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Executive Summary  
 

Background and Research Objective 
Vehicle automation is introduced at different levels, and categorized following the Society for Automotive 

Engineers to six levels, ranging from no-automation (level 0) to full automation (level 5). Each level of 

automation is designed to work in specific conditions referred to as the Operational Design Domain (ODD); 

this includes geographic, environmental, traffic, road geometry, speed and/or temporal dimensions. This 

research focusses on SAE level 2 automated vehicles (i.e. partial automation) and specifically, on its Lane 

Keeping Assistance Systems (LKAS - assistance in lateral vehicle control). At this level, the execution of both 

the lateral and longitudinal vehicle motion control tasks are performed by an automation system with the 

expectation that the driver supervises the driving automation system. A well-researched problem at this 

level of automation, is the task of transition of control from the system to the driver when the automated 

system cannot handle the driving situation. Drivers of level 2 vehicles are responsible to monitor the driving 

environment at all times. If the ODD is not accurately defined and made clear to the drivers, this could make 

the drivers more vulnerable to accidents, as they could have misconceptions about capabilities of the 

system. 

Situations where the driver needs to take-over control from the system are defined by the Original 

Equipment Manufacturers (OEM’s)/vehicle manufacturers in their owner’s manuals. As each manufacturer 

specifies their own operational conditions and constraints, this could result in uncertainties about the 

capabilities of different vehicles within the same level of automation.  This is a problem, because generally 

very few drivers read owner manuals and are therefore, unaware of their own vehicle’s functional 

constraints, let alone that of other vehicles. In addition to this, another problem could be a mismatch 

between the drivers’ understanding of the capabilities of the automated vehicle and its actual capabilities. 

This mismatch could also lead to serious situations and road accidents. 

Furthermore, an important dimension of the ODD is road type, including its geometry and design. Closeness 

to non-moving road entities (barrier, lane markings) and other vehicles has an impact on accident risks 

while driving. These risks can be quantified and their magnitude reflect on the performance of the driver 

assistance systems. 

Therefore, it is believed that there is a need for a methodology to assess the ODD of semi-automated 

vehicles that are currently already available in the market. Development of such a methodology forms the 

aim of this research. This methodology could help vehicle manufacturers in making drivers more aware 

about the situations in which their semi-automated vehicles can/cannot be used, thereby, increasing their 

acceptance and trust in driver assistance equipped vehicles over time. To achieve this objective the 

following main research question is proposed: 

To what extent can the Operational Design Domain of vehicles equipped with lane keeping 

systems be assessed by understanding the subjective and objective risk of driving in pre-

specified test situations? 

 

To answer this question, first the objective vehicle-related aspects of ODD assessment are measured, 

followed by the subjective driver-related aspects. Assessing performance of the LKAS inside and outside its 

ODD, and measurement of lateral driving risks in selected situations, constitute the objective aspects. 

Understanding divers’ attitude and response towards LKAS at different stages of testing, constitutes the 

subjective aspect. These two aspects are assessed using a real-road case study of a Tesla Model S. 

Research Methodology 
The assessment methodology is implemented using an approach that combines literature study, real-road 

tests with instrumented Tesla Model S, and driver behavior surveys at three stages of testing (before, during 
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and after the road tests). This methodology assesses the Autosteer system of the Tesla in specific situations. 

These situations are identified by analysing the Tesla Model S owner’s manual and classifying situations 

where the system is intended to work (Inside the ODD), not intended to work (Outside the ODD) and where 

it may or not work as intended (Neither inside nor outside the ODD).  

Next, one out of three candidate routes from within the Netherlands, was selected as the test route for the 

real-road tests. Participants for the tests are recruited based on specific criteria such as their age (between 

25 and 60years) and having prior experience of driving in vehicle equipped lane keeping assistance systems, 

the Tesla Model S is instrumented to gather the research specific data, survey questionnaires are developed 

and final ethical requirements are fulfilled before conducting the tests. The final selected situations are: 

(S1) Inside the city with no lane marking strips on the road boundaries (Outside the ODD); (S2) Inside a 

tunnel within city (Inside the ODD); (S3) Close to an off-ramp on the highway (Neither inside nor outside the 

ODD); (S4) On a curve (right turning) on the highway (Inside the ODD). 

These situations are tested on a route which starts and ends at the parking lot of Den Ruygen Hoek-Oost, 

Rijsenhout. The test route first, includes a part in which the drivers are familiarized with the ADAS system 

of the Tesla by the on-board safety drive. After familiarization, the drivers then drive first on the highway 

and then in a short city road section and then back on the highway, towards the end of the test route. Each 

driver is requested to fill in a questionnaire before their drive about their initial attitude towards LKAS and 

automated vehicle in general, respond to specific questions during their drive on their trust and awareness 

of the capabilities of the LKAS of the Tesla, and fill in a questionnaire after their drive which is focussed at 

understanding drivers’ behaviour in specific test situations. The gathered data is then processed using 

image processing techniques and a data visualization tool is developed to help during the analysis phase of 

the research. 

The lane keeping performance is assessed using the Mean Lane Position and the Standard Deviation of Lane 

Positions (SDLP) metrics, and the lateral risks are measured using a novel metric, referred as the 

Probabilistic Driver Risk Field metric. These measurements form the objective part of the methodology. On 

the other hand, drivers’ behaviour and responses towards the LKAS system, are assessed using a statistical 

hypothesis based approach with an aim of identifying and investigating reasons for mismatch between 

drivers’ perceptions of the system’s capabilities and its actual capabilities. This forms the subjective part of 

the assessment methodology. 

 

Results: Lane keeping performance of LKAS  
The mean lane positions in the two ‘Inside ODD situations’ showed that in the tunnel (S2), the Tesla is 

slightly closer to the lane centre than on the curve. There is a significant right bias in its mean positions 

confirming that the Tesla is attempting to move away from the left lane marking strip as it is closer to the 

left side concrete tunnel wall. Similarly, in the situation with no lane marking on the road boundaries (S1), 

the Tesla aligns itself with a left bias closer to the left lane marking strip, away from the road edge. Close to 

the off-ramp (S3), the mean position of the Tesla is closer to the lane centre, than in (S1). This is attributed 

to the lack of a lane marking strip on the road boundary in S1, forcing the Tesla to bias its position closer to 

the road centre. Moreover, as expected, the standard deviation of lane positions is lower in the situations 

‘inside the ODD’ compared to the two other situation types. Between the other two types of situations 

(‘Outside the ODD’ and ‘Neither inside nor outside the ODD’), standard deviation in lane position is higher 

close to the off-ramp compared to the no lane marking situation. Based on this, it is concluded that the lane 

keeping performance of the Autosteer ‘Inside the ODD’ is better than the performance when it is ‘outside 

the ODD’ and ‘Neither inside nor outside the ODD’. The performance is slightly better in the situation with 

no lane marking (S1) compared to driving close to an off-ramp (S3), as there is larger range of variation in 

standard deviation of lane positions in (S3). It is also concluded that the Autosteer predominantly attempts 

to move away from road edges, guard rails and tunnel walls, but at the same time moves closer to other 

road traffic which could lead to unsafe situations. 
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Results: Lateral driving risk measurements 

Using the field theory based approach referred as Probabilistic Driving Risk field method, it is found that 

the lateral driving risk across the different situations is in the order (S1)>(S2)>(S3)>(S4). This was different 

from what was expected based on the lane keeping performance across the different test situations. There 

is a large difference between risks in S1 (outside the ODD) and S4 (Inside the ODD). It is observed that the 

maximum-minimum range of the objective risk values also follow the same order (S1 through to S4) across 

the situations and there is considerable skew in higher risk values in S1, S2 and S3 but not in S4. Relatively, 

S4 (right turning curve on the highway) is measured to be the safest situation to drive in. In this research, 

to interpret and give reasons for the measured risks, a relationship between lane keeping performance 

indicators (mean and standard deviation of lane positions) and the components of the risk measurement 

metric (severity and probability of collisions), is established.  

 

Moreover, the risk field approach used in this research is also compared to risk measurements using time 

to lane crossing metric. The results indicate that both metrics depict the same trends in risk as they are 

both dependent on the lateral distance to road barriers, but differ in the realism of the magnitude of the 

risk they represent. The risk field approach shows advantages in terms of sensitivity to different road barrier 

types and shows additive properties (risks due to different road entities in both lateral and longitudinal 

direction can be represented as one risk measurement). 

 

Results: Driver behavior in LKAS equipped vehicles 
Statistical results show that there are factors such as perceived risk of driving, frequency of using LKAS and 

perceived ease of driving which correlate with the drivers’ real-time trust and ODD perception whilst driving 

in the vehicle. Most importantly, there are mismatches between driver’s perception and vehicle 

manufacturer’s specification of the capabilities of the Autosteer.  

 

In terms of number/percentage of mismatches, maximum mismatches (81.2% of drivers) were observed in 

the ‘Neither inside nor outside the ODD’ situation of driving close to an off-ramp. In this situation, most 

drivers (77%) believed that the Tesla is inside its ODD. Next highest mismatch (68.7%) was seen in the 

‘Outside the ODD’ situation of driving in the city with no lane marking (S1). In this situation, most drivers 

(82%) believe that the Tesla is inside its ODD and very few drivers are not sure about it. This mismatch could 

lead to very dangerous situations as drivers might not be completely ready to take over control from the 

LKAS system. In both situations ‘Inside the ODD’, there were very less mismatches. It is also found that 

across the different test situations, factors such as drivers’ real-time trust, their perceived risk of driving in 

a situation, their initial trust in AV’s in general, are possible factors that contribute to such mismatches and 

therefore, provides a first indication of which factors to focus on to avoid these mismatches. 

 

ODD assessment for Tesla Model S 
After analyzing both the objective and subjective aspects of the ODD assessment methodology, each of the 

test situations are assessed. While driving close to an off-ramp, which is neither inside nor outside the 

Autosteer’s ODD, lane keeping system performs the poorest, but most drivers think this situation is inside 

the ODD. This shows the need for a better form of communication between the vehicle and the driver 

and/or changes in road design (like having a single lane marking strip instead of multiple strips leading to 

the off-ramp). On city roads with no lane marking on its boundaries (outside the ODD of Autosteer), the 

lane keeping system also performs poorly (but better than while driving close to an off ramp) and most 

drivers believe that the vehicle is inside its ODD. Given these results, the Autosteer is still allowed be 

switched ON in this situation, making the driver more vulnerable to road accidents. Therefore, it is 

concluded that either the Autosteer must not be allowed to be turned ON in this situation, or that drivers 

must be given more information about the constraints of the Autosteer’s functionality in this situation or 

make them aware of the risks of driving in this situation (on the on-board LCD screens). 
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While driving inside the Tunnel (inside the ODD), lane keeping performance is good but there is a skew 

away from left lane marking strip, this results in higher lateral driving risks as the lateral velocity of the 

vehicle is high thereby increasing the severity of collisions with the barriers. Therefore, it is advised not to 

attempt at swaying away from the left strip, inform the driver of the risk and the vehicle to maintain its 

mean position. Furthermore, driving on the curve has the best lane keeping performance, the least lateral 

driving risk and minimum mismatch between driver and OEM specified ODD. It is not possible to decide if 

any of these situations must be included or excluded from the ODD, as the thresholds for lane keeping 

performance and driving risks are unavailable due to OEM confidentiality. 

Finally, it is important to keep in mind that there are cross correlations between drivers’ perception of risk 

and trust on the system, while making infrastructural changes to reduce risks in either of the situations that 

are not inside the ODD.  

 

Main contributions 
This research makes scientific and practical contributions. It fills existing gaps in scientific research as, it 

involves a successful implementation of a novel potential driving risk field method for risk measurement 

for real-road experiments. This is useful for the calibration of the components of this method which is still 

under development at TU Delft. It also identifies relationships between drivers’ attitude and response 

towards LKAS across different testing stages using a combined real-road test and questionnaire based 

approach, which is also a relatively lesser used approach in the scientific community (most researches are 

either simulation or survey based).  Furthermore, there is limited or no literature that attempts at 

development of a methodology for assessing ODD for vehicles at any level of automation, this research 

mainly fills this scientific gap.  

 

Practically, this research provides a road environment sensing tool using which, vehicle dynamics data 

(acceleration, speed in both lateral and longitudinal direction), vehicle co-ordinates and geometry, 

distances to surrounding moving and non-moving road entities, can be determined in continuous motion. 

This could be of great value to Royal HaskoningDHV in future mobility related projects.  

 

Limitations and next steps 
This research has scientific and technical limitations. 1) Main technical limitations: Autosteer function of 

the Tesla cannot be turned on without the Adaptive Cruise Control (ACC) function of the vehicle also active. 

This can have an impact on the drivers’ perception of risk and their trust on the vehicle in general. 

Furthermore, between the first two and the next two test days, two different versions of Tesla Model S 

(60D and 90D) were used (but they had the same software version), this could also have an impact on the 

vehicle’s performance across the different situations. 

2) Main scientific limitations: There is a maximum error of 16% and an average error of 3.5% (highway) and 

4% (city), in the image processed lane positions, which is another limitation of the research. Moreover, the 

sample size for the statistical tests is limited, leading to an increase in chances of type 1 errors (showing 

significant results when they are not) in the statistical tests conducted in this research. 

Next steps from this research include, extension of the risk field approach so it also includes risks due to 

other moving vehicles on the road. This could further increase the realism of the risk measurement. 

Furthermore, driver facial videos collected in this research, can be used for research into understanding 

drivers’ psychological mindset across different road situations within semi- automated vehicles. This 

method can also be extended to other ADAS and eventually be used by vehicle manufacturers for a 

complete assessment of situations before deciding ODD. Finally, Infrastructure developers can use the 

driving risk measurements to identify hotspots (highly risky road sections) and test infrastructure changes 

to reduce these risks. 
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Chapter 1. Introduction   
In this chapter, background information and motivation for the conduction of this research is provided. It 

first introduces the main problems that require attention and then possess research questions, answers to 

which, fulfil the objectives of this research. It then briefly describes the research methodology adopted to 

answer the posed research questions followed by, a detailed overview of the scope and scientific relevance 

of this research. Finally, it describes the structure/ outline of this thesis report. 

 

1.1.  Background and Motivation 
 

There are uncertainties about the advent of automated vehicles in the eyes of the public as well as the 

experts within the automotive industry. Recent fatal accidents such as [1] in which an Uber test vehicle 

collided with a pedestrian crossing a city street with a bicycle and [2] in which, just seconds before a fatal 

crash, a Tesla sped up and steered into a concrete barrier as it stopped following the path of a vehicle in 

front of it; have only added to these uncertainties. In the former case, the cause of the accident was 

investigated to be due to the driver’s inattention. In the latter case, Tesla noted that the driver had received 

multiple warnings to keep their hand on the wheel, and did not intervene in the seconds before the 

accident.  Both these accidents indicate that there is a need for driver’s to be aware of the capabilities and 

limits of the vehicle automation they drive in. On the other hand, it also creates a need for the evaluation 

of situations in which the vehicle automation can or cannot be used. 

A general consensus is that having fully autonomous vehicles on the road would certainly take a 

considerable number of years and therefore, vehicle automation is introduced in stages termed levels [3]. 

Each level of automation is designed to work in specific conditions; this includes geographic, environmental, 

traffic, road geometry, speed and/or temporal dimensions. This is referred to as Operational Design Domain 

(ODD) that differs for every level of automation and is one of several measures that is used to define the 

levels of autonomy [4].  

As the level of autonomy increases, the role of drivers diminishes from a controlling function to mostly a 

supervisory function. Defined in [4], SAE level 2 automation, refers to ‘sustained and ODD specific execution 

by a driving automation system of both the lateral and longitudinal vehicle motion control subtasks of the 

Dynamic Driving Task (DDT) with the expectation that the driver completes the Object and Event Detection 

and Ranging (OEDR) subtask and supervises the driving automation system‘. 

From [1], [2] and [5] it can be seen that ensuring driver’s awareness and knowledge about the systems, is 

vital for the development of such systems. Annual road safety statistics published by the European 

Commission in the year 2015, reported that over 90% of the traffic accidents were caused by human errors 

[6]. In addition to this, drivers in contrast to pilots, vary widely in their abilities, seldom have extensive 

training, and cannot be expected to understand complex literature (technical information about systems in 

the owners’ manual) about the automated driving features in their own vehicle [7, 8]. 

Within SAE level 2 vehicles, a well-researched problem is the task of authority transition. In this level of 

autonomy, the driver is always responsible for the Object and Event Detection and Ranging (OEDR).  If the 

ODD is not accurately defined, this could make the driver more vulnerable to accidents. Situations where 

the driver needs to take-over control from the assistance system/vehicle are defined by its ODD, which is 

in-turn defined by the Original Equipment Manufacturers (OEM’s)/vehicle manufacturers in their owner’s 

manuals. As each OEM specifies their own ODD, this could result in uncertainties about the capabilities of 

different vehicles within the same level of automation.  This is a problem, because most of the drivers do 

not read the owners’ manual and are therefore, unaware of their own vehicle’s functional constraints, let 
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alone that of other vehicles. This could lead to either under or over-utilisation of the ADAS and potential 

safety related problems associated with it [9, 10, 11]. 

When analysing the manuals of several SAE level 2 vehicles, such as Tesla Model S [12], Mercedes E class 

[13] and Volvo XC90 [14], it was found that the ODD definitions are not completely clear and leave room 

for the interpretation of the driver. For example, in the owners’ manual of a Tesla Model S, it is mentioned 

that the LKAS/Autosteer function (a system that actively steers the vehicle to the centre of its lane) may 

not work in sharp curves but they do not specify when a curve can be classified as being sharp. This 

ambiguity could make it difficult for drivers to distinguish between situations that are within or outside the 

ODD of the Advanced Driver Assistance System (ADAS) (Lane Keeping assistance or adaptive cruise control) 

installed in their vehicles. To avoid this, some manufactures do provide visual aid (in form of in-vehicle 

pictorial representation of the vehicle and its surroundings) to drivers regarding its ODD, but it is uncertain 

if drivers understand this, as not all drivers read the owners’ manual (based on post drive control group 

discussion and [15, 16]. In addition to this, performance of the ADAS inside and outside its prescribed ODD 

could also have an impact on drivers’ understanding of the vehicle’s capabilities, which in-turn could have 

an impact on the drivers’ trust and acceptance of the system in the long run [17].  

In addition, a mismatch between the driver’s understanding of the capabilities of the automated vehicle 

and its actual capabilities, as prescribed in the owners’ manual, could also be because of the intrinsic 

attitude of drivers towards AV’s. This includes factors such as their initial trust, ease of use and perceived 

risks based on prior experience, learned trust during driving and prior experiences within these systems 

[18, 19]. This a topic that requires more scientific attention. 

Finally, an important dimension of the ODD is road type, including its geometry and influence of its 

components on driving risk. Closeness to other vehicles and non-moving objects (such as: road components 

and barriers) has an impact on accident risks while driving. These risks can be quantified and their 

magnitude reflect on the performance of the ADAS [20]. Moreover, drivers might modify or change their 

behavior when they are aware of the risk in a situation. [5]. 

Therefore, it is believed that to solve the above problem, a methodology needs to be developed to assess 

the Operational Design Domain (ODD) of semi-automated vehicles that are currently already available in 

the market. The proposed methodology in this study, as will be further explained in the coming chapters, 

assumes that development of semi-automated vehicles should happen with a central focus of improving 

the drivers experience within the system, both subjectively and objectively. The development of such a 

methodology could help Original Equipment Manufacturers (OEM’s) in making drivers more aware about 

the situations in which their semi-automated vehicles can/cannot be used. Thereby, increasing their 

acceptance and trust of ADAS equipped vehicles over time. 

 

1.2.   Research objective and questions 
 

Following the problem description, the main objective of this research is to develop a methodology for the 

assessment of the Operational Design Domain for ADAS equipped vehicles, specifically for vehicles 

equipped with Lane keeping Assistance systems (LKAS). This approach may be used by OEM’s while defining 

ODD for their ADAS equipped vehicles and/or for assessing their already defined ODD. Furthermore, 

infrastructure developers may also use this method while planning changes in road design to accommodate 

for the advent of semi-automated vehicle on the road.  This research aims at making practical and scientific 

contributions in the following four aspects: 

1) Understanding performance variation of Lane Keeping Assistance Systems inside and outside the 

ODD. 
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2) Implementation and assessment of a novel metric for objective driving risk measurements and its 

comparison with existing Surrogate Measures of Safety (SMoS). This constitutes the objective 

aspects of ODD assessment.  

3) Understanding drivers’ attitude and response towards LKAS and AV’s in general, at different stages 

of testing, within and between various road situations. This also includes, identification of reasons 

for mismatch between the driver’s awareness about automation capabilities and those prescribed 

by OEM’s. This constitutes the subjective aspects of ODD assessment. 

4) A combined subjective and objective assessment of ODD for LKAS equipped vehicles. 

To achieve the above objective the following main and sub-research questions were proposed: 

To what extent can the Operational Design Domain of vehicles equipped with lane keeping 

systems be assessed by understanding the subjective and objective risk of driving in pre-

specified test situations? 
 

The research Sub-Questions are: 

1) What are the components of a LKAS and their potential reasons for failure?  

2) Which criteria can be used to identify the pre-specified real-road test situations? 

3) How does the Lane keeping assistance system perform when it is within and when it is exceeding 

its pre-defined ODD? 

4) To what extent can the proposed risk measurement metric be used to determine the objective 

driving risk across different test situations? 

5) Which factors contribute to the mismatch in the ODD, in the selected situations, between the one 

specified by the OEM’s and that which is specified by the drivers?  

 

1.3. Research Methodology 
 
To answer the above posted research questions, this study employs a literature research, a survey, and a 

real-road driving test. The survey involves questionnaire development for three stages of the real-road 

driving test conducted on a selected route within the Netherlands.  

 

The literature research was used to identify the research gaps and motivate the various decisions made 

within the research. The focus of the literature research was on first understanding how lane keeping 

systems work and potential reasons for their failure. Based on that, research methods and research gaps 

were identified for the use and implantation of SMoS’s for driving risk assessment. Finally, for assessing and 

understanding existing literature on trust, acceptance and behaviour/response of drivers specifically 

towards LKAS equipped vehicles and ADAS in general.   

 

The next step was the development of a pre-and post-drive behaviour assessment questionnaires based on 

the reviewed scientific literature.  After this, the field experiment was setup and this involved selection of 

a test vehicle, selection of test situations, recruiting participants and other miscellaneous steps that will be 

discussed in more detail in Chapter 4 of this report. The next step was to collect, store and process the data 

to extract required inputs for further analysis. This included image processing of continuous pictures taken 

during the test drives and filtration of vehicle related data collected during the test drives. These inputs 

were then used to answer the research sub-questions and subsequently for the development of the ODD 

assessment methodology. The research approach and associated analyses results will be presented in detail 

in Chapter 4 of this report. 
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1.4. Research Scope 
 

This research involves a real-road experiment in which drivers were asked to drive in a SAE level 2 ADAS 

equipped vehicle. Due to time constraints, the focus of the research was to assess the ODD only for the 

LKAS function (lane keeping assistance function) and not the Adaptive Cruise Control function (longitudinal 

assistance function). The vehicle chosen for this research was Tesla Model S. It is important to indicate that 

this research focusses on the LKAS in a SAE level 2 vehicle and not a level 3 vehicle because, there are very 

few commercial vehicles that fall under SAE level 3 category and in these vehicles the driver is more outside 

the loop than in level 2 vehicles [21], making the drivers more vulnerable while real-road testing. Moreover, 

a SAE level 1 vehicle was not selected because, there are very few or no vehicles in this level which are 

equipped with control type LKAS (vehicle is steered by the system to remain lane cantered). 

The participants for this research included only drivers with prior experience in active LKAS or Lane 

departure system (LDW) equipped vehicles. This include drivers with prior experience of driving in a Tesla 

or any other vehicle with similar SAE level 2 features.  

Moreover, for this research the latest edition (June 2018)  of the SAE document [4] was used to understand 

the specifications and definitions within the AV domain.  

Furthermore, out of the various dimensions of the ODD as mentioned in [4] only the ‘Infrastructure/ road 

geometry’ aspects which fall under the road environment dimension is the focus of this research, other 

dimensions such as surrounding geography, time of day, other road way characteristics are not considered 

in this research.  

The test route was selected such that a few selected situations mentioned in the OEM’s owner’s manual, 

could be tested. The detail description of the situations will be provided in Chapter 4 of this report, but it is 

important to note that the research is focussed only at these few situations and not on a complete 

exhaustive list of situations mentioned in the vehicle manuals. The driving route is chosen such that there 

is sufficient situations that can be seen on both highway and city road sections of the route. 

Corresponding to the objective aspects of the ODD assessment method, in this research, only the lateral 

driving risks due to non-moving (fixed) road boundaries and barriers (lane marking, road median, guard rails 

etc.). The potential impacts of other moving road users were ignored due to time constraints for the 

completion of this research. 

Corresponding to the subjective aspects of the ODD assessment method, in this research. the drivers’ 

physical and physiological states, such as the level of drowsiness or fatigue and aggression, were not 

recognised or classified. Recognizing drivers’ intentions, such as lane changing, was also beyond the scope 

of this research.  

Furthermore, in this research the drivers were asked to report their trust on the LKAS in different pre-

defined situations in real-time during their test drive. It is important to note that they were asked not to 

base their trust ratings on the performance of the ACC function of the vehicle, but purely on the LKAS 

function of the vehicle. This was done to mitigate the effect of the performance of the ACC function of the 

vehicle, on drivers’ self-reported trust and ODD state awareness ratings. 

 

1.5.  Scientific Relevance 
 

Within scientific literature, there is abundant research on the impact of ACC function of semi-automated 

vehicles on driver behavior, traffic safety, traffic flow etc.,  [22, 23-28]. But, relatively there is lesser research 

on the impacts of LKAS on traffic entities and on the driver [29]. Current literature within the lateral vehicle 
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control domain focusses mainly on development of the control algorithms and limited literature on the 

identification of driver state and relevant traffic related impacts [23, 30-34]. 

According to [35, 36], there is a need for a constructive dialogue between the infrastructure developers and 

the automotive industry. The objective of this research is to develop an assessment methodology for the 

ODD of LKAS equipped vehicles, by taking the road environment dimension of ODD into focus, and therefore 

filling this gap in literature. In addition to this, there is no scientific research on design requirements, 

defining or assessment of ODD that includes subjective and objective aspects of driving in the ADAS 

equipped vehicle, this is another gap this research attempts to fill. The research attempts at the integration 

of the three main stakeholders for AV development; the driver, infrastructure designers and operators and 

technology providers [3], [37].  

Amongst these stakeholders, in this research the driver is assumed to play a central role. Creating a joint 

cognitive system between the driver and the system can greatly enhance overall safety and performance 

[38],[7]. This is because humans non-consciously treat computers and robotic systems as humanlike 

entities, developing a relationship through interaction.  As situations requiring trust in automation may 

occur in matter of seconds, this relationship between the driver and system needs to be considered in the 

efficient design of AV’s [39, 40]. 

Existing studies on automation have used interviews, online questionnaires [41, 42, 43], or different 

contexts of driving simulation [44, 45]. Whereas, in this research a real-road driving testing approach is 

adopted. This is done to observe and measure drivers’ true response within ADAS equipped vehicles. Such 

responses are difficult to capture when the driver is in a third-person frame (doesn’t face consequences of 

accidents) and has no perception of the actual driving risks [46]. In a first-person framing (faces direct 

consequence of accidents), the test of trust and behavior in general, has more gravity and realism. In 

addition to this, in this research behavioural adaptation in drivers when they are in semi-automated 

vehicles, is also taken into account to some extent, while drawing conclusions. This can have a considerable 

influence on the drivers perceived risk  [34].  

In this research, a novel Surrogate Measure of Safety (SMoS) is implemented for a real-road case study 

using an instrumented vehicle. This driving risk measurement metric is based on risk field theory concept 

[47]. There is very limited literature in which such a method applied for a real-road field experiment and is 

therefore, a potential major contribution of this research. The probabilistic deterministic risk field approach 

used in this research will also be compared to existing SMoS’s such as the Time to Lane Crossing (TLC) 

metric. 

Finally, the research involves measurement of, and analyzing the relation between; real-road objective risk 

of driving in LKAS systems and self-reported subjective responses of drivers while driving in specific pre-

selected situations. By analyzing the relationship between the two types of risks, reasons for mismatch 

between the drivers’ awareness of the systems capabilities and its actual capabilities can be determined. 

This could lead to increased driver awareness about LKS and thereby lead to an increased acceptance of 

these assistance systems and increased safety. This would also mean that over the long run, there would 

be more semi-automated vehicles on the road thereby resulting in their associated benefits within the 

traffic efficiency, safety domain. 

   

1.6.  Thesis Outline 
 

In this thesis report as described Figure 1, Chapter 2 gives an overview of the literature that was studied to 

identify the research gaps, understand relevant concepts and methodology to answer research sub-

questions. This also forms an input for Chapter 3, that describes the research approach that was used to 

answer questions within the research. The ODD assessment methodology is developed and demonstrated 

using a case study. This case study is introduced in Chapter 4. Within this chapter, the experiment related 
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pre-requisites, decisions, specifications and steps involved in its setup are presented. Following which in 

Chapter 5, the steps involved in the processing of the gathered experiment data is presented. Chapter 6, 

then elaborates on the data analysis, development and implementation of the proposed ODD assessment 

methodology with the help of literature overview and based on the Research approach proposed in this 

thesis. It also describes the variables tested and methods used for their statistical testing. Finally, Chapter 

7 presents the drawn conclusions, followed by a discussion of the research results and its limitations, and 

finally future recommendations resulting from this research.  

