

Delft University of Technology

Fast, flexible particle simulations
An introduction to MercuryDPM
Weinhart, Thomas; Orefice, Luca; Post, Mitchel; van Schrojenstein Lantman, Marnix P.; Denissen, Irana
F.C.; Tunuguntla, Deepak R.; Tsang, J. M.F.; Barbosa, Joao; Shi, H.; More Authors
DOI
10.1016/j.cpc.2019.107129
Publication date
2020
Document Version
Final published version
Published in
Computer Physics Communications

Citation (APA)
Weinhart, T., Orefice, L., Post, M., van Schrojenstein Lantman, M. P., Denissen, I. F. C., Tunuguntla, D. R.,
Tsang, J. M. F., Barbosa, J., Shi, H., & More Authors (2020). Fast, flexible particle simulations: An
introduction to MercuryDPM. Computer Physics Communications, 249, 1-18. Article 107129.
https://doi.org/10.1016/j.cpc.2019.107129
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cpc.2019.107129
https://doi.org/10.1016/j.cpc.2019.107129

Computer Physics Communications 249 (2020) 107129

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

CPC 50th anniversary article

Fast, flexible particle simulations — An introduction to
MercuryDPM✩,✩✩

Thomas Weinhart a,b,∗, Luca Orefice c,d, Mitchel Post a, Marnix P. van Schrojenstein
Lantman a, Irana F.C. Denissen a, Deepak R. Tunuguntla a, J.M.F. Tsang e, Hongyang Cheng a,
Mohamad Yousef Shaheen a, Hao Shi a,b, Paolo Rapino b, Elena Grannonio g,
Nunzio Losacco g, Joao Barbosa h, Lu Jing f, Juan E. Alvarez Naranjo a, Sudeshna Roy a,
Wouter K. den Otter a, Anthony R. Thornton a,b

a Multiscale Mechanics, Engineering Technology, MESA+, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
b Mercury Lab BV, Mekkelholtsweg 10, 7523 DE Enschede, The Netherlands
c Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgaße 13, 8010 Graz, Austria
d European Consortium on Continuous Pharmaceutical Manufacturing (ECCPM), 8010 Graz, Austria
e DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
f Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
g Department of Civil Engineering and Computer Science, University of Rome ‘‘Tor Vergata’’, Via del Politecnico 1, 00133 Rome, Italy
h Department of Engineering Structures, Section of Dynamics of Solids and Structures, CiTG, TU Delft, Stevinweg 1, 2628 CN Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 12 August 2019
Received in revised form 29November 2019
Accepted 2 December 2019
Available online 27 December 2019

Keywords:
Granular materials
DEM
DPM
MercuryDPM
Open-source

a b s t r a c t

We introduce the open-source package MercuryDPM , which we have been developing over the last
few years. MercuryDPM is a code for discrete particle simulations. It simulates the motion of particles
by applying forces and torques that stem either from external body forces, (gravity, magnetic fields,
etc.) or particle interactions. The code has been developed extensively for granular applications, and in
this case these are typically (elastic, plastic, viscous, frictional) contact forces or (adhesive) short-range
forces. However, it could be adapted to include long-range (molecular, self-gravity) interactions as well.

MercuryDPM is an object-oriented algorithm with an easy-to-use user interface and a flexible core,
allowing developers to quickly add new features. It is parallelised using MPI and released under the
BSD 3-clause licence. Its open-source developers’ community has developed many features, including
moving and curved walls; state-of-the-art granular contact models; specialised classes for common
geometries; non-spherical particles; general interfaces; restarting; visualisation; a large self-test suite;
extensive documentation; and numerous tutorials and demos. In addition, MercuryDPM has three major
components that were originally invented and developed by its team: an advanced contact detection
method, which allows for the first time large simulations with wide size distributions; curved (non-
triangulated) walls; and multicomponent, spatial and temporal coarse-graining, a novel way to extract
continuum fields from discrete particle systems. We illustrate these tools and a selection of other
MercuryDPM features via various applications, including size-driven segregation down inclined planes,
rotating drums, and dosing silos.
Program summary
Program Title: MercuryDPM
Program Files doi: http://dx.doi.org/10.17632/n7jmdrdc52.1
Licensing provisions: BSD 3-Clause
Programming language: C++, Fortran
Supplementary material: http://mercurydpm.org
Nature of problem: Simulation of granular materials, i.e. conglomerations of discrete, macroscopic
particles. The interaction between individual grains is characterised by a loss of energy, making the
behaviour of granular materials distinct from atomistic materials, i.e. solids, liquids and gases.

✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
∗ Corresponding author at: Multiscale Mechanics, Engineering Technology, MESA+, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

E-mail address: t.weinhart@utwente.nl (T. Weinhart).

https://doi.org/10.1016/j.cpc.2019.107129
0010-4655/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.107129
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.107129&domain=pdf
http://dx.doi.org/10.17632/n7jmdrdc52.1
http://mercurydpm.org
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:t.weinhart@utwente.nl
https://doi.org/10.1016/j.cpc.2019.107129
http://creativecommons.org/licenses/by/4.0/

2 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Solution method: MercuryDPM (Thornton et al., 2013, 2019; Weinhart et al., 2016, 2017, 2019) is an
implementation of the Discrete Particle Method (DPM), also known as the Discrete Element Method
(DEM) (Cundall and Strack, 1979). It simulates the motion of individual particles by applying forces and
torques that stem either from external forces (gravity, magnetic fields, etc.) or from particle-pair and
particle–wall interactions (typically elastic, plastic, dissipative, frictional, and adhesive contact forces).
DPM simulations have been successfully used to understand the many unique granular phenomena
– sudden phase transitions, jamming, force localisation, etc. – that cannot be explained without
considering the granular microstructure.
Unusual features: MercuryDPM was designed ab initio with the aim of allowing the simulation of
realistic geometries and materials found in industrial and geotechnical applications. It thus contains
several bespoke features invented by the MercuryDPM team: (i) a neighbourhood detection algorithm
(Krijgsman et al., 2014) that can efficiently simulate highly polydisperse packings, which are common
in industry; (ii) curved walls (Weinhart et al., 2016) making it possible to model real industrial
geometries exactly, without triangulation errors; and (iii) MercuryCG (Weinhart et al., 2012, 2013,
2016; Tunuguntla et al., 2016), a state-of-the-art analysis tool that extracts local continuum fields,
providing accurate analytical/rheological information often not available from experiments or pilot
plants. It further contains a large range of contact models to simulate complex interactions such as
elasto-plastic deformation (Luding, 2008), sintering (Fuchs et al., 2017), melting (Weinhart et al., 2019),
breaking, wet and dry cohesion (Roy et al., 2016, 2017), and liquid migration (Roy et al., 2018), all of
which have important industrial applications.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Granular materials – conglomerations of discrete, macroscopic
particles – are ubiquitous in both industry and nature. They range
from natural materials like snow, sand, soil, coffee, rice and coal
to man-made agglomerates such as medicinal tablets, catalysts
or animal feed. Understanding the behaviour of granular media
is of paramount importance to the pharmaceutical, mining, food
processing and manufacturing industries, and highly relevant to
the prediction and prevention of landslides, earthquakes and
other geophysical phenomena.

MercuryDPM [1–4] is an open-source package for simulating
granular materials with the discrete particle method (DPM) [5].
It simulates the motion of N particles in a system constrained by
Nw walls and body forces. It assumes:

(i) Particles are unbreakable; however, breakage can be in-
cluded by forming clusters of ‘primary’ particles, see
Section 6.3 for details.

(ii) Particles are undeformable, such that the particle masses
mi and inertia tensor Ii are constant in the body-based
frame. Note that clusters can be used to model deformable
particles, see Section 6.3.

(iii) All interactions between the particles are binary, i.e. all
internal forces/torques are due to particle pair interactions.

(iv) Each particle pair i, j has at most a single contact point cij at
which the interaction forces fij and torques τ ij act.

(v) All external forces/torques acting on a particle i are either
body forces fbi or interaction forces fwik with a wall k. The
same is true for torques.

The force and torque acting on each particle i can then be com-
puted as

fi =
N∑
j=1

fij +
Nw∑
k=1

fwik + fbi ,

τ i =

N∑
j=1

rij × fij + τ ij +

Nw∑
k=1

rik × fwik + τw
ik + τb

i ,

with the branch vector rij = cij − ri connecting the particle
position ri with the contact point cij. For given initial conditions,
Newton’s second law can then be used to evolve the particles’

velocities vi, positions ri, angular velocities ωi and orientations
qi:

dvi
dt
=

1
m i

fi,
dri
dt
= vi,

dωi

dt
= I−1i τ i,

dqi

dt
= C(qi)ωi.

For computational stability, the orientation is stored as a quater-
nion qi ∈ R4, which requires the use of a transformation matrix
C(qi); see [6,7] for details.

The above differential equations are solved numerically using
the Velocity-Verlet algorithm, which is symplectic (thus, energy
is conserved in case of elastic forces) and second-order accurate.
Using a higher-order accurate time integration scheme would
not increase accuracy, because most DPM contact models are
non-differentiable.

MercuryDPM is written mainly in object-oriented C++, using
many modern features from C++11. We try to follow the latest
developments in the C++ language; however, we also guarantee
the release version will work on two-year old compilers. The lat-
est version uses parts of the Fortran LAPACK library [8]. However,
the parts we use have been incorporated into the MercuryDPM
source code, thereby avoiding an external dependency; only a
Fortran compiler is required. The code has an easy-to-use user
interface and a flexible core, allowing developers to quickly add
new features. It is parallelised using MPI and released under the
BSD 3-clause licence. Thus, it can be used as part of closed-source
derivatives, as long as the derived software acknowledges the
MercuryDPM team.

We have tried (and hopefully succeeded) in making Mercury-
DPM easy to learn for new users. Its installation process is simple
and the package includes many tutorials as well as example codes
that demonstrate the package’s features. It is also supplemented
by a detailed reference manual (docs.mercurydpm.org). Users
otherwise unfamiliar with C++ have found the project’s coding
style intuitive, allowing them to focus on modelling problems.

The code is being developed by a global network of researchers
and in the last few years has received contributions from uni-
versities such as Cambridge, Stanford, EPFL, Birmingham, Strath-
clyde, Sydney, Northwestern, Rome, Delft and Manchester, as
well as industry, such as MercuryLab in Enschede and RCPE and
ECCPM in Graz. We encourage all MercuryDPM users to merge the
features they develop into MercuryDPM , thus becoming Mercury-
DPM developers.

As the code is fully open-source, all features we develop can
be accessed and reused freely for both non-commercial and com-
mercial use. The open-source philosophy allows the code base

http://creativecommons.org/licenses/by/4.0/
http://docs.mercurydpm.org/

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 3

to grow quickly, and the open-source development reduces the
amount of coding errors, as you get near-imminent feedback
from other developers. Its open-source community has developed
many features, including moving and curved walls; state-of-the-
art granular contact models; specialised classes for common ge-
ometries; non-spherical particles; general interfaces; restarting;
visualisation; a large self-test suite; extensive documentation;
and numerous tutorials and demos. In the following, we review
some of these features.

