rotational velocities measured for each volume fraction. Each
measurement began with the highest speed.

Table 3.2 lists the measured volume fraction range, evaluated by the image analysis shown in the
next chapter. The range quantity represents the φ1 due to the azimuthal non-uniformity, and we
will come back to it later in Section 5.1.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Input oil (ml) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

φ [0.4736, 0.8295]
0.8330

±0.0205

0.8552

±0.0082

0.8830

±0.0086

0.8992

±0.0065

0.9226

±0.0040

0.9344

±0.0027

0.9436

±0.0030

0.9468

±0.0021

Table 3.2: Volume fractions covered in the experiments.
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Image analysis

The image analysis aims to obtain the velocity profile and packing fraction from the experimental
imaging data. Particle image velocimetry (PIV) [40] and particle tracking velocimetry (PTV) [37]
are two standard methods for acquiring a two-dimensional configuration’s velocity profile. Our
research adopted PTV due to its ability to identify droplets individually, offering the advantage
of measuring droplet packing fractions simultaneously.
Experimental images were captured using an iPhone 12, with settings of 1080p resolution and 60
frames per second. Due to the refraction index difference between the oil and aqueous phases, the
images exhibit three main components, the edges of oil droplets, the interiors of oil droplets, and
the aqueous background, see Figure 4.1. While some droplet edges possess clarity (indicated by
the black solid line), others appear indistinct (denoted by the red dashed line) due to the mutual
deformation of oil droplets and the limitations of the image acquisition apparatus. Moreover,
although the background region shares a similar light intensity with the interior of the droplets,
their geometrical structures differ, rendering the image processing feasible.
The following sections present the particle tracking strategy in two parts: the processing of a
single frame and the frame correlation. Within the single-frame processing, the first step entails
segmenting the image into distinct regions and detecting mass centers of individual regions. The
subsequent task involves computing the packing fraction, including droplet interiors and edges.
In the second part, the frame correlation acquires the steady velocity profile.

Edge

Interior

Background 
(Void)

Figure 4.1: Three components of an experimental image: the aqueous background, the droplet interior, and the
droplet edge.

Varied packing of droplets and rotational speeds lead to varying degrees of droplet deformation,
along with different void sizes and shapes, which motivates the development of different pro-

29
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cessing strategies depending on the concentration of droplets. Generally, the imaging data fall
into three categories, high φ, medium φ, and low φ. In the high φ scenario, voids constitute ap-
proximately less than a tenth of the (averaged) droplet areas, indicating that the droplets have a
distinct geometric difference from voids. However, when the droplets are less densely packed,
voids emerge with similar areas and shapes as droplets, requiring additional steps to remove them;
therefore, this scenario is classified as medium φ. In addition, gaps with various shapes exist at a
significantly low packing fraction, while sometimes the edges between droplets with those large
regions are indistinct, classified as low φ.

4.1. Image processing of single frame
Figure 4.2 depicts the approach for processing a single frame, encompassing three steps: image
denoising and binarization, morphological operations, andmasking of large voids. While the first
two steps are sufficient for the high φ scenario, the third step facilities the processing of medium
and low φ.

4.1.1. Binarization and morphological operation
The binarization of images is straightforward but the most essential step, laying the foundation for
subsequent processing. An intensity mapping is first employed, expanding the original intensity
range to a broader spectrum and enhancing the contrast between the droplet edges and interiors.
Following this, a Gaussian filter is applied to denoise the image, ensuring uniform intensity within
the droplet interior, see Figure 4.2.B. The denoised grayscale image is then binarized with a
locally adaptive threshold (dark foreground) algorithm to mitigate the slightly non-uniformity of
background illumination. As depicted in Figure 4.2.C, most droplet edges have been effectively
eliminated, leaving behind only the distinct interior regions and voids.

