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Abstract

Virtual reality (VR) creates an exceptional experience in which users can explore virtual environ‐
ments. Wearing a head‐mounted display (HMD), users are able to observe a virtual world that is
rendered based on their physical movement and actions. A common solution for capturing the
visual and geometric information needed for the construction of virtual environments is the use
of RGB‐D sensors. These sensors not only capture a collection of RGB data like conventional
cameras do, but additionally record a depth value for each pixel. Thus, RGB‐D sensors are able
to capture both the visual and geometric properties of a space, including any objects or peo‐
ple. This makes immersive social VR experiences possible, where people in different physical
locations can be placed in the same virtual environment. However, HMDs obstruct the RGB‐D
sensor from capturing the wearer’s upper face, which severely impacts the social aspects of VR
applications. To address this, we proposed a framework that is capable of the virtual removal
of head‐mounted displays in RGB‐D images, which is referred to as the task of HMD removal.
Due to its novelty, we took an exploratory approach to this task.
We formulated this problem as a joint RGB‐D face image inpainting task and proposed a

GAN‐based coarse‐to‐fine architecture that is capable of simultaneously filling in the missing
color and depth information of face images occluded by an HMD. To preserve the identity fea‐
tures of the inpainted faces, we proposed an RGB‐based identity loss function. Leveraging the
knowledge of a pretrained identity embedding model, this perceptual loss function stimulates
the preservation of identity‐specific facial features.
Furthermore, we proposed several architectural structures to explore multimodal feature

fusion of the color and depth information contained in RGB‐D images. To this end, we in‐
troduced data‐level fusion, which naively combines the color and depth information at net‐
work input. In addition, we introduced hybrid fusion, which involves feature‐level fusion in the
coarse stage of the architecture and data‐level fusion in the refinement stage of the architec‐
ture. Within the concept of hybrid fusion, we investigated several fusion strategies, including
residual fusion. Our findings suggest that data‐level fusion achieves similar performance to
hybrid fusion.
Moreover, to improve surface reproduction in the depth channel, we introduced the em‐

ployment of a surface normal loss function and contextual surface attention module, which
both rely on surface normals that are estimated based on the depth channel of the RGB‐D im‐
age. We also considered the addition of surface normal information to the discriminator input,
which we found to have an adverse effect on the visual quality of the results.
In absence of a large scale RGB‐D face dataset, we devised a pipeline for the creation of

a synthetic RGB‐D face dataset for the evaluation of our network. Despite its exploratory
nature, our research provides unique insights into the design and behavior of a multimodal
image inpainting architecture that can be of interest to future research.
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1
Introduction

Virtual reality (VR) creates an exceptional experience in which users can explore virtual envi‐
ronments. Wearing a head‐mounted display (HMD), users are able to observe a virtual world
that is rendered based on their physical movement and actions. The natural interface that this
technology offers has enabled a wide range of simulations, which are too complex, hazardous
or costly for execution in the real world. While HMDs form an essential virtual display device
for VR, HMDs obstruct any form of external observation of the wearer’s upper face, which
severely impacts the social aspects of VR applications. In this thesis, we propose an image‐
based method for the virtual removal of HMDs, which coherently fills in the occluded color
and geometric information of the wearer’s face represented in an RGB‐D image.

1.1. Background and context
Early works [1–3] explored the social implications of VR and conceptualized the field that we
now refer to as social virtual reality. This concept involves the assembly of a group of peo‐
ple in the same VR environment that supports some form of human‐to‐human communication
and collaboration. In subsequent years, technological advances in VR technology have resulted
in ongoing research efforts towards the creation of immersive social VR experiences such as
collaborative learning [4, 5], entertainment [6], treatment of mental disorders [7, 8] and tele‐
conferencing [9–12].
When compared to face‐to‐face interaction, computer‐mediated interactions in virtual en‐

vironments inherently convey less social and contextual cues [13]. During a face‐to‐face inter‐
action, these cues are effortlessly transmitted. However, the effects of similar interactions in
VR depend entirely on the capabilities of the mediating technologies [14]. When simulating a
real social interaction in a virtual environment, we want the user experience to be as realistic
as possible [15]. The virtual representation of a human, also referred to as an avatar, plays a
fundamental role in this type of situation [16]. Realism and visual quality of avatars in virtual en‐
vironments are seen as factors that drive the experience of being with another person [17, 18],
commonly referred to as copresence or social presence.

1



2 Introduction

RGB sensor

IR emitters

Depth sensor

Depth

Red

Blue
Green

Microsoft Azure Kinect RGB-D image

Figure 1.1: An example of an RGB‐D sensor: the Microsoft Azure Kinect [26], including an RGB sensor, depth
sensor and accompanying IR emitters (left). The outputs of these sensors can be combined and mapped to each
other, resulting in an RGB‐D image (right).

However, some commercial solutions have been introduced that aim to achieve copres‐
ence through a cartoon‐like avatar, such as Facebook Horizon [19] and AltspaceVR [20]. By
avoiding any attempt to achieve high ecological validity and photorealistic human likeness, so‐
lutions of this kind reduce the risk of a potential uncanny valley [21, 22] created by flaws of
the mediating technology or representation [23, 24]. Other ways of avoiding an uncanny val‐
ley have been explored through research towards the creation of near perfect photorealistic
human representations [25]. These methods aim to fully alleviate the negative impact a virtual
embodiment may have on social interaction in a virtual environment [14].
A common solution for capturing the visual and geometric information needed for these

representations is the use of commercially available RGB‐D sensors, such as the Intel RealSense
[27] and Microsoft Azure Kinect [26] (Figure 1.1). These sensors not only capture a collection
of RGB data like conventional cameras do, but additionally record a depth value for each pixel.
This data can in turn be displayed in a shared virtual environment in a visually and geometrically
consistent way. Shown in Figure 1.2, an example of such a setup is the TogetherVR platform
introduced by Dijkstra‐Soudarissanane et al. [12] at the Netherlands Organization of Applied
Science (TNO), where our thesis research was carried out. This system accommodates remote
communication and collaboration through the creation of a shared virtual environment where
up to four people can take place at a virtual table. Each user is captured using a pair of RGB‐D
sensors, the output of which is transformed into a point cloud and placed in a shared virtual
environment. Wearing an HMD, each user is able to observe the shared virtual environment
and communicate with up to four other users.
However, the HMDworn by the user occludes the upper part of their face and prevents the

sensor from capturing it. As a result, during social interaction in a virtual environment such as
the aforementioned, it is a challenge for users to estimate gaze direction [28], make eye contact
[29], interpret non‐verbal information [11, 30, 31] or to recognize the identity of others. For
this reason, we want to reconstruct the occluded region of the user’s face in a realistic way,
which is referred to as the task of HMD removal.
A critical issue arises when it comes to resolving the missing facial region: how does one

know what visual content to replace this occluded facial region with? A number of approaches
involve an offline process to record a dynamic 3D face model [32–35]; which require HMDs
fitted with internal infrared cameras [34] or RGB‐D cameras [32]. Aside from the necessity of
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Figure 1.2: Test setup of the TogetherVR platform introduced by Dijkstra‐Soudarissanane et al. [12]. In this case,
two HMD‐wearing subjects are captured with RGB‐D sensors (left). In turn, the subjects are placed in a shared
virtual environment (right). For testing purposes, the two subjects are located in the same physical space.

custom equipment, many of these methods require elaborate calibration and setup processes.
This prompts the question whether there are other ways to fill in the facial region occluded by
an HMD.
A number of approaches have been proposed that aim to solve the task of HMD removal

by synthesizing the occluded facial region through image inpainting [36]. Image inpainting,
also known as image completion, describes the task of filling undesired or unknown pixel re‐
gions with realistic content. Recent progress in generative adversarial networks (GANs) [37]
has inspired a wide range of image inpainting methods [38–41], which comprise an adversar‐
ial training process between a generator network and a discriminator network. This process
aims to capture the high‐level semantic and low‐level pixel information of ground truth images
in order to generate realistic content for missing image regions. GAN‐based image inpainting
methods have achieved state‐of‐the‐art results that contain complex structures such as build‐
ings, landscapes, animals and human faces. Although the aforementioned HMD removal and
image inpainting methods have been proven to perform well with RGB image data, research
into their application to image data including a depth channel, known as RGB‐D data, is lack‐
ing. Furthermore, the same frameworks cannot be assumed to be applicable to images that
additionally contain a depth channel. This is due to the fact that depth images possess dif‐
ferent statistical properties and characteristics than their RGB counterpart, between which a
correlation cannot be assumed. This stems from the fact that while the color information of
each pixel is based on the color of the captured object, depth information is based on the point
distance between the object and the sensor.
Several approaches for depth image inpainting exist, many of which focus on utilizing avail‐

able corresponding RGB data as context for the inference of the missing depth information
[42–45]. Other works approach the problem by training models that attempt to minimize the
difference between the surface normals of the completed depth image and its ground truth
[45, 46].
Recently, Fujii et al. [47] proposed a proof‐of‐concept GAN‐based approach to the joint in‐

painting of RGB‐D images. This multimodal approach shows the potential of joint RGB‐D image
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��D��RGB�D

Ω

�RGB

Ω

Figure 1.3: Illustration of our target problem. The RGB and D channels of image 𝐼 are shown separately, in 𝐼𝑅𝐺𝐵
and 𝐼𝐷 respectively. 𝐼 contains a masked region Ω, which is shaped like an HMD and is placed on the face in the
appropriate location. The ground truth image is indicated with 𝐺𝑇, of which the RGB and D channels are shown in
𝐺𝑇𝑅𝐺𝐵 and 𝐺𝑇𝐷.

inpainting methods, but lacks experiments to evaluate the proposed architecture. Moreover,
the approach is based on an inpainting framework [38] that is no longer considered state‐of‐
the‐art. Aside from this work, to the best of our knowledge, a GAN‐based framework that
proves to jointly inpaint the channels that are present in an RGB‐D image does not exist.
In this thesis, we aim to address this by proposing a joint RGB‐D image inpainting architec‐

ture for the virtual removal of HMDs from RGB‐D images. Due to the novelty of this problem,
we take an exploratory approach and scope our research based on the research objectives that
are defined below.

1.2. Problem formulation
The problem of RGB‐D image inpainting can be generally formulated as follows. Given RGB‐D
input image 𝐼 containing themasked regionΩ, the aim is to consistently fill in regionΩ. Typically,
this process involves the extraction and propagation of known image information from 𝐼 −
Ω. For RGB‐D image inpainting, this information comprises color and geometric information,
represented in the RGB channels and D channel respectively.
The primary goal of this thesis is to virtually remove an HMD from an RGB‐D face image.

Therefore, in our case, the RGB‐D input image 𝐼 contains a face and the missing region Ω is
shaped like an HMD (Figure 1.3). We aim to virtually remove the HMD by filling in the missing
color and geometric information of missing image region Ω, seamlessly connecting it with the
known image region 𝐼 − Ω. This brings us to our main research objective.

Research Objective 1 Define an architecture that is capable of virtually removing the HMD from
the wearer’s face in RGB‐D images.

We look to define an architecture that is able to perform joint RGB‐D image inpainting, of
which the input is an occluded RGB‐D face image 𝐼 and a binary mask Ω, and the output is a
completed RGB‐D image. Our goal involves a wide range of domain‐specific challenges includ‐
ing preservation of identity, facial expression, face pose, eye gaze, temporal correctness, and
audible correspondence. Due to their breadth and complexity, we consider a subset of these
challenges, presented in the research objectives described below. The conclusion derived by
each objective will motivate the final definition and configuration of our proposed architecture.
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Research Objective 1.1 Define a module and loss function that stimulates the preservation of the
identity features of the wearer’s face.

In a virtual environment, the visual representation of a person’s identity is seen as one of the
most evocative factors to a social experience [48]. The identity of this embodiment has a major
function in social interactions as it provokes several components of copresence, including fa‐
miliarity, comfort and immersiveness. Considering the importance of the connection between
the user’s offline and online self [30], we aim to propose a loss function that stimulates our ar‐
chitecture to fill in the missing region Ωwhile preserving the identity features of the respective
face of the wearer. While the concept of perceptual loss functions for identity preservation has
previously been proposed [36, 49, 50], each differ in their exact definition. Moreover, identity
loss functions have not been previously applied to our base framework [41] nor RGB‐D images.

Research Objective 1.2 Define an architecture that is capable of handling the multimodal charac‐
teristics of RGB‐D images.

RGB‐D images contain color and geometric information, represented in the RGB channels and
D channel of the image. While the RGB channels represent the color of the captured object,
the D channel represents the point distance between the object and the sensor. Consequently,
eachmodality has its own statistical properties and characteristics, betweenwhich a correlation
cannot be assumed. This has major consequences for the feature understanding of CNN‐based
architectures, as convolutional layers commonly construct their output features by combining
the layer activations of their input. We aim to explore strategies for learning common and
modality‐specific features to improve feature understanding of the architecture, and to ulti‐
mately improve the visual quality of the architecture output.

Research Objective 1.3 Define an architecture that stimulates the creation of smooth geometric
surfaces.

We aim to explore the architecture’s understanding of the geometric shape and surface that
the depth pixels collectively form. Pixel‐wise reconstruction loss functions such as the L1 or
L2 loss are commonly used during training of image inpainting methods [38, 40, 41]. This type
of loss function does not consider the geometric and surface properties of the depth images,
which can result in suboptimal feature construction and noisy inpainting results. Moreover, we
aim to investigate the addition of modules or other architectural changes to accommodate the
understanding of geometric information represented in the RGB‐D images.

Research Objective 2 In absence of a large‐scale RGB‐D face dataset, create a suitable dataset
that is sufficiently sized.

Unlike the wide availability of large RGB face image datasets [51–54], similarly sized datasets
containing RGB‐D images of faces are not available at this time. Due to the dataset size re‐
quirements of the training procedure of GANs, we aim to create a synthetic dataset with a high
degree of realism and variety.
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Figure 1.4: Simplified representation of our GAN‐based architecture, including a generator (G), discriminator (D),
surface normal loss (SN) and identity loss module (ID). The L1 reconstruction loss calculated on the output and the
back‐propagation connections to the generator are not explicitly shown in this overview.

1.3. Evaluation
In order to evaluate our defined research objectives, we define a number of observable indica‐
tors that measure the performance of our proposed method. Specifically, we perform a qualita‐
tive and quantitative evaluation of several configurations of our architecture. To evaluate our
contributions qualitatively, we perform an elaborate visual examination of several represen‐
tations of the inpainted results of each compared architectural component or structure. This
includes the selected baseline framework by Yu et al. [41], separately trained for RGB image
inpainting and depth image inpainting.
Moreover, to measure the quality of the inpainting results in a quantitativeway, we evaluate

the results with several quality metrics: L1 error, L2 error, Peak Signal‐to‐Noise Ratio (PSNR),
Structural Similarity (SSIM) Index [55], and Visual Information Fidelity (VIF) index [56]. To ex‐
press the preservation of identity of the inpainted results quantitatively, we employ an identity
error metric based on the pretrained face embedding model FaceNet [57] trained on the MS‐
Celeb‐1M [54] dataset. This identity preservation metric is independent of our framework’s
loss function, as it is built on a different model trained on an independent dataset.
The aforementionedmetrics provide objective insights on the visual quality of the inpainted

results and enable a straightforward examination of the reconstruction capabilities of our ar‐
chitecture. We evaluate our research objectives and motivate our points of future work based
on the results of the aforementioned experiments.

1.4. Contribution
A simplified overview of our architecture is shown in Figure 1.4, where components used ex‐
clusively during training are shown in blue. The generator, shown in green, is used during model
inference. What follows is a summary of the contributions of our work.
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Research Objective 1.1 Define a module and loss function that stimulates the preservation of the
identity features of the wearer’s face.

We introduced an identity loss function for the preservation of identity in inpainted images.
Similar to existing identity‐preserving image inpainting and generation methods [36, 49, 50],
we trained our model to minimize the distance between face identity embeddings of our in‐
painted image and a given reference image during training. To derive the embeddings, we used
a pretrained ResNet50 [58] face recognition model trained on the VGGFace2 dataset [53]. This
model is invariant to the illumination, pose and expression of the face in the input image. There‐
fore, the conditions of the reference image do not need to match those of the occluded image.
In our evaluation, we demonstrate that, given an incomplete image 𝐼, mask Ω, and reference

image 𝑅, our architecture can independently extract and propagate the identity features from
𝑅 to 𝐼 at inference.

Research Objective 1.2 Define an architecture that is capable of handling the multimodal char‐
acteristics of RGB‐D images.

We investigated the employment of multimodal feature fusion strategies to improve feature
learning from RGB‐D images. Specifically, we explored several strategies to feature fusion,
which can be divided into two types: data‐level fusion and hybrid fusion. Whereas data‐level
fusion consists of the simple concatenation of the RGB and depth image at the start of the net‐
work, hybrid fusion combines data‐level fusion with fusion at feature‐level. We evaluated three
types of hybrid fusion, each of which employ different types of feature‐level fusion: fusion
through summation, single‐path residual fusion, and multi‐path residual fusion. We explored
the viability of each of these strategies and concluded that data‐level fusion and residual hybrid
fusion produce similar results.

Research Objective 1.3 Define an architecture that stimulates the creation of smooth depth sur‐
faces.

Inspired by several works that employ surface normals to depth image inpainting and generation
[45, 46, 59–61], we proposed the application of this concept to joint RGB‐D image inpainting.
In particular, we proposed the usage of a surface normal loss [46] function, which we demon‐
strated to improve the reproduction of the desired properties of the depth channel such as
smoothness. Moreover, we replaced the contextual attention module of the base framework
with the contextual surface attention module [46] and showed how this module benefits from
auxiliary surface normal information. Lastly, we proposed the addition of surface normal infor‐
mation to the input of the discriminator network, whichwe determined to cause a deterioration
of the visual quality of the inpainted results.

Research Objective 2 For the training of this architecture, in absence of a large‐scale RGB‐D face
dataset, create a suitable dataset that is sufficiently sized.

We built a data synthesization pipeline to create a synthetic dataset of RGB‐D images of faces
based on the parametric Basel Face Model 2017 [62], a 3D Morphable Model [63] (3DMM)
model learned from 3D scans of human faces. While the usage of this synthesized dataset
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reduces the potential of generalization to real‐life data as is, it does allow for large‐scale RGB‐
D face image generation with exact controls over the face’s expression, pose and illumination.

1.5. Thesis outline
This thesis is organized as follows: In Chapter 2, we present relevant background theory and
related work. In Chapter 3, we describe our proposed architecture for joint RGB‐D image in‐
painting. In particular, we discuss each aspect as presented in our research objectives. In Chap‐
ter 4, we present our dataset, its properties and creation process. Furthermore, we present the
qualitative and quantitative results of each of the components of our architecture. In Chapter
5, we provide our perspective on the challenges of training a GAN, discuss the limitations of
our work, and describe points of future work. Finally, we summarize our research and conclude
this thesis.



2
Related Work

This chapter presents background literature regarding the task of HMD removal. We start by
discussing the theoretical concepts of HMD removal and present existing approaches. We
then move on to providing a theoretical background of deep neural networks and generative
adversarial networks (GANs). Subsequently, we present a representative overview of existing
image inpainting methods, for color images, depth images, and RGB‐D images. Furthermore,
we highlight how image inpainting techniques are used towards face completion. We then
discuss several multimodal feature learning strategies. Finally, we review the properties of
several currently available RGB‐D face datasets.

2.1. Head‐mounted display removal
Virtual environments can be observed by users through head‐mounted displays (HMDs). HMDs
are designed to surround the userwith three‐dimensional visual information that represents the
user’s virtual perspective. Sutherland [64] pioneered the conceptual design of HMDs as we
know them today. This early method employed a mechanical and ultrasonic sensor to present
perspective images relative to the wearer’s headmovement. Modern HMDs such as theOculus
Rift and Microsoft HoloLens have expanded on this concept and accomplish the same goal by
utilizing information from sensors such as gyroscopes, accelerometers, and magnetometers.
While HMDs facilitate the observation of virtual environments, they significantly occlude

the upper portion of the wearer’s face. This forms a major barrier during face‐to‐face interac‐
tions in shared virtual environments, as the obstruction caused by HMDs makes it impossible
to fully observe the wearer’s face. This forms a key problem for social VR applications such
as teleconferencing [9–11] and remote collaboration [4, 5, 65]. HMD removal describes the
task of recovering the missing image information caused by the occlusion of an HMD in a co‐
herent and realistic way. We identify two types of HMD removal approaches: model‐based
approaches, based on cartoon‐like or realistic representations, and image‐based methods.

9
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(a) Avatars in Facebook Horizon [19]. (b) Avatars in AltspaceVR [20].

Figure 2.1: Cartoon‐like avatars in commercial Social VR platforms.

Model‐based methods
In an immersive virtual environment, the body and interactions of users are represented through
a virtual embodiment, which is commonly referred to as an avatar. A large and growing volume
of literature has investigated the concept of virtual embodiment from a technological and psy‐
chological perspective.
To date, several studies have highlighted how the level of aesthetic and behavioral realism of

avatars is related to their acceptability by observers [17, 66, 67]. However, this does not mean
one can safely assume a realistic representation is the best option for any social VR application.
For instance, if a realistic avatar noticeably deviates from human appearance or behavior, this
is likely to distract the observer, causing a decreased level of perceived realism and copresence
[21, 22].
In a study by Seyama and Nagayama [22], it was found that when identical abnormalities

are applied to artificial and real faces, its impact was greatest for faces with high realism. To
that end, a considerable amount of virtual avatar representations, which implicitly target the
task of HMD removal, are cartoon‐based and thus steer clear from the potential uncanny valley
[21, 22]. Shown in Figure 2.1, examples of such cartoon‐like representations are used in social
VR platforms such as Facebook Horizon [19] and AltspaceVR [20].
In contrast, other model‐based approaches propose the usage of realistic avatars [32, 34,

35, 68]. Despite the greater risk of creating an uncanny valley effect, this choice can be made
in favor of the stronger rate of acceptance and copresence of realistic avatars when compared
to cartoon‐based avatars [69].
Li et al. [32] map the changing geometry coefficients of a user’s face to a personalized 3D

model that is created offline. The HMD is augmented with a rigidly attached RGB‐D sensor
to capture the geometry of the visible face region (Figure 2.2a). Surface strain sensors are
added to track the facial performance of the upper occluded area of the face. This method
requires an accurately recorded or designed 3D model of the user’s face prior to online usage.
Furthermore, it requires complex calibration before each session, and experiences difficulties
regarding capturing eye and lip movement.
Similarly, Olszewski et al. [33] employ a rigidly mounted RGB mouth region camera and

an internal IR eye region camera (Figure 2.2b). Two modality‐specific CNNs take these data
streams as their input to regress facial geometry coefficients to transform an avatar of the user’s
face. Additionally, the method exploits the coherence between visual and audio recordings,
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(a) Online facial reenactmentwith a head‐mounted RGB‐D sen‐
sor and strain sensors [32].

(b) Online facial reenactment using a head‐mounted RGB sen‐
sor and CNN regressors [33].

(c) Online facial reenactment with an external RGB‐D sensor
and interior IR sensor [34].

(d) Online facial reenactment with an external RGB‐D sensor
and interior IR sensor [68].