2. Coding philosophy

MercuryDPM is written in an object-oriented programming
style, i.e. it uses classes to define objects: spherical particles are
objects of type SphericalParticle; planar walls are of type
InfiniteWall; and periodic boundaries are of type Period-
icBoundary. A myriad of other classes have been implemented
and ready for use, many of which are described in following
sections The user can also derive their own classes by inheriting
from existing ones, adding extra functionality.

The clear and structured nature of MercuryDPM means it is
quick and easy to develop new features; however, the level of
C++ required is still demanding to some users. Therefore, we are
developing a graphical interface, opening it up to a whole new
set of users, both academic and industrial.

3. Major components

MercuryDPM has three major components that were originally
developed by its team: (i) a contact detection algorithm [10]
that can efficiently simulate highly polydisperse packings, which
are common in industry; (ii) curved walls [3], making it possi-
ble to model real industrial geometries exactly, without trian-
gulation errors; and (iii) MercuryCG [11–14], a state-of-the-art
analysis tool that extracts local continuum fields, providing ac-
curate analytical/rheological information often not available from
experiments or pilot plants.

3.1. Contact detection

Contact detection – determining which particle pairs are in
contact – is one of the most complex parts of any DPM algorithm
and can consume the majority of the computational time, if it is
not carefully implemented.

The most basic contact detection simply loops through all
particle pairs; this algorithm is of quadratic complexity, O(N2),
where N is the number of particles in the simulation. Because
the rest of the DPM algorithm is of linear complexity, O(N), such
a contact detection would make large simulations prohibitively
expensive. A more efficient contact detection algorithm is needed.

Most DPM algorithms use the linked-cell algorithm for contact
detection [15], illustrated in Fig. 1 left: Particles are placed into a
grid whose cell size is the diameter of the largest particle. Thus,
particles can only be in contact with particles in the same or in a
neighbouring cell, reducing the number of necessary checks. For
(nearly) monodispersed simulations, this algorithm is of linear
complexity, O(N), and thus sufficiently efficient. However, the
order complexity increases to quadratic, O(N2), for highly poly-
disperse simulations, because the cell size is based on the largest
particle diameter.

MercuryDPM uses the hierarchical grid (hGrid) [9,10,16], an
advanced contact detection method that uses several grids for
different particle sizes, as shown in Fig. 1 middle. This contact
method gives MercuryDPM its name: hGridDPM → HgDPM →
MercuryDPM . By carefully selecting the number of levels and
cell sizes, linear complexity of the algorithm can be guaran-
teed even for the most challenging particle size distributions.

The effectiveness of the approach has been proven theoretically
and in simulations [9]: for highly polydisperse situations, the
hierarchical grid is two orders of magnitude quicker than the
linked-cell algorithm, see Fig. 1 right. Furthermore, the CPU time
varied only minimally when comparing monodisperse, bidisperse
and polydisperse systems with the same number of particles and
volume fraction [9]. This feature allows for the first time large
simulations with wide size-distributions.

The hierarchical grid algorithm is made up of two phases:
mapping and contact detection. In the first phase, all particles
are mapped onto a grid level. In the second phase, the potential
contact partners for every particle in the system are determined.
Both phases are of linear complexity, and allow straightforward
parallelisation.

The two- or three-dimensional hierarchical grid is a set of
L regular grids with different cell sizes s1 < s2 < · · · < sL.
Each particle p is mapped into a specific cell in the lowest level
grid big enough to contain the particle. A new mapping is done
before every time step, as this is cheaper than tracking changes
and updating the map. It must be noted that the cell size sh
of each level h can be set independently, in contrast to contact
detection methods which use a tree structure for partitioning
the domain [17], where the cell sizes are taken as double the
size of the previous lower level of hierarchy, hence sh+1 = 2sh.
The flexibility of independently choosing sh allows one to select
the optimal cell sizes according to the particle size distribution,
further improving the performance of the simulations [9].

The contact detection is split into two steps, and the search
is done by looping over all particles p and performing the first
and second steps consecutively for each p. The first step is a
contact search at the level of insertion, using the classical linked-
cell method: the search is done in the cell onto which p is
mapped, and in its neighbour (surrounding) cells. Only half of the
surrounding cells are searched, to avoid testing the same particle
pair twice. The second step is the cross-level search. For a given
particle p, one searches for potential contacts only at levels of
smaller grid size. This implies that the particle p will be checked
only against the smaller ones, thus avoiding double checks for the
same pair of particles. See [9] for details of the algorithm.

3.1.1. Application: Segregation in rotating drums
Segregation of grains by size is a scientifically interesting

and industrially relevant problem. In industrial situations, size-
distributions often range over orders of magnitude and are highly
polydispersed; whereas academic studies often consider bidisper-
sity with a factor of only 2–10 in size. One key reason for this
discrepancy is computational cost. However, the hierarchical grid,
at the heart MercuryDPM , is over three orders of magnitude faster
for bidispersed mixtures with a size ratio of 100, and even faster
for truly polydisperse packings; see [16] for details. Fig. 2 shows
a simulation where each particle is a unique size and the ratio of
small to largest radii is 100. This is visualised using ParaView and
was run on a single core on a normal desktop computer in a few
hours.

3.2. Curved walls

A distinguishing feature ofMercuryDPM is its support of curved
geometric surfaces, or walls. Many types of walls are imple-
mented and ready for use, such as

• Flat walls (implemented in InfiniteWall),
• Convex polygons (2D) or polyhedra (3D)

(IntersectionOfWalls),
• Conical and cylindrical shapes, created by rotating a

polygon around an axis
(AxisymmetricIntersectionOfWalls),

4 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 1. Left: Linked-cell grid for contact detection for a bi-disperse system. Middle: A two-level hierarchical grid for the same case. Right: Speed-up factor for different
numbers of levels for systems with a uniform volume distribution, N = 125 001, amax/amin = 50.
Source: Data from [9].

Fig. 2. Simulations visualised in ParaView of size-based segregation in drum.
Colour indicates particle size, from red (small) to green (medium) to blue (large).

• Single- or double-threaded helixes (Screw),
• Coils [18] (Coil),
• Iso-surface of a piecewise linear function defined on a

Cartesian grid [19] (LevelSetWall),
• NURBS surfaces [20] (NurbsWall).

See Fig. 3 for examples of the most common wall types.
Each wall k has a position pk and orientation qk that can be

either a fixed value or a prescribed function, to simulate moving
and rotating walls.

For contact detection, each wall type has a getDistanceAnd-
Normal(particle, distance, normal) function that com-
putes the contact normal nij and distance d from the wall for any
given particle. These values are necessary to compute the contact
force.

For many walls, the contact normal and distance is computed
analytically (and thus efficiently): For example, for a flat wall k
and a spherical particle i, the normal direction nik can be com-
puted from the wall orientation, and the distance to the particle is
given by d = (pi−pk)·nik. Analytic solutions are also used for In-
tersectionOfWalls, AxisymmetricIntersectionOfWalls,

TriangleWall, NURBSWall, and LevelSetWall. Note that In-
tersectionOfWalls are not simple flat surfaces, but have de-
fined face, edge and vertex contacts; Fig. 4 shows the normal and
distance computed for the case of a triangular wall.

More complex wall shapes like the Coil or Screw require
an iterative scheme. In both cases, Newton iteration is used to
minimise the distance to the wall. Fig. 5 shows the normal and
distance for a Screw.

In particular NURBS surfaces are very general and can be used
to simulate many types of walls. However, if a particular surface
type is not yet implemented, the user can define it by creating
a new wall type and writing an appropriate getDistanceAnd-
Normal function.

Most other codes approximate curved surfaces via triangu-
lated walls. This can be done in MercuryDPM as well: triangulated
walls can be stored as STL or VTK files, and read-in using the
readTriangleWalls function. However, it is generally not rec-
ommended to use triangulated walls for the following reasons:
Firstly, the discretisation error of triangulating surfaces can be
significant, especially for surfaces with high local curvature, such
as coils or helicoidal shapes, or for moving surfaces that are
only separated by a narrow gap. Secondly, as you refine your
triangulation, you very quickly get to a large number of trian-
gles, which slows down the contact detection; whereas, with the
MercuryDPM curved wall support you have just one wall.

3.2.1. Application: Industrial mixers
All of the above-mentioned triangulation problems occur

when studying industrial mixers. One such example is the Nauta-
style mixer shown in Fig. 6 right. In MercuryDPM , this mixer is
composed of only four curved surfaces: two conical walls for
the casing and the base, and a helical screw with a cylindrical
shaft, which rotate around their axis as well as along the casing.
The high curvature of the helical screw and the narrow gap
between the screw and the outer casing are hard to resolve using
triangulated surfaces. Thus, triangulated geometries need to be
highly refined, with thousands of triangles representing a single
surface, which is less efficient and less accurate than using curved
walls.

3.2.2. Application: Tunnel boring machine
Thanks to MercuryDPM ’s support of curved walls, it was possi-

ble to simulate a Tunnel Boring Machine (TBM). TBMs are used to
excavate tunnels with a circular cross section; they have a rotat-
ing wheel, called cutter-head, used to excavate the soil. When the
ground is soft, Earth Pressure Balance Machines (EPB) are used.
They get this name because they use the excavated material to
balance the pressure at the tunnel face and this is obtained using

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 5

Fig. 3. Examples of the most common wall types, from left to right: polygon, polyhedron, conical shape, triangulated wall, NURBS surface; level-set surface,
double-sided screw. See the source directory Drivers/Walls/ for an implementation of the examples shown.

Fig. 4. Normal direction and distance computed for the contact of a particle at position (x, y) with a triangular wall spanned by the three points (0, 0), (1, 0), (0, 1).
3-dimensional polyhedra are implemented similarly.

Fig. 5. Normal direction and distance computed for the contact of a particle at position (x, y, 0) with a two-sided helical screw (Fig. 3 right).

Fig. 6. Industrial mixers simulated in MercuryDPM with curved geometric features (no triangulation). Left-to-right: Auger mixer, rotating drum, and Nauta mixer.

a screw. The screw allows the maintenance of the prescribed
pressure inside the excavation chamber. EPBs have a complex ge-
ometry, but with MercuryDPM it is possible to obtain a simplified
version using a novel hybrid of complex and triangulated walls. A
simplified EPB was obtained using already implemented shapes,
like AxisymmetricIntersectionOfWalls, Screw and Tri-
angleWall. The EPB’s body (Fig. 7a) was created using curved
shapes, while the cutter-head, which has a more complex shape,
was read in as a triangulated wall from an STL file, using read-
TriangleWall. The cutter head (Fig. 7b) has been designed from
a physical EPB model used in the Laboratory of Civil Engineering

and Building Sciences of ENTPE in Lyon (France). With this model,
it was possible to simulate the excavation phase and analyse the
behaviour of the tunnelling ground on-site, varying parameters
such as the EPB’s velocity, the cutterhead’s angular velocity and
the screw’s angular velocity [21].

3.3. Coarse graining

Coarse graining (CG) is a micro–macro transition method: it
extracts continuum fields (density, momentum, stress, etc.) from
discrete particle simulations, allowing the validation and cali-
bration of macroscopic models [11–14]. Unlike binning methods,

6 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 7. (a) EPB and soil simulated with MercuryDPM; (b) Cutter-head created
with triangulated walls [21].

which extract average values in small volumes, coarse graining
evaluates continuum fields as a function of time and space. Thus,
unlike binning, the resulting fields are continuous, satisfy local
mass and momentum conservation exactly, and the spatial and
temporal averaging scales (w and wt) are well-defined [12,13].

