
Scaling TrustChain to One Million Blocks on Mobile Devices
Storage Performance Evaluation and Benchmarking

Michiel Bakker

Supervisor(s): Johan Pouwelse, Bulat Nasrulin

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Michiel Bakker
Final project course: CSE3000 Research Project
Thesis committee: Johan Pouwelse, Bulat Nasrulin, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Smartphones offer limited storage and memory, con-
straints that conventional blockchains struggle to
meet, yet they are also the devices where user-
owned transaction chains promise the most value.
We present the first empirical study of TrustChain,
a DAG-based per-peer ledger running entirely on
mobile hardware. A Rust implementation and open-
source benchmark evaluate how flush-interval batch-
ing (k) and lossless compression affect a single node
scaling from 103 to 106 blocks.
On a Galaxy S8 and Pixel-6 emulator, RAM stays
below 600 MB and compressed disk use below 0.5
GB at one million blocks (128 B payload). Insert la-
tency remains interactive (< 8 ms) with disk:100
flushing; moderate batching (k ≈ 500) cuts CPU
load by roughly 45 % without harming durabil-
ity. Lightweight compression (LZ4-1, Zstd-1) trims
space by 20 to 30 % at a sub-10 ms cost, with
diminishing returns at higher levels. End-to-end
tests show storage is never the bottleneck, raw UDP
achieving a 7 ms median RTT.
Taken together, the implementation and measure-
ment dataset provide a concrete reference for deploy-
ing DAG-based chains on smartphones and highlight
opportunities for advancing mobile blockchain tech-
nology.

1 Introduction
Project context and team
This study forms one-fifth of a coordinated BSc research
project carried out by five TU Delft students. Together we
built a shared TrustChain code base. After this foundation was
in place, each member investigated a separate performance
aspect: storage (this paper), latency, throughput, energy
efficiency and robustness. The five papers together give a
complete view of running TrustChain on smartphones, and all
metrics are directly comparable thanks to the common setup.

Why focus on mobile chains?
Smartphones are the most widely used, but also the most
resource-constrained, networked devices in daily life. Even a
mid-range phone offers only a few gigabytes of available stor-
age, limited RAM, and storage systems whose random-write
throughput rarely exceeds a few hundred IOPS [1]. Tradi-
tional blockchains, designed for workstation-class disks, per-
form poorly under these constraints: syncing Bitcoin’s ≈500
GB history to a micro-SD card may take days, and the main
bottleneck is storage I/O, not cryptography or bandwidth [2].

Why TrustChain on mobile?
DAG-based systems such as TrustChain [3] eliminate global
consensus: each participant maintains a personal chain of
signed blocks that can be verified pairwise. Server-grade stud-
ies show that DAG architectures can achieve much higher
throughput than linear blockchains [4], and prior work such

as Gromit [5] benchmarks blockchain scalability on general-
purpose hardware. Yet despite these efforts, no public data
exist on how DAG-based systems behave in mobile environ-
ments. Because limited space and random-write performance
are key constraints on mobile, storage behavior is a critical
aspect to understand before exploring networking or energy
consumption.

We adopt a purely experimental methodology that is well-
suited to a benchmarking study and implement TrustChain
from scratch in Rust. Two independent test harnesses form the
backbone of the evaluation:

1. CLI Storage Harness: inserts generated blocks without
any network or UI layer and records timing, memory, and
disk metrics.

2. UI Round-Trip Test: runs entirely on the phone, sending
in-memory messages over raw UDP, QUIC (Iroh), or
TFTP to place storage costs in a live network context.

All experiments run on a Samsung Galaxy S8 (ext4, physi-
cal device) and a Pixel-6 emulator (F2FS). The workload spans
103–106 blocks, four payload sizes (128–4096 B), five flush
strategies (memory, disk:k with k ∈ {50, 100, 500, 1000})
and four compression levels (none, LZ4, Zstd 1/3/9).

Contributions
• Mobile TrustChain implementation in Rust An open-

source implementation that runs unchanged on desktop,
Android, and is ready for iOS embedding via the same
JNI/FFI boundary.

• Reproducible benchmarking toolkit Two open-source
harnesses (CLI runner and in-app round-trip interface)
plus supporting automation tools for easy deployment on
real devices or emulators via a single cargo ndk/adb
command.