Figure 2.2: A collection of existing model‐based HMD removal methods setups and results. All pictured methods
rely on prior offline 3D face model creation and calibration.

making the method well‐suited for speech animation. The proposed system allows users to
control an avatar without prior user‐specific calibration. However, the resulting method does
not consider the texture and identity of the resulting avatar.
Inspired by the aforementioned methods, Thies et al. [34] created the FaceVR framework

for HMD removal based on prerecorded footage of the user’s face (Figure 2.2c). This method
starts by building a parametric 3D model of the user with an exterior stereo RGB camera rig
through a number of calibration and regression steps. At runtime, the user ‐ wearing an HMD
‐ is captured with an exterior RGB‐D sensor and an interior IR camera. Given these two input
sources, theHMD is virtually removed by compositing the prerecorded footagewith a rendering
of the reconstructed face model and calibration data of the mouth and eyes. This method
allows for photorealistic reproduction of human faces, which includes the reenactment of the
hidden segment of the user’s facial performance such as eye blinking. However, it also requires
a calibration and training step for each individual user. Moreover, the method assumes that the
pose of the user stays relatively constant throughout the usage of the method.
Zhao et al. [68] proposed a similar approach with internally mounted IR cameras and an

external RGB camera where a parametric 3D head model is constructed through a video se‐
quence, capturing several head poses of the user. The constructed 3D head model is aligned
at runtime, through the tracking of facial landmarks and visual markers on the HMD. Simulta‐
neously, based on the prerecorded footage, a matched reference image is warped and blended
with a colorized version of the internal IR footage. This results in face synthesis that appears re‐
alistic and blends in well with the known image region (Figure 2.2d). However, upon inspection
of more synthesized frames, clear signs of misalignment of facial features become apparent.
Moreover, recalibration is needed for every user and recording environment.
Model‐based methods use a virtual character to represent the user’s dynamic facial geom‐

etry and expressions. In general, this virtual character is either recorded or designed prior to
online usage. At runtime, coefficients are inferred from sensor data, which in turn are used
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Figure 2.3: Results of RGB image inpainting method for HMD removal by Zhao et al. [36]. The top two rows contain
results based on theMS‐Celeb‐1M [54] dataset, whereas the bottom row contains an inpainting result of real‐world
footage. For each result set, from left to right: input, inpainted result, ground truth, reference. The input or ground
truth of the bottom result is not provided, but can identified based on the inpainted result.

to transform the prerecorded representation. Overall, the aforementioned methods indicate
that model‐based approaches are capable of producing high quality results. However, each of
these methods rely on a controlled environment for setup, of which the conditions are assumed
to remain constant during usage. This severely limits the potential widespread application of
these systems.

Image‐based methods
A number of studies have examined methods that approach HMD removal as an image‐based
task. As opposed to model‐based approaches, image‐based approaches typically do not use an
intermediate parametric model to virtually remove the HMD. Instead, image‐based methods
rely on operations in the image or feature space to resolve the masked area. Consequently,
methods of this kind can be seen as a subtask of image completion or inpainting.
Zhao et al. [36] explored the application of a generative inpainting method for the purpose

of HMD removal in RGB images that have been occluded synthetically. This method is built
on the concept of generative adversarial networks, trained to consistently fill in the masked
region caused by the HMD. The proposed procedure is robust against moderate variations in
pose, and is able to preserve the subject’s identity given a reference image of the target subject.
Additionally, a target pose map is passed to indicate the intended face orientation. Despite the
required target pose map, this method falls short in the case of extreme pose angles and is
not robust against expressions. Furthermore, the inpainted results are blurry and do not fully
blend in with the known region of the image (Figure 2.3). It is also important to note that this
method does not consider depth images or geometric information of any kind. This prevents
its application to immersive teleconferencing, in which case RGB‐D images are typically used.
Wang et al. [70] aim to alleviate the requirement of a target pose map, and introduced a

similar framework that uses a facial landmark detector to predict facial landmarks as a prior
step. Successively, the predicted facial landmarks are passed to a GAN architecture, combined
with a synthetically occluded RGB image and a reference image. While the facial landmark
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Figure 2.4: Illustration of a deep learning model for image classification, as reproduced from [71] with a custom
image sample.

map successfully replaces the target pose map used by Zhao et al. [68] and improves on the
method’s visual quality, the proposed method does not perform well under severe pose angles
and is limited to RGB images as well.
The majority of image‐based methods that could theoretically be applied to HMD removal

have been defined in the general context of removal of facial occlusions through image inpaint‐
ing. This being the case, we continue our review of image‐based HMD removal methods in
Section 2.4.1, where we discuss these methods and elaborate on their expected capabilities
when applied to image‐based HMD removal.

2.2. Deep neural networks (DNNs)
Before we move on to review existing image inpainting methods, we present the fundamen‐
tals of deep learning. Deep learning is an approach to machine learning that is based on the
construction of meaningful representations of raw data [71]. Conventional machine learning
methods rely on prior feature extraction, which typically requires a substantial amount of hu‐
man time and domain knowledge. However, in some cases it is nearly impossible to design a
feature extractor that extracts all the features that are relevant to our objective.
Deep neural networks (DNNs) do not require prior feature extraction, and construct feature

representations from raw data directly. Through a hierarchy of layers of computational neurons
with corresponding nonlinear functions, DNNs allow the interpretation of complex representa‐
tions from simple representations [71]. As we move up this hierarchy, the level of abstraction
of representations increases. Each layer further abstracts its input, starting from pixel input,
going to simple structures such as edges, contours and corners; and eventually, capturing se‐
mantic structures such as objects and their segments. An example of this process is illustrated
in Figure 2.4.
As stated by Bengio et al. [72], deep neural networks have two significant advantages as a

result of their architecture. Firstly, reusing features is possible as a consequence of hierarchical
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Figure 2.5: Visualization of convolving a 5 × 5 input with a 3 × 3 kernel, with padding of size 1, and 2 × 2 strides.
Figure reproduced from [76].

feature learning. Secondly, due to their hierarchical structure, DNNs are able to construct highly
abstracted feature representations of the network input data. This enables high‐level layers to
extract features that are typically invariant to certain local variations in the network input.

2.2.1. Autoencoders
The capability of representation learningwithDNNs is best demonstrated based on the paradigm
of autoencoders [73]. Autoencoders consist of an encoder which encodes input data 𝑥 into a
meaningful latent representation, and a decoder which in turn decodes this representation to �̂�
with the same dimensions as 𝑥. Reconstruction loss ℒ(𝑥, �̂�) stimulates the encoder to extract
the most meaningful features from its input in such a way that the decoder is able to accurately
reproduce the original input. In this way, autoencoders are able to learn feature representations
in an unsupervised manner.
Generative models build on this concept, and operate in the high‐dimensional latent space

to perform tasks such as image generation and image inpainting. We will elaborate on the
details of generative models in Section 2.3.

2.2.2. Layers
In this section, we will discuss a number of layers that can be used to construct a DNN. Specif‐
ically, we will describe the layers that make up our proposed architecture.

Activation layer
At first glance, the network illustrated in Figure 2.4 appears to be a simple linear combination
of neurons. This concept can be useful for linear problems, but is less useful for nonlinear
problems [71]. Activation functions give DNNs their representational power for problems that
behave in a nonlinear manner. Activation layers apply these activation functions to their input
and improve the generalization ability of DNNs.
At this point, a singular activation function that works well for all problems does not exist.

However, activation functions such as the tanh, sigmoid, ReLU [74], and leaky ReLU [75] have
been commonly used due to their desirable properties.

Convolutional layer
Convolutional networks (CNNs) [77] employ a set of learnable filters to extract features from
data that have a grid‐like topology [71], such as images represented by amultidimensional array
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Figure 2.6: Visualization of convolving a 7×7 input with a 3×3 kernel, without padding, 1×1 strides, and a dilation
factor of 2. Figure reproduced from [76].

of pixel values.
The convolution operation makes strong assumptions with respect to its input. Firstly, it is

assumed that the input values are locally connected and together form feature representations.
Secondly, convolution assumes that natural images have invariant statistical properties [71].
As such, features (e.g. edges and corners) can occur at any spatial location, which allows the
reuse of filters by employing parameter sharing. As a consequence, parameters can be more
efficiently applied to learning better and more varied filters.
The core component of CNNs are convolutional layers, which employ learnable filters that

are used for the convolution operation performed on the layer input. To obtain a feature map,
the convolution operation convolves the specified filter 𝑤 with size 𝐾 × 𝐾 × 𝐷 over the input
𝑥 with size 𝑊 × 𝐻 × 𝐷. Specifically, the filter slides over the input, calculating the product
between each filter and input element in the area that the kernel overlaps with [76] (Figure
2.5). The same operation can be performed with multiple filters to obtain more feature maps.
The size of the sliding step distancewhen performing convolution is referred to as the stride.

Moreover, padding can be used to control the size of the layer output. As such, padding is
commonly used to maintain the size of the layer input.

Dilated convolutional layer
Dilated convolution [78] enlarges the effective size of the kernel by inserting zero spaces be‐
tween the kernel elements. In this way, dilated convolutions have a larger receptive field with‐
out having to increase the kernel size and the related parameters and computational require‐
ments. In the context of CNN‐based image completion, this for allows the completion of larger
missing regions [38].

2.3. Generative adversarial networks (GANs)
Proposed by Goodfellow et al. [37], generative adversarial networks (GANs) have changed the
way state‐of‐the‐art methods generate image data and has become the most widely used ar‐
chitecture in this field. Given a set of training images drawn from a distribution 𝑝𝑑𝑎𝑡𝑎, GANs
learn a representative estimate of this distribution 𝑝𝑚𝑜𝑑𝑒𝑙 [79]. The structure of GANs is shown
in Figure 2.7.
The learning process of the original GAN [37] can be put in terms of a minimax two‐player

game. The players in this game can be described as two functions, generator 𝐺 and discrimina‐
tor 𝐷. 𝐺 is stimulated to generate images that resemble samples from distribution 𝑝𝑑𝑎𝑡𝑎, while
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Figure 2.7: Architecture schema of the original GAN [37].

𝐷 is encouraged to distinguish these generated (fake) images from real images. In this process,
the effective goal of 𝐺 is to learn how to fool 𝐷.
Generator 𝐺 is typically represented by a deep neural network. Taking a random noise

vector 𝑧 drawn from a distribution 𝑝𝑧 (e.g. Gaussian) as its input, 𝐺 maps 𝑧 to an image drawn
from distribution 𝑝𝐺 : 𝐺(𝑧) → �̂�. Discriminator 𝐷 learns to classify images as real or fake, and is
defined as 𝐷(𝑥) → [0, 1].
Generator 𝐺 and discriminator𝐷 are trained in a competing fashion. In this training process,

the two models are trained jointly with back propagation, based on the objective function:

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))], (2.1)

where 𝑉𝑎(𝐺, 𝐷) denotes the adversarial loss for 𝐺 and 𝐷, and 𝐷(𝑋) refers to the probability
that 𝑋 is a real image. Considering the two models are competing against each other, this
function is referred to as the adversarial loss.
It should be noted that in the early training stages, when the performance of generator 𝐺 is

poor, discriminator 𝐷 is able to reject generated images with high confidence. As a result, the
term 𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))) saturates and does not provide enough feedback to update𝐺. Therefore,
instead of minimizing this term, it is replaced by 𝑙𝑜𝑔𝐷(𝐺(𝑧))which is maximized during training
[37].
Goodfellow et al. [37] showed that, given enough capacity, the adversarial training process is

theoretically able to reach equilibrium, such that the model distribution equals the distribution
of the training data, 𝑝𝐺 = 𝑝𝑑𝑎𝑡𝑎. In this case, the discriminator no longer is able to distinguish
generated images from real images, thus 𝐷(𝑋) = 0.5 for all 𝑥.

Conditional GAN (cGAN) Shortly following the introduction of the original GAN, Mirza and
Osindero [80] introduced a conditional version of GANs. In this case, the generator and dis‐
criminator take an additional input 𝑦 to which they are conditioned, such as class labels, data
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Figure 2.8: Visualization of vector arithmetic as applied to an example of visual concepts.

from other modalities, or any other kind of auxiliary data. As such, it is possible to control the
output of the model, which is not the case with the original GAN.

Deep convolutional GAN (DCGAN) Radford et al. [81] proposed DCGAN, which introduced
a number of architectural changes to the original GAN to stabilize the training process. These
changes involve:

• replacing all pooling layers with strided convolutional layers, to enable spatial correlation;

• removing the hidden fully‐connected layers to enable deeper models;

• adding batch normalization in the generator and discriminator, to stabilize training;

• using theReLU activation function in the generator and the Leaky‐ReLU activation function
in the discriminator, to speed up training.

The combination of thesemodifications have resulted in higher quality output for most situ‐
ations, as well as a more stable learning process. Moreover, the authors demonstrate the ability
of the architecture to learn meaningful representations by showing the ability of interpolation
between its points in its latent space. Through vector arithmetic between two points in the
latent space, visual concepts can be combined and used for image generation (Figure 2.8). This
example provides an interesting insight to the workings of the latent space of GANs.

2.3.1. Evaluation
The objective of generativemodels is to draw samples from a distribution that closely resembles
the distribution of the available data 𝑝𝑑𝑎𝑡𝑎. Therefore, in the case where samples are images,
generated images are sought to realistically resemble images from the available dataset. To
accurately measure the performance of generativemodels in this regard, it is essential to define
realism and resemblance. Both terms represent concepts that are inherently subjective, making
the search for a suitable highly challenging. Furthermore, as mentioned by [82], the choice of
the appropriate set of metrics to evaluate a generative model should rest on the application it
was intended for.
Given the extensive applications and architectures of generative models, a broad range of

strategies for their evaluation exists. Where possible, previous research has predominantly
opted for a combination of quantitative and qualitative evaluation, which combines evaluation
through a collection of metrics with the addition of user studies or a visual examination of
the generated samples. Several studies have outlined how the qualitative and quantitative
assessments are currently ill‐fitted for a reliable evaluation of GANs [82–84].
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Intuitively, qualitative assessment by humansmay seem like themost representativemethod
for the evaluation of generative models. While human observers can competently distinguish
generated and real images, their evaluation is influenced by the visual quality of the images
[83]. As a result, the degree of diversity and generalization of the samples are neglected, fa‐
voring models that overfit or memorize the training data [84]. This is particularly harmful when
evaluating GANs designed for unconditional image generation [85]. Besides, valid qualitative
evaluation is time‐consuming, subjective and sensitive to viewing conditions.
To date, various sample‐based evaluation metrics have been proposed that aim to quantify

the performance of generativemodels by capturing the correspondence of statistical properties
between generated samples and real samples [84]. One of the most widely used metrics for
image‐based tasks is the Inception Score [86], which assesses the visual quality and diversity
of samples in such a way that is consistent with human evaluation. The results of this metric
are calculated based on features as produced by the Inception network [87], trained on the
ImageNet [88] dataset.
Despite the introduction of several metrics, consensus has not been reached with respect

to a standardized set of metrics [83, 84].

2.4. Image inpainting
Image inpainting or completion describes the task of filling undesired or unknown pixel regions
with realistic content. In early work, image inpainting refers to the act of filling in small or narrow
image regions, whereas image completion refers to filling in large image regions. More recently,
these terms have been used interchangeably to refer to inpainting any size of image region. In
this thesis we refer to this task as image inpainting.
Image inpainting has foundwidespread use in applications such as the removal of unwanted

objects or regions [38, 40, 89, 90], image editing [41, 91], image stitching [92], video inpainting
[93], and privacy protection [94].
A challenging aspect of this task is to restore the structure and texture of the image in such

a way that is undetectable. To achieve this, image inpainting methods commonly utilize known
image data to reconstitute the missing regions of an image in a visually plausible and unifying
way. Specifically, image inpainting methods rely on a combination of contextual information.
Over the years, a large body of strategies have been proposed to localize and use the most
relevant contextual information with respect to the missing region.
In this section, we focus on existing image inpainting techniques and present their advan‐

tages and disadvantages. Firstly, we discuss methods aimed at inpainting RGB color images,
which is the most widely studied. Secondly, we consider methods that are aimed at depth im‐
ages. Finally, we discuss image inpainting methods that are aimed towards the joint inpainting
of both modalities which are represented by RGB‐D images.

2.4.1. Color image inpainting

In the last few decades, much research has been committed to image inpainting of RGB color
images, resulting in a wide range of methods. Some early approaches focused on filling in miss‐
ing texture, without any obvious artifacts. Other approaches aimed to propagate the structure
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Figure 2.9: Visualization of texture synthesis algorithm by Efros and Leung [96]. Given the texture sample image
on the left‐hand side, the unknown pixels in the image on the right‐hand side are filled. At random, the algorithm
picks neighborhood �̂� of all neighborhoods that are similar to the neighborhood 𝑥 of the target pixel. To synthesize
the target pixel, the center value of neighborhood �̂� is used. Image reproduced from [96]

of the known image region to the missing region. Accordingly, we split early approaches based
on their primary reproduction target, which is the texture or structure of the missing region, or
a combination of the two. We provide a brief overview of each of these early methods; after
which we will progress to the more relevant CNN‐based approaches.

Texture‐based methods
While texture synthesis is a separate task from image inpainting, texture synthesis methods
have been applied to the task of image inpainting with moderate success. Texture‐based image
inpainting methods [95–98] focus on the reproduction of the texture of the missing region.
Efros and Leung [96] proposed a non‐parametric method for texture synthesis based on

a given texture sample. This method constructs a new image inwards from an initial seed re‐
cursively, in a pixel‐wise manner. The value of each of the synthesized pixels in the image is
determined based on the nearest neighborhood in the sample texture.
The algorithm has the tendency to end up in the ”wrong” part of the search space when fed

with a highly variable texture. As a result, in this scenario it produces visually inconsistent data.
Moreover, it is computationally expensive as a full search of the image for each synthesized
pixel.
Texture‐based methods perform well when inpainting small regions, but fall short when fill‐

ing in large regions of an image. Moreover, these methods clearly fail to preserve the structure
of the image, as they generally do not possess mechanisms to handle visual features such as
edges and corners.

Structure‐based methods
In contrast, other methods [99, 100] focus on structural continuity when filling in the missing
region of an image. To reproduce the missing structural information, directions of the visible
structures are attempted to be extrapolated to fill the missing region. This is commonly done
based on isophotes, which are lines of equal gray value. Isophotes represent directional infor‐
mation of the image structure, and can be connected to each other to propagate the structure
from the surrounding region to pixels located within the missing region. The direction of the
isophotes are defined perpendicular to the gradient vectors representing the spatial change of
pixel intensity levels.
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Generally, structure‐based methods handle images with low textural variability and small
missing regions well. However, structure‐based approaches are not able to accurately produce
texture, let alone large patches of it.

Hybrid methods
Drori et al. [101] proposed a method that aims to preserve both image texture and structure.
This examplar‐based approach synthesizes a complete image through an iterative procedure
that approximates unknown regions through the concept of self‐similarity. At the start of
each iteration, an unknown image fragment is selected based on the highest value in a con‐
fidence map. This confidence map represents the vicinity of each pixel to a known region.
Subsequently, a similar known image fragment is selected, which is used to fill the respective
unknown region. This process repeats itself until the image has been completed. While this
method performs well with flat scenes, it is unable to distinguish foreground and background
regions, nor moving objects. Moreover, similar to other approaches relying on finding similar
image patches [89, 97], this efficiency of this approach is limited by the expensive procedure
of optimal patch search.
Barnes et al. [91] introduced an accelerated procedure for the operation of finding sim‐

ilar patches. Their proposed approximation algorithm begins with a randomized or derived
guess, which is followed by an iterative process that randomly samples the image to find fitting
patches. Coherence is used to propagate such matches quickly through surrounding areas. At
the time of its introduction, this method performed an order of magnitude faster than previous
patch‐based approaches, and enabled the real‐time editing of images on a high level. Examplar‐
based image completion approaches suffer from their lack of knowledge about the anatomy and
structure of an image, which causes these methods to be ineffective at filling regions that are
surrounded by complicated structures or novel objects. Moreover, the search space for similar
image patches is confined to the input image. This can be a problemwhen the input image does
not contain patches that can fill all unknown regions in a realistic way. Hays and Efros [102]
demonstrated an image completion procedure that uses a large database of images. Prior to the
execution of the image completion algorithm, the image with the highest similarity to the input
image is retrieved. This image is then used to complete the input image. However, this type
of method relies on the assumption that an image with a similar scene, structure and texture is
included in the database which is often not the case.

CNN‐based methods
None of the previously discussed image inpainting methods are truly able to capture and re‐
produce the high‐level semantics of images. Consequently, these methods struggle to inpaint
missing regions that contain complex and novel visual information. As discussed in 2.2.2, CNNs
are able to capture visual information at different levels of abstraction. To achieve better per‐
formance on images that contain complex real‐world scenes, CNNs have been applied to the
task of image inpainting and have defined the state‐of‐the‐art for many years.
The first CNN‐based image inpainting methods built on the concept of the autoencoder

(Section 2.2.1). In this case, the incomplete input image is first transformed to a latent repre‐
sentation and then transformed back to its original dimensions. With the appropriate architec‐
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ture and loss functions, autoencoders naturally lend themselves for denoising and inpainting
images.
Xie et al. [103] introduced a learning‐based method that is founded on the concept of de‐

noising autoencoders, in which case the missing region involves the noise present in the input
image. The authors demonstrated the automatic removal of complex patterns such as super‐
imposed text, without requiring prior information of the unknown regions or their location.
However, this benefit has a limited impact, as the method is only able to inpaint patterns that
have been seen at training time. Moreover, the relatively shallow network merely captures
low‐level image features.
Recent learning‐based approaches [38–41, 104] have adopted concepts of generative ad‐

versarial networks (GANs) [37] (Section 2.3). These approaches consider image inpainting as
a conditional image generation problem. Instead of feeding a noise vector to the model, the
known region of the image is passed as the input. Methods of this kind employ an autoencoder
that is commonly trained with an adversarial loss and reconstruction loss to coherently fill in
images with missing regions based on relevant features of the known image region.
Pathak et al. [104] introduced an adversarially trained autoencoder architecture that aims

to encode the context information provided by the known image region. The authors employ
an autoencoder architecture which is trained with a joint loss function consisting of an adver‐
sarial loss [37] and reconstruction loss. The adversarial loss stimulates the sampling from the
appropriate mode of the learned distribution and makes the synthesized region appear realistic
[104]. The reconstruction loss encourages coherency with the known region of the image, by
favoring reproduction of structures and texture. In this way, the authors were able to train an
autoencoder to complete a fixed 64 × 64 pixel area in the center of a 128 × 128 pixel image.
However, the approach does not address inpainting regions with an arbitrary shape or location,
and does not specify how it can be applied to images with a higher resolution. Moreover, de‐
spite the usage of a reconstruction loss, images inpainted by this method lack local coherency
with the surrounding known region [38].
To improve overall coherency, Iizuka et al. [38] employed both a global and local discrimina‐

tor. The global discriminator evaluates whether a scene is coherent in its entirety, whereas the
local discriminator assesses the coherency of the area around the generated regions. Moreover,
the authors decreased the number of downsampling layers and replaced standard convolutional
layers with dilated convolution (Section 2.2.2), enabling the method to use a larger context area
around each unknown pixel with the same computational power. As context is a critical factor
in this task, this can significantly contribute to the consistency of the generated area and al‐
lows the method to process much larger areas. However, this change caused the entire training
procedure to take up two months with four NVIDIA Tesla K80 GPUs [38], which forms a major
drawback of this framework.
Yu et al. [40] built on the architecture of Iizuka et al. [38]. The authors proposed a fully

convolutional model with a contextual attention module that explicitly borrows information
from surrounding regions. Whereas convolutional operators typically only process local image
features, the proposed contextual attentionmodule learns to extract feature patches from any‐
where in the known region of the image. The propagation of contextual information results in
more realistic inpainting results with less artifacts. Furthermore, a key contribution of this work
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is a two‐stage coarse‐to‐fine network architecture. The coarse stage of the network infers an
initial coarse estimation, whereas the refinement stage of the network further refines this pre‐
diction. The primary limitation of this method is that its application is constrained to missing
regions with rectangular shapes.
To handle unknown regions with irregular shapes, Liu et al. [105] introduced the use of a

partial convolutional layer. This layer causes the output of the convolution operation to only
depend on the known region of the image. This is achieved by applyingmasked normalized con‐
volution only on known pixels, given a binary mask indicating the unknown region. Effectively,
this means that the output of each layer is multiplied by a binary mask. Yu et al. [41] criticizes
this method by stating that categorizing each pixel with the same mask at every layer causes
the loss of valuable information such as synthesized pixel data and can result in the receptive
field of some neurons to cover only unknown pixels.
Yu et al. [41] addressed this issue by introducing the gated convolution operation, which

learns a dynamic learnable feature selection strategy for each image channel at any spatial
location across all network layers. This operation allows precise regulation of what pixels are
affected by feature information, at every layer of the network. This enables the network’s
capability of processing irregularly‐sized masks, and extension to user‐guided image inpainting.
Moreover, the authors proposed a spectral‐normalized Markovian discriminator, motivated by
previously discussed approaches with global and local discriminators [38], Markovian GANs
[106] and spectral‐normalized GANs [107]. In our work, we use this architecture as our base
framework. We elaborate on our the reasons for our choice in Section 3.1.