 

Figure 1. Thesis Outline 
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Chapter 2. Overview of Literature and Concepts 
This chapter provides an overview of the literature which was reviewed to understand the research related 

concepts and gaps in existing literature relevant to the objective of this research. It first describes the 

components, performance indicators and methods to assess lane keeping systems in general. Followed by 

this it describes, state-of-the-art with respect to measurement of driving risks and also describes the novel 

risk measurement metric which is implemented in this research along with its potential advantages over 

conventional risk measurement metrics. Next, existing scientific literature pertaining to driver behaviour, 

situation awareness and their response in general to AV’s and LKAS, is discussed and this is followed by an 

overview existing work with respect to relationships between driver behaviour, driving risk and ODD. 

Finally, it concludes with the identified research gaps and concepts, which is useful during the course of this 

research. 

 

2.1.  Lane Keeping Assistant systems 
 

In this sub-chapter, first the general components of a Lane Keeping Assistance System (LKAS) will be 

described. Following this, factors affecting performance of LKAS will be discussed, followed by an overview 

of how the LKAS performance has been assessed in existing literature.  

 

2.1.1 Components 
 

Before describing a general LKAS, it is important to mention that there are three types of LKAS commonly 

known in literature [31, 48]: Warning, Intervention and Control based systems.  

Warning based systems, do not directly alter the vehicle trajectory and require that the driver must choose 

to act on the warning for the warning to have any effect. The driver is warned by the system if she is swaying 

away from her current lane without indicating a lane change. The principle of an Intervention based system 

is to provide a steering wheel torque to avoid unintended lane departures. This torque is related to the 

vehicle’s lateral position and speed. The system has limited authority and is meant to only augment driver 

commands not really replace them. Finally, the most sophisticated of the three is the Control based system, 

in which the system not only keeps a track of potential unintended lane departures, it also continuously 

steers the vehicle to ensure that it is ideally positioned at the centre of the lane (of course with a small 

allowable buffer). In these systems, since the system has automatic control of the steering wheel, it 

effectively removes the driver from the loop (but the driver must be always ready to take over control) 

The components of a general LKS described in this report is based on  [31, 49, 50, 51, 52 ]. There are basically 

three major components of a LKAS: The Driver, The Vehicle and its surroundings and The Lane keeping 

module. A continuous interaction between the three, is the basis of the LKAS, with an ultimate objective of 

ensuring unintended lane departures. A detailed description of these components and steps for lane 

keeping assistance, is provided with the help of Figure 2.  

 

1) Road Sensing:  

The first step is for the vehicle to sense, process and realise its surroundings. This involves lane marking and 

other road geometry characteristics identification. These observations can be done by several different 

types of sensors, either individually or in combination. Once the images are collected they need to be 

processed for lane and object detection, followed by image to world correspondence, which is generally 

done with the help of in-built map systems. Road sensing can be camera based, LIDAR based, Stereo imaging 

based (dual camera approach), combined GPS & Inertial Measuring Unit (IMU) based, Radar based and by 

several other combined methods. Each of these methods have their advantages and disadvantage, but this 
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is not the scope of this research. This information is then fed to the Lane Keeping Module, which consist of 

several sub-modules. 

 

 

Figure 2. General components of an LKAS (blue dot refers to in-built camera/sensing hardware of the vehicle) 

 

2) Vehicle state observer: 

This step involves measurement of the dynamics of the vehicle and understanding the road geometry, using 

existing vehicle equations of motion. Two typically used models to understand vehicle dynamics, are the 

‘bicycle model’ and ‘point mass model’ [53]. The difference between the two being that in the former model 

the vehicle’s rotation around the x, y and z-axis are neglected and involves calculation of road curvature 

and information about the rotation of the vehicle about the three axes. This is something that is not 

required with point mass models. In general, with this step the lateral motion of the vehicle relative to the 

lane boundary is measured. 

3) Steering angle and torque calculation: 

The steering angle sub-module calculates the optimal steering angle required to guide the vehicle back into 

the lane using observed states from the camera and sensors. Factors such as road curvature, heading angle, 

lateral displacement are generally used to determine the optimal steering angle. On the other hand, 

required torque calculation is based on the deviation from the optimal steering angle using a combined 

feed forward and feed-back controller and is dependent on the vehicle’s speed. 

4) Intervention/Control/Warning:  

Once the vehicle dynamics is determined, the next step is to make the decision whether to intervene, 

control or warn the driver. This depends on the intended purposed of the on-board Lane Keeping Assistant. 

The intervention, control or warning is made based on a Controller Strategy that varies for different OEM’s 

and is generally rendered confidential by manufacturers. The driver assistance should occur when a set of 

conditions are fulfilled. The conditions are generally classified into three clusters, the driver, vehicle and 

road cluster. 

• The driver cluster contains information about driver state in terms drowsiness, distraction and 

whether the driver has his/her hands on the steering wheel or not. This generally determined by 

additional steering torque information obtained using systems such EPAS for Renault [49]. By doing 

this the system identifies how attentive or inside the loop, the driver is as al existing LKAS are 

Hands-On features. 

• The vehicle cluster contains conditions about the vehicle state, like the vehicle speed, acceleration 

in all directions, lane change indication etc.  
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• The road cluster includes information about road environment such as curvature, lateral distance 

to lane marking and heading angle. 

 

5) Controller Strategy 

The intervention, continuous steering feedback control or lane departure warning is provided when the 

vehicle enters a ‘threshold zone’. This threshold zone depends on the internal controller, sensor accuracy, 

pre-selected departure buffers and various other OEM specific and controller purpose specific criteria. 

Therefore, this is where LKAS between OEMs differ from each other and is something which will be reflected 

upon in further stages of this report. For vehicles that have a control type LKAS, the additional required 

torque will essentially bring back or help the vehicle maintain its intended position with the lane centre as 

reference.  

It is important to note that the above description of the components of LKAS, is not specific to any OEM 

and therefore, differ considerably between different OEMs. But it gives an idea of how these systems work. 

In addition to this, some OEMs [12, 54] also rely on the vehicle state of the leading or adjacent vehicle in 

determining the appropriate intervention or control strategy. 

  

2.1.2 Factors affecting performance of LKS 
 

To determine factors affecting LKAS performance, vehicle owner manuals of different vehicles such as 

Mercedes E350 [13], Volvo XC90 [14] and Tesla Model S [12], were analysed in addition to referring to a 

comprehensive study in [52]. The factors were identified and classified into the following four categories. 

Road and infrastructure related 

• The type of road, i.e. whether it is a well-marked highway, city road or rural road has a huge impact on 

the LKAS performance.  

• Roads branching off, merging, winding or narrowing, also has an impact on the performance of the 

LKAS. 

• The performance also depends on presence of lane marking on either side of the road and the type and 

quality of the lane marking. If the lane markings are present, well painted, not changing or crossing 

over often, this is ideal for a good LKAS performance. 

• The road surface quality, in terms of smoothness, wetness or dust/slush. 

• LKAS have hampered performance, or does not work at all at intersections, roundabouts and close to 

toll booths. 

• Traffic states of surrounding vehicles on the road affects the LKAS performance as this has impact on 

the vehicle dynamics in both longitudinal and lateral direction. Moreover, more traffic leads to more 

vehicle cut-in situations, this has a major impact on the LKAS performance. 

Road sensing  

As mentioned earlier, road sensing can be done by several methods and these methods have a few common 

factors affecting their functioning: 

• Nearby vehicles can create severe occlusions. Shadows from nearby trees and buildings may create 

misleading edges and texture on the road. In some cases, like when the host vehicle comes out of a 

tunnel there are abrupt changes of several orders of magnitude in the illumination level, leading to over 

exposed image. This has impact on the clarity of images gathered by the sensors and thereby effecting 

its accuracy/precision, which is very important in such systems. 

• Factors such as weather, presence of obstacles in front of the sensors, high proximity of leading vehicles 

blocking view of cameras etc. have a big impact on the visibility which again affect the accuracy and/or 

range of the on-board sensors. The system should operate, or at least identify the condition and lower 

its confidence level, under rain, fog, haze and night conditions. In addition to this, for vision based 
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systems, glare, bright sunlight, oncoming headlights and improper illumination hampers the detection 

capabilities of the cameras. 

Vehicle  

• LKAS are designed to function only under certain speed ranges and this varies between different OEMs 

and depends on the type of LKAS. For a Mercedes E350, the Active Lane Assist (Control type LKAS) 

function works only between 60km/h and 150km/h and this range is between 70km/h and 140km/h 

for a Tesla Model S. For all speeds outside this range, the LKAS either stops functioning or its 

performance reduces. 

Driver  

The drivers’ behaviour within the vehicle also affects the LKAS performance. Factors like, whether the driver 

is wearing the seat belt, if they have their hands on the steering wheel, and their driving style (mainly 

sensation seeking, as the drivers then tend to experiment with the functionality of the system), are a few 

driver related reasons for the dysfunction or poor performance of LKAS. 

 

2.1.3.     Assessment of the LKAS performance 
 

After understanding how a LKAS works and the potential factors that affect its performance, the next step 

is to understand how its performance can be measured or quantified. This helps in the comparison of LKAS 

between vehicles from different OEMs or between different road situations, which is essential to answer 

the proposed research questions. 

Research regarding lateral driving performance dates back to 1982, when most studies in this domain 

focussed on the effect of pharmaceutical drugs on driving performance by real-road driving tests [55]. Since 

then a primary parameter used to assess lateral driving performance has been the Standard Deviation of 

Lateral Position (SDLP), the Mean Lane Position (MLP) and the Steering Reversal Rates (SRR). 

These methods are  still used in research and has proved to be a useful measure of driving performance 

[20, 56, 57, 58]. In the current state-of-the-art, Standard Deviation of Lane Position (SDLP), Mean Lane 

Position (MLP) and Steering Reversal Rate (SRR) used to assess “driver’s” lateral performance, the focus of 

this research is to assess the performance of the LKAS and variation in LKAS and driver combined lane 

keeping performance across different aspects. This is something that still needs more investigation as there 

is very limited or no literature pertaining to this. This switch from a driver centric to a machine/system 

centric performance assessment should be possible as the main aim of these methods is to determine either 

by how much the vehicle strays away from the lane centre (MLP), how much variation exists in the lane 

position of the vehicle over time across different road segments (not necessarily about the lane centre) or 

)—and the effort dedicated to lateral control [59]—and the frequency with which subjects departed their 

lanes. Each of these measurements are still possible with the LKAS as focus. 

In general, any hypothesis that posits improved lateral control, predicts a decrease in the frequency of lane 

departures which is marked by a decrease in Standard Deviation of Lane Position (SDLP) and Steering 

Reversal Rate (SRR). SDLP, in a basic sense predicts actual traffic safety, i.e. the likelihood of becoming 

involved in a traffic accident. This was proved by an experiment by [60]. A degraded lane keeping 

performance (driver or system), may lead to run-off-road crashes or collisions with other vehicles [61]. 

Specifically, the increase in SDLP can dramatically increase the probability of lane departures that lead to a 

crash [61]. Steering reversal rate, is defined as the number of changes in steering wheel direction per unit 

time [62, 63] and a higher SRR implies a poor lane keeping performance and vice versa. Given, the usability 

of these methods for LKAS performance, the next step is to understand the procedure for their 

measurement for real-road experiments. 
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First, an instrumented vehicle is needed which captures video images of the road and its lane markings. 

Using image processing techniques, the vehicle’s position relative to the lane markings, can then be 

determined. The raw lateral distance measurements have high distortions in measurement and unwanted 

information, this is because the driving tests are performed in normal traffic, events may occur where the 

vehicle/driver makes unintended manoeuvres, data corresponding to such instances need to be filtered out 

[64]. Once, the data is filtered, the SDLP, MLP and SRR measurements are ready to be used for several types 

of comparisons. 

Standard deviation of lane positions, even though considered reliable in literature and used in several 

studies frequently, by itself, cannot adequately describe lane keeping performance. This is because a low 

SDLP could also mean that the vehicle is travelling to the left or right of the lane centre without much 

variations. This means that it is still closer to the lane boundaries and at high speeds this is very hazardous. 

Therefore, to quantify the imminence of lane crossing, a time based metric (Time to Lane Crossing (TLC)) 

that measures time left until the outer edge of a moving vehicle crosses either side of the lane boundaries, 

is recently employed in literature to enhance the assessment of lane keeping performance systems [64], 

[65]. The essence of TLC is that it incorporates relevant longitudinal and lateral motions simultaneously, 

and provides an assessment of the lateral control safety margin. Unlike Standard Deviation of Lane position 

(SDLP), TLC is a synthetic variable and is dependent on several measurements, which will be explained in 

Chapter 2.2 of this report. In addition to this, a novel real-time surrogate measure of driving safety, 

‘Probabilistic Driving Risk Field (PDRF) method’, which has the potential of adding value to LKAS/ driver lane 

keeping performance assessment, will be described in Chapter 2.2. 

 

2.2. Objective driving risk measurement  
 

As mentioned in the previous sub-chapter, for a comprehensive LKAS performance assessment, there is a 

need for including measurements of real-road driving risk in addition to metrics such as SDLP, MLP and SRR. 

Real-road driving risk/safety has gained a lot of attention in the research community. This approach makes 

use non-crash vehicle interactions as a substitute of actual crashes and is referred to as Surrogate Measures 

of Safety (SMoS) in the research community. 

There are two types of SMoS, 1) based on observed trajectories, 2) based on motion prediction. The first 

type, involves measures such as Deceleration to Avoid a Crash, and Post Encroachment Time (PET). In these 

measures, the movement of the interacting vehicles is tracked without considering any probability of their 

paths intersecting (crash). On the other hand, measures such as Time to Collison (TTC) and TLC, describe a 

chance of the paths of interacting vehicles to conflict based on motion prediction techniques. The latter 

type of SMoS is time continuous by definition and is more relevant for the proposed real-road research as 

it results in more information about pre-crash events giving the approach more reality but at the same time 

being less simplistic. 

The focus of this research is on lateral safety, previous research [66, 67], suggests that driver lateral safety 

models are mostly based on vehicle kinematics, dynamics and are based on information regarding the 

vehicle’s state. Vehicle’s state includes its position, velocity (lateral and longitudinal), acceleration, yaw 

velocity and its relative motion, velocity and distance. However, these models do not capture the effects of 

all types of traffic factors on driving safety such as describing the interaction among driver behaviour 

characteristics, vehicle states, and road environments, which are very important for accurately describing 

driving risk. 

Several advanced safety algorithms have been studied that are based on artificial intelligence, risk 

homeostasis theory or other advanced modern mathematical techniques to account for driver’s behaviour 

[68, 69]. These studies were focussed on making safety algorithms better adapted to driver’s behaviour 

using self-learning risk (impact of historical perceived risk and acceptable risk of driver on their acceleration 
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or deceleration) and stimulus response (response of the driver to the changes in dynamics relative to the 

leading vehicle, such as differences in speeds or headways) concepts, but for car-following models. 

Furthermore, the concept of field has been used to described risk that a driver faces in ADAS equipped 

vehicles. [70], extending the concepts of the elastic band theory to autonomous vehicle motion prediction 

and based it on the potential field theory. [71], proposed a field theory in traffic flow where lanes and 

vehicles form a potential field active within the minds of drivers, and that drivers always drove along low 

points of the potential field. A novel gravitational field concept was developed in [72], in which once again 

car-following behaviour was described using a series of attractive and repulsive forces related to the vehicle 

and the space in front of it. More recently, [47] proposed a field-based model that included risk factors such 

as personality, psychological characteristics of the driver, complex road conditions and driver-vehicle-road 

interactions, for rear-end crash avoidance [73]. However, the model parameters are not directly related to 

the crash dynamics and motion uncertainty and their calibration and validation seems to be very tedious.  

Moreover, these methods and models do not successfully include a very important factor [74], the different 

levels of the ‘severity’ of a crash. Crash severity underpins the physics of dynamic collision mechanism and 

is independent of interacting objects. This parameter is calculated based on energy absorbed by the 

colliding bodies during a collision, independent of the road user type be it a motor vehicle or a pedestrian, 

with a possibility of resulting in different levels of injury for the same crash energy exchange, based on the 

type of collision. This when combined with probabilistic prediction of the occurrence of collision between 

to interacting objects, could serve to be an apt and comprehensive risk measure. In this research, a first 

attempt will be made to implement an SSoM currently under development at TU Delft by PhD researcher 

F.A. Mullakkal Babu [75] that accounts for both, crash ‘Severity’ and ‘Probability’, for the real-road 

assessment of the objective risk of driving in a LKAS equipped vehicle. This SSoM hereafter, would be 

referred to as the Probabilistic Driving Risk Field (PDRF) method.  

In the PDRF method, risk is defined by the magnitude of the consequences of a collision and the chance of 

its occurrence.  It is based on the field theory concept as discussed earlier and assumes that risks are 

experienced by a vehicle that is driving alongside other moving and non-moving road entities. The risks 

experienced due to the non-moving road entities such as lane marking, guard rails, road medians etc., 

contribute to the Potential Risk Field (PRF) experienced by the vehicle. The risks experienced due to the 

moving road entities such as the other road users, contribute to the Kinetic Risk Field experienced by the 

vehicle. The sum of these risk fields determines the total risks experienced by a vehicle. The crash severity 

in both these fields is based on the crash energy transferred during a possible collision between the subject 

vehicle and a road entity. For this research, due to time constraints only the potential risk fields were 

calculated and the formula used for this is described below Equation 1. 

The potential risk taken by s due to fixed road boundary object is formulated as follows 

  
,

2

, ,0.5 max ,0.001

s br

D
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 
 
 
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Equation 1. Potential Risk Field taken by subject vehicle S and fixed road entity b 

 

where
,b sR denotes the potential risk due to road boundary b and 

,s br is a vector that denotes the shortest 

distance between s and b . The first part of the formulation  
2

,0.5 s bM V describes the physical crash 

energy in case of an inelastic collision between s and b , M denotes the mass of s and 
,s bV denotes the 

velocity of s along 
,s br . However, all such crashes are not perfectly inelastic and roadside object allow finite 

deformation thereby absorbing some amount of crash energy thereby decreasing the inflicted crash 
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severity. This assumption is consistent with the empirical studies [76]. In [76], it was shown that the odds 

of injury due to collisions with a guard rail is lower than that with a concrete median barrier and a concrete 

wall.  

The second term in the formulation is 

,s br

D
e

 
 
 
   constitutes the probability of the crash, and has a range [0-

1]. This term tends to a maximum of 1 at
, 0s br  , and depicts a decrease in crash probability with an increase 

in
,s br . Intuitively, a road object further away offers more possibility for the driver to evade the collision.  

The gradient  

,

2

,

,

0.5

s br

D

b

s b

s b

dR e
kM V

dr D

 
 
 

    is a continuous and decreasing function of
,s br , and the risk 

reaches a finite maximum  
2

,
0.5

b s b
R VMk solely at the position of b when 

,
0

s b
r  and is the theoretical 

crash energy.  

The potential benefits of using the PDRF method compared to other SMoS’s are as follows: 

• It could offer more diversity in terms of scenarios and driving conditions that is can be used for. This 

means that it would not only be a measure of longitudinal or lateral driving risk alone, but a combined 

risk measure in both these directions.  

• It could offer more sensitivity in risk trend plots than using other SMoS’s. This refers to the fact that 

this method involves a collision type - crash severity based risk determination. This means that it will 

generate different driving risk measurements for potential collisions with different type of stationary 

and moving objects on the road (including lane markings). This could result in a more informative and 

real representation of driving risk. 

• Additivity: Another benefit of using the PDRF approach is that it gives a risk measure that considers 

moving and non-moving objects of the road in both the longitudinal and lateral directions, using just 

one risk magnitude value. On the other hand, when using existing SMoS’s separately to determine 

longitudinal risk (TTC) and lateral risk (TLC), it is not possible to generate one value for total risk by 

simply adding these two, time-based metrics as this value (in secs) cannot represent total risk. 

This research aims at successfully implementing this novel SMoS and take a step forward towards justifying 

its potential benefits over exiting SMoS’s.  

In addition to this, it is important to assess if these objectively measured real-road risks that the vehicle 

experiences due to other real-road moving and on-moving objects, even have an impact on the drivers’ 

behaviour whilst driving inside vehicles equipped with ADAS. Current state-of-the art with respect to this 

aspect of driver behaviour and perception of risk and its impact on their trust, will be discussed in the 

following chapter. 

 

2.3. Driver behaviour, trust and situation awareness in ADAS 
  

As mentioned in the previous sub-chapter, it is important to understand the drivers’ behaviour and their 

perception of the risk of driving in an ADAS equipped vehicle. It is important especially when deciding the 

situations in which it is safe for the ADAS to function [77, 78]. Therefore, for this the driver is assumed to 

play a central role in the assessment of Operational Design Domain for LKAS based ADAS.  

 

In the current state-of-the-art, there is limited literary work on the behavioural responses to, and 

interaction of drivers with, Lane Keeping Assistance systems. Most of the literature focusses on the driver’s 

interaction with the longitudinal assistance systems such as Adaptive Cruise Control (ACC) ( [25, 79, 80, 81, 
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82 ]). For the literature that does focus on lateral assistance systems, they generally give attention to the 

development of lateral control system considering drivers’ behaviour [83-86], Nevertheless, there are few 

studies like [33], [34] and [48] in which the focus is on the influence of LKAS on driver behaviour, 

investigating behaviour adaptation in drivers whilst in LKAS and understanding the interaction between 

driver and system, respectively. These studies, only consider the ‘warning’ type of LKAS and not the more 

sophisticated ‘control’ type of LKAS. Therefore, this creates a need for driver behaviour assessment in more 

sophisticated LKAS, which is one of the objectives of the underlying research.  

 

Most studies on driver behaviour analysis in ADAS are either questionnaire [87, 88, 89], or simulator based 

[45, 57, 61, 90], i.e. it has been performed in a third-person frame, where the participant has no perception 

of direct risk in case of automation failure. However, few studies also use real-road testing approach to 

understand driver trust and behaviour in ADAS equipped vehicles [5, 91, 92].  In questionnaire studies, 

people may say they would trust an automated system, yet act in a way that demonstrates that they do not 

trust it. Instruments such as the questionnaire by [93] inquire as to one’s beliefs in the system’s capabilities 

and trustworthiness, but one’s beliefs may not translate to behaviours. Therefore, this strikes the need for 

an approach that combines a real-road test where the driver in first-person experiences the risk of driving, 

with a questionnaire based approach at different stages of testing.  

Assessment of driving behaviour in automation includes understanding the factors that affect their trust, 

awareness of capabilities and functionality (ODD) and other physiological, psychological factors that have 

an impact on their factors.  From a design standpoint, it is important to design systems that individuals will 

trust appropriately, granting the system authority when appropriate, and taking control when necessary 

[8].  

Several questionnaire based studies have identified various factors that affect driver’s trust in automation. 

[93] identified factors such as predictability, reliability and dependability having an impact on the trust in 

automation. This list was expanded by [46, 94] with factors such as faith, responsibility, robustness, 

familiarity, understandability, usefulness and dependence. [89], highlights certain issues faced in studies of 

trust and human intervention. Drivers’ trust and awareness are multi-dimensional entities and require 

calibration in different stages of its measurement. Moreover, trust varies dynamically, changing over time 

as relationships develop. For instance, [95] established a hierarchical model of trust, and believed that 

certain factors of trust may change with time and increasing emotional investment. Keeping this in mind, 

in the underlying research, drivers’ trust and awareness about system’s capabilities were 

measured/reported before, during and post driving in the test vehicle on the test route. 

The pre-drive and post-drive questionnaires were designed using concepts and relationships developed in 

[96]. In this research, a three-layered trust was described. 1) Dispositional trust, referring to an individual’s 

overall tendency to trust in automation that include factors like culture, age, gender, personality traits. 2) 

Situational trust, referring to situational specific trust of the driver on automation and consists of both 

external and internal factors. External factors include type of system, complexity of the system, task 

difficulty, perceived risk etc. and internal factors include drivers’ self-confidence, attentional capacity. 3) 

Learned trust, which refers to drivers’ evaluation of a system drawn from past experiences or the real-time 

interaction with the system and is divide into initial trust and dynamic trust. Past experiences, knowledge 

about the system influence the initial trust and the interaction between driver and system influences her 

dynamic trust. Keeping these factors and a 3-layered approach in mind the pre-, Real-Time and post- drive 

questionnaires, were designed.  
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2.4.  Driver behaviour, driving risk & ODD  
 

The aim of the underlying research is to assess ODD for LKAS equipped vehicle by understanding drivers’ 

behaviour whilst in the vehicle and at the same time also accounting for the actual objective risk of driving 

in these vehicles. It is also important to consider that the two factors, subjectively measured driver 

behaviour such as trust and perceived risk could also be associated with the actual risk that the driver 

experiences while driving [5, 97].   

Moreover, while defining the ODD for their vehicles, OEMs such as GM and Waymo use either test track 

experiments or real-road driving tests, but with experienced tests drivers who have an inherent high trust 

and anticipation level as compared to an average driver of such vehicles [54, 98]. This again stresses the 

need for an average driver based approach while testing ADAS. Moreover, it is unclear what threshold 

values and factors (both subjective and objective) the OEM’s use to decide if a driving condition/situation 

is safe (included in the ODD) or unsafe (excluded from the ODD). This information is difficult to obtain from 

OEMs as it is very confidential and therefore requires investigation. 

Another important factor is the perception error or mismatch between driver expectation and reality. In 

[7], it was observed that comparing drivers’ expectations of the automated driving system’s behaviour to 

their own inputs did not yield significant correspondences between expectations and actions across the 

different conditions tested in this research. This indicated that the participants behaved by trusting the car, 

even though they stated they did not expect the computer to act and thus would need to act themselves 

The results of this research  [7]  are real because, if a driver cannot predict accurately what an automated 

system will do a few seconds into the future, or is unaware of its capabilities in a specific situation and does 

not respond in a way that is appropriate, disaster can result.  

Finally, as indicated earlier some of the research in this domain consider only subjective judgments of the 

driver and the others consider evaluation and quantification of objective risks experienced by drivers, there 

is limited research that combines these two methods. To increase the reliability of ADAS technologies and 

customise the users’ driving experience, it is important to use an approach that aims at investigating 

relationships between these two subjective and objective safety measures and identify potential reasons 

for mismatch between the expectations and the reality of driving in LKAS (ADAS) equipped vehicles. Such 

an approach is followed to achieve the objectives of this research. 

 

2.5. Conclusion 
 

In this chapter, the three major components and their sub-components of a general LKAS, were described. 

Next, road and infrastructure related, road sensing related, vehicle related and driver related factors 

affecting the performance of LKAS were listed. This was based on a detailed analysis of the owner manuals 

of three LKAS equipped vehicles. This was followed by an overview of indicators for lane keeping 

performance of drivers and their usability for assessment of the performance of LKAS. The main indicators 

identified were mean and standard deviation of lane positions, surrogate metrics such as time to lane 

crossing. Furthermore, existing literature regarding the two types of surrogate measures of safety (based 

on observed trajectories and based on motion prediction) were discussed along with the shortcomings of 

widely used metrics such as time to collision, time to lane crossing etc. A novel risk measurement metric 

‘Probabilistic driving risk field’ was introduced and its potential advantages over existing risk measures were 

listed. It was also identified that current literature related to driver behaviour within ADAS in general, is 

more focussed towards to ACC rather than LKAS equipped vehicles and mainly use a survey or a simulation 

based approach for drivers’ subjective risk assessment. Finally, the need for a combined subjective and 

objective risk based approach for ODD assessment was highlighted based on existing shortcomings of the 

practises of a few vehicle manufacturers for such an assessment of their ADAS systems. 
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Chapter 3. Research Approach 
In this chapter, a complete overview of the approach used in this research, is provided. It first gives a step 

by step description of the various components of this research and then focusses on a detailed description 

of the preliminary requirements for the conduction of the road tests. It first presents a detailed analysis of 

the vehicle owner’s manual of the Tesla Model S (selected test vehicle) along with its conditions of 

operation and limitations. Resulting from this analysis, driving situations are classified into three categories 

of ‘Inside the ODD’, ‘Outside the ODD’ and ‘Neither inside nor outside ODD’. This chapter then discusses 

the procedure and criteria used for recruitment of participants for the road tests and finally, gives an 

overview of the external instrumentation of the Tesla Model S for gathering required research data. 

 

Given the objective of this research, the first step was to thoroughly read through the owners’ manual of 

several vehicles that are equipped with LKAS (Mercedes E350, Tesla Model S, Volvo XC90). This helped in 

understanding the capabilities and specification of the LKAS in SAE level 2 vehicles, in general. It also helped 

in understanding the situations/conditions where these systems can/cannot/maybe function (i.e. 

Operational Design Domain). Using this, the next step was to classify the ODD of these vehicles into ODD-

in, ODD-Out and ODD-Not Sure categories. This served as a key input while setting up this research. 

The Experimental Setup, includes several sub-steps. First, from the classified ODD situations a list of possible 

test situations was made such that there was good representation of situations that fall under the three 

ODD classifications (ODD-in, ODD-Out and ODD-Not Sure). The next step, was to recruit participants for the 

research and the procedure used for this is described in (Chapter 3.3). Following which, the Test vehicle was 

selected, rented and instrumented (Chapter 3.4).   