• First empirical study of mobile TrustChain storage A
systematic analysis of how flush-interval and compres-
sion affect latency, CPU usage, and storage footprint
from 103 to 106 blocks, offering practical insight for
future mobile DAG-based platforms.

Paper outline
Section 1 gives project context and motivation. Section 2 for-
mulates the mobile storage challenge and research question.
Section 3 describes the TrustChain Rust core, JNI integra-
tion and storage model. Section 4 presents the CLI/UI test
harnesses and reports results on scaling, batching, compres-
sion and end-to-end RTT. Section 5 interprets the findings
and draws conclusions. Section 6 outlines future research
directions.

2 Background and Problem Statement
Motivation
TrustChain’s DAG design removes the need for global con-
sensus, giving each peer an append-only chain that can be
verified one-on-one [3]. Server-grade benchmarks show that
such DAGs reach much higher throughput than traditional



blockchains because parallel chains avoid the miner bottle-
neck [4]. On smartphones, however, the main bottleneck shifts
from consensus to persistent storage: most phones still only
support a few hundred random writes per second on ext4 or
F2FS storage [1]. To avoid excessive write amplification and
flash wear, techniques like batching and compression become
essential. A recent survey of blockchain storage methods high-
lights flush interval and compression, as the most effective
ways to reduce write latency and storage use on constrained
devices [6].

Key design parameters
• Flush interval k. Writing each block with an fsync()

guarantees durability but takes 1ms to 20ms per call on
mobile storage. Batching k≫ 1 blocks spreads out the
cost but risks losing the last few blocks in a crash.

• Compression level / codec. Lightweight methods like
LZ4 use very little CPU but only reduce size moderately,
while Zstandard at level 9 can shrink usage significantly
but requires much more processing. Finding a balanced
trade-off between speed and space on mobile hardware
remains open.

Scope and assumptions
1. Node role. We study a full but non-archival TrustChain

node: it checks and stores every received block, builds
local indexes, and writes to on-device storage. It doesn’t
serve historical data to others.

2. Workload. Blocks with payloads are added at a steady
rate until reaching 106 blocks. This simulates a write-
heavy pattern, worst case for mobile flash.

3. Metrics. We track (i) average insert time (wall-clock),
(ii) CPU time per block, and (iii) final storage usage.
Peak RAM is measured to ensure we stay within a 4 GB
memory limit, though reducing RAM is not the main
focus.

Problem statement
What performance and storage trade-offs arise
from batching (flush interval k) and compression
when a mobile TrustChain node grows from 103

to 106 blocks?

Hypotheses
H1: A modern smartphone can accommodate a TrustChain of

one million blocks without exhausting its local storage.

H2: Applying lossless compression significantly reduces the
on-disk footprint of the chain.

H3: Using lightweight compression together with moderate
batching keeps average insert latency within interactive
bounds for end-users.

The rest of the paper tests these hypotheses using the exper-
imental setup described next in Section 3.

3 Design and Implementation
3.1 System Overview
TrustChain is implemented as a modular, cross-platform sys-
tem composed of a Rust-based protocol core and an Android-
facing Kotlin UI. The two layers communicate through a
lightweight JNI interface, which lets the core handle cryp-
tographic and validation tasks natively, while exposing only
a minimal set of functions to the Java layer. This split
keeps mobile-specific logic separate from core processing,
and lets the same Rust library run unchanged on both desk-
top and Android. All performance-critical logic: block val-
idation, hashing, signing and state updates runs in Rust
for efficiency and portability. Rust’s ownership model en-
forces memory-safety without a garbage collector while
still matching C/C++ throughput in systems benchmarks [7;
8].

3.2 Rust Core Architecture
The Rust core is organized into a small number of modules,
each with its own role:

• model: Defines the Block type and implements
(de)serialization using Serde.

• state: Manages global chain state using RwLock-
protected maps, including block histories, deduplication
caches, and peer-specific indexes.

• common: Contains the public API used by JNI, includ-
ing block proposal creation, validation logic, and error
handling.

• util: Implements cryptographic operations such as
SHA-256 hashing, Ed25519 signatures, and zero-copy
helpers.

Thread safety is ensured through RwLock, and global state
is initialized lazily with OnceLock and Lazy. For example,
the deduplication cache uses a 30-second timeout keyed by
message content, while peer indexing guarantees blocks are
handled in proper sequence.