The approach is flexible and the latest version can model
both bulk and mixtures [13,22], boundaries and interfaces [11],
non spherical particles [23], time-dependent [13], steady and
static situations. It is available in MercuryDPM either as a post-
processing tool or it can be run in real-time, i.e., concurrent with
the simulation.

The aim of coarse-graining is to define continuum fields that
automatically satisfy the continuum model. Most continuum
models are based on mass and momentum conservation; in that
case, we need to define density ρ, velocity u and stress σ such
that these fields satisfy

∂tρ +∇(ρu) = 0, (1)

∂t (ρu)+∇(ρu⊗ u) = −∇σ − ρg. (2)

Spatial coarse-graining defines density by applying a smoothing
kernel φ(r) to the statistical-mechanics definition of density,

ρm(r) =
N∑
i=1

miδ(r− ri) :

ρ(r) = ρm ◦ φ =
N∑
i=1

miφ(r− ri).

The integral over density should equal mass, density should be
non-negative, and the density at a point r should only depend on
the particles within the neighbourhood of r. Therefore, we require
that the kernel function φ:

• is normalised:
∫
R3 φ(r) dr = 1,

• is non-negative: φ(r) ≥ 0 for all r ∈ R3,
• has compact support: ∃c ∈ R: φ(r) = 0 for all |r| > c .

A typical coarse-graining function is the cut-off Gaussian,

φG̃(r) =

{
C exp

(
−
|r|2

2w2

)
if |r| < 3w,

0 else,

with appropriate prefactor C , or cut-off polynomial functions
such as the Lucy kernel,

φL(r) =

⎧⎨⎩
105

16πc3
(−3(|r|/c)4 + 8(|r|/c)3

−6(|r|/c)2 + 1) if |r| < c,
0 else,

which is smoother (2nd-order differentiable) and more efficient
to evaluate than φG̃; see [12] for details.

To satisfy (1), velocity is defined as

u =
j
ρ
, j(r) =

N∑
i=1

miviφ(r− ri).

Similarly stress has to be defined to satisfy (2). Thus, σ = σk
+σc

with

σk
=

N∑
i=1

miv′iv
′

iφ(r− ri),

σc
=

N∑
i=1

N∑
j=1

rij ⊗ fij ψij(r)+
Nw∑
k=1

rik ⊗ fwik ψik(r),

with fluctuation velocity v′i = vi − u, branch vector rij = cij − ri,
and line integral

ψij(r) = |rij|−1
∫ 1

0
φ(r− ri − srij) ds.

Note, this integral can usually be computed exactly, without
requiring numerical quadrature. For e.g. a Gaussian kernel we
obtain

ψG
ij (r) =

1
(2πw2)3/2

exp
(
−
|t|2

2w2

)
erf
(n
2w

)⏐⏐⏐n1
n=n0

,

where n1 = (r−ri) ·nij, n0 = (cij−r) ·nij and t = r−ri−n1nij. For
other coarse-graining functions (cutoff Gaussian, polynomials),
the definitions of ψij are more complex, but also explicit.

Output data can be coarse-grained in MercuryDPM using the
MercuryCG tool.1 For example, the following command will ap-
ply CG to the output of the FiveParticles application:

MercuryCG F ivePa r t i c l e s −stattype XZ −n 200 −w 0.1 −tmin 20

Because this simulation is two-dimensional, we resolve spa-
tially in x and z only (-stattype XZ), on a grid of 200 × 200
points (-n 200), using a spatial coarse-graining width w = 0.1
(-w 0.1). Only the last time step t = 20 is evaluated (-tmin 20),
where the simulation is steady. The output can be visualised in
Matlab using loadstatistics.m:

>> data = l o ad s t a t i s t i c s (" F i vePa r t i c l e s . s t a t ") ;
>> contourf (data . x , data . z , data . Density) ;

The result is shown in Fig. 8 (centre). More examples can be found
in [24].

MercuryDPM is the only code where coarse-graining can be
applied during a simulation. This allows for efficient computa-
tion of high-resolution continuum fields without the need for
large output files. It further allows for a two-way coupling be-
tween the continuum fields and the particle simulation, e.g. for
solid–particle coupling (force-controlled walls) and particle–fluid
coupling (suspensions); see Section 9 for details.

MercuryCG can also be applied to data from other DPM sim-
ulation softwares, and even experiments: it has e.g. been used to
analyse experimental data from particle position tracking [25].

There is a lot more to say on the details of coarse-graining, and
we will soon publish more details about the algorithm.

Note, the MercuryCG tool is currently being updated, and will
soon get a new interface, and more capabilities, including: tem-
poral smoothing kernels; coarse-grained liquid distribution and
coarse-grained particle size distribution; Lagrangian-style coarse-
graining where the evaluation points move with the flow [26];
and the ability to define your own coarse-grained fields.

1 The tool was called fstatistics in previous publications.

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 7

Fig. 8. Snapshot of the final state of the FiveParticles simulation (left). Coarse-graining is applied to obtain the bulk density ρ (centre) and pressure p (right).

4. Boundary conditions

Basic particle simulations start with an assembly of particles
and walls, and simulate the particle (and wall) motion over time.
However, many process simulations require more complex se-
tups, including the insertion or deletion of particles during the
simulations; periodic boundary conditions; or stress-, displacem-
ent- or temperature-control. Such extensions to the basic DPM
simulation setup have the suffix Boundary in MercuryDPM , and
are stored in the BoundaryHandler. We now review the most
commonly used boundaries.

4.1. Insertion boundaries

Insertion boundaries are used to insert new particles during
the simulation. Most commonly used is the CubeInsertion-
Boundary, which inserts particles in a rectangular region of
the domain. The user can define the insertion region, a (vari-
able or constant) insertion rate; a particle size distribution; and
a velocity distribution. Other insertion boundaries have been
implemented for different geometries of the insertion region
(ChuteInsertionBoundary, HopperInsertionBoundary).

4.2. Deletion boundaries

Deletion boundaries are used to remove particles during the
simulation. The CubeDeletionBoundary removes all particles
that enter a rectangular section of the domain.

4.3. Periodic boundaries

Periodic boundary conditions are used to simulate small rep-
resentative volume elements, allowing the study of certain flow
or deformation conditions without the influence of walls. Uni-,
bi- or triaxial compression, simple shear flow, chute flow, Hele-
Shaw or Couette geometries are just some of the many examples.
MercuryDPM has three kinds of periodic boundary conditions:

• PeriodicBoundary simulates a periodic region between
two parallel planes.
• AngledPeriodicBoundary simulates a wedge-shaped pe-

riodic region between two non-parallel planes
• LeesEdwardsBoundary consists of two periodic bound-

ary in x- and y-direction. Particles crossing the y-boundary
experience a shift in x-velocity ∆vx(t) and a shift in x-
position ∆x =

∫
vx dt . This forces a shear velocity profile

in steady-state.

The implementation uses ghost particles, i.e. copies of real parti-
cles that are close to the periodic boundary, in order to trans-
fer forces across the periodic boundary. A sketch of the three
boundary conditions is given in Fig. 9.

Fig. 9. Three different periodic boundary conditions, from left to right: Pe-
riodicBoundary, AngledPeriodicBoundary, LeesEdwardsBoundary. The
boundaries are shown as dashed lines. In each case, a particle pair is shown
at the edge of the boundary. Dark blue particles are actual particles, light blue
particles are ghost particles. Solid lines indicate particle velocity.

4.4. Stress- and strain-controlled periodic boundaries

The StressStrainControlBoundary simulates a wide
range of stress- and strain-controlled shear flow and compression
tests [27]. It combines a normal periodic boundary in z-direction
with a Lees–Edwards boundary in x and y [28–30], as shown in
Fig. 10. The user can specify a combination of targets for the
stress and strain rate tensor. The advantage of this boundary is
the freedom of choosing the control parameters freely, allowing
the user to specify both a target stress tensor, σ, and a strain-rate
tensor, ϵ̇, as input parameters. For example,

• for constant-stress uniaxial compression, specify σ = (σxx
0 0, 0 0 0, 0 0 0) and set ϵ̇ to zero;
• for constant-rate uniaxial compression, set σ to zero and

specify ϵ̇ = (ϵ̇xx 0 0, 0 0 0, 0 0 0);
• for triaxial compression, which is mostly used in sample

preparation to achieve a homogeneous initial packing, set
σ = (σxx 0 0, 0 σyy 0, 0 0 σzz) and ϵ̇ = 0 for stress-
control, or ϵ̇ = (ϵ̇xx 0 0, 0 ϵ̇yy 0, 0 0 ϵ̇zz) and σ̇ = 0 for
volume-control.
• for constant-volume simple-shear deformation, specify ϵ =

(0 ϵ̇xy 0, 0 0 0, 0 0 0) and set σ to zero.
• for constant-stress simple-shear deformation, specify σ =

(σxx 0 0, 0 σyy 0, 0 0 σzz) and ϵ = (0 ϵ̇xy 0, 0 0 0, 0 0 0),
to have the stress adapt while shearing at a constant rate.

Note that the same element in the target stress and strain-rate
tensors cannot be set simultaneously, e.g. the user could not set
σ = (σxx 0 0, 0 0 0, 0 0 0) with ϵ̇ = (ϵ̇xx 0 0, 0 0 0, 0 0 0)
at the same time, or the two control targets will conflict with
each other, resulting in an invalid deformation mode. Further,
because the Lees–Edwards boundary conditions are applied in
the xy-plane, shear can only be applied in the xy-direction (not
in xz and yz). However, one can achieve all possible physical
constant-rate deformation modes with 3 diagonal elements and
one off-diagonal element.

4.5. Other boundary conditions

Many other interesting boundary conditions have been imple-
mented in MercuryDPM:

8 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 10. Stress–strain controlled periodic boundary condition in MercuryDPM
and its possible deformation modes on a representative element volume (REV).

Table 1
Contact forces implemented in MercuryDPM .
Normal forces: Name

Linear spring-dashpot [32]: LinearViscoelastic
Hertz spring-dashpot [33]: HertzianViscoelastic
Linear elasto-plastic cohesive [32]:
LinearPlasticViscoelastic

Solid-state sintering [34]: Sinter
Melting particle model [35]: Meltable

Frictional forces and torques: Name

Sliding friction
- for linear normal force [32]: SlidingFriction
- for Hertz normal force [33]: Mindlin
Sliding, rolling, and torsion friction
- for linear normal force [32]: Friction
- for Hertz normal force [33]: MindlinRollingTorsion

Adhesive/short-range forces: Name

Reversible linear adhesion [36]: ReversibleAdhesive
Irreversible linear adhesion [36]: IrreversibleAdhesive
Liquid bridge adhesion [36]: LiquidBridgeWillet
Migrating liquid bridges [37]: LiquidMigrationWillet
Permanent particle bonds [38]: Bonded
Charged particles [38]: ChargedBonded

• SubcriticalMaserBoundary and ConstantMassFlow-
MaserBoundary insert particles from a periodic system
into a larger setup, such as chute flows [31], allowing the
simulation of steady-state inflow conditions.
• HeaterBoundary acts similar to a thermostat, supplying a

heat flux to a specific region;
• FluxBoundary does not affect the simulation but measures

flow rates through a given plane.

We refer the reader to the documentation (docs.mercurydpm
.org) for further reading.

