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Abstract

Conservative mechanical systems admit a symplectic structure. However, since real systems
typically exhibit energy dissipation, this symplectic structure is often too restrictive for en-
gineering purposes. Also in economic systems, dissipative phenomena are ubiquitous in the
form of consumption and depreciation.

In this thesis, we develop an extension of the symplectic structure that does incorporate
dissipation in an intrinsic manner. This geometric structure is presented in a way that makes
it usable for engineering applications, which is done in two steps.

We first construct a contact Hamiltonian system for the damped harmonic oscillator by com-
bining the symplectic structure of conservative mechanics and the contact-geometric descrip-
tion of thermodynamics. This system is then modified for the harmonic oscillator with both
a parallel and serial damper. We show how the widely adopted Caldirola-Kanai Hamilto-
nian for the damped harmonic oscillator emerges from the symplectification of the contact
Hamiltonian system.

In order to deal with general, multi-degree of freedom systems, the contact structure is then
extended to a Jacobi structure. In contrast to the contact structure, the Jacobi structure
encodes the pairing of conjugate variables and the dissipation as two separate entities. We
argue that this makes it possible to construct a Hamiltonian system for any mechanical system
and illustrate the practicality of this formalism by applying it to a multi-degree of freedom
system.

Second, we propose split-quaternions as an alternative to the traditional matrix representation
of two-dimensional linear mechanical systems. We demonstrate how the properties of the
dynamical system are directly reflected in its split-quaternion representation. As a result, the
split-quaternion representation offers several advantages for practical applications, e.g., for
the classification of fixed points or when computing the system solution. We use models of the
hyperbolic plane to find a relation between the solution geometry of underdamped systems
and their split-quaternion representation.
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— Chinese proverb





Chapter 1

Introduction

Symplectic manifolds are widely recognized as the appropriate geometric setting for classical
mechanics. The reason is that the symplectic structure facilitates the mechanism of both
Hamiltonian and Lagrangian mechanics. However, autonomous mechanical systems with a
symplectic structure are necessarily conservative. By its very nature, the symplectic struc-
ture leaves no room for dissipative phenomena in the system. For the physicists that use
analytical mechanics, this does not usually cause significant trouble, for the systems they
are concerned with are so small or idealized that the effects of dissipation are benign or
nonexistent altogether.

In contrast, energy dissipation is ubiquitous in many engineering applications, whether me-
chanical, electrical, or economic. This is because there are virtually always resistive or fric-
tional elements present whose influence on the system cannot be ignored. Consequently,
engineers typically revert to Newtonian (or vectorial) mechanics rather than Hamiltonian or
Lagrangian (or analytical) mechanics.

Despite this shortcoming, we believe that analytical mechanics does offer substantial advan-
tages in engineering applications over the Newtonian framework. We give two reasons to
support this claim:

The first reason originates in the discipline of economic engineering, which is the field of study
of the research group for which this thesis is written. In economic engineering, analogies are
used between the mechanical, electrical, and economic domains to produce causal models for
economic systems. In opposition to classic black box models used by econometrists, economic
engineering models are gray box, which is to say that the latter are based on first principles
instead of pure statistics.

The economic engineer can barely go without analytical mechanics. This is because, perhaps
contrary to classical mechanics, the Hamiltonian and Lagrangian formalisms are the most
intuitive from an economic perspective, compared to Newtonian mechanics. The role of
Lagrangian and Hamiltonian mechanics in economic engineering is explained in Chapter 2.
Because dissipative phenomena are as common in practical economic systems as in mechanical
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2 Introduction

systems, we feel that there is a need to reconcile analytical mechanics with energy dissipation,
or the economic analog thereof.

The second reason is that Hamiltonian and Lagrangian mechanics are based on the energy
description of the mechanical system, in contrast to using forces, as is done in Newtonian
mechanics. The energy description is often much more economical and is easily constructed
based on physical observation, even for complicated systems. In addition, the sophistication
of these methods allows one to use mathematically powerful concepts such as symmetry to
gain insights into the system, e.g., using Noether’s theorem.

Some solutions have been proposed in the past to include dissipation into the symplectic
framework of Hamiltonian and Langrangian mechanics nonetheless. The first is using a time-
dependent formulation, which specifies explicitly how the energy in the system is changing.
Notable examples of these nonautonomous systems are the methods proposed by Caldirola
[1] and Kanai [2]. However, in engineering, time dependence is usually reserved for exogenous
inputs, which are either controlled inputs or uncontrolled disturbances into the system. A
second solution is to use a complex formulation of the system states. A drawback of these
methods is that they require a modification of the underlying complex structure, see for
example Hutters and Mendel [3], Dedene [4] and Rajeev [5].

In contrast to these approaches, we will not use a symplectic structure for dissipative systems.
Instead, we draw inspiration from the mathematical theory of thermodynamics to develop a
different geometric structure for the mechanical system.

For simple systems, this geometric structure is a contact structure. However, for more general
multi-degree of freedom mechanical systems, a contact structure proves to be insufficient: it
has to be modified into a specific instance of the overarching class of Jacobi structures.

Some authors have already recognized the applicability of contact and Jacobi structures in
the past; see respectively Bravetti et al. [6] and Ciaglia et al. [7]. However, the arguments
made in the existing literature are mainly mathematical in nature, and the contact structure
does not translate to the physical aspects of the mechanical system. As Vladimir Arnold’s
once wrote1

“Every mathematician knows that it is impossible to understand any elementary
course in thermodynamics. The reason is that thermodynamics is based [...] on a
rather complicated type of geometry, called contact geometry.”

We prefer to turn this issue the other way around, for thermodynamics comes entirely natural
to the engineer, but contact geometry certainly does not. Therefore, we propose a formu-
lation of the geometric structure that has a direct physical interpretation rooted in both
thermodynamics and classical mechanics.

In Chapter 3, we use the thermodynamic insights to progressively build our way from contact
Hamiltonian systems to simple mechanical systems, ultimately leading to Jacobi-Hamiltonian
systems that can be applied to any mechanical system.

Whereas Chapter 3 exclusively considers mechanical systems, Chapter 2 explains the asso-
ciated economic analogies. Using these analogies, the findings in Chapter 3 can be readily

1See Contact Geometry: the Geometrical Method of Gibbs’ Thermodynamics as a part of the 1989 Proceed-
ings of the Gibbs Symposium [8, p. 163].
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3

translated to the domain of economic engineering. The contents of Chapter 2 can be viewed
as separate and are not prerequisites for the rest of the thesis.

In addition to the differential geometric structure underlying the mechanical systems, we also
propose a new representation of mechanical systems (and dynamical systems in general) in
the form of split-quaternions2 in Chapter 4.

We make the case in this thesis that the split-quaternions provide a powerful alternative to
the traditional state-space form of linear dynamical systems. This is because the natural
properties of the split-quaternions coincide with the properties of the associated dynamical
system. As a result, the classification of dynamical systems follows almost immediately from
the corresponding split-quaternion. Furthermore, we also show how the geometry of the
solution trajectories can be obtained directly from the split-quaternion representation.

To the author’s knowledge, the relation between split-quaternions and dynamical (or mechan-
ical) systems has never been studied in this way. As a result, the findings in this thesis about
this relation are all new.

2Also colloquially known as coquaternions.
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Chapter 2

A Geometric Perspective of Economic
Engineering

The discipline of economic engineering is a very new one. The theoretical foundations have
been developed over the past few years at the Delft Center of Systems and Control, primarily
by prof. em. Mendel, in combination with the contributions of several theses that have
recently been written about the subject [3, 9, 10, 11]. Economic engineering aims to use
tools from various engineering disciplines and physics to improve the predictive power of
(macro)economic models.

In economic engineering, domain-neutral modeling techniques such as bond graph modeling
are used to construct models for economic systems. This is done based on analogies between
economics and mechanical and/or electrical engineering. Importantly, this results in dynamic
gray-box models that rely on past data only for the identification of their parameters, but not
for the dynamics of the model itself. These gray-box models are what sets economic engineer-
ing apart from other disciplines that seek to produce economic models such as econometrics.