 

Figure 3. Research Approach with indication of relevant chapters 

The next steps were more focussed towards deciding the specifics of the real-road experiment (detailed 

description in Chapter 4). Out of which the first was step was to Select the test route (Chapter 4.1) from a 
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list of candidate routes that were determined by visually examining the map of the Netherlands and 

referring to prior routes where similar research was conducted in the past [99]. The selection was based on 

the list of test situations, analysis of Traffic states (to ensure off-peak testing since the focus is on the road 

geometry) and other Miscellaneous factors such as accessibility of test route, closeness to vehicle charging 

stations etc.  

Using the details about gathered participants, availability of instruments and other necessary time related 

inputs a testing environment (testing route and test schedule) was first proposed (Chapter 4.2). After which, 

to finalize this testing environment, a real-road Pilot test was conducted (Chapter 4.3). This test helped to 

identify practical, logistical constraints of the proposed testing environment. Using this information, the 

final testing environment was developed (Chapter 4.4). 

The next, important step was to Design the Pre, Post-drive and real-time behaviour assessment 

questionnaires (Chapter 4.5) based on the literature overview and objective of this research. The final step 

before commencing with the road testing was, to obtain Ethical permission and decide participant 

instructions (Chapter 4.6) for the conduction of these tests. Following which, the Field tests were conducted. 

The section filled in grey in Figure 3, depicts the steps involved in setting up this experiment 

Upon the conduction of the tests, the gathered raw data needed to be processed, to enrich for further data 

analysis. The Data Processing (Chapter 5) involved Image processing (Chapter 5.3) for lane position 

determination and data filtration (Chapter 5.2) of the data gathered by the on-board sensors and GPS.  

The next step was Data Analysis (Chapter 6), this included Lane Keeping performance assessment (Chapter 

6.1), Objective driving risk determination (Chapter 6.2) and a subjective Assessment of drivers’ trust, risks 

and their interactions while driving in the test vehicle (Chapter 6.3). These analyses were performed for 

each of the test situations and the determination of objective driving risk also involved Video Analysis of 

test situation. The OEM specified (in driver manuals) ODD for each situation was then assessed (Chapter 

6.5) by considering lane keeping performance in the situation, objective risk of driving in the situation and 

the drivers’ behaviour and interaction with the system in the situation. This assessment procedure was then 

repeated for all the other selected test situations. 

The following sub-chapters give insight into the analysed owner’s manuals (Chapter 3.1), classification of 

ODD for the test vehicle and development of a list of possible situations that could be assessed in the 

research (Chapter 3.2), participant recruitment procedure (Chapter 3.3) and finally, test vehicle’s 

instrumentation (Chapter 3.4). The subsequent, road-test specific aspects will be discussed in Chapter 4 of 

this report. 

 

3.1.  Analysis of vehicle owner’s manual 
 

This research involved setting up a real-road driving test on a specific route inside the Netherlands using an 

LKAS equipped SAE level 2 vehicle. A Tesla Model S, was selected as the test vehicle. This was because from 

prior projects at Royal HaskoningDHV [100], it was seen that amongst the other SAE level 2 vehicles like the 

Volvo XC90, Mercedes E350, which also have LKAS equipped in them, the range of situations in which the 

Tesla could perform wider than the other vehicles. For example, a Tesla’s Autopilot function could be turned 

on (in the presence of the required road and lane markings, speeds) even in city roads around intersections 

(even though this does not completely fall into the ODD of vehicles of this category). At the same time 

drivers are also subjected to higher risks of driving. Since, the aim of this research is to assess situations not 

only inside the said ODD, but also situations where the system may or may not work, choosing a Tesla was 

the best option, by of course giving the safety of driving in these situations the highest priority (making 

required arrangements to ensure participant safety). 
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The first step in identification of the test situations that should be assessed in this research, was to 

thoroughly go through the owner’s manual of a few SAE level 2 vehicles such as Mercedes E350, Volvo XC90 

and Tesla Model S. Within these manuals, the focus was on the content regarding the Lane Keeping 

Assistance functions and specification. It was seen that in terms of the content, each of these vehicles had 

similar specification, limitations and driver instructions corresponding to the ODD/functionality of their 

LKAS.  

For this research, the test vehicle is a Tesla Model S. Its control type LKAS is referred to as ‘Autosteer’ and 

comes in a combined package with Adaptive Cruise Control (ACC) function. This package is referred to as 

its Autopilot (AP) option. A few highlights from its specifications and limitations are presented below, these 

were used as an input while classifying the Operational Design Domain for its Autosteer function in the next 

sub-chapter. 

• Autosteer is a hands-on feature. Driver must keep their hands on the steering wheel always. 

• Autosteer is intended for use on freeways and highways where access is limited by entry and exit ramps. 

When using Autosteer on residential roads, a road without a centre divider, or a road where access is 

not limited (city with pedestrian and vehicle crossings), Autosteer limits the driving speed. 

• Autosteer should not be used on city streets, in construction zones, or in areas where bicyclists or 

pedestrians may be present. Drivers must never depend on Autosteer to determine an appropriate 

driving path and always be prepared to take immediate action. 

• To initiate Autosteer, the vehicle must be driving at least 5 mph (8 km/h) on a roadway with visible lane 

markings. If a vehicle is detected in front, Autosteer can be initiated at any speed, even when stationary. 

• To indicate that Autosteer is now actively steering Model S, the instrument panel displays the Autosteer 

icon in blue. When Autosteer can detect lane markings, it also displays the driving lane in blue (Figure 

4). 

 

Figure 4. Conditions to initiate Autosteer 

• Autosteer attempts to centre the Model S in the driving lane. However, if the sensors detect the 

presence of an obstacle (such as a vehicle or guard rail), Autosteer may steer Model S in a driving path 

that is offset from the centre of the lane. 

• Autosteer is dependent on the real-road speed limit. In situations where the speed limits are absent, 

its functioning speed is limited to 40mph (70km/h). 

• In situations where the driver attempts to engage Autosteer, but is not driving within the required 

driving speed for Autosteer to operate, or Autosteer is not receiving adequate data from the camera 

or sensors, a display on the instrument panel will indicate that Autosteer is temporarily unavailable. 

 

Limitations of Auto Steer 

Autosteer is particularly unlikely to operate as intended in the following situations 
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• Autosteer is unable to accurately determine lane markings due to poor visibility (heavy rain, snow, fog, 

etc.), or an obstructed, covered, or damaged camera or sensor. 

•  When driving on hills. 

•  When approaching a toll booth. 

• The road has sharp curves or is excessively rough. 

• Bright light (such as direct sunlight) is interfering with the camera's view. 

• The sensors are affected by other electrical equipment or devices that generate ultrasonic waves. 

• Lane markings are excessively worn, have been adjusted due to road construction, or are changing 

quickly (for example, lanes branching off, crossing over, or merging).  

• The road is narrow or winding 

• If there are strong shadows casted on the lane markings. 

• You are drifting into another lane but an object such as a vehicle is not present 

• A vehicle in another lane cuts in front of you or drifts into your driving lane 

An understanding of its functionality, specifications and limitations was useful while deciding test situations 

and while interpreting the results for this research.  

 

3.2.  Classification of the ODD 
 

Understanding the functional requirements and limitations of the Autosteer function of the Tesla from its 

owners’ manual gave a clear idea of its Operational Design Domain as specified by its OEM, Tesla. This was 

then classified into three categories of situations. The first category, ODD-In, referred to those situations 

where the Autosteer is designed to work for sure. The second category ODD-Out, referred to those 

situations where the Autosteer is not intended to work. Third, ODD-Not Sure, referred to those situations 

where the Autosteer may or may not function adequately. 

Table 1, shows different driving situations (not exhaustive) as classified into three different ODD categories. 

The final test situations for this research were then selected from each of these categories. This was an 

important input also while selecting the test route as the candidate route on which most of these situations 

are visible/possible, had more likelihood of being selected.  

Table 1. Classification of ODD for Tesla Model S 

ODD-In ODD-Out ODD-Not Sure 

Straight stretch of highway road with 
good quality lane markings, no 

intersecting traffic and ideal driving 
conditions. 

 

When there are no lane 
markings on either side of the 
road and speed is greater than 

70kmph. 
 

changes in lane marking type 
(close off-ramps, on-ramps and 

beginning and ending of 
emergency lane) 

 

At long curves (not very sharp) on 
the highway 

In construction zones and close 
to toll booths. 

Poor visibility due to adverse 
weather conditions 

 City roads, with intersecting 
traffic and traffic lights. 

 

Bright light interfering with 
camera view (existing a tunnel) 

  Sharp curves on the road 

  Under bridges and in tunnels 

  Narrowing or winding road 

  Slow moving traffic, with a lot of 
cut-in situations on the highway 
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3.3.  Participant recruitment 
 

The aim of this research is to assess the ODD of LKAS equipped vehicles, an important aspect of this 

assessment is the drivers’ trust, perceived risk and his/her behaviour in general, while driving in specific 

situations. A driver without any experience of driving in ADAS equipped vehicles, has been proved to have 

a higher cognitive workload, hazard response time than those with experience in ADAS [101, 102]. These 

drivers also lack the knowledge of the functionality of the systems and therefore less aware of its limits and 

capabilities then drivers who use these systems regularly. Therefore, it was important that drivers with 

some experience of driving in ADAS (LKAS specifically) equipped participate in this research.  

 

Having drivers with prior LKAS experience, will ensure that there is consistency in the level of driver 

responses in the different test situations. This will make comparing driver responses across situations 

easier. This is because, there could be a considerable variation in responses of ADAS inexperienced drivers 

in different test situations making it difficult to conclude if this variation in response is due to the 

characteristics of the test situation or due to their inexperience. 

 

Furthermore, first time users are also much more vulnerable to potential unsafe driving situations and their 

inability to know how to react in such situations could be life threatening. Therefore, keeping driver safety 

and ethics in mind, it is better to have LKAS experienced drivers participating in this research. Finally, it was 

important to avoid young/ old drivers as their responses to such ADAS is also at opposite ends of the 

spectrum as compared to an average driver with ADAS experience [45, 103] , making it again difficult for 

between situation response comparisons.  

 

Therefore, for this research the following criteria were proposed to recruit its participants. If a driver 

fulfilled these criteria, he or she would be permitted to participate in this research. 

• Driver has driven in or drives in Lane Keeping Assistance equipped vehicles. 

• Driver is between the age 25 and 60years. 

However, as the test vehicle for this research is a Tesla Model S, the participant set was divided into two 

groups 1) Tesla experienced 2) Non-Tesla experienced drivers. There could also potentially be a difference 

between driver responses between Tesla and Non-Tesla experienced drivers, this will also be investigated 

in this research. 

In drivers that have experience in such vehicles, this is also a problem that the OEM’s must identify and try 

to solve. This is something which will also be investigated in this research. 

The participants for this research were recruited using the following methods: 

• Through online advertisements on the Tesla Motors Club forum [104] (focussed at Tesla drivers). 

• Through distribution of paper advertisements and display of digital advertisement (on Televisions) at 

the department of Civil Engineering & Geosciences at TU Delft. 

• Though distribution of paper advertisements and broadcast emails at the Amersfoort office of Royal 

HaskoningDHV. 

• By visiting the vehicle charging station at Den Ruygen Hoek Oost, Amsterdam (also the test start 

location). 

• By word of mouth and contacts of university and company supervisors and colleagues. 

Each participant as a compensation for their time, was also given an option of choosing either a €50 gift 

voucher or a night of dinner and drinks at the offices of Royal HaskoningDHV. The recruitment 

advertisements differed based on the targeted driver group. The respective, advertisements for Tesla and 

Non-Tesla experienced drivers are show in Figure 27 of Appendix B: Experimental Setup. 
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3.4.  Vehicle Instrumentation 
 

As mentioned earlier, for this research a Tesla Model S was used as the test vehicle. The LKAS function of 

the Tesla referred to as the Autosteer function, was therefore the system whose performance across 

different test situation, is assessed. The software version of the Autosteer v8.1 (218.18.2.301aeee) was the 

LKAS system under consideration. It is also important to mention that for the first 2 test days (22nd and 23rd 

May), a Tesla Model S 60D was used and for the next two (29th and 30th May) a Tesla Model S 90D was used. 

This may have an influence on this research but given its objective, as the difference between these two 

versions of Tesla’s is mainly the slight difference in power and range (on one full battery charge), but the 

functionality, software and hardware of the Autosteer function is the same for both these versions as the 

software versions are the same. 

Furthermore, for this research the Tesla Model S, was also instrumented by LIDAR’s, Go Pro’s and a 

combined IMU and GPD unit. The LIDAR’s (Light Detection and Ranging) was installed with an intention to 

obtain distances to adjacent vehicles (on both sides) and to leading vehicles. During the pilot test the LIDAR 

was mounted on the side of the car inside the window (Figure 28), on close inspection of the corresponding 

data it was noticed in some cases that the distance data had a lot of distortion because the light beams 

from the LIDAR were probably reflecting into the LIDAR from the test vehicles window, rather than from 

objects on the outside. This meant that the that was not the right position for the LIDAR to placed and they 

had to be placed outside the vehicle. After trying out several option, the LIDAR’s were places on the top of 

the vehicle facing the three directions as shown in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Vehicle Instrumentation 

 

The Go Pro’s, on the other hand were installed on the bottom of the front door on both sides of the vehicle 

with an objective of determining the position of the vehicle in its lane. In addition to this, there was a road 

facing camera installed on the windshield from the inside of the vehicle along with a HD webcam that faced 

the driver, which was intended to record the drivers’ reactions while driving on the test route. Finally, a GPS 

was installed onto the dashboard and along with the LIDAR’s, it was connected to the Inertial Mearing Unit 

(IMU), that along with the GPS measured vehicle dynamics in all directions (i.e. velocity, acceleration and 

position in all directions). Moreover, the IMU was responsible for the synchronization of the internal 

cameras and LIDAR data as it made planned beep sounds (at known interval and frequency) at the start of 

every test drive. All the data, i.e. the vehicle dynamics and LIDAR data, were then stored into the SD card 
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that was mounted on the IMU. This entire setup (internal and external) is shown through Figure 5 and Figure 

6. 

 

  

 

 
Figure 6. Left image: internal instrumentation view; Right image: Exteral instrumentation view (color coding 

same as Figure 5.) 

 

3.5.   Conclusion 

In this chapter, the research approach and the preliminary steps involved for setting up the road tests, were 

described. This analysis was also used to identify, operational requirements and constraints for the 

intended functionality of the Autosteer function. This understanding of the functionality serves as a vital 

input for the next steps of this research. This chapter also discussed the specific criteria regarding the age 

and driving experience, which were used to select participants for the road tests. Finally, it also gives a, 

pictorial representation and detailed information about the various instruments that were externally 

installed onto the Tesla for data recording. For this research, distance measuring devices such as LIDAR’s, 

vehicle dynamics measuring devices such as inertial measuring units, vehicle position measuring devices 

such as GPS and, road sensing devices such Go Pros, were used.  
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Chapter 4.  Experimental Setup- Case of Tesla Model S 
The previous chapter, provided an overview of the research approach along with a description of the initial 

steps taken to setup the real-road for this research. In this chapter, the next steps (for the given test vehicle, 

possible test situations and type of participants) that were taken to decide the testing environment, are 

described.  

First, the chapter describes steps involved in the selection of the test route from a set of candidate routes 

based on various factors. This was then used to propose a testing environment along with a test schedule. 

The chapter than describes the pilot test, which was conducted to understand the practical and logistical 

constraints of the road tests. Using the information from the pilot test the final testing environment is 

developed and described. As mentioned earlier, in this research, driver behaviour was assessed in three 

different stages, before the test (Pre-Drive Questionnaire), during the test (Real-time self-reported 

behaviour) and after the driving test. The design and contents of each of these questionnaires is also 

provided in this chapter. Finally, a description of ethical requirements before commencing the road testing 

is given, before describing the participant wise testing procedure. 

 

4.1.  Test route selection 
 

Three candidate routes were selected based on prior research at Royal HaskoningDHV and visual inspection 

of the routes, keeping in mind the ODD classification of the Tesla Model S. Out of these candidate routes, 

based on several factors (research and external), list of possible testing situations and verification of traffic 

states; the testing route for this research was proposed. This sub-chapter gives a walk-through to each of 

steps. 

 

4.1.1.  Candidate routes 
 

The three candidate routes were as follows, one out of which, was proposed as the test route: 

• Candidate route 1: A10 Amsterdam, starting from AS near Meininger hotel and ending at A1 

towards Diemen (Figure 7). 

• Candidate route 2: Starting at Einsteinweg A4, going towards exit at A5 (Westrandweg) via A9 

(Figure 8). 

• Candidate route 3: A5, Zwanenburg to E19 (A4) Schiphol (Figure 9). 

 

 

 

 

 

 

 

 

                                                         

Figure 7. Candidate route 1 (Left) 

Figure 8. Candidate route 2 (Right) 
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Figure 9. Candidate route 3 

 

4.1.2.  Factors affecting route choice 
  

There were several factors that were considered while deciding the test route. These were divided into two 

broad types: Research related and General.  

Research related factors 

• Sufficient curves on the route 

• Changes in lane width along the route. 

• At least 2-3 off-ramps and on-ramps along the route. 

• Route has varying lane marking type. 

• Presence of usable emergency lane on the route. 

• Proneness to roadworks or traffic jams. 

• Presence of tunnel and/or bridges on the route. 

• Length of the route and the cycle time for completion of the route. 

• Presence of narrowing or winding route sections. 

• Presence of non-highway route sections. 

General factors 

• Sufficient traffic data available for the entire route. 

• Cyclic nature of the route.  

• Closeness to supercharger/charger. 

• Closeness to parking space. 

• Closeness to a place to a place to freshen up. 

• Closeness to train station or bus stop. 

 
4.1.3.  Verification of traffic states 
 

As understood from the vehicle manuals, most LKAS’s do not turn on during traffic jams and slow-moving 

traffic. Therefore, increased traffic intensity may result in more situations where the driver rather than the 

LKAS controls the vehicle, which does serve the purpose of this research as it aims at assessing the 

performance of the system and not the driver. Therefore, to ensure that the selected route has moderate 
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traffic intensity levels and is not prone to traffic jams, traffic states for all the candidate routes were verified 

using a tool from the DiTTLab of TU Delft [105].  

As it was planned to have the test route in the 3rd and 4th of weeks of May 2018, it was only possible to 

verify the traffic states for the candidate route for the 3rd and 4th weeks of April 2018. Moreover, traffic 

states were only verified for Tuesdays and Wednesdays between 9AM and 4PM (off-peak hours). This is 

because in the Netherlands, the traffic on Mondays, Thursday and Fridays are generally higher as people 

either travel to and from work or decide to take extended weekends. It was also decided to conduct the 

tests in traffic off-peak hours once again to avoid driving in heavy traffic and ensuring that all the test drives 

are conducted 

The following traffic characteristics per candidate route, per day were verified: 

 

1) Average travel time 

2) Standard deviation travel time 

3) Average flow rate 

4) Traffic jam start time 

5) Traffic jam end time 

6) Average speed 

Table 14, summarises the traffic states for each candidate route, for the off-peak hours on Tuesdays and 

Wednesdays of the 3rd and 4th Week of April. This then serves as input while proposing the test route. 

From Table 14, on all the considered test days (Tuesday, Wednesday and Thursday) the travel times and 

the traffic flows for candidate route 1 and 2 were comparable and were significantly lower than that of 

candidate route 3 (as it was a longer route). On all the candidate route, traffic congestions generally begin 

close to 16:00, which is close to the proposed test end time.  

 

4.2.  Proposed testing environment  
 

For this research, first, based on the analysis of the owner’s manual for the Tesla, list of possible testing 

situations and the several factors affecting test route choice, a testing environment was proposed. This sub-

chapter gives a description of the proposed test route, testing situations and test schedule. 

 

4.2.1. Proposed test route 
 

The test route for this research was proposed based on a visual inspection of each of the candidate routes 

on google street view. As shown in Table 15, (Appendix B: Experimental Setup) for each candidate route a 

score was generated. This score was based on all the factors that affect test route choice, i.e. the research 

related factors, general factors and visibility of test situations in all three ODD classifications. A score of 1 

was given when a factor was either visible on the candidate route or if it was relevant for that route, and a 

score of 0 was given otherwise. Traffic state/intensity at all the candidate routes was included as a factor 

under the ‘general factors’ category. It must be noted that from Table 14, each of the candidate routes 

generally show potential traffic jams towards the end of the off-peak period (at around 1600 hrs), this was 

kept in mind while making the test schedule. 

From Table 15 (Appendix B: Experimental Setup), candidate route 2 and 3 have almost the same score and 

therefore the proposed test route would have to be one of the two. For this research, candidate route 3 

(A5, Zwanenburg to E19(A4) Schiphol) was selected as the proposed test route. This is because, it is much 

easier to a have a closed cyclic route for candidate route 3 (Figure 9) than for candidate route 2 (Figure 8), 

as in the later, the cycle would have to be completed on the A10, which is much more prone to traffic jams 
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than the A5 that splits away from A4 close to Bastion Hotel. Moreover, this route has its starting point 

around parking lot P1 of Schiphol Airport, which was believed to be a better access point for all participants 

than the other candidate routes. Moreover, it is also the longest route out of the three candidate routes 

and therefore, allowing more situations to be tested. 

 

 

Figure 10. Proposed test route 

Therefore, the proposed testing environment was follows: 

• Test route = A5, Zwanenburg to E19(A4) Schiphol. As shown in Figure 10, the test was proposed to 

start and end close to Schiphol airport P1. After which the driver will be given some time to 

familiarize with the Tesla (marked as the black curved line) and receive the test instructions at the 

same time (especially important for the Non-Tesla experienced drivers). After the familiarization 

phase ends the driver then carries on driving until he/she returns to the point where the test began, 

this then marked the end of one test drive and this process was to be repeated for all the other 

participants in the same chronological order. This route also includes driving through a small city 

road stretch as indicated in Figure 10.  

• All test drives were to take place during off-peak hours. 

• Length of test route = 24.2kms  

• Length of familiarization phase = 10kms  

• Total distance travelled per participant = 34.2kms. 

A test schedule was also prepared for the proposed test route and this will be described in the next sub-

chapter. Moreover, it must be noted that this proposed was not yet the final test route and was subject to 

change post the pilot tests. 
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4.2.2.  Proposed test schedule 
 

While proposing the test schedule, the following factors were included referring to Figure 10. 

1) Familiarization time - This refers to the travel time taken to complete the familiarization phase of 

the test.  

2) Actual test travel time - This refers to the travel time taken to complete test route (i.e. from End of 

familiarization to the end of the test)  

3) Route completion time - The route completion time is equal to the sum of the familiarization travel 

time and the actual testing travel time along with a buffer of 10 mins added to this time, to account 

for variability in the travel times. 

4) Time taken for post drive questionnaire -  The driver, after the completion of the test was supposed 

to fill in the post drive questionnaire. 

5) Time between participants & participant reachability – This together referred to the total time 

before the next participant. 

6) Total cycle completion time – This refers to the sum of the time components 3), 4) and 5). 

7) Test start time – This referred to the time at which it was proposed to start the test drives on each 

test day. 9:30 every day. 

8) Test end time – This referred to the time at which it was proposed to end a test day. 16:00 every 

day. 

9) Total available testing time – This referred to difference between test start time and test end time.  

10) Other factors – Such as range of the vehicle, Distance to charger were included to determine if the 

vehicle needed to be charged during a test day, or one complete charge would be sufficient. 

 

From Table 16, (Appendix B: Experimental Setup) the Total cycle completion time per driver is 75mins and 

the total time available per test day is 375mins, therefore, the number of possible participant drives per 

day was calculated to be 5.  

Furthermore, from Table 17 (Appendix B: Experimental Setup), the total route distance per driver was 

calculated to be 37.2kms and the range of the Tesla Model S is 310kms. This shows that for the proposed 

time schedule 5 participant drives would be possible per day and this will be possible with full charge of the 

vehicle. Of course, this was only the proposed test schedule and this was subject to change after the pilot 

test was conducted and this discussed in the following sub-chapter. 

4.3.   Pilot test 
 

In this research, a pilot test was conducted to determine if the proposed test route is as it was observed 

while visually inspecting it on google street view and to determine if the time and distance components 

considered while making the scheduled tests are representation of their actual values. Moreover, during 

the pilot test possible locations of the sensors and cameras, were also tested.  

To verify if different ODD classified situations are visible on the test route, a test map indicating possible 

locations of these situations was made (Figure 11). During the pilot drive, each of these situations were 

verified with the help of a checklist. 

The pilot test was conducted on the 9th of May and the pilot participants were Dr. Haneen Farah (University 

Supervisor for this research), Ir. Peter Morsink (Company Supervisor for this research), Paul Van Gent (PhD 

researcher at TU Delft). Paul, was also present to provide a helping hand with the placement and locations 

of the instruments on the test vehicle, which was his area of expertise. Furthermore, Daud Pletcher the 

safety driver from the Tesla car rental organization, was also present to help with understanding how the 

ADAS on the Tesla work.  
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Figure 11. Route map for Pilot Test and key 

 

During the Pilot test, possible locations for the sensors and cameras were also tested. The sensor used for 

this research was a LIDAR and it was going to be used determine the distance between the test vehicle and 

other moving and non-moving objects on the road, to is front, left and right side. In addition to this, a 

combined Inertial Measuring Unit (IMU) and Global Positioning System (GPS) were also going to be installed 

in the vehicle. Finally, Go Pro cameras were also going to be installed to determine the position in the lane, 

of the test vehicle. The purpose of these instruments will further be discussed in further chapters of this 

report. During the pilot, only one of the LIDAR’s was tested, and it was coupled to the IMU and GPS to check 

if the systems work as intended. The LIDAR was placed inside the car and facing the right through the 

window. The Go Pros were located on the both sides of the car at the bottom of the front doors, 

respectively. These locations are shown in Figure 28,Figure 29 of (Appendix B: Experimental Setup).  

In addition to this, another important factor to practice was the interaction between the participant and 

safety driver and myself, as it was very important to ensure that these interactions result in the least 

possible workload on the driver. Finally, the total route times were also verified to compare with the 

proposed times. 

The key takeaways from the Pilot test were as follows: 

• With the help of practice interactions with the pilot participants and after a thorough discussion with 

the safety driver, a driver instruction and interaction protocol was decided. 

• Some important nuances of the test route, regarding which off-ramps and on-ramps to take or avoid, 

were also decided and saved onto the Tesla’s in-built map. 

• It was noticed that the route could be extended to include more city road sections, thereby increasing 

the number of possible situations that could be tested. A time compromise would have to be made by 

conducting the post-drive questionnaire online instead of right after the test drive. 

Notation Road element/ situation 
A Start of Familiarization phase  

/ End of test 

B Start of actual test route 

C1 to C7  Curves on the road 

W1 to 
W10 

Change in number of lanes /  
change in Lane marking type 

E1 to E7 Presence of exit / off-ramps 

En1 to 
En4 

Presence of entry/ on-ramps 

S1  Start of city road stretch 

S2 End of city road stretch 

T1 TO T4 Tunnels or bridges 

P1 Parking lot at Schiphol 

  Familiarization phase 
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• It was also noticed that accessibility of the test route could be a problem for participants arriving by 

personal vehicles (as the short time parking in Schiphol was expensive and could lead to an increase in 

participant reachability time. The route could be extended to start and end at Den Ruygen Hoek Oost, 

which has a charging station and a place for the participants to relax and freshen up and is well 

connected to the bus stop as well. 

These key takeaways, lead to small alterations to the testing environment and will be discussed in the 

following sub-chapter. 

 
4.4. Final testing environment 
 

By adapting to the key takeaways from the Pilot test, the proposed test environment and test schedule 

were slightly altered. The resulting final test environment is described in this sub-chapter.  

 

4.4.1.  Test situations and Route 
 

The final test route now has an extended city road stretch and does not start and end close to Parking lot 
P1 of Schiphol Airport. The test starting point was the parking lot at Den Ruygen Hoek-Oost, Rijsenhout. 
This was where the test familiarization was to begin. As seen in (Figure 12), the actual test starting point 
was the same as the proposed route but the test end was extended further South of the test end point in 
the proposed test route. Furthermore, the drivers now had to drive from the Test point to the test starting 
point and this part was also not included for data analysis. In addition to this, the city roads stretch was 
extended considerably from that in the proposed route, this was done to include more variation (in terms 
of ODD classifications) of the possible test situations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Final Test Route 

 

Out of the various possible situations described in Table 1, the final situations that would be assessed (per 

ODD classification), is described in Table 2. These were decided after visual inspection during the pilot tests. 

 Familiarization Phase 

 City roads 

 Highway road 
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Table 2. Final list of test situations 

ODD-In ODD-Out ODD-Not Sure 
Straight stretch of road with 
no problems in lane marking, 
no reasons for the LKS to not 

work properly. 
 

Approaching traffic light 
around slow-moving traffic 

inside the city 

changes in lane marking type (at exits, 
entry and beginning and ending of 

emergency lane) 
 

At standard curves (not very 
sharp, but long) on the road. 

No lane marking on road 
boundary inside the city 

 

Bright light interfering with camera view 
under bridges and in tunnels 

 

Inside a well illuminated 
tunnel 

Blind curve inside the city 
Driving close to on-ramps or off-ramps or 
emergency lanes (changing lane markings) 

  
Driving around slow-moving traffic on 

highways 

 

4.4.2.  Final test plan 
 

Based on the takeaways from the pilot study, the proposed test plan was altered. The test route was 

extended ad this meant that the total distance travelled per driver and the subsequent travel time, also 

increased. Furthermore, the drivers also had to drive a short distance from the ‘End of test drive’ to the 

‘Start of Familiarization’ / starting point of the test. To compensate for this increased travel time, it was 

decided to conduct the post-drive questionnaire online and therefore still have the same number of 

participants per day as was in the proposed schedule. 