Some tiny binarized voids can be removed by an area filter, as shown in Figure 4.2.D. Sev-
eral problematic regions are highlighted with different colors. The blue square presents the con-
nected region after binarization, introducing challenges in center detection. The yellow and pink
squares highlight the bottleneck-shaped configuration, formed by one droplet and a void or by
two droplets. The red squares denote voids with similar area or eccentricity as droplets, com-
monly encountered in medium and low φ scenarios, and we will discuss it in Section 4.1.2. The
droplet-connected regions and some of the bottleneck shapes can be addressed by applying the
watershed transformation, which effectively segments contiguous regions into distinct objects
(Figure 4.2.E.2). While the watershed method typically operates on the distance transformation
of the binary image, it tends to over-segment the droplets in this case. The issue is mitigated by
introducing minima to the distance transformation process. The image is subsequently subjected
to an erosion process, followed by a dilation morphological operation utilizing a disk-shaped
structural element, as depicted in Figure 4.2.E.3. In this stage, the remaining bottleneck is de-
generate to a droplet region (the pink square), while simultaneously, the segmented regions are
smoothed to be more circular morphology (the yellow square). These binarization and morpho-
logical operations are adequate for the high φ scenario.
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A B C

D E.1 E.2 E.3

F G.1 G.2 G.3

Binarization

Morph.
Operation

Void Mask

Figure 4.2: Single-frame processing. A-C: original, filtered and binary image; D: small-area filtered image; E.1-3:
watershed and morphological operation; F: histogram equalization; G.1-3: steps of masking large voids.
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High !

Medium !

Low !

Figure 4.3: Validation of droplet identification and packing fraction. The first column presents original images with
the droplet centers detected. The corresponding binary images are shown in the second column. The third column
depicts the area fraction occupied by droplets within the black fan-shaped region.
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4.1.2. Large void mask
With morphological operations and various region filtering criteria such as area and eccentric-
ity, small voids are removed. However, some voids possessing geometry features resembling
droplets may confuse the center detector. As depicted in Figure 4.2.D, red squares highlight these
problematic voids, which exhibit similar areas to small-size droplets or comparable eccentricity
to the deformed droplets near the wall, invalidating the region filters.
The voids usually exhibit a slightly brighter appearance than the interior of the droplets, see Fig-
ure 4.2.B. Image sharpening and adaptive histogram equalization can be adopted to enhance the
contrast further, resulting in Figure 4.2.F. Binarized with a locally adaptive threshold (bright fore-
ground), the majority of the large voids, together with some noising regions from the droplets, are
masked out, as shown in Figure 4.2.G.1. The noising regions are then filtered with the morpho-
logically opening operation, preserving the center of large voids (Figure 4.2.G.2). By applying
logical NOT operation between Figure 4.2.G.2 and E.3, the interior of large voids can be masked
out (Figure 4.2.G.3), while the region filtered ormorphological operations are followed to remove
the residuals. The large void masks, combined with the previous binarization and morphological
operations, are well-suited for the medium φ scenario.
Furthermore, in the low φ case, there exist super large background regions several times the
droplet sizes, which remain connected with droplet regions after the binarization, see the left
image in Figure 4.4 (the connected part is highlighted with red). A watershed transformation
can not be directly applied to segment those droplets from the background. Otherwise, the large
background will be segmented into several smaller parts, as depicted in the middle image of
Figure 4.4. Some of those small parts have similar geometry features to droplets (the blue region),
which may be detected as fake ones.

Figure 4.4: Steps for removing large gaps in the low φ scenario.

One possible solution is to erode the image and filter large areas (the orange region). However,
the connected areas near the walls are interfering. Hence, A ring-shaped position mask is adopted
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to distinguish the gaps in the middle from the distractors near the walls, given that droplets tend
to gather near the wall and the large gaps only appear in the middle of the surface. Finally, a
dilation operation restores the eroded regions to their original size.

4.1.3. Validation: droplet identification
With all noises from the voids and droplet edges removed, the remaining disconnected regions
in the binary image are individual droplets, which we could further apply analysis of region
properties to acquire information such as the mass center and area. Themass centers of all regions
are scattered on the original image to preliminarily validate whether the single frame processing
works well, as presented in Figure 4.3 for high, medium, and low φ respectively. The first and
second columns present the experimental and binary images, where the red lines represent the
inner and outer radii, and the blue solid dots are the centers detected.