In this chapter, we focus on the theoretical foundations of economic engineering, particu-
larly its relation to symplectic manifolds and Hamiltonian and Lagrangian mechanics. The
theoretical contributions in Chapter 3 are formulated exclusively in terms of concepts from
classical mechanics, but the analogies provided in this chapter allow to extend the results in
Chapter 3 to the economic domain as well.

The structure of this chapter is as follows. First, in Section 2-1, we explain the relevance of
symplectic manifolds in economic engineering. Second, we provide the economic engineering
analogies for Lagrangian mechanics in Section 2-2. Although Chapter 3 is written from the
Hamiltonian perspective, the Lagrangian formalism provides a more intuitive introduction to
the economic engineering analogies, which is why it is introduced first. Then, in Section 2-
3 we make the transition from the Lagrangian formalism to the Hamiltonian formalism in
economic engineering, and motivate why dissipative elements are an essential part of economic
systems, and thus must be dealt with appropriately.
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6 A Geometric Perspective of Economic Engineering

2-1 Symplectic manifolds in economic engineering

A collection of goods forms the basis of any economic system. These goods can be physical
(e.g., bushels of wheat) but also more abstract notions such as capital in the financial analogy
[9]. The economic configuration space Q is analogous to the configuration space of mechanics
and consists of all the possible combinations of goods in the economy. Hence, in economic
engineering, the goods are analogous to the (generalized) positions in classical mechanics.
The natural coordinates for this space of goods are the number of each of the goods in the
economic system, denoted by q = (q1, q2, . . . , qn), also called stock levels. We say that each of
these coordinates is measured in units of quantity, denoted by ‘[#]’.
In many cases, the economic configuration manifold is simply a vector space containing all
the goods, subject to a constraint on the total endowment for each of the goods (i.e., the
total number of goods available). This is also referred to as an Edgeworth box (in the two-
dimensional case). However, we will not assume in general that Q is a vector space, for it
may be constructed from holonomic constraints imposed on a larger space.
The tangent space TxQ to Q at a point x is the vector space of differential changes in goods,
also called the flow of goods. A vector in the tangent space is denoted by q̇ = (q̇1, q̇2, . . . , q̇n).
It is important to distinguish between a flow of goods and an absolute amount of goods.
From a mathematical perspective, the former is a vector in the tangent space, and the latter
is a point in the economic configuration manifold. This distinction is often not given much
attention in economics but is fundamental in economic engineering.
The dual space of TxQ is the cotangent space T∗xQ containing all the linear functions that
map vectors in the tangent space to a real number. This is the natural setting of the prices
in the economy: as a function, they assign a value to a change in goods. These prices are
measured in units of currency per quantity, i.e. [ e#]. A covector in the cotangent space is
denoted by p = (p1, p2, . . . , pn). The action of a price covector on a vector measuring the
change in goods is

p (q̇) =
n

∑
i=1

pi q̇i, (2-1)

i.e., it produces the total value associated with a flow of goods.
The cotangent bundle T∗Q of the economic configuration manifold is the space of prices and
quantities: we call it the economic phase space. Like in mechanics, a point in this space
determines the state of the economic system: they specify the amount of each of the goods
in the system and their associated price level.
The economic phase space has a natural structure that pairs each price coordinate to the
associated stock level coordinate. From a mathematical perspective, this is equivalent to the
fact that the cotangent bundle of any manifold has a 1-form canonically defined on it. This
is the Liouville 1-form ϑ (also called tautological 1-form or canonical 1-form), defined as

ϑ ∶=
n

∑
i=1

pi dqi . (2-2)

Even more so than in mechanics, this Liouville 1-form has a very intuitive interpretation in
economic engineering. It relates every stock level with its price, and its integral over a curve
in T∗Q measures the total accumulation of value along that curve.
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The (negative of) the exterior derivative d of the Liouville form is a symplectic 2-form ω:

ω ∶= −dϑ =
n

∑
i=1

dqi ∧ dpi , (2-3)

where ∧ denotes the exterior (wedge) product. When integrated over, this form measures
the oriented area in the economic phase space, with units of currency [e]. This quantity is
analogous to action in classical mechanics. The symplectic 2-form relates every price to the
associated stock level and thereby encodes the fundamental structure of the economic phase
space.
The link between symplectic geometry and economics has been recognized by (more mathe-
matically inclined) researchers outside the field of economic engineering as well, most notably
Russell [12] and Swierstra [13].
The role of symplectic geometry in economics begs the question of whether the concepts of
Hamiltonian mechanics can also be applied to economic dynamical systems. In the field of
economic engineering, we argue that this is indeed the case. To explain how this works, we
start from Lagrangian mechanics, after which we transition to Hamiltonian mechanics.

2-2 Lagrangian mechanics in economic engineering

The Lagrangian L is a function on the tangent bundle of the configuration manifold:

L ∶ TQ→ R. (2-4)

Lagrangian mechanics is based on Hamilton’s principle which states that the physical motion
γ ∶ [t0, t1] → TM is the one for which the action functional A

A[γ] ∶= ∫
t1

t0
(L ○ γ)dt (2-5)

is stationary1 [14].
A necessary and sufficient condition for a curve to satisfy Hamilton’s principle is given by the
set of n Euler-Lagrange equations:

d
dt
( ∂L

∂q̇i
) − ∂L

∂qi
= 0. (2-6)

In economic engineering, Hamilton’s principle is interpreted as an economic agent minimizing
his or her disutility, in practice often considered to be the cost. The interpretation of the
Lagrangian function is then the running cost or running disutility. This Lagrangian therefore
has units of currency per time, e.g. [ eyr].
As mentioned, the Lagrangian is a function of the flow of goods q̇ and the stock levels q. The
partial derivative of the Lagrangian with respect to the flow of goods is equal to the price
vector :

pi ∶=
∂L

∂q̇i
. (2-7)

1Although often referred to as the ‘Principle of minimum action’, this is inaccurate: Hamilton’s principle
only asserts that the first variation of the functional vanishes, which does not necessarily imply a minimum.
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8 A Geometric Perspective of Economic Engineering

This means that prices and flows of goods are conjugate variables. Intuitively, a price are
the marginal increase in cost with respect to a marginal change in the associated flow (say,
demand) of goods.

In mechanics, the Lagrangian is equal to the difference between the kinetic (co)-energy and the
potential energy of the system. Both have a specific interpretation in economic engineering;
this is the subject of the next sections.

2-2-1 Kinetic energy

When the Lagrangian depends quadratically on the flow of goods (like kinetic energy depends
on velocity), the price and the flow of goods are linearly related by an elasticity: this is the
typical picture of a supply and demand curve. We have:

pi = ∑
i

mij q̇j , (2-8)

where the mij are referred to as price elasticities. In the simplest of cases, the mij form a
diagonal matrix, and every good has its price. However, any cross-terms appearing in the
elasticity matrix represent the marginal elasticity of one good relative to another. These
cross-terms encode the effect of substitution of one good for another. The matrix of price
elasticities is analogous to the (inverse) mass matrix in classical mechanics.

In mechanics, the part of the Lagrangian that depends on q̇ is called the kinetic co-energy2

T ∗:
T ∗ = ∑

i
∑
j

1
2

mij q̇iq̇j . (2-9)

The kinetic co-energy is equivalent to the cost associated with a flow of goods: the factor of
one-half is there to subtract the market surplus from the total expenditure (which is equal to
p(q̇)).

Traditionally, microeconomics makes the distinction between firm theory and consumer the-
ory. In economic engineering, we dispense with this explicit distinction, for we argue that
they are fundamentally based on the same mathematical principles. However, it is important
to keep in mind that the situation for firms and consumers is typically mirrored: the cost of
one represents the surplus of the other, and vice versa. Also, a flow of goods that a consumer
buys from a firm has an opposite direction depending on the perspective of the firm or the
consumer. This is the reason why a demand curve typically slopes downwards and the supply
curve upwards, because their associated surplus is flipped around. In the grand scheme of
things, both perspectives are two sides of the same coin. The ‘minimization principle’ can
therefore just as well be considered to be a ‘maximization principle’ if the signs flip due to a
change in perspective.