5. Contact models

Contact models are used to determine the forces acting be-
tween particle pairs. Many different contact forces have been
described in literature, which can roughly be classified into three
categories: elastic, plastic and dissipative forces f nij that act in
the normal direction to the contact area, nij; tangential forces
ftij and torques τ ij due to sliding, rolling and torsion friction;

and adhesive normal forces f aij that may act between nearby
particles even if they are not in contact. Which contact model best
describes the real contact behaviour depends on the material type
and particle size, and on ambient effects such as temperature and
moisture. In most cases, a combination of these forces needs to
be taken into account, i.e. the total contact force is given as

fij = (f nij + f aij)nij + ftij.

All contact models in MercuryDPM are defined by combining
a normal, frictional, and adhesive contact model. The normal,
frictional and adhesive contact models currently available in
MercuryDPM are summarised in Table 1. The name of a contact
model is obtained by concatenating the names of the normal,
frictional, and adhesive contact model and adding the word
Species. For example, particles of type LinearViscoelas-
ticFrictionLiquidBridgeWilletSpecies interact with a
linear spring-dashpot normal force, sliding, torsion and rolling
friction, and liquid-bridge adhesion forces. All contact models
require a normal force, but frictional and adhesive forces are op-
tional. Thus, LinearViscoelasticSpecies denotes the simple
linear spring-dashpot contact model.

5.1. Normal force models

For a pair of spherical particles i, j with radii ai, aj and position
ri, rj, we first compute the distance vector rij = rj − ri, then
the overlap δnij = a1 + a2 − |rij|, the unit normal nij = rij/|rij|,
the branch vector rij = (ai − δi/2)nij and the contact point cij =
ri + rij. The same quantities need to be defined for pairs of non-
spherical particles and particle–wall contacts, as these quantities
are necessary to define the contact force.

We further define the relative velocity at the contact point,
vij = (vi + rij × ωi) − (vj + rji × ωj), and its normal component,
vnij = vij · nij.

The normal contact force f nij is nonzero if the two particles are
in contact, i.e. if their overlap is positive. Several different normal
force models are implemented:

5.1.1. Linear spring-dashpot model
The linear spring-dashpot model, implemented as Linear-

ViscoelasticSpecies, is defined as

f nij =
{
knδnij + γnv

n
ij if δnij > 0,

0 else,
(3)

with stiffness (or spring constant) kn > 0 and damping coefficient
γn ≥ 0. The force–displacement relation is shown in Fig. 11 left.
The model is efficient and simple to analyse, with collision time
tc and restitution coefficient ϵn only dependent on particle mass,
not relative velocity. It is an appropriate contact models for large
particles (>100 µm) or upscaled systems, where one particle
represents a conglomerate of particles. For large deformation,
plasticity needs to be taken into account, see Section 5.2. For
sound and compaction experiments, calibrating the stiffness is
important. For flows, stiffness just has to be sufficiently high such
that the deformations remain small.

5.1.2. Hertz spring-dashpot model
The Hertz elastic normal force (HertzianViscoelastic-

Species) is based on the contact between perfectly elastic,
spherical particles [39]. It is based on measurable material pa-
rameters (the elastic modulus and Poisson ratios) and accurate
for powders and small deformations of larger granules, as they
appear e.g. in sound propagation experiments. In most other
experiments, however, the choice of stiffness is either of lit-
tle importance, as other effects (such as dissipation, friction or
plasticity) become dominant.

http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 9

Fig. 11. Linear (left) and Hertz (middle) elastic force model, without (red) and with (blue) dissipation. Right: Plastic-adhesive force (without dissipation) for
intermediate loading. Red denotes the loading, brown the unloading branch.

The Hertz force model is given by (3), but the stiffness kn is
now a variable of the radius of the contact area acij,

kn =
4
3
Eeff
ij acij, (4)

with the effective modulus Eeff
ij = [

(1−ν2i)
Ei
+

(1−ν2j)

Ej
]
−1, computed

from the elastic moduli Ei, Ej and Poisson ratios νi, νj of the two
particles. For small overlaps, we approximate the contact radius
by acij =

√
aeffij δij, with aeffij =

aiaj
ai+aj

the effective radius (i.e. the

harmonic mean). See [39] for more information on calibrating the
model.

The dissipation coefficient γ n is chosen to satisfy the mod-
eller’s assumption on the restitution coefficient. See [40–42] for
a review of the different dissipation models. In MercuryDPM , the
dissipation coefficient γ n is proportional to

√
meff

ij kn, resulting in
a constant restitution coefficient [43].

The proportionality of stiffness and contact radius has an im-
portant effect on the particle behaviour: It makes particles stiffer
under pressure (see Fig. 11 middle), thus the speed of a pressure
wave increases if the material is compressed. This is important in
sound propagation but can usually be neglected in flow situations,
where stiffness has only a minor effect. Furthermore, while Hertz
models work well for spherical powders, the stiffness measured
in macroscopic particles (> 100 µm) is often relatively constant,
due to plasticity, surface roughness and particle shape effects.

5.2. Linear elasto-plastic cohesive

To mimic plastic deformation, as observed in experiments [44],
Walton and Braun [45] and Walton [46] introduced a so-called
‘partially latching spring’ model that used different normal spring
stiffnesses for loading and unloading,

f nij = γnv
n
ij +

⎧⎪⎪⎨⎪⎪⎩
k1δnij if δnij > δmax

ij ,
k2(δnij − δ

0
ij) if δmin

ij < δnij ≤ δ
max
ij ,

−kcδnij if 0 < δnij ≤ δ
min
ij ,

0 else.

(5)

To track the plastic deformation, the maximum overlap δmax
ij is

stored and used to compute the plastic overlap δ0ij and minimum-
force overlap δmin

ij ,

δ0ij =
k2 − k1

k2
δmax
ij , δmin

ij =
k2

k2 + kc
δ0ij .

This model was extended by Luding [32] to allow for slowly
changing stiffness: During loading, the stiffness increases linearly

Fig. 12. Vertical cut through centre of sintered sample during indentation.

with the maximum overlap until a maximum unloading stiffness
k̂2 is reached at a fraction φ of the effective radius,

k2(δmax) = min

(
k1 + (k̂2 − k1)

δmax

φaeffij
, k̂2

)
.

The force–displacement curve for this model
(LinearPlasticViscoelasticSpecies), is shown in Fig. 11
right.

5.2.1. Solid-state sintering
Solid-state sintering is a thermal treatment for bonding par-

ticles into a solid structure. Particles are sintered by heating
particles beyond the glass temperature, but below the melting
point of a material. This process is controlled by transport and dif-
fusion of material along the particle’s surface and volume, which
leads to a reduction of the particle surface area. Solid-state sinter-
ing has three stages [47]. The first stage is neck formation: Matter
from the particle is transported from regions of high chemical
potential (contact region) to regions of low chemical potential
(concave neck regions). In the second stage the diameters of the
pores channels shrink until the pore structure changes. In the last
stage isolated pores form. All stages are dominated by different
transport mechanisms, and there is a strong dependence on tem-
perature and initial particle size in the final stage of the process.
The solid-state sinter model in MercuryDPM (SinterSpecies)
describes the first stage, introducing a gradual increase in plastic
overlap between particles at high temperatures. In [48–50], the
model is applied to sintered polystyrene particles, and numerical
and experimental indentation tests are executed and compared,
see Fig. 12.

5.2.2. Partial melting
If particles are heated beyond their melting temperature, they

start to melt. The particles first melt at the surface, where the

10 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 13. Simulation snapshots, from left to right: (1) add layer of particles, (2)
partial melting during heating, (3) forming bonds during cooling, (4) add second
layer of particles, heating it and (5) allow it to cool down.

heat is applied, forming a melt layer that increases in thickness
until the particles are fully melted. This process can be modelled
in MercuryDPM using the MeltableSpecies and was initially
developed for additive manufacturing processes. In particular, we
consider powder bed fusion (PBF), where objects are produced by
spreading successive layers of powdered material and hardening
selected parts by partially or fully melting them with a laser.
PBF processes are highly sensitive to the powder characteristics;
therefore, the process parameters need to be optimised for each
material. This is typically done by performing costly experimental
trials, so developing a computational tool capable of capturing
the stochastic nature of the process will help in reducing the
amount of trials and thus lower manufacturing costs. In addition,
particle-scale simulations of the spreading process can provide
information on the powder layer behaviour and quality that is not
accessible by experiments (porosity, particles segregation, etc.). A
parametric study of the influence of inter-particle friction on the
powder layer quality has been done by [51]. MeltableSpecies
is based on the model of [52], which was applied to the formation
and cyclic melting of faults during earthquakes. It is assumed that
solid particles can melt during heating. On cooling these melt
layers solidify, potentially forming permanent bonds between
the particles. The model was modified and extended to include
thermal conduction, radiation and convection. Further extensions
will include phase transformation and laser heat input modelling.
Fig. 13 shows a snapshot of particles partial melting, with parti-
cles diameter range 40–50 µm, and illustrates the heating and
solidification of a new layer of particles.

5.3. Tangential force and torque models

5.3.1. Sliding friction
Similarly to the normal forces, one can define forces in tan-

gential direction. For this, we define the lateral relative velocity,

vlij = vij − vnnij,

and the tangential elastic displacement δlij, which is set to 0 at the
initiation of contact, and incremented after every timestep by the
formula

δ̃← δlij − (δlij · nij)nij,

δlij ← (|δlij|/|δ̃|) δ̃+ vlij∆t. (6)

The two-step procedure is necessary to keep the tangential dis-
placement in the tangential plane while the particle pair rotates.
Note that for a fixed normal direction nij, we obtain d

dt δ
l
ij = vlij.

An elastic and dissipative lateral force can then be defined as

flij = klδνij + γ
lvlij.

If the lateral force exceeds a certain level, the particle begins to
slide. This is modelled by a Coulomb yield criterion, cutting off

Fig. 14. Left: Schematic of a particle sliding forth and back along a
surface, Right: sliding friction force vs tangential displacement, measured
experimentally [53].

the elastic displacement when it exceeds a certain fraction µl (the
sliding friction coefficient) of the normal force.

|flij| ≤ µ
lf nij .

The model, shown schematically in 14, agrees well with experi-
mental data.

The above sliding friction model is implemented in the Slid-
ingFrictionSpecies, and is intended to be used with a lin-
ear normal contact force. For the Hertzian normal force, the
MindlinSpecies is more appropriate, which has a variable tan-
gential stiffness kt that depends on the effective shear modulus;
see [33] for details.

5.3.2. Rolling and torsion torque
Similar to sliding friction resisting lateral motion, rolling and

torsion torques are modelled to resist angular motion. Like sliding
friction, these torques are modelled as elastic and dissipative
with a yield criterion. For this, we define the rolling and torsion
velocity,

vroij = aeffij (ωij × nij), vtoij = aeffij (ωij · nij)nij.

Their respective displacements δroij , δ
to
ij are defined equivalently to

(6). We then define elastic-dissipative rolling and torsion torques

τro
ij = aeffij nij ×

(
kroδroij + γ

rovroij
)
,

τto
ij = aeffij nij ·

(
ktoδtoij + γ

tovtoij
)
nij,

with aeffij =
|rij| |rji|
|rij|+|rji|

the effective length of the branch vectors.
If these torques exceed a certain fraction of the normal contact
force, the particle begins to roll or torque, respectively. Thus, the
elastic displacement is cut off to satisfy

|τro
ij | ≤ µ

roaeffij f
n
ij , |τ

to
ij | ≤ µ

toaeffij f
n
ij .