Image inpainting for face completion
While the concept of face completion is similar to the general task of image inpainting, it is con‐
sidered more challenging, as it requires the generation of individual facial components which
contain large appearance variations. Moreover, it is a major challenge to ensure coherency
between these components, while simultaneously maintaining symmetry, realism and preser‐
vation of identity. In this subsection we will discuss methods that consider the task of face
completion, also known as face inpainting, as a subtask of color image inpainting. We start
by discussing a number of early approaches to face completion, which is followed by a rep‐
resentative summary of recent approaches to face completion. Moreover, we discuss identity
preservation strategies commonly used in face completion and face synthesization frameworks.
Park et al. [108] focused on the occlusion caused by glasses and showed that missing re‐

gions can be inferred through recursive error compensation using PCA reconstruction. This
procedure uses color and edge information to extract the region of occlusion, and finally gen‐
erates an image which compensates for this occlusion. However, the method’s sole focus is
frontal images, and its usage in real‐life scenarios is not evident.
De Smet et al. [109] proposed an algorithm that estimates the parameters of a 3D mor‐

phable face model (3DMM) under large occluded areas. Before the estimation of the 3DMM
parameters, the occluded area is identified and excluded from computations. De‐occlusion is
approached by applying a generalized expectation‐maximization (GEM) algorithm in which the
parameters related to the occluded area are computed iteratively. While the paper presents
notable results, the approach relies on fiducial points that have been manually selected. More‐
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Figure 2.10: Face completion results of approach by Li et al. [111] on the CelebA [52] dataset.
Left to right for each image set: original image, masked input, completion results. Right set: model generates realistic
results. Left set: model fails to generate the eye for an unaligned face. [111]

over, the performance of this method has not been evaluated on any other databases.
Mohammed et al. [110] introduced a statistical method for the inpainting of specified facial

regions that consists of a global parametric model with a local non‐parametric model that are
learned from a database of face images. The authors show the method’s ability to generate
face images that do not occur in the training data. Yet, the results contain many visible artifacts
which are detrimental to their realism.
We now turn to a more recent method by Li et al. [111], who proposed a face completion

framework that is based on a generative model. The authors employed a GAN‐based network
which is trained with a local discriminator that focuses on the realistic appearance of individual
face components. In addition, a global discriminator focuses on the contextual faithfulness of
the full image. Furthermore, a semantic parsing network is used to compare the synthesized
face region with the original image, which enforces a natural shape and size of the completed
face. However, as mentioned by the authors, the model does not perform well when input
images are not well‐aligned, as can be seen in Figure 2.10. Moreover, the model fails to fill in
the missing region that is spatially coherent with the pose of the face and the inferred regions
appear blurry. Comparable limitations can be observed with the GAN‐based approach of Yeh
et al. [39], which searches for the closest encoding of a given face image in the learned latent
image manifold.
To increase the semantic knowledge of generativemodels with respect to human faces, Liao

et al. [112] proposed a collaborative GAN that splits the learning process intomultiple subtasks.
In particular, this method aggregates knowledge of the tasks of face landmark detection and
semantic segmentation and uses this knowledge for the completion of face images. Results
of this method show that incorporating the knowledge learned from these tasks contribute
to the model’s understanding of the symmetric structure of human faces. However, breaking
down the task of face completion requires additional ground truth information for training and
complicates hyperparameter tuning. Consequently, it is unlikely that this method is applicable
to other datasets without significant re‐optimization and training.
A number of recent general‐purpose image inpainting frameworks [38, 40, 41, 105] present

remarkable results on face images. For instance, Iizuka et al. [38] describe a user study that
showed that their approach produces inpainted images of faces that are indistinguishable from
real faces 77% of the time. However, visual examination of the application of this method to
face completion shows a large number of visual artifacts and overall low visual quality as illus‐
trated in Figure 2.11. Moreover, the aforementioned lengthy training process of this approach
forms an obstruction for the application of this method.
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Original Input Iizuka et al. [38] Yu et al. [40] Liu et al. [105] Yu et al. [41]

Figure 2.11: Visual comparison of several general‐purpose image inpainting methods [38, 40, 41, 105]. This image
was reproduced from Yu et al. [41].

In contrast with the method by Iizuka et al. [38], a comparison with the results as produced
by the method proposed by Yu et al. [40] reveals that the latter successfully completes the
face of the subject in a visually consistent way. Facial features are appropriately positioned
and the skin color of the subject is properly propagated to the missing region. Unfortunately,
the inpainted face lacks visual symmetry. Moreover, a notable amount of visual artifacts are
present in the inpainted image.
Turning to the inpainted results of the method by Liu et al. [105] and Yu et al. [41], we

observe two similarly inpainted images. Aside from the consistent inference of the missing re‐
gion, both methods produce visually symmetric facial features. Nevertheless, closer inspection
reveals that the result generated by the method by Liu et al. [105] contains noticeable visual
artifacts. Based on these observations, both methods show potential for application to the task
of HMD removal.

Identity preservation As mentioned, a major contributor to the applicability of HMD removal
methods in a social VR context is the preservation of identity [30, 48], which has motivated
Objective 1.1. Aside from the image‐based HMD removal methods [36] discussed in Section
2.1, none of the image inpainting methods address this point. In some cases this is related to
the fact that their scope is wider than face completion [38, 40, 105], while other studies simply
disregard this aspect in the design of their framework [39, 112]. In view of this fact, relatively
few image inpainting methods exist that target identity preservation.
Broadening our view to the research in the field of face generation [52, 113] and frontal‐

ization [114], it stands out that the vast majority of generative approaches considering identity
preservation build on a common type of identity loss function [36, 49, 52, 113, 114]. In par‐
ticular, these methods typically employ a pretrained face recognition model to obtain a latent
identity embedding of the inpainted image and a given reference image. By minimizing the
distance between these embeddings during training, the model learns to propagate identity‐
specific features from the reference image to the inpainted image. While opinions differ on the
optimal distance function and face recognitionmodel, this theoretical concept is commonly and
successfully applied to methods targeting identity preservation. Moreover, the identity loss of
the HMD removal framework by Zhao et al. [36] is based on the same notion.

2.4.2. Depth image inpainting
While depth inpainting has received less attention than color image inpainting, research to‐
wards depth image inpainting has been an increasing topic of research. This can most probably
be attributed to the widespread increase in availability and usage of depth sensors. It is inter‐
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esting to note that depth images are finding an increasing numbers of applications such as the
creation of immersive virtual environments [5, 9, 10, 12], semantic segmentation [115], and au‐
tonomous driving [94]. These and all other applications of depth images benefit from accurate
and complete depth information.
Current commodity RGB‐D sensors provide an affordable way of recording color images

with corresponding depth information. However, the depth information often contains missing
information and artifacts. This can be caused by sensor noise and surfaces that are reflective
or are either too far or too close to the sensor [116, 117]. Image inpainting methods focused
on denoising can be applied for the removal of artifacts of this type [43, 103]. Moreover, depth
image inpainting techniques can be applied to object removal and surface completion in depth
images [46, 94]. In this way, applications that use depth data can greatly profit from depth
image inpainting.
Existing RGB image inpainting methods have previously been applied to depth image in‐

painting [46, 118–120] with reasonable success. However, in practice, these methods often
fail to address the statistical properties of depth image inpainting involving depth continuity,
surface relief, and local feature preservation [121]. Acknowledging this, a substantial amount
of depth image inpainting methods have been proposed that address these characteristics.
Depth image inpainting approaches can be divided into methods that reconstruct depth

images independently [42, 46, 119, 122, 123] and methods that additionally use color images
to serve as contextual information [43, 45]. We briefly evaluate and compare methods of both
types in the remainder of this section.

Independent depth image inpainting
To improve RGB‐D indoor scene estimation, Silberman et al. [119] applied the RGB image in‐
paintingmethod as proposed by Levin et al. [124]. While the original image inpainting algorithm
was designed for color images, the method performed similarly well on small missing regions
in depth images. While the insights provided by this work are limited, it is interesting to note
that RGB image inpainting show potential for the purpose of depth image inpainting.
Xue et al. [123] proposed a depth image denoisingmethod that does not use any information

from additional modalities such as corresponding color images or related depth images. The
authors applied the low rank assumption to the completion process of corrupted depth images.
However, they found that this assumption does not translate well to depth images due to their
textureless and sparse characteristics. Based on these properties, low gradient regularization
was combined with low‐rank regularization for inpainting noisy depth images. Consequently,
this method is focused on the inpainting of a large collection of small regions, and therefore is
not well‐suited for inpainting larger regions.
Matias et al. [46] proposed a method for object removal for depth images, built on the ex‐

isting color image inpaintingmethod by Yu et al. [40]. Applied to depth images, this GAN‐based
framework is able to learn meaningful features from depth images, based on a combination of
a reconstruction loss, adversarial loss, and a contextual attention module. As depth images in‐
herently represent surfaces, the authors proposed the vectorial loss function that encourages
the coherency of the synthesized region and the rest of the depth image based on estimated
surface normal images. Moreover, the authors modify the contextual attention module by pro‐
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Figure 2.12: System pipeline of depth image inpainting framework by Zhang and Funkhouser [45].

viding it with an estimated surface normal image to support the localization of similar surfaces
in the known region of the depth image. The method is evaluated on data depicting street
scenes, containing a large amount of sizable surfaces. Considering this fact, it is unclear how
thismethodwould performon depth imageswith a high level of detail and corresponding sparse
gradients.

Color‐guided depth image inpainting

Many researchers take advantage of available color information [43–45] to complete the task
of depth image inpainting. Bearing in mind that the color and depth image are spatially aligned,
color features and depth features are assumed to be strongly related [105]. This type ofmethod
takes at least two inputs: an incomplete depth image and a corresponding complete color im‐
age.

Herrera et al. [43] proposed an image inpainting method to complete the depth channel
of an RGB‐D image. This method aims to reproduce visually consistent structures by favoring
information that surrounds the boundaries of the missing regions. However, the method as‐
sumes that discontinuities between surfaces in the depth image are alignedwith discontinuities
in the color image. This limits the applicability of this algorithm to specific situations.

Following the successful application of GANs in color image inpainting [38–40, 104], Zhang
and Funkhouser [45] applied the concept to the inpainting of the depth channel of RGB‐D
images, shown in Figure 2.12. The authors indicated that the main challenge of depth image
inpainting is related to the lack of strong features in the depth channel. Therefore, this method
takes an intermediate step to predict local properties of the depth values before progressing to
complete the raw depth map. A deep neural network is used for the estimation of an occlusion
boundary image and surface normal image. Concatenating the predictions with the raw depth
image, a global optimization step processes and outputs the inpainted depth image containing
absolute depth values. While this method solves a different problem than ours, it is to be
noted that alternative depth representations can contribute to a joint RGB‐D image inpainting
method. Specifically, within the context of our work, this corresponds to Objective 1.3.
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(a) (b) (c) (d)

Figure 2.13: Example of Doria and Radke [126] RGB‐D image inpainting method with corresponding intermediate
depth gradient inpainting result. (a) LiDAR scan (RGB‐D) of a trashcan in front of a background consisting of con‐
crete, grass, and a brick wall. (b) Magnitude of the depth gradient of ground truth LiDAR scan. (c) Magnitude of the
depth gradient of inpainted result. (d) Inpainted result of LiDAR scan (RGB‐D).

2.4.3. RGB‐D image inpainting

Each pixel in an RGB‐D image contains multimodal information of a common entity. Specif‐
ically, the RGB channels represent the color modality, whereas the depth channel represents
the depth modality. While these modalities are related, there exists a semantic gap between
the modalities represented by the color and depth channels, as they each have different signal
frequencies and characteristics.
Limited research towards the inpainting of RGB‐D images exists [47, 125–127]. This could

be attributed to the challenges involved with multimodal data, combined with the high compu‐
tational cost of image inpainting procedures [128]. As noted in earlier sections of this chapter,
the extraction and interpretation of image features form an unavoidable challenge in success‐
fully inpainting an occluded image, which also holds for RGB‐D image inpainting. In fact, fea‐
ture extraction and interpretation from RGB‐D images is especially challenging considering the
multimodality of the image information. To accurately interpret the information represented
by an RGB‐D image, a method to extract features that incorporate the complementary relation
between the color and depth channels is needed.
Doria and Radke [126] introduced a framework for joint inpainting of RGB‐D images as

captured by a LiDAR scanner. The proposed patch‐based image inpainting method finds similar
RGB‐D patches in the known region of the RGB‐D image. Applying the color image inpainting
framework by Criminisi et al. [129], the authors found that it is challenging to find a patch with
matching absolute depth values. To enable the identification of patches that are structurally
similar but lie at different depths, the depth channel of the RGB‐D images is replaced with
depth image gradients. Taking the RGB and depth gradient image as its input, this patch‐based
method is able to extract the geometric information of patches that are similar in structure. In
turn, the depth gradient values are resolved to absolute depth values, resulting in an inpainted
RGB‐D image. However, this method is unable to reproduce structures that are complex or
have a structure that is not found in the known region of the image. An inpainted result with
the intermediate depth image gradient values can be seen in Figure 2.13. Themethod performs
well with the sample shown in this figure as the required textures and structures are all available
in the known region of the image.
While research into multimodal feature learning is actively continuing in the field of seman‐
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tic segmentation, it has not been as widely applied for the task of image inpainting. One of
the first joint RGB‐D image inpainting frameworks was proposed by Mori et al. [127], which
performs examplar‐based inpainting based on several cost functions that indicate the loss of
texture and spatial information. Additionally, this method minimizes the loss of geometric in‐
formation by employing a normal map derived from the depth image.

To the best of our knowledge, the first joint inpainting method of RGB‐D images based on a
generative model was recently introduced by Fujii et al. [47]. This method is built on the GAN‐
based image inpainting framework of Iizuka et al. [38], which employs two encoding branches
that separately encode color and depth information. Once encoded, a feature‐level fusion strat‐
egy is applied through amulti‐input fusionmodule containing several residual blocks. The fused
features are decoded separately, resulting in an inpainted RGB and depth image. During train‐
ing, the authors use a mean squared error loss for the RGB channels as well as for the depth
channel, which leaves depth characteristics such as surface normals unconsidered. Moreover,
the proposed method was not quantitatively or qualitatively evaluated, and only two inpainted
RGB‐D image samples are provided. In addition, corresponding source code has not been pub‐
lished at this time and the publication does not provide sufficient information to reproduce and
evaluate the outlined framework.

RGB‐D image inpainting has not reached a comparable maturity level to RGB image inpaint‐
ing, and further research is needed to discover how the geometric characteristics of RGB‐D
images can be considered in the inpainting process. The studies presented thus far indicate the
potential of the usage of geometric representation in the inpainting process, which we elabo‐
rate on in the following chapters of this work.

2.5. Multimodal RGB‐D feature learning
A different field within computer vision that commonly handles RGB‐D information is semantic
scene segmentation [130–133]. Humans typically perform this task through color differenti‐
ation and perception of depth. In much the same way, RGB‐D images enable such methods
to combine the visual information provided by the RGB channels with geometric information
from the depth channel.

Early image segmentation approaches use hand‐crafted features to encode the visual and
geometric information of objects, surfaces and regions [119, 135, 136]. In the following years,
CNN‐based methods have enabled the automatic learning of cross modality feature learning
[137]. Couprie et al. [138] proposed one of the first methods that utilizes multimodal image
information for image segmentation. The authors made a straightforward modification to an
existing CNN‐based architecture by concatenating the color and depth image channels at the
network input. However, this early feature fusion method (Figure 2.14a) ignores the differing
characteristics of the color and depth information, which could possibly even hurt performance
[137]. To augment the available information of the depth channel, Gupta et al. [136] introduced
a three‐channel depth encoding that comprises horizontal disparity, height above ground and
the angle of the local surface normal with respect to gravity (HHA). The embedding offered
significant improvements for the task of scene segmentation, which inspired a number of other
segmentation approaches [115, 139].
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Figure 2.14: Types of fusion strategies that have been previously applied in the field of semantic scene segmentation.
Symbols + , T , and C denote element‐wise summation, transformation and concatenation respectively.

Long et al. [115] evaluated the performance of their proposed model on solely HHA chan‐
nels. While this did not show better performance compared to past methods, the authors
additionally trained a two‐stream end‐to‐end model that trains on RGB and HHA channels
separately, where the predictions from both streams are summed at the final layer. This type
of feature fusion is referred to as late fusion (Figure 2.14c). While not as significant, it is worth
mentioning that Long et al. [115] also reported improved results for a data‐level fusion version
of their model that was trained on RGB‐D data. Overall, these experiments showed significant
improvements to the model’s performance, demonstrating the benefits of multimodal feature
learning with RGB and HHA. For segmentation tasks, the HHA depth encoding provides much
needed information about the spatial relation of objects relative to the rest of the scene. How‐
ever, we argue that not all of this information is as useful for models trained in our domain
of HMD removal or face completion. This is due to the fact that the visual and geometric
information needed for joint RGB‐D image inpainting of faces does not significantly benefit
from information describing the face’s relation to the rest of the scene. What we do consider
of interest with respect to the HHA encoding is the angle of the local surface normal, as this
gives valuable information about the surface formed by the depth channel and could support
Objective 1.3.
Wang et al. [134] make use of an autoencoder‐based architecture with intermediate fea‐

ture fusion (Figure 2.14b). The procedure starts by separately encoding the RGB and depth
information through a two‐stream encoder. These informative features are then fed to a fea‐
ture transformation network, where the color and depth features are correlated by discovering
their complementary features. The final result is obtained by fusing decision scores of the
two modalities. This process does not only correlate the multimodal features, but also allows
each modality to enhance their representation by borrowing features from the other modal‐
ity. Methods that are built on an autoencoder‐based architecture are particularly relevant to
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our research, as state‐of‐the‐art image inpainting approaches involve GANs that also contain
autoencoder structures. In turn, similar modules could contribute to multimodal feature under‐
standing in our framework.
Following a similar autoencoder‐based structure, Hazirbas et al. [140] proposed a method

in which the encoder consists of two branches which encode RGB and depth separately. Depth
features from the depth branch are combined with the color features at several points in the
encoding process. Blocks that are responsible for this are referred to as fusion blocks, which
combine the feature maps of both modalities through element‐wise summation. The decoder
jointly upsamples the color features that have been fused with depth features to finally obtain
the semantic segmentation of the input scene.
Inspired by the work of Hazirbas et al. [140], Park et al. [133] implements feature fusion

through residual learning with skip‐connections. To improve performance on high resolution
RGB‐D images, the authors built on RefineNet [141], which iteratively refines higher‐level
features based on several collections of low‐level features. Also based on RefineNet is the
method’s feature fusion block, which downsamples the color and depth features after which
they are rescaled before their element‐wise summation. The skip‐connections in this feature
fusion model allows the unconstrained flow of modality‐specific features through the network.
We observe that approaches that employ feature fusion successfully improve the interpre‐

tation of the complementary relation between the color and depth channels. We identify such
strategies as major points of attention during the exploration for the design of our framework.
However, caution is warranted in the application of feature fusion methods in our framework,
as fusionmethods cannot be presumed capable of blind application to image inpainting. Specif‐
ically, the tasks of semantic segmentation and image inpainting are inherently different; the
former task aims to condense feature information into meaningful labels, while the latter aims
to expand feature information in order to fill in the missing region.

2.6. Datasets
In this section, we give a representative overview of RGB‐D face image datasets that are cur‐
rently available. Specifically, we discuss a number of their characteristics such as their size,
recording conditions and variations in face properties.
Originally introduced for the stimulation of research towards three‐dimensional face recog‐

nition methods, the FRGC v2 dataset was introduced by Phillips et al. [142]. This dataset con‐
tains a total of 4007 captures of 466 different subjects, where each subject was captured in a
controlled and uncontrolled illumination and approximately half the amount of captures showed
some form of facial expression. Considering the dataset was introduced in 2005, the hardware
used for capturing this dataset was a Minolta Vivid 900/910 range scanner, which produced
images with a size of 640 × 480. Due to its high quality content and large size, the FRGC v2
dataset continues to be used for the evaluation of 3D face recognition methods to this day.
A similar dataset that was recorded around the same time is the CASIA 3D Face dataset,

whichwas also introduced to contribute to the evaluation of 3D face recognitionmethods. This
dataset contains 4624 scans of 123 subjects, recorded across a wide variation and combination
of illumination, poses and expressions.
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Name Sensor Subjects Description

FRGC v2 (2005) Minolta Vivid 900/910 477 (205 ~, 272 |) Two illumination types (for con‐
trolled capture), two facial ex‐
pressions.

BU‐3DFE (2006) 3DMD Digitizer 100 (56 ~, 44 |) Seven facial expressionswith four
intensity levels each, except for
neutral. Facial texture from two
views.

CASIA 3D Face (2009) Minolta Vivid 910 123 4624 frames with varying pose,
illumination and six expressions
(incl. neutral).

FaceWarehouse (2013) Kinect v1 150 Twenty expressions (incl. neu‐
tral).

KinectFaceDB (2014) Kinect v1 52 (14 ~, 38 |) Nine expressions (incl. neutral),
illumination and types of occlu‐
sion.

VT‐KFER (2015) Kinect v1 32 (18 ~, 14 |) Seven expressions (incl. neutral)
in scripted and unscripted situa‐
tions.

IAS‐Lab RGB‐D Face (2016) Kinect v2 41 13 different conditions with vary‐
ing pose, luminance and expres‐
sion.

4DFAB (2017) Kinect v1 180 (60 ~, 120 |) Six expressions, spontaneous re‐
actions, recorded during four ses‐
sions over a period of 5 years.

Table 2.1: Representative list of RGB‐D face datasets including a description of their key characteristics.

The BU‐3DFE dataset was introduced to facilitate the evaluation of approaches aimed at
three‐dimensional facial expression classification. This dataset contains a total of 2500 scans
of 100 subjects, where each subject performed seven different facial expression types across
four levels of intensity for all basic emotions except the neural expression.
The FaceWarehouse dataset [145] further expanded the range of facial expressions as it

consists of recordings of 150 subjects with 19 unique expression types. Introduced in 2013,
this dataset was recorded with Kinect v1 which provides data that is of relatively lower quality
when compared to the aforementioned high quality range scanners.
Contributing to the evaluation of Kinect‐based face recognition and similar tasks, theKinect‐

FaceDB [146]was introduced in 2014. This dataset consists of 936 captures of 52 subjects with
nine different facial variations across illumination, pose, occlusion and facial expressions.
The VT‐KFER [147] dataset further expanded facial expressions by providing spontaneous

and non‐spontaneous recordings of 32 subjects recorded using Kinect v1. In particular, this
dataset contains 7 labeled facial expressions, in scripted and unscripted scenarios. This dataset
distinguishes itself through the addition of spontaneous facial expressions, constituting a closer
resemblance to real‐life situations.
The IAS‐Lab RGB‐D Face [148] dataset contains 41 subjects captured in 13 different con‐

ditions across illumination, pose and expression. Recorded with the Kinect v2, this dataset
provides an RGB image with a corresponding registered point cloud. A major drawback of this
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dataset is that it was recorded in several uncontrolled environments.
Particularly remarkable for its recording timeline, the 4DFAB [149] dataset consists of 180

subjects captured in four different sessions over five years. Each subject is recorded with 6
non‐spontaneous facial expressions as well as spontaneous reactions. Additionally, the dataset
contains recordings of each subject’s utterances of 9 different words. The size and wide range
of settings of this dataset increase its usefulness for various applications.
In this section, we have aimed to give a brief but representative overview of the RGB‐D

face datasets that are currently available. The introduction of commodity RGB‐D sensors have
accelerated the creation of RGB‐D datasets and has resulted in a wide range of interesting
datasets. However, the amount of unique subjects portrayed in these datasets remain relatively
low at this time.
When selecting a dataset for training a GAN‐based model, it is essential to note that GANs

aim to learn a representative estimate of the distribution of the training set [79]. On this ac‐
count, it is of absolute importance to select a dataset that is representative of its domain. Bear‐
ing this in mind, the unique identities represented in the datasets previously discussed do not
form a reliable representation of the domain of human faces as a whole. For this reason, we
opt for the usage of a synthesized dataset based on Basel FaceModel 2017 [62] which is based
on the parametric 3D Morphable Model [63]. Details regarding the construction and charac‐
teristics of this dataset can be found in 4.1.