If the matrix of elasticities is positive definite, the kinetic energy expression forms a Rieman-
nian metric on the economic configuration manifold. Level lines of the metric are indifference

2We make the distinction between the kinetic energy T and co-energy T ∗: they are dual representations
related through the Legendre transform. Because work is the integral of force over distance, kinetic energy is
naturally represented in terms of momentum, rather than velocity, for which we need to apply the Legendre
transform first [15]. The difference between the kinetic energy and kinetic co-energy is illustrated by Figure 2-1.
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Delft Center for Systems and Control

q̇ [#
yr]

p [ e#]

dp

dq̇

T ∗(q̇)

T (p)

Figure 2-1: The difference between kinetic energy and co-energy. Kinetic energy is a function of
momentum, and kinetic co-energy is a function of velocity. The two are numerically equivalent
for this particular relation between momentum and velocity. Figure courtesy of B. Krabbenborg
[16].

curves: they represent a constant level of (dis)utility or cost for different combinations of
flows of goods. Furthermore, in more complicated situations, the price elasticities are allowed
to vary with the stock levels, i.e. m = m(q1, q2, . . . , qn), which would (under appropriate
conditions) imply that the configuration manifold exhibits Riemannian curvature.

In the language of bond graphs, we say that the kinetic energy (or market surplus) is stored in
an I-element. As such, in economic engineering, I-elements represent a local piece of demand,
or a market where an exchange of goods can occur.

2-2-2 Potential energy

In mechanics, the part of the Lagrangian that does not depend on q̇ is called the potential
energy V = V (q1, q2, . . . , qn). In economic engineering, we say that potential energy either
represents the benefits of holding a good, also called convenience yield. It gives rise to a
restoring force that provides an incentive against exchanging goods on the market.

When the potential energy is quadratic in q, we have something similar to a spring force
acting on the system. In a bond graph, this is called a C-element: it measures or stores3 the
number of goods in the system.

3With ‘measuring’ we mean that this element makes a particular physical quantity part of the dynamics of
the system, which is to say that this quantity is measurable from the perspective of the system. For example,
if there are no C-elements, one can still conceptualize the stock level, but they do not influence the system
and can therefore not be measured.
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10 A Geometric Perspective of Economic Engineering

2-2-3 Symplectic geometry in Lagrangian mechanics

We will now give a brief description of the differential geometric infrastructure underpinning
Lagrangian mechanics and its economic interpretation. This section is slightly more technical,
and the reader may want to revisit it after reading Chapter 3. Furthermore, a detailed account
of the geometry of Lagrangian mechanics is given in Appendix A.

The geometry of Lagrangian mechanics is based on the geometry of the so-called double
tangent bundle TTQ. This is because we consider the amount of goods q and the flow of
goods q̇i to be separate coordinates, but of course, the flow of goods q̇i should also be the
time rate of change of the associated amount of goods4. This extra constraint pairing the
qi’s with their associated q̇i is embedded in the canonical structure of the double tangent
bundle. Said otherwise, the significance of this structure is equivalent to Newton’s law being
second-order.

Mathematically, the pairing of flows and stock levels is specified by the vertical isomorphism
S, which is a tensor of valence (1, 1) on TQ: [17]

S = ∂

∂q̇i
⊗ dqi , (2-10)

where ⊗ is the tensor product. The Lagrange 1-form ϑL is then defined in terms of the vertical
isomorphism as follows:

ϑL ∶= dL ○ S = ∂L

∂q̇i
dqi . (2-11)

The Lagrange 1-form has an interpretation similar to the Liouville form discussed in the
previous section. Since ∂L/∂q̇i are equal to the prices, ϑL computes the valuation of a flow
of goods based on the price levels dictated by the Lagrangian.

The negative of the exterior derivative of ϑL yields the Lagrange 2-form ωL:

ωL ∶= −dϑL =
∂2L

∂vi∂vj
dqj ∧ dvi + ∂2L

∂qi∂vj
dqj ∧ dqi . (2-12)

This 2-form has a compelling economic interpretation: the first term contains the price elas-
ticities associated with each of the goods in the economy. The second term contains the
dependency of the price elasticities on the amounts of goods. We propose here that the La-
grange 2-form can be seen as the mechanical analog of the Slutsky matrix in microeconomics,
which decomposes the total price elasticity into two factors: [18]

(i) the elasticity due to substitution (i.e., the local elasticities), represented by the first
term of the above equation;

(ii) the wealth effects: these are the changes in the elasticities due to the changing state of
the economic system (i.e., the accumulation of goods).

We will, however, not go into the implications of this relation and reserve them as a recom-
mendation for future research in the theory of economic engineering.

4In this context, the dot notation simply distinguishes the coordinates, but it does not intrinsically imply
that one is the time derivative of the other.
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2-3 Hamiltonian mechanics in economic engineering 11

The Lagrange 2-form can be used to state the Euler-Lagrange equations in a geometric lan-
guage. Define the energy function E as5

E ∶ TQ→ R ∶ E ∶= ∑
i

∂L

∂q̇i
q̇i −L. (2-13)

From the perspective of the firm, the energy function is analogous to profit since it is equal
to the Lagrangian (being the cost function) subtracted from the total revenue of the firm
∂L/∂q̇i q̇i.

The dynamics of the mechanical system are then given by the Lagrangian vector field XL,
which is defined as

XL ⌟ ωL = dE , (2-14)

with ⌟ being the interior product. Alternatively, this expression can written as6

XL = ω♯L(dE). (2-15)

The Lagrange 2-form is a symplectic form if the matrix of price elasticities is regular. In
the context of economic engineering, this means that there are no zero price directions; i.e.,
every change in the amounts of goods is associated with some change in value. Usually, an
even stronger condition is assumed on L, namely that it is convex in the flows of products,
which is sometimes known as the Legendre condition. In economic engineering, this means
that the prices increase in the same direction as the flow of goods7. If this is indeed the
case, the Legendre transform can be used to pass from the Lagrangian representation to the
Hamiltonian representation and back; this is covered in the next section.

Finally, we want to emphasize an important subtlety in the Lagrangian formalism. Since
the price vectors live in the cotangent space, the notion of price is not canonically defined in
Lagrangian mechanics: a Lagrangian function is required to obtain it from a flow of goods.
In contrast, the Hamiltonian formalism discussed in the next section is defined directly in
terms in terms of the prices. This gives the Hamiltonian formalism a distinctive advantage,
since prices are arguably a more fundamental notion in economics than the associated flow of
goods (although there are probably good arguments for the contrary).

2-3 Hamiltonian mechanics in economic engineering

In this section, we first use the Legendre transform to pass from the perspective of Lagrangian
mechanics (i.e. TQ) to Hamiltonian mechanics (defined on T∗Q). We then discuss the eco-
nomic interpretations of Hamilton’s equations and the significance of dissipation in economic
systems.

5There is also a coordinate-free definition involving the Liouville vector field, which is given in Appendix A.
6This notation is further explained in Chapter 3.
7This makes intuitive sense, although there are exceptions; for example, the negative yield on some govern-

ment bonds in recent years.
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12 A Geometric Perspective of Economic Engineering

2-3-1 The Legendre transform

When the economic Lagrangian function is convex in q̇, we can use the Legendre transform
to pass to the Hamiltonian formalism as follows [19]

H ∶ T∗Q→ R ∶ H = E ○ (FL)−1, (2-16)

where E is the previously defined energy function and FL is the fiber derivative of L: [20]

FL ∶ TQ→ T∗Q ∶ [FL(v)](w) = d
ds
∣
s=0

L(v + sw), (2-17)

where v, w are vectors in TqQ. The fiber derivative maps a flow of goods to the associated
price vector. As a result, the Hamiltonian function is simply equal to the energy function E
but expressed in terms of the price coordinates pi rather than q̇i. The fiber derivative is a
local diffeomorphism only if the Lagrangian is regular.

Since the energy function and the Hamiltonian are numerically equal, the economic interpre-
tation of the Hamiltonian is also profit (from the perspective of the firm). This fact has been
recognized by economists as well, in the so-called duality theory. The duality theory states
that profit function and cost function are dual representations of the same firm (in literature,
this is called a technology) [18, 21].

