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Abstract

Flooding is a very costly natural disaster especially when it hits urban areas. Yet synthetic aperture
radar (SAR) based flood mapping barely works in urban areas. Buildings and man made objects have
similar backscatter signatures as still standing water. This makes them hard to distinguish from one
another. Structures can block the visibility of the ground surface for side looking SAR satellites making
large parts of potentially flooded ground going unseen by SAR satellites. Smooth surfaces and limited
ground visibility make it hard to produce accurate flood maps using SAR in urban environments. Here
we have shown how the use of a temporal stack can improve the result of urban flood detection with
SAR. Traditionally SAR based flood mapping uses a single image or an image pair to classify flooded
and non-flooded pixels. This study found these methods unable to detect flooded pixels in an urban
setting. By using a temporal stack of SAR images more pixels are correctly classified as flooded while
keeping false positive classifications low. However the number off correctly classified pixels remains
too low to be useful on its own, by adding ancillary data in the form of a high resolution DEM an
accurate flood map for a very specific area is produced. This means that SAR images are not suitable
for flood mapping in urban areas as a single source of information. When they are combined with other
data they have the potential to produce accurate flood maps useful for First responders when the next
flooding disaster hits.
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1
Introduction

This chapter consists of an introduction to floods and their devastating effects. A description of current
flood mapped methods is given. The description is followed by an overview of this research along with
an explanation of the research question and its sub-questions. The chapter concludes with an outline
of this thesis.

1.1. Floods
Flooding is a natural disaster that occurs when water levels rise to extreme extents and normally dry
land finds itself under a layer of water coming from the sky, sea or river. The perception of most
experts is that with a changing climate the frequency and severity of floods will rise (Taylor et al.,
2014). Due to the complex mechanisms that trigger a flood it is difficult to predict the exact increase
of the frequency of floods or their extent. The fact remains however that a rising temperature will
result in more evaporation and rainfall. Precipitation extremes will increase with the increase of the
global temperature and extreme rainfall events can be a trigger of a flood (Allen and Ingram, 2002,
Hegerl et al., 2006). This, in combination with rising sea levels due to melting land ice and the thermal
expansion of ocean water (Milne et al., 2009), will not only result in more floods but also in larger
floods (Garner et al., 2017).

The potential economic and social impact of flooding can be extremely high. Take as an example the
river Rhine , 10 million people live in areas prone to extreme flooding of this river and as a consequence
the potential damage of floods in this area was estimated at 165 billion euro’s (Friesecke, 2014). An
other study estimated that in 2004 the economic value of everything located within 500 meters of the
European coastline was between 500 and 1000 billion euro’s (Doody et al., 2014). While these were
theoretical estimates of assets which could be threatened by floods, the European environment agency
has estimated that in the period between 1998 and 2009 the actual damage of floods in Europe was
approximately 52 billion euros, 1126 lives were lost and over half a million people were displaced or
needed to flee their homes (European-Environment-Agency, 2004, 2011). This makes flooding the
most costly natural disaster in Europe. An overview of natural disaster impacts for the European Union
is given in Table 1.1.

Maps of flood extent can be a valuable object of information for several purposes. First of all, in
the event of a disastrous flood, a high resolution map of the flood extent could be used as a source of
information for first responders and emergency services. They could use it to identify which houses or
streets are flooded, which regions are in particular need of urgent help and possibly how to get there
over non-flooded roads. Hydrological modelling is another area where high accuracy flood extent maps
would be useful. Flood maps would serve as validation for the models, validation data could lead to
improvements of models or assessing the accuracy of models. Lastly, such maps could prove useful
when looking for patterns in flood behaviour. For instance, if the maps show that certain locations
are flooded on a regular basis, or that certain spots are always the first to flood and the last to dry.
The responsible authorities could use the information to identify and prioritise areas where the sewer
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2 1. Introduction

system needs upgrading.

Table 1.1: Contains an overview of damage from natural disasters in the European Union between 1998 and 2009. The overview
gives per natural disaster type, the number of recorded occurrences, the number of fatalities and the overall losses expressed
in billions of euros.

Flooding occurs both in rural and urban areas, but the impact on our society in terms of economic
losses and injuries are much larger when they occur in urban areas (Mason et al., 2010). Urbani-
sation of flood planes and land conversion for urban development decrease the water permeability
of the soil. This increases the potential impact and likelihood of floods in urban areas (Depietri et al.,
2012). Due to the increased impact that flooding of urban areas has on society and the increased likeli-
hood of floods occurring in urban areas, there is a large interest in mapping and modelling these floods.

When mapping the extent of floods there are several sources of information available. Sometimes
water level sensors are present but these aren’t able to give a complete picture but instead they provide
information at a fixed number of locations (Demir and Krajewski, 2013). Therefore, they are useful for
validation of other data. Information about the flood extent could be derived through crowd sourcing,
gathering eye witness reports, videos or photos witnesses made (Cariolet, 2010). Satellite imagery
is widely available, covers large areas simultaneously and comes in a variety of forms that could be
useful for flood mapping. Optical imagery from satellites is one of them. Unfortunately, flood events
are almost always combined with a cloud cover that obstructs the optical images and possibly renders
them useless. Optical images are also dependent on the presence of daylight in order to be useful for
flood extent mapping (Mason et al., 2013). Synthetic aperture radar (SAR) is another form of satellite
imagery that contrary to optical imagery is not influenced by cloud cover or dependent on the presence
of sunlight. SAR is an active remote sensing technique, therefor not depending on the sun or other
source of signal other than its own signal. The radar waves that are used for SAR penetrate any cloud
cover that is present. This is why SAR data imagery is preferred over optical images for flood mapping
(Mason et al., 2013).

Current day technologies enable us to observe and map rural flooding and its extent using SAR
imagery with good accuracy (Mason et al., 2012).Flooded areas have a low intensity on radar images
because a flat water surface will act as a specular reflector as Figure 1.1 describes.Flood extent maps
in rural areas derived from SAR data have been successfully used to calibrate 2D inundation models
(Mason et al., 2010). These modelled flows take into account the ground topography and vegetation
(Mason et al., 2013). However, mapping urban flood extent using SAR proves to be a lot more difficult.

That urban flood mapping proves to be difficult can be seen in Figure 1.2. The image shown is a
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Figure 1.1: Visualisation of the reflection of radar signals on a smooth surface (like water) compared to a reflection of radar
signals on a rough surface.

map of the flood extent during hurricane Harvey in the Houston metropolitan area and its surroundings
produced by the Copernicus Emergency Management Service. On this flood map large areas around
the urban city area of Houston are denoted as flooded, there is however no flooding classified in the
city centre of Houston. Figure 1.3 gives a different view, it shows a part of the Copernicus image (a)
next to an optical image (b) taken on the same day as the SAR image on which the Copernicus flood
map is based. In the optical image there are entire neighbourhoods that are clearly flooded while there
is no flooding present in the Copernicus flood map. This is a good example of how the current flood
extent mapping methods which can detect rural floods fail to classify urban floods as such.
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Figure 1.2: Flood map of the metropolitan area of Houston and its surroundings produced by Copernicus Emergency Management
Service on the 31st of August 2017. The image shows little to no flooding in the city centre while around the city large regions
are classified as flooded.
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(a) Zoomed in on an urban section of Figure 1.2.

(b) Part of aerial image made on August 30th.

Figure 1.3: Comparison between flood map made by Copernicus and an aerial image from NOAA. Both images are taken or
produced on the 31st of August 2017. The top image contains no flooding outside of the dam while on the bottom image
neighbourhoods are clearly flooded.

1.2. Research overview
1.2.1. Objective
The objective of this study is to improve the (semi-)automatic mapping of flood extent in urban areas
based on SAR amplitude data. The research aim is to investigate the possibility to create a reliable flood
map shortly after an event to be useful for flood crisis management in the circumstance of large floods
in urban areas based on SAR data. The study would achieve this objective by creating a functioning
(semi-)automatic tool that can process SAR images over areas that are known to be flooded immedi-
ately when they become available. The resulting flood map would lead to a better knowledge of the
extent and mapping of the flood. The main purpose of this research is to answer the following question:

Can the use of a temporal stack of SAR images improve the mapping of flood extent in urban areas?

Most research on mapping flood extent with SAR has been done on a single image or on a single
pair of images. Furthermore most research that processed entire regions was done on rural areas.
The research that did focus on urban areas looks at very specific parts of urban streets and develops
a method for that specific category of pixels. They do achieve high accuracy results in the range of
75 percent and upwards of correctly classified flooded pixels but see those numbers drop when their
method is tested on all pixels. This is why this research will try to use a stack of images instead of a
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single or pair of images to see if this leads to improvement of the result.

Sub-questions
With the main question formulated a number of sub-questions can be identified:

1. How do floods influence the radar reflections measured with SAR?
In order to tell apart flooded pixels from non-flooded pixels we need to understand how the
flooded pixel values have changed compared to the non-flooded pixels. What happens to the
radar reflections when they reflect of a flooded surface compared to when they reflect from a dry
surface. When we understand how it changes we can start to quantify it and use it to classify
each pixel.

2. Which methods can be applied to detect flooded pixels from a stack of SAR amplitude images?
How can we use a stack of SAR images to detect the difference between the flooded and non-
flooded pixels in one SAR image.

3. Is it feasible to produce a flood map of an urban environment based on SAR data alone or is
auxiliary data required to reach a reliable result?
Not all streets are visible in urban environments, so will it be enough to only use the streets that
are or do we need other data sources to fill in the gaps? Is the change that is caused by floods
enough to distinguish flooded pixels from non-flooded pixels?

1.2.2. Method
Starting from a literature review on the topic of SAR flood mapping and SAR flood mapping in urban
environments the research will evaluate flood mapping using data from the test case of the Houston
floods in 2017. The case uses a stack of Sentinel-1 SAR images taken in VV-polarisation spanning a
period of almost three years. The data and test case will be used to test five different methods of which
two use a single or double image while the other tree use a stack of images. Based on intermediate
results, some methods are pursued more deeply than others in order to reach an optimal flood map
for the test case. In order to validate classification results the study uses aerial imagery taken on the
same day as the SAR image of the flood.

1.2.3. Thesis outline
A short overview of what to expect in the remainder of this Thesis. Chapter 2 gives a background
into all topics relevant for this research. A short introduction of SAR and how water influences these
measurements is explained. This is followed by a summary of the research that has already been done
on this topic or that is useful for this research. Than comes the description of the test area as well as
a background on all data used. Chapter 3 explains the five methods that are tested to produce flood
maps in detail and how the methods are evaluated on performance. Chapter 4 goes through the initial
results of the five methods. It holds a brief discussion on the results and possible alteration to the
methods to improve the results. Chapter 5 hold the discussion of the final results, the shortcomings
and strengths of the methods are elaborated on. Chapter 6 draws the conclusion of the thesis and
answers the research questions posed in the beginning of the report. It ends with recommendations
for future research on the topic of flood mapping in urban areas using SAR.



2
Background

In this chapter the basics of radar, RAR and SAR are explained. The difficulties of flood mapping in
urban areas using SAR will be presented alongside an overview of past studies on flood mapping, both
in rural and urban specific areas. Furthermore a short explanation on radar technologies is given. The
selection of a test case is made and finally the chapter ends with a description of all data used in this
research.

2.1. Radar basics
In order to understand the basic concept of SAR a basic understanding of radar and Real Aperture
Radar (RAR) is required.

Radar
A radar (Radio Detection And Ranging) system is an active type of remote sensing, meaning that it
sends and receives signals. A radar system works in the radio and microwave band of the electromag-
netic spectrum. A radar system thus consists of a transmitter that sends out electromagnetic pulses
to a target and an antenna that measures received pulses. A radar can use the same antenna for
transmitting and receiving so it doesn’t require two different antennas although there are radar setups
that use different antennas. The radar system measures three things from the pulses it receives: The
intensity of the signal, the phase of the signal and how long it takes from sending the pulse and re-
ceiving a pulse. The range between the radar system and the target can be derived from the travel
time of the pulse. The signal that is measured at the antenna, so called backscatter, is a part of the
pulse that reflects or scatters from the target back towards the radar antenna. The intensity of the
measured pulse can tell something about the size or surface roughness of the target (Hanssen, 2001).

Radar geometry
Most satellite radar systems are of a side looking nature, meaning the radar doesn’t measure straight
down to the surface but measures under an angle to the side of the satellite (Bamler and Hartl, 1998).
This angle is called the look angle (often denoted by 𝜃) and is visualised in Figure 2.1. When using
an air- or space-borne radar angles and positions in the geometry have their own reference system.
The coordinate system consists of a range and an azimuth direction. The azimuth direction is parallel
to the flight path of the satellite, the range direction is perpendicular to the azimuth direction with the
positive side in the direction where the satellite is looking. The point on the earth’s surface directly
beneath the radar system is called nadir. The nadir line is the line directly beneath the flight path of
the system on the Earth’s surface. The width of the ground in the range direction that is illuminated
by the radar system is called the swath. The swath goes from near-range (closest to the nadir line)
to far-range (furthest away from the nadir line). Slant range is the distance between the satellite and
the target while ground range is the distance between the nadir and the target over the earths sur-
face. A more complete and detailed glossary on radar, RAR and SAR can be found on the ESA website1.
1http://envisat.esa.int/handbooks/asar/CNTR5-2.html

7



8 2. Background

Figure 2.1: Shows a schematic overview of Space/air borne radar imaging geometry and its nomenclature.