Similar to the sliding friction model, this model (Friction
Species) is intended to be used with a linear normal contact
force. For the Hertzian normal force, the MindlinRollingTor-
sionSpecies is more appropriate, see [33] for details.

5.4. Adhesive force models

5.4.1. Linear reversible adhesive force
The simplest adhesion model in MercuryDPM , Reversible

AdhesiveSpecies, models a linear elastic-dissipative short-
range force,

f aij =

⎧⎨⎩
−f amax if δnij ≥ 0,
−f amax − kcδnij if −f a,max

ij /kc ≤ δnij < 0,
0 else.

It is called reversible, because the adhesive force is equal during
loading and unloading. This model is mostly used to model dry
cohesion, i.e. attractive forces due to close proximity between
surfaces, such as van-der-Walls interactions.

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 11

Fig. 15. The reversible linear adhesive force (left) follows the same curve in loading and unloading directions. The irreversible linear adhesive forces (middle) and
the liquid bridge force model (right), however, have separate loading and unloading paths (illustrated by the arrows). This reflects a modification of the contact
properties (e.g. snap-in of a liquid bridge, formation of chemical bonds) when the contact is established.

5.4.2. Linear irreversible adhesive force
IrreversibleAdhesiveSpecies is an irreversible linear

elastic-dissipative short-range force, where the short-range adhe-
sive force is active only during unloading (i.e. after the particles
have been in contact)

f aij =

⎧⎨⎩
−f amax if δnij ≥ 0,
−f amax − kcδnij if− f a,max

ij /kc ≤ δnij < 0 and δmax
ij > 0,

0 else.

Such models are often used to model wet cohesion, i.e. liquid
bridges between particle pairs, which form when the particle
pair gets in contact, but persist during unloading until the liquid
bridge snaps.

Both contact models are sketched in Fig. 15.

5.4.3. Liquid-bridge cohesion
LiquidBridgeWilletSpecies is a nonlinear model to

model liquid bridges [36,54], based on the theoretical (and ex-
perimentally validated) results of Willet et al. [55]. This force–
displacement relation has been derived from first principles,
based on solving the Young–Laplace equation, resulting in the
following force model, shown in Fig. 15.

f aij =

⎧⎪⎪⎨⎪⎪⎩
−f a,max

ij if δij ≥ 0,

−
f a,max
ij

1+1.05δ̂ij+2.5δ̂2ij
if −Sc < δij < 0 and was in contact,

0 else,

with scaled overlap δ̂ij = δij/(Vb/aeffij)
1/2, rupture distance Sc =

(1 + θ/2) 3√Vb, maximum capillary force f a,max
ij = 2πγ aeffij cos θ ,

liquid volume Vb, contact angle θ , and surface tension γ .
This model has further been extended to account for liquid

migration, implemented in LiquidMigrationWilletSpecies.
The methodology is quite straightforward: Particles and liquid are
considered as two different entities in the system. Liquid is either
attached to the particles (as a thin liquid film), or to the contacts
(as liquid bridges). Liquid is transferred whenever contacts are
formed or broken. Thus, when a contact is formed between two
particles, the liquid attached to the particles can form a liquid
bridge [37]. When a liquid bridge is ruptured, the bridge volume
is distributed to neighbouring particles and contacts; total liquid
conservation is ensured. The microscopic simulations of liquid
migration has been used to validate a continuum scale model
that describes the migration of liquid as shear-rate dependent
diffusion [56].

5.4.4. Bonds and charges
Several other adhesive force models exist: BondedAdhesive

Species allows the user to specify a strong adhesive force f bij
between particles, which bonds the particles together. A bond

force can be turned on or off for each individual particle pair,
allowing for the simulation of soft, bendable particle clusters:

f bij =
{
f b if 0 ≤ δij and bond is active,
0 else.

In ChargedBondedAdhesiveSpecies, the bond force is com-
bined with a short-range normal force f cij simulating particle
charges, which can be either repulsive or adhesive, depending
whether both particles have the same or opposite charge:

f cij = ±

⎧⎨⎩
f c, max if 0 ≤ δij,
f c, max

+ kcδij if f c, max

kc ≤ δij ≤ 0,
0 else.

It has been used to simulate clay particles as elongated, string-
shaped particles (in 2D) or oblate particles (in 3D) with opposite
charges at centre and edge of the particles [38].

5.4.5. User-defined species
Of course, the user can also define new contact models. For

this, it is easiest to modify the most similar existing model.
This is described in detail in the For Developers section of the
documentation (http://docs.mercurydpm.org).

6. Non-spherical particles

As DPM studies become more complex and detailed, many
users wish to use non-spherical particles in their simulations.
MercuryDPM supports several ways to define non-spherical
particle shapes, such as multi-spheres [57], superquadrics [58],
agglomeration [35], and bonding [38]. We now show different
non-spherical particles, using example applications.

6.1. Ellipsoidal particles

The SuperQuadricParticle is used to simulate particles
whose surface is a superquadric, defined by the shape-function

f (x) :=
(
|x/a|n2 + |y/b|n2

)n1/n2
+ |z/c|n1 = 0.

The parameters a, b, c determine the particle size in the x, y, z
direction, and n1, n2 determine the roundness of the edges. For
example, we get ellipsoids for n1 = n2 = 2, a cylinder with
rounded edges for n1 ≫ 2, n2 = 2, and a cuboid with rounded-
edges when n1, n2 ≫ 2. Contact detection and computation of the
overlap is implemented similar to [58]: each particle fits into a
bounding sphere of radius r = max(a, b, c); based on that radius,
the particles are inserted into the hierarchical grid. Whenever the
hierarchical grid finds a potential contact, it is tested whether the
bounding spheres of the particles i, j intersect. If that is the case,
the contact-point cij is the defined as the x-value minimising the
function fi(x)+ fj(x) under the condition fi(x) = fj(x), where fi(x)
is the shape-function of the particle i, translated and rotated by

http://docs.mercurydpm.org

12 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 16. Mixtures of spheres and ellipsoidal particles in a rotating drum,
screenshots and coarse-grained solid volume fraction of spheres. (left) ellipsoids
of aspect ratio 2, (right) ellipsoids of aspect ratio 4.

the particle’s position and orientation. The particles are in contact
if and only if cij is in the interior of both particles, i.e., fi(cij) < 0.
From there, the direction of the contact and its overlap can be
computed. For implementation details, see [59].

Note that, since the coarse-graining tool MercuryCG does not
rely on particle shape, the continuum fields for these quantities
can automatically be computed without any changes to the code.

To study the influence of particle elongation on segregation,
we construct a rotating cylindrical drum made out of small par-
ticles. The drum is filled with mixtures of spheres and prolate
ellipsoids of equal volume and equal density. After ten rotations,
the mixture is coarse-grained over one and a half a rotation
period in order to obtain the concentration of spheres through-
out the drum. We confirmed the observation of [60] that for a
combination of spheres and prolate ellipsoids with aspect ratio
2, the ellipsoids segregate to the core, while for a combination of
spheres and prolate ellipsoids with aspect ratio 4, the ellipsoids
segregate to the periphery of the flow; more detailed observa-
tions will be presented in a follow-up publication. Fig. 16 shows
the segregation profile for both these cases.

6.2. Multispheres

For some applications, the geometry of the particles is relevant
(e.g., railway ballast), and assuming spheres or ellipsoids may be
a very simplistic approximation. For this reason, the concept of
‘‘multispheres’’ is being implemented in MercuryDPM . A multi-
sphere is a cluster of spheres (or superquadrics) whose relative
positions are fixed and are placed such that the boundary of the
cluster approximates the intended geometry. The mass and iner-
tia of the particle is computed such that it matches the particle’s
geometry. In this way, a multisphere is similar to an agglomer-
ate of elementary particles, but no internal deformation and/or
breakage is allowed. The elementary particles (slaves) composing
a multisphere can overlap and their radius may vary. Due to the
possible overlap of slaves composing a multisphere particle, the
inertia of the multisphere cannot be calculated internally by the
software; instead, it must be specified by the user.

The steps to define a multisphere particle are:

• Create a new particle, e.g. SphericalParticle p;
• Define its initial position (centre of gravity):
p.setPosition(Vec3D pos);
• Define its principal axes:
p.setPrincipalDirections(Matrix3D dir); Each col-
umn of the 3D matrix represents a principal axis; the soft-
ware enforces orthogonality internally
• Define mass and inertia: p.setMass(double mass);
p0.setInertia(MatrixSymmetric3D inertia);

Fig. 17. Multispheres reproducing the shape of ballast particles in a simulated
compression test.

Fig. 18. Cluster composed of 1000 monodispersed particles before (left) and
after (right) uniaxial compression. Color denotes kinetic energy, from blue
(lowest) to green (medium) to red (highest). Most particles have very low kinetic
energy, indicating a stable cluster.

• Add as many slaves as needed to achieve the intended ge-
ometry: p.addSlave(Vec3D pos, double radius); The
position of slaves is defined relative to the centre of gravity
and in terms of principal axes.

Contact forces between slave particles of a multisphere and
other bodies (not belonging to the same multisphere) are calcu-
lated the same way as for any other particle, but the resulting
forces and torques are applied to the multisphere’s centre-of-
mass. The response of the multisphere is ultimately determined
by solving the equations of motion of a rigid body [57] for its
(linear and angular) accelerations.

Fig. 17 depicts the application of multispheres to simulate a
compression test of railway ballast material (in 2D). As can be
seen, each particle is composed by small spheres delimiting the
desired geometry.

6.3. Deformable/breakable clusters (agglomerates)

This new feature of MercuryDPM allows the user to create
agglomerates (or clusters) composed of individual elementary
particles. Clusters are formed by radial isotropic compression,
which causes the cluster particles to adhere to one another, as
shown in Fig. 18, but their relative position is not fixed, making
the agglomerates deformable and breakable. This feature is useful
in simulations where such properties are required, such as par-
ticle breakage [61], tableting [62], granulation, simulation of clay
particles [63], etc.

The LinearPlasticViscoelasticSpecies [32] allows par-
ticles to be in mechanical equilibrium despite having a finite
overlap, and a proportional finite tensile force is needed to pull
them apart. The latter is what keeps agglomerates together, but
also allows them to be deformed and broken when sufficiently
strong external forces are exerted. As displayed in Fig. 18, clusters
are mechanically stable before (left) and after (right) deformation.
Cluster radius R and mass fraction ζ follow an analytical relation
dependent on the number N of elementary particles and their
plasticity φ [32].

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 13

Fig. 19. Compressive force as a function of relative compression during uniaxial
breakage test of a cluster with N = 500 and φ = 0.2 for different values of ϵ.
Vertical drops are due to brittle fractures of the cluster.