3.3 Data Model and Storage
Each TrustChain block includes:

• A payload (application-level message),

• Sender and receiver Ed25519 public keys,

• Corresponding digital signatures,

• A hash of the previous block,

• A monotonic index.

The system supports two storage modes:

• In-memory: Blocks are stored in a HashMap<String,
Vec<Block>>, keyed by public key.

• Flush-to-disk: Finalized blocks are saved as human-
readable JSON files and written to disk in batches. File-
names are based on block hashes.

Compression algorithms such as Zstd and LZ4 are only
applied during benchmarking and are not part of the main
runtime logic.



3.4 Cross-Language Integration via JNI
To support Android, the Rust core makes selected functions
available through a compact JNI interface:

• tcCreateProposal: Builds a signed block proposal.
• tcProcessBlock: Validates and stores a received block.
• tcGetMyPubkey: Returns the local Ed25519 public key.
JNI functions handle string conversion and error translation:
• Rust Result<T, E> types are converted to strings or

codes that JNI can handle.
• Strings from Kotlin are validated as UTF-8 before use.
• Memory safety and thread safety are handled through

Rust’s type system.
JNI usage is kept minimal: once data is inside Rust, no

further JNI calls are needed during processing. This avoids
interference with garbage collection and helps the system stay
efficient across platforms.

3.5 Transport Layer Abstraction
TrustChain separates networking from consensus logic by
defining a shared transport interface. All supported proto-
cols implement the same JNI-facing methods, so they can be
swapped in or out without affecting the rest of the system.

Three transports are currently available:
• Raw UDP: A simple transport implemented in Kotlin

using DatagramSocket. It uses a default port, retries
messages up to three times with short delays, and sup-
ports a timeout for delivery. This mode is used for local
and low-latency testing.

• QUIC (via Iroh): A Rust-based encrypted peer-to-peer
transport built on the Iroh library. QUIC is a modern
protocol, recently standardized, offering reliable streams
over UDP with built-in encryption. Iroh handles discov-
ery and connection management internally, making it
well suited for high-latency or secure communication.

• TFTP: A file-based Rust transport that moves blocks via
shared files. It works in setups where direct network-
ing isn’t available. Although not used in live tests, it
functions correctly in limited or offline environments.

All transports implement the same API (e.g.,
tcSendMessage, tcReceiveMessage) and can be tested
independently of the rest of the system. This makes it easy to
compare different network setups in Section 4.

3.6 Portability and Extensibility
The Rust core is compiled to native Android libraries us-
ing cargo-ndk, and works across common mobile platforms
(arm64-v8a, x86 64). The same codebase builds on desktop
with no changes. Although the architecture supports future
iOS integration via Swift FFI, that path hasn’t been imple-
mented yet.

Optional components are enabled using Cargo feature flags,
which let developers include or exclude things like disk stor-
age, benchmarking tools, or compression logic. These addi-
tions (e.g., performance logging or config switches) are only
used in testing setups, not during normal app use, keeping the
runtime lean and efficient.

4 Evaluation Setup and Results
4.1 Benchmarking Framework & Devices
All experiments were performed using a Samsung Galaxy
S8 (Android 9, arm64) or a Pixel-6 “gphone64” emula-
tor (Android 16). The Rust core is cross-compiled for
aarch64-linux-android and included in a lightweight
Kotlin UI; desktop builds run the same crate unchanged. Two
separate test harnesses are used:

(A) Isolated Storage CLI A Rust binary (∼600 lines) runs
the storage layer without network or UI. Each run:

(1) generates dummy double-signed blocks,

(2) saves them using the chosen storage mode, and

(3) records wall/CPU time, peak memory usage, and disk
statistics to CSV/JSON.

Configurable parameters.
• Blocks N : 103–106
• Payload: 128–4096 B
• Mode: memory or disk:k (flush every k blocks)
• Compression: none, lz4:1, zstd:1,3,9
A fixed PRNG seed guarantees reproducible payloads. The

same executable can run on both physical Android devices
and emulators. Passing the optional {suite flag benchmarks
all combinations of (N, , payload, ,mode, , compression).

(B) UI-RTT Benchmark. A lightweight UI allows the user
to pick a transport and launch a round-trip test directly from
the handset. The entry screen offers three buttons: Iroh, UDP,
and TFTP. These switch the underlying transport at runtime.
The following “Simulation Config” form lets the user enter
payload size, message rate, and test duration, and provides
a single START SIMULATION button that begins a loop of in-
memory send/echo messages. Each leg is timestamped inside
the Rust layer; the UI periodically polls the running process
and saves the results as CSV files on the device.