Delft Center for Systems and Control

q̇

y

Lq(q̇)

pq̇

pq̇ −Lq(q̇)

Figure 2-2: Geometric illustration of the Legendre transform of a function. The Legendre
transform of the function L = L(q, q̇) is a function of p and q, defined as the difference pq̇ −Lq,
where this difference must be maximal with respect to q̇. If L is a convex function in q̇, this is
achieved where the partial derivative ∂L/∂q̇ evaluated at q̇ is equal to p, which is equivalent to
being locally parallel to pq̇. Because the Legendre transform is supposed to be a function of p,
one can consider p as ‘given’. Lq denotes L as a function of q̇, for some given q.

The economic interpretation of the Legendre transform may be better understood geometri-
cally. The Legendre transform of a function L = L(q, q̇) (q and q̇ are one-dimensional in this
case) with respect to q̇ is alternatively defined as

max
q̇
{pq̇ −L(q, q̇)}. (2-18)
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If L is convex in q̇, this is achieved at the point where the function L is locally parallel to the
function pq̇, which is to say that

∂L

∂q̇
∣
q̇

= p. (2-19)

In the Lagrangian formalism, this is precisely the definition of p. If L is convex, the maxi-
mization is inherently satisfied; it therefore is often disregarded in physics literature.

For the economic interpretation, it is important to keep in mind the underlying maximization
in the definition: it states that firms or consumers automatically operate at their optimal
price point, derived from their cost (or utility) function.

2-3-2 Hamilton’s equations

Hamilton’s equations, in the form of the Hamiltonian vector field XH , are derived by applying
the symplectic isomorphism to the gradient dH of the Hamiltonian function:

dH =XH ⌟ ω, (2-20)

or in alternative notation XH = ω♯(dH). Here, ω is the symplectic 2-form on T∗Q (cf.
Section 2-1). The symplectic isomorphism (and Hamilton’s equations) are covered in greater
detail in Chapter 3.

Conventionally, the symplectic 2-form is equal to ∑i dqi ∧ dpi, and Hamilton’s equations are:

q̇i = ∂H

∂pi
, ṗi = −

∂H

∂qi
. (2-21)

It is easy to see that these equations of motion are equivalent to the Euler-Lagrange equations,
given that pi = ∂L/∂q̇i . We will go a lot more into detail on the (geometric) nature of
Hamilton’s equations in Chapter 3; the discussion here is limited to their interpretation in
economic engineering.

The first Hamilton equation is equivalent to Hotelling’s lemma, which states that the supply
(demand) for a particular good is i is equal to the derivative of the profit function with respect
to the price pi. It is usually emphasized that this is only the case when the price is the optimal
price for profit, but this is built into the definition of pi. As given by Equation (2-21), the
price value pi = ∂L/∂q̇i is exactly the one for which the profit function

∑
i

pi q̇i −L, (2-22)

is maximized, provided that L is convex in q̇i.

The second Hamilton equation provides the change in momentum or force. In economic
engineering, these forces are analogous to economic wants, i.e. what drives a price up or
down. The equation can be interpreted as the law of scarcity, i.e. economic wants arise as
a consequence of the stock levels/amount of goods in the system, pushing the price of the
goods up or down.
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14 A Geometric Perspective of Economic Engineering

2-3-3 The role of dissipation

Traditional Hamiltonian and Lagrangian mechanics deal with conservative systems only; these
are systems that conserve the value of the Hamiltonian (being equal to the energy) in the
system. In economics, these are systems that would, without external sources, always main-
tain the same level of profit. Conservative economic systems are just as hypothetical as their
mechanical counterpart, since there are always elements present that limit the efficiency of
an economic system, e.g., the depreciation of goods, consumption of goods, and transaction
costs.

Given the prominent role that the Hamiltonian and Lagrangian formalisms play in the field
of economic engineering, it is desirable to find a suitable way to include dissipative effects in
these formalisms while still maintaining their economic interpretation. This is the subject of
Chapter 3; although it is formulated in terms of classical mechanics, the analogies described
in this chapter may be readily used to substitute the mechanical quantities for their economic
engineering counterparts. To that end, Table 2-1 provides an overview of the most important
analogies used in economic engineering.

Table 2-1: Overview of some important analogies between economic engineering and mechanics.

Symbol Mechanical variable Units Economic variable Units

q Displacement [m] Quantity of goods [#]
q̇ Velocity [ms ] Flow of goods [#

yr]
p Momentum [kg m

s ] Quantity of goods [ e#]
F Force [kg m

s2 ] Economic want [ e# yr]
m Mass [kg] Price elasticity [eyr

#2 ]

H Hamiltonian / total energy [J] Profit [ eyr]
L Lagrangian [J] Running cost / disutility [ eyr]
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Chapter 3

Geometric Structures in Dissipative
Mechanics

In this chapter, we develop a geometric structure that can be used a construct Hamiltonian
formalism for mechanical systems with dissipative elements. This formalism may also be
applied to economic engineering systems using the analogies outlined in Chapter 2.

Throughout this chapter, we progressively extend the conventional Hamiltonian formalism to
contact and Jacobi manifolds.

First, in Section 3-1, the conventional Hamiltonian theory based on symplectic manifolds is
explained. This section serves as a technical introduction to the rest of the chapter and does
not contain new contributions.

Second, in Section 3-2, we look at contact Hamiltonian systems defined on contact manifolds.
These have been proposed by some authors for dissipative mechanical systems (in particular,
the damped harmonic oscillator) in the past, see e.g. Bravetti et al. [22]. However, we propose
a different formulation of the contact structure based on physical reasoning, rather than a
purely mathematical argument. In addition, we show how the widely adopted Caldirola-Kanai
model emerges from the symplectification of the proposed contact Hamiltonian system.

Third, in Section 3-3, we point out by means of an example why contact Hamiltonian systems
are not able to describe general (multi-degree of freedom) mechanical systems. A (slight)
generalization of contact manifolds is required instead. These manifolds belong to the general
class Jacobi manifolds, which also symplectic and contact manifolds as particular subclasses.

The extension towards Jacobi manifolds has been proposed by Ciaglia et al. [7], but it has re-
ceived little to no additional attention in literature — at least, not regarding their application
to mechanical systems. We formulate the Jacobi structure using the same physical reasoning
as for the contact Hamiltonian systems to make it suitable for engineering applications.
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3-1 Symplectic mechanical systems

First, symplectic manifolds are defined in Section 3-1-1, after which symplectic Hamiltonian
systems are covered in Section 3-1-2.

3-1-1 Symplectic manifolds

In their traditional sense, Hamiltonian systems are defined on symplectic manifolds. A sym-
plectic manifold (M, ω) is a smooth manifold M equipped with a closed, nondegenerate 2-form
ω. Because ω must be nondegenerate, symplectic manifolds are necessarily even-dimensional.
The celebrated Darboux theorem asserts that, locally, all symplectic manifolds of the same
dimension (say 2n) are all symplectomorphic1 to each other. As a result, we can define
a prototypical symplectic 2-form that serves as a (local) representative for all symplectic
structures of that dimension as

ω =
n

∑
i=1

dqi ∧ dpi , (3-1)

where ∧ is the exterior (wedge) product, and pi and qi are coordinates for the manifold M .
A coordinate chart in which the symplectic 2-form has the above form is called a Darboux
chart, and the associated coordinates Darboux coordinates [14, 23].
In mechanics, the configuration manifold Q is the manifold specified by all the possible gen-
eralized positions qi (or configurations) of the mechanical system. The generalized momenta
pi associated with each of the generalized positions live in the collection of cotangent spaces
to the configuration manifold. The momenta are cotangent variables because, from the La-
grangian viewpoint, the generalized momenta are defined by

pi =
∂L

∂q̇i
, (3-2)

which indicates that the vector of pi’s is a cotangent (covariant) vector to Q. Hence, the
cotangent bundle T∗Q of the configuration manifold contains all the possible position and
momentum pairs; it is colloquially referred to as the phase space [14, 19, 24].
The structure that associates each position with its corresponding momentum is given by the
Liouville 1-form2 ϑ on T∗Q. The Liouville form is defined at every point

(q1, . . . , qn, p1, . . . , pn) ∈ T∗M

as3

ϑ = ∑
i=1

pi dqi . (3-4)

1Symplectomorphisms are diffeomorphisms that preserve the symplectic structure; they are the isomor-
phisms of symplectic manifolds.