Real Aperture Radar
RAR is a moving radar system that makes images of the ground while it moves. The resolutions of these
images are different in the range and azimuth direction. The resolution in the range direction depends
on the length of the pulse transmitted by the system, While the resolution in the azimuth direction
depends on the width of the pulse beam and the slant range. Both the range and azimuth resolution
are illustrated in Figure 2.2. In this figure objects 1 and 2 are too close to be measured separately in
the range direction while objects 3 and 4 are measured separately. The opposite is true for the objects
in the azimuth direction. The resolution is constant in slant range but changes in the ground range as
it is dependent on the incidence angle which changes in the range direction. The azimuth resolution
can be changed by changing the angular width of the system, this width is determined by the antenna
length. A larger antenna leads to an narrower beam. Because the length of a space born antenna is
limited and the slant range is in the order of hundreds of kilometres the azimuth resolution of RAR is
limited to a large resolution.

Synthetic Aperture Radar
The difference between RAR and SAR lies in the computation of resolution. The resolution in the range
direction is the same as the RAR resolution. But where the resolution in the azimuth direction of RAR
is limited by the antenna length SAR can create images with a greater resolution in the azimuth direc-
tion. SAR uses a processing technique where it is possible to simulate a very long antenna (synthetic
aperture). This is illustrated in figure 2.3. All the radar positions in this figure have object A inside the
radar beam. A synthetic antenna can now be created from the radar location it first saw object A to
the position at which A was last visible This gives an antenna of length B in figure 2.3. By processing
all the radar images object A is in results in a finer and uniform resolution in the azimuth direction.
More on RAR and SAR resolution is provided by NRCAN fundamentals of remote sensing2. An example
of a SAR system is the Sentinel-1 mission. The data that it produces has a resolution that ranges from
2.7x22m to 3.5x22m3 pixel sizes.

2https://www.nrcan.gc.ca/node/9341
3https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-single-look-complex
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(a) Image of how pulse length affects
range resolution, objects 1 and 2 can not
be distinguished separately while objects
3 and 4 can.

(b) Image of how pulse length affects az-
imuth resolution, objects 3 and 4 can not
be distinguished separately while objects
1 and 2 can.

Figure 2.2: Visualisation of RAR resolution and how it differs in range and azimuth direction.

Speckle
Next to the resolution and geometry a phenomenon that influences the result is called speckle. Speckle
is the reason that two neighbouring pixels that contain the same surface can have different values, this
leads to the grainy texture that is characteristic of radar images. Speckle occurs because inside each
resolution cell there are several scattering points that create positive or negative interference. This
is different for each cell and can result in two neighbouring pixels that both contain asphalt having a
different intensity value on the radar image.

Figure 2.3: Visualisation of SAR resolution and how it uses several images to reduce its resolution compared to RAR.

Data format
The SAR images come in a line-pixel coordinate system with each pixel containing a complex number

𝑎 + 𝑏𝑖 (2.1)

where 𝑎 and 𝑏 are real numbers.
This complex number represents amplitude (𝐴) and phase (𝜙), Figure 2.4 visualises this. The

amplitude of each cell can be extracted using

𝐴 = √𝑎 + 𝑏 . (2.2)

For this project the amplitude is converted to a decibel scale using

𝐴 = 10 ∗ log (𝐴). (2.3)



10 2. Background

Figure 2.4: Visualisation of how phase and amplitude are stored in a complex number. is the amplitude and is the phase of
a signal.

2.2. Urban flood mapping with SAR
An urban landscape can be divided into 4 main different categories concerning SAR and flooding:
1.) The first category contains rooftops and other surfaces that lie higher than the ground.
2.) The second category is part of the street that can’t be seen by the satellite due to buildings, veg-
etation, terrain or other man-made structures. This phenomenon is called shadow and is depicted by
line CD in Figure 2.5.
3.) The third category is the part of the street that can be directly observed by the radar on the satellite,
it is depicted by line BC in Figure 2.5.
4.) The fourth and last category is depicted by line AB in Figure 2.5 and is called layover.

For this research there is no further interest in category 1, as this category will not contain in-
formation about flooding on the street level. There is also no further interest in category 2 as there
are simply no measurements from this part of the street. Category 3 seems the most straightforward
category to work with as the street level is directly measured by the satellite. How large the proportion
of a street is that falls into the third category depends on the height of the surrounding buildings, the
street width, satellite viewing angle, and the satellite track. Category 4 is often present and harder
to interpret than category 3. There are two reasons for this. The first is that the reflection from this
part of the street isn’t directly measured but is registered after it is reflected again from the side of a
building or other object. This phenomenon is called double bouncing and results in a strong return at
the radar. An example is displayed as beam M in Figure 2.5. The second is caused by point O and
point B in Figure 2.5 being at the same distance from the radar. This means that the points fall into
the same range bin and aren’t distinguishable from one another.

The first problem when mapping the flood extent using SAR is that part of the flood will not be
detected as it isn’t seen by the satellite. This concerns all flooded streets that fall in category 2.

The second difficulty that urban flood mapping brings relative to rural flood mapping is the inter-
action of radar waves with man-made surfaces like concrete or tarmac roads. In SAR images of rural
regions water bodies (with low wind and flow conditions) act like specular reflectors as explained in
figure 1.1 resulting in a low intensity measurement. The surrounding regions of grass, sand, trees,
gravel and bedrock will act more like diffuse reflectors prompting a higher intensity on the SAR image.
This is why water bodies tend to clearly stand out in SAR images. This is illustrated by Figure 2.7 where
an intensity SAR image is displayed of the Houston metropolitan area, the San Jacinto River, Trinity Bay
and part of the Gulf of Mexico. Unfortunately roads tend to have a flat surface that acts as a specular
reflector of radar waves, resulting in approximately similar intensity measurements as water. This is
illustrated by the histogram in Figure 2.6. In this figure the intensity values of a highway section can
be compared to the values of a part of a lake in a SAR image of Houston. These pixels were chosen as
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Figure 2.5: Shows different radar beam paths in urban area, detailing how buildings affect different parts of a street in different
ways. The image is from (Mason et al., 2013).

an example from a random part of a large water body and a section of interstate 10. Simply classifying
low reflections as water in an urban SAR image will result in a lot of road pixels being classified as
water hence being seen as flooded while this isn’t the case. In a rural setting a small fraction of the
total area is covered by roads or concrete so there is a small impact on the classification. In urban
areas however the fraction of surface covered with man-made smooth surfaces is considerably larger
making it an issue for urban flood mapping.

The final problem of flood mapping in urban areas compared to rural areas comes from reflections
in category 4. The multiple reflections in this part of a street result in a higher intensity measurement
at the satellite. Flooding may even increase the intensity as more of the signal is reflected towards
the satellite. In rural areas flooding leads to a lower intensity measurement but due to category 4
reflections some parts of an urban area flooding can lead to a higher intensity.

The combined effect of the layover and shadow makes it harder to measure and map floods in
urban areas with SAR than it is in rural areas. In the city of Karlsruhe (Germany) a study found that
two thirds of the streets are unseen by direct radar measurements (Soergel et al., 2003). How much
of a particular street falls into each category doesn’t only depend on the street width or the height of
adjacent buildings, it also depends on the street orientation relative to the satellite direction of travel.
A street perpendicular to the path of a satellite will be almost entirely visible for the radar. A street
parallel to the orbit of a satellite will contain a maximum amount of shadow and layover and might
not have any part measurable by the radar directly. The complicated nature of urban areas makes it
more difficult to detect flood water in urban areas than in rural areas in rural areas than in urban areas
(Mason et al., 2010).

The difficulty of mapping urban floods in practice can be illustrated with the flood map produced
by the Copernicus program of the European Commission. Their flood map is displayed in Figure 1.2.
In this image light blue indicates areas flooded on August 30th and blue indicates areas flooded on
August 31st. On the flood map most flooding appears on the right side of the image near the coast,
these lands consist mainly of farming fields. On the left side of the image there are fewer flooded areas
and they are situated along the sides of rivers. In the metropolitan area of Houston there are barely
any areas marked as flooded. This is remarkable because images of flooded streets, highways and
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Figure 2.6: Normalised histogram containing pixels of a part of highway and of a part of lake. The histogram demonstrates the
similarities in pixel values for roads and water pixels.

entire neighbourhoods were all over the news and can still be found with a Google search of ”Houston
flood 2017”. In Figure 1.3 part of the flood map is shown next to an aerial image, the flood map shows
floods of 30th and 31st of August and the aerial image was taken on the 30th of August. In this Figure
the flood behind the dike in the top left is visible on both images. This is all the flooding indicated by
the Copernicus image while on the aerial image it is clear that large parts of the bottom right part of
the image are flooded. The Copernicus program is thus able to detect flooded open fields but doesn’t
classify flooded urban neighbourhoods as such.

In short the difficulties with flood mapping based on SAR images in an urban environment: Man
made surfaces such as buildings and roads have smooth surfaces that can act as a secular reflection
just as water. This leads to a smaller difference between water surfaces and the ground surfaces.
Complication for SAR measurements are the sudden height differences that are caused by buildings
or other objects. These differences can lead to parts of streets not being visible for the radar system
while other parts will have a higher intensity measurement compared to when no building or height
difference would be present. To visualise the influence of these height differences there are several
scenarios shown in Figure 2.8. From this image we can expect that floods in urban areas result in the
same intensity, a higher intensity and a lower intensity compared to normal conditions.

2.3. Past studies on Flood mapping with SAR
Several research projects have made an effort to map flood extent in both urban and rural areas using
SAR images.
A study from D.C. Mason in 2010 focused on classifying pixels from category 3 (pixels in direct view
of the satellite) in a city, which he selected using LiDAR data, based on a single SAR image using
a semi-automatic algorithm (Mason et al., 2010). Their method used a region growing algorithm to
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Figure 2.7: Mean intensity image of Houston (part of Sentinel-1, swath 1), the mean is taken from 89 images over the period
from 2015-07-18 till 2017-08-24. The SAR images taken during the flood are not included in the mean. On the image it is visible
how the water bodies on the right side of the image stand out as dark areas of low intensity compared to the rest of the image.
The surface covered in the image is approximately 21km by 86km.

identify regions of homogeneous speckle statistics. They then continued to classify these regions us-
ing a supervised classification method. With the validation of aerial photographs the method correctly
identified 76 % of water pixels from a flood in Tewkesbury (U.K.) and had a false positive rate of 25
%. These numbers were 58 % and 19 % when all pixels classified as flooded were considered and not
only those of category 3.

Mason et al. (2013) conducted a similar study, but they only focused on pixels that fall into category
4 (Lay-over areas) (Mason et al., 2013). The study used a SAR simulator based on a LiDAR elevation
map to identify regions of layover. The observed strength of double scattering was compared to pre-
dicted return strength based on an electromagnetic scattering model to determine whether or not a
pixel was flooded. The observed strength was also compared to the observed strength of the same
pixel in an earlier recorded SAR image to classify it as flooded or not flooded. For both the single image
as well as the change detection method only a very small set of pixels was tested but 100 % of the
flooded pixels was correctly identified and 91 % of non-flooded pixels was identified in both cases.
This method seems promising due to its highly accurate results but was only applied on a very limited
number of pixels, on only one flood event and required the availability of high resolution SAR data and
a high accuracy DEM.

In general most studies and algorithms are based on a single image or a single pair of images
(Schlaffer et al., 2014). In the single image case a distinction between flooded and non-flooded is
made based on pixel values where-as the pair of images case uses the difference between the two
images for the classification process. There are a few that use multiple images for flood detection like
a study performed by Nico et al. (2000). They estimated flood extent using the difference between
three SAR images and compared it to the result derived from InSAR coherence images. Both InSAR
and SAR were able to produce maps of the flood extent but combining the data resulted in a smoother
result. This study was performed on an image with a resolution of 150 meter and in rural areas.
S. Schlaffer et al. published a paper in 2014 that looked at a longer time scale to characterise a sea-
sonal variable back-scatter under non-flooded conditions (Schlaffer et al., 2014). When a pixel value
had a larger deviation than a certain threshold from the backscatter expected during a certain season
it would be classified as flooded. The study reached accuracy’s over 80% for non-urban areas at a
pixel resolution of 150m.
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All of these studies were either performed on rural areas or on specific parts of an urban area. When
the methods are performed on an entire image with urban areas the accuracy of classifying flooded
pixels drops. The problem therefore remains of detecting a flood in a wide urban area with a single
method. This is exactly what we see in the flood map of Copernicus displayed in Figure 1.2 and 1.3,
where rural areas are classified as flooded but none of the flooding in the city is detected.

2.4. Floods and available SAR data
For the application of flood extent mapping with SAR data, the timely availability of the SAR data is of
importance. Satellite radar systems fly in orbits which means that they don’t observe the same area
continuously but return to a particular area every few days. The so-called revisit time is different for
each satellite and depends on its orbit and velocity. This means that a satellite will not record every
flood as the flood could occur and disappear before the satellite revisits the area. The SAR missions
that are currently operational are shown in Table 2.1. From these missions some measure continuously
while others only scan certain areas; some of the data is freely available while other data comes from
commercial companies and require payment.

Table 2.1: Overview of currently operational SAR missions, their launch dates, frequency, polarisation and the country that
operates the mission. Source (Brisco, 2015)

2.5. Houston flooding test case
The selection of the flooding test case for the study was based upon two criteria. Firstly there needed
to be a SAR image taken during the flood and a stack of SAR images from the months leading up to the
flood. Secondly validation data of the flood extent from an other source had to be available to assess
the accuracy and quantify the result of the proposed flood mapping method.

TerraSAR-X images that have a resolution of 3m were available for large parts of the Netherlands.
Unfortunately for this research there were no floods that that occurred when this satellite passed over
the Netherlands. Partly because the satellite system has a revisit cycle of 11 days (Roth et al., 2004)
and partly because floods in the Netherlands are quite rare, let alone a major flooding that lasts for
multiple days. With no overlap in floods and satellite images from the TerraSAR-X satellites, other
satellite systems with lower resolution were considered. RSAT-2 and Sentinel-1 data were available but
had the same problem as TerraSAR-X of a mismatch between days of floods and days of images taken.
An overview of floods considered and SAR data available is given in appendix B. This meant flood
events outside the Netherlands needed to be considered. A case of which SAR images taken during a
flood were available was the flooding of Houston in 2017 caused by hurricane Harvey in Texas (U.S.A).
There were SAR images available from August 2015 till the flood in August 2017 with intervals of 12
days. There was one SAR image taken during the flood and on the same day as an aerial photograph
survey was executed. These photos could serve as the validation data. In Figure 2.9 one part of the
aerial survey is displayed and shows that the flood extent can be determined from the picture.