The time and distance components of the final test route are presented in Table 18, Table 19 (Appendix B: 

Experimental Setup), respectively. These tables confirm that the total number of participants per day is still 

5. For the road tests, there were a total of 19 participants recruited. Since, one day only 5 participants tests 

were possible, the road testing had to span over 4 days, with the last test day having 4 participants instead 

of 5. The final test days were Tuesday 22nd, Wednesday 23rd, Tuesday 29th and Wednesday 30th of May. For 

each day, the tests began at 9:30 and ended at approximately 16:00 and the participant slots were allocated 

on a first-come-first-serve basis and based on the preference of the participants. The final participant slots 

across the four test days is shown in Table 20 (Appendix B: Experimental Setup), and this was based on a 

detailed schedule as shown in Table 21 of (Appendix B: Experimental Setup). 

From Table 19 (Appendix B: Experimental Setup), the total distance travelled per participant was 

approximately 55kms and the estimated total time taken per participant drive was 75mins. This again 

meant that the total mileage (220kms) per day (was still less than 280kms (range of the Tesla) and therefore, 

no additional charging was required. Before each test day, the vehicle had to be instrumented with the 

necessary sensors and cameras, this is discussed in detail in the next sub-chapter. 

 

4.5.   Pre-drive, Real-time & Post drive questionnaires 
 

Before the conduction of the field tests, an important step was to design the pre-drive, post drive and real-

time driver behaviour assessment questionnaires. This sub-chapter will provide a walkthrough to each of 

these questionnaires.  

 

4.5.1.  Pre-drive Questionnaire 
 

The purpose of the pre-drive questionnaire was to assess the drivers initial attitude towards semi-

automated vehicles and LKAS systems in general. The questionnaire is presented in (Appendix C: Pre-drive 
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questionnaire). At the beginning of this questionnaire, it was made clear to the participants what semi-

automated vehicles are, and they were given clear comparisons between ‘control’ type, ‘warning’ type LKAS 

(which is commonly misunderstood by people) and the Adaptive Cruise Control (ACC) type of ADAS. This 

was followed by questions regarding participants’ demographics, mileage and experience with LKAS and 

semi-automated vehicles in general. In addition to this, participants were also asked if they have 

participated in such a research in the past, as this could have an impact on their driving behaviour as 

compared to the other participants of the research. 

Furthermore, the participants were also inquired about their own judgement of how safe they are as a 

driver, how confident they are with using ADAS in vehicles, how much they trust semi-automated vehicles, 

and whether they are aware of the term Operational Design Domain (ODD) and its meaning. The 

participants were also given an opportunity to verify their knowledge about Operational Design Domain. 

This question was asked especially because in other questionnaires of this research (Real-time and post- 

drive), the participants were going to encounter this term quite often.  

The final part of the questionnaire was more focused at the participants initial attitude towards LKAS 

specifically. They were inquired about their perceived risk of driving in LKAS equipped vehicles, their 

awareness of its capabilities, frequency with which they use or drive in LKAS equipped vehicles and how 

easy, useful and satisfactory they consider driving in these vehicles. Finally, participants were also asked 

questions about their prior negative experiences of driving in such vehicles, if any. On average, this 

questionnaire was expected to take 10mins to complete. 

 

4.5.2.  Real time behaviour assessment 
 

This research also captures the real-time behaviour and response of the participants during their drive. Each 

participant was asked two specific questions during their drive. These questions were asked after the 

participant drove through any of the testing situations as specified in Table 2. In each situation, the driver 

was first asked to report their trust on the Autosteer (LKAS) on a scale from 1 to 5, with 5 meaning they had 

very high trust on the Autosteer in the situation they just drove through and alternatively, a rating of 1 

meant that they had very low trust on the Autosteer in that situation. After which, for the same situation 

the participant was also asked to report If they thought the situation was inside, outside or maybe in/out 

of the ODD of the LKAS they were driving in. Each driver was asked these two specific questions a maximum 

of 18 times during their drive of approximately 35minutes (some drivers did not encounter all the possible 

test situations and therefore, responded less than 18 times). 

 

It is important to note that the participants were already aware what the term ODD refers to and that they 

were asked these two questions only after the situation was passed and not when they were in the test 

situation. This was done to ensure that these questions had the least influence on their workload and 

therefore not affect their response [106]. As mentioned earlier, the driver already knew what the term ODD 

referred to and this also helped in keeping the interaction between the driver and myself short.  

 

4.5.3.  Post-drive Questionnaire 
 

Post their test drive, each participant was sent an online questionnaire to fill in. This questionnaire is 

presented in Appendix D: Post-drive questionnaire.  The aim of the questionnaire was to get an impression 

of the driver’s experience in the LKAS equipped Tesla Model S, on the test route. The questionnaire began 

with general questions about how easy found driving on the test route and how reliable they considered 

the performance of the Autosteer during the whole drive. They were also asked if they could have 

beforehand predicted the situations in which the Autosteer would not work, and to also rate how much 

they trusted the Autosteer after their test experience. 
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Following which, the participants were asked situation specific questions regarding their trust, awareness 

of the usability of the Autosteer function, the need for Autosteer, difficulty of using it and their 

dependability on Autosteer, in four selected test situations/situation types. The four specific situations/ 

situation types were based on test situations specified in Table 2. They were, 1) Around off-ramps/ on-

ramps when changes in lane marking type was prominent. 2) While driving at a curve on the highway. 3) 

While driving inside a tunnel. 4) While driving through the city road stretch.  

 

For each of these situations, the participants were asked how they would rate the ease of driving in that 

situation and whether they had kept the Autosteer ON whilst in that situation. If the Autosteer was ON, the 

participants were asked to rate how risky they perceived driving in that situations with Autosteer ON, how 

satisfied they were with the performance of the Autosteer and whether they had experienced an error in 

the automation (Autosteer) whilst in that situation. If they did experience an error in the automation, they 

were also asked how they coped with it and how safe they perceived that error in automation to be. On the 

other hand, participants that had the Autosteer OFF in that situation were asked to specify a reason for not 

turning ON the Autosteer. In addition to this, for all situations, regardless of the Autosteer being ON or OFF, 

all participants were also asked to indicate whether they were satisfied with the information provided to 

them by the vehicle (regarding its functionality) and if they thought that Autosteer was needed in that 

situation or not. 

 

In addition to these questions, specifically for the curve situation the participants were also inquired if they 

were driving in the vicinity of a large vehicle(s) such as trucks and how much of an influence did these 

vehicles have on their perceived risk of driving in that situation. For the tunnel situation (3), the participants 

were also asked additional questions about the influence the features of the tunnel (illumination and 

closeness to tunnel walls) had on their trust on the Autosteer. Finally, for the city road stretch (4), 

participants were also asked to report their trust on the Autosteer whilst driving on the city roads when 

lane markings were missing on the boundaries of the road. 

 

The final part of the questionnaire involved asking participants to report their trust on the Autosteer around 

slow-moving traffic and whether they had any other negative experiences, discomfort or general comments 

about the performance of the Autosteer from their test experience.  

 

It is important to note that, there may have been instances when participants experienced certain situations 

more than once, in such an instance they were asked to respond to those specific questions by considering 

all instances of that situation, that they experienced. 

 

4.6.   Ethical requirements 
 

Before the road-tests could commence, there were three additional steps that were necessary to be carried 

out. The first step was to develop a Participant Instructions protocol, that was to be used by the on-board 

safety driver as a reference while providing instructions to the participants before the commencement of 

their test drive. This was developed based on the driver manual of the Tesla Model S and though 

interactions with the safety driver during the pilot test. The instruction protocol is shown in Appendix E: 

Pre-drive driver instructions. 

 

The second step was to prepare an Informed Consent Form that all participants were requested to sign 

before the commencement of their test drive. This consent form gave the participants information about 

the researchers involved, the purpose of the research and its general procedure. They were informed of 

the role they played in the research and were also made aware of the possible risk and discomforts that 
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they could face during the test. Most importantly, it was made clear to all participants that the data 

collected in this research is confidential and that it would not be shared with any other parties’ other than 

the respective representatives from TU Delft and Royal HaskoningDHV. They were also informed about the 

presence of the on-board safety driver and that they had the right to refuse or withdraw from the test at 

any time during the testing procedure. The informed consent form was as shown in Appendix F. 

 

Finally, to conduct road tests with human drivers on public roads within the Netherlands, it was necessary 

to have permission from the ethics committee at TU Delft. This involved a standard procedure of submitting 

an Ethics Review application form (Appendix G) to the committee along with the informed consent form, 

the driver instructions protocol and a copy of the advertisement that was used to recruit participants for 

the research. The ethics review application required a complete explanation of the research, its purpose, 

possible danger to its participants and the steps taken to ensure safety of its participants. The road tests 

could be conducted only after receiving an approval from the committee. This procedure took almost two 

weeks to go through after which the road tests were conducted on the fixed test dates. 

 

 

4.7.  Test procedure 
 

After setting up the test and fulfilling the ethical requirements for the road testing, a participant-wise test 

procedure was developed. A participant test involves the following steps: 

• Before their test day, each driver had to submit a signed copy of the informed consent form and 

fill in the pre-drive online questionnaire. 

• On the test day, they were requested to arrive 5 mins before scheduled time slot (Table 20). 

• Before the test drive, they were provided with an introduction and familiarization to the functions 

of a Tesla by the test safety driver. 

• While driving, they were supposed to respond to two very specific questions about their real-time 

behaviour in certain situations. 

• Finally, after their test drive, they were sent an online post-drive questionnaire and they were 

requested to fill this questionnaire as soon as possible, to make sure that their driving test 

experience is still fresh in their minds. 

 
4.8.   Conclusion 
 

In this chapter, the complete setup for the experiment was described. It included a description of the three 

candidate routes out of which the final test route was selected. The various research related and general 

factors affecting the choice of the test route were listed. Furthermore, traffic states of the different 

candidate routes were verified to be moderate and the possible location and time for traffic jams were 

identified. Following which, using a score based approach and the affecting factors, a test route was 

selected. The main takeaways of an on-road pilot test were also used to then finalise the testing route and 

eventually a list of testing situations as classified in Chapter 3, constituted the final testing environment. 

These situations are tested on a route which starts and ends at the parking lot of Den Ruygen Hoek-Oost, 

Rijsenhout and the test dates were fixed and a testing plan was generated. Before the road tests, pre-drive, 

real-time and post-drive driver behaviour questionnaires were designed and the pre-drive questionnaires 

were also sent to the selected participants. Finally, before conduction of the roads tests, ethical 

requirements in the form of the informed consent and permission from the ethical board of TU Delft was 

also got and the road-tests were conducted based on the described test procedure. 
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Chapter 5.  Data Processing 
This chapter gives a description of the data collected during the road tests and questionnaires. It also 

describes the methods that are used to process the raw data, such that it could be used to answer the 

research questions defined in this study.  

 

5.1. Gathered data 
 

Upon successful conduction of the road tests, the following research data were collected: 

• Side Go Pro data – The Go Pros were placed on either side of the front doors of the test vehicle as 

shown in Figure 29. The Go Pros on either side of the car took pictures of the respective front wheel 

and the closest lane marking strip (Figure 31). These images were taken at a frequency of one image 

per second at 720p quality. 

• Front facing Go Pro data – The front facing Go Pro was placed on the windshield of the vehicle as 

shown in Figure 6. The cameras took continuous video footage of the road surroundings facing 

forward, for every participant drive video footage was taken at 1080p quality. 

• Driver facing HD webcam –continuous video footage at a 720p HD quality of all participants for 

their entire drive, was collected. It was located also on the windshield, facing the participants. 

• LIDAR data – The three lidars placed as shown in Figure 6, measured distances to other moving and 

non-moving objects on the road in three directions (front, left and right). These distances were 

supposed to be measured during all the drives but there were some unexpected problems that 

were encountered affecting a complete collection of this data. 

• IMU + GPS data – The onboard GPS and Inertial measuring unit, measured vehicle dynamics i.e. its 

velocity, acceleration and position along the x, y and z axis. These measurements were collected 

for all participating drivers. 

• Data from the pre-drive, post-drive and real-time driver assessment questionnaires.  

 

5.2. Processing LIDAR, IMU Data & video synchronization 
 

As mentioned earlier, all the LIDARs were coupled with the IMU unit. The raw distances were measured at 

a very high frequency of 100 data points per second and this raw data (Figure 33, Figure 34) in itself was 

not useful for analysis. To acquire the data a sensing device was developed. It is based on an ARM Cortex-

M4 chipset (MK66FX1M0VMD18), on a Teensy 3.6 board (shown in Figure 35). Acceleration data was 

collected using an MPU-6050 accelerometer/gyroscope sensor combination. Furthermore, GPS data and 

speed were collected using a G.top 0.13 (PA6H) GPS sensor with an external antenna attached. Three 

Garmin Lidar Lite V3 sensors (Figure 36) were used to acquire the ranging data. All the collected data were 

logged to an SD card at a rate of 100Hz.  

The Video data was collected using 3 GoPro cameras directed towards the left, right and front of the test 

vehicle. Synchronisation of collected sensor data and camera data was done through the sensing board. At 

power-on a series of 5 one-second beeps sounded at a frequency of 2.7KHz. An algorithm was developed 

to detect this series of beeps in the video and cut them all at the same point. Doing so ensured that there 

was a common t=0 moment for all data streams. 

In terms of data filtering, acceleration data was cleaned from high frequency vibrations using a Butterworth 

lowpass filter (2nd order, cut-off at 2Hz). The filter used the forwards and backwards ‘filtfilt’ function, leading 

to no delay in the filtration. LIDAR data was cleaned from artefacts using a variation of a Hampel Filter. For 

each given data point, the filter took 15 data points on each side, giving a moving window size of 31. The 
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median absolute deviation (MAD) was calculated for each window. If the data point differed from the 

window median by more than three MAD, it was replaced by the window median. This suppressed artefacts 

commonly encountered in the signal. The filtered data is represented by the bottom image in Figure 33 and 

the orange line in Figure 34 (Appendix H). 

The synchronized road facing video data and the LIDAR + IMU data were visualized on a python based 

notebook Figure 30 (Appendix H). With this visualization, it was possible to obtain ranging data, vehicle 

dynamics for every second during the tests for when the LIDAR was ON. An example of this visualization is 

presented in Figure 38 (Appendix H). This figure represents distances to moving (other road entities) and 

non-moving objects (road boundaries and barriers) in lateral and longitudinal directions. All distances are 

measured in cm, with the blue lines corresponding to distances to the right, grey line corresponds to 

distances in front, and the red line corresponds to distances to the left, of the subject vehicle. Figure 38, 

depicts all these distances for 17.5 secs of a corresponding road facing camera video footage. 

It can be concluded with confidence that the detection accuracy of the LIDAR was high, this is proved by 

Figure 37  (Appendix H), that shows the LIDAR detecting even a very small cavity on the wall of the tunnel. 

Finally, it is important to mention that the development of the IMU, its coupling to the LIDARs, data filtration 

procedures and python based coding were conducted by MSc. Paul Van Gent, a PhD researcher at the 

department of Transport & Planning of TU Delft. 

 

5.3. Image processing 
 

The images taken by the Go Pros had to be processed to obtain the vehicles position with its lane. This 

image processing procedure is described using Figure 13, the known entities here are the width of the 

vehicle and the width of the lane. Using the Go Pro images, the objective of the image processing was to 

determine D1 and D2, that represent the distance of the front wheel of the test vehicle to the lane marking 

strips on either side of the vehicle.  

 

 

Figure 13. Reference for image processing 

A python based algorithm was developed to carry out the image processing Appendix J (confidential). The 

adopted procedure is summarised in Appendix J (confidential). 

This procedure results in distances D1 and D2. The processed images were converted into a continuous 

video of easier visualization and this helped in determining distances D1 and D2 for every second of the test 
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duration for which the Go Pros were switched ON. A snapshot of this video is shown in Figure 39. This 

snapshot combines processed images for both sides of the vehicle. On each side, the number on the top 

left represents the number of pixels between the wheel and the lane marking and the number on the top 

right represents the distance between the two, in meters. Subsequently, on the bottom left of each image 

the timestamp of the image is displayed and on the right bottom the corresponding frame number is 

displayed. This comprehensive visualization of distances was very useful during the analysis phase of the 

research. On each side, if looked closely the 128x128 pixel images are visible. As explained earlier, these 

were used to locate lines on the Go Pro images. It is important to mention that the python-neural network 

based algorithm described here, was developed by Max Maton, a freelance software expert. 

The next step was to determine ‘P’, which represents the position of the vehicle center line relative to the 

lane center line. This distance was dependent on the width of the lane and the width of the vehicle. It was 

calculated using the following formula, where 𝑊𝑙 is the Width of the lane, 𝑊𝑣 is the width of the vehicle and 

D2 is the distance between right front wheel and the closest lane marking strip. This formula also be 

formulated using D1 and it will result in the same value for P. Using this formula, if the measured P was 

positive, this meant that the vehicles’ center is P units towards to the right of the lane center. Alternatively, 

a negative P meant that the vehicle was P units to the left of the lane center. 

𝑃 =  
𝑊𝑙 

2
−

𝑊𝑣

2
− 𝐷2 

Equation 2. Vehicle position relative to lane centre 

The image processing was performed with fixed lane widths for highways at 3.5m and city roads at 3.25m. 

Therefore, the validation of the lane positions had to be computed with these lane widths as reference.  To 

do so, percentage errors in these measurements were computed for each drive and for all the 

measurements for which both D1 and D2 were available (there were a few measurements for which only 

one of them was available). Across all the drives the (absolute) average and maximum percentage errors 

were computed, for the highway and city sections of the test route, respectively (Table 52). From Table 52, 

on the highway on average the percentage error was 3.5 % and the maximum error was 16%. In the city 

road section, on average the percentage error was 4% and the maximum error was also 16%. It must be 

noted that these errors only represent the accuracy of the line detection algorithm for the reference lane 

widths of 3.5m and 3.25m, for the highway and city, respectively. 

The lane positions about a result of this image processing, before being used for analysing lane positions of 

the test vehicle and thereby, assessing its lane keeping performance, had to undergo one last filtration. This 

was because the raw position values across all participants also consisted of measurements that 

corresponded to lane change manoeuvres. Moreover, there could also be a few seconds of positions that 

have unusually high position values. Data corresponding to all these instances needed to be filtered out. 

This data omission process was based solely on the specific python code used for the image processing 

procedure. Therefore, all lane position values that were greater than -1m and 1m from the lane centre, 

were omitted as this would represent either a lane change manoeuvre or that the Autosteer of the Tesla 

was not ON. Each lane position value corresponds to the distance between the centre of the lane and the 

vehicle centre, as described in Figure 13, where a positive value of lane position means that the vehicle is 

to the right of the lane centre line and alternatively, on the left side of the lane centre, when the position 

value was negative.  
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5.4. Summary of collected data 
 

Before commencing with the data analysis phase of the research, it was important to have a clear overview 

of the available data across all the test days.  This is provided in Table 3, where a ‘Complete’ refers to the 

availability of complete data set for that data component i.e. no data was missing. The table also highlights 

what type of data and at what time during the testing period, was data missing for any component. 

On 22nd May, due to unexpected rain during the testing period, the LIDARs had to be tuned off. This was 

because, a rain protecting cover was not put over the LIDAR.  For all the following test days, the LIDARs 

were covered (Figure 40), to avoid any more loss of data. There were also some test days on which Go Pro 

image data was missing on specific times, this was due to insufficient battery back-up due to human error 

(forgetting to switch cameras). It is important to note that there was no time instance during the entire 

testing period where Go Pro image data was missing for both sides of the vehicle, at the same time. This 

meant that, the lane position measurements were still possible for all participant drives during the testing 

period without any missing positions.  

On the 30th May, LIDAR data corresponding to the final participant was not available. This was because the 

IMU turned off automatically. A possible reason for this is could be that the power source to which the IMU 

board was connected to (a portable charger) would have stopped detecting that the IMU was drawing 

power from it, as the IMU requires very low power to function. 

Finally, the data collected from the questionnaires also had to undergo one final filtration before the 

conduction of sub-question specific hypothesis testing. This filtration was based on missing data values 

corresponding to a few of the participant drives and was done to ensure that there was consistency in the 

data used across the analysis. The data corresponding to the drivers/ drive 1,2 and 4 was excluded as the 

trust ratings of these drivers were not available for all the test situations mostly because they did not 

experience the test relevant situations or the questions were accidently framed a little different for these 

drivers. Therefore, the total sample size was reduced to 16 drivers, from 19 drivers.  

 

Keeping the available and missing data in mind, the next step was to analyse this data to achieve the 

objectives of this research. 

 

Table 3. Summary of available data from the instrumented vehicle 

Data 
component 

22nd May 23rd May 29th May 30th May 

Driver facing 
Only until participant 4 

i.e. until 14:45 
Complete Complete Complete 

Road facing Complete Complete Complete Complete 

Left Go Pro 
not available from 

14:36 to 15:20 for D4 
 

Complete 
Left, off between 14:19 and 

14:34 for D14, the rest is 
available. 

Complete 

Right Go Pro Complete Complete 
right turned off at 15:48, but 

rest  
is available. 

Complete 

LIDAR Available only for D3 Complete Complete 
Not complete 

for D19 

Valid data sets 2 (1 Tesla exp. Driver) 
5 (2 Tesla exp. 

Drivers) 
5 (1 Tesla exp. Driver) 

5 (2 Tesla exp. 
Drivers) 
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Chapter 6. Data Analysis and Assessment of ODD  
Upon conduction of the field test and the processing of the gathered data. The next step was to analysis 

the data to answer and attempt to achieve the objective of this research. This chapter presents the analysis 

of the research data for the objective and subjective risk measurements and finally, combine the results to 

assess the operational design domain of the Autosteer for a few selected test situations.  

Frist, Chapter 6.1 describes the final situations that were selected for analysis in this research. It then 

presents the results of the lane keeping performance of the Autosteer over four different aspects, in 

Chapter 6.2. This is followed by results of the lateral objective risks measurements across different test 

situations, Chapter 6.3 and then, by the presentation of the results of several statistical analyses and the 

relevant hypotheses to measure the driver behaviour/subjective risk in the Tesla, in Chapter 6.4. This is 

followed by, finally assessing the operational design domain of the selected test situations in Chapter 6.5.  

 

6.1.  Final selected situations  
 

During the road tests, the real-time driver behaviour assessment questions were asked to each participant 

in all the situations mentioned in Table 2. Four out of these situations were eventually selected for analysis. 

The real-time ratings for some of the situations in Table 2 were not encountered or recorded for all 

participants, therefore for the final analysis only situations that had responses from all participants were 

selected. Moreover, the four situations were also consistent with the situations that were specifically 

questioned in the post-drive questionnaire. Finally, while selecting the final situations for analysis, it was 

also ensured that there was at least one situation per ODD classification type (‘Inside the ODD’, ‘Outside 

the ODD’ and ‘Neither inside nor outside the ODD’). Subsequently, the situations that were analysed in this 

research were as follows, and are depicted in (Figure 14). 

 

1) Driving on city roads with no lane marking on road boundaries. 

2) Driving inside a tunnel. 

3) Close to an off-ramp with changes in lane marking type. 

4) Driving in a curve on the highway. 

Given below is a description of each of these selected situations: 

Situation 1: Inside the city with no lane marking strips on the road boundaries (refer Figure 42, for top view 

of the situation) 

• Direct road edge on the either sides of the road boundaries.  

• Speed limit is 50km/h. 

• It is a two-lane road with traffic moving in the same direction. There is no lane marking on road 

boundaries, only the centre lane marking is present. 

• Un-signalised interactions at crossings. 

Situation 2: Inside a Tunnel within the city 

• Single lane of 3.25m and concrete walls at approximately 4.5m and 2m on the right and left, 

respectively. 

• Speed limit is 50Km/h. 

• Good lighting conditions and well-marked lane markings. The visibility is poor only while entering 

and exiting the tunnel.  

• There is also a curve present inside the tunnel. 
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Figure 14. Section of test route with final test situations 

 

Situation 3: Close to an Off-ramp on the highway (refer Figure 43 for top view of situation) 

• Hard shoulder on the right. 

• Vehicles driving between 80 and 120km/hr. 

• The beginning of this situation is defined as when the Lane Marking begin to change from a solid 

line to a dotted thicker line and remains like this until the off-ramp is passed. 

Situation 4: Curve (refer Figure 41 for top view of situation) 

• Constant but relatively long right turning curve (radius of curvature = 295.51m and curvature = 

0.0038𝑚−1) 

• Vehicle speeds between 80 and 120 km/hr. 

• Guard rail on both sides and soft shoulder of 0.5m. 

 

6.2.  Lane positions: LKAS performance 
 

With the help of the image processed lane position data. The performance of the LKAS (Autosteer) of the 

Tesla Model S was assessed over the following four aspects, with the objective of understanding how the 

system performs inside and/or outside the OEM specified ODD: 

1) Between drives variation in lane position from the lane centre. 

2) Between days’ variation in lane position from the lane centre. 

3) Between road sections variation in lane position from the lane centre. 

4) Between situations variation in LKAS (Autosteer) performance. 

Analyses of these aspects were assessed based on either boxplot, Standard deviation of lane position(SDLP), 

mean lane position (MLP) calculations, or a combination of these metrics. 
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It was expected that for aspect 1), since the majority of the testing time the Autosteer function was ON, the 

lane positions of the Tesla for all the drives across all the days must be close to the lane centre with slight 

deviations on both sides of the centre (allowable buffer which is different for different vehicle 

manufacturers). This is because the Autosteer is designed to steer the vehicle such that it is lane centred 

(with an exception maybe around road obstacles). But during the tests drives there were also few common 

instances when the Autosteer had to be OFF/ could not be turned ON (at off and on-ramps, at intersections, 

around slow-moving traffic or based on the driver’s preference). Therefore, it was expected that there 

would be some variations in lane positions about the lane centre, on both sides of it. The resulting lane 

positions therefore, correspond to driver and LKAS’s combined lane keeping performance.  

For aspect 2), it was expected that since the same LKAS system (of a Tesla Model S) is under considerations 

at all test days, there should not be significant variation in its performance across test days. Of course, at 

the same time, there would be factors such as traffic intensity and weather that could have an impact on 

this. This is something that will be investigated in the coming sub-chapters. 

For aspect 3), the test route was divided into three sections. The first section involved driving on highway 

roads until the point ‘Start of city stretch’ in Figure 12  (length of section 7.2kms), the second section 

involved driving in the city stretch of the route indicated by a brown line in Figure 12  (length of section 

7.7kms) and, the third section involved driving again on the highway after the city stretch until the ‘end of 

the test drive’ point (length of section 8.5kms) in the same figure. It was expected that, the performance of 

the Autosteer would be better on the highway roads than on city roads as according to the owner’s manual 

the system is not supposed to be turned on inside the city and this trend would not vary drastically between 

test days. 

Finally, in aspect 4) which is of key focus, Autosteer’s performance is assessed alone (Autosteer is always 

ON) across situations; S1 (No LM), S2 (Tunnel), S3 (Off-ramp) and S4 (Curve). Based on the vehicle owners’ 

manual of the Tesla, it was expected that the order of the Autosteer’s performance across the situations 

will be S4≈S2>S3>S1. Situations S4 (curve) and S2 (Tunnel) are both inside the ODD as specified in the 

manuals, therefore it is expected that lane keeping is performed in these situations. On the other hand, S3 

(close to off-ramp) is neither inside or outside the ODD and S1 (No Lane marking on road boundaries in the 

city) is strictly outside the ODD. Therefore, lane keeping performance in S3 is expected to be better than in 

S1. More, it is important to understand where the vehicle aligns itself (with respect to lane centre) in these 

ODD classified situations. 

It is important to note that the LKAS performance assessment was based on the description of how a general 

LKAS works and the specific explanation of how the Autosteer function works in a Tesla. Moreover, the final 

assessment of the LKAS in different ODD classified situations, will also include measurements of driving risks 

in these situations which is dependent on lane keeping performance of the system. 

 

6.2.1 Between drives variation 
 

The frequency plots of the lane positions across all the drivers are shown in Appendix A. Keeping this in 

mind along with Figure 15, the between drives variation of lane positions are assessed. Figure 15, shows 

the position of the vehicle from the lane centre across different drives on the same test route. This plot 

excludes the outliers which are the extreme high and low values (lane change manoeuvres). Each boxplot 

shows the mean, median, data range of 50% of the position values, maximum and minimum values for each 

drive. A negative value of position means that vehicle was on the left of the lane centre and consequently, 

a positive value means that the vehicle was to the right of the lane centre.  
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Figure 15. Between drives variation in the position of the vehicle from the lane centre (driver and LKAS 

performance) 

 

As seen in the plot, mean lane positions for all drives other than D13, D14, D15, D17 and D19 are somewhat 

similar and between the values -5cm and +1cm from the lane centre. This means that in terms of overall 

lane keeping performance (driver and LKAS) for most drives over the same route, the Autosteer and drivers 

in combination did a good job at ensuring the vehicle is somewhat lane centred.  

On the other hand, for drives D13,14,15,17,19 the mean position values are away from the lane centre and 

range from -4cm to -10cm to the left of it. This could imply that on average during these drives the Lane 

keeping performance was worse than the other drives on the same route in the same LKAS system. This is 

an indication of the inconsistent performance of the Autosteer on the same route. Overall across all drives, 

it can also be seen that the vehicle tends to be positioned more towards the left of the lane centre rather 

than to its right. 