Some remarks for the droplet identification are summarized as follows:

• For high and medium φ cases, the method can detect all droplets and filter all the voids
within the black fan-shaped region, which is of the most interest. For low φ packing,
although there exist a few undetected droplets and falsely detected voids in this region,
we can merely content ourselves that these errors are insignificant compared to the errors
brought by large gaps.

• For all three cases, the method can only detect part of droplets near the walls, and some
teeth-shape regions are misrecognized as droplets. Furthermore, some droplet regions near
the walls remain connected. However, as will be shown in Section 4.2, the acquired infor-
mation is sufficient for measuring the velocity profile.

4.1.4. Validation: packing fraction
The binary image of droplet interior regions can be further dilated with a disk structural element
of a 4-pixel radius to include the droplet edge regions, from which the packing fraction occupied
by droplets is measured. The validation of packing fraction measurement is presented in the third
column of Figure 4.3, together with the packing fraction within the black fan-shaped region.

At first glance, the results are satisfying, with most droplet interior and edge regions included
and apparent voids masked out for all three cases. Therefore, the calculated packing fraction can
feature the extent of the droplet packing. For the low φ case, the big gap is successfully masked
out, with only a small part remaining, which is sufficient for a preliminary analysis. Of course,
the value calculated in one single frame is insufficient to describe the global droplet packing,
and a data analysis of φs in different frames is followed in Section 5.1 to determine the most
representative value of φ.

Zooming in, one may notice that the dilating operation recovers the droplet contours well in
the middle region while overdone near the walls. In addition, the calculated packing fraction is
sensitive to the threshold used for the image binarization. In the high φ scenario, for example,
while the chosen threshold 0.601 gives φ = 0.9530, a slightly small threshold 0.600 changes the
packing fraction to φ = 0.9554 and an increased threshold 0.602 resulting in φ = 0.9507. It
is hard to tell the difference between the three with the naked eye. Those seemingly negligible
errors, however, really matter for the research on complex fluids.
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4.2. Velocity profile: frame correlation
In order to track droplets over multiple frames, a frame correlation step is performed to link
droplets with the nearest neighbor search based on a k-dimensional tree algorithm. Since the
segmentation method sometimes fails near the wall region, some droplets may be successfully
detected in the current frame but are misrecognized as one droplet in the next frame. There-
fore an extra criterion that the area difference between the two linked droplets must be less than
ten percent is adopted, resulting in some detected centers unmatched between adjacent frames.
Figure 4.5 shows the frame correlation results, where the blue and red color represent the de-
tected center in the current and next frames, respectively; the solid and open circles represent
the matched and unmatched centers, respectively. A zoom-in view of different regions is shown
in Figure 4.5 as well, demonstrating that the area-matching criterion works well for filtering the
falsely detected centers.

Current Matched
Current Unmatched

Next Matched
Next Unmatched

Outer

Middle

Inner

Figure 4.5: Validation of frame correlation. On the right are the zoom-in views of the inner, the middle, and the
outer regions.

Once the centers in the current frame are matched with those in the next frame, an instantaneous
velocity field can be calculated as the radial and azimuthal components in a polar coordinate.
By averaging the instant velocity field over all the frames, steady radial and azimuthal velocity
profiles can be determined. A one-dimensional staggered grid is adopted for a discrete description
of the velocity profile and the corresponding local shear rate, see Figure 4.6. While the velocity
profile is evaluated at the midpoints, the local shear rates and shear stress are determined at the
integer points. Although the inner radius Ri and the outer radius Ro are initially defined as the
outer edge of the tooth-shaped wall, later we will see that a preferred choice of the inner radius
is Rnew

i = Rold
i − 0.5 < d > for better matching the no-slip boundary condition. In addition,

with two extra points r1/2 and rN+3/2, the motion of droplets within the first and the last rows are
captured.
A practical choice of bin number is N = ,(Ro −Ri)/ < d >- = 9. The resulting velocity
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Figure 4.6: The sketch of a one-dimensional staggered grid for a discrete description of steady azimuthal velocity
and local shear rates.

profiles are compared with N = 90 in Figure 4.7(a), where the two cases exhibit consistent
trends. The normalized azimuthal velocity is approximately equal to one, implying a valid no-slip
boundary condition. The normalized radial velocity slightly fluctuates around zero, indicating
the steady flow is radius independent.