2.5. Houston flooding test case 15

Figure 2.8: Schematic and simplified overview of how different urban surface layouts can affect different radar beam paths under
normal conditions and exaggerated flood conditions.
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Figure 2.9: Aerial photo of a Houston suburb acquired on the 30th of August 2017. The image clearly shows a large urban area
that is flooded. Source: NOAA Hurricane Harvey imagery site.

Houston is a city located on the east coast of the United States of America as shown in Figure 2.10.
With 2.3 million people it’s the largest city of the state of Texas and the fourth largest city of the U.S.A
in terms of population (U.S. Census Bureau, 2017). The city is situated in a wetland coastal area that
naturally holds a lot of water and is in the drainage basin for water coming from further inland. The
rapid urbanisation of the area has not only led to many houses being built in flood prone areas but
also in the reduction of the soil permeability (Davis et al., 2017). This reduces the water that can be
absorbed by the ground.

(a) Location of Houston in the U.S.A. (b) Aerial image of Houston.

Figure 2.10: Location of Houston in the U.S.A and an aerial image of the city. The Aerial image shows how the city is situated
at the coast and to a large bay.

The flooding of the Houston metropolitan area in August of 2017 was a result of hurricane Harvey
passing over. Harvey was a category 4 hurricane, the storm stalled when it made landfall on the coast
of Texas and remained there for 4 days. Harvey brought the largest amount of rainfall ever recorded
in the United States, peaking at 1538 mm of accumulated rainwater from the 25th of August till the
1st of September near Nederland, Texas (Blake and Zelinsky, 2017). The Houston metropolitan area
received rain varying from 914 mm up to 1219 mm of accumulated water in the period from the 25th
of August till the 1st of September (Blake and Zelinsky, 2017). To put that in perspective, the total
rainfall in the year 2015 for the Netherlands was 880mm (Rijksoverheid, 2016). It was not only the
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extreme rainfall (𝑚𝑚/𝑚 ) that caused the severe flooding but the extent of the heavy rainfall (𝑘𝑚 )
that was truly overwhelming.

On top of the incredible precipitation Harvey produced a storm surge that, combined with incoming
tides, produced a water level height of 1.83 m to 2.74 m above ground level in the Trinity and Galveston
bay’s (Blake and Zelinsky, 2017). This might not be nearly as high as the storm surge from Katrina in
2005 but it did reduce the natural outflow of water from land to sea. This caused water to flow up to
Houston from both inland as well as from the sea (Fischetti, 2017).

The final contribution to the floods was the decision of the army corps of engineers to release water
from the two reservoirs of Houston. This was done to prevent the failing of the dams or an uncontrolled
release of water over the top of the dam (Randy Cephus, 2017). The result was an extra input in water
flow through the neighbourhoods downstream from the reservoirs.

2.6. Sentinel-1
The SAR images used for this research are acquired by the Sentinel-1 mission. The Sentinel-1 mission
is the first of several Sentinel missions currently operational or under development by The European
Space Agency (ESA) (Showstack, 2014). The Sentinel missions are part of the Copernicus program of
the European Union run by the European Commission in partnership with ESA, the EU Member States
and EU Agencies (Showstack, 2014). The Sentinel-1 mission is designed for continuous radar mapping
of the Earth’s surface. This improves coverage and revisit frequency of available satellite radar data
all around the world. The mission constellation consists of two satellites, Sentinel-1A and 1B, the first
being launched on April 3rd 2014 and the second one on April 25th 2016 (Torresand et al., 2012). The
satellites fly in a near-polar sun-synchronous, 12 day repeat cycle at an altitude of 693km (Attema
et al., 2007). The constellation uses a C-band radar that transmits at 5.405 GHz which translates
to a wavelength of 5.54 cm. It operates continuously in all weather and during day and night. The
instrument is able to operate in dual polarisation (HH+HV or VV+VH), it does so by transmitting either
horizontally or vertically and receiving horizontally and vertically simultaneously (Torres et al., 2012).
The lifetime of both satellites is 7 years but they carry fuel for 12 years (Attema et al., 2007). The
images made by the Sentinel-1 mission and all the other Copernicus data services have a worldwide
coverage and are available free of charge to all users.
The Sentinel-1 data is available in two formats:
Level-1 Single Look Complex (SLC) products consist of focused SAR data geo-referenced using orbit
and altitude data from the satellite and provided in zero-Doppler slant-range geometry. The products
include a single look in each dimension using the full transmit signal bandwidth and consist of complex
samples preserving the phase information.

Level-1 Ground Range Detected (GRD) products consist of focused SAR data that has been detected,
multi-looked and projected to ground range using an Earth ellipsoid model. Phase information is lost.
The resulting product has approximately square spatial resolution pixels and square pixel spacing with
reduced speckle at the cost of worse spatial resolution.

2.7. Data description
This research utilises several data sets and each will be described in this section.

2.7.1. SAR images
The main data is the stack of SAR images. These are produced by the Sentinel-1 mission and as
described in section 2.6 are freely available online. The extent of the SAR images is displayed in figure
2.11. The stack that was used consisted of 93 images, the first image was acquired on the 18th of
July 2015 and the last on the 17th of September 2017. This gives us 89 images before the flood, one
image during the flood on the 30th of august 2017 and three images after the flood. All images were
taken in descending mode, VV polarisation, in swath 1.

2.7.2. Digital Elevation Models (DEMs)
For this research two DEMs are used.
The first-one is a DEM produced by the Shuttle Radar Topography Mission (SRTM) of NASA. This mission
had the goal to produce a Global Digital Elevation Map (GDEM) using space borne radar (Nikolakopoulos
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Figure 2.11: Outline of the area covered by the stack of SAR images that is used (in red) on top of a Google earth map, the red
shape is approximately 21km by 86km.

et al., 2013). The result was a DEM covering 80% of the earths land surface, in a resolution of 1 arc
second (approximately 30m) (Czubski et al., 2013). The second is part of the National Elevation Data
set (NED). The NED provides the best available public domain raster elevation data of the United States.
The NED is derived from diverse source data, processed to a common coordinate system and unit of
vertical measure. The resolution of the NED is 1/3 arc second (approximately 10 meters) and in limited
areas it is 1/9 arc second (approximately 3 meters) (Gesch, 2007).

2.7.3. Optical images
In order to validate the results optical airborne imagery is used. This data was acquired by the National
Oceanic and Atmospheric Administration (NOAA) remote sensing division. They gathered airborne
images every day from August 27th till the 3rd of September to support the NOAA, homeland security
and emergency response units. The resolution is approximately 50cm4.

2.8. Study Area
In figure 2.11 the outline of the SAR data extent is given. Because this area is rather large and testing
would take a long computational time the development of the method focuses on a smaller subset of
the SAR image. In figure 2.12(a) the subset is displayed in the form of a SAR image. This area is
chosen because it contains a river, large open highways, a park, roads under dense tree cover and
of course flooded areas. In the extent of the image several floods of roads and grasslands can be
spotted in the aerial image (Figure 2.12(c)). The outline of these flooded neighbourhoods and parks
are displayed on top of the radar-coded DEM in figure 2.12(b). In this DEM we can distinguish some
key features, there is an overall gradient present that is lowest in the bottom right corner and highest
in the upper left corner, a large highway runs through the image left to right and intersects a smaller
but main road running from top to bottom with a small bend at the bottom. Furthermore there is a
river running along the lower right side of the image and there is a levee/dike in the upper left corner.

4https://storms.ngs.noaa.gov/storms/harvey/index.html
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(a) Mean of 89 SAR images over the period of 2015-07-18 till 2017-08-2. It shows the region on
which the methods for flood mapping are tested and further developed. The region is approxi-
mately 5km by 3km in size.

(b) High resolution DEM freely available for the testing region.

(c) Aerial image of the same region acquired on the 30th of August 2017. Image comes from
NOAA Hurricane Harvey imagery site

Figure 2.12: Tree different images made of 3 different data sets all showing the region on which testing for the research was
performed.





3
Methodology

In Section 2.3 a brief overview is given on past studies concerning flood mapping using SAR. From these
past studies a few methods are selected and in some cases expanded for this research to implement
and evaluate. This led to a list of five methods. The methods are selected because they are based on
SAR images and process the entire image at once instead of small portions of the image. The methods
will be tested on accuracy in an urban setting in Chapter 4.
In this chapter the methodology of the five flood mapping methods used in this research are described.
An extensive overview of the processing steps for each method will be given. The five methods are:

1. Single image threshold

2. Image pair threshold

3. Stack of images outliers

4. Stack of images

5. Stack of images plus a DEM

The first two methods come directly from a literature study on flood mapping. The Single image
threshold method can be used to, in most cases correctly, classify flooded and non-flooded pixels and
used to detect an inundation area (Martinis et al., 2009). This study will use the method with threshold
values from literature that were used on rural areas and apply them on an urban setting. Next to
the single image an image pair is what most flood mapping studies are generally based on (Schlaffer
et al., 2014). The Image pair threshold method used in this study looks at the difference between
two consecutive images and applies a threshold on these differences for its classification. The last
tree methods use a stack of images in an effort to reduce speckle and create an ”expected” value
for each individual pixel. This idea comes from the study performed by Mason et al. (2013). Their
study used a simulation model to calculate an expected intensity measurement using a high resolution
DEM. To bypass the need of this simulated values the last tree methods will use a stack of images to
calculate an ”expected value” for each pixel. The Stack of images outliers method will use the maximal
and minimal values recorded in the stack under non-flooded conditions to classify pixels as flooded or
non-flooded. The Stack of images method will use the mean of the stack to asses whether or not a
pixel is flooded. The final method is the Stack of images plus DEM method. It continuous on the Stack
of images method with the use of a DEM in order to perform a region growing process to classify pixels
as flooded and non-flooded.
These methods, with the exception of the last method, were selected for the fact that they are based
solely on SAR amplitude data, are relatively computationally inexpensive and do not require models
or other data. This is why a flood map can be computed with these methods the instant a new SAR
image is available.
This chapter is limited to only explaining the methodologies. Every method will be applied on the same
test case and the results will be displayed in Chapter 4. In Chapter 4 the methods will be further
developed based the first results. Chapter 4 will also compare the results from each method with one

21
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another. In order to be able to compare the results the testing area is divided into neighbourhoods that
are not flooded and neighbourhoods that are flooded using validation data in the form of airborne optical
images. In an effort to quantify the results besides the images a performance metric is introduced.

3.1. Single image threshold
Using a single image that was taken during the flood, a flood map could be created when flooded pixels
have a signature on a SAR backscatter measurement image distinguishable from other non-flooded
pixels. This is done with two thresholds, the threshold marks the interval of values that are characteristic
for flooded pixels. Selecting a threshold is a process on which much time is often spent when making a
classification. This is why optimised threshold have been determined in a study performed by Manjusree
et al. (2012). They found that for VV polarisation the optimal threshold for flood water was between
-6 to -15 dB when using higher incidence angle SAR images (20 to 49 degrees). Sentinel-1 incidence
angles fall inside this range (Torres et al., 2012) but was not the satellite used in their research, they
used data from the RADARSAT-2 satellite. The conclusion of Manjusree et al. (2012) was a general
one and not limited to RADARSAT-2, that is why the Single image threshold method will start with the
threshold from their paper. For the Single image threshold method every pixel that contains a value
between -6 and -15 dB will be classified as flooded. When in the first results the thresholds do not
seem to be adequate they can be adjusted using first results and histograms from these results. The
Single image threshold method is summarised by

𝑃 = {Flooded, if 𝑃 ≥ -6 dB and ≤ -15 dB
Non-flooded, otherwise

(3.1)

in which the pixel values in the SAR image a re 𝑃. The process thus consists of a single step:

1. Apply thresholds on the SAR image taken during the flood, this creates a binary flood map con-
sisting of flooded and non-flooded pixels.

The advantage of this method is that it only requires one image and that its suitable for rapid flood
mapping due to being computationally relatively inexpensive (Martinis et al., 2009). This method can
be expanded by adding an image from before the flood and instead of classifying based on the flooded
pixels signatures classifying based on the change in individual pixels, as is explained in the following
method.

3.2. Image pair threshold
The Image pair threshold method compares an image acquired before the flood with the image acquired
during the flood. Flooded pixels are expected to show a difference in amplitude measurement value
than when they were not flooded, resulting (in theory) in a larger difference than between a pixel that
is not flooded in either image.
The image taken under normal conditions (𝑃n) is subtracted from the image taken during the flood (𝑃f)
and gives a difference image (𝑃d), written out this gives

𝑃d = 𝑃f − 𝑃n. (3.2)

On the resulting difference image (𝑃 ) a threshold will be applied classifying all pixels according to
the threshold into a flooded and not flooded category. The expectation is that flooded pixels have a
larger value in the difference image than non-flooded image, these values can however be both positive
and negative as illustrated in Figure 2.8. In this figure it is illustrated that a smooth water surface acts
as a specular reflector leading to a lower backscatter measurement at the satellite compared to rough
ground surface, but it also shows that when the water surface is located next to buildings double
bounces can occur leading to a higher measurement. This leads to a threshold implication

𝑃 = {
Flooded, if 𝑃d ≥ 𝑇U
Flooded, if 𝑃d ≤ 𝑇L
Non-flooded, otherwise

(3.3)
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in which 𝑇L and 𝑇U are the thresholds.
These thresholds will be determined by accessing the image and histogram of 𝑃d. Based on valida-

tion data an optimum for 𝑇U and 𝑇L could be chosen so that false positive classifications are minimised
while maximising the flooded pixels classified as such. These values for 𝑇U and 𝑇L can than be applied
on areas without validation data. The process consists of two steps:

1. Compute the difference image by subtracting the SAR image taken before the flood from the SAR
image taken during the flood.