Another important observation is the skew of the data. For most drives except for D14, D17 and D18, the 

lane positions are evenly distributed about their median values, the mean and median values are almost 

the same and the length of the whiskers is the same above and below the median. This shows that the 

positions are evenly distributed between its highest and lowest value and about its median value. Thereby, 

reflecting on the symmetry in the performance (driver + Autosteer) even though for most of these drives 

are not lane centred. On the other hand, for D14, D17, D18 the difference between median and mean values 

are large, with the median values being more towards the left of the lane centre than the mean, signifying 

a higher variation in vehicle position towards the left of the lane centre, than on the right. Especially for 

D14, find which for a majority part of the drive the vehicle was to the left of the lane centre. 

The maximum and minimum lane position values for all drives other than D13, D14 are between the range 

-40cm to +40 cm from the lane centre and 50% of the lane positions on these drives (expect D15 and D19) 

is between the range -15 and +10cms from the lane centre. For D13 and D14, the maximum and minimum 

values range between -48cm and +43cm which is higher than the other days. 
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This however, does not reflect on its performance in certain specific situations that were selected for this 

research and it also consists of instances when the driver was in control of the vehicle rather than the 

Autosteer (in control majority of the times).  

 

6.2.2 Between days’ variation  
 

The next step was to compare the combined Autosteer and driver performance between the 4 test days. 

This was done using two widely used metrics, Mean Lane Position (MLP) and Standard Deviation of Lane 

Position (SDLP). Figure 16 and Figure 17 respectively, depict the variation in the SDLP and MLP values across 

different drives and between different test days. In general, a smaller SDLP value refers to a better lane 

keeping performance and the intended MLP for a control type LKAS must be around 0 (along with a small 

buffer). 

 

Figure 16.  Variation in MLP across all drives and between different test days 

In Figure 16, it is not easy to identify a trend in the MLP between the different test days. Therefore, a 

polynomial order 3 trendline (y = -0,0033x3 + 0,0864x2 - 0,8317x - 1,4673) was plotted to make it easier to 

spot a trend. Based on this, it was observed that the MLP is predominately to the left of the lane center and 

shows a small increasing (negative, more towards the left) trend between test days, with exceptions on 

drives D7, D8 and D16. Moreover, the vehicle lane position was most left oriented on Day 3. This also 

confirms the lane position trends as seen in the boxplots of Figure 15. 

 

Figure 17. Variation in SDLP across all drives and between different test days 
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Based on the Standard Deviation of Lane Position (SDLP) values in Figure 17, between days’ LKAS (and 

driver) lane keeping performance can be assessed. The values for Days 1,2 and 4 tend to be similar and that 

for Day 3 is considerably higher than the other days. Therefore, this could mean that the combined driver 

and LKAS lane keeping performance was the worst on Day 3, relative to the other test days. But to confirm 

this, a distinction between driver and LKAS must be made. This is out of the scope of this research. 

 

6.2.3. Between road sections variation 
 

To assess how the combined driver and LKAS performance varies across different road sections (Highway 

(7.2kms), City (7.7kms) and Highway (8.5kms) again), a plot with the mean values of lane positions per 

section per day was made. The standard errors for these mean values were also calculated as show in Figure 

18. From this figure, it was once again observed that in general, across these road sections the vehicle was 

biased mostly towards the left of the lane centre (a negative lane position means that vehicle was on the 

left of the lane centre). Furthermore, the mean lean positions were observed to be further away (to the 

left) from the lane centre in the City road section as compared to the Highway sections. But for both, the 

city and highway sections the vehicle was predominantly positioned to the left of the lane. 

 

On comparing section performances across different test days, it was seen that apart from Day 3, on every 

other test day the mean lane positions first increased (more away from the lane centre) from Section1 to 

Section 2 and then decreased (closer to the lane centre) after going from the city road section to the 

highway again. But on Day 3, the mean lane position values only increased (went further away from the 

lane centre) from Section 1 to Section 3, not showing a similar trend as the other test days.  

 

 
Figure 18. Between sections variation of lane positions 

Finally, it was also observed that the standard error to the mean lane position in the city road section, across 

all the test days, was always lower than that in the highway sections even though in the city the lane 

positions were further to the left of the lane centre than on the highway. 

 

6.2.4. Between situations variation in Autosteer performance 
 

While comparing Autosteer performance between the different test situations (S1 to S4), certain 

adjustments to the data were made. For each drive, only data corresponding to the first 15 seconds of 
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driving in each situation, was selected for lane keeping performance comparison. This was done to ensure 

that the Autosteer was ON in these situations and to have consistency with the objective driving risk 

measurements (also calculated for a duration of 15secs). 

This meant that a maximum of 15 lane position values were available per drive per situation. To increase 

the sample size for better box plot representation, the lane position values for each situation across 

different drives were combined into one data set. This was possible, because in these situations (in the 

duration of 15secs) the Autosteer was ON and the system was responsible for lane keeping and not the 

driver.  

Comparison of Autosteer performance between different test situations was first done using boxplots of 

the lane positions in these situations, Standard Deviation of Lane Positions (SDLP) and the Mean Lane 

Positions (MLP). This was then followed up by pairwise comparisons of lane positions in ODD-in, ODD-out 

and OUT-Not sure situations (as classified earlier). The differences/similarities are also verified statistically 

(S1 – No LM, S2 – Tunnel, S3 – Off-ramp and S4 – right turning curve). 

From Figure 19, first, it can be observed that the length of the whiskers on either side of the median is the 

highest in Situation S3, this means that the range of lane positions is the highest in this situation as 

compared to the other situations. The next observation is regarding the skew in the lane position values 

about its median. In all the situations, slight asymmetry is visible. In S2, S3 and S4, the skew (small) is 

towards the top (right of lane) and in S1, the skew is towards the bottom (left of lane). Suggesting that the 

lane positions in S1 are more spread out towards the left of the lane centre and in situations S2, S3 and S4 

the lane positions are more spread out towards the right of the lane centre.  

 

 

Figure 19. Situation specific position of the vehicle from the centre of the lane 

 

Furthermore, S1 and S3 have more lane positions to the left of the lane centre compared to S2 and S4, this 

is confirmed by the fact that more than 50% of the lane position values in these situations are negative 

(data between minimum value and upper quartile). In fact, 75% of the lane position values in S1 are negative 

meaning that the vehicle is predominantly aligning itself towards the left of the lane centre in this situation. 

A similar trend is also seen in S3. 
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Figure 20. Variation of MLP between various test situations 

 

To obtain further insights into the LKAS performance across the test situations, the boxplots of the SDLP 

and MLP were also observed. Figure 20 and Figure 21, depict the variation of MLP and SDLP measurements 

across different test situations. The corresponding values for these metrics are shown in Table 12. In this 

data set, the mean and standard deviation for the lane position values for each driver in each situation (over 

a duration of 15sec) is listed. 

From Figure 20, it is visible that MLP for S1, S3 and S4 are 75% of the time towards the left of the lane 

centre, again confirming that in this situation the vehicle is predominantly positioned closer to the left lane 

marking. Out of all the situations, in S2, 50% of the data (between 1st and 3rd quartile) are the closest to the 

lane centre. But, there is also skew in length of whiskers and data about the median in S2, this means that 

Mean Lane Positions in this situation is more spread out close to the lane centre and condensed to the left 

of the lane centre. In general, this figure also confirms that in S1, S3 and S4 the vehicle is more biased 

towards the left of the lane centre than to the right.  

 

Figure 21. Variation between SDLP between different test situations 

 

In Figure 21, it can be observed that the range of the maximum and minimum values of the SDLP is almost 

similar for all the situations with a slightly different range in S4 (Curve). The off-ramp situation S3, has 50 % 

of it values between 6 and 14, which is greater range of values than the 50% data points of the other 

situations. This gives an indication that compared to the other situations, the Autosteer performance in S3 
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has more variation (more spread out) than the other situations. This is an indication that the Autosteer 

performance in S3 is poorer than the other situations, but this needs statistical confirmation. 

On the other hand; the range, length of whiskers, median/mean values of SDLP is the lowest in S4, thereby 

visually implying that the Autosteer performed the best in this situation, relative to the other situations. 

There is also asymmetry in the lengths of the whiskers in S1 suggesting that in general for this situation, 

there was a larger difference between the higher and lower lane position deviation values relative to the 

other situations. In the other situations (especially S2, S3) the length of the whiskers is almost the same on 

either side of the median (symmetric), this means that there were as many drives in these situations with 

low deviation in lane positions, as the drives with high deviation in the lane positions. It also important to 

note that the median value of the standard deviation is slightly lesser than in S2. 

The above findings were purely based on visualization of the lane position data, but these findings were 

also verified using statistical tests. Since this was a case of K-dependent repeated non-parametric 

measurements of SDLP and MLP (normality was checked using procedure described in [107]), between 

different situations each driver was subjected to. The best statistical method to use according to Table 4, 

was the Friedman test.  

The first comparison was done for the MLP values between different situations. The null hypothesis for the 

test was: ‘There is no difference between the mean values of MLP between different test situations each 

driver was subjected to’. 

Table 23, summarises the results for the Friedman test. As a typical requirement to avoid type 1 errors in 

the results, the p-value for these tests need to be corrected for number of repetitions, using the Bonferroni 

correction. Therefore, the new α value is 0.05/4 =0.0125. For a situation where the Bonferonni correction 

is not applied, from Table 23, it can be concluded that there is statistical evidence of a difference in the MLP 

values for the different situations [χ (3) = 9.213, p=0.027]. This is because the p-value is lesser than α- value 

0.05 and therefore, this leads to the rejection of the null hypothesis.  On the other hand, when the 

Bonferonni correction would be applied the p-value is higher than the α (0.0125), which means that there 

is no evidence to reject the null hypothesis.  

For the case of when the Bonferroni correction is not applied, due to a significant difference between MLP 

of situations, a post hoc test to the Friedman test was also conducted to get more insights into the results. 

For this pairwise Wilcoxon singed rank tests, were conducted. This test helps in comparing each situation 

with the others and gives a comprehensive understanding of the MLP variation. Just like for the Friedman 

test, the null hypothesis for each of the situation comparisons was as follows: “There is no difference 

between the MLP values between the two considered situations that each of the drivers were subjected to”. 

Table 24, summarizes the results of the Wilcoxon tests for all situation pairs.  

 
From  Table 24, it is seen that there is a significant difference between MLP pairs of S2 and S1 (hereafter 

referred as MLP1), MLP pairs of S4 and S1 (hereafter referred as MLP2), MLP pairs of S4 and S3 (hereafter 

referred as MLP3). The statistical results for the respective pairs is as follows MLP1 [z=-2.147, p=0.032, r=-

0.38)], MLP2 [z=-2.076, p=0.038, r=-0.37] and MLP3 [z=-2.171, p=0.030, r=-0.38]. This gives statistical 

confirmation that the LKS performance in these situation pairs, is different and the effect sizes (r values) 

also reflect a large difference between the MLP values between these situation pairs. By comparing the 

number of positive and negative ranks between the pairs that show a significant difference, the relative 

right or left alignment of the vehicle in these situations can be determined. 

For the pair MLP1, negative ranks for No LM situation are higher this means that in this situation, the vehicle 

lane position is relatively more away from the lane center towards the left than, while driving in the Tunnel 

situation (because the sign of the lane position refers to direction of the vehicle’s position with reference 

to the lane center). Similarly, the vehicle lane positions while driving on the Curve situation is more towards 
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the right of lane positions than in the No LM situation. Finally, vehicle positions on the curve are relatively 

more towards the lane center than while driving close to an off-ramp.  

The next step was to perform the Friedman test to compare the SDLP values between the different test 

situations. The null hypothesis for this test was “There is no difference between the SDLP values of the 

different test situations. “ 

From Table 25, it can be concluded that there are no statistically significant differences between the SDLP 

values between the situations [χ (2) =4.082, p=0.253]. Therefore, there were no further post-hoc tests 

conducted and the comparisons were done based on the boxplot information. To visually compare the lane 

position frequencies, pairwise plots were also made [2.) Appendix A]. The plots confirmed the differences 

as seen using situation-wise boxplots and statistical testing. 

 

6.2.4.  Discussion & Summary 
 

The lane keeping performance between the drives was expected to be similar for the drives as it was the 

same route and the same LKAS system and all the test drives happened during off-peak hours. It was seen 

that for most of the drives the combined lane keeping performance of the driver and Autosteer was 

consistent but biased to the left of the lane centre. But, for drives D13, D14, D15, D17 and D19 the lane 

keeping performance was poorer as compared to the other drives. This showed that there is some 

inconsistency in the lane keeping performance based on the spread in the positions from the lane centre. 

But in general, the maximum and minimum range of the lane positions was similar across most of the drives, 

this suggested that overall the vehicle never goes more than roughly 45cms away from the lane centre on 

either side of it.  

The inconsistent performance in D13, D14, D15, D17 and D19 could be attributed to higher traffic on the 

road during those drives forcing the driver to take control of the vehicle more often than on the other 

drives. Moreover, even when the Autosteer is ON but the vehicle is close to slower moving traffic, 

Autosteer’s performance could be heavily influenced by the car-following function (ACC) and this could also 

lead to reduced lane keeping performance when surrounding traffic states are higher.  

In fact, the route travel times for drives D13, D15 and D17 were higher than the other drives expect for D5 

(verified by test times on the LIDAR), and on visually going through the road facing camera data for these 

drives, it was verified that indeed on these drives the traffic especially towards the end of the city road 

section and the end of entire drive was higher than the rest of the drives. This, to some extent justifies the 

relatively poor lane keeping performance on these drives. But it is important to note that there where the 

travel time was higher (more traffic) but the Lane keeping performance was biased on an average closer to 

the lane centre (Drive 5).  

During the drives, the general alignment of the vehicle was to the left could be because, for most of each 

drive the vehicle is one the right most lane of the road and there is generally a guard rail / road barrier 

towards its right. As mentioned in the owners’ manual the Autosteer may attempt to steer away and keep 

an offset distance to the road obstacles and road barriers. This could be a reason or the left skew in its lane 

position. It is important to understand, to go way from the guard rails, the vehicle is moving closer to road 

traffic on its left, and thereby increasing its chances of collisions with these road users. 

Like expectations regarding the lane keeping performance between drives, it was also expected that the 

performance of the Autosteer (and the driver), should not vary considerably between days unless there 

was varying weather conditions or drastic changes in traffic intensity. It was observed that lane positions 

were moving very slightly away from the lane centre towards the left from Day 2 to Day 3 and Day 4. There 

is no statistically significant proof for this and it could once again be attributed to the higher average travel 

times (higher traffic) on days 3 and 4 compared day 2. Unusually, on Day 1 the travel time was higher and 
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the weather conditions were worse than the other test days, yet the lane keeping performance over the 

two test drives on this day were better than the other test days. A plausible reason for this could be that 

the control algorithms on the Autosteer become stricter during adverse weather conditions (If it is ON) or 

during rain, drivers control more often and are more cautious and drive slower than usual. This requires 

further research.  

On visual inspection of all the drives on Day 3, it was also seen that especially for the last three drives on 

this day the traffic volume on the road was higher than the other days. This explains the high standard 

deviation in lane positions (SDLP) on Day 3. 

By comparing combined, lane keeping performance of the driver and Autosteer between 3 road sections 

(highway then city and then back to highway), provided results mostly as were expected. The combined 

performance was better (closer to the lane centre) on highway sections than the city road section for all 

days except day 1. The performance was better on the highway as these systems function better when 

there are no intersections, lesser closely driving slow moving vehicles and better marked roads. Moreover, 

the Autosteer does not turn ON most of the time inside the city and therefore, the vehicle is more controlled 

by the driver in the city than on the highway. As the performance of the driver in lane keeping can be 

assumed to be worse than the system (it is designed to be better), this explains why combined lane keeping 

performance in the city was worse than on the highway section. Moreover, it is difficult to explain the 

unusual trend on Day 1, because it corresponded to lane positions only for two drives. An important 

observation was the lane positions were predominantly left biased in all sections, this could be because the 

vehicles mostly drove on the right most lanes of the road which is closer to the right guard rail on the 

highway and close to road edges in the city.  

On the other hand, standard errors to the average lane positions were smaller in the city road stretch than 

on the highway. This could be because, drivers are more often in charge of the driving task in the city and 

as they drive at slower speeds and stop quite often at intersections, their lane positions may not change 

much from their average lane position (this does not mean that they are closer to the lane centre, they can 

be further away from the lane centre but not have deviations in their average positions).  

In addition to a general overview of the LKAS and driver performance across all drives, between test days 

and between road sections, the focus of this research was on assessment of the Autosteer’s lane keeping 

performance between the different situations classified based on whether they were inside, outside or 

neither inside/outside the ODD, as specified by the vehicle manufacturers. 

For the situations deemed inside the ODD based on manuals provided by the OEM, i.e. situations S2 and 

S4, it was seen that maximum percentage of lane positions were closer the lane centre as compared to the 

S1 (No Lane marking), which was outside the ODD and S3 (for which the ODD was not sure). Between these 

situations (S2 and S4), the lane positions had more skew to the right in S2 than in S4 and lane positions in 

S4 were more concentrated to the lane centre than in S2. This could be because, in S2 there were tunnel 

walls on either side of the lane, but the wall was closer to the left than to the right. This could explain why 

the Autosteer attempted to align the vehicle away from the wall that it is closer on the left. Moreover, there 

was also a slight left skew in the curve situation and this could again be because the vehicle was 

predominantly on the right lane and close to the guard rail on the right. 

Driving close to the off-ramp (S3) was deemed as neither inside/ outside the ODD situation. In this situation, 

the range of deviation of the lane positions (between maximum and minimum) was the highest compared 

to the other situations. Moreover, the vehicle positions had more frequency towards the left of the lane 

but a slight skew towards the right. This could be because of the changing lane marking types in this 

situation (there are two lane markings strips on the right of the vehicle) and may be Autosteer does not 

know for sure which lane marking strips to be in the middle of. 
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On the other hand, while driving inside the city with no lane marking on the road boundaries (S1), which 

was classified as being outside the ODD, it was seen that the Autosteer was attempting to stay close to the 

lane centre but majority of its lane positions are away to the left of the lane centre along with a significant 

skew towards the left. This could once again, be because the Autosteer recognises that there is no lane 

marking strip on the right and therefore, it attempts to stay close to the road centre. This could also be 

because there was slow moving traffic it encounters in these situations. Given the car-following behaviour 

of the Autosteer, it follows the trajectory of the leading vehicle (when both lane markings are absent). Since, 

manually driven vehicles would also ideally prefer to stray away from the road edge, this could mean that 

the test vehicle was just following the trajectory of a manually driven leading vehicle. 

The Mean Lane Positions (MLP) and Standard deviation of Lane Position (SDLP) were also used to compare 

Autosteer’s performance between different situations types. In terms of lane position trends, similar trends 

as described earlier were observed with the only difference being the mean lane positions in between the 

two inside ODD situations (S2 and S4) showed that more percentage of mean lane positions in the tunnel 

were slightly closer the lane centre than in S4 (On the curve), but there was a significant right skew in the 

mean lane positions. Confirming that the vehicle was indeed attempting to move towards the right of the 

lane centre to avoid the concrete tunnel on its left. On the other hand, the standard deviation of lane 

positions between the different situation types (ODD-in, ODD-out and ODD-In/Out) suggested that, in the 

two situations that were not inside the specified ODD, S1 and S3, the deviation in lane positions were lesser 

in S1 (outside the ODD) than in S3 (may be inside or outside the ODD). But the range of the deviations in 

these situations were more than the other two situations which were inside the ODD (S2 and S4), this was 

expected given their ODD classification.  

This indicates that even though mean lane positions of the vehicle in S3 was closer to the lane centre 

compared to S1, its performance was poorer. Implying that a mean lane position closer to zero is not always 

an indication of the performance of the lane keeping system, but it must be combined with standard 

deviation observations as the Autosteer is designed to have a slightly altered lane alignment in certain 

situations.  These differences between the mean lane position values were statistically significant but on 

the other hand, differences in standard deviation in lane positions, were not.  

Finally, it can be concluded that the lane keeping performance of the Autosteer in the ODD-In situations 

(S4: Curve and S2: Tunnel situations) were better than the other situations types. Between S1: No lane 

marking on the road boundaries (ODD-out situation) and S3: close to off-ramp (ODD-in/out situation), the 

performance was slightly better in S1 than in S3 as there was larger range of deviation in lane positions in 

the off-ramp situation. Even though in both cases the vehicle was attempting to sway towards the left of 

the lane centre.  It is also important to bear in mind that the variation in lane positions was in the range of 

a few 10’s of centimetres (away from the lane centre), which when looked at macroscopically is still better 

than the general lane keeping performance of drivers. 

 

6.3.  Objective risk measurement 
 

in this research, the Probabilistic Driving Risk Field (PDRF) metric is used to determine the driving risks 

experienced by the test vehicle, across all the different test situations. It was also mentioned that, risks only 

due to the non-moving fixed road entities (Potential Risk Field) were measured in this research using 

Equation 1 in sub-chapter 2.2 of this report. 

 

Since this was the first attempt to use such a metric for data obtained from a specific control field test, 

there were a few assumptions that had to be made. These assumptions are described in this sub-chapter. 

For this research, the Objective Risks (OR) using the Probabilistic Driving Risk Field method, were measured 

for a duration of 15secs for all the test situations (S1 – No Lane markings on the road boundaries, S2 – 
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Driving inside a Tunnel, S3 – Around an off-ramp and S4 – At a curve) across all the test drives. These 

objective risks were compared between the situations, both visually using boxplots and statistically.  

 

Furthermore, given the novelty of this Surrogate Measure of Safety (SMoS), for verification its results were 

also compared to an existing widely used SMoS, the Time to Lane Crossing (TLC) metric. This comparison is 

presented within this sub-chapter. Finally, the sub-chapter concludes by providing a discussion about all 

the results obtained through this analysis. 

 

6.3.1 Assumptions and steps taken to determine Objective Risks   
        

1) Only the first 15 seconds of each situation was considered for objective risk assessment. This 

method employed the lane positions determined in the previous section of this report. If for any 

instance during the test duration of 15secs, the lane position was not available (due to filtering or 

missing data), Objective risk was not calculated for that instance. This meant that there were 

situations where less than 15 seconds of data was available, to ensure that no situation had more 

than 15seconds of data (for consistency), no extra data was included to make up for missing data 

seconds. 

2) All speeds (both lateral and longitudinal direction) and accelerations (both lateral and longitudinal 

direction) were calculated for every second of every situation for every drive. This was obtained by 

manually going through the videos of each testing situation across all drives and simultaneously 

using the python based visualization tool (Figure 38). In instances, where due to certain technical 

issues such information was not available, the subject vehicle’s longitudinal motion was restricted 

to the speed limits of the road. 

3) The reference co-ordinates for the implementation for this method, were the front left wheel of 

the subject vehicle, i.e. a local co-ordinate system was used to determine distances between the 

subject vehicle and the road entity. 

4) All the filtrations performed (to account for lane change maneuvers and extreme values) while 

determining Standard Deviation of Lane Positions (SDLP) and the Mean Lane Position (MLP) values, 

were also done while objective risk determination. 

5) Because of simplification for image processing, the lane width on all roads other than inside the 

tunnel in the city, was 3.5m per lane (excluding lane marking width). Inside the city tunnel the lane 

width was 3.25m (excluding lane marking width). Based on the [108] the width of the paved 

shoulder on the highway was 2.75m (for the off-ramp situation) and the distance to the road 

medians was 0.5m. 

6) When there is a vehicle leading the subject vehicle, the latter speed is restricted to that of the 

leading vehicle because of the ACC function included in the AP for Tesla. This was used to determine 

the speed of the subject vehicle when GPS information about the subject vehicle was missing. 

7) There were 4 type of road boundaries (non-moving road entities) considered for this research, the 

corresponding ‘K’ factors values used in Equation 1 based on the results of [76], were as follows 

• K=0.1 for a lane marking strip. 

• K=0.2 for a curb stone of the rod (when there is no lane marking strips on the road 

boundaries in the city). 

• K=0.5 for a concrete median on the highway. 

• K=0.7 for a concrete wall (inside the tunnel). 

8) Potential field risk for an instance of a situation, is the sum of risks due to all the barrier/boundary 

types surrounding the subject vehicle, at that time instance.  

9) Only the maximum potential risk field measurement of the 15secs duration of each situation was 

used for further analysis. The average values (for the 15secs duration) were not used because, in 

general the average risk values for the test duration were zero in most situations. The potential risk 
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field risk metric is dependent on the square of the lateral velocity of the test/subject vehicle. But 

the test vehicle is an LKAS equipped vehicle and as the Autosteer was ON in all these test situations 

the lateral velocity of the vehicle was quite often close to zero, thereby resulting in very small risk 

measurements.   

10) The effect of the fork at the end of the off-ramp situation is neglected for this analysis as for this 

case the longitudinal velocity will also be included for the analysis.     

          

6.3.2.  Situation specific Objective Risk of driving (lateral objective risk) 
 

In this sub-chapter, the maximum potential risk in the lateral direction (maximum of both, left and right of 

subject-vehicle risk measurements) experienced by vehicles in a 15sec duration within each of the test 

situations, will be compared using boxplots.  

Based on the lane keeping performance of the Autosteer, it was expected that the lateral driving risk will 

be the highest in S3 (close to an off-ramp), this is because the lane keeping performance shows a largest 

range in this situation and in addition to this the vehicles are moving at high speeds as well close to changing 

lane markings and guard rail. Followed by this, in S1 (No Lane Marking on road boundaries) the lane keeping 

performance was poorer than S2 and S4. Therefore, lateral risk in this situation was second highest. This 

was followed by S2 and S4 in the same order of their lane keeping performance and the presence of 

concrete walls on both sides in S2 (Inside the tunnel). Therefore, the expected order of lateral risks was: 

S3>S1>S2>S4. 

Figure 22, shows a box plot of the maximum 15sec potential field based objective risk measurement for 

each of the test situations and for each driver. The objective risk is expressed in Joules and a higher value 

represents a higher risk due to fixed barriers/boundaries on the road. 

 

Figure 22. Variation in Maximum Objective Risk between different test situations 

 

The mean of the Objective Risk is the highest in S1 and decreases in the order S1>S2>S3>S4. The 

corresponding median values also show a similar trend but with lower magnitudes. This also means that 

there is deviation in the median and mean values in all the situations and thereby an asymmetry in the 

Objective Risk values within each situation. An asymmetry is also observed by the unequal whisker lengths 

in all situations other than S4. This means that the risk values are more asymmetric towards values larger 

than the median, i.e. there is more spread in the risk in situations S1, S2 and S3 towards the large values.  

The range of the risk values is again largest in S1 followed by S2, S3 and then S4, again implying highest 
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variation in risk while driving in S1 as compared to the other situations (this is also visible by the decreasing 

Interquartile range from S1 to S4). The mean, median and spread of the OR values in S4 is the smallest and 

most symmetric, respectively. This implies that the risk of driving on the curve (S4) was the least risky and 

the risk values were less varying. 

 

6.3.3.  Statistically comparing the OR between different situations 
 

The results provided in the previous sub-chapter are visual based. There was also a need for these results 

to be verified statistically. Therefore, in this sub-chapter results of a statistical comparison between OR’s of 

different situations, are described. 

The objective risk measurements were computed for each test drive across the same 4 situations, making 

this a repeated measures experiment. Furthermore, the objective of the test was to compare the risk 

measurements between different test situations. Given this objective and type of experiment, from Table 

4, either a repeated measures ANOVA or Friedman test could have been used. To decide which method to 

use, it was important to check for normality (to check if the data is parametric or not) of the OR measures. 

To do so a procedure described in [109] was used. The results of this normality check are provided in Table 

26 (Appendix I: Statistical tests) and Figure 44 (Appendix I: Statistical tests). The results of the tests 

suggested that the objective risk measurement is not normally distributed and therefore non-parametric.  

Therefore, Friedman test was used to compare risks between different situations. The null hypothesis for 

this Friedman test was “There is no difference in the means of the Objective Risk values between different 

test situations.” 

 
Once again, the Bonferroni correction could be applied for a Friedman test to have control over type 1 error 

while reporting statistical significance. If this correction is applied, the α value would change from 0.05 to 

0.0125 (again four comparisons are done). From Table 27 (Appendix I: Statistical tests), the p-value is 0.000 

and this means that the null hypothesis must be rejected and that there is a significant difference between 

the Objective risk measurements between the situations [χ (3) = 17.925, p=0.00], even after Bonferroni 

correction. 

 

Furthermore, a post hoc to the Friedman test is the Wilcoxon Singed rank test. Using this test, pairwise 

comparisons between risk measurements between situations can be done. Table 28 , Table 29 (Appendix I: 

Statistical tests) summarize the results of these pairwise tests. The null hypothesis for the pairwise Wilcoxon 

tests was: “There is no difference between the mean Objective Risk values between the two selected 

situations. “ 

 

Hereafter, for the comparisons, the objective risk pair of ‘S2:Tunnel’ and ‘S1:No Lane Marking’ situations is 

referred to as ‘OR1’, the pair of ‘S3:Off-ramp’ and ‘S1:No LM’ situations is referred to as ‘OR2’, ‘S4: Curve’ 

and ‘S1:No LM’ situation pair as ‘OR3’, the ‘S3:Off-ramp’ and ‘S2:Tunnel’ situations pairs as ‘OR4’, the 

‘S4:Curve’ and ‘S2:Tunnel’ situations pairs as ‘OR5’, and the ‘S4:Curve’ and “S3:off-ramp’ situations pair is 

referred to as ‘OR6’. 