As experimental images were taken at 60 fps, the number of images varied significantly for differ-
ent rotational velocities. For example, one revolution at Ω̇ = 0.3480 rad/s creates 1083 images,
and creates 43836 images at Ω̇ = 0.0086 rad/s. Therefore for a given rotational speed, everyM th
frame is chosen for the correlation step, and a frame rotational speed is defined as

Ω̇frame =
Ω̇

fps
·M(Ω̇) [rad/frame], (4.1)

where fps = 60 and the integer M is Ω̇-dependent. Ω̇frame should be the same for image series
of different rotational speeds so that the resolution of the processing method is consistent. Fig-
ure 4.7(b) presents a comparison between different Ω̇frame. While the two results show similar
trends and comparable error bars, a larger Ω̇frame is preferred to reduce the computing cost. A
smaller error bar does not imply that a larger Ω̇frame is more accurate, but instead that it captures
a smaller intensity of instantaneous velocity.

In the end, N = 9 and Ω̇frame = 0.016 (rad/s) are chosen for the following image analysis.
Accordingly, the velocity profiles plotted in Figure 4.7 with this setting were obtained by averag-
ing [1174, 11126, 18845, 20228, 21903, 24392, 26439, 29414, 35929, 38627, 11031] valid and
correlated centers at the 11 midpoints, respectively. The velocity data at each midpoint exhibit
Gaussian distributions.
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(a)

(b)

Figure 4.7: The velocity normalized by the rotational velocity v0 versus the normalized radius. (a) A comparison
between different bin numbers. (b) A comparison between different frame rotational speeds.





5
Results and discussions

As summarized in Table 3.1 and Table 3.2, the main results were obtained from an experiment
with nine pump stops. In Section 5.1, we present the packing fraction profile obtained for all the
measurements. The velocity profiles are displayed in Section 5.2. The macroscopic and local
flow curves are analyzed in Section 5.3.

5.1. Packing fraction φ
In the two-dimensional configuration, the packing fraction is practically defined as the area frac-
tion, i.e., the ratio between the total cross-section area of the emulsion oil droplets observed from
above and the whole liquid surface area. As depicted before in Section 3.3.3, capillary force
creates the deformation of the liquid surface at the inner and outer walls, leading to a tendency
for droplets to accumulate nearby. This radial non-uniformity of packing fraction is observed in
image analysis results that the packing fraction is higher at the inner and outer radii and reaches
a minimum near the middle region, both in dilute and dense droplet packings, see Figure 5.1.

(a) (b)

Figure 5.1: Average packing fraction profile in one revolution.

In addition, an azimuthal non-uniformity emerges in dilute packing, see Figure 5.2(c), where
the evolution of packing fraction within one revolution is depicted. Here, two different regions
of interest (ROIs) are chosen for the φ measurement, as depicted in Figure 5.2(a) and (b), and
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the ROI encloses more areas near the walls (represented by blue color) gives a higher packing
fraction. For the denser packing, the azimuthal distribution is more consistent, implying that the
time (azimuthal) averaged packing fraction is sufficient to represent a steady flow of emulsion,
as displayed in Figure 5.2(d).

Despite φl is always larger thanφs, they exhibit similar trends, suggesting that adopting different
ROIs only affects the magnitude of the packing fractions, other than their distribution properties.
Therefore either φl or φs serves to characterize the denseness of droplet packing.