In summary, the CLI isolates storage while the UI benchmark
gives a single RTT datapoint to place storage costs in a real
network context; all later sections draw exclusively on one of
these two harnesses.

4.2 Round-Trip Baseline (Network + Storage)
The storage experiments in Section 4 leave out all network
effects. To better understand how storage performance com-
pares to the rest of the system, we measured an end-to-end
round-trip time (RTT) between a Pixel-6 emulator (sender)
and a Galaxy S8 physical device (receiver). Both devices run
the same Rust core and Kotlin UI. The emulator runs on the
desktop screen, while the phone is connected to the computer
via USB. We ran the same test for both Iroh and plain UDP.

Every 10 s the emulator sends a single 128B payload.
The phone receives, validates, stores it in memory, and
immediately echoes it back. Timestamps recorded at
send benchmark sc and processing message provide an
application-level RTT, which we can directly compare to the
isolated-storage insert times.



Result. Figure 1 shows the results for the two transport
options in our setup. Raw UDP completes the round trip
in a median of around 7ms with almost no outliers, while
encrypted QUIC (Iroh) comes in at about 56ms and shows a
noticeable long tail.

Figure 1: Application-level RTT for bursts of ten 128B blocks emit-
ted each second. Each box summarises 300 messages (n=300).

4.3 Isolated Storage Results
This section isolates the storage layer, which allows to dive
deeper into its behavior without interference from networking
or consensus logic. All experiments were executed using the
stand-alone Rust CLI on the Samsung Galaxy S8 (physical)
and the “gphone64” Pixel 6 emulator. Unless stated otherwise,
we disable compression and fix the flush interval to disk:100.
4.3.0 Statistical baseline. Before analyzing larger config-
urations, we ran the two main storage modes (memory and
disk:100) five times at N=100,000 blocks and collected 95%
confidence intervals. Figures 2 and 3 show that the resulting
interval bars are barely visible, below 2% of the mean in all
cases. For the rest of this section, we therefore report the
mean of a single representative run, as the variance is statisti-
cally negligible. This choice also helped reduce the total time
needed to run the larger benchmarks.

Figure 2: Average insert time per block at N=100,000 blocks with
95% CI (n=5) for the two principal storage modes.

4.3.1 Scaling to 1M Blocks. Figure 4 shows the average
insert time as the chain scales from 1 k to 1M blocks, using

Figure 3: Peak RAM and final disk usage at N=100,000 blocks with
95% CI (n=5).

the emulator with 128-byte payloads. Insert time increases
linearly with chain length (R2 > 0.99), confirming an O(N)
cost model. In-memory mode stays efficient, remaining below
4ms/block even at one million blocks, while disk:100 passes
8ms/block over the same range.

Figure 5 shows the peak RAM usage in memory mode for
the same experiment. Usage grows linearly with chain length,
reaching around 600MB at one million blocks. This suggests
a rough estimate: if this trend continues, devices with 1GB of
free RAM could handle roughly 1.5–1.8 million blocks in pure
memory mode. That number would be significantly lower for
larger payload sizes.

Figure 4: Average insert time per block versus chain length (128B
payload, emulator).

4.3.2 Impact of Flush Intervals. Figure 6 shows the CPU
time per block for five storage modes at N=100,000 blocks and
two payload sizes, using the emulator. Each disk-N config-
uration flushes to disk every N blocks. The disk-50 setting
shows the highest overhead, reaching up to 2.4ms/block at
1 kB payloads. In comparison, disk-500 and disk-1000
both significantly reduce overhead, approaching the per-
formance of memory while maintaining reasonable durabil-
ity. The data shows diminishing returns beyond disk-500,
which represents a practical sweet spot in terms of the la-
tency–durability trade-off.

4.3.3 Payload Scaling Effects. To understand how payload
size impacts performance, we benchmarked insert cost and



Figure 5: Peak memory usage for memory mode as a function of
chain length (128B payloads, emulator).