2. Apply thresholds on the difference image, this creates a binary flood map consisting of flooded
and non-flooded pixels.

Both the Single image threshold as well as the Image pair threshold methods are limited in the
number of data points that they use, using a larger set of SAR data acquired before the flood event
could prove to increase accuracy of the flood mapping. The following methods use a stack of images
for their classification.

3.3. Stack of images outliers
The Stack of images outliers method is based on the assumption that a flood will change the reflective
properties of the pixels it occurs on. As seen in Figure 2.8, the signal is expected to increase or decrease
with respect to a signal under normal conditions. This method classifies each pixel individually. The
pixel value on the flooded image (𝑃) will be compared to the maximum and minimum value recorded
for that pixel in a stack of images (𝑆) (of non-flooded images). When it exceeds one of these values it
is classified as flooded, otherwise is it denoted as non-flooded. The classification is expressed as

𝑃 = {
Flooded, if 𝑃 ≥ max(𝑆)
Flooded, if 𝑃 ≤ min(𝑆)
Non-flooded, otherwise.

(3.4)

This method is different from the others because it works with different thresholds for each pixel.
This can be an advantage because of all the different scattering influences there are, as can be seen in
Figure 2.8. A general threshold for the entire image has the trade of of missing flooded pixels or having
false positives based on the threshold. Taking a different threshold for each pixel might mitigate this
effect.

Eq. 3.4 consist of two step. The first step is determining the largest and smallest value for each
pixel in the stack. The next step is comparing the pixel values of the image taken on the day of the
flood to the largest and smallest values for that pixel, classifying it as flooded when it lies outside of
these boundaries and non-flooded if it lies outside of the boundaries. The processing steps of the
method are given below:

1. Define a stack of images composed of images with no flood present. A larger stack can represents
a wider range of values that can be considered normal for a single pixel but a stack over a long
time period can be influenced by new buildings constructed or old buildings removed.

2. Apply Eq. 3.4 on the stack and the flooded image. This creates a binary flood map consisting of
flooded and non-flooded pixels

Speckle in the stack and the image of the flood could potentially lead to flooded pixels not being
detected by this method. This is because the thresholds sets can be influenced a lot by one measure-
ment where the speckle leads to a very large or a very small value. When there is a very large or small
value in the stack the pixel in the flooded image might not exceed the value even when its scattering
properties are changed due to the flood, leading to a misclassification of the pixel. Both the Single
image threshold as well as the Image pair threshold methods are influenced by speckle. In an effort
to reduce the effects of speckle on the classification process the mean of a stack of images could be
used. The mean value over several images could be used to represent pixel values before the flood.
This reduces the effect of speckle in the value representing the normal state of pixels although speckle
is still present in the flooded image. The following methods exploit this theory.
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3.4. Stack of images
This method uses a stack of images before the flood under non-flooded conditions to compute an
expected measurement value for each pixel. This makes it possible to quantify how much a pixel in an
image taken during a flood has changed compared to their expected measured value. The expectation
is that by using more than one image before the flood the speckle can be reduced in the value for
the normal conditions. The method is based on the research done by Mason et al. (2013). Their
method uses a model to predict backscatter strengths and compares the predicted values with the
measured ones to distinguish flooded and non-flooded pixels. The method proposed in this section
replaces the modelled values with the mean of previous images taken. By doing so there is no need for
a computationally expensive model. Furthermore, using a stack of images makes it possible to account
for the variability that each pixel has under normal conditions. The variability can be expressed by
the standard deviation of a pixel under normal conditions in the stack of images. The variability is
visualised in Figure 4.11.
The change in every pixel (𝑃 ) will be calculated using the mean amplitude of that pixel over the stack
in normal conditions (𝑃), the variability during that time expressed by the standard deviation (𝜎P) and
the amplitude on the flooded image (𝑃f). The calculation of the change in every pixel (𝑃c) is expressed
by

𝑃c =
𝑃 − 𝑃f
𝜎P

. (3.5)

In Eq. 3.5 𝜎P represents the standard deviation of a pixel or in other words the reliability of the
”normal” value of each pixel in the time stack. When the standard deviation is small the pixel is consis-
tent trough time where-as a large standard deviation indicates that the pixel varies a lot under normal
conditions and that the ”normal” is less reliable. This enables us to compute the difference between
the image taken during the flood and the ”normal” value for each pixel. The larger the difference
the more likely a pixel in the image of the flood has changed. The resulting image of change in every
pixel (𝑃c) will then undergo a classification based on threshold values 𝑇U and 𝑇L. This results in equation

𝑃c = {
Flooded, if 𝑃c ≥ 𝑥
Flooded, if 𝑃c ≤ 𝑦
Non-flooded, otherwise.

(3.6)

The threshold values 𝑥 and 𝑦 will be determined using the validation data and the histogram of the
image 𝑃 , the values of 𝑥 and 𝑦 will be chosen in such a way that a maximum amount of flooded pixels
will be classified as flooded while minimising the amount of non-flooded pixels classified as flooded.
The selected thresholds will then be tested on other regions to check if they give the desired result
and can be implemented on entire images. The processing steps are given below in a step by step
workflow:

1. Define a stack, this step consist of setting up the variables, The number of images is defined with
the last image being taken during the flood, a longer time period has the risk of being influenced
by a changing environment on the ground but a short period filters out less speckle in the mean
value.

2. Compute change, this step is the implementation of Equation 3.5 on the stack of images and
results in an image where large values (positive and negative) represent pixels that are likely to
have changed and could be designated as flooded.

3. Apply thresholds on the change image, this creates a binary flood map consisting of flooded and
non-flooded pixels.

Because there is still speckle present in the image taken during the flood, the pixels in the flooded
image can deviate from their expected value which might lead to non-flooded pixels being classified
as flooded. The next method uses only the highest values in 𝑃 to minimise false positives caused by
speckle and uses a DEM to classify the rest of the image.
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3.5. Stack of images plus a DEM
The Stack of images plus a DEM method uses seed points derived from a SAR image to determine
larger flooded areas on a DEM. The method uses the image of 𝑃c that is computed with the Stack of
images method to select pixels which are most likely to be flooded. These pixels are the seed points
on a DEM that classify pixels neighbouring them and having a lower elevation as flooded. The pro-
cess of selecting neighbouring pixels from a seed point is called region growing. Using region growing
overcomes the problem of some flooded streets going undetected due to their orientation with respect
to the satellite track. This is because a pixel does not need to have a large change to be classified
as flooded, if it is next to a pixel that has a high probability to be flooded and is situated on a lower
elevation it can still be classified as flooded.
The first step of this method is to compute the change of every pixel (𝑃 ) as defined by Eq. 3.5. While
the Stack of images method then uses thresholds to classify every pixel, this method will implement
thresholds only to select pixels with the highest probability to be flooded and use regions growing to
classify the remaining pixels. The second step is thus to apply a threshold to select pixels most likely
to be flooded or in other words the pixels with the highest and lowest values. By doings so the false
positive flooded pixels are minimised or even non-existent. Normally, the drawback of implementing
very strict thresholds is that a large part of flooded pixels are not detected. This method does not suffer
from that drawback as the classification step does not use a threshold. From every pixel that is almost
certainly flooded the coordinates are stored. These coordinates are used as seed points on a DEM.
Every seed point has an elevation value and 4 neighbouring pixels, with the exception of the 4 corner
pixels which only have 2 neighbouring pixels. The elevation value of each neighbour is compared to
the elevation of the seed point. When it is a lower elevation the pixel gets classified as flooded, when
it is larger it will be classified as non-flooded. When a pixel is classified as flooded its neighbouring
pixels get tested in the same way using the elevation value of the original seed point. This process
continuous until every pixel that is classified as flooded around the seed point are enclosed by pixels
with a higher elevation value than the elevation of the original seed point. The processing steps are
given again below in a step by step workflow:

1. Define a stack, this step consist of setting up the variables, The number of images is defined with
the last image being taken during the flood, a longer time period has the risk of being influenced
by a changing environment on the ground but a short period filters out less speckle in the mean
value.

2. Compute change, this step is the implementation of Equation 3.5 on the stack of images and
results in an image where large values (positive and negative) represent pixels that are likely to
have changed and could be designated as flooded.

3. Filtering, in order to minimise false positives a filtering step can be applied, the step is optional.
This filter computes the mean of surrounding pixels for each pixel. This filter ensures that pixels
classified as flooded are in the centre of several flooded pixels and therefore have a higher prob-
ability to be flooded than a pixel that has a height value but all their neighbouring pixels have a
small value. The drawback is the loss of resolution and that single flooded pixels could be missed.
(side note, flooded pixels can have positive and negative values, averaging them could lead to a
small value and missing them as flooded)

4. Pixel selection, a threshold is applied on the filtered image selecting all pixels above a certain
value and below a certain value. From these pixels the coordinates are stored.

5. Region growing, the region growing step uses the selected pixels as seed points for the region
growing process. Every pixels that neighbours a selected pixel and has a lower elevation than
the selected pixel will be added to the region.

6. Region summation, this step simply consists of adding all the regions from the different seed
points to one image
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7. Classification, as the name suggests this is the classification step, to start of every pixel that
belongs to a region could be classified as flooded, if this results in a large number of false positive
classification a threshold could be applied. Implying that a pixel will only be flooded when it is
part of a set number of regions.

For a comprehension of how the method computed the pseudo code is given next:

Inputs
-𝑃, the stack of images.
-𝑃f, the last image of the stack being that of the flood
-𝑃, the mean of the stack without the flooded image
-𝜎P, the std of the stack without the flooded image.
-𝐷𝐸𝑀, the digital elevation map with the same extent as the SAR images in the stack.
-𝑥 and 𝑦, thresholds for the pixel selection step

Procedure

Compute 𝑃c with 𝑃c = f

P
Apply filter on 𝑃c, every pixel is mean of surrounding pixels
Pixel selection according to 𝑃c ≥ 𝑥 and 𝑃c ≤ 𝑦
For loop over every selected pixel;

Identify neighbouring pixels
for loop over every neighbouring pixel

if height pixel ≤height seed point
add to region
Identify neighbouring pixels

else
do not add to region

Add all regions together
If pixel is inside region

flooded
else

non-flooded

3.6. Performance metric
In Chapter 4 all methods are tested and their results briefly discussed, in order to compare the results
of of the methods to one another a performance metric will need to be defined. A confusion matrix is a
typical tool to qualify the results of a classification, the confusion matrix is build up of rows representing
the instances in a predicted class and of columns represents the instances in an actual class. For
this research the confusion matrix of each method would consist out of two rows and two columns
representing the classes flooded and non-flooded, the confusion matrix requires knowledge about the
true class of pixels for this research pixels are only known to be inside a flooded neighbourhood or
outside. Pixels inside those neighbourhoods do not necessarily mean that they are flooded as the
areas contain houses and other non-flooded objects. The performance metric for the purpose of this
research will be based on a confusion matrix with the alteration that the true class is not known but
only the true region a pixel lies in. This means that pixels in non-flooded regions are all non-flooded
but not all pixels inside the flooded regions are necessarily flooded. An example of the confusion matrix
used as a performance metric for this research is given as Table 3.1.

Flooded neighbourhood Dry neighbourhood
Classified flooded Correct False positive
Classified dry False negative Correct

Table 3.1: Example of confusion matrix for this research. The columns represent the true group pixels belong to, the rows
represent the group pixels are classified as.
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Results

In this chapter the results of the five flood classification methods are presented by implementing them
on the same region of interest. The region on which are used for the tests is shown as an aerial
image, a SAR image and a DEM in Figure 2.12. Besides the first results, there is a short discussion on
the result and if the initial result could be improved, the results of these potential improvements will
be shown as well. The resulting flood map will use the same layout for all methods: blue pixels are
classified as flooded while yellow indicates non-flooded. On top of all flood maps red polygon outlines
are displayed, these shapes are the outline of the flooded neighbourhoods in the extent of the image.
They are derived from aerial images taken by NOAA on the 30th of August, the same date on which the
SAR image was taken during the flood. When a classification would be perfect not all pixels inside the
polygons would be classified as flooded, the polygons enclose buildings as well as streets that were not
flooded or not completely flooded. A perfect flood map would however not contain any pixels classified
as flooded outside of the polygons.

4.1. Single image threshold
The method that uses a single SAR image taking during the flood to make a flood map containing
flooded and non-flooded pixels. The SAR image of the testing region taken during the flood is dis-
played in Figure 4.1 This method can be directly implemented as described in Section 3.1. The result
is displayed in Figure 4.2.

Flooded neighbourhood Dry neighbourhood
Classified flooded 30548 (51 %) 111097 (52 %)
Classified dry 29592 (49 %) 103451 (48 %)

Table 4.1: Confusion matrix for single image classification result using the threshold values of -15 dB and -6 dB. The first number
represents the number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each column thus
adds up to a 100 percent.

The resulting image consists of 48 percent pixels that are classified as flooded. Only 14 percent of
the pixels in the entire image lie in flooded neighbourhoods and only a fraction of that 14 percent are
streets that are actually flooded. That means that this classification method yields more false positives
than positive classifications. The confusion matrix is shown in Table 4.1. In this table it is again shown
that there are more pixels classified as flooded outside of the flooded neighbourhoods than inside the
neighbourhoods. What does stand out in this image are the main highways. They run through the
image as a yellow lines of pixels classified as non-flooded where the rest of the image is an inconsistent
mixture of flooded and non-flooded pixels. This is due to their smooth and consistent surface proper-
ties that result in a low backscatter that is similar for all pixels in the highway. The rest of the image is
made up of a mixture of flooded and non-flooded pixels. There seems to be little difference between
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Figure 4.1: Showing a section of the Sentinel-1 SAR image taken on 30-08-2019 that covers the region on which testing is per-
formed. When this image was acquired flooding was present in the area. The red polygons encircle the flooded neighbourhood,
outside of these polygons there is no flood water present on the aerial images.