2The Liouville 1-form makes its appearance in literature under a myriad of names, such as the canonical
1-form, tautological 1-form, Poincaré 1-form, or the symplectic potential.

3In coordinate-free language, the Liouville 1-form is defined pointwise as follows. Given q ∈ Q, p ∈ T∗qQ, we
call x = (q, p) ∈ T∗Q. Let π be the bundle projection map of T∗Q π

Ð→ Q. For every x, The Liouville 1-form ϑ∣x
is defined as

ϑ∣x ∶= p ○ (π∗∣x), (3-3)
where p is interpreted as a map on the tangent space to q [23].
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Hence, the Liouville form tells us which momentum coordinate corresponds to a given position
coordinate and vice versa. This turns out to be an essential piece of the geometric structure
that underpins classical mechanics.

Every cotangent bundle is canonically endowed with a Liouville form. The exterior derivative
d of the Liouville form produces a symplectic 2-form. By convention, we define this symplectic
form as follows:4

ω = −dϑ =
n

∑
i=1

dqi ∧ dpi . (3-5)

Hence, the space of generalized positions and momenta (i.e. the cotangent bundle of the
configuration manifold Q) is canonically symplectic. The symplectic structure pairs the cor-
responding position and momentum coordinates in a skew-symmetric fashion.

In the context of bond graphs, the symplectic form represents the dual nature of a bond.
That is to say, a bond represents an exchange of both an effort and a flow, and they are
inherently tied to each other. The flow is a change in position, and the effort is a change in
momentum. The effort and flow associated with a bond are conjugate: the symplectic form
provides precisely the structure that is visually present in a bond graph (e.g. Figure 3-1).

3-1-2 Hamiltonian mechanics

In Hamiltonian mechanics, the equations of motion are given by Hamilton’s equations

q̇i = ∂H

∂pi
ṗi = −

∂H

∂qi
, (3-6)

provided with the Hamiltonian function H, which is equal to the mechanical energy in the
system. Observe that the above equation assumes that the pairing between the positions and
momenta is known a priori.

In the language of differential geometry, Hamilton’s equations are specified by a symplectic
structure on T∗Q and an appropriate Hamiltonian function on that manifold: the pairing
between the positions and momenta is therefore built in. A generic Hamiltonian system is a
triple (M, ω, H), where (M, ω) is a symplectic manifold. In mechanics, we have that M = T∗Q.
The symplectic structure allows one to formulate Hamilton’s equations in a coordinate-free
manner.

The Hamiltonian isomorphism for symplectic manifolds

To produce the equations of motion, the symplectic structure provides a mapping between
the smooth functions on the manifold and the vector fields on the manifold. This construction
is based on the symplectic isomorphism between the tangent and cotangent bundle of M :

ω♭ ∶ TM → T∗M ∶ X ↦X ⌟ ω, (3-7)
4In this text, the ‘q-first’ sign convention used by Abraham and Marsden [19] and Cannas da Silva [23] is

followed.
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18 Geometric Structures in Dissipative Mechanics

where ⌟ denotes the interior product. The mapping ω♭ is an isomorphism because of the
nondegeneracy condition on ω. Thus, the inverse mapping is well-defined and is denoted by
ω♯ [24].

It is crucial to bear in mind the difference between the manifolds Q and M . In the context
of mechanics, we have that the symplectic manifold M is the cotangent bundle of Q. Hence,
since the Hamiltonian is a function on M = T∗Q, dH and XH are sections of T∗T∗Q and
TT∗Q respectively. This is illustrated by the diagram below (the projection arrows from
T∗T∗Q and TT∗Q indicate the bundle structure but are left unnamed).

T∗T∗Q TT∗Q

T∗Q

Q

ω♯

ω♭

π

The symplectic isomorphism specified by ω allows us to find the corresponding Hamiltonian
vector field XH to a Hamiltonian function H by applying the (inverse) symplectic isomorphism
to its gradient:

XH = ω♯(dH). (3-8)

In Darboux coordinates, the action of ω♯ on the basis 1-forms is

dpi ↦
∂

∂qi
dqi ↦ − ∂

∂pi
. (3-9)

The minus sign arises as a consequence of the anticommutativity of the wedge product ap-
pearing in ω. From these expressions, we can observe that the traditional form of Hamilton’s
equations (cf. Equation (3-6)) is recovered when Darboux coordinates are used.

A classical example of this formalism is the harmonic oscillator (undamped) shown in Figure 3-
1. The Hamiltonian function is the sum of the potential and kinetic energy in the system

H = p2

2m
+ 1

2
kq2, (3-10)

where m is the mass and k is the spring constant. The Hamiltonian vector field is then

XH = ω♯(dH) = ω♯( p

m
dp + kq dq) = p

m

∂

∂q
− kq

∂

∂p
, (3-11)

or, when stated as a system of differential equations:

q̇ = p

m
, ṗ = −kq. (3-12)
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Figure 3-1: On the left, a schematic of the mechanical harmonic oscillator is shown as a mass-
spring system with mass m and spring constant k. On the right, the equivalent bond graph
representation is shown. It consists of an inductive I-element (mass) and capacitive C-element
(spring) connected through a 1-junction, indicating that the ‘flow’ (i.e. velocity) is constant
across the connection, which is to say that both are connected to the same mass.

Poisson brackets

The symplectic form endows the manifold M also with a Poisson structure: a Lie algebra
structure on the R-vector space of functions on M . The commutator of this algebra structure
is the Poisson bracket,

{ , } ∶ C∞(M) ×C∞(M) → C∞(M) ∶ {f, g} = ω(ω♯ df , ω♯ dg)

= ω(Xg, Xf)

=£Xf
g

(Darboux coordinates) =
n

∑
i=1
( ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
).

(3-13)

In the above expression, £Xg f refers to the Lie derivative of f with respect to the Hamiltonian
vector field Xg.

Poisson brackets are anticommutative, bilinear, and satisfy the Jacobi identity. Additionally,
they also satisfy the Leibniz property,

{f, gh} = {f, g}h + {f, h}g. (3-14)

The Poisson brackets defined in terms of the symplectic structure make symplectic manifolds
to be also Poisson manifolds. In Sections 3-2 and 3-3, the notion of Poisson manifolds is
generalized to Jacobi manifolds to cover more general mechanical systems. In contrast to the
Poisson structure, a Jacobi structure does not generally satisfy the Leibniz property [14, 24].

The usefulness of Poisson brackets is due to the fact that they provide a convenient way to
calculate the time rate of change of an observable f :

df

dt
= {f, H} + ∂f

∂t
. (3-15)

If the Hamiltonian does not explicitly depend on time, it is conserved under its own Hamil-
tonian vector field. This is easily seen from the anticommutativity of Poisson brackets
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20 Geometric Structures in Dissipative Mechanics

({H, H} = 0). Therefore, Hamiltonian systems conserve energy: they do not allow for dissi-
pative (friction) forces in a straightforward manner, unless included in the form of an explicit
time dependence. This is a direct consequence of the symplectic structure: because XH is
generated by the symplectic 2-form, the Hamiltonian vector field conserves its own generating
function. The fact that the system is conservative should therefore be seen as something that
is built into the structure of the symplectic Hamiltonian system itself, and not as an emergent
fact5.

To conclude, the overall structure that constitutes a conservative mechanical system is three-
fold: first, there is the configuration manifold and its cotangent bundle. Second, there is
the symplectic structure on that manifold, and third, we have the Hamiltonian function. In
principle, the symplectic structure is a canonical attribute of the cotangent bundle structure,
but we wish to emphasize that the system dynamics are also symplectic. That is to say, the
Hamiltonian vector field is a symplectic vector field: it leaves ω invariant.

The symplectic nature of the dynamics does not persist to the extension for systems with
dissipation. This is in contrast to the fact that even for the most general systems, we still
require the pairing of conjugate variables to be encoded into the geometric structure of the
system. Hence, we expect the symplectic structure to remain important even in the upcoming
generalizations.