(a) (b)

(c) (d)

Figure 5.2: (a) Sketch of the small ROI (pink part) with the range {38.0 ≤ r ≤ 45.8 (mm),−28 ≤ θ ≤ 28 (◦)};
the result is labeled as φs.(b) Sketch of the large ROI (blue part) with the range {36.5 ≤ r ≤ 47.3 (mm),−43 ≤
θ ≤ 43 (◦)}; φl denotes the emulsion packing fraction in this region. (c-d) Distribution of the packing fractions in
azimuthal direction. The subscripts are consistent with those in the Table 3.2.

As discussed in Section 3.3.3, another observation in the experiment is that droplets are attractive
to each other, which may be explained by the existence of depletion force, and that with floating
droplets deforming the interface, the buoyancy pulls them together or to the walls. For the shear
flow in a cylindrical Couette cup, there exists a competition between the imposed centrifugal
force and the attractive interaction, leading to different extents of deformation of the oil droplets
at various rotational speeds. Hence, the measured packing fraction is Ω̇-dependent, as shown in
Figure 5.3. Since the packing fraction is usually calculated with a static subject [35, 52, 53], φs

at the lowest rotational speed is chosen to represent the density of emulsion, where the droplets
are the most relaxing. The corresponding values are summarized in Table 3.2.
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(a) (b)

Figure 5.3: Packing fractions at different rotational speeds. Different symbols represent different droplet packings.

5.2. Velocity profile
The velocity profiles at various rotational velocities when φ = 0.9468 are presented in Fig-
ure 5.4(a). Velocity profiles at v0 = 0.29 (mm/s) for different volume fractions are displayed
in Figure 5.4(b). For reference of remaining results, see Figure 5.7 and Figure 5.8.

(a) (b)

Figure 5.4: (a) The steady azimuthal velocity profiles at different rotational speeds (represented by different col-
ors) for φ = 0.9468. The vertical coordinate is the velocity normalized by the inner wall speed, i.e., v0 = Ω̇Ri;
the horizontal coordinate is the normalized radius with respect to the average diameter of droplets. Plots of other
droplet packings are shown in Figure 5.7. (b) The steady azimuthal velocity profiles for various droplet packings
(represented by various symbols) at the same rotational speed. For plots of other rotational speeds, see Figure 5.8.

The first observation is that velocity profiles exhibit a shear localization region near the outer wall
within the experimental accuracy. Given the distribution of shear stress in the cylindrical Couette
geometry, the localized profile indicates the existence of yield stress. For higher packing fractions,
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the localized regions are rate-independent, see Figure 5.7(d-h). In addition, the curvature of
velocity profiles indicates the shear rate decreases more rapidly as shear stress decreases (i.e., the
radial coordinate increases) than for a Newtonian fluid within a certain range of radius, implying
that the emulsion monolayer is shear thinning ([53]).
The velocity profiles exhibit different shapes near the inner wall, and we will see later that in
this region, the shear rates even increase as shear stress decreases, which is unusual and indicates
that the inner wall exerting an extra attractive force on the droplets has a significant effect on the
flow behavior. Although we need more time for a detailed investigation of this wall effect, two
preliminary observations can be made based on the current results. First, the extra attractive force
makes the droplets closer to the inner wall move faster than expected for a shear-thinning flow and
even exhibit rigid body rotation within a certain range when the packing fraction or the rotational
speed is low. Second, the wall effect dissipates quickly in radius, i.e., it only significantly affects
one or two rows of droplets outside the inner wall. Also, the wall effect becomes weaker when the
packing fraction increases or at higher rotational velocities. In addition, thewall effect contributes
to the non-uniformity of the packing fraction profile, which may also influence the flow behavior
[54].