Figure 4.2: Result of the Single image threshold classification method on a SAR backscatter image taken during the flood. All
pixels between -15 dB and -6 dB are classified as flooded. The red polygons encircle the flooded neighbourhood, outside of
these polygons there is no flood water present on the aerial images.

the inside and outside of the polygons.

Figure 4.3 gives an insight in why this classification does not work, it displays the histogram of the
SAR image on which the classification is performed as well as the histogram of the pixels inside the
polygons. From the histogram it is clear that there is no threshold that would not lead to more false
positive than positive classifications. The flood classification as described in the study done by Manjus-
ree et al. (2012), does not yield a useful result in an urban environment when directly implemented.

An option to improve the result is the application of a mean filter window. A mean filter window can
reduce speckle noise in SAR images (S et al., 2013), the noise reduction or smoothing of the image can
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Figure 4.3: Histogram of pixel values in the Sentinel-1 SAR image shown in Figure 4.1. The blue histogram is of all pixels in the
image while the orange histogram is only of the pixels that fall inside of the polygons encircling the flooded regions.

improve the quality possibly leading to a better distinction between flooded and non-flooded pixels.
The filter is a linear one and is expressed by

ℎ[ , ] =
1
𝑀 ∑

( , )∈
𝑓[ , ]. (4.1)

In Eq. 4.1 M is the number of surrounding pixels N, ℎ[ , ] and 𝑓[ , ] are the new and old pixel values.
This research uses a mean 3x3 and 5x5 filter window to compute the mean value over a pixel and
the eight or twenty-four pixels surrounding it. By doing so larger patches of flood could be better
detectable while single outliers will not result in a false positive, drawback of the method is the loss of
resolution and potentially missing floods in narrow streets that are only 1 pixel wide. The histogram of
the filtered image is shown in Figure 4.4.

From this histogram it seems that the lowest values are mainly located inside of the flooded neigh-
bourhoods, using a threshold of -22 to classify everything lower as flooded could lead to a better
classification than in Figure 4.2. The result is shown in Figure 4.5.

Flooded neighbourhood Dry neighbourhood
Classified flooded 938 (2%) 1918 (1 %)
Classified dry 57795 (98%) 211209 (99 %)

Table 4.2: Confusion matrix for the classification result shown in Figure 4.5. In that image all pixels in the filtered SAR image
lower than -22 dB are classified as flooded. The first number represents the number of pixels and in the brackets the percentile
of the total pixels in that neighbourhood. Each column thus adds up to a 100 percent.

This classification lies more in line with expectations, it correctly selects pixels inside of the three
polygons in the upper half of the image. These are wide open areas that are flooded, the result even
selected some pixels in the lower polygon, water acts as an specular reflector here and results in a low
measurement. In the image the main highway, which runs as a cross through the area, also contains
a lot of pixels classified as flooded. This underlines the difficulty of flood mapping in urban areas using
SAR imagery as the man made concrete results in a similar low backscatter measurement as still water
does. Because the highway composes a relatively large part of the image the confusion matrix in Table
4.2 contains more false positive classifications than positive ones but knowing where these lie the result
remains an improvement from the non-filtered image. Beside the highway pixels being classified as
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Figure 4.4: Histogram of pixel values in the Sentinel-1 SAR image of the flood after a 3x3 mean filter window was applied. The
blue histogram is of all pixels in the image the orange histogram is only of the pixels that fall inside of the polygons encircling
the flooded regions.

Figure 4.5: Result of the Single image threshold method classification applied on the Sentinel-1 SAR shown in Figure 4.1 after
a 3x3 mean filter window was applied. All pixels bellow -22 dB are classified as flooded. The red polygons encircle the flooded
neighbourhood, outside of these polygons there is no flood water present on the aerial images.

flooded the result approaches the result of the Copernicus emergency service which only classified the
flooded field as flooded. The problem of the highway pixels being seen as flooded might be solved by
using an Image pair and using the difference between two images rather than the values of an image
itself.

4.2. Image pair threshold
The method that uses the difference between a SAR image before the flood and one taken during the
flood to produce a flood map containing flooded and non-flooded pixels. Computing the difference
image is the first step of this method. The difference image is computed using Eq. 3.2. The images
used are displayed in Figure 4.6 and the resulting image is displayed in Figure 4.7. In this image the
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upper left corner stands out as it appears generally darker than the rest of the image, there is also a
dark spot on the right side of the figure. These two darker areas are flooded. They are however also
open fields. The bottom right appears generally lighter than the rest of the image. This is the area
that contains flooded streets.

(a) Sentinel-1 SAR image taken on 24-08-2017 (before the flood).

(b) Sentinel-1 SAR image taken on 30-08-2017 (during the flood).

Figure 4.6: Sentinel-1 SAR images that are used in the Image pair threshold method. The red polygons encircle the flooded
neighbourhood, outside of these polygons there is no flood water present on the aerial images.

The lighter shades are not the result of being the pixels that are the lightest or the only light pixels
in the image. This becomes clear when looking at the histogram of the pixel values of the entire image
and of the pixels inside the polygons in Figure 4.8. From this histogram no threshold seems to lead
to more positive than false positive classifications. That is, any threshold to classify the image pixels
as flooded would not work as it would classify more pixels outside of the polygon as flooded as well.
The streets that are flooded are thus not directly distinguishable from dry streets in this figure based
on pixel values. Because some patches do stand out in the difference image (Figure 4.7) a 3x3 mean
filter window can be applied in an effort to isolate them. Just as the Single image threshold method
used mean filter window to improve the result.

The 3x3 mean filter window takes takes the mean of the eight surrounding pixels as a value for
that pixel. The filtering process leads to the histogram shown in Figure 4.9.

From this histogram it initially seems that any threshold applied on the image would result in a large
percentages of the pixels classified as flooded would fall outside of the flooded neighbourhoods. But
when looking at the highest percentiles on both sides of the histogram a threshold might work. From
looking at the higher percentiles the values chosen for the classification are -15 and 15 dB difference.
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Figure 4.7: The difference image that is the result of subtracting Figures 4.6 (a) and (b) from one another. The red polygons
encircle the flooded neighbourhood, outside of these polygons there is no flood water present on the aerial images.

Figure 4.8: Histogram of pixel values in the difference image shown in Figure 4.7. The blue histogram is of all pixels in the image
while the orange histogram is only of the pixels that fall inside of the polygons encircling the flooded regions.

The result of the classification attempt is shown in Figure 4.10.

Flooded neighbourhood Dry neighbourhood
Classified flooded 160 (0 %) 53 (0 %)
Classified dry 58573 (100 %) 213074 (100 %)

Table 4.3: Confusion matrix for image pair lower than -15 or higher than 15 (after the 3x3 mean filter window is applied). The
first number represents the number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each
column thus adds up to a 100 percent.

In Figure 4.10 only a small number of pixels are classified as flooded, but most of them fall inside
of the polygons on the top half of the image. In Table 4.3 it is visible that 75% of pixels classified
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Figure 4.9: Histogram of pixel values in the difference image shown in Figure 4.7 after a 3x3 mean filter window has been
applied. The blue histogram is of all pixels in the image while the orange histogram is only of the pixels that fall inside of the
polygons encircling the flooded regions.

Figure 4.10: Result of the Image pair threshold classification method on the difference image shown in Figure 4.7 after a 3x3
mean filter window has been applied. All pixels smaller than -15 dB and larger than 15 dB are classified as flooded. The red
polygons encircle the flooded neighbourhood, outside of these polygons there is no flood water present on the aerial images.

as flooded lie in a flooded neighbourhood. This is an improvement in terms of percentage compared
to the result of the single image threshold 4.2, where the majority of pixels classified as flooded fell
outside of the flooded areas. Although the number of mis-classifications seems to be low, so is the
number of classifications of flooded pixels inside the polygon in the bottom of the image, where all the
flooded streets are.
This result is an overall improvement over the result of the Single image threshold method (Figure 4.5)
as the flooded pixels (albeit a lower number) are found in the top polygons of the image but more
importantly the highway is no longer classified as flooded as it was with the previous method. To sum
up, the Image pair threshold method (partially) spots open fields that are flooded but does not seem to
be able to identify a flooded neighbourhood. This is nearly the same result the Copernicus emergency
services produced for this area.
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The problem thus still lies in the bottom polygon where the flooded streets lie. In order to understand
why the approach of a difference image does not classify this part of the city correctly and misses some
pixels in the flooded fields it is best to look at the behaviour of an individual pixel over time. In Figure
4.11 a pixel value over time is displayed. This pixel in taken from a highway that was not flooded on
August the 30th 2017. The pixel value ranges from -14 dB to -40 dB seemingly at random.

Figure 4.11: Amplitude backscatter behaviour of a single pixel that was not flooded on the 30th of August 2017 over time.

When two consecutive images are taken from this time series a difference of 15 dB would not be
uncommon. In Figure 4.12 the pixel values over time are displayed from a pixel that was flooded on
the 30th of August. The value on the image that was flooded is indicated by a red ’*’. This value stands
out as it is the highest value recorded in two and a half year.

Figure 4.12: Amplitude backscatter behaviour of a single pixel that was flooded on the 30th of August 2017 over time.

It is however not the largest difference between two consecutive images. Because the pixel value
has such a large range of values in non-flooded conditions the difference between two images can be
large and small regardless of a flood occurring. From this single pixel it would again seem to be easy
to classify flooded or not flooded based on a threshold of in this case -5 dB but with a look at Figure
4.3 it is again clear why this would not work. Taking all of this into account, using a difference image
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will not yield a result in which dry streets can be distinguished from flooded streets. The method on
this data can spot large open fields that are flooded but gives no satisfying result in urban areas.

4.3. Stack of images outliers
The method uses a stack of images to determine when a pixel value falls outside of the range of values
that are expected of a pixel in a SAR image when it is not flooded. With the pixels that fall outside of the
range a flood map is produced, the change is attributed to the flood and therefore pixels are clasified as
flooded when they fall outside of their range of normal behaviour. Eq. 3.4 can be directly implemented
on the data when the image on which a flooding could be present and the stack of images before the
flooded image are defined. The resulting flood map is split up in two flood maps and shown in Figure
4.13. The values that were higher than ever recorded before are shown in (a). They are clearly present
throughout the image but there is a cluster in the bottom right corner. In the flooded open fields there
seems to be an absence of pixels classified as flooded. The smallest values ever recorded are shown
part (b). The pixels classified as flooded in this image seem to be uniformly spread trough-out the
image both in flooded neighbourhoods and not flooded ones.

At a first glance the minimum values seem to be useless as there is no difference between flooded
and non-flooded neighbourhoods, the confusion matrix is shown in Table 4.5. The confusion matrix
for the largest values recorded image is shown in Table 4.4, from this table the method does not seem
use-full as the number of pixels classified as flooded is larger outside the flooded regions than inside.
The cluster of pixels in the flooded neighbourhood is however the result that is desired, an effort to
isolate this cluster by improving the method is consequently made. A possible solution is the imple-
mentation of a buffer.

Flooded neighbourhood Dry neighbourhood
Classified flooded 2340 (4 %) 3563 (2 %)
Classified dry 57800 (96 %) 210985 (98 %)

Table 4.4: Confusion matrix for stack of images outliers larger than in the previous 2 years. The first number represents the
number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each column thus adds up to a
100 percent.

Flooded neighbourhood Dry neighbourhood
Classified flooded 859 (0 %) 2543 (1 %)
Classified dry 59281 (100 %) 212005 (99 %)

Table 4.5: Confusion matrix for stack of images outliers smaller than in the previous 2 years. The first number represents the
number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each column thus adds up to a
100 percent.

In Figure 4.12 the variability of a pixel under normal conditions is shown, along with the value
of the pixel when flooded. This value stands out as the largest recorded in that time span. In this
case classifying the largest value as flooded would be correct. There will however always be a value
that is the largest of the stack, even for pixels that are not flooded. For the non-flooded pixels the
largest value is in a random image in the stack which could accidentally be the image of the flood.
When this value is present in an image taken during the flood the pixel will be classified as flooded,
regardless whether or not it is flooded. This is why there seems to be a uniform spread of maximum and
minimum values in Figure 4.13 in the non-flooded neighbourhoods. Its in the flooded neighbourhoods
in the maximum values that patterns emerge. The flooded fields in the top halve contain very little of
these pixels and are almost uniformly classified as non-flooded. This could be because they are used
as reservoirs during the year and might be under water several times a year and therefore in several
of the SAR images in the stack. The pixel values thus do not exceed the pixel values in the stack and
are not detected. The cluster in the bottom also stands out. The fact that it only stands out on the
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(a) Values on flooded image higher than in the stack of images.

(b) Values on flooded image lower than in the stack of images.

Figure 4.13: Result of the Stack of images outliers classification method on the stack of images consisting of 90 images spanning
two years. All pixels on the SAR image taken during the flood that are larger or smaller than in the entire stack are classified as
flooded. The top image are all pixels higher that in the stack, the bottom image shows all pixels lower than in the stack. The red
polygons encircle the flooded neighbourhood, outside of these polygons there is no flood water present on the aerial images.

maximum image in Figure 4.13 suggest that the signal has increased strength due to a double bounce.
This is the first method that makes this area of flooded urban streets stand out. In order an effort
to remove the false positive classifications but keep this section classified as flooded an extra buffer
could be implemented. The buffer means that not all the largest and smallest values are classified as
flooded but only the values that are the largest and smallest by a margin are. The implementation of
the margin translates Eq. 3.4 to

𝑃 = {
Flooded, if 𝑃 ≥ max(𝑆) + 𝑇up
Flooded, if 𝑃 ≤ min(𝑆) − 𝑇low
Non-flooded, otherwise.