In the next section, we extend the Hamiltonian formalism to contact manifolds to incorporate
dissipation in the Hamiltonian system.

3-2 Contact mechanical systems

In this section, the basic principles of thermodynamics and their relation with contact ge-
ometry are used to establish a contact Hamiltonian system for i.a. the damped harmonic
oscillator. The dissipation in this system precludes it from being modeled by a symplectic
Hamiltonian system that is not explicitly time-dependent.

An explicit time dependence is typically reserved to model either external control inputs or
disturbance inputs.What both disturbances and control inputs have in common, is that they
are inherently exogenous: they are not part of the system itself. In contrast, the dissipative
element in the form of the damper is part of the system (endogenous). From both a conceptual
and practical standpoint, modeling dissipation as a time-dependence, and therefore as an
exogenous phenomenon, is not desirable. This is why we exploit contact geometry to include
dissipation as a process that is intrinsic to the system.

First, in Section 3-2-1 we give a very brief introduction to contact geometry.

Second, in Section 3-2-2 we extend the notion of Hamiltonian systems to contact manifolds,
resulting in contact Hamiltonian systems. Both Section 3-2-1 and Section 3-2-2 contain no
new contributions, they are there to present the theoretical infrastructure required for the
remaining sections.

5This is especially clear from the explicit coordinate expressions of the dynamics. The mapping from H to
XH takes the partial derivatives, and switches them around between the associated q’s and p’s, while one of
them picks up a minus sign. As such, it is very clear that £XH H =XH(H) = 0, given that H is not explicitly
time-dependent.
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3-2 Contact mechanical systems 21

Third, in Section 3-2-3, we develop a systematic procedure to construct a contact Hamiltonian
system for the damped harmonic oscillator using thermodynamic principles.
Fourth, in Section 3-2-4, we use a technique called symplectification to lift the contact Hamil-
tonian system to a symplectic manifold with one more dimension to show its equivalence to
the Caldirola-Kanai Hamiltonian.
Finally, in Section 3-2-5, the procedure developed in Section 3-2-3 is applied to the harmonic
oscillator with a parallel and serial damper.

3-2-1 Contact manifolds

In contrast to symplectic manifolds, contact manifolds are odd-dimensional. A contact man-
ifold (M, ξ) is a smooth manifold M of dimension 2n + 1 equipped with a maximally non-
integrable hyperplane distribution ξ. At every point x ∈M the contact structure specifies a
2n-dimensional linear subspace (i.e. a hyperplane) of TM . Locally6, the hyperplane distribu-
tion is specified as the kernel of a 1-form on M , which must be nondegenerate:7 [14, 23, 25]

ξ∣x = ker α∣x. (3-16)

It is worth pointing out that the correspondence between a hyperplane and the kernel of a
1-form is not one-to-one. Indeed, multiplying α by any nonzero function yields a different
1-form with the same kernel. Although the contact forms are different, they give rise to the
same contact structure. This ambiguity is essential, and it will play a vital role in the process
of symplectification discussed in Section 3-2-4.
For the hyperplane distribution to be maximally nonintegrable, it means that there exist no
codimension-1 foliations that are everywhere tangent to the distribution of hyperplanes [25].
This is analogous to a nonholonomic constraint for a mechanical system: such a constraint
cannot be integrated to obtain a submanifold of the configuration space that contains all the
allowable positions. Indeed, the same condition for nonholonomicity applies here as well: for
ξ to be nonintegrable, the associated contact form α must satisfy the Frobenius condition

α ∧ dα ≠ 0, (3-17)

or equivalently, that α ∧ (dα)n is a volume form on M .
Contact geometry is closely related to symplectic geometry, for the nonintegrability condition
implies that dα ∣ξ is a symplectic form.
There is also a Darboux (cf. Section 3-1) theorem for contact manifolds, which says that
locally, every contact form can be expressed as

dq0 −
n

∑
i

pi dqi ; (3-18)

the coordinates (q0, q1, . . . , qn, p1, . . . , pn) are then called Darboux coordinates.
For a slightly more comprehensive introduction to contact geometry, the reader is referred to
Appendix B. More extensive resources are, among others, the works of Geiges [25], Libermann
and Marle [24], Arnol’d [14, 26] and Godbillon [27].

6Contact structures which are globally defined by a 1-form are called exact or strictly contact structures.
This is the case when the quotient line bundle TM/ξ is orientable.

7Equations of the form α = 0, where α is a 1-form, determine so-called Pfaffian equations [24].
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22 Geometric Structures in Dissipative Mechanics

3-2-2 Contact Hamiltonian systems

Similar to symplectic Hamiltonian systems, contact Hamiltonian systems consist of three
ingredients: a smooth manifold M , a contact form α on that manifold, and a Hamiltonian
function K on the manifold. The contact structure then provides a mapping between the
smooth functions on the manifold and the contact Hamiltonian vector fields on the manifold.
As such, the contact structure generates the contact version of Hamilton’s equations.

The mapping Ψα that relates the smooth functions and the contact Hamiltonian vector fields,
given a contact 1-form α, is defined as follows:

Ψα ∶ Xc(M) → C∞(M) ∶ XK ↦K ∶= −XK ⌟ α, (3-19)

where Xc(M) is the set of infinitesimal strict contactomorphisms8. These are vector field
that preserve the strictly contact structure specified by α, which is specified by the following
condition:

£XK
α = sα, (3-20)

where £ is the Lie derivative and s is an arbitrary smooth function on M . This condition is
based on the fact any nonzero multiple of a given contact form determines the same contact
structure.

Horizontal and vertical vector fields

To obtain the vector field from a Hamiltonian function, we are interested in the inverse
mapping Ψ−1

α . This mapping is not quite straightforward, for it has to map the general class
of smooth functions back to a very specific subclass of vector fields. The trick is to use
a splitting of the (co)tangent bundle, decomposing the vector field into a horizontal and a
vertical component.

The nonintegrability condition imposed on the contact structure ensures that α ∧ dα ≠ 0. As
such, we have at any x ∈M :

ker α∣x ∩ ker dα∣x = {0}, (3-21)

i.e. their kernels can only intersect at the origin. Consequently, we can define the following
splitting of the tangent bundle:

TM = ker α⊕ ker dα, (3-22)

where ⊕ denotes the Whitney sum9. Vector fields that are in the kernel of α are called
horizontal; they form a subbundle of rank 2n, which coincides with the hyperplane distribution
specified by the contact structure. In contrast, vertical vector fields are in the kernel of dα,
which is a subbundle of rank 1 [24].

8Contactomorphisms are diffeomorphisms that preserve the contact structure, they are the isomorphisms
of contact manifolds. ‘Strict’ refers to a subclass that is defined in terms of the contact form, which need not
be defined globally.

9The Whitney sum applies to vector bundles and is, roughly speaking, a fibered version of the direct sum
for vector spaces. The Whitney sum of two vector bundles (over the same base space) is a vector bundle over
that base space, where every fiber is equal to the direct sum of the fibers of the original vector bundles.
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3-2 Contact mechanical systems 23

The Reeb vector field Rα associated with α is a unit vertical vector field, defined by the
conditions10

Rα ⌟ α = 1, Rα ⌟ dα = 0. (3-23)

In the Darboux coordinates as given in Equation (3-18), the Reeb vector field is

Rα =
∂

∂q0 . (3-24)

Because the space of vertical vector fields is of rank 1, every vertical vector field is colinear
with the Reeb vector field.

An arbitrary vector field X ∈ X(M) can be canonically decomposed into a horizontal and a
vertical component as follows:

X = (X ⌟ α)Rα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

vertical

+X − (X ⌟ α)Rα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

horizontal

. (3-25)
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Figure 3-2: Splitting of the tangent and cotangent bundle using the structure provided by the
contact form, with dim(M) = 3. The left figure shows the cotangent space to M at some point
x, where the blue plane contains the semi-basic forms. The other subbundle is of rank 1 and
consists of all the scalar multiples of the contact form α. On the right, the tangent space to M at
x is depicted, with the red plane containing the horizontal vector fields. The blue line is spanned
by the vertical vector fields.