Since Eq. (5) is continuous, the rearrangement of particles
inside of clusters due to an external (e.g. uniaxial compressive)
force will be steady and gradual. This behaviour characterises
plastic materials such as clay and rubber, and is only suited to
model such deformation processes. However, to model brittle
breakage, the elastic energy release must be sudden and trig-
ger a fracture propagation along the body. To recover a similar
behaviour the cohesive branch of the force in (5) must be dis-
continuous, and for this modelling purposes is substituted by

f nij =

{
−k2(δnij − δ

0
ij) if δcritij < δnij ≤ δ

0
ij (plasticity),

0 if 0 < δnij ≤ δ
crit
ij (breakage),

(7)

where δcritij = δ0ij + ϵ
(
δmin
ij − δ0ij

)
is a critical minimum over-

lap below which the cohesive bond is broken and ϵ is a new
dimensionless material parameter. How this parameter affects
the breakage behaviour is depicted in Fig. 19 where clusters are
tested during uniaxial compression. Full details of this model are
being prepared for a separate publication.

7. Writing applications

To write a MercuryDPM simulation, the class Mercury3D is
used: this class contains the algorithm for time integration, con-
tact detection, etc, and containers to store the elementary objects
such as particles, walls, boundaries, contact models, etc. To make
a new process simulation, the user creates a source file (‘driver
code’). In this file, one defines an (empty) object of type Mer-
cury3D, and defines all the elementary objects that define the
process he wants to simulate. One then calls the member func-
tion solve(), which calls setupInitialConditions() and
continues the simulation. A typical user code is shown below:

#include "Mercury3D . h"

class Demo : public Mercury3D {
void se tup In i t i a lCondi t ions () override {

/ / define geometric setup here
}

} ;

int main () {
Demo problem ;
/ / define process parameters here
problem . solve () ;

}

The distinction between process parameters (contact law, time
step, final time, domain size, etc.) and geometric setup (walls,

boundary conditions, particle positions) is due to our paralleli-
sation strategy, which requires process parameters to be set
first.

7.1. General interfaces

To store elementary objects, such as particles, walls and
boundary conditions,MercuryDPM uses a series of handler classes.
The ParticleHandler, for example, stores all types of particles
(spherical, superquadric, etc.), the WallHandler all types of
walls, etc. This is shown in the top left of Fig. 20.

All objects in a handler share a common base class. This
ensures that the syntax for all objects and handlers is the same.
For example, BaseParticle contains the common properties of
all particles, such as position, orientation, and velocity; the same
member function, getObject(int), can used to access an object
in the Particle-, Wall-, or BoundaryHandler; and the same
function, getID(), is used to access the unique id of any particle,
wall, or boundary. This is shown in the bottom left of Fig. 20.

Using the inheritance structure, the user can easily define
new classes of elementary objects: For example, to define a
sinusoidally-shaped wall, the user creates a new class SineWall,
inherited from BaseWall, introduces parameters such as ampli-
tude and oscillation frequency, and defines the member functions,
such as the getDistanceAndNormal function.

7.2. Code samples

Simple parameters can be defined using set-functions; a typi-
cal user code specifies the following process parameters
. . .
int main () {

MyDriver problem ;
problem . setName("Demo") ;
problem . setMin (Vec3D(−1.0 ,−1.0 ,−1.0)) ;
problem . setMax (Vec3D(−1.0 ,−1.0 ,−1.0)) ;
problem . setTimeStep (1e−4);
problem . setTimeMax (2 . 0) ;
problem . setGravity (Vec3D(0 ,0 ,−9.81)) ;
problem . setSaveCount (200) ;
problem . solve () ;

}

To set an elementary object, declare it, set its parameters and
add it to the appropriate handler. Below is the code to define a
material of type LinearViscoelasticSpecies:
#include " Species / L inearViscoe las t i cSpec ies . h"
. . .
int main () {

. . .
L inearViscoe las t i cSpec ies species ;
species . setDensity (2000) ;
species . s e t S t i f f n e s s (1e3) ;
species . se tDiss ipat ion (0 . 1) ;
problem . speciesHandler . copyAndAddObject (species) ;
. . .

}

Now we can define geometric objects, as shown below:
#include " Pa r t i c l e s / Spher i ca lPa r t i c l e . h"

class MyDriver : public Mercury3D{
public :
void se tup In i t i a lCondi t ions () {

Spher i ca lPa r t i c l e p;
p . setSpecies (speciesHandler . getObject (0)) ;
p . setRadius (1e−3);
p . se tPos i t ion (Vec3D (0 . 1 , 0 . 1 , 0 . 0)) ;
part ic leHandler . copyAndAddObject (p) ;
. . .

}
} ;
. . .

14 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 20. Basic class structure of MercuryDPM , showing the inheritance and encapsulation strategy. Handlers for contact laws, interactions, coarse-graining, and MPI
decomposition are not shown, and only a select number of particle, wall, and boundary types are shown.

Fig. 21. A parallel simulation of a rotating drum in MercuryDPM using 36 cores.
The light blue particles are computed on a single core.
Source: Taken from [64].

7.3. Common geometries

For most processes, the user has to define the full geometric
setup from scratch. However, certain setups are so common that
we have predefined them, using classes derived from Mercury3D
(see right of Fig. 20). The Chute class, for example, contains
a function to create an inclined plane, which can be rough or
smooth, and has predefined periodic boundaries that allows the
user to quickly setup a periodic chute flow simulation. Similarly,
ChuteWithHopper can be used to simulate a chute with an
inflow hopper. We recommend users to define their own classes
with predefined setups, e.g. for parameter studies where simu-
lations only vary slightly, and thus avoid code duplication. An
application of the Chute class is shown in [35].

7.4. Restarting

Each Mercury3D class has a write function, which stores the
current state of a simulation in a text file; and a read function,
which reloads the written state of a simulation. This allows sim-
ulations to be restarted. This functionality can be executed via a
command-line interface: for example, by calling the executable
HourGlass2DDemo, a simulation of two seconds is launched.
One can now restart this simulation and run it for a further
two seconds by executing the command HourGlass2DDemo -r
HourGlass2DDemo.restart -timeMax 4.

7.5. Parallelisation

Although MercuryDPM performs well for DPM simulations,
due to advanced contact detecting and clever treatment of the
walls, the computational power of a single processor (or thread)
is limited. Thus, sequential DPM computations are limited to at
most a few million particles and a few minutes of process time. In
order to finish the simulation in a reasonable time, for larger com-
putations, parallel processing is required. Currently MercuryDPM
uses a domain-decomposition based parallel computing algo-
rithm utilising MPI [64]. The current domain decomposition is
simple: the process domain is decomposed into nx-by-ny-by-nz
sub-domains of equal size (as specified by the user), and each pro-
cessor computes the movement of particles in one sub-domain.
To determine the contacts with particles from neighbouring sub-
domains, a communication zone is established in the vicinity of
the sub-domain boundaries, in which the processors communi-
cate via MPI the location of the particles to their neighbours. This
parallel computing algorithm can handle complex boundaries
such as periodic boundaries, insertion/deletion boundaries and
maser boundaries [4].

The performance of the parallel algorithm has been tested
for the case of a rotating drum of varying width; a snapshot of
the simulations is shown in Fig. 21. The serial algorithm shows
a near-linear scaling of computing time with the number of
particles (Fig. 22a). Weak scaling of the parallel implementation
is shown by measuring the efficiency E = Tp/Ts, the ratio of
computing time for the parallel and serial implementation, for a
varying number of cores Nc , keeping the number of particles per
core constant. On a single node, efficiency decreases slowly with
the number of cores, but levels off at around 40% for simulations
that use hyperthreading (Fig. 22b). On multiple nodes, hyper-
threading can be avoided, and the efficiency remains above 60%
(Fig. 22c). Thus, the algorithm performs very efficient for large
simulations, if the computational load per core is homogeneous.

7.6. Visualisation

There are two programs to visualise MercuryDPM output:
xBalls and ParaView. xBalls, written by Stefan Luding, is a simple
X11-based viewer that allows the user to quickly check the

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 15

Fig. 22. (a) Computing time Ts versus particle number Np for single-core simulations of different drum lengths (a = 1.08, b = 1.17). (b) Efficiency of the parallel
algorithm on a single node with 36 physical cores. (c) Efficiency of the parallel algorithm on multiple nodes without hyper-threading. Different symbols indicate the
number of cores per node.
Source: Taken from [64].

progress of the simulation. It is automatically installed with Mer-
curyDPM; to visualise a simulation such as HourGlass2DDemo
with xBalls, one simply needs to execute a script file that is
part of the default simulation output, in this case HourGlass2D
Demo.xballs. A more detailed three-dimensional visualisation
of the walls and particles can be obtained via ParaView. For
more information, see the MercuryDPM documentation at https:
//docs.mercurydpm.org.

8. Download, testing, documentation

8.1. Versioning

MercuryDPM is available for download at http://mercurydpm.
org. One can download either the latest release, or the developer’s
version (‘‘Trunk’’). The Trunk is updated as soon as a new feature
is complete and is intended for developers only. After six months
in the Trunk (where the developers’ community will be able to
debug the feature), a feature is considered save to use and ready
to be merged into the next release.

8.2. Self-test suite

Developing new features can have unintended consequences.
For example, introducing a new variable in DPMBase could acci-
dentally break the ability to restart simulations. To avoid breaking
existing code by introducing new features, MercuryDPM uses the
CTest software: Before any new code is committed to the Trunk
or Release, the developer calls the command make fullTest, which
(a) checks whether all codes in MercuryDPM compile, and (b)
runs a series of self- and unit-tests to validate that no existing
feature has been broken. Unit tests are designed to test a cer-
tain feature (e.g. whether the restitution coefficient is computed
correctly) and return true if the test was successful; these are
basic simulations that should run in less than one second. Self-
tests validate more complex features (e.g. restarting), and checks
whether the output files have changed; these are slightly more
elaborate simulations that should run in less than 10 s. There are
now more than 300 unit- and self-tests in current developer’s
version ofMercuryDPM . To ensure that each feature is tested, new
tests have to be committed for each new feature.

8.3. Documentation and tutorials

The documentation of MercuryDPM is available at docs.mer
curydpm.org. All classes of MercuryDPM are documented here,
using the Doxygen suite, which extracts documentation from
comments written by the developers in the MercuryDPM source

Fig. 23. Single discrete particle interacting with a solid cantilever.

files. In addition, the website contains tutorials, a list of demo
codes, and a basic manual that will help new users and new
developers to get acquainted with MercuryDPM .

Finally, training materials for both C++11 (and extensions),
particle simulations in general, and MercuryDPM is freely avail-
able from the MercuryDPM website.

9. Future direction and in-development features

9.1. Particle–solid interaction

MercuryDPM can now be coupled with oomph-lib, an object-
oriented, open-source finite-element library for the simulation
of multi-physics problems [65]. This allowed the development
of new features, such as surface coupling with FEM walls. The
coupled code can simulate walls that deform in response to the
forces exerted on them by the particles, and the particle motion
updated by the walls, as shown in Fig. 23.

For surface coupling, we implement wrapper classes for the
solid elements (and the governing equations), provided by the
oomph-lib library, for efficient, I/O-free access and assignment
of the nodal/contact forces and displacements. The oomph-lib
geometry is mapped onto triangulated MercuryDPM walls that
can interact with the discrete particles. For each particle–wall
interaction, the contact forces are added as external loads into
the weak form of the linear momentum equation, and the wall
positions and velocities in MercuryDPM are updated by the finite
element approximation.

Applications of the coupled code include, but are not lim-
ited to: interactions between granular materials and deformable,
fatigue-able structure/machinery [66], breakable discrete poly-
gons [67], and fibre–particle mixtures [68,69].