5.3. Macroscopic and local flow curves
Figure 5.5 plots the interfacial shear stress versus shear rates at the inner wall. Since the con-
stitutive relation is unknown at this stage and accurate shear rates at the wall are impossible to
be calculated, the shear rates plotted here are calculated by supposing a Newtonian fluid. Al-

Figure 5.5: The flow curves at the inner wall. The shear rates are calculated with a Newtonian flow assumption.
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though this is a rough assumption, an apparent shear thinning behavior (blue solid line) can
be observed for dense droplet packings. In addition, as the packing fraction decreases, the flow
exhibits Newtonian-like behavior at high rotational speeds.
On the other hand, thanks to the cylindrical Couette configuration and the no-slip wall condition,
the local shear stress is expressed as σ = T

2πr2 and the local shear rate can be derived from the
velocity profile as γ̇ = vθ

r − ∂vθ
∂r . Figure 5.6(a) presents the local shear rates when φ = 0.9468.

Close to the inner wall, the shear rates increase as the radius increases (i.e., the shear stress
decrease) within two droplet diameters for high rotational speeds and three droplet diameters for
low rotational speeds. Outside this region, the shear rates decrease much faster as the radius
increases than for a Newtonian fluid, as expected for a shear-thinning fluid.

(a) (b)

Figure 5.6: (a) The local flow rates. (b) The local flow curves. The green dashed line represents the relation between
the shear stress (derived from the Torque measurement) and the shear rate (assuming a Newtonian flow) at the inner
wall. The local flow curves for other droplet packings are summarized in Figure 5.10.

Since we know the shear stress and shear rate at every point within the gap, it is possible to
plot the local flow curves with σ(r) versus γ̇(r), see Figure 5.6(b), where three observations
are summarized. First, the absence of a collapse of the local flow curves at different rotational
speeds indicates that the non-local effect exists [40, 55]. Otherwise, the local flow curves should
collapse into a master curve, as reported by [9, 53, 55]. The radial non-uniformity of the packing
fraction may also contribute to the collapse’s absence since the suspension viscosity depends on
the packing fraction significantly [54, 56]. Second, each local flow curve possesses a boomerang
shape, with the short-head part corresponding to the positive slope in Figure 5.6(a), indicating
the wall effect. Third, each flow curve exhibits a plateau at low local shear rates, which further
implies that the emulsion monolayer is a yield stress material.
In conclusion, the velocity profiles and the local flow curves show that the emulsion monolayer is
a shear thinning yield stress material, even though we have not confirmed it in the macroscopic
measurement (Section 3.3.2). However, the gap for filling the droplets is not wide enough to
mitigate the non-local effect, which makes the universal scaling analysis impossible at the current
stage. In addition, the wall effect and non-uniformity of packing fraction make the analysis more
complex, calling for deeper investigation, and a brief discussion is presented in the next section.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: Velocity profiles at different rotational speeds (represented by different colors) for a given droplet
packing (expressed by various symbols).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Velocity profiles for various droplet packings (represented by various symbols) at a given rotational
speed (expressed by different colors).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Local shear rates at different rotational speeds (represented by different colors) for a given droplet
packing (expressed by various symbols).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: The local flow curves for various droplet packings.





6
Conclusion and Outlook

By reaching this point, we have achieved the first three research objectives outlined in Chapter 1.
However, unexpected challenges like the non-local effect and the wall effect emerged during our
research journey. The fourth objective, involving fitting macroscopic and local rheometrical data
to a constitutive model and investigating the scaling analysis of flow curves, still lies ahead and
requires a more detailed approach. In this chapter, we explore possible directions for the future
research in terms of the experimental setup, the image analysis, and theoretical analysis.

Experimental setup

The current setup employs a cylindrical Couette ring to generate droplets and conduct rheological
measurements within the same region. Although the monolayer is mixed at a constant rotational
speed during the filling process, emulsion monolayer may be structured prior to the measurement
depending on the rotation direction of the inner ring and the position of the two needles, which,
however, could not be destructured by higher mixing velocities (e.g., 100 rpm) as droplets tend
to coalescence at such velocities. In addition, some droplets are trapped by the walls, resisting
further mixing. A potential solution involves decoupling the droplet generation process from
rheological measurements. For example, we can first generate andmix droplets in a large squared
reservoir where the wall effect is negligible and then direct the droplets into the Couette ring for
measuring the rheology.