2.7. Research gap
Head‐mounted device (HMD) removal is a challenging task which has emerged with the in‐
creasing usage of HMDs to observe virtual reality (VR) environments. As discussed in Section
2.1, due to the novelty of this problem, not every research direction has been fully explored.
One direction approaches the task of HMD removal in a purely image‐based manner, in which
only a few methods have been proposed [36, 70]. Leaving out complex intermediate repre‐
sentations, this branch of methods resolves the occluded face region with image inpainting
techniques [38]. Aside from the flawed visual quality of results generated by these existing
methods, they also fail to consider RGB‐D images, which are widely used for the construction
of shared immersive virtual environments [6, 10, 12]. For this reason, in this work, we propose
a method that aims to perform HMD removal through the joint inpainting of RGB‐D images.
Inpainting images in a realistic and consistent manner has been a long‐standing goal in the

field of computer vision. As discussed in Section 2.4.1, generative adversarial networks (GANs)
have been empirically shown to form the base of the current state‐of‐the‐art image inpainting
methods. In Section 2.4.2, we discussed how this ability has been demonstrated to be trans‐
ferable to the inpainting of depth images with a number of modifications [45, 46]. However,
despite the large and growing interest in RGB‐D data for its wide applications, we found that
there is only a small body of research that is concerned with joint RGB‐D image inpainting (Sec‐
tion 2.4.3). Moreover, the few studies that do consider joint RGB‐D image inpainting are not
fully evaluated [47] and do not consider complex image structures such human faces. For this
reason, we set out to explore a joint RGB‐D face image inpainting framework, with the intended
target application of HMD removal.
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In Chapter 2, we reviewed existing approaches to HMD removal, image inpainting, face com‐
pletion, and the multimodal feature fusion of RGB‐D data. We identified the possibility of
performing HMD removal through the completion of the task of RGB‐D image inpainting with
a generative approach. To the best of our knowledge, a joint RGB‐D image inpainting method
does not currently exist. Consequently, we take an exploratory approach to the definition our
method, which is guided by the research objectives defined in Chapter 1.
We selected the state‐of‐the‐art RGB image inpainting framework by Yu et al. [41] to form

the base architecture of our joint RGB‐D image inpainting method. We based this decision on
a number of characteristics of the framework, including its state‐of‐the‐art performance and
promising SN‐PatchGAN discriminator.
The intuitive concept of our framework is based on a two‐stage coarse‐to‐fine GAN ar‐

chitecture which is fed an incomplete RGB‐D image, a mask, and a reference image. The first
stage of the architecture produces a coarse prediction of the masked region. Subsequently, the
coarse result is fed to the refinement stage of the architecturewhere it is further refined through
two branches, one of which includes a contextual attention module. We use a reconstruction
loss function and SN‐PatchGAN loss function [41] to attend to the accurate reproduction of
pixel values and higher‐level perceptual content.
In view of our research objectives, we explore several types of other components and loss

functions of our architecture. Firstly, to achieve preservation of identity, we propose a per‐
ceptual identity loss function which encourages the reproduction of distinctive facial features
based on a given reference image (Objective 1.1). Moreover, as RGB‐D images contain a color
and depth modality, we explore different methods for fusion of these multimodal features (Ob‐
jective 1.2), including data‐level feature fusion and hybrid feature fusion which combines both
data‐level and feature‐level fusion. Lastly, we discover methods that stimulate the architecture
to interpret the depth values as a surface (1.3). Specifically, we discuss the employment of a
surface normal loss function [46], contextual surface attention module [46] and surface normal
discriminator.

33
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We begin this chapter by elaborating on our choice of base framework and introduce the
fundamental aspects of this architecture [41]. Subsequently, we define our identity loss func‐
tion that is based on a pretrained face recognitionmodel. In the following section, we elaborate
on how we establish multimodal feature understanding in the coarse stage of the model and
discuss the difference between data‐level fusion and several versions of hybrid fusion. Finally,
we discuss the aspects of depth surface reproduction and the formulation of the surface loss
function, contextual surface attention module, and surface normal discriminator.

3.1. Baseline framework
We adopt the two‐stage RGB image inpainting approach proposed by Yu et al. [41] as the
base architecture of our framework. This architecture possesses a number of advantageous
characteristics in comparison to others:

• Free‐form masks The architecture of this framework uses gated convolution (Section
3.1.2), allowing masks to have any size and to appear anywhere in the input image. In‐
advertently, one may assume that HMDs typically cover a rectangular region of the face
[36, 70]. However, during mediated social interaction, the head pose of the user with
respect to the RGB‐D sensor varies significantly. Accordingly, the mask covering the oc‐
cluded face region has a variable location and size. This makes the ability to use free‐form
masks particularly useful in our case.

• SN‐PatchGAN for semantic learning The authors of the framework propose a variant
of generative adversarial networks. The discriminator of this architecture provides a
means of focusing on different locations and semantics across image channels. In turn,
this method could be particularly useful for capturing different types of semantics repre‐
sented in the multimodal RGB‐D images that we aim to inpaint.

• State‐of‐the‐art performance The framework achieves state‐of‐the‐art results on sev‐
eral benchmark datasets such as Places2 [150] and CelebA‐HQ [151]. Specifically, the
framework has been shown to perform well on inpainting face images, which demon‐
strates its potential for our objective.

• Publicly available source code The authors havemade the source code publicly available
and actively provide comprehensive answers to anyone’s questionswith respect to details
of the framework.

In the following sections, we discuss the key components that make the architecture of this
framework unique. Specifically, we discuss the concept of contextual attention, gated convo‐
lution, and the SN‐PatchGAN discriminator.

3.1.1. Contextual attention
When looking at an image, humans intuitively pay attention to specific image locations and
features. This mechanism assists humans in the identification of relevant objects or regions
by selectively increasing the activity of sensory neurons [152]. Recent methods have facili‐
tated the investigation of attention mechanisms to convolutional neural networks [153–155].
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Figure 3.1: Visualization of contextual attention layer.
Image reproduced from [40].
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Figure 3.2: Visualization of gated convolution. Image
reproduced from [40].

Yu et al. [40] applied this concept to image inpainting and introduced a contextual attention
layer that facilitates the propagation of related feature patches at distant spatial locations with
respect to the missing region. In this case, the missing and known region of the image are re‐
ferred to as the foreground and background respectively. Illustrated in Figure 3.1, the first step
of this procedure involves matching features of the foreground 𝑓 and background 𝑏. This pro‐
cess starts with the extraction of 3×3 feature patches from the the background segment of the
given input feature map, which are then reshaped as convolutional filters. Following this, the
similarity between the background patches {𝑏𝑥′ ,𝑦′} and foreground patches {𝑓𝑥,𝑦} are calculated
based on their cosine similarity. The cosine similarity of each combination is then weighed with
a scaled softmax function: 𝑠∗𝑥,𝑦,𝑥′ ,𝑦′ = softmax𝑥′ ,𝑦′(𝜆𝑠𝑥,𝑦,𝑥′ ,𝑦′), where 𝜆 is a constant value. Fi‐
nally, the matched background patches are used as deconvolutional filters to reconstruct the
missing image region.

3.1.2. Gated convolution

The significant number of proposed image inpainting methods do not have the ability to inpaint
non‐rectangular masks [38, 40, 104]. This is a consequence of theworkings of two‐dimensional
convolution. As described in Section 2.2.2, a convolutional layer learns filters for each input
channel which can be used for convolution at any spatial location in the image. This type of
convolution is suitable for tasks such as image classification and object detection, where all
input pixels can be considered as valid [41]. However, Yu et al. [41] states that in the case of
image inpainting, pixels within themissing region are considered to be invalid. The conventional
convolution operation does not distinguish valid or invalid pixels and features, which causes
ambiguity and visual artifacts [41, 105]. This issue persists in deep layers, where synthesized
pixels and features form an ill‐founded context for any further synthesization.

To solve this problem, Yu et al. [41] introduced gated convolutions which learn a dynamic
feature selection mechanism for each channel and spatial location. Rather than classifying all
spatial locations as either valid or invalid, gated convolutions learn a softmask based on feature
data (Figure 3.2. Yu et al. [41] defines gated convolution as:
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Gating𝑦,𝑥 =∑∑𝑊𝑔 ⋅ 𝐼

Feature𝑦,𝑥 =∑∑𝑊𝑓 ⋅ 𝐼

O𝑦,𝑥 = 𝜙(Feature𝑦,𝑥) ⊙ 𝜎(Gating𝑦,𝑥)

(3.1)

where𝑊𝑔 and𝑊𝑓 denote separate convolutional filters, 𝜙 is an arbitrary activation function,
𝜎 is the sigmoid function, and⊙ refers to element‐wise multiplication.
As such, gated convolutions allow masks to have any shape and location within the bound‐

aries of the input image. By eliminating the ambiguity regarding valid and invalid pixels through
gated convolution, the proposed image inpainting framework achieves results with less visual
artifacts and inconsistent colors when compared to conventional and partial convolution [105].

3.1.3. SN‐PatchGAN
SN‐PatchGAN is a GAN loss proposed by Yu et al. [41], designed to be used for training image
inpainting framework that handle free‐form masks that may appear at any spatial location. The
discriminator is a CNN composed of six strided convolutions, and is spectrally normalized [107].
Given an input source image and a binary mask image, the CNN‐based discriminator returns

a 3D feature map of shapeℝℎ×𝑤×𝑐 , where ℎ, 𝑤, 𝑐 denote height, width and number of channels
respectively. In turn, the SN‐PatchGAN loss is applied to each of the resulting feature points.
Essentially, this defines ℎ ×𝑤× 𝑐 GANs, each of which are employed at their respective spatial
location and channel. As opposed to previous inpainting methods [38], the usage of a global
discriminator is unnecessary as the receptive field of each neuron in the feature map can cover
the entire input image.
Moreover, the resulting three‐dimensional feature map allows the discriminator to capture

different types of semantics occurring within each image channel, which obviates the usage of
perceptual losses. We theorize that such capability is particularly useful in the case of RGB‐D
images, as these contain multiple modalities represented in separate channels. As such, we
argue that the SN‐PatchGAN discriminator is of great significance in a framework that jointly
inpaints RGB‐D images.

3.2. Identity preservation
In general, when a deep neural model inpaints an image, it relies on the combination of contex‐
tual information provided by the known region of the image. Inferring missing regions becomes
more challenging when the regions in question contain highly detailed information. We work
with a challenging instance of this, which is the complex appearance and structure of the human
face. The human faces contains a large amount of information that is cognitively distinctive to
a person’s identity [156]. Using their perceptive capacity, humans extract a wide range of infor‐
mation to mediate face recognition. This information forms one of the most evocative factors
in social experience [48] and has a profound impact on communication.
When inpainting a human face with the discussed base framework, it produces the most

plausible contents of the missing region based on the information it is provided with, which
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Figure 3.3: RGB channels of inpainting result without preservation of identity. From left to right: RGB ground truth,
masked RGB input, inpainted RGB result.

effectively comprises the low‐level and high‐level features of the masked input image. While
the framework is effective towards the inference of visually and semantically consistent image
regions, it lacks knowledge regarding the person’s invisible distinctive facial features. Thus,
when inpainting a face image with this framework, it is almost certain that the inferred region
turns out to have a different perceived identity when compared to the ground truth image. An
example of this can be seen in Figure 3.3.
Keeping the projected application of our framework in mind, this forms a major issue in the

scenario of face‐to‐face conversation in a shared VR environment. As a result, the connections
between the user’s offline and online self are compromised and likely form a barrier in any social
interaction performed within the shared VR environment [30].

3.2.1. Identity loss
We address this issue through the introduction of the identity loss function ℒID. This loss
function supervises themodel in the identity‐preserving reconstruction of the face represented
in an RGB‐D image. We achieve this as follows. Similar to other perceptual loss functions for
identity preservation [36, 52, 113, 114, 157], we use a pretrained face recognition model for
this purpose. Moreover, we require a reference image of the same person for the input of our
network. During training, an identity embedding of both the reference image and the inpainted
image is computed by passing them through the pretrained face recognition model. Following
this, we calculate the L2 distance between the two identity embeddings. This value forms
the identity loss value. Throughout the training process, this loss is minimized to reduce the
distance between the embeddings of the generated image and the given reference image.
The identity loss function ℒID is based on the notion of perceptual loss functions that use

features extracted by pretrained networks for applications such as style transfer [158], super
resolution [158] and image generation [159]. A number of works use perceptual losses for the
preservation of identity [52, 113, 114] given a source image and a reference image. We define
a similar identity loss function that encourages the preservation of identity features between
the inpainted image and a given reference image. The calculation of this loss function starts
by obtaining the activations of specific layers for the reference image 𝑥ref and the inpainted
result image 𝑥pred through a forward pass of a pretrained face recognition model 𝑀ID. In the
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task of face verification, the distance between these two layer activation values represents
the likelihood that the images represent the same person. To complete the calculation, we
measure the mean squared error (MSE) between the respective activation values. The identity
loss function is defined as follows:

ℒID(𝑥pred, 𝑥ref) = MSE(𝑀ID(𝑥pred) − 𝑀ID(𝑥ref)) (3.2)

3.2.2. Selection of a pretrained face recognition model
In the previous subsection, we defined ℒID, which uses the pretrained model 𝑀ID to obtain
an identity embedding for both the reference image and inpainted image. The concept of this
identity loss function is used in several works [52, 113, 114], each which have different reasons
for their choice of model 𝑀ID. In this section, we will discuss which face recognition model
𝑀ID we use in our work, and why we consider it the best fit for our purpose. Moreover, we
quantitatively evaluate the performance of each pretrained model on a subset of our test set
(Section 4.1).
Face recognition has been a long‐standing tasks which has been widely explored over the

years. Many state‐of‐the‐art face recognition models use deep neural networks as a back‐
bone such as VGGNet [160], GoogleNet [87] or ResNet [58]. These models are trained with
images from massive datasets that are fed to the network to obtain a complex face represen‐
tation. The resulting representations are then compared through a distance measure, which
most commonly are the L2 distance or cosine distance.
To pick a suitable face recognition model for our application, we reviewed several available

models. In our case, we assume that the reference image may be captured in a different en‐
vironment than our source image. Therefore, we require our model to be invariant to facial
properties such as expression, illumination and pose. Moreover, we seek a model that requires
little to no preprocessing. This is in view of the fact that any preprocessing steps would add
additional constraints and computational steps regarding the input of our framework. Further‐
more, we look for a model that performs well on our synthesized data as well as real‐world
data. Since, we want to minimize the required training time while retaining the model’s ability
to extract meaningful real‐world face representations. The latter is particularly important if the
synthetically trained model is fine‐tuned with real‐world data at a later point.
Based on the aforementioned considerations, we select twomodel candidates: 1) ResNet50

[58] trained on the VGGFace2 dataset [53], and 2) FaceNet [57] trained on the MS‐Celeb‐1M
[54] dataset. The VGGFace2 [53] dataset is a large‐scale face dataset containing 3.31 mil‐
lion images of 9131 subjects. Each of these images has large variations in pose, illumination
and expression, as well as ethnicity and profession. Trained on this data, it has been demon‐
strated that ResNet50 achieves state‐of‐the‐art performance on evaluation benchmarks. The
MS‐Celeb‐1M [54] dataset consists of 10 million face images of 100,000 subjects, sourced
from the public internet. Trained on this dataset, the face identity embedding network FaceNet
similarly obtains state‐of‐the‐art performance on several evaluation benchmarks. One major
drawback regarding the usage of the FaceNet network compared to the ResNet50 network
trained on VGGFace2 is the requirement of spatially‐aligned images based on facial landmarks.
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Figure 3.4: Rank‐𝑁 accuracy results for frontal face images versus several variations: random pose (±30∘ for 𝑝𝑝𝑖𝑡𝑐ℎ,
𝑝𝑦𝑎𝑤 and 𝑝𝑟𝑜𝑙𝑙), random directional light (while at eye‐level, moved randomly by ±100 centimeters in left and right
direction), random expressions, and random ambient light between 80 and 120.

Validation of application
To validate the applicability of the chosen pretrained model on images from our dataset, we
conduct a small experiment. On a dataset containing 3000 RGB face images with a random
identity, we measure the model’s ability to retrieve identity features when comparing feature
vectors extracted from images under different conditions.
In this experiment, we performed a pairwise search between the images with frontal faces

and images with one of the following transformations:

• Random expression

• Random pose 𝑝: 𝑝pitch, 𝑝yaw and 𝑝roll in range [−30∘, 30∘]

• Randomdirectional light: at eye‐level, moved leftor right by distance in range [−100 cm, +100 cm]

• Random ambient illumination 𝑎: in range [80, 110]

This dataset was generated based on the parametric 3DMM model, using the pipeline de‐
scribed in Chapter 4.1.
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Based on the embeddings generated by the identity model𝑀ID, we performed an approxi‐
mate nearest neighbor search using the annoy¹ Python library. The ranking results of the pair‐
wise searches are shown in Figure 3.4. Weobserve that the pretrainedResNet50 identitymodel
shows excellent performance when comparing the frontal view images and random poses. In‐
terestingly however, the performance of the identity model in case of the matching of faces
with random illumination is significantly worse. We hypothesize that this is a result of the harsh
shadows that are cast by the directional illumination. The impact of this shortcoming can be
minimized by requiring the captured subject to be situated in a well‐lit environment.
We observe similar results in terms of the robustness of the pretrained FaceNet identity

model with respect to expression and ambient illumination. However, looking at the result plot
in regards to random pose variation, we note a significantly worse performance of FaceNet
compared to the ResNet50model. In contrast, the FaceNetmodel achieves a remarkably higher
performance when it comes to directional illumination.
These results provide important insights into the application of a face identitymodel trained

on real‐world datasets to our synthesized dataset. Bearing our target application in mind, we
deem robustness against pose to be more important than robustness against directional illumi‐
nation. Moreover, the ResNet50 model has the clear advantage of not requiring any processing
steps prior to the inference step of this model. In addition, the ResNet50 model has a shorter
inference time: FaceNet processes 15 images per second, whereas ResNet50 processes 60
images per second. Based on these considerations, we opt for the usage of the pretrained
ResNet50 model in our framework.

3.3. Fusion of color and depth information
The goal of image inpainting is to fill in a missing image region in such a way that it is unde‐
tectable to a human observer. GAN‐based approaches build on the concept of convolutional
neural networks (CNN) that capture image features at several levels. As discussed in 2.2.2,
shallow convolutional layers capture low‐level visual and spatial features, whereas deep con‐
volutional layers capture semantic features. The base framework that we build on consists of
a CNN that follows an autoencoder structure, which conceptually functions as follows. Firstly,
the encoder transforms themodel input from image space into a high‐level latent feature space.
In turn, the decoder uses this feature representation to produce a completed image.
The learning process of our model is designed to learn to construct feature representa‐

tions that not only capture the low‐level visual information, but also the semantics of the visual
structures. To successfully complete an image, these representations need to capture the con‐
textual content of the image, as well as define a plausible hypothesis for the missing region
[104]. Accordingly, feature representation learning lies at the core of completing the task of
image inpainting with CNNs. Therefore, it is crucial to design our image inpainting framework
and its respective training process in such away that it is able to learn a semantically meaningful
joint feature representation for RGB‐D images.
Consider an RGB‐D image of a human face, as pictured in Figure 3.5. When taking a closer

look at the RGB color image and the depth image, we observe that they are both full of charac‐

¹https://github.com/spotify/annoy/

https://github.com/spotify/annoy/
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RGB Depth

Figure 3.5: RGB color image and depth image generated by our synthesization pipeline presented in Section 4.1.

teristic information. From a human perspective, we can identify several facial features by their
appearance and visual structure in the color image, such as the eyes, nose, and mouth. On the
other hand, we recognize similar regions in the corresponding depth image, but in a different
way. Aside from the visibility of a few facial features, the primary type of information conveyed
by the depth image is the shape of the face. For instance, we intuitively observe the relatively
large extrusion of the nose and shallow chin area. However, visual texture information of high‐
frequency components such as the eyebrows, lips and eyes are not represented in the depth
image.

Based on these observations, it is clear that both modalities contain information that is
partially related, but each are comprised of different characteristics and statistical properties.
In other words, each modality contains information that is unique to itself and that cannot be
directly derived from information from the other modality. While it may be reasonably straight‐
forward for humans to discover the partial relations between the color and depth modality, it
is a major challenge for a CNN‐based network to achieve a similar level of understanding.

This brings us to the question of how we should capture the features of each modality, and
at what point they should be combined. In Section 2.5, we discussed several approaches to
multimodal feature understanding. In general, combining features can be achieved at several
points in a network through early fusion, intermediate fusion, or late fusion. Feature fusion
between color and depth has been widely explored in the fields of object detection and image
segmentation, in which the multimodal RGB‐D data contributes to robustness and accuracy.
In our work, we discover how feature fusion can be applied to the task of joint RGB‐D image
inpainting. In this section, we briefly explain each strategy and discuss the design of our ar‐
chitecture in combination with two fusion types: data‐level fusion and hybrid fusion. Whereas
data‐level fusion involves the concatenation of both modalities at the input of each stage, hy‐
brid fusion combines this with feature‐level fusion in the coarse stage of the architecture. The
rest of this section is organized as follows: in Section 3.3.1, we explain and discuss the concept
and effects of data‐level fusion. In Section 3.3.2, we explain and discuss the notion of hybrid fu‐
sion. Moreover, we describe the employment of a number of proposed candidate feature‐level
fusion strategies within the concept of hybrid fusion.
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Figure 3.6: Overview of the RGB‐D image inpainting architecture with data‐level fusion.

3.3.1. Data‐level fusion
Data‐level fusion, also known as early fusion, refers to a feature fusion strategy that involves
the combination of multiple sources of unimodal data at the input level of the network. In the
case of an RGB color image and a corresponding depth image, this involves the concatenation
of their combined image channels. Considering we may assume these two images are spatially
aligned, this operation does not have to rely on any preprocessing or prior feature extraction
steps. This makes the naive strategy of data‐level fusion a tempting approach.
The fact that data‐level fusion allows the joint capture of all image channels has advantages.

The main advantage of data‐level fusion is that it allows the network to truly capture the mul‐
timodal nature of the concatenated input data. Considering the spatial consistency between
the color channels and the depth channel of the RGB‐D images, the network is able to learn
features that aim to capture both modalities jointly. Consequently, data‐level fusion has the
potential to exploit the strong relation between the color and depth image.
However, data‐level fusion also has its disadvantages. Firstly, the color and depth images

have different characteristics as well as different statistical properties. In turn, it may be a
challenge to reliably constructmeaningful joint features. For example, while features consistent
across the two modalities will be prioritized, features that occur solely in the depth modality
may be overlooked. Meaningful joint features construction becomes even more difficult when
there exists noise or missing data in either modalities, which is commonly the case for current
commodity RGB‐D sensors [26, 27].
We want to investigate the effects of early data‐level fusion for joint inpainting of RGB‐D

data. As such, we define a framework that combines the color image and depth image through
early data‐level fusion. This involves the concatenation at the network input level, as shown in
Figure 3.6. Consequently, the input layer of the network receives one additional image channel.
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Figure 3.7: Comparative results color images, depth images and surface normal images, generated by modality‐
specific RGB and depth image inpainting models and our data‐level fusion model.