If the Bonferroni correction was done for these pairwise tests, the α value would have to be changed from 

0.05 to 0.017 (as each situation is being compared to 3 other situations). Based on the p-values for the 

comparisons in Table 29, this would mean that only OR3 and OR5, would have a significant difference. 

But, when the Bonferroni correction is not applied (α value = 0.05), then there is clearly a significant 

difference between Objective risk values between situation pairs OR2, OR3, 0R5 and OR6. This is because 

the p-values for these pairs is less than 0.05, [OR2 (z=-2.068, p=0.039, r=0.036); OR3 (z=-3.206, p=0.001, 

r=0.57); OR5 (z=-2.534, p=0.011, r=0.44); OR6 (z=-2.482, p=0.013, r=0.44)] and this means that there is 
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enough evidence to reject the null hypotheses along with high effect sizes (r values greater than 0.3 [110]. 

The risk values for the OR1 and OR4 pairs are not significantly different from each other as the p-value is 

greater than 0,05 [OR1 (z=-0.362, p=0,717); 0R4 (z=-0.724, p=0.469)] and the null hypothesis cannot be 

rejected.  

Finally, from Table 28, the signed ranks between the pairs that show a significant difference (when 

Bonferroni correction is not applied), can be compared. For pair OR2, the negative rank is higher meaning 

that the risk in the ‘No Lane Marking on road boundaries’ situations are higher than that in the off-ramp 

situation. Next, for pair OR3 the negative ranks are again more than the positive ranks, meaning that the 

driving risk in the No LM situation is also higher than that in the Tunnel situation. For pair OR5, the negative 

ranks are again higher than the positive ranks meaning that the driving risk is more in the Tunnel than while 

driving in the ‘Curve’. Finally, for pair OR6, the negative ranks are again higher meaning that the driving risk 

is higher in the off-ramp situation than while driving in the ‘Curve’ situation. These results also confirm the 

visual observation that the OR values between the situations have the order S1>S2>S3>S4. 

 

6.3.4.  Comparing TLC and PRF values 
 

An important step in this research was to verify if the novel risk field is comparable to the TLC which has 

been used predominantly as a surrogate safety measure while assessing risks and road safety. In this sub-

section, the trends in maximum risk measurements computed by using the PDRF method and the 

corresponding TLC values, will be compared across the (15sec duration) different test situations (Table 13). 

The magnitudes of these measures cannot be compared as they different units of measurement. Therefore, 

the measurement trends will be compared. 

Figure 23. Comparison between PRF and TLC trends for different test situations 

Figure 23, compares the trends in objective risk measured using the PRF (Potential Risk Field) and the TLC 

method, for each situation. Each TLC value corresponds to the absolute minimum TLC value between the 

left and right TLC values for each driver for 15sec duration of each situation. On the other hand, each PRF 
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value corresponds to the maximum value of PRF between left and right of the lane centre for each driver 

for a duration of 15sec of each situation. 

From Figure 23, For each of the situations, as the TLC values increase the corresponding PRF values decrease 

and vice versa. A large value of TLC corresponds to lesser risk of crossing the lane boundaries and thereby 

a safer driving situation, and vice versa. On the other hand, a low value of PRF corresponds to a lower 

severity and/or probability of a collision to occur and thereby, a safer driving situation, and vice versa. 

Keeping this in mind, the observed inverse relation between TLC and PRF means that both these measures 

are similar in representing the driving risk/road safety trend and the use of PRF in this research is justified. 

The difference between the two mainly lies in the realism in the magnitude of the risk they represent, which 

will be discussed in sub-chapter 6.3.5 of this report. 

Additionally, the risks measured using TLC can also be classified into three categories; low risk, medium risk 

and high risk. From [111], TLC values lesser than (or equal to) 2 seconds are classified as ‘high risk’, between 

2 and 4 seconds as ‘medium risk’ and TLC values above 4 seconds as ‘low risk’. Based on this, in Situation 1 

(No Lane marking), there are 5 drives with TLC less than or equal to 2 seconds and majority of the risks in 

the medium risk range, in situation 2 (Tunnel) there are 3 drives with TLC less than or equal to 2 seconds 

and an equal representation of risk values in the medium and low range. In Situation 3 (close to an off-

ramp) there are 4 drives with TLC less than 2 seconds and majority of the TLC values spread over the 

medium and low range, and finally, in situation 4 (Curve) there are 2 drives with TLC values less than 2 

seconds and majority of the TLC values in the low range. 

A similar classification of the risk values measured using the risk field approach implemented in this research 

is not possible at this moment. This is because, the units of measurement of the two metrics are different 

and their magnitude represent different entities, energy transfer (PDRF) and time (TLC). Therefore, this 

indicates a need for further research into this novel PDRF risk metric to be able to classify the measured 

risks. 

 
6.3.5.  Relation between objective risk and lane keeping performance 
 

As mentioned earlier, the PDRF metric consists of a severity term and a probability term. Looking at 

Equation 1 and Figure 16, Figure 17 plots, a relation between lateral objective risk between situations can 

be made with the lane keeping performance in these situations. The Mean Lane Position (MLP) values plot 

the mean positions of the vehicle within its lane therefore, its median/middle value relates to the 

probability of a collision to occur. The closer a vehicle is to the lane marking strip on either side of the lane, 

more is the probability of a collision on the respective side. On the other hand, Standard Deviation of Lane 

Position values and the skew in the MLP values represent the deviation in lane positions, thereby relating 

to the lateral velocity and hence, the severity of a collision.   

Furthermore, the probability term in the Potential Risk Field formulation corresponds to an exponential 

function that increases as the vehicle moves closer to a lane marking and is relatively lower, otherwise 

(Figure 24). On the other hand, the severity is polynomial function of degree two and strictly depends on 

the lateral velocity of the vehicle, which is determined by the variation in its lateral position within the lane. 
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Figure 24. Variation in PDRF risk based on the spacing to lane boundary (source [75]) 

Therefore, this relationship between the lane keeping performances indicators and lateral objective risk, 

will be used while interpreting the situation specific lateral driving risks. 

 

6.3.5.  Discussion & Summary 
 

For this research, it was important to compare the lateral objective risks of driving in the three types of 

ODD classified situations. That is, in situations deemed inside the ODD (S2 and S4), outside the ODD (S2: 

Tunnel) and situations which is neither inside nor outside the ODD S3 (Off-ramp). 

The results of the lateral risk calculations were different from what were expected based on the observed 

lane keeping performance and characteristics of the situations (S3>S1>S2>S4). It was observed that, the 

lateral driving risks across the different situations were in the order S1>S2>S3>S4, with a large difference 

between risks in Situation 1 and Situation 4. It was observed that the maximum-minimum range of the 

objective risk values also follows the same order (S1 through to S4) across the situations and there is 

considerable top skew in the risk values in S1, S2 and S3 and not in Situation 4 was measured to be the 

safest situation to drive in relative to the other situations.  

The Probabilistic Driving risk field (PDRF) method used for this research is based on the calculations of the 

severity and probability of a lateral collision. The severity was dependent the lateral velocity of the vehicle, 

the type of road barrier (k) and the probability was determined by the lateral distance to the road barrier 

and lane width.  

For Situation 4, the maximum lateral risk was the lowest, a reason for this could be because its position in 

the lane was the most condensed close to the lane centre and the variation in its lane positions was the 

least. Therefore, severity and probability of collision was the least.  

Furthermore, it can be seen from Equation 1, the magnitude of the lateral velocity has a significant 

contribution to the risk measurement. The plausible reason for the highest lateral velocity in Situation1 

(severity), could be because of the condensed lane positions closer to the centre and significantly large 

skew towards the left of the centre and at the same time having a top skew in the Standard deviation in 

lane position. Simultaneously, it is seen that in this situation the range of the lane position and its mean is 

the most negative (close to the left lane marking strip), leading to the highest probability of collision. 

Therefore, as both the probability and severity of the collision is high, its maximum risk was the highest 

relative to all the other situations. 

On the other hand, while driving inside the Tunnel (S2), the lane keeping performance was the second best 

but the vehicle was trying to move away to the right of the lane centre (right bias) as the tunnel wall was 
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further away towards the right. Moreover, there was a considerable variation in lane positions as well, 

therefore, this could lead to a considerable lateral velocity value. Most importantly, the median of the mean 

lane positions was condensed to the left of the lane centre and the concrete tunnel wall closer on this side 

‘k’ for this barrier type was the highest (0.7). Moreover, the lane width inside the tunnel was also slightly 

lower than in the other situations. Due to a combined somewhat high probability of collision and a fairly 

high crash severity, the maximum lateral driving risk in this situation was the second highest. The bias in 

lane positions in this situation was lower than in S1 and that could be a reason for a lower risk in S2 (Inside 

a Tunnel) as compared to that in S1 (Inside the city with no lane marking on the road boundaries). 

While driving close to an off-ramp (S3), the severity is quite high as the possible lateral velocity is high, but 

the probability is low as Mean Lane Positions has no skew and the vehicle positions are more condensed 

towards a position close to the centre of the lane. Due to the nature of the PDRF curve (Figure 24) and the 

exponential probability function, the probability of collision could be low and therefore lead to a somewhat 

low lateral driving risk. 

On statistically comparing the lateral objective risks across different situations it was seen that even after 

correcting for type 1 errors, there was a statistically significant difference between lateral driving risk (even 

between the two situations that were inside the ODD a specified by the OEM). Moreover, the post-hoc tests 

also resulted in significant differences between most of the situation pairs for the case when the Bonferroni 

corrections was not applied and showed the same trend in risk S1>S2>S3>S4. In addition to this, even when 

Bonferroni correction was applied, the differences between S2 and S4 (both inside the ODD) were 

statistically significant.  

While looking at the three types of situations classified based on ODD specified by the OEM. For the ODD-

in situations (S2 and S4) there was a statistically significant difference between the lateral risks of driving in 

these situations (even after statistical corrections), with risk of driving in the Tunnel being significantly 

higher than that on the Curve. Furthermore, the risk of driving in the city without lane markings on the road 

boundaries which was deemed outside the ODD, was the highest. The risks of driving close to an off-ramp, 

for which it was unsure if the situation was inside or outside the ODD were the second highest.  

Finally, the risks measured by the probabilistic driving risk field (PDRF) method used in this research were 

also compared with risks calculated by Time to Lane Crossing (TLC), an existing widely used counterpart. 

Maximum risks calculated for the same instances of each situations using both the metrics, were compared. 

The results showed that both the situations depict the same trends in risk as they are both dependent on 

the lateral distance to the road barrier, but they differ in the realism in the magnitude of the risk they 

represent. The risk magnitudes produced by the PDRF method, also include the sensitivity to the type of 

road barrier the vehicle encounters. Furthermore, the PDRF method also shows an advantage of being 

additive as it can represent risk due to all the different types of road barriers it encounters, using only one 

single risk value (as performed in this research). This shows its advantages over the conventional TLC, for 

which the risks due to different road entities (measured in units of time) cannot simply be summed up to 

represent a total lateral risk. 

 
6.4.  Statistical Analyses of driver behaviour in LKAS  
 

As mentioned earlier, for this research it was considered that enhancing driver experience within LKAS 

equipped vehicles, is key for its development. Therefore, it is very important to understand and address the 

interaction between the driver and the LKAS system. For each driver, this interaction was assessed in three 

stages; before the test drive, during the test drive and post the test drive. The main aim of this analysis was 

to investigate if there is a mismatch between, awareness of drivers about the operational design domain of 

the LKAS (ODD state, i.e. whether a situation is inside, outside the ODD or they are not sure)) and the 

operational design domain/ functionality as defined by Original Equipment Manufacturers (OEM), using a 
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case study of Tesla Model S. The former, for this analysis, will be referred to as ODD state awareness of the 

driver and later as the ODD specified by the OEM. To go one step further, this analysis also investigates 

driver related factors that could be potential reasons for this mismatch (referring to research sub-questions 

4. Of this research). 

This sub-chapter first provides the descriptive statistics for the pre-drive, post-drive and real-time 

behavioural assessment questionnaires. Following which, further sub-questions and research hypotheses 

are proposed to understand behaviour of drivers in LKAS equipped vehicle. Following which the results of 

the statistical analyses will be presented. The sub-chapter will also include a description of the motivation 

behind the choice, data preparations and conduction of each statistical test before, finally summarizing and 

discussing the results. 

 

6.4.1.  Descriptive statistics 
 

6.4.1.1.  Pre-drive questionnaire 
 

As mentioned earlier, the objective of this questionnaire was to understand the initial attitude of the driver 

towards LKAS equipped vehicles and semi-automated vehicle in general. In addition to this it was also used 

to generate a driver demographic data base. For this test a total of 19 participants were recruited including 

3 women and 16 men with an age range from 24 to 59 (M=41.32, SD=12.24) and on average with 21years 

with a license (M=21.05, SD=12.77). On average, the vehicle kilometres driven by the participants in the 

past 6 months was in the range 1000 to 60000kms (M=15657, SD = 13268kms) and vehicle kilometres in a 

semi-automated vehicle in the range 100 to 100000kms (M= 24742.1, SD= 30742.88).  

Certain situational factors were also inquired in the questionnaire. Out of the 19 participants, 89.47% had 

used a control/intervention type LKAS earlier, all participants had prior experience in at least warning type 

LKAS as it was a criterion for participant recruitment, and 73.68% also had experience of driving adaptive 

cruise control equipped vehicles. 26.32% of the participants had participated in prior road-tests and 36.84% 

of the drivers were aware of the term ‘Operational Design Domain’. Furthermore, 57.89% drivers reported 

that they drove in LKAS equipped vehicles every day, 10.53% drove in LKAS equipped vehicles a few times 

a week, 10.53% a few times a month and the remaining 21.05% reported that they do not drive in such 

vehicles anymore. Furthermore, 47.37% participants reported that they always use the LKAS while they 

drive, 21.05% usually use LKAS while they drive, 10.53% of participants sometimes use LKAS when they 

drive and the remaining 21.05% reported that this question was not applicable to them.  

Furthermore, 52.63% of the participants reported that they had prior negative experiences while driving 

with their LKAS ON. Out of these participants, 50% of them have negative experiences a few times a week, 

20% once a month, 20% have such experiences less than once a month and the remaining 10% reported 

that they do not drive in LKAS equipped vehicles anymore.  

 

6.4.1.2.  Real-time trust and ODD awareness  
 

All participants were asked two specific questions at specific situations during their test drive. These 

questions corresponded to their trust on the LKAS in the situation they drove in, and whether they believe 

the situation they drove in was inside, outside or neither inside/outside the operational design domain of 

the Autosteer (hereafter referred as ‘ODD state awareness’). A snapshot of these real-time driver reported 

measurements is presented in Table 22 (Appendix I: Statistical tests). This table includes several questions 

based on the list of situations presented in Table 2, were asked to the participants. It is important to note 

that the participants were not asked to answer test questions while they were negotiating a situation, only 

once they passed a situation they were questioned about their trust and ODD state awareness in that 
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situation. In Table 22, the situations marked in grey correspond to highway situations and the ones marked 

in orange correspond to city road situations.  

 

6.4.1.3.  Post-drive questionnaire 
 

After their test drives, participants were asked to fill in an online questionnaire about their driving 

experience during the road test. In addition to the situation specific questions, a few general questions were 

also asked. The data gathered using the questionnaire was used for testing several statistical hypotheses 

discussed in the following chapter. 

 

6.4.2. Research hypotheses and questions 
 

Before investigating for a mismatch between the driver’s awareness, and OEM’s specification about the 

ODD, first step was to understand in general how drivers behave in LKAS equipped vehicles. This included 

investigating for relationships between, drivers attitude and responses before (initial), during (real-time) 

and after (post) their drives, and other factors that affect their behaviour.  

This research includes dispositional, situational and learned factors affecting driver trust. But due to 

shortage of time and a small sample size of 19 participants the dispositional (demographics related factors) 

were excluded from the analysis.  

Factors such as situation specific perceived risk, perceived ease of using LKAS systems, frequency of using 

these systems, prior negative experiences in the system and other factors (from the questionnaires) were 

still included for the analysis.  

Therefore, this analysis required the following sub-questions to be answered to finally answer research sub-

question 4.) of this research. The analysis (whenever possible) considered both, between drives and 

between situations, aspects.   

1) Is there an influence of time spent by a driver in the vehicle on his/her real-time trust ratings?  

2) What is the influence of pre-drive driver behaviour variables on their awareness about Operational 

Design Domain (ODD) of the Autosteer and on their real-time trust ratings?  

3) Is there a relationship between the real-time trust ratings of the drivers and their awareness about the 

ODD of the Autosteer function (ODD state awareness)?  

4) Is there a relationship between the drivers’ perceived risk of driving in a situation and their awareness 

of the ODD state, and on real-time trust ratings in that situation? 

5) Does the ease of driving in a situation have an influence on the drivers’ real-time trust ratings and the 

ODD state awareness in that situation?  

6) Are the real-time trust ratings different for Tesla and Non-tesla experienced drivers, across the different 

test situations?  

7) Does the real-road objective risk of driving measured across different situations, have an influence on 

the drivers’ awareness of the ODD state, and on their real-time trust ratings? 

8) Is there a mismatch between the drivers’ awareness of ODD state (In/out/ maybe in or out) and the 

ODD as specified by the OEM (Tesla)? Are these mismatches statistically different in the different test 

situations? 

9) What are potential factors that could lead to a mismatch between the ODD state awareness of drivers’ 

and that determined by the OEM’s (Tesla)? 

Each of these questions have a research hypothesis associated with it and will be described and tested 

individually using the methods described in Table 5. While analysing each hypothesis, the motivation behind 

choosing a method for the analysis will be described individually in the subsequent sub-chapters. This 
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chapter will also include a description of the steps taken to enrich or filter the data for the various statistical 

analyses that were performed. 

 

6.4.3.  Selection of analysis method 
 

Depending on the type of data, type of outcome and independent variables, the and objective of the 

hypothesis, the chosen methods of analysis differ considerably. A lot of research ([107, 112, 113]) have 

been focusing on the advantages and disadvantages of several statistical techniques, concluding that it is 

crucial that the appropriate method is chosen to yield reliable and trustful results. With the help of these 

researches and Table 4, the methods used to answer each of these proposed hypotheses were selected and 

depicted in Table 5. 

Table 4. Standard statistical tests based on research objective (Source [114]) 
 

Parametric Non-parametric 

Assumed distribution Normal No assumption 

Assumed variance Homogenous no assumption 

Typical data ratio or interval ordinal or nominal 

Observations independent any 

Usual central measure mean median/mode 

Benefits more solid conclusions simplicity, unaffected by outliers 

Correlation test pearson spearman 

Relation between categorical 
variables 

chi-sqaure tests 
 

Independent measures, 2 groups independent measures t-test Mann-whitney test 

independent measures > 2 groups one way ANOVA kruskal-wallis H test 

dependent measures, 2 measures Dependent measrues t-test Wilcoxon signed rank test, 
McNemar test 

dependent measures > 2 measures Repeated measures ANOVA Friedman test. Cochran Q 

one categorical independent 
measure 

 and >2 dependent measures 

one-way MANOVA 
 

 

 

Table 5. Research hypotheses, tested variables and method for hypothesis testing 

Subject of 
Analysis 

Tested variables 
Type of 

Variables 
Step 1 of the 

analysis 
Use of variables in the 

analysis 
Step 2 of the 

analysis 
Use of variables 
in the analysis 

 

𝑯₀𝟏 
(SQ1) 

 

Driving situations 
(S1 – S4) 

Categorical 

 
Friedman test 

No lane marking 
Tunnel 

Off-ramp 
Curve 

 
 

Wilcoxon 
signed rank 
test (Post 

hoc) 

 
6 tested pairs 

No lane marking 
with tunnel/off-

ramp/curve. 
Tunnel with Off-

ramp/curve. 
Off-ramp with 

Curve 
 

 
Real-time trust on LKAS 

(Dependent) 

 
 

Ordinal 

Likert scale 
(1= Very Less Trust, 5= 

Very High Trust) 
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𝑯₀𝟐 

(SQ2) 
 

“Initial trust” 
“prior knowledge ODD” 

“frequency LKS” 
“Initial perceived risk” 

“Ease of use” 
“prior negative exp.” 

“Awareness of 
capabilities” 

 
 

Ordinal 
Categorical 

Ordinal 
Ordinal 
Ordinal 

Categorical 
Ordinal 

 
 
 

Spearman 
correlation 

 
 
 
 
 
 
 

Chi-square 
test for 

ODD_driver 
and the 

categorical 
variables 

 
Ordinal 

Likert scale 
(1=Very less xx, 5= Very 

high xx) 
Where XX are different 

variables 
 

Categorical 
Yes, No 

 

- 

 
 
 
 
 
 
- 

 
 

Real time Trust 

 
 

Ordinal 

Likert scale 
(1= Very Less Trust, 5= 

Very High Trust 

 
 
- 

 
ODD_driver 

 
Categorical 

Categorical 
In, Out, Not sure 

 
- 

 

𝑯₀𝟑 
(SQ3) 

 
 

Real time Trust 

 
 

Ordinal 

 
 

Spearman 
correlation 

Likert scale 
(1= Very Less Trust, 5= 

Very High Trust 

 
 
- 
 

 
 
- 
 
 

 
ODD_driver 

 
Categorical 

Categorical 
In, Out, Not sure 

 
 

𝑯₀𝟒 
(SQ4) 

 

 
Post drive perceived 

risk 

 
Ordinal 

 
Likert scale 

(1= Very Less risk, 5= 
Very High risk) 

 
Phi 

     Cramer V 

Paired 
comparisons  

ODD_driver Categorical 
Chi-square 

test 
In, Out, Not sure 

 
Real time trust 

 
Ordinal 

 
Spearman 
correlation 

Likert scale 
(1= Very Less trust, 5= 

Very High trust) 

𝑯₀𝟓 
(SQ5) 

 
Ease of driving (post 

drive) 

 
Ordinal 

 
Likert scale 

(1=Very Easy, 5= Very 
Difficult) 

- - 

 
Real time trust 

 
Ordinal 

Spearman 
correlation 

Likert scale 
(1= Very Less trust, 5= 

Very High trust) 
    Cramer V 

Paired 
comparisons 

ODD_driver Categorical 
Chi-square 

test 
In, out, Not sure Cramer V 

Paired 
comparisons 

𝑯₀𝟔 
(SQ6) 

 

Category of driver 
(Tesla and Non-Tesla 

drivers) 

 
Categorical 

Mann-
Whitney test 

 - - 

 
Real time trust 

 
Ordinal 

 
(1= Very Less trust, 5= 

Very High trust) 
- - 

 
 

𝑯₀𝟕 
(SQ7) 

 

Objective risk Interval  
Chi-square 

test 

 

Eta squared 
coefficient 

- 

ODD_driver Categorical In, Out, Not sure - 

ODD_oem Categorical 
Chi=square 

test 
In, Out, Not sure - 

Real time trust Ordinal 
Spearman 
correlation 

Likert scale 
(1= Very Less Trust, 5= 

Very High Trust 
- 

𝑯₀𝟖 
(SQ8) 

Different test situations 
(S1-S4) 

Categorical 

Cochran’s Q 
test 

In, Out, Not sure 

McNemar’s 
test 

Pairwise 
comparisons 
between all 
situations 

Mismatch between 
ODD driver and ODD by 

OEM 

Categorical 
dichotomous 

In, Out, Not sure - 

𝑯₀𝟗 
(SQ9) 

 
“Objective driving risk” 

“Real-time trust” 
 

 
 

 
Eta, Cramer’s 

V, phi 
- 
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“Frequency of using 
LKAS” 

“Initial trust on AV’s” 
“Perceived risk” 

“Awareness of LKAS 
capabilities” 

“Prior negative 
experience” 

 

Pairwise chi-
square tests 

Mismatch in different 
test situations (S1-S4) 

Categorical  
dichotomous 

(1=Mismatch, 0= match)  - 

 
 

6.4.5.  Results of statistical tests 
 

This sub-chapter, presents the results of all the statistical test that were conducted to answer the questions 

in Chapter 6.4.2. For all the statistical tests, the α-value (threshold value for statistical significance) was 

chosen as 0.05. For any of the proposed null hypotheses to be rejected, the corresponding p-value had to 

greater than this α-value. If this was not the case, the null hypothesis could not be rejected. 

 

SQ1: Trends in real-time trust ratings 
 

Drivers were asked to report their trust on the Autosteer at the specific test situations, during their drive. 

Prior research indicated that drivers’ trust in automation could vary with the time spent in the automation 

system. Following are the results of the visual and statistical checks for these trust trends.  

In Figure 25, the test situations (S1-S4) were arranged in the chronological order they were experienced by 

drivers. The real-time trust ratings were recorded in a Likert scale from (1 – Very low trust to 5 – Very High 

trust). Therefore, in this figure, the maximum trust rating, over the four situations was 20. Visually, there is 

no clear evidence for an increase or decrease in the trust ratings between situations. It can also be observed 

that there is quite a lot of variation in the total trust ratings (over all situations), between the drivers and 

on average all driver generally has high trust (mean of approximately 4 in all situations) across the different 

situations.   

The next step was to check statistically, if there was an influence of time spent in the system on drivers’ 

real-time trust. The following null hypothesis was set for this test: 

𝑯₀𝟏: There is no influence of time spent in the vehicle on the real- time trust of drivers across 

different situations. 

The real-time trust ratings of the drivers were measured at an ordinal scale and therefore, considered as a 

non-parametric variable. Moreover, this is a repeated measures test as the dependent measures here are 

the real-time trust ratings of different drivers for the same situations. Based on this and from Table 4, the 

Friedman test was used for this analysis. 
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Figure 25. Real time trust ratings between and within drivers across situations 

On performing a Friedman test, the χ2(3) =3.418, p=0.332 (Table 30). Since the p-value is greater than the 

α value of 0,05 this means that the null hypothesis cannot be rejected and therefore, there is no statistical 

evidence that the trust ratings of drivers was influenced by the time spent in the vehicle during 

the testing. This meant that further post-hoc tests were not needed.  

 

SQ2: Relationship between pre-drive attitude of drivers towards AV’s and LKAS, on their 

real-time trust ratings and ODD state awareness 
 

Based on the questions asked in the pre-drive questionnaire, a list of factors that could have an influence 

on the drivers’ behavior with LKAS were selected. This was based on the overview of relevant literature 

presented in this report. The list therefore, does not include all the factors that could affect driver behavior 

in automation, which were included in the questionnaire. The factors considered were: 

1) Drivers’ Initial trust on AV’s in general. (Likert scale from 1-Very less trust to 5- Very high trust) 

2) Frequency of using LKAS (Likert 0- this question not applicable to me to 5 – Always) 

3) Initial perceived risk of driving in LKAS equipped vehicles (Likert scale from 1- Not at all risky to 5- 

very risky) 

4) Perceived ease of driving in a test situation. (Likert scale from 1-very easy to 5- very difficult) 

5) Awareness of the conditions in which LKS can function (1- not at all aware t0 5- completely aware) 

6) Having prior knowledge about ODD of LKS equipped vehicles (1- yes, 0 – no) 

7) Having prior negative experiences while driving in LKS equipped vehicles. (1- yes, 0- no) 

 

The relationships were tested pairwise for each factor, with the drivers’ real-time trust rating and their ODD 

state awareness, for each test situation. Since, each of the factors are of either categorical or ordinal type, 

the correlations were tested either using spearman’s correlation or the chi-square test for independence, 

depending upon whether the independent-dependent variable pair was categorical-categorical (chi-square 

test), categorical-ordinal (spearman’s correlation) or of ordinal-ordinal (Spearman correlation) type. For 

each of the tests the null hypothesis was the same and as follows: 

𝑯₀𝟐: There is no relationship between the drivers’ initial attitude factor(s) (listed above) and their 

real-time trust on the LKAS, and their ODD state awareness, they are independent of each other. 
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In the above null hypothesis, the independent variables were all the factors affecting initial attitude of the 

driver and the dependent variable was either the real-time trust rating or the drivers’ ODD state awareness, 

in each situation.  

 

First, spearman rank correlation tests real-time trust ratings as the dependent variable, were conducted. 
The factors were included into a correlation matrix and therefore, in addition to analysing the intended 
relationships, other internal correlations are also reported (between factors relationships). For each of the 
tests the threshold α-value was 0.05, that determined if the null hypothesis was rejected or not. 
 
From Table 31, Table 32 the p-values for all correlation tests with Trust in S1 (No Lane marking on road 
boundaries) and Trust in S2 (while driving inside the city tunnel) as the dependent variables, are greater 
than 0.05. This means that there is no evidence to reject the null hypothesis for each of the independent-
dependent pairs, for both these situations. Therefore, there is no influence of initial attitude of driver 
towards LKAS and AV’S on their trust on the system while driving in both these situations.  

However, for the case of Trust in S3 (Close to an off-ramp) as the dependent variable, from Table 33, there 

is a strong and significant relationship between real-time trust of drivers while driving close an off-ramp 

and their ‘initial perceived risk of driving in LKAS equipped vehicles’, and their ‘frequency of using LKAS’. 

There is a statistically significant negative association between the real-time trust and initial 

perceived risk [𝐫𝐬(16) = -0.644, p = 0.007] and a positive association between real-time trust and 

frequency of using LKAS [𝐫𝐬(16) = 0.741, p = 0.001]. Both these associations are strong as the 𝑟𝑠  values 

are greater than 0.5 [110]. 

Finally, for the case of Trust in S4 (Driving on a curve) as the dependent variable, from Table 34, there is 
a strong positive correlation between the real-time trust rating of drivers while driving on a 
curve on the highway and their ‘frequency of using LKAS’ [ 𝐫𝐬 (16) = 0.869, p = 0.000]. This 
correlation is strong as the 𝑟𝑠 values is again greater than 0.5. 
 