9.2. Multi-resolution particle–fluid coupling

A second feature enabled by the coupling with oomph-lib is
fluid–particle coupling. For under-resolved simulations, we use

https://docs.mercurydpm.org
https://docs.mercurydpm.org
https://docs.mercurydpm.org
http://mercurydpm.org
http://mercurydpm.org
http://mercurydpm.org
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/
http://docs.mercurydpm.org/

16 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

Fig. 24. Illustration of the fully-semi and under-resolved method.

the Anderson and Jackson formulation [70]. This introduces a
voidage field, a measure for the fraction of total particle volume
inside an element, to simulate the fluid flow. Coupling forces
are be defined that specify the interaction between particles and
fluid [71]. A different coupling method is semi-resolved, giving
more detailed results than an under resolved method but being
much faster than a fully-resolved method. The voidage can be de-
scribed as continuous function by coarse-graining the particles in
space. The fluid elements can then simply evaluate this function
at their location. For fully resolved simulation there is a no-
slip boundary condition for the fluid on the particle surface, and
the coupling forces can be computed by integrating the pressure
along the particle surface.

At the moment the three methods have been independent
implemented; however, a multi-resolution is currently under de-
velopment, where the code adapts between fully-, semi- and
under-resolved situations, allowing the simulation of suspensions
with arbitrary large particle size-distributions. This is illustrated
in Fig. 24.

9.3. Better hybrid openMP-MPI parallelisation

The current MPI parallelisation strategy, see Section 7.5, works
well for evenly distributed particle systems. However, for inho-
mogeneous systems, the workload of the processors is unbal-
anced, resulting in suboptimal scalability. This weakness of the
current implementation will be addressed in the near future: one
possibility to enhance load balancing is using a cyclic distribution
with respect to particle identities (indices); a second possibility
is to implement an adaptive mesh of differently-sized domains.
These parallel-processing strategies for the MercuryDPM software
package will be done using a combination of OpenMP and MPI for
CPU parallel computing and OpenACC/CUDA for GPU computing.

9.4. STL/STEP readers for reading in industrial geometries

We have an STL reader for MercuryDPM but this by-passed our
very nice complex curved wall support. We are currently work-
ing on an STEP reader that keeps all the curvature information,
leading to quicker and more accurate simulations.

9.5. Calibration via grain learning

Calibrating contact models is a huge problem in granular
materials. A wide and varied range of granular characterisation
machines exists, and many of these machines produce vendor-
specific, none-standard measures that are not comparable with
each other. To solve this problem, MercuryDPM is integrating
Grain Learning (https://github.com/chyalexcheng/grainLearning/)
into its software suite. Grain learning uses Bayesian inference
and machine learning to train the contact model to reproduce
the supplied characterisation data [72,73]. The algorithm further

identifies automatically whether the provided characterisation
data is sufficient to uniquely determine the parameters of the
contact model, or whether more experimentation is required.
A major advantage is that the method is independent of the
type of characterisation data; this makes it a very valuable tool
and it will remain so until a standardisation of the measures
characterising granular materials has been established, i.e., until
we have granular properties that mirror surface tension, viscosity,
etc. in fluid dynamics.

10. Release strategy

Originally, MercuryDPM has been released once a year; how-
ever, this was becoming less practical due to the large number of
contributors, so we have moved to an open-development model,
i.e. opening the developer’s version to public download. For more
information about MercuryDPM please visit http://MercuryDPM.
org.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

CRediT authorship contribution statement

ThomasWeinhart: Conceptualization, Methodology, Software,
Writing - original draft, Writing - review & editing, Visualiza-
tion, Supervision, Project administration, Funding acquisition.
Luca Orefice: Methodology, Software, Writing - original draft,
Visualization. Mitchel Post: Methodology, Software, Writing -
original draft, Visualization, Project administration. Marnix P.
van Schrojenstein Lantman: Methodology, Software, Writing -
original draft, Visualization. Irana F.C. Denissen: Methodology,
Software, Writing - original draft, Visualization, Project adminis-
tration. Deepak R. Tunuguntla:Methodology, Software, Writing -
original draft, Visualization. J.M.F. Tsang: Methodology, Software,
Writing - original draft, Visualization. Hongyang Cheng: Method-
ology, Software, Writing - original draft, Visualization. Mohamad
Yousef Shaheen: Methodology, Software, Writing - original draft,
Visualization. Hao Shi: Methodology, Software, Writing - orig-
inal draft, Visualization. Paolo Rapino: Methodology, Software,
Writing - original draft, Visualization. Elena Grannonio: Method-
ology, Software, Writing - original draft, Visualization. Nunzio
Losacco: Writing - original draft, Supervision, Funding acquisi-
tion. Joao Barbosa: Methodology, Software, Writing - original
draft, Visualization. Lu Jing: Methodology, Software, Writing -
original draft, Visualization. Juan E. Alvarez Naranjo: Method-
ology, Software, Writing - original draft, Visualization. Sudeshna
Roy: Methodology, Software, Writing - original draft, Visualiza-
tion. Wouter K. den Otter: Methodology, Writing - original draft,

https://github.com/chyalexcheng/grainLearning/
http://MercuryDPM.org
http://MercuryDPM.org
http://MercuryDPM.org

T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129 17

Funding acquisition. Anthony R. Thornton: Conceptualization,
Methodology, Software, Writing - original draft, Writing - re-
view & editing, Visualization, Supervision, Project administration,
Funding acquisition.

Acknowledgements

The MercuryDPM team

MercuryDPM has been developed and tested by many people
over the years and the code would not exist without the support
of all these people. Every time we develop a few new features
we try and write a short conference proceeding giving credit to
both the people who developed these features and the people
who tested these features [2–4,35,74].

In addition to this we try to maintain a full list of contributors
on the MercuryDPM website, see http://mercurydpm.org/about-
the-code/team.

Funding

MercuryDPM would not exist without external funding and the
authors would like to acknowledge support from the following
grants (since the project was started):

1. IMPACT-SIP1 ‘‘Computational multi-scale modelling of
super-dispersed multiphase flows’’

2. STW 11039 ‘‘Polydispersed Granular Flows through In-
clined Channels’’

3. NWO VICI 10828 ‘‘Bridging the gap between particulate
systems and continuum theory’’;

4. DFG LU 450/10 ‘‘Sintering: modelling of pressure-,
temperature-, or time-dependent contacts’’(part of SPP
1482 ‘‘Partikel im Kontakt’’)

5. FOM 07PGM27 ‘‘Clustering phase diagram with dissipation
and long range forces’’;

6. STW MuST 10120 ‘‘Molecular dynamics simulations of
granular media’’

7. DFG-STW 12272 ‘‘Hydrodynamic theory of wet particle
systems’’

8. STW Take-Off Phase 1 ‘‘The MercuryLab Project’’
9. STW VIDI 13472 ‘‘Shaping Segregation’’

10. STW 15050 ‘‘Multiscale modelling of agglomeration - Ap-
plication to tableting and selective laser sintering’’

11. NWO VIDI 16604 ‘‘Virtual Prototyping of Particulate Pro-
cesses’’

We would like to thank MercuryLab for their financial support,
contribution to the code and the development of the training
material for MercuryDPM. MercuryLab is the official provider of
consultancy, cloud interfaces and training for MercuryDPM and
its associated tools. All MercuryLab training material is freely
available under the CC-BY licence.

References

[1] A.R. Thornton, D. Krijgsman, A. te Voortwis, V. Ogarko, S. Luding, R.
Fransen, S. Gonzalez, O. Bokhove, O. Imole, T. Weinhart, Discrete Elem.
Methods 6 (2013).

[2] A.R. Thornton, D. Krijgsman, R.H.A. Fransen, S.G. Briones, D.R. Tunuguntla,
A. te Voortwis, S. Luding, O. Bokhove, T. Weinhart, EnginSoft Simul.-Based
Eng. Sci. 10 (1) (2013) 48–53.

[3] T. Weinhart, D.R. Tunuguntla, M. van Schrojenstein-Lantman, A. van der
Horn, I.F.C. Denissen, C.R. Windows-Yule, A.C. de Jong, A.R. Thornton, Proc.
7th Int. Conf. Discrete Element Methods, Springer, 2016, pp. 1353–1360.

[4] T. Weinhart, D.R. Tunuguntla, M.P.V.S. Lantman, I.F. Denissen, C.R.W. Yule,
H. Polman, J.M. Tsang, B. Jin, L. Orefice, K. van der Vaart, S. Roy, H. Shi,
A. Pagano, W. den Breeijen, B. Scheper, A. Jarray, S. Luding, A.R. Thornton,
Int. Conf. Particle-Based Methods V, 2017, pp. 123–134.

[5] P.A. Cundall, O.D.L. Strack, Géotechnique 29 (1) (1979) 47–65.
[6] T. Pöschel, T. Schwager, Computational Granular Dynamics: Models and

Algorithms, Springer, 2005.
[7] D. Palanisamy, Micro-Hydrodynamics of Non-

Spherical Colloids: a Brownian Dynamics Study
(Ph.D. thesis), University of Twente, Enschede, The Netherlands, 2019.

[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.
Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK
Users’ Guide, third ed., Society for Industrial and Applied Mathematics,
Philadelphia, PA, ISBN: 0-89871-447-8, 1999, (paperback).

[9] V. Ogarko, S. Luding, Comput. Phys. Comm. 183 (4) (2012) 931–936.
[10] D. Krijgsman, V. Ogarko, S. Luding, Comput. Part. Mech. 1 (3) (2014)

357–372.
[11] T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granul. Matter 14 (2)

(2012) 289–294.
[12] T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Phys. Fluids 25 (7)

(2013) 070605.
[13] D.R. Tunuguntla, A.R. Thornton, T. Weinhart, Comput. Part. Mech. 3 (3)

(2016) 349–365.
[14] T. Weinhart, C. Labra, S. Luding, J.Y. Ooi, Powder Technol. 293 (2016)

138–148.
[15] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University

Press, 1989.
[16] A.R. Thornton, T. Weinhart, V. Ogarko, S. Luding, Comput. Methods Mater.

Sci. 13 (2) (2013) 197–212.
[17] S. Raschdorf, M. Kolonko, Internat. J. Numer. Methods Engrg. 85 (2011)

625–639.
[18] O.I. Imole, D. Krijgsman, T. Weinhart, V. Magnanimo, B.E.C. Montes, M.

Ramaioli, S. Luding, Powder Technol. 293 (2016) 69–81.
[19] R. Kawamoto, E. Andò, G. Viggiani, J.E. Andrade, J. Mech. Phys. Solids 111

(2018) 375–392.
[20] L. Piegl, W. Tiller, The NURBS Book, Springer, 2012.
[21] J. Bel, D. Branque, H. Wong, G. Viggiani, N. Losacco, ITA-AITES World Tunnel

Congress 2016, WTC 2016, Vol. 4, 2016, pp. 3219–3229.
[22] D.R. Tunuguntla, T. Weinhart, A.R. Thornton, Comput. Part. Mech. 4 (4)

(2017) 387–405.
[23] S. Rubio-Largo, F. Alonso-Marroquin, T. Weinhart, S. Luding, R. Hidalgo,

Physica A 443 (2016) 477–485.
[24] D. Tunuguntla, T. Weinhart, A. Thornton, Alert doctoral school 2017

discrete element modeling, 2017, p. 181.
[25] S. Roy, B.J. Scheper, H. Polman, A.R. Thornton, D.R. Tunuguntla, S. Luding,

T. Weinhart, Eur. Phys. J. E 42 (2) (2019) 14.
[26] K. van der Vaart, M. van Schrojenstein Lantman, T. Weinhart, S. Luding, C.