Early evaluation of data‐level fusion
We consider data‐level fusion as the initial and most straightforward attempt of multimodal
feature learning. This simplicity stems from the fact that a single model is used to learn the
relation between the statistical properties of the raw color and depth image data. Throughout
the training process, the joint representation of all image channels is learned and converted to
a joint high‐dimensional feature space.
We discuss the evaluation of this fusion strategy extensively in Chapter 4. However, to mo‐

tivate the steps undertaken in the rest of this chapter, we will briefly touch upon the qualitative
performance of data‐level fusion through a visual examination.
In Figure 3.7, we provide a comparison between the data‐level fusion model described

above and two models that have been individually trained for RGB color image inpainting and
depth image inpainting. We would like to emphasize that the RGB and depth output of the
modality‐specific models come from two independent models that have no knowledge of each
other. An estimated surface normal image is shown in addition, which demonstrates the con‐
tinuity and smoothness of the depth channel. More information on the estimation of surface
normal images can be found in Section 3.4.1. The dataset that was used for this experiment
was synthetically generated, of which the process is described in Section 4.1.
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The goal of this experiment is not to evaluate whether the inpainted faces look exactly like
their respective ground truth image, but to evaluate the visual quality of the inpainted results.
On first glance, it is clear that the RGB and depth images lie far from the ground truth images.
This is largely due to the fact that none of the models use our proposed identity loss function,
as this loss function cannot be used for depth image inpainting models.
The inpainted results in Figure 3.7 contain a significant amount of noise, and facial fea‐

tures often do not appear to be symmetric. Turning to the depth images and their alternative
representations as estimated surface normal images, it becomes clear that the resulting depth
images inpainted by the data‐level fusion model contain a significant amount of noise. This is
especially apparent in the surface normal images, which signifies that the surfaces formed by
the depth values are irregular and noisy.
Nevertheless, it is interesting to observe the reasonable visual quality of the results of data‐

level fusion when keeping in mind that no specific steps were carried out to stimulate the con‐
struction of complementary features. However, there is ample space for improvement of the
jointly trained model with respect to the modality‐specific models.

3.3.2. Combining fusion methods: hybrid fusion
In this section, we propose an alternative fusion method, which we refer to as hybrid fusion. In
our visual evaluation of the usage of a data‐level fusion technique through the concatenation
of the color and depth image, we observed that the depth channel is not accurately repro‐
duced (Figure 3.7). We hypothesize that the cause of this is the feature learning process of
data‐level fusion, which obstructs the network in the construction of features that are both
modality‐specific and shared among the two modalities. Specifically, as the RGB‐D data is fed
to the network in a joint manner, there is no mechanism or operation that is explicitly aimed at
combining the knowledge of the statistical properties of the RGB and depth modality.
Our objective is to improve the feature obstruction process while retaining the merits of

data‐level fusion. It is for this reason we propose hybrid fusion. This fusion strategy leverages
the fact that our framework consists of two stages: a coarse stage and a refinement stage (Fig‐
ure 3.6). In the coarse stage, we replace the single‐stream encoder‐decoder structure with a
modality‐specific dual‐branch encoder‐decoder structure. Moreover, to facilitate the construc‐
tion of complementary features, we add feature‐level fusion in the coarse stage of the archi‐
tecture. We experiment with several types of feature‐level fusion at several network depths.
As such, the refinement stage of our hybrid fusion architecture remains unchanged.
We refer to this fusion method as hybrid fusion, because it uses two different types of fu‐

sion within a single architecture. In the first stage of network we perform feature‐level fusion,
whereas we perform data‐level fusion at the start of the second stage.
The intuitive reasoning for the modality‐specific coarse stage is to provide the refinement

stage of the architecture with a multimodal statistical prior of the color and depth channels of
the missing region. In turn, the refinement stage of the architecture is able to further refine the
relation between the color and depth modality, building on the coarse prediction.
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We explore several types of feature‐level fusion in the coarse stage. In particular, we con‐
sider fusion through fusion through summation [140], single‐path residual fusion and multi‐path
residual fusion.

Fusion through summation
In this section, we define the feature‐level fusion of the coarse stage as fusion through summa‐
tion. This fusion strategy is commonly used in deep architectures, such as FuseNet [140], which
is aimed at semantic segmentation of RGB‐D images. The FuseNet architecture employs two
encoder branches, for RGB and depth information. These branches each receive input of their
respective type, and construct modality‐specific features. Features from the depth branch are
fused with features in the RGB branch through a fusion layer. Given color features and depth
features, the fusion layer performs element‐wise summation, of which the result is divided by
two. The resulting features are fed to an RGB‐D decoder, which produces a semantic segmen‐
tation map.
In the evaluation of FuseNet, it was found that the segmentation accuracy improveswith the

increase of the amount of fusion layers used in the encoders. Hazirbas et al. [140] theorize that
the first layers of the encoders benefit from fusion the most, as depth information can provide
complimentary information to low‐level feature construction, such as edges and corners.
We take inspiration from this fusion strategy, and aim to investigate whether fusion through

summation can benefit the joint feature construction of RGB‐D images, to ultimately improve
the visual quality of the inpainting result of our architecture. We define fusion function 𝐹sum
as follows:

𝐹sum(𝒳𝑐𝑜𝑙𝑜𝑟 , 𝒳𝑑𝑒𝑝𝑡ℎ) =
(𝒳𝑐𝑜𝑙𝑜𝑟 +𝒳𝑑𝑒𝑝𝑡ℎ)

2 (3.3)

Where 𝒳𝑐𝑜𝑙𝑜𝑟 and 𝒳𝑑𝑒𝑝𝑡ℎ are activations with equal dimensions, which represent the fea‐
tures and gates from the color and depth branch respectively. Thus, this operation adds both
the feature values and gating values of both modalities.
Moreover, we add batch normalization (BN) to every non‐output convolutional layer, before

non‐linear activation. As outlined by Hazirbas et al. [140], the scale and shift parameters of BN
layers learn to combine the color and depth features in the optimal way and aim to prevent
features from being overwritten by features from the other modality. A downside of employing
BN is the possibility of increased noise in the inpainted output of the model, as found by Yu
et al. [40].
We explore the positioning of the fusion layers through the coarse stage of the architecture.

The positions of fusion layer is shown in Figure 3.8, of which the effects will be elaborated on
in Chapter 4.

Residual fusion
Residual learning was first proposed alongside the introduction of the ResNet architecture by
He et al. [58]. The ResNet architecture consists of modular building blocks referred to as resid‐
ual units that contain a pair of convolutional blocks and a skip connection. Skip connections
enable deeper architectures, which commonly enable more accurate results in various com‐
puter vision tasks.
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Figure 3.8: Overview of our RGB‐D image inpainting architecture with fusion through summation. Three candidate
fusion locations throughout the network are marked with numbers.

Aside from the aforementioned benefits, skip connections also find an interesting use case
in multimodal feature fusion [47, 132, 133]. Skip connections help to exploit the complemen‐
tary characteristics of color and depth images. Specifically, they provide an alternative path
through the residual unit, allowing multimodal feature enrichment, while retaining meaningful
modality‐specific features. Fujii et al. [47] outlined a form of residual fusion for joint RGB‐D
image inpainting, where the generator consists of nine intermediate residual units, surrounded
by modality‐specific encoders and decoders. As the authors do not provide any evaluation or
source code of their work, the performance of this approach is unclear at this moment. We
take inspiration from this approach and the field of semantic scene segmentation, and discover
applications of residual fusion in our hybrid fusion framework. In this section, we propose two
forms of residual fusion, built with two types of residual units: single‐path residual units and
multi‐path residual units. The modular residual fusion module consists of several of such resid‐
ual units and receives its input from a color‐ and depth‐specific encoder ofwhich the activations
are combined with the unit input in additive fashion. While a concatenative skip connection
could possibly improve the feature reusability and, ultimately, feature quality, this would add
too many network parameters for the GPU memory that is available to us. The position of the
residual block with respect to the rest of the architecture is shown in Figure 3.11.
Having defined the residual fusionmodule, we now turn to the definitions of the single‐path

residual unit and multi‐path residual unit. As our base framework uses dilated gated convolu‐
tion, we define the 𝑟‐dilated gated residual unit, which uses gated convolution with dilation
rate 𝑟 (Figure 3.9). Each residual unit contains two dilated gated convolution operations in‐
cluding activation: the sigmoid function for the gating values and the ReLU function for the
features. Before the first residual unit, the features of the depth and color branch are summed
in element‐wise fashion. As the resulting features are fed into the unit, 𝑟‐dilated gated convo‐
lution is performed twice, after which they are summed with the original input. Before they are
fed back, the features pass through a ReLU activation function once again. As the input, output
and skip connection paths of this module are singular, we refer to this module as single‐path
residual fusion.
The single‐path residual fusion module combines the features from the color and depth en‐

coder branches through addition. Consequently, the feature sets are refined in a unified fash‐
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Figure 3.9: Single‐path gated 𝑟‐dilated residual unit,
where 𝑟 represents the dilation rate. As ReLU activa‐
tion is included in gated convolution, we do not visual‐
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Figure 3.10: Multi‐path gated 𝑟‐dilated residual unit,
where 𝑟 represents the dilation rate. As ReLU activa‐
tion is included in gated convolution, we do not visual‐
ize intermediate activation.

ion, after which they are fed back to the color and depth decoder branches. While this stim‐
ulates joint feature construction, we expect that some modality‐specific features may be sac‐
rificed as a result of the addition operation at the start of the module. For this reason, we
investigate a different variation of the module, which consists of multi‐path residual units. As
their name suggests, we define multi‐path residual units to have two modality‐specific inputs,
outputs and skip connections, as shown in Figure 3.10. As the color and depth features are fed
into this unit, they are summed in element‐wise fashion. Following this, 𝑟‐dilated gated convo‐
lution is performed twice, of which the resulting features are summed element‐wise with the
features of the two modality‐specific skip connections. Finally, each of the resulting features
go through a ReLU activation function before they continue their journey through the network.
We hypothesize that the addition of modality‐specific skip connections improves the retention
of modality‐specific features in multi‐path residual units compared to single‐path residual units.
The single‐path residual fusion module and the multi‐path residual fusion module both con‐

tain either four or six residual units of their respective type. We denote single‐path and multi‐
path by SP and MP, respectively, followed by the number of residual blocks used in the coarse
stage (e.g., Residual‐SP4). These modules replace an equal amount of 𝑟‐dilated gated convo‐
lution layers in both the color and depth branch. The rate 𝑟 of each residual unit equals the
dilation rate of the convolutional layer it replaces. We evaluate the effects of single‐path ver‐
sus multi‐path residual fusion and the amount of employed residual units in Chapter 4.

3.4. Surface interpretation
In the previous section, we discussed several feature fusion strategies to improve the meaning‐
fulness of feature representations in our framework. While doing so, we noticed that this did
not significantly decrease the amount of depth noise that is visible in the output images of the
network. Furthermore, we note that while the resulting color image has a near seamless con‐
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Figure 3.11: Overview of our RGB‐D image inpainting architecture with residual fusion. The residual fusion module
contains either four or six residual units. In case of single‐path residual fusion, the module contains single‐path
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nection with the known region of the color image, the corresponding depth image often does
not. In this section, we focus on the definition of an additional representation of the depth
channel which could contribute to the quality of reproduction of depth values.
In the context of depth reproduction, the framework currently focuses on the pixel‐wise

reconstruction of the absolute values in the depth channel of the incomplete RGB‐D image.
During the training process, the network is taught to reconstruct the depth channel in a pixel‐
wisemanner through the L1 reconstruction loss, as described in Section 3.1. Notably, the depth
modality is solely represented by this depth image, which contains the absolute distance from
the face to the sensor on pixel level. To this end, the network does not have a mechanism
to attend to the reproduction of the depth values as a surface. The continuity of the surface
inferred by the network is therefore largely left unconsidered. In addressing this problem, we
draw inspiration from several works [45, 46, 59–61] that utilize surface normal representations
for the generation and inpainting of depth images. We address this by making several additions
throughout the network that provide an improved depth value continuity along the surface of
the represented faces. In this section, we discuss these changes, which involve an alternative
depth representation, with a corresponding surface normal loss, a surface contextual attention
module, and a surface normal discriminator.

3.4.1. Surface normal representation
Zhang and Funkhouser [45] introduced a method to fill in the missing regions in the depth
channel of otherwise complete RGB‐D images. The paper’s approach describes the training
of a network to predict local properties of the visible surface at each pixel, which in turn are
used to resolve the absolute depth values. These local properties consist of surface normals
and occlusion boundaries. The evaluation of this method showed that these intermediate rep‐
resentations contribute to improved performance in the tasks of depth inpainting. Inspired by
this work, Matias et al. [46] used estimated surface normals for the purpose of object removal
in depth images. The authors based their surface estimation method on the work of Nakagawa
et al. [61], which describes the estimation of surface normals based on depth image gradients.
The concept of this method is to estimate the normal vectors of each pixel by analyzing their
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Figure 3.12: Sample with separate visualizations of RGB channels, depth channel and corresponding estimated
surface normal (SN) image.

neighborhood depth values, which in turn can be defined through several convolutional oper‐
ations. We use this relative depth representation in our framework to encourage the accurate
representation of the surface represented in RGB‐D images.
To obtain the surface normal image, we calculate the depth image gradient for each pixel

𝑝𝑖,𝑗 , in the 𝑥 and 𝑦 direction. The direction of the gradient indicates the 𝑥 and 𝑦 components of
the normal vector, whereas the magnitude of the gradient estimates the 𝑧 component of the
normal vector. Based on this, orthogonal vectors 𝑣Δ⃗𝑖 and 𝑣Δ⃗𝑗 are defined for the 𝑥‐direction
and 𝑦‐direction respectively. To arrive at the surface normal image, we take the cross product
between these two orthogonal vectors for each pixel 𝑝𝑖,𝑗. In turn, the resulting 𝑥, 𝑦 and 𝑧 values
can be visualized in the form of an RGB image. See Equation 3.4 for the corresponding equation
as it was outlined byMatias et al. [46] andNakagawa et al. [61]. An example of a created surface
normal image based on a sample from our dataset can be seen in Figure 3.12.

𝑝Δ𝑖 =
𝑝𝑖+1,𝑗 − 𝑝𝑖−1,𝑗

2
𝑝Δ𝑗 =

𝑝𝑖,𝑗+1 − 𝑝𝑖,𝑗−1
2

𝑣Δ⃗𝑖 = (1.0, 0.0, 𝑝Δ𝑖)
𝑣Δ⃗𝑗 = (0.0, 1.0, 𝑝Δ𝑗)
�⃗� = 𝑣Δ⃗𝑖 × 𝑣Δ⃗𝑗

�⃗� = �⃗�
||�⃗�||

(3.4)

Based on this alternative depth representation, we make several additions to our architec‐
ture. These will be elaborated on in the following subsections.

3.4.2. Surface normal loss
Asmentioned throughout this chapter, we are facedwith a unique challenge that consists of the
joint completion of two spatially‐aligned images of differing modalities. The objective function
of the base framework consists of the SN‐PatchGAN loss and L1 reconstruction loss. These
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Figure 3.13: Visualization of Surface normal error [46] between a pixel’s normal vector as generated (red) and its
ground truth (green). The concept of this image was reproduced from Matias et al. [46].

two loss functions are jointly used: the SN‐PatchGAN loss focuses on the channel‐wise repro‐
duction of the images in a different location, whereas the L1 reconstruction loss measures the
pixel‐wise reconstruction loss.
In this section, we will discuss an additional loss function that encourages the reproduction

of surfaces contained in the depth channel. This loss is based on surface normal image estima‐
tion and was introduced as the vectorial loss function by Matias et al. [46]. The depth image
gradients used for surface normal estimation can be obtained with a collection of convolutional
operations.
The loss function bears high similarity with the L1 reconstruction loss from the base frame‐

work, and its concept is straightforward. During training, we calculate the surface normal image
of both the inpainted and the corresponding ground truth image. To obtain surface normal loss
ℒSN, we calculate the L1 distance between these two images. In this way, for each pixel, the
error between the ground truth normal vector and the normal vector as inpainted contributes
to the loss value.
Based on this additional loss function, we hypothesize that the network is stimulated to

reproduce the represented surfaces accurately, without affecting the previouslymentioned loss
functions that are already used by the network.

3.4.3. Contextual surface attention
Aside from the addition of the surface normal loss function, we make an additional change to
the base framework based on the work of Matias et al. [46]. The base framework discussed
in 3.1 contains a dedicated branch in the refinement stage of the architecture to capture the
long‐rage spatial dependencies within the image. This branch contains a contextual attention
module [40], which enables the extraction of information originating from any spatial location
in the image. This module starts with the extraction of 3 × 3 patches from the known region
(background) as well as the unknown region (foreground) of the image. Background patches
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Figure 3.14: Overview of our RGB‐D image inpainting architecturewith contextual surface attention and the surface
normal discriminator.

𝑏𝑥′ ,𝑦′ and foreground patches 𝑓𝑥,𝑦 are matched based on their cosine similarity. As shown in
Figure 3.6, we currently pass the RGB‐D images to the contextual attention of the network,
which looks for similar patches based on similarities across both the depth and color modality
that these four channels represent.
Without any modification to the contextual attention module of the base framework, the

module considers absolute depth values in its matching procedure. What it does not consider
is the relative difference between the pixels, which together form a surface. To improve this,
we pass a surface normal image to the contextual attention branch in addition to the RGB‐D
channels as proposed byMatias et al. [46]. As such, this addition does not make any procedural
changes to the contextual attention module itself. We hypothesize that this will improve the
contextual attention module’s ability to identify patches that are of similar geometric structure.
Based on the success of this approach by Matias et al. [46], in which case this was applied to
object removal from depth images, we expect this modification to produce inpainting results of
higher quality.

3.4.4. Surface normal discriminator

With the introduction of the surface normal loss and contextual surface attention module pre‐
sented in the previous sections, we stimulate the network to construct a model that not only
attends the raw depth values of the depth image, but also considers the surface that it collec‐
tively forms. To complete the circle of the usage of estimated surface models in our framework,
we introduce a modification to the existing SN‐PatchGAN discriminator.
Referring back to Section 3.1, we note that the SN‐PatchGAN discriminator actively attends

the semantics of the inpainted results. Taking an image with a corresponding mask indicating
the missing region as its input, this discriminator calculates a three‐dimensional feature map
which represents different spatial locations and image channels. In turn, the SN‐PatchGAN
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loss is calculated for each element of this feature map.
We adapt this process by additionally feeding the estimated three‐channel surface normal

image to the discriminator. By concatenating the input image with its estimated surface normal
image, we give the discriminator direct insight into the complete surface of the respective RGB‐
D image. We increase the feature depth of the discriminator by 50% to accommodate features
that are introduced by the additional input channels, as shown in Figure 3.14. While this intu‐
itive addition could also negatively affect the existing performance of the SN‐PatchGAN, we
theorize that this change could have a significant impact on the local and global consistency of
the inpainted result of the depth image.



4
Results

In this chapter, we qualitatively and quantitatively evaluate our framework and its components,
as they were proposed in Chapter 3. We consider the choice of the right evaluation metric for
drawing sound conclusions to be equally impactful to the design of a method for a given appli‐
cation [82]. With this in mind, we carefully choose the strategy and metrics for the evaluation
of our joint RGB‐D image inpainting framework in view of its intended target task of HMD
removal.

Research Objective 1 Define an architecture that is capable of virtually removing the HMD from
the wearer’s face in RGB‐D images.

We recall our main research objective as introduced in Chapter 1 above. As discussed in
Chapter 2, to the best of our knowledge, a method that targets the joint inpainting of RGB‐D
face images does not currently exist. Throughout this thesis, we have taken an exploratory
approach to fulfilling our primary research objective. In Chapter 3, our exploration was guided
by a number of sub‐objectives. Similarly, we structure our evaluation based on these individual
research sub‐objectives. As such, in this chapter, we evaluate each solution proposed in Chap‐
ter 3, qualitatively and quantitatively, with respect to its objective. We recall these research
sub‐objectives as they were defined in Chapter 1:

Research Objective 1.1 Define a module and loss function that stimulates the preservation of the
identity features of the wearer’s face.

Research Objective 1.2 Define an architecture that is capable of handling the multimodal charac‐
teristics of RGB‐D images.

Research Objective 1.3 Define an architecture that stimulates the creation of smooth geometric
surfaces.

As mentioned in Section 2.3.1, a quantitative evaluation metric that properly evaluates the
quality of generated images does not exist. This fact has motivated our choice of quantitative
evaluation metrics, as well as an elaborate visual examination to provide qualitative insights.

53
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At the end of this chapter, we aim to have provided extensive insights on which approaches
satisfy our research objectives, and which do not. Moreover, based on the gathered findings,
we determine which framework configuration forms the best solution for our main research
objective, which involves HMD removal through joint RGB‐D image inpainting. We train and
evaluate the model configurations with our synthesized dataset, in accordance with the objec‐
tive:

Research Objective 2 In absence of a large‐scale RGB‐D face dataset, create a suitable dataset
that is sufficiently sized.

We start this chapter by introducing the dataset we use for the training and inference pro‐
cedure of all network configurations in Section 4.1. This is followed by an outline of the imple‐
mentation details of the framework in Section 4.2. Section 4.3 presents the qualitative results
and a corresponding analysis through visual examination. Finally, Section 4.4 provides an out‐
line of the used objective metrics, followed by the results and a corresponding analysis.