In addition to this, there were also a few strong between-factors correlations observed, such as: 

1) ‘Perceived Ease of use’ and ‘Initial perceived risk of driving’ are positively correlated. As the initial 

perceived risk increases the difficulty level of using LKAS systems as reported by drivers also 

increases [𝑟𝑠(16) = 0.587, p = 0.017]. 

2) ‘Awareness of the conditions in which LKS can function’ is positively correlated with ‘Having prior 

knowledge about ODD of LKS equipped vehicles’ and with prior negative experience [𝑟𝑠(16) = 0.589, 

p = 0.016], [𝑟𝑠(16) = 0.599, p = 0.014], respectively. 

3) Prior knowledge about the capabilities of LKAS and prior negative experience are correlated 

positively [𝑟𝑠(16) = 0.63, p = 0.009]. This implies that as a result of prior negative experiences in 

LKAS equipped vehicles, drivers have more knowledge about its functional capabilities.  

All these correlations are strong as the 𝑟𝑠 values are greater than 0.5. 
 
The next set of analyses, included the Drivers’ ODD state awareness as the dependent variables and the 
same independent variables as were for the first set of analyses with real-time trust ratings. 
 

For this analysis, depending upon whether it was a categorical-categorical type or a categorical-ordinal 

type of correlation either the chi-squared test for independence or the spearman rho correlations test, was 

used. For correlations between ODD state awareness of the driver (categorical variable) and Categorical 

dichotomous variable ‘prior knowledge about ODD functions’ and ‘prior negative experiences in LKAS 

equipped vehicles’ the chi-square test of independence is preferred over spearman’s rank correlation. On 

the other hand, for correlations between ODD state awareness of the driver and the other pre-drive initial 

attitude variables, spearman rho correlation was used. The null hypothesis was the same as 𝑯₀𝟐, only that 

the dependent variable was the ‘ODD state awareness’. 
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Table 35, presents the results of spearman correlation tests. From this table, it is observed that there were 

no statistically significant correlations between ODD state awareness of drivers’ and any of the 

(ordinal type) factors constituting the initial attitude of drivers towards AV’s and LKAS, for any of 

the test situations. This was because all the p-values are greater than the threshold α-value of 0.05.  

Furthermore, the results of chi-square test for independence between ODD state awareness and the 

remaining two categorical dichotomous variables ‘prior knowledge about ODD functions’ and ‘prior 

negative experience with LKAS’, across all the test situations, are presented in Table 36. From the table, 

there is no sufficient evidence to reject the null hypothesis. This is because both the likelihood ration 

and linear-by-linear association statistics are greater than 0.05. The reason why these test statistics were 

chosen to decide statistical significance instead of the chi-square statistic, is because for both these the 

general assumptions for chi-square tests were violated (percentage cells with insufficient count must be 

less than 20%).  

 

SQ3: Relationship between real-time trust ratings of drivers and their ODD state awareness 
 

This was an ordinal-nominal type of correlation and therefore, spearman’s rho test was used. The null 

hypothesis for the test was as follows: 

𝑯₀𝟑: There is no statistically significant relationship between the drivers’ ODD state awareness 

and their real-time situation specific trust ratings. 

 

From  Table 37, it can be stated that there are no correlations between the real-time trust ratings of 

drivers and their ODD state awareness, in any of the selected test situations. This is because the p-

values for all the tests are greater than α-value 0.05, giving no evidence to reject the null hypothesis of 

independence. 

 

SQ4: Relationship between post-drive perceived risk and real-time driver behavior 

measurements 
 

The real-time measurements include drivers’ real-time trust ratings and their ODD state awareness about 

LKAS, across all situations. Therefore, for this analysis, there were two pairs of variables for which statistical 

testing needed to be conducted. The first test pair, was ‘ODD state awareness’ of the driver and ‘post-drive 

perceived risk’ (across all test situations), and the second test pair was ‘real-time trust ratings’ of drivers 

and their ‘post drive perceived risk’ (across the 4 situations). For each pair, the null hypothesis was as 

follows: 

𝑯₀𝟒: There is no statistically significant relationship between the drivers’ post-drive perceived 

risk of driving in a situation and their real-time situation specific trust ratings/ ODD state 

awareness across all test situation. 

 

For the first pair of tests, Table 38, presents the results of the chi-square tests that was used to test for 

independence across the 4 different situations. For all correlations across the situations, assumptions for 

chi-square tests were violated (cells with no counts must not be less than 20%), therefore as mentioned in 

[113] the p-value of the likelihood ratio test statistic and/or the linear-by-linear test statistic was used, 

instead of the chi-square test statistic.  

Keeping this in mind, it was observed that for Situation S1 (No Lane markings on road boundaries) 

and Situation S2 (Driving inside a tunnel), there is no statistically significant correlations 
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between the ODD state awareness of drivers and their post-drive perceived risk of driving in those 

situations, as the corresponding p-values are greater than 0.05. On the other hand, in Situations S3 [LL 

(3) =7.951 p=0.047] and S4 [Linear-linear (1) =7.335 p=0.007], it was observed that there is a 

statistically significant relationship between the two variables in consideration as in both the cases 

the null hypothesis was rejected as the p-values greater than 0.05.  

For the second pair of tests, Table 39, presents the results of the spearman correlation tests (as both are 

ordinal variables) across all the test situations. From the table, it was observed that for S1, there were no 

statistically significant correlations as the p-value was greater than 0.05. In S2 (Driving inside a 

tunnel), there was a statistically significant negative correlation between real-time trust ratings 

and post-drive perceived risk as the p-value is lesser than 0.05 and the null hypothesis was rejected 

[𝑟𝑠(16) = -0.583, p = 0.018]. This is a strong correlation as I𝑟𝑠I > 0.5. Furthermore, in both situations S3 

(close to an off-ramp) and S4 (On the curve), there was no statistically significant correlations 

between their respective, real-time trust ratings and post-drive perceived risk of driving in both 

these situations as the p-values were greater than 0.05 and the null hypothesis could not be rejected.  

However, once again there were certain notable internal correlations that were also observed. The real-

time trust in Situation S4 (on the curve) is negatively correlated with post-drive perceived risk of 

driving inside the tunnel, as the p-value is greater than α-value 0.05 [ 𝑟𝑠 (16) = -0.621, p = 0.01]. 

Furthermore, the post-drive perceived risk of driving close to the off-ramp is strongly positively 

correlated to the perceived risk of driving on the road with no lane marking on its boundaries [𝑟𝑠(16) 

= 0.845, p = 0.001]. These correlations were strong as I𝑟𝑠I > 0.5. 

 

SQ5: Relationship between perceived ease of driving in a situation and the real-time 

behavior measurements 
  

Like the previous statistical test. For this analysis, there were two test pairs for which correlation tests were 

conducted. The first test pair, was ‘ODD state awareness’ of the driver and ‘perceived ease of driving’ 

(across all test situations), and the second test pair was ‘real-time trust ratings’ of drivers and their 

‘perceived ease of driving’ (across the four situations). For each pair, the null hypothesis was as follows: 

𝑯₀𝟓 : There is no statistically significant relationship between the drivers’ perceived ease of 

driving in a situation and their real-time situation specific trust ratings/ ODD state awareness 

across all test situation. 

 

For the both test pairs, spearman’s rank correlation tests were used to investigate their respective 

relationships. Table 40 and  Table 41, presents the correlation matrix resulting from tests for both test pairs, 

respectively. It was observed that there is no statistically significant relationship between both, ODD 

state awareness and the drivers real-time trust ratings, with perceived risk of driving in a 

situation, across all the test situations. 

This is because for all correlations in both test pairs p-values are greater than α-value 0.05, and the null 

hypothesis could not be rejected. However, there was an internal factor strong positive correlation 

observed between perceived ease of driving in S4 (Curve) and ease of driving in S2 (Inside a 

tunnel) [𝑟𝑠(16) = 0.631, p = 0.009]. 
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SQ6: Comparison of real-time trust ratings between drivers with, and without experience in 

a Tesla 
 

Differences/similarities between real-time situation specific trust ratings between drivers with and without 

experience of driving in a Tesla, were investigated both visually and statistically. Figure 26,  depicts the trust 

ratings of drivers (Drivers 3,6,7,11,16 and 18 were Tesla experienced and the rest were not experienced of 

driving in a Tesla). 

 

 

 

 

 

 

 

 

 

Figure 26. Real-time trust ratings Tesla VS Non-Tesla experienced drivers 

From this Figure, there is no clear difference between the two categories of drivers observed visually. 

Therefore, the next step was to investigate the same statistically. 

Since the dependent variable in consideration for this test (real-time trust ratings) is of ordinal type and the 

driver categories are independent, the Mann-Whitney U test was used. Median comparisons were done 

between the two groups for each of the situations. Having only 6 drivers with prior experience in Tesla as 

opposed to 13 who weren’t, does not affect the choice of the statistical test [113]. The null hypothesis for 

the test was: 

𝑯₀𝟔: There is no statistically significant difference between the real-time trust ratings of drivers 

with, and without experience of driving in a Tesla, across all test situations.  

 

The results of this test are presented in Table 42, it was observed that across all the test situations, there 

was no statistically significant different between trust ratings of the two categories of drivers. The 

null hypothesis could not be rejected as the p-value for each situation was greater than α-value 0.05. 

 

SQ7: Relationship between objective risk and real-time trust, ODD state awareness 

 
In this research, potential relationships between objective measured driving risk (interval type variable) and 

real-time trust ratings of drivers, and their awareness of the ODD of the Tesla. This analysis was split into 

two parts. The first part investigating the relationship between Objective Risk and real-time trust across all 

test situations and the second, investigating relationship between Objective Risk and ODD state awareness 

of drivers across all situations. The null hypothesis for both test parts was: 
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𝑯₀𝟕 : There is no statistically significant relationship between objective risk of driving in a 

situation and the drivers’ real-time trust ratings/ and their ODD state awareness, across all test 

situations.  

 

For the first part, as these variables are of interval (Objective risk) and ordinal type (real-time trust) 

respectively, using the spearman’s rank correlation test was the ideal choice. From Table 43, since the p-

value for all variable pairs is greater than α-value 0.05, there is no evidence for the null hypothesis to be 

rejected, implying that Objective Risk has no effect on the real-time trust ratings of the driver in any 

of the situations. 

For the second part, as these variables are in the interval (Objective risk) and categorical type (ODD state 

awareness), respectively. The best way to measure the associations between them is by using chi-square 

tests and following up by eta squared coefficients to determine effect size (if any). From Table 44, it was 

observed that there is no statistically significant relationship between objective risk of driving in 

a situation and the drivers ODD state awareness in that situation, across all situations. This was 

because the p-values for all situations were greater than 0.05 and the null hypothesis could not be rejected. 

Therefore, follow up eta-squared tests were also not conducted. 

 

SQ8: Mismatch between ODD state awareness of driver and ODD specified by OEM 
 

During their drive after each test situation, each driver was asked to report whether they think that the 

situation they drove on was inside, outside or they were not sure about, the Operational Design Domain of 

the test vehicles LKAS (Autosteer). This was referred as the ODD state awareness of the driver. However, 

for each of the situations based on the owners’ manual provided by the OEM (Tesla in this case) the 

situations were also classified into three ODD categories (In, Out and Not sure) in Table 1. This research 

investigated if there was a mismatch between these above-mentioned variables.Table 6, depicts 

mismatches between ODD states specified by driver and the OEM across all the four test situations (S1 – 

No Lane marking, S2- Inside a Tunnel, S3- Close to an off-ram and S4 – On a curve). In the table, a mismatch 

corresponds to when either of the ODD stated by driver is different from that of the OEM. If There is a 

mismatch this was denoted by the number ‘1’ in the table and ‘0’, otherwise. The ODD stated by drivers in 

real-time at each of the test situations are as shown in Table 51, and were used an input to identify ODD 

mismatches.  

In this table, the total mismatches and its corresponding percentages, were computed for each driver and 

for each situation. The drivers with prior experience of driving in a Tesla are highlighted in grey. From Table 

6, it was observed that there was no driver without at least one mismatch between their ODD state 

awareness and the ODD as specified by the OEM, across the test situations. Looking at the 

mismatches, it was seen that the highest number of mismatches was in Situation 3 (close to an off-ramp) 

and majority of the drivers believed that the situation was inside the ODD, a few of the drivers were right 

in reporting that the situation was neither inside nor outside the ODD and there were no drivers who 

thought that the situations was outside. In Situation 1 (No lane marking on road boundaries), there were 

no drivers who believed that this situation is neither inside nor outside the ODD (they either thought it was 

inside or Outside the ODD). In Situations 2 and Situations 4, the number of mismatches were the lowest, 

with mismatches in the Tunnel situation being slightly higher.  

 

To check statistically if the ODD mismatches were significant, logistic regression had to be performed 

between the categorical variables using dummy coding. But, given the sample size of the data set, the 

results were not significant. Nevertheless, the ODD mismatch between different situations could be 

compared. 
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Table 6. Mismatch between ODD state awareness of driver and ODD specified by Tesla (OEM) 

ID Mismatch  
S1 

Mismatch 
S2 

Mismatch 
S3 

Mismatch 
S4 

Mismatches 
 per driver 

%mismatch 
 per driver 

3 0 0 1 0 1 25 

5 0 0 1 0 1 25 

6 1 0 1 0 2 50 

7 1 1 1 0 3 75 

8 1 0 1 1 3 75 

9 0 0 1 0 1 25 

10 1 0 1 0 2 50 

11 0 1 0 0 1 25 

12 1 0 0 0 1 25 

13 1 0 1 0 2 50 

14 1 0 0 0 1 25 

15 1 0 1 0 2 50 

16 1 0 1 0 2 50 

17 1 0 1 0 2 50 

18 0 0 1 0 1 25 

19 1 0 1 0 2 50 

Total 11 2 13 1 
 

  

% mismatch 68,75 12,5 81,25 6,25 
 

  

 

To verify statistically, if the differences between ODD mismatch between situations were significant a 
Cochran’s Q test was used. This test has been used widely in pharmaceutical and psychological research 
[114], the test involved comparing categorical dichotomous mismatch in ODD between different situations 
as a repeated measure. The α-value 0.05 was again changed to 0.0125 (4 comparisons) complying with the 
Bonferroni correction for type 1 error. The null hypothesis for the test was: 

𝐇₀𝟖: There is difference between the ODD mismatch of drivers between the different test situation 
they drove on. 
 
Table 49, presents the results of the Cochran’s Q test. It was seen that even after applying Bonferroni 
correction the ODD mismatch in the test situations were statistically significant [Q (3) = 24.6, p = 
0.00], as the p-value was lower than the corrected α-value of 0.0125.  
 
Furthermore, to compare the mismatch between the situations pairwise, the McNemar test was conducted 
post-hoc. The null hypothesis of this test was similar to the Cochran-Q test but now only mismatch between 
two situations were compared. Once again, the Bonferroni correction was conducted and the α-value was 
change to 0.0167 (each situation compared to three other situations) Table 50, presents the results of these 
tests and it was seen that for all the test pairs other than Situation 1/Situation 3 and Situation 2/Situation 
4, the differences in ODD mismatch between the situations were statistically significant even after 
Bonferroni corrections, as the p-values for the pairs with significant difference was less than α-value 
0.0125.   
 
Finally, it was also observed from Table 6  that the six drivers with prior experience of driving in a Tesla had 

either two or more than two mismatches (out of the 4 situations). The odds of a mismatch by a Tesla 

experienced driver was 0.42 and that by a driver not experienced of driving in a Tesla was 0.425, 

resulting in an odds ratio of 0.99. This could imply that having prior experience of driving in Tesla may 

not mean that the drivers are more aware of the ODD of the vehicle. Finally, while comparing mismatches 

between situations, it was observed that order of ODD mismatch between the situations was as follows: 

S3> S1> S2>S4. 
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SQ9: Potential reasons for Mismatch between ODD state awareness of driver and ODD 

specified by OEM 
 

Once it was verified that there are mismatches between the ODD state awareness of the drive and that 

specified by the OEM. The next step further, was to identify potential reasons for these mismatches.  

To assess reasons for a mismatch (and/or a match) between ODD state awareness of the driver and ODD 

specified by the OEM, situation specific pairwise chi-square tests were conducted. The data was divided 

based on whether there was a mismatch or not. For each situation, the dependent variable was the 

dichotomous variables that suggested if there was a mismatch (represented by the number ‘1’)/match 

(represented by the number ‘0’), and the independent variables included all those factors that showed 

significant relationships/associations with the drivers’ real-time behaviour measurements, because of all 

the prior hypothesis testing in this chapter.  

 

The factors chosen as independent variables were:  objective risk of driving (Interval type data), real-time 

trust ratings of drivers (ordinal data type), perceived ease of driving in a situation (ordinal type), frequency 

of using LKAS equipped vehicles (ordinal scale), drivers’ initial pre-drive trust on AV’s (ordinal type), post-

drive perceived risk of driving in a situation (ordinal type), Awareness about capabilities of LKAS (categorical 

dichotomous) and prior negative experience in LKAS equipped vehicles (categorical dichotomous type 

data). The null hypothesis for all the tests was as follows: 

𝑯₀𝟗: There is no statistically significant relationship between mismatch of ODD state awareness 

of drivers’ and the ODD as specified by the OEM (Tesla), and the various (independent variables), 

across all test situations.  

 

It is important to note that, for all the chi-square tests performed in the following analyses, the assumptions 

for chi-square tests as discussed earlier, were violated. Therefore, instead of the p-value for the chi-square 

test statistic, the corresponding values for Likelihood ration test statics and/or linear-by-linear test statistic 

were used for the categorical-ordinal type interactions and for the categorical dichotomous-categorical 

dichotomous interactions the fisher’s exact test statistic was used. 

In Situation 1: No Lane Marking on road boundaries, from Table 45, it was observed that there was almost 

statistically significant relationship between ODD mismatch and real-time trust ratings of drivers 

in this situation using likelihood ratio statistic [χ2(15) =7.84, p=0.05], at α-value 0.05. For test with the 

rest of the independent variables, there were no statistically significant relationships observed as 

the p-values for all these pair-wise tests were greater than 0.05. 

In Situation 2: While driving inside a tunnel, from Table 46, it was observed that there were no 

statistically significant relationships between ODD mismatch in this situation and any of the 

selected independent variables. This is because p-values in each of the test pairs was greater than 0.05. 

 
In Situation 3: Driving close to an off-ramp, from Table 47, it was observed that there is a statistically 

significant relationship between ODD mismatch in this situation and the drivers’ perceived risk 

of driving in this situation [χ2(15) =7.9, p=0.047], at α-value 0.05 (as the null hypothesis could not be 

rejected). To determine the effect size of this relationship, the Cramer’s V statistic was used. The observed 

effect size could not be deemed statistically significant as its p-value was 0.083, greater than α-value 0.05. 

Furthermore, it was observed that there is almost statistically significant relationship between 

drivers’ initial trust on AV’s and ODD mismatch [χ2(15) =5.61, p=0.052] with α-value 0.05. 

Finally, in Situation 4: Driving at a curve, from Table 48, it was observed that there is a statistically 

significant relationship between ODD mismatch in this situation and the drivers’ perceived risk 

of driving in this situation [χ2(15) =7.9, p=0.047], at α-value 0.05 (as the null hypothesis could not be 
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rejected). Furthermore, it was also observed that there is a statistically significant relationship 

between the drivers´ real-time trust in this situation and mismatch in ODD state awareness and 

ODD specified by OEM [χ2(15) =4.3, p=0.04] for linear-by-linear test statistic, at α-value 0.05. There was 

no statistically significant relationship observed between the other independent variables and 

ODD mismatch, as their corresponding p-values were greater than 0.05. 

 

6.4.6.  Discussion & Summary 
 

Exploratory statistical tests were conducted to investigate relationships between the pre-drive, post-drive 

driver behaviour, and their real-time responses. Before doing so, it was also important to verify if there was 

an increase or decrease in drivers’ trust ratings with more time they spent in the system. It was seen that, 

there was no statistically significant effect of time on drivers’ trust. This could maybe because the four 

situations at which drivers reported their real-time trusts, were selected from a list of situations on which 

the drivers were asked the same question. In fact, all of the selected test situations were closer to the end 

of the test and maybe time already had its effect on drivers’ trust. But this requires further investigation 

and is beyond the scope of this research. 

The key results from these exploratory analyses of the questionnaire data obtained from 16 participants 

(after filtering) in three stages are provided situation-wise below. In each of the tables, Table 7,Table 8,Table 

9 and Table 10, the dependent variable corresponding to that test situation, the variable it was statistically 

related with and the type of relationship, is summarised. 

Table 7. Results for exploratory tests in Situation 1 (Outside the ODD as specified by Tesla) 

Dependent variable Significant relationship with Type of relationship 

Post-drive perceived risk                    Perceived risk in Situation 3(Close to off-ramp) Strong, positive 

 

Table 8. Results for exploratory tests in Situation 2 (Inside the ODD as specified by Tesla) 

Dependent variable Significant relationship with Type of relationship 

Real-time trust Perceived risk in this situation Negative, strong 

 

Table 9. Results for exploratory tests in Situation 3 (Maybe inside/outside the ODD as specified by Tesla) 

Dependent variable Significant relationship with Type of relationship 

Real-time trust Initial perceived risk of driving in LKAS Negative, strong 

Real-time trust Frequency of using LKAS Positive, strong 

ODD state awareness perceived risk of driving in this situation  

 

Table 10. Results for exploratory test in Situation 4 (Inside the ODD as specified by Tesla) 

Dependent variable Significant relationship with Type of relationship 

Real-time trust Frequency of using LKAS Positive, strong 

ODD state awareness Perceived risk of driving in this situation  

Real-time trust Perceived risk inside the tunnel (Situation 2) Negative, strong 

Ease of driving Ease of driving inside the tunnel (Situation 2) Strong, positive 

 

From the above tables, it is seen that in situations inside the ODD as specified by Tesla (driving inside the 

tunnel and on the curve), perceived risk of driving in these situations had a negative and strong relationship 

with the real-time trust reported by drivers. Furthermore, while driving in the curve situation (Situation 4), 

there is a relationship between drivers’ perceived risk of driving in this situation and their ODD state 
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awareness. In fact, through internal correlations, it was observed that the perceived risk of driving inside 

the tunnel also had a negative and strong relationship with real-time trust ratings while driving on the curve 

and, the perceived ease of driving inside the tunnel also had a strong and positive relationship with the 

perceived ease of driving on the curve. The reason for these observations could be that there was a small 

curve inside the tunnel and maybe this also led to correlations between variables in these two situations.  

In the situation, may be inside/outside the ODD i.e. while driving close to an off-ramp, drivers that used 

LKAS more frequently had a higher trust on the LKAS in real-time while driving close to an off-ramp. 

Furthermore, drivers that perceived driving in LKAS equipped vehicles less risky had more trust in real-time 

on the LKAS while driving in this situation and on the other hand, there is a relationship between perceived 

risk of driving close to the off-ramp and a driver’s ODD state awareness. 

While driving inside the city on a road with no lane marking on its boundaries (Situation 1), which was 

outside the ODD, it was seen that there were no direct relationships between any of the pre-drive/post-

drive measurements and the real-tie measurements. However, perceived risk of driving in this situation is 

strongly (positive) correlated with that, of driving close to an off-ramp, this could be an indication that in 

the situations that are not inside the ODD, the perceived risks of drivers are correlated. This correlation 

could be because in both these situations there is either no lane marking on one side (City) or there is 

changing lane marking in the other (off-ramp).  

In addition to these results, a few internal statistically significant correlations between initial attitude 

variables (from pre-drive questionnaire) were also observed. It was seen that drivers with higher perceived 

ease of using LKAS system in vehicles, perceive less risk of driving in these vehicles. It was also proved that 

having prior negative experiences in LKAS equipped vehicles, does increase the driver’s knowledge about 

the ODD of semi-automated vehicles. But it is not the safest method to learn more about the ODD of semi-

automated vehicles. Therefore, this implies that there is a need for a better method of increasing driver’s 

knowledge about the functionality of semi-automated vehicles. 

It is important to mention that there was relationship between lateral objective risk of driving in each 

situation and, the driver’s real-time trust and their ODD state awareness.  

Furthermore, there were no statistically significant (and visual) difference between real- time trust ratings 

between drivers with prior experience in a Tesla and drivers without. This could be because of the unequal 

representation of the two categories and the rather small sample size. 

From the exploratory results, it was concluded that lack of sample size, led to many variables not showing 

statistical significance relationships. This raises the need for more of such studies to understand drivers’ 

behaviour in three stages while driving in LKAS equipped vehicles. It is important to note that the significant 

relationships determined in the analysis could also be due to multiple significance effect and therefore, 

require more sample size for verification. 

After conduction of the exploratory statistical test, given the aim of this part of the research, presence of 

mismatches between ODD state awareness of drivers and the ODD as specified by the OEM’s (Tesla), were 

investigated. From the statistical tests, it was observed that there is a statistically significant difference 

between the ODD mismatch across all the situation (even after correcting for type 1 error). Moreover, the 

difference between most of the situation pairs (other than S1/S3 and S2/S4), were statistically different 

from each other. 

In terms of number/percentage of mismatches, maximum mismatches were observed in the ‘Neither inside 

nor outside the ODD’ situation of driving close to an off-ramp. In this situation, most of the drivers believed 

that vehicle was inside its ODD. Next highest mismatches were seen in the ‘Outside the ODD’ situation of 

driving in the city with no lane marking on road boundaries. In this situation, most drivers believed that the 

vehicle was inside its ODD and a very few were not sure. This mismatch could lead to very dangerous 

situations as the drivers might not be completely fall-back ready (ready to take over from the LKAS system). 
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In both the situations ‘Inside the ODD’, there were very less mismatches. While driving inside the tunnel 

only two drivers were not sure if the vehicle was inside/outside Its ODD and while driving on the curve only 

one driver was not sure about the vehicle being inside its ODD. 

To go one step further, an attempt was also made to identify possible reasons for these ODD mismatches 

using driver behaviour variables from within the research. Even though the sample size of the data set was 

very small it was possible to identify a few possible factors that could have an impact on ODD mismatch. 

For one of the ‘ODD-In situations’ of driving on a curve, ODD mismatch was related to drivers’ real-time 

trust and perceive risk of driving in that situation. In the ‘ODD neither in nor out’ situation of driving close 

to an off-ramp, it was seen that ODD mismatch was related once again the driver’s perceived risk in that 

situation and to their initial trust on AV’s in general (almost significant at 95% confidence interval). Finally, 

in the ‘Outside the ODD’ situation of driving the city with no lane marking on road boundaries, ODD 

mismatch was almost related (p-value = 0.05) to the driver’s real-time trust on the LKAS in that situation. 

This is an indication that there could be several other factors that lead to the ODD mismatch in drivers 

across the different type of ODD classifications. It is important to avoid such a mismatch between the 

driver’s understanding and the OEM’s specification of the functionality of the LKAS equipped vehicles as 

this could lead to fatal road accidents within these systems. To avoid such mismatches, the OEM’s and road 

developers must focus on some of the driver behaviour aspects presented in this research as it provides an 

indication of potential factors. 

6.5.  General Observations 
 

During the road tests, in addition to the observations regarding the four selected situations, there were also 

certain general and rather potentially dangerous situations that were observed. This sub-chapter describes 

two such situations and provides plausible reasons for these observations. 

 
6.5.1. Off-ramp and rush-hour lane dilemma 
 

Close to the end of the test route, on the first exit after getting on to the A4, there was a situation that was 

encountered in few of the test drives. Shown in Figure 45, the Tesla is approaching an off-ramp at 100km/h, 

intending to go straight onto the rush-hour lane rather than taking the off-ramp. In Figure 46, the Tesla gets 

closer to the off-ramp fork and slowly begins to move to the right of the lane centre. After which, in Figure 

47, the Tesla begins to go into the off-ramp rather than maintaining the intended straight trajectory. 

Followed by this, in Figure 48, the Tesla is heading straight towards the fork and if the driver doesn't take 

control here, this could lead to a collision with the fork. At this point, the driver then takes control of the 

steering wheel and steers to the left to ensure that the vehicle goes back to the rush-hour lane (Figure 49). 

In this situation, if the driver failed to take over from the vehicle at the right time, it could have resulted in 

a possible collision with the off-ramp fork. A potential reason for the occurrence of such a situation could 

be type and number of lane markings at the fork as seen in Figure 45. There are solid line lane markings at 

both the off-ramp and at the beginning of the rush-hour lane, this could mislead the LKAS into taking the 

off-ramp when it was not intended to. A possible solution for this on the infrastructure side, could be to 

change the lane marking type at such road situations such that there is a clear distinction between the off-

ramp and the rush-hour lane. On the other hand, the LKAS could also be trained to avoid such situations by 

ensuring that the controller strategy of the LKAS gives more weightage to the in-built map and intended 

direction, in such situations. 
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6.5.2. Car-following inside the city 
 

Another unusual situation was experienced by a few drivers in the city section of the test route. In Figure 

50, the Tesla is driving on a city road with no lane markings on its boundaries and following a vehicle at the 

same time. The leading vehicle then starts taking a right turn (Figure 51), after which the Tesla gets closer 

to the leading vehicle (which has turned) and aligns itself to continue following the leading vehicle into the 

turn (Figure 52). Before the Tesla takes the (unintended) turn, the driver takes over and ensures that the 

vehicle is heading straight again (Figure 53). 