Figure 6: CPU time per block at N=100,000 blocks for five storage
modes (emulator). Each disk-Nmode flushes to disk every N blocks.

disk usage as a function of block count for five payload con-
figurations (128 to 4096B) using the emulator. The results
in Figures 7 and 8 show near-perfect linear scaling in both
dimensions, consistent with constant-time encoding and deter-
ministic flush overheads.

Figure 7 shows that disk usage increases linearly with the
number of blocks and is largely driven by the payload size. At
100,000 blocks, moving from 128B to 4096B payloads leads
to a several-hundred-megabyte increase in disk space, showing
that the majority of storage cost comes from the payload itself
once sizes exceed around 1 kB.

Meanwhile, Figure 8 reveals that CPU time per block also
increases linearly with block count and clearly separates by
payload size. At 100k blocks, the per-block cost nearly triples
between the smallest and largest payloads. This is expected,
as larger payloads require more I/O and serialization work per
insert.

Figure 7: Disk usage growth as a function of number of blocks across
five payload sizes (emulator). Disk cost scales linearly, with payload
size as the dominant factor.

Figure 8: Average insert time per block versus number of blocks for
different payload sizes (emulator). CPU cost increases linearly with
chain length, and is higher for larger payloads.

4.4 Compression Study
Benchmark Setup. To evaluate the trade-offs of on-device
compression for TrustChain storage, we benchmarked four
compression modes on a physical Samsung Galaxy S8:
zstd:1, zstd:3, zstd:9, and lz4:1, against a baseline with-
out compression: none. At five different payload sizes (128,



512, 1024, 2048, 4096 bytes), each configuration was run
once using 100,000 blocks. All benchmarks used the same
disk:100 flush interval and were executed under stable run-
time conditions to minimize noise.
CPU Overhead. Figure 9 reports the average CPU time per
block for each compression method and payload size. As
expected, CPU cost increases with compression level. The
zstd:9 configuration shows the highest overhead, on smaller
payloads, it processes each block more than five times slower
than when no compression is used. On the other hand, zstd:1
and lz4:1 introduce moderate costs, typically staying under
10 ms per block.

Figure 9: Impact of compression mode on average CPU time per
block after 100,000 blocks (Samsung Galaxy S8), shown across
varying payload sizes.

Profiling. To confirm that the slowdown is caused by the
codec, we profiled the last 60 s of the disk:100, 128 B run on
the Galaxy S8 using simpleperf: once with no compression
and once using zstd:3.

No compression. The most active application-level func-
tions together account for about 61% of execution time:

• System RNG reseed: 5.3%
• Two serde json helpers (map serialization): 5.3% in

total
• All remaining items (memcpy, allocator calls, bookkeep-

ing) stay below 2%

With zstd:3. Enabling zstd:3 compression shifts the
profile noticeably:

• Bulk memory operations (memset/memcpy) rise from
9% to 21%

• ZSTD compressBlock doubleFast and related calls:
7%

• Storage-related functions (flush to disk,
serialize entry, etc.) stay below 4%, similar
to the baseline

Take-away. Roughly 28% of total CPU time now goes
into compression itself or the extra memory operations it re-
quires—closely aligning with the 25% to 30% runtime impact
observed in Fig. 9. No new processing or hashing bottlenecks

are introduced, confirming that compression, not file I/O, is re-
sponsible for the extra overhead. The lighter codecs (zstd:1,
lz4:1) follow the same pattern but with lower overhead, rein-
forcing their suitability in situations where disk space matters
but performance must remain responsive.

Disk Savings. Figure 10 shows the total disk usage after
flushing all blocks to storage. Compression reduces disk usage
consistently across all payload sizes. For example, at 4096-
byte payloads, zstd:1 lowers usage from around 0.42GB
to under 0.30GB. The savings become more noticeable as
payload size increases. This trend is expected since larger
payloads tend to contain more repeated patterns, giving com-
pression algorithms more opportunities to reduce file size.

Figure 10: Impact of compression mode on disk usage after 100,000
blocks (Samsung Galaxy S8), shown across varying payload sizes.

Compression Trade-off Summary. Compression reduces
the amount of disk used but introduces CPU overhead, with a
clear trade-off between disk usage and processing time. For
use cases that prioritize storage savings, zstd:1 offers a good
balance. Latency-sensitive deployments may prefer none or
lz4:1 for their faster runtime performance. Industry mea-
surements on embedded cores show exactly the same trend:
LZ4 and low-level Zstd give a 20–30% space reduction at
sub-10 ms latency, while high-level Zstd wins on ratio only
when extra CPU cycles are acceptable [9].