4.1. Dataset
In this section, in accordance with Objective 2, we introduce the dataset used in our work
and explain the process of its creation. During the adversarial training process of a GAN, the
generator 𝐺 implicitly learns the data distribution 𝑝𝑥 through the training data 𝑥 observed by
the discriminator 𝐷. Relying on training data 𝑥, the learning process of a GAN thrives from a
sufficiently large and diverse training set to uniquely identify its true distribution [161]. Bearing
in mind the wide range of facial shapes and appearances in the world, we require a dataset that
contains a large number of unique face images with high variability in appearance among them.
While datasets of RGB images of faces are widely available [52, 53], the same cannot be

said regarding the availability of RGB‐D image datasets. In Section 2.6, we reviewed a rep‐
resentative set of RGB‐D face image datasets that are publicly available. Having evaluated
the number of identities and images present in these datasets, we concluded that the sizes of
RGB‐D datasets are insufficient to train a GAN at this time.
Based on the absence of a suitable dataset, we faced the challenge of obtaining a satis‐

factory amount of data. As it is costly and time‐consuming to gather the RGB‐D captures of
thousands of people, we adopted a different strategy. We created an image synthesis method
based on the 3DMM parametric space [63] of the Basel Face Model [62, 162]. This model con‐
sists of a statistical shape, texture and expression model, enabling the generation of 3Dmeshes
of faces with high variability in shape, color, and expression. The shape and texture spaces of
this model have been defined based on face scans of 100 female and 100 male subjects, the
majority of European origin. While this approach allows us to generate a large amount of faces
with unique identities, it introduces a number of limitations with respect to model bias and
generalization, which is discussed in Chapter 5.
We use our defined synthesization pipeline to create our dataset. Shown in Figure 4.1, the

pipeline starts by taking a random sample across the independent shape, texture, and expres‐
sion parameters. Following this, relative to the resulting mesh, we place a predefined mesh
of an HMD representing the true dimensions of an Oculus Rift [163]. We align the HMD by
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Figure 4.1: Steps of our data synthesization pipeline. 𝑆 and 𝑇 denote the resulting shape and texture vector respec‐
tively, of which each element is in spatial correspondence.

offsetting the position of the face based on predefined keypoints on the face and the HMD.
These keypoints mark the locations of the eyes and the lenses of the HMD. We deem it most
practical to use the HMD as a center point for alignment in both synthetic and real‐world appli‐
cations, as it is easiest to track the position of the HMD because of its consistent appearance
and the potential use of fiducial markers [164]. Moreover, data of sensors such as gyroscopes,
accelerometers, and magnetometers, that some HMDs provide can also be useful for this pur‐
pose.
Next, the compound mesh is placed in world space, at distance 𝑐𝑑 from the camera posi‐

tion. Unless otherwise specified, the value we use for 𝑐𝑑 is 850 millimeters. As such, the face
wearing the HMD is located 850 millimeters, or 85 centimeters, from the sensor. While the
exact distance typically depends on the hardware setup and position of the users, this defined
distance forms a realistic estimate.
A benefit of data synthesization is that we are in full control of all conditions regarding

image rendering. From the camera’s perspective, the resulting mesh is rendered based on
a set of transformations: pose 𝑝 with properties 𝑝𝑝𝑖𝑡𝑐ℎ, 𝑝𝑦𝑎𝑤 and 𝑝𝑟𝑜𝑙𝑙 , ambient illumination
𝑎 with property 𝑎𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 and directional illumination 𝑑 with property 𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 and intensity
𝑑𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦. We refer to Figure 4.2 for examples of these transformations.
Finally, a simple ray tracing algorithm is responsible for rendering the RGB color image as

well as a corresponding depth image. Effectively, we render three images of size 256 × 256
pixels: a color image of the face without HMD, depth image of the face without HMD, and
binary image of solely the HMD, which indicates the occluded region as caused by the HMD.
We jointly encode the color image and depth image of the face in the four channels of a

single file. We opt for a depth resolution of 1 mm per pixel, for which our reason is two‐fold.
Firstly, the approximate resolution of the Microsoft Kinect is 1.3mm per pixel [165], which is
one of the most widely‐used commodity RGB‐D sensors currently available. Secondly, this
choice allows us to encode the depth image in the alpha channel of an 8‐bit PNG file.
Wemanage to achieve the latter by subtracting the scalar 𝑐𝑑 from the inverted depth image,

which accordingly enables the depth values to fit in the 8‐bit alpha channel. This is a conse‐
quence of the fact that faces will never realistically have a depth that exceeds 256 millimeters.
Besides the compactness of this representation, the alpha channel serves as a simple way of
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Figure 4.2: Examples of individual transformations, from left to right: frontal with full ambient illumination, pose,
directional light, ambient light, and expression.

visualizing the depth values of the image. To recover the original values, one can simply invert
the depth channel and add scalar 𝑐𝑑. We have made the Python/C++ implementation of the
RGB‐D rendering segment of this pipeline publicly available as mesh2rgbd¹, which is based on
the face3d² package by Yao Feng.
Using the defined pipeline, we can generate any number of face identities of highly variable

appearance and expression as well as their corresponding RGB‐D images. It should be noted
that identities generated through thismethod form a relatively small subset of the facial appear‐
ances that are present in the world. Moreover, our synthesization technique generates perfect
data, whereas current depth sensors may contain a significant amount of noise. Nonetheless,
at this moment, this pipeline provides the best way of generating a high number of faces for
RGB‐D image synthesis. We elaborate on the limitations of our complete framework in Chapter
5.
We construct our dataset using the pipeline described above. This dataset consists of a

total of 40000 RGB‐D images, each of which contain a face with a unique identity. For the
training and evaluation of our framework, we split our dataset in three: 40000, 4000, 4000,
into a training set, validation set, and testing set, respectively. For intermediate and precise
evaluation of our framework, we have created several versions of this dataset with step‐wise or
random values for the following properties: random expression, random ambient illumination,
random directional illumination, random pose, and combinations among these properties. We
refer to our final dataset as 3DMM‐RGBD‐40k, which consist of faceswith the following random
properties and transformations:

• Random expression

• Random pose 𝑝: with 𝑝𝑝𝑖𝑡𝑐ℎ and 𝑝𝑦𝑎𝑤 in range [−30∘, 30∘] and 𝑝𝑟𝑜𝑙𝑙 in range [−20∘, 20∘]

• Random ambient illumination 𝑎: with 𝑎𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 in range [80, 110]

In regard to the range of head poses, we base our decision on the work by Bartlett et al.
[166], who measured the head poses of participants in an interview setting and found that the
values of the three pose axes lie within the specified ranges above. Moreover, we limit the
roll axis to the range of [−20∘, 20∘], as this range forms the upper bound of roll angles that the
¹https://github.com/nsalminen/mesh2rgbd
²https://github.com/YadiraF/face3d

https://github.com/YadiraF
https://github.com/nsalminen/mesh2rgbd
https://github.com/YadiraF/face3d
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humanhead is capable of [167]. Whereas the relative head pose depends on the sensor position
in a real‐world situation, we assume that the subject is directly facing the RGB‐D sensor in our
synthesis.
While our pipeline supports RGB‐D image renderingwith directional illumination, we choose

not to include this transformation in our evaluation datasets at this time. The reason for this
decision is based on the results of the validation of pretrained face recognition models from
Section 3.2.

4.2. Implementation
Our framework has been implemented in Tensorflow [168], based on the source code by Yu
et al. [41]. Training of our models has been performed on two NVIDIA GeForce RTX 2080
Ti GPUs. This process typically takes up around 2.5 days, but is continued until convergence
of the losses and stabilization of the visual quality of the validation results. For training, we
use a learning rate of 0.0001 for both the generator and discriminator. Moreover, through
hyperparameter tuning based on a combination of visual examination and objective metrics,
we have determined the default hyperparameter balance of 3:1:1:1, for the reconstruction loss,
SN‐PatchGAN loss, identity loss and surface normal loss respectively.
The models have been trained and evaluated with datasets containing images of size 224×

224, which have been resized from their original size of 256 × 256. We have opted for this
change to be able to train with larger batch sizes, while staying within the memory bounds of
theGPUs. At inferencewith a singleNVIDIAGeForce RTX2080 Ti, the data‐level fusionmodels
achieve an average frame rate of 48 frames per second, whereas hybrid fusion models achieve
an average frame rate of 41 frames per second. While our method currently does not leverage
any temporal modality and further research is needed, the performance of the configurations
theoretically permit real‐time RGB‐D video inpainting with a single high‐end GPU.

4.3. Qualitative results
This section presents the results and analysis of the proposed methods through visual exam‐
ination. Whereas color images can be presented in a straightforward way, RGB‐D images
require additional representations to reflect their geometric characteristics contained in the
depth channel. Therefore, we provide three representations for each inpainted RGB‐D image:
an RGB color image, depth image and estimated surface normal image.
As the identity loss function is integral to further experiments, we start with the visual ex‐

amination of results generated by our proposed method for preservation of identity (Objective
1.1). This is followed by the visual examination and comparison of results generated by differ‐
ent fusion methods (Objective 1.2). Lastly, we visually examine the results of several additions
to the network focused on surface reproduction (Objective 1.3).

4.3.1. Identity preservation
In this section, we study the effects of the identity loss function, which aims to fulfill Objec‐
tive 1.1. The identity loss stimulates the extraction and application of facial identity features
extracted from the RGB channels of the given reference image. In this section we study the
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Figure 4.3: Comparative overview of the results of the model trained without the identity loss function and the
model trained with the identity loss function.

effects of the employment of this loss function. We compare two different methods: data‐level
fusion without identity loss and data‐level fusion with identity loss.
When considering the results of the model trained without identity loss, we observe that

this method produces a globally consistent synthesization of the masked region with respect
to the skin color and overall shape of the input. However, it is apparent that facial identity
features do not correspond with the ground truth image. This is not surprising, as this model
has no contextual knowledge of the subject’s identity. Accordingly, the model provides its best
estimation of the facial features of the masked region, which rarely corresponds to the subject’s
true identity.
Turning now to the results of the model trained with identity loss, we observe that the face

identity represented in the resulting images bears high similaritywith that of the given reference
image. In particular, we note that the general appearance of identifying facial features such as
the nose, eyes and eyebrows of the subject are properly represented in the RGB channels of the
inpainted image. However, we identify several cases in which the eye color is not preserved or
symmetric. Moreover, some inpainted results contain visual artifacts, which aremost frequently
seen around the eye region of the subject. We observe that this effect becomes increasingly
prevalent with greater pose angles of the faces in the input image and the reference image.
This suggests that extreme pose angles are detrimental to the performance of the identity loss
function. We elaborate on this common error in Section 5.1.1.
The effects on the depth channel of the inpainted images requires closer inspection, as its

interpretation is not as intuitively familiar. Considering the identity loss solely considers the
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Figure 4.4: Results of model input containing differing identities, generated by a model trainedwith our identity loss
function.

RGB channels, it is especially interesting to study the indirect effects of this loss function with
respect to the inpainted depth channel. Upon close inspection, we note that the model appears
to preserve the overall visual correlation between the RGB channels and depth channel. As
such, the facial appearance represented in the RGB channels appears to correspond to the
geometric face structure represented in the depth channel.
Perhaps the most insightful demonstration of the effects of the identity loss function is per‐

formed by feeding the model with a masked version of one identity and a reference photo of
another. Figure 4.4 presents two examples of this kind, where the input consists of a masked
RGB‐D image and reference image, each of which belong to two different subjects. The in‐
painted results show faces that are globally consistent with the known region of the image,
while also containing distinct facial features from the given reference image. Similar to the
aforementioned observations, we find that visual facial features such as the eyes, nose and
eyebrows are correctly preserved in the inpainted image. Further examination of the depth im‐
age reveals that the RGB channels and depth channel appear highly correlated. Interestingly,
a number of geometric facial features of the reference image appear to have been preserved
in the inpainted image. For example, looking at the first example in Figure 4.4, we identify the
distinct reproduction of the shape of the reference subject’s nose. This is an interesting find‐
ing, as the identity loss uses only the RGB channels of the input and reference image for the
calculation of the identity loss used during training.

4.3.2. Fusion of color and depth information

In this section, we address the visual differences of the results of the fusion types as described in
Section 3.3, aimed atObjective 1.2. A separately trained RGB image and depth image inpainting
model [41] will form a comparative baseline for the fusion methods we evaluate in this section.
The output of these unimodal models will demonstrate the level of visual quality we aim to
match with a jointly trained model.
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Figure 4.5: Comparative overview of the results of themodality‐specific image inpaintingmodels, trained separately
on the color and depth channels, and the data‐level fusion model.

Wewill first inspect the results of data‐level fusion, which concatenates the RGB and depth
image at the network input. Following this, we will examine the results of hybrid fusion, where
the following fusion methods are applied in the coarse stage of the network: fusion through
addition, single‐path residual fusion and multi‐path residual fusion.

Data‐level fusion
In the same vein as the early evaluation presented in Section 3.3.1, we compare the output of
two separately trained modality‐specific inpainting models with our data‐level fusion model.
The goal of this experiment is not to evaluate whether the inpainted faces look exactly like
their ground truth, but to evaluate the visual quality of the inpainted results. Moreover, this
experiment could provide insights into how complementary information among the modalities
contributes to the visual quality of the results of the jointly trained data‐level fusion model.
Expanding on our earlier evaluation, we present several additional samples for this com‐

parison in Figure 4.5. Please note that the models used in this comparison do not employ our
proposed identity loss function, as it is not possible to use this loss function in a modality‐
specific depth inpainting framework as is.
We firstly evaluate the results in regard to the inpainted RGB channels. The modality‐

specific model for RGB inpainting produces a result that is consistent with the known region
of the image, with respect to both color and shape. However, it is apparent from these results
that the modality‐specific RGB model does not produce facial features that appear natural or
coherent. The data‐level fusion model makes a reasonable improvement in this regard, which
could be related to information that is available in the respective depth image. Specifically, the
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Figure 4.6: Comparative overview of the coarse inpainting results of the proposed hybrid fusion types.

data‐level fusion model may be able to construct more meaningful features based on the joint
color and depth information, which could enable perception of the pose of the face.
As far as the depth images of the presented results are concerned, we note a large difference

between the modality‐specific depth image inpainting model and the data‐level fusion model.
This is even more apparent in the irregular and noisy surface normal image representations of
the depth information.
Having examined the RGB and depth channels individually, we briefly touch upon the con‐

sistency between the inpainted RGB and depth channels. Indisputably, we cannot expect two
independently trained models to produce outputs that are consistent among each other. How‐
ever, as was seen in the previous section, we note a strong consistency between the color and
depth images produced by the data‐level fusion model. This comes as no surprise, as the full
feature construction process in this model is done jointly.

Hybrid fusion
Hybrid fusion refers to a combination of feature‐level fusion in the first stage and early fusion
in the second stage of the network. The first stage is trained with a reconstruction loss and
identity loss and provides a coarse prediction of the masked region. In turn, this prediction is
refined by the second stage of the network, which is additionally trainedwith the SN‐PatchGAN
loss. Accordingly, we may assume that the visual quality of the refined result directly depends
on the visual quality of the coarse result. Therefore, to inspect the effects of different feature‐
level fusionmethods applied in hybrid fusion, we start with the visual examination of the coarse
inpainted results of the first stage.
While we have experimented with fusion through summation at several positions through‐

out the coarse stage of our network as discussed in 3.3.2, the results consistently were of
low quality and appeared similar. For this reason, we qualitatively evaluate just one of these
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models and do not further include this approach in our evaluation. For residual fusion, we de‐
note single‐path and multi‐path by SP andMP, respectively, followed by the number of residual
blocks used in the coarse stage (e.g., Residual‐SP4).
A set of coarse results for each fusion method is shown in Figure 4.6. At first glance, it

is immediately clear that feature‐level fusion through summation does not provide the results
we are looking for. All channels appear blurry and the RGB channels in particular contain a
significant amount of noise and lack color coherency with the known image region. The esti‐
mated surface normal image of this approach appears very smooth due to the blurriness of the
depth channel, but contains little detail and does not seamlessly connect with the known image
region.
The coarse output of the feature‐level residual fusion look similar, with no dramatic im‐

provement with respect to data‐level fusion. However, the connection between the known
and missing image region appears more seamless compared to data‐level fusion and fusion
through summation.
As the visual examination of coarse inpainted results provided limited insights, we continue

our evaluation by turning to Figure 4.7, where we show a collection of refined results of the
models. As mentioned, we will exclude fusion through summation, as its coarse results indicate
the relative failure of this method. Consequently, with respect to hybrid fusion, we continue
our evaluation with solely single‐path and multi‐path residual fusion.
In general, all fusion methods in Figure 4.7 show a good reproduction of the subject’s face,

as facial features are well‐represented in both the color and depth channels. However, in similar
correspondence, the inpainted regions contain a reasonable amount of noise and are sometimes
not fully connected to the known region of the image. This is particularly noticeable in the depth
channel and its surface normal representation.
The RGB channels of each of the fusion methods appear to be of similar quality, where

we observe the occasional sign of minor noise. Moreover, as observed during evaluation of
our identity loss, asymmetry of eye shape and color is commonly found. The depth image and
its surface normal representation show similar results, with no significant differences that can
be identified across all image samples. In fact, we observe mixed results of residual fusion
methods, which perform slightly better than data‐level fusion in the leftmost sample in Figure
4.7 but perform on par or worse in the rightmost sample.
We cannot make a well‐founded conclusion on the performance of data‐level fusion ver‐

sus hybrid fusion. While these findings are somewhat disappointing, visual evidence exists to
support that residual fusion forms a good candidate for multimodal feature fusion. As such,
we refer to the quantitative evaluation of multimodal feature fusion in Section 4.4 for further
analysis.

4.3.3. Reproduction of surfaces
Despite the efforts that were evaluated earlier in this chapter, the presented results still con‐
tain a striking amount of noise, especially in the depth images and their corresponding surface
normal images. Furthermore, we observe strong inconsistencies in the connection between
the unknown and known region of the image, which is most prominent in the case of large face
pose angles.
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Figure 4.7: Comparative overview of the refined inpainting results of the proposed hybrid fusion types.

Described in Section 3.4, a number of additions have been described that set out to improve
the framework’s depth channel reconstruction by improving the quality and consistency of the
formed surface. In this section, we evaluate their results. The models used for this evaluation
are based on our data‐level fusion network, trained with a reconstruction loss, SN‐PatchGAN
loss and identity loss. To avoid confusion and to save space, we denote this network configu‐
ration as M .

Surface normal loss function We first assess the effects of the surface normal loss ℒSN on the
visual quality of the results. Upon consideration of the results of the model trained with the
surface normal loss in Figure 4.8, it stands out that the inpainted regions of the depth images
and surface normal images show a decreased amount of noise compared to aforementioned
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Figure 4.8: Comparative overview of the inpainting results of the proposed surface normal loss function, contextual
surface attention (CSA) module, and surface normal discriminator (SND). M denotes our data‐level fusion network,
trained with a reconstruction loss, SN‐PatchGAN loss and identity loss.

methods. Consequently, the inpainted region appears smoother and facial features and their
details are distinctly visible. Furthermore, this improvement appears not to take away from the
visual quality of the RGB channels of the image.

However, it is interesting to note that the addition of the surface normal loss does not
always fully remove the previously noted inconsistent connection of the known and unknown
region of the depth image. An instance of this is most visible in the rightmost sample in Figure
4.8, where the split between the unknown and known image region is clearly visible.

After taking a closer look at the RGB channels of the results, we make a number of obser‐
vations. Firstly, the symmetry of the facial features seems to have worsened ever so slightly.
Moreover, in the middle sample in Figure 4.8, we spot a fair amount of noise around the upper
left region of the face, and even detect a hole in the right eyebrow.
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Contextual surface attention We now turn to the effects of the contextual surface attention
(CSA) module. The contextual attention module, introduced by Yu et al. [40], is built on the
concept of finding and reusing known patches that are statistically similar to the coarse predic‐
tion of the missing region. We hypothesized that the addition of surface attention aids in this
search, as outlined in Matias et al. [46].
Interestingly, comparing the results of our model with and without the CSA module reveals

that the addition of surface attention does not have an evident effect on visual quality. The vi‐
sual quality of the inpainted RGB channels appears consistent with the aforementionedmodels,
including the middle sample of Figure 4.8, which proves to be a challenging instance. However,
we do observe a moderate improvement of the connection between the unknown and known
region of the depth image, as can be seen in Figure 4.8. Despite this observation, a clear benefit
of the usage of this module could not be determined based on our visual assessment.

Surface normal discriminator What follows is an evaluation of the results of the model that
was trained with the surface normal discriminator (SND), as shown in Figure 4.8. It is apparent
that the RGB channels are largely comparable to themodel that was trainedwithout the surface
normal discriminator.
Turning now to the depth images and their surface normal representations, we observe

similar inpainted results with minor improvements. Upon close examination of these images,
we no longer find inconsistent connections between the unknown and known region of the
image. However, aside from this observation, the results can be closely compared to the model
without the surface discriminator.

4.4. Quantitative results
The quantitative evaluation of generative models remains a challenging task. Despite this diffi‐
culty, we define a set of objective metrics that align with the task at hand and provide a strong
base to draw conclusions from. In this section, we start by outlining our objective metrics,
followed by their results.

4.4.1. Objective metrics
In this section, we outline the metrics we use for the evaluation of our method. These metrics
give us an empirical base to compare the defined network configurations.
As discussed in Section 2.3.1, a consensus on a standardized set of objective metrics for

the evaluation of GANs does not currently exist. Similarly, this is the case for the evaluation of
image inpainting tasks in general. The latter is a consequence of the fact that image inpainting
methods do not necessarily seek to create a pixel‐perfect reconstruction of the missing area.
Rather, their objective is to reconstruct the missing area in a plausible and realistic way, while
blending in with the known region of the image. To further break down our requirements, we
define a collection of desired characteristics. Specifically, we require our set of metrics to:

• align with the evaluation of existing image inpainting methods;

• provide a clear and reliable ground for derivation of conclusions;
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• agree with human perceptual judgement [84];

• reflect the inherent challenges with respect to our application [82, 85], specifically, iden‐
tity preservation and the depth reconstruction.

Considering image inpainting is a variant of a conditional image generation task, we pos‐
sess the ground truth pixel values for the synthesized missing region. This permits us to use
full reference quality metrics to measure the quality of the inpainted images. Moreover, aside
from visual fidelity, these metrics assist in recognizing mode collapse. Therefore, following ex‐
isting image inpainting methods [40, 41, 91], we report the following metrics: 1) mean L1 error
2) mean L2 error 3) Peak Signal‐to‐Noise Ratio (PSNR) 4) Structural Similarity (SSIM) index [55].
These metrics assess the visual quality of the inpainted images by comparing the information
that is represented in the inpainted image with the ground truth image. As subjective evalua‐
tion has suggested that the quality of depth images is correlated to the fidelity of corresponding
3D models [169], this will provide us with insights regarding the application of our method.
Additionally, we employ the Visual Information Fidelity (VIF) index [56]. This metric aims to

represent the difference of human‐perceivable information between a test image and a refer‐
ence image based on statistical properties that approximate the human visual system. Notably,
there is evidence to indicate that the VIF index of depth images is highly correlated with the
quality of experience of 3D video compared to other quality metrics Banitalebi‐Dehkordi et al.
[169]. For this reason, this metric is a particularly insightful addition to our set of evaluation
metrics.
In order to quantify and compare the degree of identity preservation, we define a metric

based on the FaceNet face identity embedding model [57] pretrained on the MS‐Celeb‐1M
[54] dataset. The usage of this model has been validated in Section 3.2. This metric will be
calculated on the RGB channels exclusively, as a reliable RGB‐D face representation model is
currently not readily available.

Mean L1 and mean L2 error
The mean L1 error, also known as the mean absolute error, measures the absolute difference
between the estimated values and target values. For predicted image �̂� and ground truth ref‐
erence image 𝑥, where 𝑁 denotes the size of the mask, the L1 error is calculated as follows:

𝐿1(𝑥, �̂�) = 𝑀𝐴𝐸(𝑥, �̂�) = 1
𝑁

𝑁

∑
𝑖=1
|𝑥𝑖 − �̂�𝑖| (4.1)

The mean L2 error, also known as the mean squared error, measures the absolute differ‐
ence between the estimated values and target values. Similar to the L1 error, the L2 error is
calculated as follows:

𝐿2(𝑥, �̂�) =MSE(𝑥, �̂�) = 1
𝑁

𝑁

∑
𝑖=1
(𝑥𝑖 − �̂�𝑖)2 (4.2)

The L2 error is highly sensitive to outliers when compared to the L1 error. Furthermore, it
is important to note that whereas these errors represent the color difference in points (0‐255)
in the RGB channels, they will reflect the difference in millimeters (mm) in the depth channel.
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Peak Signal‐to‐Noise Ratio (PSNR)
Peak Signal‐to‐Noise Ratio (PSNR) is a simple image quality metric that measures the difference
of two images at pixel level. It expresses the difference between the maximum value of a signal
and the maximum value of a distorting noise. In our case, the signal is formed by the ground
truth image and the noisy signal is an inpainted version of the same image. The mathematical
definition of PSNR, based on the mean squared error (MSE), is as follows:

PNSR(𝑥, �̂�) = 10 ⋅ log10(
𝑅2

MSE(𝑥, �̂�)) (4.3)

Where 𝑥 and �̂� denote the reference image and test image respectively,𝑀 and 𝑁 represent
the number of rows and columns of the input signals respectively, and 𝑅 is the maximum signal
value. In the case of our evaluation, 𝑅 is equal to 255 considering we compare 8‐bit unsigned
integer data.
Although image quality is a subjective matter [170], this metric remains to be a common

image quality metric for its clear mathematical definition. Considering perceived image quality
is highly subjective, we will use this evaluation metric to measure the effects of methods in
a strictly empirical way, while remaining aware of its limited correlation to perceptual quality
[55].
The PSNR metric is represented by a ratio with a range of [0, 1], where SSIM(𝑥, 𝑥) = 1.