Semi-basic forms

Similar to the splitting of the tangent bundle, the cotangent bundle may be decomposed into
two subbundles as well. The first subbundle consists of the annihilators of the horizontal
vector fields. This is a subbundle of rank 1 that contains all the multiples of the contact
form; they generate the contact structure. The other subbundle contains the semi-basic
forms, which annihilate the vertical vector fields [24].

10The Reeb vector field is not uniquely associated with a contact structure and depends on the particular
choice of contact form.
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24 Geometric Structures in Dissipative Mechanics

Any 1-form11 ζ ∈ Γ(T∗M) can be canonically decomposed into a semi-basic component and
a multiple of α as follows:

ζ = (Rα ⌟ ζ)α
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
contact struct.

+ ζ − (Rα ⌟ ζ)α
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

semi-basic

. (3-26)

In Darboux coordinates, semi-basic forms are forms that have no component in dq0.
The decompositions of T∗M and TM for the three-dimensional case are shown in Figure 3-2,
they also play an important role in Section 3-3.

The Hamiltonian isomorphism for contact manifolds

To find the Hamiltonian vector field XK associated with a Hamiltonian K, we decompose
XK into a horizontal and a vertical component:

XK =Xhor
K +Xver

K . (3-27)

The vertical component of XK is easily obtained from the definition of Ψα:

Xver
K = −KRα, (3-28)

where Rα is the Reeb vector field associated to the contact form α.
Finding the horizontal component is more involved; a detailed account of the required techni-
calities is given in Appendix B. In short, we again need a mapping similar to the one defined
in Equation (3-7), but now defined in terms of dα instead:

dα♭ (X) ∶=X ⌟ dα . (3-29)

However, this is not an isomorphism between TM and T∗M , for it will annihilate any vertical
component X. However, it is an isomorphism from the horizontal vector fields to the semi-
basic forms (respectively the red and blue planes in Figure 3-2). Likewise, the inverse mapping
dα♯ takes a semi-basic form as an argument and produces a horizontal vector field.
The horizontal component of the Hamiltonian vector field is equal to this mapping applied
to dK, canonically projected to the space of semi-basic forms (cf. Equation (3-26)):

Xhor
K = dα♯ (dK − (Rα ⌟ dK)α). (3-30)

Hence, the Hamiltonian vector field is equal to

XK = Ψ−1
α (K) = −KRα + dα♯ (dK − (Rα ⌟ dK)α). (3-31)

In Darboux coordinates, we have:

XK = (
n

∑
i=1

pi
∂K

∂pi
−K) ∂

∂q0 −
n

∑
i=1
(∂K

∂qi
+ pi

∂K

∂q0)
∂

∂pi
+

n

∑
i=1

∂K

∂pi

∂

∂qi
. (3-32)

To apply the contact Hamiltonian formalism to dissipative mechanical systems, we first require
a manifold with a suitable contact structure. This contact structure is derived from the
principles of thermodynamics in the next section.

11The notation Γ(Z) refers to the set of smooth sections of the bundle Z.
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3-2-3 Contact geometry in dissipative mechanics

In order to motivate the thermodynamic underpinning of the contact structure, the next
section first discusses the traditional role of contact geometry in thermodynamics. Subse-
quently, these thermodynamic principles are then exploited to establish a contact structure
for dissipative mechanical systems.

Contact geometry in classical thermodynamics

It has been argued in the past by several authors that contact geometry is the natural frame-
work for thermodynamics by i.a. Arnol’d [8, 14, 26, 28], Bamberg and Sternberg [29], Burke
[30] and Hermann [31], ultimately leading back to the seminal work of Gibbs [32]. It is com-
monly seen as a testament to the brilliance of Gibbs’ work that he managed to recognize and
describe the correct geometric framework well before the required mathematical infrastructure
was invented [33]. In recent years, the contact Hamiltonian formalism has been succesfully
applied to thermodynamic theory by e.g. Mrugała et al. [34], Mrugała [35, 36, 37, 38, 39],
Balian and Valentin [40], van der Schaft [41], van der Schaft and Maschke [42], Maschke and
van der Schaft [43], Bravetti et al. [22], and Simoes et al. [44].

Contact geometry arises in thermodynamics as a consequence of the first law, which asserts
that the change in internal energy of the system is equal to the difference between the heat
added to the system and the work performed by the system.

The first law of thermodynamics To state the first law in the language of exterior forms,
define the 1-forms η and β as the differential amounts of heat and work (in respective order)
added to the system. η and β are 1-forms that are generally not closed [29, 45]. However, the
first law states that the difference between them is a closed form. Locally, this closed form
can be written as the gradient of a function called the internal energy U . Hence, we state the
first law as12:

dU = η − β. (3-33)

This equation can be equivalently expressed as the fact that the 1-form

α = dU − η + β (3-34)

should pull back to zero over the physical trajectories of the systems.

The Gibbs 1-form For the purposes of illustration, we now apply this concept to what is
arguably the most simple thermodynamic system: the ideal gas in a piston.

The ideal gas is characterized by five thermodynamic properties: temperature T , entropy
S, volume V , pressure P , and the internal energy U . We call the five-dimensional space
containing all the possible states the thermodynamic phase space.

12By using differential forms, the inexactness of the heat and work differentials need not be explicitly
emphasized by means of additional notation such as δ or đ.
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26 Geometric Structures in Dissipative Mechanics

For the ideal gas, the work done by the system is equal to the pressure multiplied by the change
in volume, i.e. β = P dV . Furthermore, heat added to the system is given by the temperature
multiplied by the change of energy: η = T dS [8, 29, 33]. Therefore, Equation (3-34) becomes

αG ∶= dU − T dS + P dV , (3-35)

which is called the Gibbs form (hence the subscript). It is clear that the Gibbs form defines a
contact structure on the thermodynamic phase space (these are Darboux coordinates). Along
the physically allowable trajectories, the Gibbs form must pull back to zero.

Legendre submanifolds In contact geometry, submanifolds on which the contact form van-
ishes everywhere are called Legendre submanifolds. As such, these submanifolds are vital in
thermodynamics, because they represent the allowable states (Balian and Valentin [40] call
them thermodynamic manifolds). Due to the nonintegrability condition on the contact struc-
ture, Legendre submanifolds have at most dimension n if the overall contact manifold is of
dimension 2n + 1.

For the ideal gas, the Legendre submanifolds are two-dimensional. They can be computed
explicitly by integrating the Gibbs form. To do so, we need two additional equations of state,

U = c ns Rg T P V = ns Rg T, (3-36)

where ns is the amount of substance, Rg = 8.314 J
mol K is the ideal gas constant and c is another

constant dependent on the molecular nature of the gas13.

In addition, the internal energy is, by definition, a function of the extensive state properties:
in this case, the entropy and the volume. We can therefore integrate the Gibbs form by
rearranging the equations of state to express T and P in terms of S and V as well. Integrating
Equation (3-35) yields

U = log(C0) e
S

cnsRg V
−1
c , (3-37)

where C0 is an integration constant. Since U = U(S, V ), we have that

dU = ∂U

∂S
dS + ∂U

∂V
dV . (3-38)

Hence, we can fully specify a Legendre submanifold by the integrated equation and the fol-
lowing conditions

T = ∂U

∂S
P = −∂U

∂V
. (3-39)

Contact geometry of the damped harmonic oscillator

The damped harmonic oscillator is shown in Figure 3-3, together with its bond graph repre-
sentation. We assume here that this system is completely isolated: there is no exchange of
energy or matter with the environment.

13For a monatomic gas, c = 3
2 .
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Figure 3-3: The left figure shows a schematic of the mechanical damped harmonic oscillator with
mass m, spring constant k, and damping constant b. The bond graph representation is shown on
the right. In addition to the I- and R-element in Figure 3-1, there is now an R-element as well.

Energy balance of the damped oscillator We distinguish two types of energy that can be
stored in the damped oscillator system: microscopic and macroscopic energy.

Microscopic energy consists of the kinetic energy of particles that do not result in an overall
observable motion of the system. This energy is called internal energy U and manifests itself
as temperature.