While a wider gap has been suggested to reduce the sensitivity of rheology to the non-local effect
[53, 55], it is worth noting that the inner radius magnitude also plays a role [40]. Considering the
droplet sizes generated in our experiments, it is important to explore various combinations of the
inner radiusRi and the gapRo−Ri to understand the non-local effect better. For instance, in our
current setup withRi/ < d >≈ 22 and (Ro−Ri)/ < d >≈ 9, we canmaintain (Ro−Ri)/ < d >
while conducting measurements with different values of Ri/ < d >, such as [12, 22, 32], to gain
insights into the non-local effect. In addition, as the wall effect diffuses fast in radial direction
(similar to a boundary layer), experimenting with different gap sizes also contributes to a deeper
comprehension of the wall effect.

Concurrently, it is essential to develop methods to mitigate the wall effect. One approach is to
modify the cross-shaped grooved structure of the inner ring tominimize the contact angle between
the liquid interface and the wall. Additionally, applying coatings of specific materials to the inner
ring could further decrease the contact angle. By implementing these strategies, the experiments
can concentrate on investigating the local and macroscopic rheology of the emulsion monolayers,
unobstructed by significant wall effects.

49
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The absence of communication between the syringe pump and the rheometer hampers experi-
ment repeatability, preventing consistent initiation with the same droplet packing for each trial.
Therefore, a control system establishing connections between the pump, camera, and rheometer
would facilitate more controlled and reproducible experiments.

Image analysis

Currently, the image analysis results are checked by the naked eye, lacking a quantitative as-
sessment of resolution and error. While it is tricky to assess how accurately the detected cen-
ters represent the droplet positions, determining the method’s resolution allows for filtering out
displacements smaller than this resolution, enhancing data reliability. In addition, the current
packing fraction results exhibit strong sensitivity to the binary threshold, implying an imaging
acquisition with finer pixel sizes is in demand. On the other hand, while the current method
works well in the middle region, it sometimes fails near the wall, as the droplets show different
geometrical features between the middle and wall regions. A refined approach could involve
employing two parallel procedures for separately detecting droplets in central and wall regions.

Theoretical analysis

A series of scaling analyses are recommended for quantifying the wall effect concerning:

• the shape and dimensions of an individual floating droplet. Considering a floating oil
droplet at an air/water interface, the shape and dimensions of the droplet can be estimated
if the magnitude of the densities ρo, ρw and ρa and the surface tensions Tow,Toa and Taw

are known. An approach reported by C.M. Phan et al. [57] offers a potential method.
• the capillary forces between droplets. As the buoyancy and the capillary force lead to the
deformation of the liquid interface, droplets tend to approach each other. Evaluating inter-
droplet forces could assist in developing relevant theoretical and simulation models. A
suitable approach is outlined by G. Katgert in his doctoral thesis [58].

• The radial position-dependent scaling of the wall effect. The pronounced wall effect leads
to faster movement of droplets near the inner wall than anticipated, diffusing rapidly within
a few rows. If avoiding the wall effect is a challenge during the experiment, a scaling anal-
ysis would assist in estimating such external force applied to the monolayer. This analysis
could contribute an additional term or modified boundary condition when formulating a
constitutive model.

J. Goyon [55] formulated a widely employed non-local equation for the steady state:

fbulk = f(r)− ξ2
1

r

∂

∂r

(
r
∂

∂r
f(r)

)
, (6.1)

where fbulk is the bulk fluidity in a system with homogeneous shear stress and shear rate, and ξ
is the cooperativity length characterizing the non-local effects. The diffusive term implies that
spatial gradients induce deviations of the local fluidity f from the bulk fluidity. As the final ob-
jective is to describe system rheology via fbulk, data should be fitted to estimate the cooperativity
length. Furthermore, a comparison between the calculated bulk fluidity and macroscopic rheo-
logical measurements could reveal the feasibility of directly deducing the desired homogeneous
bulk fluidity from macroscopic rheological data.
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