Structural Similarity (SSIM) Index
The Structural Similarity (SSIM) index [55] measures the structural similarity between a ground
truth image and the respective inpainted image. As opposed to PSNR, SSIM does not estimate
absolute errors but estimates the perceived change in structural image information. The SSIM
algorithm compares local patterns of pixel intensities that have been normalized for luminance
and contrast, as the structure of objects in a scene is assumed to be independent of these
effects. The algorithm is split in stages for luminance comparison, contrast comparison and
structure comparison between the given input images. We refer to the paper by Wang et al.
[55] for a detailed description of the procedure.
The SSIM indexmetric is represented by a ratiowith a range of [0, 1], where 𝑆𝑆𝐼𝑀(𝑥, 𝑥) = 1.

Visual Information Fidelity (VIF) Index
The Visual Information Fidelity (VIF) [56] index builds on the concept of the human visual sys‐
tem. This metric assesses the quality of an image by measuring the information represented
in the test image and reference image. Measuring the respective image information is done
based on natural scene statistics [171] represented by a wavelet‐domain Gaussian scale mix‐
ture model.
The VIF index metric is represented by a ratio with a range of [0, 1], where 𝑉𝐼𝐹(𝑥, 𝑥) = 1.

Identity error
In order to evaluate the effectiveness of the identity loss function, we define an identity error
metric. Thismetric is based on the samenotion as our identity loss function. Firstly, a pretrained
model is used to calculate a feature embedding of the subject’s facial appearance. In turn, the
Euclidean distance between embeddings represents a measure of identity similarity.
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To ensure an independent evaluation, we employ a different architecture and different
dataset. Specifically, this metric uses the FaceNet [57] architecture, pretrained on the MS‐
Celeb‐1M [54] dataset which produces a 128‐byte vector representing the subject’s identity.
Accordingly, the identity error is calculated as follows:

ID(𝑥rgb, �̂�rgb) = ||𝑀(𝑥)rgb −𝑀(�̂�rgb)||2 (4.4)

Where 𝑥rgb and �̂�rgb represent the RGB channels of the ground truth image and inpainted
image respectively, and𝑀 denotes the pretrained face identity embedding model.

4.4.2. Results
In this section, we present the results of the quantitative experiments. To provide insights
on the quality of results across the color and depth modality, we calculate the metrics the
color image represented in the RGB channels and the depth image represented in the depth
channel. Moreover, to provide a means of evaluating the surface formed by the depth image,
we additionally calculate each metric on the estimated surface normal image. The estimation
procedure of the surface normal image is described in Section 3.4.1.

Identity preservation
We start our evaluation of the results by considering preservation of identity, in accordance
with Objective 1.1. While we evaluate the explored fusion methods at a later point in this sec‐
tion, we evaluate our identity loss within the data‐level fusion version of our network. Compar‐
ing the results of these models as presented in Table 4.1, we note a consistent and significant
improvement of metric values based on the addition of the identity loss. This result indicates
that the identity loss effectively assists the model in inpainting the masked region in such a way
that is more consistent with the ground truth image. This is in line with our visual examination
in Section 4.3.1. Remarkably, consistent with our visual examination, an improved quality of
the depth channel is achieved across all metrics.
However, the proposed identity loss is not directly concerned with the visual quality of the

inpainted RGB‐D images, but focuses on the visual loss of identity on a perceptual level. To
assist in the evaluation of this matter, Table 4.1 additionally provides the average identity error
of themodels based on the RGB channels of their output. As expected, themodel that is trained
with our identity loss significantly outperforms the model that is trained without identity loss
in this regard. While one may anticipate these values to be even further apart based on the

L1 error L2 error PSNR SSIM VIF ID

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN RGB

A Without ID loss 11.813 5.109 26.949 28.318 18.716 45.523 18.587 23.049 15.025 0.915 0.968 0.858 0.490 0.640 0.453 12.157
B With ID loss 8.155 3.765 23.928 21.867 15.315 40.202 20.810 24.662 16.101 0.936 0.975 0.867 0.528 0.664 0.465 7.698

Table 4.1: Quantitative results (L1 error, L2 error, PSNR, SSIM, and VIF) of the model trained without identity loss
and the model trained with identity loss. The results are split for the color channels (RGB), depth channel (D) and
surface normal image channels (SN).
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L1 error L2 error PSNR SSIM VIF

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN

Modality‐specific 11.333 4.346 20.991 27.500 17.666 37.086 18.839 23.519 16.832 0.913 0.972 0.884 0.488 0.660 0.490
Data‐level fusion 11.813 5.109 26.949 28.318 18.716 45.523 18.587 23.049 15.025 0.915 0.968 0.858 0.490 0.640 0.453

Table 4.2: Quantitative results (L1 error, L2 error, PSNR, SSIM, and VIF) of the modality‐specific models for RGB
and depth image inpainting and the data‐level fusion model. The results are split for the color channels (RGB), depth
channel (D) and surface normal image channels (SN).

presented qualitative results, it is essential to note that the identity error is calculated with the
combination of the known region and inpainted region. As such, a reasonably sized section of
the 128‐byte embedding is based on the lower known half of the face.

Fusion of color and depth information
In this section, we present a quantitative breakdown of the results of the fusion types as de‐
scribed in Section 3.3, aimed at Objective 1.2. Similar to our qualitative evaluation of the pro‐
posed fusion types, a separately trained RGB image and depth image inpainting model [41] will
form a comparative baseline for the fusion methods we evaluate in this section. The output of
these modality‐specific models will give an indication of the level of visual quality we aim to
match with a jointly trained model in terms of objective metric values.
We will first look into the results of data‐level fusion and how this compares to modality‐

specific models. Following this, we will examine the results of hybrid fusion, where one of
three fusion methods is applied, namely: fusion through addition, single‐path residual fusion
and multi‐path residual fusion.
We firstly look into how the results of data‐level fusion compare to results produced by

modality‐specific models. Considering the results in Table 4.2, we consistently observe that
the modality‐specific models provides better results compared to the results of the data‐level
fusion model. Moreover, in the results for the data‐level fusion model for the metrics SSIM and
VIF, which both represent perceived quality, we note a large relative degradation of the results
for the depth channel. In contrast, we do not identify the same effect for the color channels
of the results of the data‐level fusion model. This is consistent with our observations in the
corresponding visual examination of the results of these models.

L1 error L2 error PSNR SSIM VIF ID

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN RGB

Data‐level fusion 8.155 3.765 23.928 21.867 15.315 40.202 20.810 24.662 16.101 0.936 0.975 0.867 0.528 0.664 0.465 7.965
Residual‐SP4 7.951 3.532 24.604 21.214 14.684 41.062 21.080 25.042 15.926 0.937 0.975 0.865 0.528 0.668 0.462 7.547
Residual‐SP6 8.046 3.641 24.120 21.370 14.649 40.288 21.031 25.062 16.093 0.937 0.976 0.866 0.534 0.669 0.464 7.521
Residual‐MP4 8.231 3.857 23.912 22.083 15.445 40.381 20.714 24.573 16.066 0.936 0.975 0.869 0.527 0.662 0.466 7.515
Residual‐MP6 8.166 3.786 24.512 21.776 15.271 40.714 20.806 24.665 15.990 0.934 0.975 0.862 0.529 0.660 0.461 7.436

Table 4.3: Quantitative results (L1 error, L2 error, PSNR, SSIM, and VIF) of our data‐level fusion model, hybrid
single‐path residual fusion and hybrid multi‐path residual fusion. The results are split for the color channels (RGB),
depth channel (D) and surface normal image channels (SN).
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L1 error L2 error PSNR SSIM VIF ID

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN RGB

M 8.155 3.765 23.928 21.867 15.315 40.202 20.810 24.662 16.101 0.936 0.975 0.867 0.528 0.664 0.465 7.965
M + ℒ𝑆𝑁 8.515 3.500 19.355 22.161 14.979 33.925 20.686 24.836 17.615 0.933 0.976 0.893 0.524 0.670 0.495 7.851

Table 4.4: Quantitative results (L1 error, L2 error, PSNR, SSIM, and VIF) of model M andmodel M with the addition
of ℒ𝑆𝑁. The results are split for the color channels (RGB), depth channel (D) and surface normal image channels (SN).

We now move on to discuss the results of the different types of fusion, presented in Table
4.3. In general, each method presented in this table achieves results that are similar to each
other, which is in correspondence with our visual examination. While the margins are slim, dig‐
ging deeper into the presented results, we find some evidence to indicate that residual fusion
typically outperforms data‐level fusion. Moreover, we find that single‐path residual fusion out‐
performs multi‐path residual fusion. Despite these findings, which should be interpreted with
care, we cannot prove a clear benefit of hybrid fusion over data‐level fusion in the context of
our architecture and data.

Reproduction of surfaces
We now move on to consider the performance of models containing additions that are aimed
at improving the surfaces formed by the inpainted depth values, as introduced in Section 3.4.
The models used for this evaluation are based on our data‐level fusion network, trained with a
reconstruction loss, SN‐PatchGAN loss and identity loss. Once again, to avoid confusion and
to save space, we denote this network configuration as M .
We evaluate the following aspects in order: surface normal loss ℒ𝑆𝑁, contextual surface

attention (CSA), and surface discriminator. As described in Section 3.4, these components are
intended to work together by facilitating the interpretation of surface in several parts of our
network. For this reason, we evaluate these components by cumulatively adding them to the
aforementioned network configuration M one‐by‐one, which gives us the opportunity to eval‐
uate their added value.
The results in Table 4.4 reveal that the addition of the surface normal loss has a great im‐

pact on the visual quality of the inpainted surfaces. Across all metrics, we observe a significant
improvement in regard to the reproduction of the depth image, which corresponds to our obser‐
vation during visual examination of the results. However, this does appear to come at a minor
cost, as the inpainting of RGB channels show to have degraded in the wake of the addition of

L1 error L2 error PSNR SSIM VIF ID

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN RGB

M + ℒ𝑆𝑁 8.515 3.500 19.355 22.161 14.979 33.925 20.686 24.836 17.615 0.933 0.976 0.893 0.524 0.670 0.495 7.851
M + ℒ𝑆𝑁 + CSA 8.363 3.612 19.087 21.770 14.927 33.464 20.875 24.890 17.719 0.934 0.976 0.893 0.527 0.675 0.495 7.891

Table 4.5: Quantitative results (L1 error, L2 error, PSNR, SSIM, and VIF) of model M with the addition of ℒ𝑆𝑁 and
model M with the addition of ℒ𝑆𝑁 and CSA. The results are split for the color channels (RGB), depth channel (D)
and surface normal image channels (SN).
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L1 error L2 error PSNR SSIM VIF ID

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN RGB

M + ℒ𝑆𝑁 + CSA 8.363 3.612 19.087 21.770 14.927 33.464 20.875 24.890 17.719 0.934 0.976 0.893 0.527 0.675 0.495 7.891

M + ℒ𝑆𝑁 + CSA + SN disc. 9.697 4.245 20.485 24.275 16.953 36.415 19.875 23.778 16.994 0.928 0.972 0.890 0.509 0.662 0.496 8.325

Table 4.6: Quantitative results (L1 error, L2 error, PSNR, SSIM, and VIF) of model M with the addition of ℒ𝑆𝑁 and
CSA, and model M with the addition of ℒ𝑆𝑁, CSA and the SN discriminator. The results are split for the color
channels (RGB), depth channel (D) and surface normal image channels (SN).

the surface normal loss.
The contextual surface attention (CSA) module builds on top of the base framework’s con‐

textual attention (CA) module (Section 3.1) by adding surface normal information. Based on
the additional information, the modified module aims to improve the search of feature patches
that are appropriate in the refinement of the inpainted region. Table 4.5 represents the results
of this change, which evidently shows an improved performance for the model that contains
the CSA module in place of the CA module of the base framework.
The addition of supplementary information regarding the depth values of the RGB‐D image

do not compromise the inpainting performance of the color channels. This is somewhat unex‐
pected, as we observed a moderate deterioration of the quality of the inpainted RGB channels
upon the addition of the surface normal loss in Table 4.4.
We now move on to the evaluation of the surface normal discriminator (SND), of which the

comparative results are presented in Table 4.6. What is striking about the quantitative results
of the model trained with the SND is that they are worse for every metric, with the exception of
the VIF of the surface normal image. This significantly deviates from our qualitative evaluation,
where we found that the visual quality of the of the model trained with and without the SND
were nearly identical.
Breaking down the results further, we find that both the RGB and depth channels show

remarkably deteriorated results, whereas the metrics in regard to the surface normal present
results that have declined more mildly.

4.5. Implications of the results
Thus far, we have provided a qualitative and quantitative look of each of the proposed network
components and losses based on our defined research objectives. As this work is exploratory,
we have provided minor points of intermediate analysis throughout this chapter. To conclude
this chapter, we summarize our findings and analyze their implications.

4.5.1. Identity preservation
We studied the effect of our proposed identity loss, which was aimed at the preservation of
identifying facial features, in accordance with Objective 1.1. In our qualitative evaluation, we
found that models trained with our identity loss produce identity features that are consistent
with the provided reference image. An interesting finding is that, while the identity loss is
calculated based on the RGB channels, the depth channel of the inpainted images shows similar
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facial features. This indicates that the model is able to indirectly learn the relation between the
identity loss and depth image, based on the feedback it receives regarding the inpainted RGB
channels. This effect was most clearly visible in Figure 4.4, where masked images and reference
images of two different identities were fed to the model. Moreover, we observed an improved
symmetry of facial features in the inpainted images. However, this symmetry does not extend
as far as eye color, as we regularly observed differing eye colors in a single inpainted image. This
is likely due to the fact that an incorrect eye color makes a minor impact to our employed loss
functions considering the relatively small image area it comprises. It can thus be suggested that
a discounted reconstruction loss function or stricter identity loss function could alleviate this
problem. Upon the visual examination of the results, we note that inpainted results often differ
from the ground truth with respect to expression. This effect was foreseeable, as the model
does not have any information that indicates the expression of the subject. However, it is worth
noting that our model demonstrates robustness against different types of expressions that are
visible in the known image region, such as opened mouths and smiles. Lastly, we observe that
the impact of the identity loss function deteriorates with great pose angles of the faces in the
input image and the reference image. This suggests that extreme pose angles are detrimental
to the performance of the identity loss function, which could be attributed to the limitations of
the face embedding model that the identity loss is built on.

4.5.2. Fusion of color and depth information

We also considered the performance of different types of fusion, corresponding to Objective
1.2. To gain insights on the performance of modality‐specificmodels and jointly trainedmodels,
we compared the results of a separate color image inpaintingmodel and depth image inpainting
model with the results of a data‐level joint RGB‐D model. We found a notable deterioration
of the results of the jointly trained model compared to the results of modality‐specific models.
This suggests that the joint feature construction in the joint RGB‐Dmodel is not able to properly
capture the features of both modalities. Moreover, this implies that the geometric information
represented in the depth channel does not support the improvement of the inpainting of the
color image, and vice‐versa. We observed the largest relative deterioration of the visual quality
of the data‐level fusion model in the depth images, which contained a high amount of noise
(Figure 4.5). The worsened performance of the data‐level fusion model could be attributed the
fact that the construction of features is compromised, as the model input contains multiple
modalities with different statistical properties. And as the depth modality is only represented
by a single output channel, it is outmatched by the 3‐channel color modality in the calculation
of the reconstruction loss and SN‐PatchGAN loss. This may explain why we mainly observe
the degradation of the visual quality of the results of the data‐level fusion model in the depth
channel.
What followed was a comparison of the fusion types that have been proposed in this work.

Aside from data‐level fusion, we evaluated several types of feature‐level fusion within the pro‐
posed concept of hybrid fusion (Section 3.3.2), specifically, fusion through summation, single‐
path residual fusion and multi‐path residual fusion. At an early point in the evaluation process,
we concluded that fusion through summation performed poorly (Figure 4.7), as it resulted in
blurry and noisy output from the coarse network stage. Therefore, it was excluded from any fur‐
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ther evaluation. This poor result was somewhat expected, as the summation operation applied
to the color and depth features most probably overrules modality‐specific features. Neverthe‐
less, it is interesting that this fusion type resulted in moderate success in the work of Hazirbas
et al. [140], which indicates that this fusion type may just be ill‐fitted for the task of RGB‐D
image inpainting.
In both the qualitative and quantitative evaluation we found that data‐level fusion and both

types of residual fusion provide comparable results throughout the coarse and refined stage of
the network. Specifically, we observed a significant amount of noise in the inpainted region of
the depth image and its surface interpretation, which we commonly found to be visibly discon‐
nected from the known image region. While the quantitative results of themodels with residual
fusion were slightly better when compared to data‐level fusion, there exists insufficient proof
to suggest that residual fusion actively contributes to results of higher visual quality. There
are two likely causes for this observed effect. Firstly, the usage of residual fusion within the
concept of hybrid fusion may not sufficiently stimulate and accommodate multimodal feature
understanding. Or secondly, we may have overestimated the impact of the coarse result on
the refinement stage of the network. We find the latter explanation to be most likely as in
preliminary experiments we have found that, while of much lower visual quality, the second
stage of the network is able to produce fairly good results even with a blank input image. We
hypothesize that larger differences in performance between the fusion types may occur with a
more challenging real‐world dataset, in which the model has to actively deal with missing and
noisy information.

4.5.3. Reproduction of surfaces
We are now moving on to consider the insights obtained based on the results of the compo‐
nents and loss function focused on surface reproduction, following Objective 1.3. We firstly
considered the effects of the surface normal loss function, which calculates the L1 loss be‐
tween the estimated surface normal images. The qualitative and quantitative results of this
loss function appeared to be in agreement, as a clear improvement of the smoothness and
consistency of the inpainted depth image and its surface normal representation was identified
(Figure 4.8, Table 4.4). This is similar to the finding of Matias et al. [46], who proposed this
function for the depth image inpainting. As mentioned, the improvement of surface reproduc‐
tion due to the surface normal loss function comes at a minor cost as shown in Table 4.4, which
is a decreased quality of inpainted RGB channels. We expect that this cost could possibly be
minimized through further hyperparameter tuning.
Interestingly, we note that there still exists an inconsistent connection between the un‐

known and known region of the image. A likely explanation for this is that an inconsistent
connection at the boundary of the synthesized region has a limited impact on the value of the
surface loss function, making this an affordable flaw during model training.
In terms of the contextual surface attention (CSA) module that replaces the contextual at‐

tention (CA) module of the base network, we found no evident effect to indicate any improve‐
ment in the visual quality of results (Figure 4.8). However, in contrast, the quantitative results
of the model with the CSA module presented in Table 4.5 show improved results across nearly
all metrics. The most likely cause of this overall improvement is the addition of the estimated
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surface normal image to the contextual attention branch of the network, enhancing the feature
matching process.
Having outlined our analysis of the results of the surface normal loss and CSA module, we

now turn to consider the surface normal discriminator (SND). Remarkably, we found a signif‐
icant disagreement between our qualitative and quantitative evaluation of this discriminator.
Specifically, in our visual examination (Figure 4.7), we observed that the results of the model
trained with the SND are predominantly similar to the results of the model without the SND.
On the other hand, the quantitative results presented in Table 4.6 tell a vastly different story,
as the results of the model trained with the SND are consistently worse than the model trained
without the SND. This highlights the importance of each of our evaluation methods, and simul‐
taneously prompts caution in their interpretation. Based on this uncertainty, we cannot safely
state whether SND is a worthwhile addition the network.
Furthermore, wemake a notable observation regarding the quantitative results with respect

to the inpainted depth images of all discussed loss functions and components in this section.
Specifically, as the quantitative results of the surface normal image improve, the quantitative re‐
sults of the depth images often remain the same or even deteriorate. This is somewhat counter‐
intuitive, as both representations are sourced from the same depth channel. However, there
is a likely explanation for this effect. As the surface‐oriented losses and modules stimulate the
model to prioritize smooth and consistent surfaces represented in the depth channel, themodel
has a limited freedom with respect to the estimation of depth values of single pixels. In this
case, if the inpainted surface does not exactly correspond to the ground truth, this error will be
propagated to a large part of the neighboring depth values.

4.5.4. Concluding remarks
This chapter set out to evaluate the proposed components and loss functions that were ex‐
plored and proposed in Chapter 3. At this point, we have gained sufficient insights to select
the final model that forms the best solution with respect to our research objectives.
Firstly, it has become clear that the identity loss function is an indispensable loss function

of our network. Furthermore, aside from hybrid fusion with fusion through summation, all
proposed fusion methods demonstrate similar performance in both the qualitative and quan‐
titative evaluation. Although we hypothesize that residual fusion will outperform data‐level
fusion on real‐world data, we therefore pick the simplest fusion strategy, which indisputably
is data‐level fusion. Furthermore, we found that the surface normal loss function significantly
improves the visual quality and objective metric values of the depth channel and its surface
representation. In addition, the CSA module demonstrated improved results across all RGB‐D
image channels. Lastly, the SND caused visual improvements of the surface normal image, but
also brought about a significant deterioration of the results. Taken together, we determine our
best performing framework configuration to be: 1) identity loss, 2) data‐level fusion, 3) surface
normal loss, and the 4) CSA module. A full overview of this architecture is available in Section
A.2.
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Conclusion

The main objective of this thesis was to design a framework for head‐mounted display removal
in RGB‐D images. Based on our review of existing work in Chapter 2, we identified that rela‐
tively few joint RGB‐D image inpainting frameworks [47, 101] have been introduced, and those
undertaken do not focus on images of the human face. To guide our exploration, we defined a
set of research objectives, in which we prioritized the preservation of identity and the degree
of realism of the color and depth image information contained in RGB‐D images. In correspon‐
dence with our research objectives, we proposed a number of architectural structures, loss
functions and components in Chapter 3. In Chapter 4, we presented the results and analysis
of all proposed architectural aspects. Following our results analysis, we determined our best
performing framework configuration to include: 1) identity loss, 2) data‐level fusion, 3) surface
normal loss, and the 4) CSA module. In this chapter, we summarize our findings and discuss
their implications with respect to past work and future work.

5.1. Discussion
We start by discussing our framework’s robustness against pose in Section 5.1.1. We then
summarize and discuss our findings with respect to representation learning fromRGB‐D images
(Section 5.1.2) and the employment of surface normal estimation (Section 5.1.3). In Section
5.1.4, we discuss several challenging aspects of the training procedure of our framework and
GANs in general. Lastly, in Section 5.1.5, we elaborate on the limitations of our work.

5.1.1. Pose robustness
In Chapter 4, we observed that our proposed framework demonstrates robustness against a
wide range of pose angles, without the need of a target pose map [36, 70]. This may indi‐
cate that the geometric information provided by the depth channel provides the model with a
reliable means of determining the pose of the occluded face.
However, as our training set and test set contain faces with randomized poses, we gained

little insight on how the performance of our framework deteriorates as the pose angles increase.
In this section, we aim to gather more insights in this regard. To achieve this, we evaluate the
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Figure 5.1: Violin plots that show the distribution of the L1 error of a set of specified pose angles (pitch, yaw, roll).

quantitative performance of our best‐performing framework, as discussed in Section 4.5.4. The
premise of this experiment is equivalent to the quantitative experiments conducted in Section
4.4, with the exception of the datasets used for the evaluation. In this experiment we use
nine separate test sets, each of which contain the same faces but with differing specified pose
angles.
The resulting L1 error is shown in Figure 5.1, presenting the mean results as well as the

distribution of the L1 error values in a violin plot. Let us first consider the pitch, with val‐
ues [0∘, 10∘, 20∘, 30∘]. We observe a relation between the increase of the mean error and the
increase of the pitch angle. Notably, we find that the distribution of the L1 error widens simul‐
taneously. This appears to be a consequence of the decreasing known image area available to
our framework, which in turn is a consequence of the extrusion of the HMD.
Interestingly, compared to the observed effect regarding the pitch axis, we identify an in‐

verse effect for the yaw axis, with values [0∘, 10∘, 20∘, 30∘]. Specifically, we find that the mean
L1 error decreases as the yaw angle increases. This is somewhat counterintuitive, as similar
to the pitch axis; the size of the known image region decreases with the increase of the yaw
angle. However, in the case of the yaw axis, the region that is to be inpainted effectively also
decreases, as less of the face is visible. This is a direct consequence of the fact that we mea‐
sure our L1 error based on the full mask region, which in the case of high yaw angles, largely
contains blank pixels.
Turning now to the effects of difference in roll angles, for the values [0∘, 10∘, 20∘], we ob‐

serve a similar effect to the pitch axis. While the impact is weaker, we determine that the
increased roll angles negatively affect the measured L1 error of the inpainted results. This is
particularly interesting, as neither the surface area of the mask nor the balance between the
amount of non‐blank and blank pixels is affected.