Responsible Research Practices
Reproducibility and open access. All source code, bench-
mark harnesses, and plotting scripts are available in a public
Git repository1. The full experimental workflow, including de-
vice setup, flush intervals and compression settings is detailed
in Section 3. Results may vary slightly on other hardware or
Android versions, but all parameters are documented so that
equivalent devices should reproduce the reported trends.

Synthetic data only. No real user data are ever processed.
All blocks are produced from a fixed PRNG seed, giving
reproducible and entirely synthetic payloads and keys.

1https://github.com/mbakker520/smartphone-trustchain/tree/
storage benchmarking

https://github.com/mbakker520/smartphone-trustchain/tree/storage_benchmarking
https://github.com/mbakker520/smartphone-trustchain/tree/storage_benchmarking


Licensing. The Rust core and Kotlin UI are released under
a liberal Apache-2.0/MIT dual license and rely exclusively
on open, royalty-free algorithms such as Ed25519, SHA-256,
Zstandard, and LZ4.

Potential for misuse. While this project is intended for re-
search and benchmarking purposes only, it is technically pos-
sible to embed the code in closed-source or privacy-obscuring
peer-to-peer applications. We acknowledge this risk and note
that no safeguards or usage restrictions are built into the sys-
tem. The software is made available as-is for transparency and
academic reproducibility, with no warranty or control over
downstream use.

5 Discussion and Conclusion
This project set out to evaluate whether a mobile TrustChain
node can scale from a few thousand to one million blocks
while remaining responsive and storage-efficient under typi-
cal smartphone constraints. We focused on two core storage
parameters: flush-interval batching and lossless compression.
And analyzed their impact across CPU usage, latency, disk
footprint, and memory scalability.

Feasibility and scalability. Our experiments confirm that
a one-million-block chain fits comfortably on modern smart-
phones. With 128 B payloads, total disk usage is projected
at ≈ 0.48GB, and memory mode remains below 600 MB
(Fig. 5), allowing full in-RAM operation on devices with
≥ 1GB free. Insert latency stays under 8 ms even in disk-
backed mode, and network round-trips over raw UDP remain
fast (median RTT ≈ 7ms), showing that storage never be-
comes the primary bottleneck.

Flush interval trade-offs. We observed a clear performance
“knee” at disk:500 (Fig. 6), where per-block CPU cost drops
by ≈ 45% compared to disk:50. Intervals beyond 500 result
in reduced returns, suggesting that disk:500 offers the best
trade-off between durability and speed for most mobile de-
ployments. Aggressive flushing increases CPU overhead sub-
stantially without significant benefit, and applications should
avoid it unless strict crash-tolerance is required.

Compression benefits and costs. Both Zstd 1 and LZ4 pro-
vide consistent 20–30% storage reduction (Figs. 9, 10), with
sub-10 ms latency on mid-range devices. Profiling confirms
that the added cost is due to compression itself, not I/O or cryp-
tographic overhead. LZ4 adds negligible delay and is suitable
even for interactive use. For background syncing or archival
storage, Zstd 1 offers improved compression at acceptable
runtime cost. Zstd 9 reduces space further but exceeds 5× the
CPU time of uncompressed inserts, making it impractical for
most mobile deployments.

Memory limits and hybrid strategies. RAM usage grows
linearly with chain size, reaching ≈ 600MB at one million
blocks in memory mode (Fig. 5). This imposes a practical cap
of 1.5–1.8 million blocks on devices with 1 GB of available
memory. To support longer histories, applications should
adopt hybrid memory/disk strategies that retain recent blocks
in RAM and flush older ones to disk.

Real-world variance and generalizability. All results were
obtained under controlled conditions using synthetic data,
fixed insert rates, and isolated benchmarks. In real deploy-
ments, performance may degrade due to background processes,
thermal throttling, or variable network quality. The TFTP
transport was excluded from benchmarking due to unreliability
on mobile hardware. Raw UDP performed consistently well,
while Iroh (QUIC) introduced additional latency (∼ 55ms
median RTT). Tests on ext4 (Galaxy S8) and F2FS (Pixel
emulator) represent two common Android setups, but further
validation is needed on iOS (APFS), lower-end devices, and
newer UFS-based flash controllers.