(4.2)

By increasing 𝑇up in Eq. 4.2 fewer pixels outside the polygons are marked as flooded while pixels



4.3. Stack of images outliers 37

inside the polygons continue to be classified as flooded. This leads to a better result with the drawback
that only a small amount of pixels are classified as flooded, leading to an increase in false negative
classifications. The result of the using 𝑇up = 10dB in Eq. 4.2 is shown in Figure 4.14 where only the
maximum values with a buffer of 10 dB are classified as flooded. The result holds no flooded pixels
in the open fields and only a few flooded pixels in the flooded neighbourhood, it does however also
hold no flooded classifications outside flooded neighbourhoods. This results in the confusion matrix in
Table 4.6, the best in ratio flooded inside polygon versus flooded outside polygon thus far. This means
that the method is the first one to correctly classify flooded pixels inside the flooded neighbourhood
without classifying non-flooded pixels as flooded. The image correctly shows some flooding where the
Copernicus emergency services map did not.

Figure 4.14: Result of the Stack of images outliers classification method (only the largest values) with a value of 10 dB for up.
All pixels on the SAR image taken during the flood that are larger by the margin of at least 10 dB than in the entire stack are
classified as flooded. The red polygons encircle the flooded neighbourhood, outside of these polygons there is no flood water
present on the aerial images.

Flooded neighbourhood Dry neighbourhood
Classified flooded 55 3
Classified dry 60085 214545

Table 4.6: Confusion matrix for stack of images outliers larger with a minimum of 10 dB than in the previous 2 years. The
first number represents the number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each
column thus adds up to a 100 percent.

The minimum values behave differently, increasing 𝑇low leads to fewer pixels classified as flooded
but eventually almost no pixels inside the polygons are classified as flooded while there are still pixels
classified as flooded outside of the polygons. An example of this is when 𝑇low is 15, the result is displayed
in Figure 4.15. The result in underlined by the confusion matrix in Table 4.7 where the number of pixels
classified as flooded outside the flooded neighbourhoods is a multiple of the number of pixels classified
as flooded inside flooded neighbourhoods. These result go against the expectation that floodwater
acts like a secular reflector leading to smaller back-scatter measurements, as the smallest pixel values
do not correspond to the flooded pixels but the highest pixel values due.

By using each image individually speckle has an influence on each image and could therefore in-
fluence the result of the Stack of images outliers method. By using the mean of several images taken
under normal condition the speckle can be reduced. This is what the Stack of images method tries to
accomplish.
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Figure 4.15: Result of the Stack of images outliers classification method (only the largest values) with a value of 15 dB for low.
All pixels on the SAR image taken during the flood that are lower by the margin of at least 10 dB than in the entire stack are
classified as flooded. The red polygons encircle the flooded neighbourhood, outside of these polygons there is no flood water
present on the aerial images.

Flooded neighbourhood Dry neighbourhood
Classified flooded 17 (0 %) 90 (0 %)
Classified dry 60123 (100 %) 214458 (100 %)

Table 4.7: Confusion matrix for stack of images outliers lower with a minimum of 15 dB than in the previous 2 years. The first
number represents the number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each column
thus adds up to a 100 percent.

4.4. Stack of images
The method uses a mean of a stack of images as a value for each pixel under normal conditions. The
normal is than compared with the pixel value during the flood to determine if a pixel is flooded or not.
When the stack of images is defined Eq. 3.5 can be implemented. The resulting image with pixel

values 𝑃c is shown in Figure 4.16. 𝑃c is the result of 𝑃c = f

P
, it is unitless and can be described as

a normalised difference value for pixels. The higher the absolute value of 𝑃c the higher the likelihood
that the pixel value in the flooded image has changed compared to the normal pixel value. This change
is attributed to flood water.
Figure 4.16 contains the values of 𝑃c. In this image the flooded polygons in the top half of the image
seem to contain pixels with high values where-as the flooded neighbourhood in the bottom half of the
image contains mainly low pixel values. This is in line with the expectations, the polygons in the top
half are open fields where the flood water acts like a specular reflector resulting in a lower value than
usual. In the lower half of the image the values of the pixels on the flooded image seem to be higher
than usual resulting in low values when using Eq. 3.5. The water still acts as an specular reflector
but due to buildings or other objects multiple reflections occur resulting in a high intensity backscatter
measurement at the radar system.

The regions that stand out are roughly the same as the regions that stand out using the Image
pair threshold method in Figure 4.7. Applying a threshold on the Image pair threshold method did not
lead to a result in which all flooded streets were classified as such but a few pixels from flooded streets
were classified correctly. In order to determine a threshold to apply on the image shown in Figure 4.16
the histogram of that image is used. The histogram is displayed in Figure 4.17.

On the positive side of the histogram it seems that a threshold will lead to more false positive
classifications than positive classifications. On the negative side the histograms of all pixels and pixels
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Figure 4.16: Result of using Eq. 3.5 on a stack of 90 Sentinel-1 SAR images taken during a 2 year period.The red polygons
encircle the flooded neighbourhood, outside of these polygons there is no flood water present on the aerial images.

Figure 4.17: Histogram of pixel values in the image shown in Figure 4.16. The blue histogram is of all pixels in the image while
the orange histogram is only of the pixels that fall inside of the polygons encircling the flooded regions.

.

inside the flooded neighbourhoods come much closer to one-another. Applying a threshold on this side
could lead to a desirable result. In Figure 4.18 the results is shown of implementing a threshold of -3
to the image of Figure 4.16. Although there are some some false positives still present the majority
of flooded pixel lie inside of polygon of the flooded neighbourhood. Lowering the threshold eliminates
most of the false positives but also reduces the number of pixels classified as flooded in the flooded
neighbourhood to a third. The confusion matrix for a threshold of -3 is shown in Table 4.8.

In order to decrease the number of false positive classification while retaining the pixels correctly
classified as flooded a 3x3 mean filter window can be applied to the image with pixels 𝑃c. This filter
computes the mean for each pixel of its eight surrounding pixels. The histogram of this filtered 𝑃c
image is shown in Figure 4.19

The histogram shows that the highest values lie inside of the polygons enclosing the flooded neigh-
bourhoods, it becomes easier to extract thresholds that lead to fewer false positives than in the non
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Figure 4.18: Result of the Stack of images method classification applied on the Sentinel-1 stack of images. All pixels in Figure
4.16 bellow -3 are classified as flooded. The red polygons encircle the flooded neighbourhood, outside of these polygons there
is no flood water present on the aerial images.

.

Flooded neighbourhood Dry neighbourhood
Classified flooded 169 (0 %) 73 (0 %)
Classified dry 59971 (100 %) 214475 (100 %)

Table 4.8: Confusion matrix for stack of images with a threshold of -3. The first number represents the number of pixels and in
the brackets the percentile of the total pixels in that neighbourhood. Each column thus adds up to a 100 percent.

Figure 4.19: Histogram of image (Figure 4.16) after mean 3x3 filter window is applied. The blue histogram is of all pixels in
the image the orange histogram is only of the pixels that fall inside of the polygons encircling the flooded regions.

filtered image. This becomes even more apparent when a 5x5 mean filter window is applied that com-
putes the mean of the 24 neighbouring pixels for each pixel. The histogram of the image that results
from such a filter is shown in Figure 4.20. In this histogram the largest values from inside the flooded
regions stand out even further than from the dry regions.
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Figure 4.20: Histogram of image (Figure 4.16) after mean 5x5 filter window is applied. The blue histogram is of all pixels in
the image the orange histogram is only of the pixels that fall inside of the polygons encircling the flooded regions.

Using the histogram of Figure 4.19, a threshold of -2 is selected, everything below that value is
classified as flooded. The resulting image is shown in Figure 4.21.

Figure 4.21: Result of the Stack of images method classification applied on the Sentinel-1 stack of images. All pixels in Figure
4.16 after a 3x3 mean filter window is applied that are bellow -2 are classified as flooded. The red polygons encircle the flooded
neighbourhood, outside of these polygons there is no flood water present on the aerial images.

Flooded neighbourhood Dry neighbourhood
Classified flooded 169 (0 %) 32 (0 %)
Classified dry 58564 (100 %) 213095 (100 %)

Table 4.9: Confusion matrix for stack of images with a threshold of -2 after a 3x3 mean filter window is applied. The first number
represents the number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each column thus
adds up to a 100 percent.
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When comparing Figure 4.18 and 4.21 most of the false positives are eliminated in the second
image, while most of the pixels inside of the polygons that were first classified as flooded still are. This
is apparent when comparing the two confusion matrices in Tables 4.8 and 4.9, The number of flooded
pixels inside the flooded neighbourhoods is the same while the number of pixels classified as flooded
outside of the flooded areas is drastically lower in the filtered image. The drawback of filtering remains
that single flooded pixels can be missed as their neighbouring pixels are not flooded. That the number
of correctly classified flooded pixels is exactly the same is coincidence and does not mean that the
same pixels are classified as flooded in both images.

The Stack of images method does not seem capable to detect the flooded fields. This is probably
due to the fact that they are used as reservoirs and can be flooded several times in the stack of images.
This results in a large value for 𝜎P and a low value for 𝑃 . The method does however identify pixels
in the flooded neighbourhood in the bottom half of the image, something the other methods did not
manage to accomplish. The result does not nearly classify all or most of the flooded streets, it only
seems to be able to detect the larger flooded streets. This is logical considering a mean filter window
is used that reduces the resolution but is does miss the goal of this research to classify most if not all
flooded streets in an urban environment. In order to fill in the gaps an additional data source could be
used. The stack of images plus a DEM method will try to accomplish this.

4.5. Stack of images plus a DEM
The method continues on the image of 𝑃 displayed in Figure 4.16. Instead of applying a threshold, as
the Stack of images method does, the largest values are selected as these are most likely flooded and
from these locations the flooded areas are grown using a DEM. The region growing result is shown in
Figure 4.22. In this figure the colour represents the number of seed points every pixel is connected to.
A higher number means that there are more seed points with a higher elevation connected to a pixel
giving it a higher probability to also be flooded (as the seed points are flooded).

Figure 4.22: Result of region growing process in the Stack of images plus a DEM method. The region growing is performed
using seed points taken from Figure 4.16 after a 5x5 mean filter window is applied. The pixels that are lower than -1.5 and
higher than 1.5 are selected as seed points. In the image the number of each pixel represents the number of seed points it is
connected to by a path going from high to low elevation trough neighbouring pixels. More seed points connected should mean
a higher probability to be flooded when the SAR image was acquired.

The image shown in Figure 4.22 is the result of using the thresholds -1.5 and 1.5 to select the seed
points. There are 371 seed points that meet this criteria and their coordinates are used for region
growing on the DEM. The result is the first one where individual streets can be determined, the higher
the value the more likely it is to be flooded. In this case the highest pixel values are all found inside of
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the flooded neighbourhood in the lower part of the image.
There are however two problems that arise:
Firstly this map shows the likelihood of pixels to be flooded but is not a classification map, if every pixel
that is connected to a seed point is classified as flooded the entire image would be flooded. Therefore
a threshold needs to be applied to transform it into a flood map.
This is the second problem, every flooded region has a different number of seed points in it. This
number is influenced by the size of the region and the number of flooded areas visible for the satellite.
A very large flooded region naturally will contain more seed points than a small region, to identify the
smaller region the threshold should be low, but a low threshold means that a few seed points in a
non-flooded region will lead to a flooded classification.

The first problem can be dealt with by changing the thresholds to -2 and 2 this leads to an image
that is displayed in Figure 4.23. Only 44 seed points meet this criteria and every one of them is located
in the bottom polygon, in this image the step of applying a threshold is unnecessary as every pixel
that lies in at least a single region determined by the seed points is inside the polygon as well. Classi-
fying every pixel that is inside a region made by a seed point as flooded would lead to a desirable result.

Figure 4.23: Result of region growing process in the Stack of images plus a DEM method. The region growing is performed
using seed points taken from Figure 4.16 after a 5x5 mean filter window is applied. The pixels that are lower than -2 and higher
than 2 are selected as seed points. In the image the number of each pixel represents the number of seed points it is connected
to by a path going from high to low elevation trough neighbouring pixels. More seed points connected should mean a higher
probability to be flooded when the SAR image was acquired. The image is created using a high resolution DEM.

Flooded neighbourhood Dry neighbourhood
Classified flooded 38852 (44 %) 4421 (2 %)
Classified dry 49306 (56 %) 214077 (98 %)

Table 4.10: Confusion matrix for stack of images plus a DEM with a threshold of -2 and 2 after a 5x5 filter is applied. The
first number represents the number of pixels and in the brackets the percentile of the total pixels in that neighbourhood. Each
column thus adds up to a 100 percent.

The polygons in the upper half of the image do not get any seed points in this method. This is
because the fields of which they consist are storm drains. These basins are filled wit rainwater during
periods of heavy rainfalls. Therefor it could be present during storms resulting in the basins being full
on several of the radar images in the stack. This leads to a high value for 𝜎P in Eq. 3.5 and thus in a
small value 𝑃c going undetected in this method.

In the confusion matrix shown in Table 4.10 the highest number of correctly classified flooded pix-
els is shown. The number of flooded pixels outside of flooded areas might seem high but from Figure
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Classified Flooded Dry
Actual state Flooded Dry Flooded Dry Flooded Flood/Flooded Dry

Single image threshold 938 1918 57795 211209 0.49
Image pair threshold 160 53 58573 213074 3.02
Stack of images outliers 55 3 60085 214545 18.33
Stack of images threshold 169 32 58564 213095 5.28
Stack of images plus a DEM 38852 4421 49306 214077 8.79

Table 4.11: Overview of the results produced by the 5 methods in one table.