5.1. Discussion 77

Input

RGB‐D + Mask Reference RGB‐D + Mask Reference

RGB Depth Surface Normals RGB Depth Surface Normals

Model

X

Ground
truth

Figure 5.2: Failure cases with extreme pose angles. Model X refers to our best‐performing model, which includes:
1) identity loss, 2) data‐level fusion, 3) surface normal loss, and the 4) CSA module.

We found that combining several large angles for the pitch, yaw and roll axes result in more
dramatic changes in objective metric values. However, lacking a straightforward visualization
method for the simultaneous change of three different angles and having to keep our evalu‐
ations consolidated and relevant, we opt to limit ourselves to the above ranges. Additional
visualizations of the other objective metric values are available in the appendix of this thesis
(Section A.1).

Failure cases Lastly, we present a number of cases where the model fails to accurately inpaint
the masked region, which are shown in Figure 5.2. While the depth images of the inpainted
results appear reasonable, clear artifacts and noise are visible in the RGB channels of both
results. We note that both input images have an extremely large masked region, which gives
the model a minimal amount of contextual information to inpaint the image. Therefore, it is
somewhat anticipated that the model would perform poorly in these cases.

5.1.2. RGB‐D feature learning
In this thesis, various architectural structures have been introduced to stimulate multimodal
feature learning. Having conducted our analysis of these aspects in Section 4.5, we now discuss
our key learnings.
Our initial solution to fusion comprised the naive approach of data‐level fusion. While the

performance of this architecture is considerably worse than modality‐specific models (Section
4.2), the results of data‐level fusion were of reasonable visual quality. This is surprising, as we
hypothesized that the feature construction process would be severely impacted when provided
with multimodal data. Moreover, existing work outlined that data‐level fusion may even hurt
performance [137]. We speculate that the reasonable performance of data‐level fusion could
be a consequence of the flawless RGB‐D images in our dataset. Specifically, our model may
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learn to recognize cross modal features that are not as consistently found in real‐world RGB‐D
data. Additional experiments with a sufficiently sized real‐world RGB‐D dataset would provide
the means to investigate this theory.
Our proposed hybrid fusion strategy was aimed at the removal of the artifacts and noise

introduced by the multimodality of the input data. Following previous work in semantic scene
segmentation [140], we applied fusion through summation in the coarse stagewith twomodality‐
specific branches. However, during its evaluation in Section 4.3, we found that the coarse re‐
sults of this fusion strategy are poor in quality. Perhaps this is related to the fact that we use
separate decoders for the color and depth modality, as opposed to the singular decoder em‐
ployed by Hazirbas et al. [140]. Moreover, this fusion strategy may simply be nontransferable
to the task of joint RGB‐D image inpainting.
Furthermore, we explored the application of residual fusion within the concept of hybrid

fusion. Despite the consistent but marginal improvement in its quantitative evaluation over
data‐level fusion (Section 4.3), we could not identify a clear improvement of visual quality.
However, similar to data‐level fusion, we expect to make different observations in combina‐
tion with a sufficiently sized real‐world RGB‐D dataset. Within the context of this work, con‐
sidering the additional resource requirements of hybrid fusion and the presented results, we
deemed data‐level fusion to be the best choice among the two fusion strategies. Nonetheless,
if computational resources are abundant, hybrid fusion may be favored for its marginally im‐
proved visual quality of inpainted results. Furthermore, we believe that the results of hybrid
fusion warrant further exploration, as we have not exhaustively explored this concept due to
the lengthy training time of our framework. Specifically, we recommend the exploration of
more complex feature transformation operations [134] or a modality interaction path [132].

5.1.3. Surface normal representation
In addition to fusion strategies, we introduced several architectural changes to improve the
interpretation of the depth values as a surface, inspired by a number of studies that focus on
depth images [45, 46, 136]. In general, the addition of surface normal information demon‐
strated a significant improvement of the visual quality of the depth image. The surface loss
function [46] successfully supervised the reproduction of the desired properties of the depth
channel such as smoothness and the contextual surface attention module [46] showed to ben‐
efit from the auxiliary surface normal information.
In contrast, the surface normal discriminator demonstrated to have an adverse effect on

the objective metric results (Section 4.4). Even so, it should be noted that the surface normal
discriminator showed to remove the inconsistent connection between the known and unknown
region of the image in our visual examination. We hypothesize that further hyperparameter
tuning can alleviate the negative impact of this discriminator. Moreover, we speculate that the
usage of a separate discriminator for surfaces could ease the process of hyperparameter tuning
and may improve the visual quality of the results.
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Figure 5.3: Example of failure mode with blank background. Left: input 𝐼 with mask Ω, right: output.

5.1.4. Training our GAN‐based architecture
In this section we discuss challenges we faced during the design and training of our architec‐
ture, including the creation of our dataset, dealing with failure modes of GANs, and balancing
hyperparameters.

Dataset creation As typically is the case with neural models, GANs heavily rely on the statis‐
tical properties and characteristics of the provided training and evaluation data. In this section,
we elaborate on a number of findings with respect to the design of a suitable dataset.
In a social VR setting, users are typically captured with an RGB‐D sensor [10, 12]. Given the

color and depth image provided by this sensor, it is a relatively easy task to extract the image
region that contains the subject’s face. Consequently, we created a database with face images
that do not contain any background information (Section 4.1). Initially, we intuitively set the
background region of the images to zero for each of the four image channels. However, upon
training with this dataset, it became clear that some property of the data caused a severe insta‐
bility of the training process. In particular, we observed that the coarse stage of the network
always failed, whereas the refinement stage of the network showed an increased amount of
instability and frequently failed as well. An example of such a result can be seen in Figure 5.3,
where the inpainted region is blank.
By adjusting our dataset, we found that the instability of training is a consequence of the

black background of the images in our dataset. When replacing the black background with a
dark grey background, the stability and reliability of our architecture increased significantly.
While we identified the cause through this observation, it is not immediately clear why this
interaction exists, as black is a valid color that has no harmful interactions with any operations
performed within our network. Moreover, while one may think that this could be related to
our masked region, our framework marks the masked region with a solid grey value in a chan‐
nel dedicated to the image mask. Consequently, this also does not seem to provide a clear
explanation of the identified behavior.
We found that the coarse stage is guaranteed to fail when training with images with a black

background, while the refinement stage is able to provide a valid output in some cases. This
observation leads us to take a closer look at the design of the coarse stage of our architecture.
Specifically, our attention is drawn to the L1 reconstruction loss. In themost basic version of our
architecture, this is the only loss function used by the coarse stage, while the refinement stage
additionally employs the SN‐PatchGAN loss. This indicates that the problem may be related to
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Figure 5.4: Reconstruction loss curve during training of a model training without identity loss and a model trained
with identity loss.

the reconstruction loss function. Taking into account the large portion of our masked region
that is blank (indicating background), in terms of reconstruction loss, it is very expensive for the
model to predict a foreground pixel in the position of a ground truth background pixel. In turn,
this results in unstable gradients during training, which could destabilize learning to the point
that the model fails completely. We consider this to be the most likely cause of this issue.

Convergence and hyperparameters GANs employ a unique training procedure that is unlike
the training procedure of other machine learning models. Training two models with opposite
objectives at once, their training process is impacted with issues regarding transparency and
reliability [86]. As mentioned in Section 2.3, GANs are trained through an adversarial process
between generator 𝐺 and discriminator 𝐷, where the theoretical target outcome is to find a
Nash equilibrium of the common objective function. Thus, the discriminator countermeasures
the objective of the generator, and vice versa. Since this causes a large oscillation of gradi‐
ent updates during training, this minimax problem forms a complicated task for optimization
methods, causing instability and high sensitivity to the adjustment of hyperparameters.
While several optimization methods have been proposed to improve this problem [86], hy‐

perparameter tuning of GANs remains a challenging task that demonstrates unstable behavior.
Accordingly, we faced similar difficulties in our work.
The output of the objective function of a GAN is difficult to interpret during training, making

it a challenge to recognize model convergence based on it. This due to the fact that each of the
models update their parameters for their respective objective, while completely disregarding
the objective of the other. During training, wemonitor a collection of aspects that are indicative
of the status of the training procedure. Firstly, while the SN‐PatchGAN loss value itself is not
interpretable, the convergence of its loss curve and its respective gradients can suggest model
convergence. In terms of training loss curves, we primarily monitored the convergence of the
curves of the reconstruction loss, identity loss and surface normal loss. The values of these loss
functions form a more straightforward base to recognize model convergence. An example of a
converged reconstruction loss curve is shown in Figure 5.4.
However, the clearest indicator of convergence of our architecture, and GANs in general,

is the observed visual quality of the output. While loss functions form a reasonable base for
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recognizing model convergence, they are not always reliable. For this reason, evaluation of
hyperparameter configurations of GANs nearly always includes visual examination.
The difficulty of recognizing convergence aside, a major challenge in the design and hyper‐

parameter tuning of our models was the lengthy training time. GANs currently take a significant
amount of time to train, ranging from a few days to as much as two months [38]. While some
signs of failure may be noticed early in the training process at which point it can be stopped,
termed early stopping [71], improvements in the visual quality of the results may only appear at
a later point in the training process. Therefore, in view of hyperparameter tuning, it is generally
beneficial to keep the amount of hyperparameters of a network down to a minimum.

5.1.5. Limitations
Research scope As discussed in Section 2.1, HMD removal is a broad task that comprises
many challenges across multiple dimensions. The task of HMD removal is concerned with re‐
solving the occlusion caused by an HMD, but can be further broken down into several func‐
tional aspects including: 1) eye gaze detection, 2) speech synchronization, and 3) expression
detection. These individual tasks are not fully solved, which makes combining them towards
solving HMD removal even more difficult. Moreover, these tasks require additional sensors
such as internal IR cameras, which we did not have readily available throughout this research.
Having taken these aspects into consideration, we have limited ourselves to the challenge of
joint completion of visual and geometric information with a unique approach. This limits the
application of our proposed framework, as it lacks a large quantity of functionalities for usage
in real‐world situations, which other model‐based HMD removal methods do provide [34].
Aside from the mentioned subtasks, HMD removal also involves a wide range of non‐

functional aspects including: 1) the degree of realism of the occlusion removal, 2) time perfor‐
mance, and 3) temporal correctness. In this case, realism concerns humanlikeness and identity,
which both have a profound impact on social experiences [30, 48]. In this work, we have taken
the degree of realism of the inpainted results as our primary objective, and have prioritized this
factor in both our framework design and evaluation. While we expect the results of our efforts
to be transferable to real‐world data, we are unable to demonstrate or prove this due to the
lack of large‐scale RGB‐D datasets.
While speed and resource requirements are of absolute importance for a real‐world HMD

removal system, we have not considered this as a primary objective in this work. This choice
wasmade to avoid conflict with our objective of achieving high visual quality and realism, which
arguably is more important. Large deep neural networks currently form the state‐of‐the‐art in
image completion, which have high resource requirements. To leverage these advancements,
we chose not to include specific speed or resource requirements, especially considering the
fact that we process an additional channel compared to the default three RGB channels. An‐
other argument against setting premature speed and resource requirements is the fact that
hardware is continuously evolving and improving, allowing for larger workloads during model
training and inference. Despite the fact that speed was not a primary objective in this thesis,
the proposed models achieve real‐time performance on a single NVIDIA GeForce RTX 2080 Ti
GPU, as described in Section 4.2.
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In a real‐world immersive teleconference system, HMD removal would be applied to real‐
time videos. In this case, temporal correctness refers to the consistency between the inpainted
frames. To bring down our scope to an attainable level for a master’s thesis, we opted to solely
focus on image inpainting. Therefore, our framework does not take temporal correctness into
consideration, making it unfit for applications in a real‐world situation as is. While closely re‐
lated to image inpainting, video inpainting [93, 172] is a task with its own set of challenges and
remains unsolved. Our framework could potentially form the base for a video inpainting frame‐
work, as the identity loss demonstrates the potential of information extraction from additional
frames.

Lack of suitable datasets As discussed in Section 2.3, GANs aim to learn complex distributions
in order to generate samples with sufficient diversity and level of detail. Therefore, the training
process of GANs requires a large amount of data.
In Section 2.6, we provided a representative overview of the RGB‐D face datasets that are

currently available. We concluded that RGB‐D face image datasets that are sufficiently sized for
training aGANcurrently do not exist, whichmotivated the decision to create a synthetic dataset
based on the parametric Basel Face Model [62, 173]. This choice comes with the benefit of
having full control over both the properties of the faces and the synthetic recording conditions.
Moreover, it allows us to train our models with a large number of different identities, without
the need of a controlled recording environment or the recruitment of thousands of people.
However, this choice also has a range of serious drawbacks. Firstly, the statistical Basel Face

Model was constructed based on a total of 200 recorded face shape and color samples. While
this has no direct consequence in regard to the number of identities we can sample from the
model, it does limit the size of the parameter space of the model, which affects the diversity of
sampled identities. This has a significant impact on the bias and generalizability of our model.
Secondly, our synthesized data set contains perfect RGB‐D images, without any noise, mis‐

alignment, or artifacts that are frequently found in real‐world RGB‐D recordings. This being so,
our model is not robust with respect to these types of data characteristics, as it has not been
made familiar with them during training. An example that demonstrates this fact is shown in
Figure 5.5, in which the performance of the model on a real‐world recorded sample is shown.
While our framework is able to figure out the correct pose of the face, the inpainted face region
appears blurry and incoherent. Moreover, the identity of the subject’s face is not preserved and
does not appear realistic. The latter is a consequence of the fact that ourmodel has only learned
how to transfer identity features from and to faces with data characteristics from our synthetic
dataset. Since, during training, any knowledge from the identity embedding model that is not
applicable to the training data is not transferred to our model. Therefore, we hypothesize that
the quality as well as the identity preservation of the inpainted result will improve dramatically
after fine‐tuning with real‐world recordings.
Moreover, this not only affects the applicability of our model to real‐world data, but also

forms a major problem in the evaluation of our model. One of the main issues in this regard is
that our proposed fusion methods may behave entirely differently with real‐world data. Con‐
sequently, observations made based on real‐world data may result in contrasting findings with
respect to the conclusions in this work. For instance, we expect data‐level fusion to perform
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Figure 5.5: Example of an inpainted result of our framework (as described in Section 4.5.4) when given a real‐world
RGB‐D image input. This image was recorded with an Azure Kinect [26], which was then preprocessed through
depth‐wise background removal and facial contour detection, without manual steps.

less well with real data, as modalities will not be as closely aligned and will contain noise and
missing values. On the other hand, our proposed hybrid fusion strategy may facilitate the ag‐
gregation of complementary features, reducing the impact of missing and noisy data.
Despite the aforementioned issues, our synthesized data forms a substantial base for the

exploration of joint RGB‐D inpainting and our findings have important implications for models
trained on real‐world RGB‐D data. Moreover, we expect that our models can be fine‐tuned
by retraining them on a real‐world dataset with a lowered learning rate. Hence, it may be
conceivable to apply our framework in real‐world situations.

Evaluation strategy As outlined in 5.1.4, the interpretation of the performance of GANs is
complex and difficult to quantify, which makes their evaluation challenging. We employed a
qualitative and quantitative evaluation to provide a reliable assessment of a GAN‐based frame‐
work, which is common practice for the evaluation of GAN‐based methods. Specifically, we
performed an elaborate visual examination of the results and selected a collection of represen‐
tative objective metrics. Although our evaluation provided interesting insights, it is important
to bear in mind that there exist potential inaccuracies or biases in this type of evaluation.

• Our evaluation does not include a large‐scale human subjective study. Consequently, the
findings of our qualitative experiment should be interpreted with caution.

• The visual quality of geometric data is difficult to interpret based on the two‐dimensional
format of this thesis. Therefore, some effects may have been overlooked or misinter‐
preted.
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• Despite our efforts in the creation of a representative set of objective metrics, consensus
has not been reached with respect to a standardized collection of metrics for the eval‐
uation of GANs [83, 84]. In addition, the faces in our dataset contain expressions that
are concealed behind the HMD, which our framework is in no way aware of. Conse‐
quently, our framework may incorrectly predict the occluded expressions, which affects
the objective metric results.

Taken together, these points highlight the importance of careful interpretation of the results
presented in this work. Notwithstanding these limitations, our evaluation demonstrated the
effectiveness of our framework and provides important insights for future work.

5.2. Future work
There exist numerous potential paths for future research that can build upon the contributions
of our work. Throughout our analysis and discussion, we have outlined a number of directions
of future research. In this section, we provide a condensed overview of the directions that we
find most promising.

• To validate the application of our framework in a real‐world system, we suggest fine‐
tuning our trainedmodels with a sufficiently sized set of real RGB‐D sensor data of human
faces once this becomes available. In this way, the valuable knowledge that was gained by
training on synthetic data could be transferred to models trained with real RGB‐D images.

• To improve the faithfulness of our synthetic dataset, we recommend the modification of
our synthesization pipeline to augment the generated images. This augmentation would
ideally involve the usage of a statisticalmodel that simulates the noise of an RGB‐D sensor
[174].

• To improve the RGB‐D feature learning process, we suggest the exploration of depth‐
aware convolution [130, 175]. This type of convolution allows the incorporation of the
geometric information represented in the depth channel into two‐dimensional convolu‐
tion. At this moment, usage of depth‐aware convolution is not widespread and is mainly
aimed at semantic scene segmentation. Despite this, we believe that there is great a po‐
tential in the application of depth‐aware convolution in our framework. We have taken
the first steps in the implementation of this convolution type in our framework, but were
unable to complete and evaluate this within the time frame of this research. Accordingly,
we deem this to be a promising direction of future work, as it would potentially obviate
the need of other fusion strategies.

• To enable the reproduction of occluded emotion, we recommend the addition of model
input indicating the appearance of the occluded face region. Inspired by existing ap‐
proaches to HMD removal [32–35], this input could originate from sensors such as strain
sensors or internal IR cameras.
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5.3. Conclusion
Head‐mounted display (HMD) removal is a challenging task which has emerged with the in‐
creasing usage of HMDs to observe shared virtual reality (VR) environments. In this work, we
propose a method that performs HMD removal through the joint inpainting of RGB‐D images.
We determined that, despite the growing interest in the usage of RGB‐D images, there does

not exist an established RGB‐D image inpainting framework that leverages generative adver‐
sarial networks (GANs). Due to the novelty of this problem, we took an exploratory approach
to the design of a framework of this kind, guided by a set of defined research objectives. In this
concluding section, we present our findings with respect to these objectives.

Research Objective 1 Define an architecture that is capable of virtually removing the HMD from
the wearer’s face in RGB‐D images.

Due to its favorable properties and performance, we built our framework on top of the
RGB image inpainting framework by Yu et al. [41]. Our coarse‐to‐fine architecture generates
a coarse prediction of the masked region in its first stage, after which the coarse prediction is
refined in its second stage. During training, the loss consists of a L1 reconstruction loss and
SN‐PatchGAN loss. In view of our research objectives, we explored several components and
loss functions to enable joint RGB‐D image inpainting.

Research Objective 1.1 Define a module and loss function that stimulates the preservation of the
identity features of the wearer’s face.

Firstly, to achieve preservation of identity (Objective 1.1), we propose a perceptual iden‐
tity loss function which encourages the reproduction of distinctive facial features based on a
given reference image. During training, the identity loss is calculated based on the distance be‐
tween the identity embedding of the reference image and the inpainted image. These identity
embeddings are retrieved through inference of a pretrained identity embedding model. Our
quantitative and qualitative results clearly demonstrate that the addition of the identity loss
successfully stimulates the preservation of identity‐specific facial features.

Research Objective 1.2 Define an architecture that is capable of handling the multimodal charac‐
teristics of RGB‐D images.

Secondly, we proposed several architectural structures to explore multimodal feature fu‐
sion of the color and depth information contained in RGB‐D images. To this end, we intro‐
duced data‐level fusion, which naively combines the color and depth information at network
input, resulting in reasonable inpainted results. In addition, we introduced hybrid fusion, which
involves feature‐level fusion in the coarse stage of the architecture and data‐level fusion in
the refinement stage of the architecture. Within the concept of hybrid fusion, we investigated
several fusion strategies, and proposed single‐path and multi‐path residual units. Our findings
suggest that data‐level fusion achieves similar performance to hybrid fusion. Therefore, we do
not possess conclusive evidence to suggest that hybrid fusion outperforms data‐level fusion in
the context of our synthetic dataset.
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Research Objective 1.3 Define an architecture that stimulates the creation of smooth geometric
surfaces.

Thirdly, to improve the visual quality of the surfaces produced by the framework, we evalu‐
ated the usage of several architectural components. We found that the addition of the surface
normal loss [46], provides a significant improvement of the smoothness of the surfaces rep‐
resented in the inpainted RGB‐D image. Furthermore, enhancing the matching process of the
base framework’s contextual attention module with the addition of a surface normal informa‐
tion demonstrated an improved overall performance. Moreover, we evaluated the addition of
surface normal information to the SN‐PatchGAN discriminator, which turned out to have an
adverse effect and significantly deteriorated the results.

Research Objective 2 In absence of a large‐scale RGB‐D face dataset, create a suitable dataset
that is sufficiently sized.

As a large RGB‐D face image dataset is currently not available, we resorted to the creation
of a synthetic dataset based on the Basel Face Model [62]. Accordingly, we were in full control
of the face poses, expressions and synthetic recording conditions such as lighting. We built
a full pipeline for the generation of faces with random expressions, random pose and random
ambient lighting. In turn, we trained and evaluated our models with the resulting dataset.

In summary, we proposed a framework that is capable of the virtual removal of head‐
mounted display in RGB‐D images. We formulated this problem as a joint RGB‐D face image
inpainting task and proposed a coarse‐to‐fine architecture that is capable of simultaneously fill‐
ing in the missing color and depth information of face images occluded by an HMD. To preserve
the identity features of the inpainted faces, we proposed an RGB‐based identity loss function.
We further proposed a data‐level fusion and hybrid fusion strategy and demonstrated their
viability. Moreover, to improve surface reproduction in the depth channel, we introduced the
employment of a surface normal loss function and contextual surface attention module. In ab‐
sence of a large scale RGB‐D face dataset, we devised a pipeline for the creation of a synthetic
RGB‐D face dataset. Based on the resulting dataset, we performed both qualitative and quan‐
titative experiments to demonstrate the performance of each of the proposed architectural
components and showed our framework’s robustness against pose and expression. To con‐
clude our exploration, we finally compared all evaluated model configurations and selected our
final solution to our main research objective. Despite its exploratory nature and limitations, our
research offers unique insights into the design and behavior of a multimodal image inpainting
architecture that can be of interest to future research.
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A.1. Additional objective metric plots regarding pose robustness
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Figure A.1: Violin plots that show the distribution of the L2 error and identity error of a set of specified pose angles
(pitch, yaw, roll).
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Figure A.2: Violin plots that show the distribution of the PSNR and SSIM of a set of specified pose angles (pitch,
yaw, roll).

A.2. Full overview of the final architecture
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Figure A.3: Overview of our RGB‐D image inpainting data‐level fusion architecturewith identity loss, surface normal
loss, and contextual surface attention.
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