In this situation, if the driver failed to take over from the LKAS, the Tesla would have taken the right turn 

without giving an indication of this turn to its following vehicles. This could be lead to a dangerous situation 

and possible collision with its following vehicle. The occurrence of this situation could be because, in 

situations when a lane marking on either side of the road is missing (in the presence of a leading vehicle), 

the Autosteer is designed to follow the trajectory of the leading vehicle and thereby, taking the unintended 

right turn. Such situations could be avoided either by ensuring that the Autosteer cannot be turned ON in 

such city roads, or the on-board cameras detect the turning indicator of the leading vehicle or, by ensuring 

that the controller strategy of the LKAS gives more weightage to the in-built map and intended direction, 

in such situations. 

 

6.6.  ODD assessment for Tesla Model S 
 

The ODD of the Autosteer function of Tesla Model S is assessed using the lane keeping performance of the 

Autosteer, lateral driving risks and the driver behaviour in the vehicle, in different pre-selected situations. 

Through the method proposed in this research, the different ODD-classified situations can only be 

compared with each other (Table 11) and decisions regarding including or excluding situations from the 

ODD cannot be made with certainty. This is because, the thresholds for the acceptable lane keeping 

performance and objective risk values are defined by the vehicle manufacturers and therefore, confidential.  

 

Table 11. Assessment of selected test situations 
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Inside the ODD situations: 

Situation 2: Driving inside a tunnel inside the city 
 

Lane keeping performance was good with the vehicle mostly close to the lane centre but there was bias in 

lane positions away from the left lane marking strip. This was due to the concrete tunnel wall being closer 

on the left of the vehicle compared to its right. This is good, but at the same time this bias leads to vehicle 

swaying a lot within its lane, in turn leading to higher lateral velocity increasing its lateral driving risk. 

Therefore, risks were the second highest in this situation. Moreover, drivers real-time trust on the system 

in this situation specifically, is negatively related to their perceived risk of the situation. The number of ODD 

mismatches is low (12.5%) and even if there is, drivers do not think it is outside the ODD. In this situation, 

it would be advisable to inform the driver about risks and the vehicle should not sway much within the lane, 

maintain position even if it is to the right of the lane centre. 

 

Situation 4: Driving on a curve on the highway 
 

Overall best lane keeping performance (relative to the other vehicles) as the vehicle has condensed lane 

centre alignment and the deviation in its positions was the least. Once again, slight left skew in mean lane 

positions to avoid guard rail but the lateral objective risk of driving was still the least. Perceived risk of 

drivers in this situation is related to their awareness of the ODD in this situation. There is very low mismatch 

(6.2%) between driver perceived and OEM stated ODD. The ODD mismatch is related to the real-time trust 

and the perceived risk of driving in this situation. 

 

In general, within the situations inside the ODD, there is a correlation between driver behaviour in the 

situations. This is important to keep in mind while altering specifications and vehicle behaviour in any of 

these situations, as it could have an indirect impact on the driver’s behaviour in other ‘Inside ODD’ 

situations.  

 

Outside the ODD situation: 

Situation 1: Driving inside the city with no lane markings on road boundary  
 

Lane keeping performance was poor as there was very high bias in the lane positions towards the left of 

the lane centre and there was considerable deviation in the lane positions. Vehicle was attempting to move 

away from the road edge as is a design specification of the Autosteer function. Because of a very high left 

skew (largest of all situations), the (maximum for 15 seconds) lateral velocity was the highest in this 

situation (relative to other situations). Therefore, lateral risk of driving in this situation was the highest. 

Majority of drivers believe that this situation is inside the ODD of the vehicle (81.2%) and there is second 

highest mismatch (68.7%). This mismatch is related to the drivers trust on the system in this situation. 

The lane keeping performance was poor, lateral driving risk was the highest and there is very mismatch in 

driver’s perception of ODD and OEM specified ODD in this situation. The situation must either be removed 

from the ODD or necessary steps must be taken to improve driver trust in this situation as it influences 

mismatch ODD state. 

Neither inside/outside the ODD 

Situation 3: Driving close to an off-ramp on the highway 
 

Vehicle lane positions had the highest range between maximum and minimum values (away from the lane 

centre) and the deviations in the lane positions were the highest along with a slight bias to the left. The lane 
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keeping performance was therefore, considered the poorest. The objective risk on the other hand is fairly 

low even though lane keeping performance is poor, this means that the probability of collisions is low. On 

the other hand, the mismatch in driver believed and OEM specified ODD, was the highest (82.8%) and 

majority (77%) of drivers believe that the vehicle is inside its ODD. The mismatch in driver’s ODD awareness 

correlates with their perceived risk of driving in this situation and their initial trust in AV’s.  

Perceived driving risks in Situation 1 and Situation 3 are positively correlated and must be kept in mind 

while making vehicle functionality alterations or infrastructural changes directed towards either of these 

types of situations. This is important as the objective risks while driving inside the city with no lane marking 

on the road boundaries, was higher and if any alterations are made to the situation environment or vehicle 

functionality, directed towards this situation, it could indirectly effect driver behaviour in situations while 

they drive close to off-ramps. 

Especially for the situation 1, which was specified to be outside the ODD of the Autosteer by Tesla, since 

the fact the system could be switched ON, might be a possible reason for majority of drivers thinking that 

the situation was inside the ODD of the vehicle. Moreover, the lateral driving risk in this situation was shown 

to be the highest. Therefore, to ensure that the drivers understand the capabilities of the system better, 

the OEM’s must either not allow for the system to be turned ON in these situations or have a better form 

of communication with the driver regarding the systems possible decrease in performance. This will help in 

a proper calibration in trust of the drivers as they generally correlate their responses and awareness of the 

capabilities in one situation with another, as shown in this research. Furthermore, from a questioned asked 

in the post-drive questionnaire it was seen that 62.5% of the drivers reported that they would have trusted 

and used the system more, if timely information about its capabilities was provided to them. 

The proposed assessment methodology helps in comparing each of the ODD-classified situations with each 

other but a final decision for the inclusion or exclusion of a situation to or from the operational design 

domain of an LKAS system depends on the acceptable threshold values for each of the components of this 

method, which varies between OEM’s and is confidential information. Therefore, it is advised that vehicle 

manufacturers could use this method to generate the required input while deciding ODD for their vehicle. 

In addition to this while deciding ODD, Vehicle manufacturers must keep drivers’ behaviour and response 

in such LKAS systems as a very important input, and calibrate their systems to promote trust when justified, 

and encourage intervention when necessary.  
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Chapter 7. Conclusion 
 

7.1.  Summary 
 

In this research, a methodology to assess the Operational Design Domain of Lane Keeping Assistance System 

equipped vehicles is developed. The method is mainly intended for use by manufacturers of semi-

automated vehicles to assess the situations and conditions in which their lane keeping systems that are 

already available in the market, can and cannot perform. It involves assessment of the situations based on 

three main components: lane keeping performance of the system in these situations; the lateral objective 

risks of driving in these situations; and the driver’s attitude/behaviour using questionnaires at three stages 

of testing. The methodology is implemented to a real-road case study using an instrumented Tesla Model 

S and assesses its Autosteer system at certain pre-specified situations.  

It first involves identifying the situations that should be tested and this was done by analysing the Tesla 

Model S owner’s manual and classifying situations where the system is intended to work, not intended to 

work and where it may or not work as intended. One out of three candidate routes from within the 

Netherlands, was then selected for the real-road test. Participants for the tests were recruited based on 

specific criteria, the Tesla Model S was instrumented to gather the research specific data, survey 

questionnaires were developed and the road test were conducted. 

Raw data collected from the tests were processed and a data visualization tool was developed to help with 

data look-up during the analysis phase of the research. Data analysis included assessment of lane keeping 

performance of the Autosteer in different pre-classified test situations, measurement of the lateral risk of 

driving in these situations using a novel risk metric, assessment of drivers’ behaviour before-during-after 

the tests to identify mismatches in their perception, and these results were then combined to assess each 

of the ODD-classified situations and thereby, the Autosteers Operational Design Domain. 

 

This chapter concludes the thesis by answering the research questions in sub-chapter 7.2, discussing the 

main scientific and practical contributions of this research in sub-chapter 7.3, listing the limitations of the 

research in sub-chapter 7.4, and finally recommending possible next steps to take this research forward, in 

sub-chapter 7.5. 

 

7.2.  Answers to research questions 
 

Chapter 1.2 presented several research sub-questions, corresponding to the steps involved in the 

development of the ODD assessment methodology. Here, the five sub-questions are answered first 

followed by the main research question.  

1) What are the components of a LKAS and their potential reasons for failure?  

 

There are three different types of lane keeping assistance systems based on the level of involvement of the 

vehicle in the steering task. If the system merely warns the driver of departure from lane, it is referred as 

‘warning type’; if the system provides intervention in the form of opposing torques to the steering wheel, 

it is referred as ‘intervention type’; and when the system actively steers the vehicle to ensure lane centring, 

it is referred as ‘control type’ LKAS. For this research, the control type LKAS of a Tesla Model S was the 

focus.  

 

A LKAS involves continuous interaction between its three components; the driver, the vehicle and its 

surroundings, and the lane keeping module. The vehicle is responsible for sensing of the road and its 
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environment using a combination of cameras and/or sensors and it identifies the lane marking and other 

vehicle surroundings. This information is then fed to the lane keeping module which is responsible for 

identification of the dynamics of the vehicle, calculate the optimal steering angle and torque for either 

intervening, or actively steering the vehicle to its desired position in the lane (including a vehicle 

manufacturer dependent buffer). The information regarding the need and extent of required lane centring 

is fed to it by the controller strategy. An important input for control type LKAS is the check for ‘Hands on’, 

where it is verified that the driver is inside the loop or not. 

 

Factors affecting its performance were identified as potential reasons for the system’s failure. It was 

classified into three main types of failure factors; road and infrastructure related, road sensing related and 

driver related. These were based on a detailed analysis of the owner’s manuals of a Mercedes E-350, Volvo 

XC90 and Tesla Model S. Road and infrastructure factors in general, include changes in road geometry, 

change in type of lane marking, type of road and traffic states of surrounding vehicles. The road sending 

type failures includes factors that block or restrict the sensing capabilities of the on-board cameras and 

sensors. Factors such as glare, bright sunlight, oncoming headlights and improper illumination could lead 

to such types of failure. Driver related factors include waring of seat-belt, hand on steering wheel and their 

driving style in terms of their risk taking and sensation seeking.  An elaborate list of factors is provided in 

Chapter 2.1.2.  

 

This understanding of the functional specifications and constrains of LKAS in general, served as very 

important input while setting reference standard and interpretation of keeping performance of the Tesla. 

 

1) Which criteria can be used to identify the pre-specified real-road test situations? 

 

Given the aim of this research, selection of test situations was vital for its outcome. To first understand the 

operational design domain of the Tesla Model S, a detailed analysis of its owner’s manual was performed. 

Using this, three classifications of its operational design domain (focused on its infrastructural dimension) 

were made. ‘Inside the ODD’ situations corresponded to those road situations where the Autosteer of the 

Tesla is intended to work, ‘Outside the ODD’ situations correspond to those situations when the Autosteer 

is not intended to be used, and ‘Neither inside/outside the ODD’ situations correspond to those situations 

where the Autosteer may or may not work as intended.  A list of possible situations for each of these ODD 

classifications was made. These situations were fed as an input for the test route selection and were 

observed during the road tests. A final filtration of these situations was during the analysis phase of the 

research due to missing data corresponding to some situations, ensuring that at least one situation per 

ODD-classification is analysed. 

 

2) How does the Lane keeping assistance system perform when it is within and when it is 

exceeding its pre-defined ODD? 

This question can be answered using two aspects from this research. First, performance of the Autosteer in 

combination with the driver in different road sections (inside and outside the ODD). Second, performance 

of the Autosteer alone across different ODD-classified situations.  

 

The test route was divided into three sections, out of which two were highway sections and one was a city 

road section. The combined driver and Autosteer performance was better on the highway sections on 

majority of the test days. This was because, on the highway there are no intersections, lesser closely driving 

slow moving traffic, clear and well recognizable lane marking strips and lack of obstacles and other occlusion 

that could hamper the sensing capabilities and functionality of the LKAS. On the other hand, inside the city, 

which is predominantly specified to be outside the ODD of Autosteer, the Autosteer can be turned ON only 
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in a few specific situations. Therefore, since the driver contributes more to the overall lane keeping 

performance in the city, the performance was naturally poorer than on the city. However, lane keeping 

performance was different between the two highway sections. An important observation was that the 

mean lane position in all the road sections across all test days were predominantly biased towards the left 

of the centre, this was attributed to the fact that vehicles were mostly at the right most lane closer to the 

guard rails and road edges, and always attempting to stay away from them. This aspect gives an overview 

of the Autosteer and driver performance over two broad ODD-classified sections. 

 

In the second aspect, solely the performance of the LKAS across different ODD-classification types, is 

assessed. This assessment is based on the mean lane positions and standard deviations of lane positions 

across these situations.  For the situations deemed ‘inside the ODD’, majority of the lane positions were 

concentrated close to the lane centre with slight skews towards the direction away from the closest road 

barrier. For the situation outside the ODD of Autosteer, the range of the vehicle’s alignment within the lane 

was the highest with again a skew towards the left, away from the road curb stone. Finally, for the situation 

neither inside nor outside the ODD, even though the mean lane positions were closer to the lane centre, 

the range of standard deviation in its positions was the highest. This was attributed to the changing and 

multiple lane marking types on the right of the lane centre, in this situation. Since the performance of the 

system is tested, more importance was given to the standard deviation in the lane positions over mean lane 

positions, and based on this the performance in the situations were ranked (from high performance to low 

performance): Driving on the curve (Inside the ODD) > Driving inside the Tunnel (Inside the ODD) > Driving 

on city roads with no lane marking on its boundaries (Outside the ODD) > Driving close to an off-ramp on 

the highway (Neither inside nor outside the ODD). 

 

3) To what extent can the proposed risk measurement metric be used to determine the objective 

driving risk across different test situations? 

 

In this research, a novel risk measurement metric based on the field theory concept, was used. This metric, 

Probabilistic Driver Risk Field (PDRF), was implemented to determine the lateral driving risk in each of the 

ODD- classified situations. Several assumptions were made to aid its implementation. The maximum risk 

was measured to be the highest in the situation that was outside the ODD (driving in the city with no lane 

marking on the road boundaries). This was attributed to its large skew and predominant alignment closer 

to the left lane marking strip. On the other hand, even though driving inside the tunnel was considered 

inside the ODD, the lateral risks in this situation was the second highest. This was attributed to the road 

barrier type, significant skew in mean lane positions away from the closer concrete tunnel wall. In the 

situation of driving on the curve, which was also inside the ODD, the driving risks were measured to be the 

least. On the other hand, for the situation that was neither inside or outside the ODD (close to off-ramp) 

the risks were not as high as inside the tunnel and in the city, but higher than on the curve. This meant that 

clear differences between the risk of driving in different situations were visible and possible explanations 

for these were given. Furthermore, to justify its usability, the risks were also compared to corresponding 

time to lane crossing measurement. The results of which, implied that the metric does represent 

appropriate risk trends and may even be relatively more comprehensive in its approach as it is sensitive to 

the type of interaction between the vehicle and he road entity.  

Using the metric, it was also possible to depict that Autosteer’s road obstacle evasive property could also 

be a dangerous as the lateral objective risks in such instances were computed to be high. However, the 

proposed metric also had few limitations. It involved several practical assumptions, measurements 

corresponding to only 15 secs duration of each situation and that it only considered risks due to non -moving 

road entities. If the risks due to other moving road entities were also included, the lateral driving risk 

measurements could be different, thereby indicating that there is room for further improving the accuracy 

of risk measurements. 
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4) Is there a mismatch? and which factors contribute to this mismatch in the ODD, in the selected 

situations, between the one specified by the OEM’s and that which is specified by the drivers?  

 

Across all the test situations, mismatch was observed between ODD specified by the OEM and by the driver. 

Higher mismatch was observed in both situations that were outside the ODD (i.e. no-lane markings and 

on/off-ramp). Drivers mostly reported these situations to be inside the ODD. On the other hand, the 

mismatch in situations that were inside the ODD (i.e. tunnel and curve) were minimal. Moreover, the odds 

of a mismatch by drivers with prior experience in a Tesla was almost the same as that, by drivers without. 

This indicates that in addition to having experience of driving in semi-automated vehicles, increasing 

drivers’ awareness of its capabilities is also important. 

 

Several pre-drive and post-drive factors had a statistically significant relationship with the real-time 

behaviour of the driver whilst inside the vehicle. From amongst these factors there a few which were found 

to contribute also to the mismatch between driver and OEM specified ODD. For the situation of driving on 

the curve, which is inside the ODD, this mismatch was found to be related directly to the driver’s real-time 

trust in the system and their perceived risk of driving in this situation. For the situation outside the ODD 

(driving in a city with no lane marking on its lane boundary), the ODD was found to be related also to the 

drivers’ real-time trust while driving in this situation (almost at 95% confidence interval). Finally, in the 

situation neither inside nor outside the ODD (driving close to an off-ramp), ODD mismatch is found to be 

directly related to the driver’s perceived risk of driving in this situation and (almost at 95% confidence 

interval) to their initial trust on semi-automated vehicles in general. There were signs of indirect 

contribution to ODD mismatch by a few other factors that showed internal correlations with factors related 

to the mismatch, but are subject to future research. 

 

Having answered the research sub-questions, it is now possible to answer the main research question: 

 

To what extent can the Operational Design Domain of vehicles equipped with lane keeping 

systems be assessed by understanding the subjective and objective risk of driving in pre-

specified test situations? 
 

The answer to the main research question is the implementation of the proposed methodology to assess 

the operational design domain of vehicles equipped with lane keeping systems, using a real-road case study 

for a Tesla Model S. The design domain was assessed using a combined objective and subjective method, 

in specific test situations. In this method, the lane keeping performance of the Tesla model S and its lateral 

driving risks constitute the objective measurements; and conduction of a three-staged (pre-drive, real-time, 

post-drive) driver behaviour assessment constitutes the subjective measurements.  

This method required a thorough understanding of the functional components, limitations and constraints 

of the Autosteer function of the Tesla Model S. Based on its owner’s manual the Operational design domain 

of the Tesla was classified into situations where the Autosteer is intended to be used, not intended to be 

used and where it may or may not work as intended. The objective and subjective measurements were 

obtained for four specific situations that corresponded to these three classifications. An assessment of each 

of these situations was then made, by combining lane keeping performance, driving risk and driver 

responses, in these situations. Using this assessment methodology, it was only possible to compare the test 

situations with each other, and not make decisions regarding the inclusion or exclusion of situations from 

the Autosteer’s ODD. This was because, acceptable threshold values for each assessment component (i.e. 

maximum acceptable risk) varies between vehicle manufacturers and is confidential information. 

Therefore, this method has the potential to aid vehicle manufacturers while deciding if a situation should 
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remain inside or moved outside their lane keeping system’s operational design domain. For situations that 

exceed/may exceed the design domain, this assessment provides the necessary steps to take and the driver, 

infrastructural and system related factors to keep in mind if these situations were to be included into the 

design domain, keeping the drivers safety and awareness of the system capabilities as the crux of the 

decision-making process. 

This is a first step towards such an assessment and implements methodologies that can be extended to 

other situations and other types of ADAS systems, then those tested in this research.  

 

7.3.  Main contributions 
 

Performance variation of Lane Keeping Assistance Systems inside and outside the ODD  

 

There is limited practical evidence and literature about the lane keeping performance of lane keeping 

assistance systems, and this research fills this gap as it compares the performance across different days, 

different road sections/road types, different drives on the same route and between different test situations 

classified based on the operational design domain of the Tesla. Moreover, strong evidence for the obstacle 

avoidance lateral behaviour of the Autosteer was also provided in this research. This could also serve as a 

useful information for infrastructure developers, to aid in designing roads to increase the operational design 

domain of semi-automated vehicles, so that the systems can be used in more situations. The methodology 

used to generate vehicle trajectories (image processing technique) used for lane keeping assessment, is 

robust and can also be extended to other track trajectories of other vehicles (two wheelers and four 

wheelers). This could be of practical use for Royal HaskoningDHV as they conduct several projects in this 

domain. 

 

Implementation and assessment of a novel metric for objective driving risk measurements and 

its comparison with existing Surrogate Measures of Safety (SMoS)  

 

The field theory concept is niche and in fact very few researches have used this method for real-road tests. 

The probabilistic driving risk field theory method used in this research for driving risk measurement is still 

under development and this real-road research could be useful for the calibration of its parameters and its 

further development. Specifically, in the severity component of the risk metric the road barrier-type 

sensitivity factor (‘k’) and, in the probability component of the metric, the degree of the exponential 

function need to be calibrated such that they represent the road environment and chances of collision 

better. This research also contributes to the limited existing literature about the relationship between lane 

keeping performance of ADAS and the lateral risk of driving. Furthermore, this research also gives an 

indication that the implemented risk measurement metric shows similar trends as existing metrics such as 

TLC. 

 

Drivers’ attitude and response towards LKAS and AV’s in general  

 

There is limited literature about how drivers behave in lane keeping assistance systems in real-road 

experiments (when they face the direct consequences of driving in these systems). Most researches use a 

questionnaire based or a simulation based approach for this, in doing so they fail to capture the real and 

practical response from the drivers. This research used a combined questionnaire and real-road test based 

approach to comprehensively assess driver behaviour in LKAS. Moreover, real-time responses from drivers 

were collected and related to their pre- and post-drive attitudes and to make a comprehensive assessment 

of driver behaviour within these systems and therefore, contribute to existing literature. Furthermore, in 
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this research, mismatch between the driver perceived and vehicle manufacturer specified ODD is 

researched and the obtained results confirm the need for a better communication between the vehicle and 

driver and make first indications towards factors that could have an impact on such mismatches, therefore 

paving way for future research in this domain. 

 

A combined subjective and objective assessment of ODD for LKAS equipped vehicles.  

There is very little or no scientific literature that attempts at assessing operational design domain for 

vehicles at any level of automation. The ODD assessment method proposed and implemented in this 

research fills this gap in the scientific community. In the commercial community, by using thresholds (i.e. 

maximum allowable driving risk values and maximum allowable deviation from lane centre) for each 

component of this assessment method, different vehicle manufacturers can assess situations in which their 

LKAS system can, cannot perform. In situations where the performance is undetermined, it helps in 

identifying vehicle, infrastructural and driver related factors that could be altered to include these situations 

into the systems ODD.  

 

Road surrounding sensing tool  

With the help of Paul van Gent, a PhD candidate at Delft university of technology, for this research a road 

sensing tool was developed by coupling, camera captured road surrounding videos, LIDAR data, GPS and 

Inertial measuring unit data. With the help of this tool, vehicle dynamics data (acceleration, speed in both 

lateral and longitudinal direction), vehicle co-ordinates and geometry, distances to surrounding moving and 

non-moving road entities can be determined in continuous motion. This could be of great value to Royal 

HaskoningDHV in future mobility related projects as it is robust and extendable to different vehicles and 

vehicle types. 

 

7.4.  Research limitations 
 

Given the nature of the study, novelty of some of the methods used and other decision made over the 

course of the research. There were a few limitations of this research. In this sub-chapter, these limitations 

are listed for each phase of the research and possible ways to overcome them are provided. 

 

Data collection/test conduction 

 

• The Autosteer function of the Tesla cannot be turned on without the Adaptive Cruise Control (ACC) 

function of the vehicle also active. This could have an impact on the drivers’ perception of risk and their 

trust on the vehicle in general, and is one of the main limitations of the research. To account for this, 

during the road-tests, it was ensured to remind the driver to base their responses only on the 

Autosteer’s performance and their preferred ACC settings (desired vehicle lengths from leading 

vehicle).   

• Real-time (during the drive) measurements might affect the drivers’ attention, workload and thereby, 

affect their natural driving behaviour and perceptions within the automation. To avoid this as much 

possible, drivers were asked to respond verbally rather than performing a secondary task, but its effects 

might still be present.  

• Data from a couple of test drives is not complete or not available, due to unexpected rain and 

instrument board turning off automatically because of insufficient power drawn from the power 

source. To avoid this for similar future studies, it is best to be prepared for unexpected weather 

conditions on days even if weather is predicted to be favourable for testing. To solve the problem of 



 

82 | P a g e  
 

automatic instrument turning off, it is best to keep another device connected to the power source at 

all times to make sure it does not turn off automatically. 

• LIDAR data was missing in some situations due to the orientation of the LIDAR changing during the 

drive. To avoid this for future studies, proper calculations for orientation based on the required range 

of the LIDARS, need to be made and the orientation must be checked before every test drive.  

 

Data processing 

 

• There is a maximum of 16% error and average errors of 3.5% (highway) and 4% (city) in the values of 

the image processed lane positions. This was mainly due to assumptions that had to be made while 

developing the algorithms because of inexperience with conduction of such tests and lack of man-

power available during the testing days. The steps that must be taken in future such vehicle trajectory 

tracking experiments are provide in Appendix J (confidential). 

 

Data analysis 

 

• Lane keeping performance assessment: While filtering out possible lane change manoeuvres and 

unusual lane position values it was assumed that the wheel positions could not be greater than 1m 

away from the closest lane marking strip. This assumption might have also resulted in certain lane 

position values that were border line lane change manoeuvres to be excluded. To avoid this 

uncertainty, more research into lane change behaviour could be done to determine better threshold 

lane positions corresponding to a lane change. 

• Objective risk: 

▪ Due to missing LIDAR data for some parts of a couple of test drives, certain assumptions 

regarding the dynamics of the subject vehicle, were made (their speed were limited to either 

leading vehicle speed or road speed limit). This can be avoided by the LIDAR data related steps 

mentioned earlier. 

▪ The Probabilistic Driver Risk Field method used in this research, only included potential field 

risk (risk due to non-moving risk entities), the kinetic field risk due to other moving objects also 

plays a very important role in total risk determination, even for Lateral risk assessment. 

Especially for the case of driving close to the fork close to the off-ramp (Situation 3), as here if 

the kinetic field risk would be included, there are high chances of it being the riskiest situation 

relative to the other test situations.  

▪ Only maximum risks for a 15seconds duration were considered. 

• Statistical analyses:  

▪ Number of test participants is less (only 16 after filtrations), this negatively affects having 

concrete evidence in statistical testing. Moreover, the statistical significance between tested 

relationships could also be due to ‘multiple significance effect’ (that arises to multiple 

correlation test conductions for the same data). The only way to avoid not using such statistical 

corrections, is to have a larger data set, i.e. more participant drives. 

▪ Bonferonni corrections: For some of the statistical tests, the results were reported without 

correcting for type 1 errors (quite possible in this research due to several repeated measure 

analyses). Once again, this could be avoided by having a large data set. 

• ODD assessment: 

▪  It is not possible to make ODD related decisions (to include or exclude situations from the 

ODD) based on this research, due to varying and unknown threshold values for individual 

components of this method. To make such decisions, a constructive dialogue with OEM’s must 

be developed. 
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7.5.   Next steps 
 

In this sub-chapter, possible future directions and steps to take this research forward are discussed. There 

are two perspectives for which possible next steps are described.  

 

Scientific perspective 

 

• The immediate next step for this research is to include kinetic field risk component (risks due to other 

moving road entities) to the risk assessment method used in this research. This would result in an even 

more realistic representation of driving risks. In fact, the required data set for including this aspect to 

the risk measurement is already made available through the underlying research. 

• During this research, driver facial video data corresponding to all participant drives was collected. This 

can be used for further research into driver psychology, work load and stress analysis whilst driving in 

semi-automated vehicle. Using the video footage, facial movement analysis, blink rate analysis, field of 

view analysis (gaze direction analysis) can be performed. Additionally, using machine learning and 

existing facial action coding systems [115], it is possible to assess driver behaviour across different 

situations within such automated vehicles.  

• This underlying research also stems further research into the concept of mismatch between driver’s 

awareness about LKAS capabilities and its actual capabilities. The indications for possible causes for 

such mismatches as provided in this research, could therefore, serve as first step for research within 

this domain.  

• This research was focussed only towards LKAS, but a similar methodology is applicable to the other 

ADAS systems such as Adaptive cruise control. This would require alteration to system’s performance 

assessment method and necessary alterations to the probabilistic driver risk field metric. This required 

further investigation. 

• This assessment methodology could also be used to research variation of different vehicles’ 

performance within the same SAE level 2 over different ODD classifications (ODD-inside situation, ODD-

outside situations, ODD- maybe in or out situations). This could result in useful information about the 

operational design domain of ADAS of different vehicle manufacturers (which is general confidential 

information). 

Practical perspective 

 

• Original Equipment Manufacturers (OEM’s):  

▪ Using pre-set threshold values for the objective components of this methodology, OEM’s can 

test different road situations before including them or excluding them from ODD of their 

vehicles.  

▪ Using this methodology, OEM’s could also assess the LKAS (or any other ADAS) performance 

variations between software updates. 

▪ To increase the situations awareness of the driver, vehicle manufacturers could also use the 

objective risk value computation in real time, to show to the drivers on the internal LCD screens 

by adding at as a layer to the existing on-board map systems. This would help the OEM’s warn 

drivers that they are approaching a risky situation and ned to be ready to take over from the 

system. 

• Infrastructure developers: The potential risk field component of the objective risk measurement 

method implemented in this research can also be used by infrastructure developers for the 

identification of hotspots (road situations or road sections with higher risk than the other sections). 

Once these hotspots are identified various options for infrastructural changes can also be tested. 

Moreover, these tests can be conducted for both autonomous and non-autonomous vehicles. 
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