4.23 we note that all of them either lie at the edge of a flooded area or in the river that is now easily
identifiable in the figure. For this single case and this single image the result is satisfying as it clearly
states where the flooded streets are even though it misses the flooded fields.

4.6. Summary
To sum up all of the results of the five methods Table 4.11 is given, in which the confusion matrices of
the results are merged into one overview. A final column is added in which the ratio of pixels classified
as flooded in flooded areas over pixels classified as flooded inside dry areas is given. This is one way of
directly comparing methods as it says something about the accuracy of the method in different areas.
The higher the number the better with a side note that the number doesn’t tell us anything about the
number of false positives or the number of positive flood classifications. For example, the number for
the stack of images outliers is the highest in Table4.11 but the method only classifies a relatively small
number of pixels as flooded inside the flooded area.

A closer look at the Stack of images plus a DEM method will be given in the next chapter, where
the method is examined over a broader area and its potential shortcomings are investigated.
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Discussion

In Chapter 4 the first results of all five methods are displayed along with a brief analysis and explanation.
In this chapter a closer look at the results will be taken along with a discussion on their performances
and shortcomings against the expected results. The main part of this chapter will focus on the Stack
of images plus DEM method as it gave the best results in Chapter 4. The benefits and shortcomings
of this method will be discussed as well as the performance of the method on a larger image.

5.1. Single image and image pair thresholds
The expectation from still standing water was that is would act as a specular reflector resulting in a
low reading of the satellite measurement. From the single image, low values should thus correspond
with (flood)water. Using values from past literature on floodwater as thresholds yielded no satisfying
results. Selecting the lowest values on the original image brought forth an image that contained pixels
classified as flooded on the dry highway and on the flooded open fields. After the application of a 3x3
mean filter window and the selection of the lowest values there were three patterns that emerged.
Firstly, pixels in a large open field that were flooded were classified as such. Not all of them but enough
to note that the area is flooded. This confirms that water acts as an specular reflector and can be iden-
tified on SAR images.
Secondly, a large part of the highway running through the image is incorrectly classified as flooded.
This confirms the expected difficulty of urban flood mapping using SAR, namely that concrete and
possibly other man-made structures with a smooth surface act as a specular reflector. This results in
low intensity measurements at the radar that are similar to the readings from water surfaces.
Thirdly, the absence of pixels classified as flooded inside of the flooded neighbourhood. The bottom
half of the image is full of streets that are flooded but almost no pixels are marked as flooded in this
area. This could be the result of complex scattering mechanisms that influence the backscatter of the
water before it reaches the satellite resulting in a similar or higher intensity measurement compared
to a non-flooded street.

The use of an image pair improved on the Single image threshold method in the sense that the
highway is no longer classified as flooded. This is because the backscatter of the highway is similar
in both the before image and the image taken during the flood, resulting in a small difference. The
Image pair threshold method is able to correctly classify some pixels as flooded in the flooded open
sections in the image (after a mean-filter window is applied) while only classifying a low number of
pixels as flooded outside of the flooded neighbourhoods. The flooded neighbourhood however is still
not classified as such.

The first explanation for missing the flooded streets in a neighbourhood can be found in the pixel
size. In Figure 5.1 two images are shown. The first is an aerial images of a section of flooded street
where a polygon is drawn over the flooded street, the second image is from the same location but
on the Sentinel-1 SAR image and it contains the same polygon. From the figure the size of a road is
put into perspective with the size of the SAR pixels. On the areal image the flooded road is clearly
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distinguishable from the lawns and houses. In the SAR image however a road often barley covers half
a pixel or two half’s of two pixels. In the case of Figure 5.1 it covers half a pixel, the flooded street is
not the only contributor to the backscatter signal. This means that any change caused by flooding has
less influence in the signal than when it would cover the entire pixel.
The second contributor to missing the flooded streets also has to do with size. Besides having less
influence in pixel values the flood influence is further decreased when a mean filter window is applied.
When a flooded street only covers half of a pixel and a 3x3 mean filter window is used the flood
only covers 1/18 off the area over which the mean is taken. This influence is too small to result in a
detectable change in the image.

(a) Part of an aerial image with a polygon shape drawn
over a flooded street.

(b) Same polygon shape over the SAR image illustrating
how the pixel size corresponds to the size of a street.

Figure 5.1: Visualisation of pixel size versus street size.

5.2. Filter
The 3x3 and 5x5 mean filter windows are used in this research to reduce speckle. When it comes to
floods and urban areas there is an important downside. Consider a flooded road with buildings on both
sides that is three pixels wide and parallel to the path of flight of the satellite. The pixel closest to the
satellite track is not in direct sight of the satellite radar, the pixel in the middle is in direct sight and the
floodwater scatters the radar signal away from the satellite resulting in a low measurement, the third
pixel scatters the signal away but the building at the edge reflects the signal again towards to satellite
resulting in a higher than usual signal. Taking the average over these tree pixels results in a signal
similar to normal conditions letting the flood go unnoticed.
A street that is only one pixel wide will not benefit from a mean filter window either. The pixels on the
road side will be taken into the average when such a filter is applies therefor reducing the influence of
the flooded street pixel value 𝑃c. In an open field a larger number of adjacent pixels acts in a similar
way thus making the use of a mean filter window appropriate, in streets there will not be a large num-
ber of pixels flooded thus reducing the usefulness of the mean filter window. Than why use a Filter
in the first place? The filter, especially the 5x5 filter, increases the accuracy of the pixels classified
as flooded. When a pixel is marked as flooded after a mean filter window is applied the surrounding
pixels are probably also flooded. A single pixel influenced by speckle or other changes not related by
floodwater will no longer be classified as flooded as there is no change present in the surrounding
pixels, reducing false positive classifications. This is especially useful for the selection of seed points
where false positive classifications result in seed points that are not flooded. If the seed points are at
a high elevation the region growing process could grow over the entire image.

5.3. Use of Stack
From the Figures 4.11 and 4.12 it is noted how large the range of values of the reflection from a
single pixel over time can be in. A stack of several images could be used to identify these ranges
and register when a pixel value falls outside of those ranges. The Stack of images outliers method
did exactly that. Initially putting the ranges equal to the maximum and minimum value recorded in
the stack did not give a result where the flooded areas could be easily identified. This could have
been expected as the threshold values already occurred once so a slightly higher value under normal
conditions was possible without the need of a flood having occurred. There was a clear difference
between the values larger than previously recorded and the values smaller than previously recorded.
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The smaller values were evenly distributed throughout the image. When a buffer was applied, meaning
the values had to be smaller by a certain margin, there were no pixels identified as flooded in flooded
regions and some in non-flooded regions. The smallest values were expected in the open fields, these
open fields are however flood basins and possibly contained water on images in the stack. These
previously flooded images enlarge the range of values that are considered non-flooded and result in no
positive classification in this area. That there are no small values inside of the flooded neighbourhood
could be the result of only narrow streets being present that cause double bounces and high reflection
measurements at the satellite. When this is the case it should be visible in the image that classifies
the pixels with larger values than in the stack as flooded. When a buffer is implemented on the on the
larger values classification, meaning that only pixels that are larger by a certain margin are classified as
flooded, the pixels that are classified as flooded all fall inside of the flooded neighbourhoods (although
they are small in number). The buffer might filter out some values that are flooded but fall inside of
the range that speckle can introduce and are thus filtered out.

The introduction of a stack in the Stack of image outliers method used every image in the stack
separately and thus keeping the speckle in every image. Taking the mean of a stack as normal condi-
tions can reduce the speckle in the image of ”normal” conditions. The size of the stack is a factor to
take under consideration. Starting from a single image, adding images reduces the effect of speckle
but with every image added the time span from first to last image increases. Using a longer time span
leaves more time for changes in the ground conditions. New buildings arise while others are demol-
ished, trees might be cut down and new parks or roads can be constructed. The surface in urban areas
is subject to constant change. This could lead to values in the stack that are larger or smaller than in
the present image only due to objects that are no longer present. Flooding might introduce change in
these pixels that is not registered because its a smaller change than the building or removal of objects
in the past.
For this thesis the stack covers a time span of two years. The initial results in Figure 4.13 show that
floodwater does not necessarily lead to lower backscatter measurement at the satellite. In fact it shows
no clear difference in the values that were smaller during the flood than in the previous two years in-
side or outside the flooded regions. The values that are larger than previously recorded do show a
pattern, the open fields that are flooded are misclassified and the flooded neighbourhood contains a
higher concentration of flooded pixels than outside of this region. The open fields can have been used
to hold water in previous images, the stack thus contains low pixel values for these pixels. Containing
water during the flood wont be a large deviation from the stack and thus not necessarily classified as
flooded. The cluster of pixels classified as flooded in the flooded neighbourhood in Figure 4.13 (a)
can suggest that the water leads to double bounces resulting in a higher measurement than before.
The effort to keep these pixels classified as flooded while reducing the number of false positives was
partly successful as Figure 4.14 suggests. But from this image it is not necessarily apparent that a
large flooding has occurred in the area.
On its own the method can not detect open fields albeit that this is because the field in the extent of the
image are often under water and that this is not always the case for all field in urban environments. The
method detects and isolates more pixels in the flooded neighbourhood than the Image pair threshold
method but not enough to confidently mark the entire neighbour that is flooded as such.

The Stack of images method takes the mean and the standard deviation from the stack instead of
individual values. This in an effort to reduce the influence of speckle. The initial result (Figure 4.16) is
promising as the number of pixels classified flooded inside the flooded neighbourhood rises compared
to the stack of images outliers. The pixels classified as flooded outside of the flooded neighbourhoods
unfortunately is also larger but this number can be greatly reduced by applying a mean filter window
as shown in Table 4.8 and 4.9. Nevertheless, as a final product Figure 4.21 is not very useful as it is not
capable of making a distinction between flooded and non-flooded streets. At this point one could argue
that with this specific data set an accurate and detailed flood map purely based on the SAR images is
not possible. The final result from the Stack of images method were however able to filter out some
pixels in the flooded neighbourhood. The question then arises if it would it be possible to use these
correctly classified pixels and use them to in conjunction with other data to produce a useful flood map.
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5.4. Region growing and DEM
By adding data in the form of a high resolution DEM a useful flood map is produced. Figure 4.22 shows
a map on which the flooded neighbourhood is clearly different from the non-flooded neighbourhoods.
Figure 4.23 goes even further as to completely isolate large parts of the flooded neighbourhoods
from the non-flooded ones. The pixels that give a false positive are all at the edge of the flooded
neighbourhood or in a river. The river always consist of water, therefore it does not necessarily show
any difference between flooded and non-flooded images. Because the elevation of the river is lower
than the land surrounding it seed points easily connect to it and classify the river as flooded. This is not
necessarily negative but these pixels are labelled as non-flooded in the validation data thus resulting
in a false positive in the result. The flooded fields are not classified as flooded because they contain
water in several images in the stack and therefor do not result in a large absolute value of 𝑃c. All in all
the method produces a flood map with a high accuracy for this very specific case and area. There are
however some questions that need to be posed before using it on other areas and larger scales.

To start with the DEM, the method highly relies on the DEM. For this case study a high resolution
DEM was available freely, but this is not the case worldwide. What happens when a lower resolution
DEM is used that is available around the globe? The SRTM DEM and the TerraSAR-X DEM are both
freely available everywhere. Both DEMs are shown in Figure 5.2.

(a) SRTM DEM of the testing region in line pixel coordinates. (b) TerraSAR-X DEM of the testing region in line pixel coordi-
nates.

Figure 5.2: DEMs section of the testing region that are available world wide. The heights should not be compared between the
images as they use a different reference point.

The same seed points that are used to create Figure 4.22 can be used on the two lower resolution
DEMs. The results of the region growing processes are shown in Figure 5.3 and Figure 5.4. The
resulting image based on the SRTM DEM does correctly detects flooding in a small part of the region
but does not tell us much more than the result of the Stack of images method that does not use a
DEM (Figure 4.21). The TerraSAR-X DEM results in a flood map where a very small region holds a
large amount of seed points. The part around this region holds 6 seed points but is much larger.
Unfortunately this part lies inside and outside of the flooded region, classifying it as flooded would
result in a large amount of false positive classifications. The images show the influence of the DEM
on the method. The SRTM DEM leads to an area classified as flooded that is smaller than the high
resolution DEM. The TerraSAR-X DEM either leads to an even smaller flooded region or depending
on the threshold a much larger area but one that contains a lot of false positive flood classifications.
Without the high resolution DEM the method loses much of its value even on this small scale. On a
larger scale more problems could arise, small elevation changes might not be included in a courser DEM
resulting in a larger region for seed points to grow while in reality a barrier stops the flooding. Even
when a high resolution DEM is available it might not contain every ledge or small elevation change that
reality has. A simple edge of a sidewalk could redirect water or the curb could keep it from flooding
over into the next street. Emergency services can also place temporary dams and dikes in an effort to
protect regions against the water. These obstructions wont be present in the high resolution DEM.
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Figure 5.3: Result of region growing process in the Stack of images plus a DEM method. The method uses a SRTM DEM instead
of the high resolution DEM used previously. The region growing is performed using seed points taken from Figure 4.16 after a
5x5 mean filter window is applied. The pixels that are lower than -2 and higher than 2 are selected as seed points. In the image
the number of each pixel represents the number of seed points it is connected to by a path going from high to low elevation
trough neighbouring pixels. More seed points connected should mean a higher probability to be flooded when the SAR image
was acquired.

Figure 5.4: Result of region growing process in the Stack of images plus a DEM method. The method uses a TerraSAR-X DEM
instead of the high resolution DEM used previously. The region growing is performed using seed points taken from Figure 4.16
after a 5x5 mean filter window is applied. The pixels that are lower than -2 and higher than 2 are selected as seed points. In
the image the number of each pixel represents the number of seed points it is connected to by a path going from high to low
elevation trough neighbouring pixels. More seed points connected should mean a higher probability to be flooded when the SAR
image was acquired.