Hypothesis verdicts
H1: (capacity) upheld: a one-million-block TrustChain fits

comfortably within the RAM and flash constraints of
modern smartphones.

H2: (space savings) upheld: lightweight compression reduces
disk usage by 20–30% with acceptable CPU overhead.

H3: (interactive latency) upheld: under moderate batching
and compression, per-block insert latency remains below
10 ms, even at high block counts.

Final remarks. This work demonstrates that DAG-based,
user-owned blockchains like TrustChain can operate effi-
ciently on real mobile hardware, provided they apply batching
and lightweight compression. The benchmarks and profiling
tools developed here provide a basis for future mobile ledger
systems. Ongoing work should focus on adaptive flushing,
cross-platform validation, and energy-aware optimizations to
prepare TrustChain for production-ready, real-world deploy-
ments.

6 Future Work
Two storage related possible future additions:

• Binary block encoding. Replace JSON payloads with
a compact binary format (e.g., Protocol Buffers or Flat-
Buffers) to reduce on-disk size and speed up parsing.

• Adaptive flush controller. Replace the fixed disk:k
setting with a feedback loop that stretches flushes on
Wi-Fi + charge and shortens them under interactive load,
balancing tail latency and flash wear.

And in addition to the latency-, throughput-, energy-, and
robustness- studies already completed more general possible
additions:

• Cross-platform port & API parity. Compile the Rust
core for aarch64-apple-ios, publish Swift bindings,
and confirm that mobile nodes can sync, validate, and
expose the same GraphQL/event interfaces as desktop
peers.

• Large-scale interoperability tests. Deploy mixed fleets
of phones, tablets, and desktops (Wi-Fi, 5G, Ethernet) to
exchange chains, measure fork-resolution latency, and un-
cover protocol edge-cases under thousands of concurrent
connections.



References
[1] Joungyoul Lee. Initial F2FS performance results. Linux

Kernel Mailing List post, October 2012. Message to linux-
kernel@vger.kernel.org.

[2] Initial sync extremely slow – use ssd. Bitcoin Stack Ex-
change, Q&A post, 2020.

[3] Pim Otte, Martijn de Vos, and Johan Pouwelse.
TrustChain: A sybil-resistant scalable blockchain. Fu-
ture Generation Computer Systems, 107:770–780, 2020.

[4] Fabian Kahmann, Maximilian Bader, Manuel Brack,
Wiebke Sahlmann, and Peter Herrmann. Performance
comparison of dag-based ledgers and blockchain plat-
forms. Computers, 12(12):257, 2023.

[5] Bulat Nasrulin, Martijn de Vos, Georgy Ishmaev, and Jo-
han Pouwelse. Gromit: Benchmarking the performance
and scalability of blockchain systems. In L. O’Conner,
editor, Proceedings of the 4th IEEE International Confer-
ence on Decentralized Applications and Infrastructures
(DAPPS 2022), pages 56–63. IEEE, 2022.

[6] Bingzhe Li, Qian Wei, Wanli Chang, Zhiping Jia, Zhaoyan
Shen, and Zili Shao. Blockchain data storage optimisa-
tions: A comprehensive survey. ACM Computing Surveys,
57(1):1–37, 2024.

[7] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and
Derek Dreyer. Safe systems programming in rust. Com-
munications of the ACM, 64(4):21–28, 2021.

[8] William Bugden and Ayman Alahmar. The safety and
performance of prominent programming languages. Inter-
national Journal of Software Engineering and Knowledge
Engineering, 32(5):713–744, 2022.

[9] Calliope-Louisa Sotiropoulou. Evaluating lossless
data compression algorithms and cores. CAST
Inc. Technical White Paper, 2025. Available:
https://www.cast-inc.com/blog/white-paper-evaluating-
lossless-data-compression-algorithms-and-cores.

https://www.cast-inc.com/blog/white-paper-evaluating-lossless-data-compression-algorithms-and-cores
https://www.cast-inc.com/blog/white-paper-evaluating-lossless-data-compression-algorithms-and-cores

	Introduction
	Background and Problem Statement
	Design and Implementation
	System Overview
	Rust Core Architecture
	Data Model and Storage
	Cross-Language Integration via JNI
	Transport Layer Abstraction
	Portability and Extensibility

	Evaluation Setup and Results
	Discussion and Conclusion
	Future Work