Ancey, A.R. Thornton, Phys. Rev. Fluids 3 (7) (2018) 074303.
[27] H. Shi, S. Roy, T. Weinhart, V. Magnanimo, S. Luding, Granul. Matter 22

(14) (2020).
[28] A. Lees, S. Edwards, J. Phys. C 5 (15) (1972) 1921.
[29] D. Pan, J. Hu, X. Shao, Mol. Simul. 42 (4) (2016) 328–336.
[30] H. Kobayashi, R. Yamamoto, J. Chem. Phys. 134 (6) (2011) 064110.
[31] I.F.C. Denissen, T. Weinhart, A. Te Voortwis, S. Luding, J.M.N.T. Gray, A.R.

Thornton, J. Fluid Mech. 866 (2019) 263–297.
[32] S. Luding, Granul. Matter 10 (4) (2008) 235.
[33] J. Tomas, Powder Handl. Process. 15 (5) (2003) 296–314.
[34] R. Fuchs, T. Weinhart, M. Ye, S. Luding, H.-J. Butt, M. Kappl, EPJ Web of

Conferences, Vol. 140, EDP Sciences, 2017, p. 13012.
[35] T. Weinhart, M. Post, I.F.C. Denissen, D.R. Tunuguntla, E. Grannonio, N.

Losacco, J.M.F. Tsang, J. Barbosa, W. den Otter, A.R. Thornton, 8th Int. Conf.
Discrete Element Methods, Springer, 2019.

[36] S. Roy, A. Singh, S. Luding, T. Weinhart, Comput. Part. Mech. 3 (4) (2016)
449–462.

[37] S. Roy, S. Luding, T. Weinhart, Phys. Rev. E 98 (5) (2018) 052906.
[38] A.G. Pagano, V. Magnanimo, T. Weinhart, A. Tarantino, Géotechnique, 0,

(0) 1, https://doi.org/10.1680/jgeot.18.P.060.
[39] Tribology-ABC, Hertzian contacts, 2015, http://www.tribology-abc.com/

sub10.htm, [Online; accessed 01 August 2015].
[40] C. Thornton, J. Appl. Mech. 64 (2) (1997) 383–386.
[41] S. Luding, Phys. Dry Granul. Media - NATO ASI Ser. E350 (ISSN: 0168-132X)

1 (1998) 285.
[42] R.L. Jackson, I. Green, D.B. Marghitu, Nonlinear Dynam. 60 (3) (2010)

217–229.
[43] C. Thornton, S.J. Cummins, P.W. Cleary, Powder Technol. 233 (2013) 30–46.
[44] E.R. Johnston, Vector Mechanics for Engineers: Statics and Dynamics, Vol.

1, Tata McGraw-Hill Education, 2009.
[45] O.R. Walton, R.L. Braun, J. Rheol. (1978-present) 30 (5) (1986) 949–980.
[46] O.R. Walton, Mech. Mater. 16 (1) (1993) 239–247.
[47] J. Blendell, Encyclopedia of Materials: Science and Technology, Elsevier,

Oxford, ISBN: 978-0-08-043152-9, 2001, pp. 8745–8750.
[48] T. Weinhart, R. Fuchs, T. Staedler, M. Kappl, S. Luding, Particles in Contact:

Micro Mechanics, Micro Process Dynamics and Particle Collective, Springer,
2019, pp. 311–338.

http://mercurydpm.org/about-the-code/team
http://mercurydpm.org/about-the-code/team
http://mercurydpm.org/about-the-code/team
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb1
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb2
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb3
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb4
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb5
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb6
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb7
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb8
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb9
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb10
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb11
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb12
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb13
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb14
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb15
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb15
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb15
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb16
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb16
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb16
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb17
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb17
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb17
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb18
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb18
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb18
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb19
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb19
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb19
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb20
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb21
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb21
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb21
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb22
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb22
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb22
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb23
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb24
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb24
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb24
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb25
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb26
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb26
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb26
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb27
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb27
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb27
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb28
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb29
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb30
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb31
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb31
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb31
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb32
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb33
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb34
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb34
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb34
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb35
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb36
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb36
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb36
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb37
https://doi.org/10.1680/jgeot.18.P.060
http://www.tribology-abc.com/sub10.htm
http://www.tribology-abc.com/sub10.htm
http://www.tribology-abc.com/sub10.htm
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb40
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb41
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb41
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb41
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb42
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb42
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb42
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb43
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb44
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb44
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb44
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb45
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb46
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb47
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb47
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb47
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb48
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb48
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb48
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb48
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb48

18 T. Weinhart, L. Orefice, M. Post et al. / Computer Physics Communications 249 (2020) 107129

[49] R. Fuchs, T. Weinhart, J. Meyer, H. Zhuang, T. Staedler, X. Jiang, S. Luding,
MRS Proc. 1652 (2014) mrsf13–1652–ll07–07.

[50] R. Fuchs, M. Ye, T. Weinhart, S. Luding, H.-J. Butt, M. Kappl, International
Congress on Particle Technology (ParTec), 2016.

[51] M.Y. Shaheen, A.R. Thornton, S. Luding, T. Weinhart, Int. Conf. Discrete
Element Methods (DEM8), 2019.

[52] Y. Gan, P. Rognon, I. Einav, Phil. Mag. 92 (28–30) (2012) 3405–3417.
[53] R. Fuchs, J. Meyer, T. Staedler, X. Jiang, Tribol. - Mater. Surf. Interfaces 7

(2) (2013) 103–107.
[54] S. Roy, S. Luding, T. Weinhart, New J. Phys. 19 (4) (2017) 043014.
[55] C.D. Willett, M.J. Adams, S.A. Johnson, J.P. Seville, Langmuir 16 (24) (2000)

9396–9405.
[56] S. Roy, S. Luding, W.K. den Otter, A.R. Thornton, T. Weinhart, J. Fluid Mech.

(2019) submitted for publication.
[57] R. Hibbeler, Engineering Mechanics: Statics & Dynamics, 14th Edn.

Hoboken, Pearson Prentice Hall Pearson Education, Inc, NJ, 2016.
[58] A. Podlozhnyuk, S. Pirker, C. Kloss, Comput. Part. Mech. 4 (1) (2017)

101–118.
[59] I.F.C. Denissen, On Segregation in Bidisperse Granular Flows

(Ph.D. thesis), University of Twente, Enschede, The Netherlands, 2019.
[60] S. He, J. Gan, D. Pinson, Z. Zhou, Powder Technol. 341 (2019) 157–166.
[61] R. Furukawa, K. Kadota, T. Noguchi, A. Shimosaka, Y. Shirakawa, AAPS

Pharm. Sci. Tech. 18 (6) (2017) 2368–2377.

[62] A. Skelbæk-Pedersen, T. Vilhelmsen, V. Wallaert, J. Rantanen, J. Pharm. Sci.
108 (3) (2019) 1246–1253.

[63] D. Mašín, Eng. Geol. 165 (2013) 73–88.
[64] M.P. van Schrojenstein Lantman, A Study on Fundamen-

tal Segregation Mechanisms in Dense Granular Flows
(Ph.D. thesis), University of Twente, Enschede, The Netherlands, 2019.

[65] M. Heil, A.L. Hazel, Fluid-Structure Interaction, Springer, 2006, pp. 19–49.
[66] M. Dratt, A. Katterfeld, Granul. Matter 19 (3) (2017) 49.
[67] G. Ma, W. Zhou, X.-L. Chang, W. Yuan, Int. J. Geomech. 14 (4) (2013)

04014014.
[68] H. Cheng, H. Yamamoto, K. Thoeni, Y. Wu, Geotext. Geomembr. 45 (4)

(2017) 361–376.
[69] H. Cheng, H. Yamamoto, N. Guo, H. Huang, Proc. 7th Int. Conf. Discrete

Element Methods, Springer Singapore, Singapore, 2017, pp. 445–453.
[70] T. Anderson, R. Jackson, Ind. Eng. Chem. Fundam. 6 (4) (1967) 527–539.
[71] C. Davies, J. Aerosol Sci. 10 (5) (1979) 477–513.
[72] H. Cheng, T. Shuku, K. Thoeni, H. Yamamoto, Granul. Matter 20 (1) (2018)

11.
[73] H. Cheng, T. Shuku, K. Thoeni, P. Tempone, S. Luding, V. Magnanimo,

Comput. Methods Appl. Mech. Engrg. 350 (2019) 268–294.
[74] A.R. Thornton, M. Post, L. Orefice, P. Rapino, S. Roy, H. Polman, M.Y.

Shaheen, J. Alvarez Naranjo, H. Cheng, L. Jing, H. Shi, J. Mbaziira, R. Roeplal,
T. Weinhart, 8th Int. Conf. Discrete Element Methods, Springer, 2019.

http://refhub.elsevier.com/S0010-4655(19)30435-7/sb49
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb49
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb49
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb50
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb50
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb50
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb51
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb51
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb51
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb52
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb53
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb53
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb53
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb54
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb55
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb56
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb57
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb57
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb57
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb58
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb58
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb58
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb59
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb59
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb59
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb60
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb61
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb61
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb61
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb62
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb62
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb62
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb63
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb64
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb64
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb64
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb64
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb64
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb65
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb66
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb67
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb68
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb68
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb68
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb69
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb69
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb69
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb70
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb71
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb72
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb72
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb72
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb73
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb73
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb73
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb74
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb74
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb74
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb74
http://refhub.elsevier.com/S0010-4655(19)30435-7/sb74

	Fast, flexible particle simulations — An introduction to MercuryDPM
	Introduction
	Coding philosophy
	Major components
	Contact detection
	Application: Segregation in rotating drums

	Curved walls
	Application: Industrial mixers
	Application: Tunnel boring machine

	Coarse graining

	Boundary conditions
	Insertion boundaries
	Deletion boundaries
	Periodic boundaries
	Stress- and strain-controlled periodic boundaries
	Other boundary conditions

	Contact models
	Normal force models
	Linear spring-dashpot model
	Hertz spring-dashpot model

	Linear elasto-plastic cohesive
	Solid-state sintering
	Partial melting

	Tangential force and torque models
	Sliding friction
	Rolling and torsion torque

	Adhesive force models
	Linear reversible adhesive force
	Linear irreversible adhesive force
	Liquid-bridge cohesion
	Bonds and charges
	User-defined species

	Non-spherical particles
	Ellipsoidal particles
	Multispheres
	Deformable/breakable clusters (agglomerates)

	Writing applications
	General interfaces
	Code samples
	Common geometries
	Restarting
	Parallelisation
	Visualisation

	Download, testing, documentation
	Versioning
	Self-test suite
	Documentation and tutorials

	Future direction and in-development features
	Particle–solid interaction
	Multi-resolution particle–fluid coupling
	Better hybrid openMP-MPI parallelisation
	STL/STEP readers for reading in industrial geometries
	Calibration via grain learning

	Release strategy
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	The MercuryDPM team

	References