That brings on the next question, for the current image seed points are not restricted in growth.
This means that as long as a lower elevation pixel is present the region grows. Imagine a seed point
finding its way into a river, it could include the river and everything downstream until the edge of the
image and if the coast is at a lower elevation than the seed point the entire coast line could be included
into the flooded region. This could be partly solved by not using the elevation of the seed point as a
criteria for all neighbouring pixels but use the value of each individual pixel if it is added to the region
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to compare to its neighbours. By using this method even when a seed point finds its way into a river
it should not be able to leave that river downstream as the river edges are higher than the river itself.
Another problem of the region growing is its reach in urban areas. Not all water flows above ground
and follows the elevation profile. Sewer systems are in place that drain the water and prevent it from
potentially flooding other parts of the city. A pixel that is flooded and lies on top of a shallow slope
would mean that the entire slope is flooded, even when it is 10 km long in the current method. This
would only be true if all the water would flow above ground and does not infiltrate the ground or is
drained by man made systems. What is the reach of a flooded pixel? A radius of ”infection” could be
programmed for each seed point limiting its sphere of influence. Determining this radius is a research
project on its own.
When the current method is applied on a larger area it produces a result that is shown in Figure 5.5.
The area that was used for testing all five methods is in the bottom corner. It clearly stands out from
its surroundings but it contains a lower number of seed points than the entire left side of the area.
This is partly the result of a natural slope running through the image. Seed points on the right side of
the image are always higher than most of the left side of the image The river jumps out of the image
as a bright yellow line. The line gets brighter when it is followed downstream as every seed point that
grows into the river will grow into every pixel downstream of the river as well.
Converting the result of the region growing into a flood map containing flooded/non-flooded pixels is
another challenge. The classification of image 4.23 would not give any problems. All pixels connected
so a seed point are flooded. This could be the criteria to classify flooded and non-flooded pixels (is
connected to at least 1 seed point). Classifying Image 4.22 is a little bit harder as there are some seed
points outside of the flooded neighbourhood. Because there is only one flooded neighbourhood (not
counting the open field that are water reservoirs), using the threshold of being connected to at least
150 seed points would result in a satisfying result similar to Figure 4.23. Classifying gets harder when
there are several unconnected flood areas. Take Figure 5.5 as an example. Every threshold of minimal
number of seed points a pixel must be connected to will only classify the region that was tested in
as flooded if the entire right side of the images is also classified as flooded. When there is one large
region and several small flooded regions it is probable that the large region contains a lot more seed
points that the smaller regions. In order to correctly classify the smaller regions a threshold would
need to be set at a low number of seed points. This low number could mean that a small number of
seed points that are outside of flooded regions result in large patches of dry areas being classified as
flooded. Restricting the potential infinite growth of the seed points could partially reduce the difference
in number of seed points connected to pixels in larger and smaller areas.
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Figure 5.5: Result of region growing process on the Stack of images plus a DEM method. The region growing is performed on
a larger area than the the testing area used for all previous images. Seed points are taken after a 5x5 mean filter window is
applied. The pixels that are lower than -2 and higher than 2 are selected as seed points. In the image the number of each pixel
represents the number of seed points it is connected to by a path going from high to low elevation trough neighbouring pixels.
More seed points connected should mean a higher probability to be flooded when the SAR image was acquired. The image is
created using a high resolution DEM.

5.5. Real world application
One of the goals of this research was the production of a flood mapping method suited for emergency
situations in urban environments. The result from the Stack of images plus a DEM (Figure 4.23) is
perfectly suited for that use. It does not matter that not every street in the flooded neighbourhood
is identified as flooded. The result clearly shows where flooding has occurred. Based on the flood
map help could be send to the lower right area of the map and no help to the top half, resulting in
help getting to the area where it is needed. Although the result can be useful, the method is not
yet useful, it only works on this small specific region and has far from a desirable result in other or
larger areas. Take the result shown in Figure 5.5 as an example, emergency response can not yet be
directed according to this result. To conclude, the current method has no practical use yet but if, after
refinement, the same results are archived on a large scale than it could be of use. For the time being
in case of a flood disaster the course of action is to take aerial images with a plane as the ones used in
this research for validation purposes. On these images the flooded regions were easily distinguishable
from the non-flood ones. When flying is not an option the availability of satellite imagery should be
checked. Cloud cover might render them useless for flood mapping. When that is the case and this
method is working on all areas than SAR images could be considered to be used in creating a flood
map.
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Conclusion & Recommendations

6.1. Conclusion
The main research question of this thesis as stated in Chapter 1 was:

Can the use of a temporal stack of SAR images improve the mapping of flood extent in urban areas?

This research shows that indeed the use of a temporal stack of SAR images can improve the map-
ping of flood extent in urban areas. The use of a stack results in more flooded pixels being classified
as such but does not lead to a perfect result yet. Flood mapping with SAR in urban areas is difficult as
the image released by the Copernicus Emergency Management Service (Figure 1.2) proves. The image
shows little to no flooding in the metropolitan area whereas aerial images show large parts of the city
under water. The traditional methods of a single image and an image pair had no difficulty detecting
the flooded open areas in the region they were tested on. These open areas were classified as flooded
in the Copernicus flood map. Like the Copernicus image however they did not detect flooding in the
populated neighbourhoods in the same image.
All tree methods that used a stack of images produced a higher ratio of pixels classified as flooded in
a flooded region compared to pixels classified as flooded outside of flooded regions (Table 4.11) than
the methods that did not use a stack. In that aspect using a stack of images improves the mapping
of flood extent in urban areas. The emphasis lies on improve as the introduction of a stack of images
does not yet lead to an accurate flood map, only to more flooded pixels being detected than with the
traditional methods.

The best flood map result produced for the specific region used to test all the methods is computed
using the method Stack of images plus DEM. It clearly separates flooded from non-flooded streets.
However, due to problems discussed in Chapter 5, the method is not yet able to do the same for larger
or other regions without making alterations and defining a thresholds for 𝑃c and minimum number of
seed points connected to an individual pixel to classify as flooded.

The flood map produced for the region it is tested on correctly identifies most flooded streets while
not classifying dry streets as flooded. The method to select seed points with the use of a stack, selects
seed points on flooded streets that are not classified as flooded by the Single image and Image pair
method.
The downside of the method is the heavy reliance on the DEM. When a low resolution DEM as the
SRTM DEM or the TerraSAR-X DEM are implemented the resulting flood map does not give a clear
image of flooded and non-flooded streets. The seed points are selected after a 5x5 mean filter window
is applied. This increases the accuracy of the selected seed points but reduces the resolution on which
floods are detectable. The resolution of the Sentinel-1 SAR images is already low compared to the
dimensions of the flooded streets but a mean filter window decreases the resolution even more. A
neighbourhood that would only consist of narrow streets will not contain any seed points when a filter
is applied. The Stack of images plus DEM method has even more shortcomings when applied on larger
regions. The region growing method needs to be revised as unlimited growth for each seed point in
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not sustainable over larger areas. The classification step is not suitable for larger images either. When
different flooded neighbourhoods are present in one image, especially the combination of larger and
smaller regions, one threshold will not work. The smaller regions will naturally contain less seed points
than the larger region but implementing a low threshold increases the influence of false positive seed
points. Speckle is another problem of the Stack of images plus DEM method. The speckle present in
the SAR image taken during the flood can lead to false positives seed points. Again these seed points
can have a large influence when a low threshold is used.

Besides the main research question there were three sub-questions, these will be answered below:

1. How do floods influence the radar reflections used in SAR?
For this research it was assumed that flood water acts as a specular reflector. With waves and
wind the surface of water can become a diffuse reflector. In the single image and the image
pair method it was clear that (in an open field) the flood water gave low amplitude backscatter
measurements confirming the assumptions. The Stack outliers method showed a different effect
in the area with roads and buildings. When the area was flooded there were a lot of pixels that
had higher than ever backscatter measurements. Floodwater still acts as a specular reflector but
objects in and around these pixels scatter the signal multiple times, resulting in a high backscatter
measurement. This is largely in line with the findings of Mason et al. (2013). They concluded that
urban flood mapping using SAR could benefit when taking into account the presence of double
bounces that result in high intensity measurements caused by flooding instead of ignoring them
and only looking for low intensity measurements to detect floodwater.

2. Which methods can be applied to detect flooded pixels from a stack of SAR amplitude images?
All three methods using a stack were able to detect flooded pixels from the SAR amplitude im-
ages without false classifying large amounts of pixels as flooded that were dry in reality. It does
need to be noted that no method can detect enough flooded pixels to make a flood map or to
roughly differentiate flooded from non-flooded neighbourhoods as the correctly detected pixels
were often clustered together in one part of the flooded neighbourhood. The thresholds used for
this research are specific for the test area and do not necessarily produce the same results when
applied on different regions.

3. Is it feasible to produce a flood map of an urban environment based on SAR data alone or is
auxiliary data required to reach a reliable result?
When using Sentinel-1 data for the flood of Houston in 2017 it isn’t feasible to produce a flood
map in the metropolitan area without using auxiliary data. The resolution of the SAR images is
too low to distinguish single narrow streets which means a flooded street has too little influence
on the backscatter value measure for the pixel it is on. It could be that a higher resolution like
the TerraSAR-X images are able to produce a flood map on there own.
The use of auxiliary data does produce a flood map that is usable. Albeit only for the one specific
testing area and not yet for other areas. The addition of a high resolution DEM produces a flood
map as in Figure 4.23. This flood map clearly and correctly differentiate flooded streets from dry
ones.

To conclude, the research developed the Stack of images plus DEM method that give a desirable
result of the region it was tested on. The Single image and Image pair methods are implemented
as they are the most often used methods in past studies. These methods are shown to produce no
desirable results in urban areas compared to open fields. Lastly, the importance of ancillary data for
the Stack of images plus a DEM is stated as well as the shortcomings of the method, therefore there
are several recommendations to potentially improve the method.
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6.2. Recommendations
In the conclusion the Stack of images plus a DEM method is presented as a working method on a
specific area. It is also noted that before application on other regions or on a larger scale is possible,
several aspects of the method need to be altered. Those aspects are given in the following section.
The main problem that all five methods dealt with was the resolution of the Sentinel-1 SAR images. In
future research all five methods should be tested using higher resolution SAR images to determine if
flooded pixels can be better identified. With higher resolution data the mean filter windows could pro-
duce a better result. The filters would still decrease speckle and resolution but with higher resolution
SAR images the resolution after the filter application would still be higher than the unfiltered Sentinel-
1 SAR image. The increased resolution could lead to narrower flooded streets being correctly classified.

The filter itself could also be subject to improvement, instead of a mean filter window a ”smart”
filter could be developed. This filter would recognise that if one pixel has a higher that usual value
and its neighbouring pixel a lower than usual value both pixels are likely to have flooded. As this is the
result of one pixel causing only a single bounce while the neighbouring pixel causes a double bounce
reflection from the flood water and urban surroundings.

Further research into the application of a threshold on the region growing image is needed. When
processing a large image the region growing could be applied of several parts of the image instead
of the entire image at once. This limits the number of seed points a pixel can be connected to as it
is dependent on the number of seed points in that part of the image. Another potential solution is to
have different thresholds for different part of the image.
Limiting the range on which seed points can expand could also make it easier to apply one threshold
as it also limits the number of seed points that can be connected to a single pixel. The range of seed
points should be further investigated as it does not only influence the number of seed points that can
be connected to pixel but also how far a flood can be extrapolated over the ground surface. Different
city’s have different water drainage systems, different soils have different saturation rates. These are
all factors of influence on how far floodwater flows over ground. The study should point out what a
realistic range for seed point is and if this range can be set the same for every flood case.

The selection of seed points is done with a threshold. This threshold is subject to optimisation. The
question should be answered if every flood case can be mapped using the same thresholds for the
selection of seed points. There could be floods in urban areas that do not cause double scatterings
and therefore will not result in any pixels having a higher than normal amplitude measurement. If a
flood event is known to have occurred, instead of a threshold value to select seed points maybe the
top percentiles of pixels that have changed to most could be used as seed points. This would lead to a
number of seed points that can be chosen depending on the size of the flood and leads to a different
threshold value for each individual flood without the need to manually select a value. This is under the
assumption that flooded pixels will always display the most change of all pixels in an image compared
to the image in dry conditions.

Finally the addition of other data sources is recommended. A map of street boundaries or the
location and shape of buildings could be valuable for the analysis and validation of the method. When
all the pixels in an image that lie on a road could be selected separately a better histogram could be
created. In the current histograms all pixels are included but when only roads are selected a clearer
difference could emerge between flooded and non-flooded streets. This could lead to the selection of
better thresholds.





A
Abbreviations

DEM Digital elevation model
EU European Union
ESA European Space Agency
GDEM Global Digital Elevation Map
InSAR Interferometric synthetic aperture radar
LiDAR Light detection and ranging
NED National Elevation Dataset
NOAA National Oceanic and Atmospheric Administration
SRTM Shuttle Radar Topography Mission
WGS84 World Geodetic System 1984
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B
Flood events versus available TU

Delft SAR data

Appendix contains a table showing dates of flood events in Rotterdam and Amsterdam versus the clos-
est recording dates of several SAR satellites over those city’s. The satellites are selected because their
data was available on the TU Delft servers. The table demonstrates that even though there are several
SAR missions ongoing there is no guarantee that a one day flood event is recorded by a SAR satellite.

Table B.1: Table contains the major urban floods in Amsterdam and Rotterdam vs the closest recording dates for the satellites
of which data is available at the TU delft.
-tsx stands for TerraSAR-X.
-dsc and asc stand for descending and ascending.
-rsat stands for Radarsat-2.
-The Sentinel satellite has different tracks that pass over the city’s.
-No data means that there was no data available around the data of the flood, on the TU Delft server not that there were no
measurements at all.
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