Internal energy is stored in a ‘heat bath’. This is to be interpreted loosely: it can be the damper
fluid, but also the surrounding air (although a heterogeneous medium will not allow for an
unambiguous notion of temperature). We will not be concerned with all these possibilities
and consider a single heat bath with a single temperature: generalizations to more complex
thermodynamic systems are immediate.

In contrast, macroscopic energy is observable, either due to an observable motion of the system
(kinetic energy) or the energy resulting from external force potentials (potential energy).
Their sum is called the mechanical energy E: in the damped harmonic oscillator, it is the
sum of the kinetic energy stored in the mass (I-element) and the potential energy stored in
the spring (C-element).

Since the system is isolated, the first law states that

d(E +U) = 0. (3-40)

Let us now decompose the system into two subsystems, one containing the mass and the
spring and one the heat bath, as illustrated in Figure 3-4.

Through the dissipative action of the damper, energy flows from the mechanical subsystem
to the heat bath. We can apply the first law to the subsystems separately, too: the first
subsystem performs work on the damper, which manifests itself as the heat added to the heat
bath. We therefore have

dE = −β,

dU = η,

(3-41)

where β is the (differential) work done by the mechanical subsystem on the damper and η is
the (differential) heat added to the second subsystem as a result of this.

As a consequence of Equation (3-40), we have that β = η; i.e. all the work done by the damper
enters the fluid as heat. For a linearly damped system, the work form is by definition equal
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Figure 3-4: System boundaries of the damper-oscillator system. The mechanical subsystem
stores mechanical energy E in the form of kinetic and potential energy, while the heat bath stores
internal energy in the form of heat. The damper forms an interface between them.

to
β ∶= γp dq , (3-42)

with γ ∶= b/m being the damping coefficient of the damped oscillator.

Contact structure for the damped oscillator We now define the phase space of the system
to be equal to M = R×T∗Q, where Q is the configuration space considered in Section 3-1. For
the damped harmonic oscillator, Q = R. Using (U, q, p) as coordinates for M , we can define
a contact form on this space by combining Equation (3-41) and Equation (3-42):

α = dU − γp dq . (3-43)

This contact form specifies precisely how mechanical energy is dissipated in the system and
enters the reservoir that is the heat bath, characterized by its internal energy U .

Observe from Equation (3-43) that dα = γ dq ∧ dp, i.e. a multiple of the symplectic form
used in Section 3-1. As such, the contact form contains both information about the rate of
dissipation present in the system, and about the pairing of the conjugate variables p and
q. We get the latter for free in this particular instance, since the pairing in this simple
three-dimensional system is rather trivial.

It is important to note that, in the general case, a 1-form that describes the dissipation in
the system is under no obligation to be of this very specific form (that is, one that pairs the
conjugate variables). As such, we cannot expect this situation to occur in general: this is the
subject of Section 3-3.
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Contact Hamiltonian system for the damped harmonic oscillator

With the contact structure defined, we can now establish the contact Hamiltonian system for
the damped harmonic oscillator using Equations (3-28), (3-30) and (3-31).

Recall that the Hamiltonian vector field is split into a horizontal and vertical component,
which belong respectively to the kernel of α and dα.

Vertical component of the Hamiltonian vector field The Reeb vector field Rα associated
with the contact form given in Equation (3-43) is

Rα =
∂

∂U
. (3-44)

As such, the vertical component of the Hamiltonian vector field is, in accordance with Equa-
tion (3-28):

Xver
K = −K

∂

∂U
. (3-45)

However, we can only guess what the Hamiltonian function might be. Indeed, its definition
is rather circular, since the vertical part of the vector field is defined in terms of the vertical
part and vice versa.

Horizontal component of the Hamiltonian vector field The horizontal part is obtained by
projecting dK (an arbitrary exact form) to a semi-basic form, and mapping it to a vector
field using the isomorphism dα♯ like so:

Xhor
K = dα♯ (dK − (Rα ⌟ dK)α). (3-46)

The Hamiltonian is a function on the contact manifold M , i.e. K =K(U, q, p). In coordinates,
the projected form is

∂K

∂q
dq + ∂K

∂p
dp + ∂K

∂U
γp dq . (3-47)

The projection thus removes any term in dU (which makes it semi-basic).

Recall that dα = γω. Therefore, we can compare the above equation to the purely symplectic
case without dissipation, where the isomorphism is provided by ω (cf. Equation (3-8)). The
difference here is (apart from the factor γ) that we have to project dK by means of the term
(Rα ⌟ dK α). In the conservative case, the symplectic Hamiltonian H is simply equal to the
mechanical energy E:

H(p, q) = E(p, q) = p2

2m
+ 1

2
kq2. (3-48)

It is, therefore, reasonable to expect that the form in Equation (3-47) contains the differential
of E (representing the conservative side, or the I- and C-element) plus an extra term that
enforces the dissipation (R-element).

Clearly, the rightmost term in Equation (3-47) is the work form of the damper, i.e. the amount
of energy escaping from E. We can thus conjecture that the first two terms in Equation (3-47)
amount to dE.
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However, there is one complication: dα contains the factor γ. To cancel this factor out, we
include γ in the Hamiltonian as well. Hence, we have that

∂K

∂q
dq + ∂K

∂p
dp = γ (∂E

∂q
dq + ∂E

∂p
dp), (3-49)

and let
∂K

∂U
= γ. (3-50)

As a result, the gradient of the Hamiltonian is equal to

dK = γ (dE + dU), (3-51)

and we obtain the correct Hamiltonian up to a closed form

K(p, q, U) = γ [E(p, q) +U] = γ ( p2

2m
+ 1

2
kq2 +U). (3-52)

Hence, the Hamiltonian function is equal to the total amount of energy in the system, both
mechanical and internal, multiplied by the damping coefficient.

Now to derive the horizontal component of the vector field. The interior product of dα with
the basis vectors yields:

∂

∂q
⌟ dα = γ dp

∂

∂p
⌟ dα = −γ dq (3-53)

Clearly, the image of this mapping for any vector field is a semi-basic form. The inverse
mapping must, to qualify as an isomorphism, map a semi-basic form back to a horizontal
vector field (i.e. one that is in the kernel of α). Hence, we have that

dα♯ (dq) = −1
γ

∂

∂p
, dα♯ (dp) = 1

γ

∂

∂q
+ p

∂

∂U
. (3-54)

The term in dU ensures that the vector field is horizontal. Using this mapping and the
expression for the Hamiltonian in Equation (3-52), we obtain the horizontal component of
the Hamiltonian vector field:

Xhor
K = p

m

∂

∂q
− (γp + kq) ∂

∂p
+ γ

p2

m

∂

∂U
. (3-55)

Equations of motion Combining Equation (3-45) and Equation (3-55), the Hamiltonian
vector field is

XK =
p

m

∂

∂q
− (γp + kq) ∂

∂p
+ (γ p2

m
−K) ∂

∂U
. (3-56)

The corresponding equations of motion are

q̇ = p

m
,

ṗ = −kq − γp,

U̇ = γ
p2

m
−K(q, p, U) = γpq̇ −K(q, p, U).

(3-57)
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The correct dynamics are certainly obtained for p and q. However, from a physical standpoint,
we expect U̇ to be the rate of energy (i.e. the power) dissipated by the damper, i.e. equal
to γpq̇. However, the additional term −K(q, p, U) (a result of the vertical component of the
vector field) contributes to the rate of change of U as well, ‘spoiling’ the physical dynamics.

If we wish to impose that U indeed be the internal energy of the heat bath, the vertical vector
field must vanish. This is the case only if the Hamiltonian is numerically equal to zero: K = 0.
This equation is a so-called weak equality, as opposed to a strong or identical equality. In the
former case, the Hamiltonian is numerically equal to zero, but its partial derivatives do not
vanish. That is to say, there is a specific submanifold of M on which K vanishes, but we are
allowed to make variations that are not necessarily tangent to this submanifold (see Dirac
[46] for further details). On this submanifold, the equations of motion read

q̇ = p

m
, ṗ = −kq − γp, U̇ = γpq̇. (3-58)

which indeed represent the damped harmonic oscillator with U being the dissipated energy.

From a thermodynamic standpoint, energy is only determined up to an additive constant, so
this assertion would be admissible conceptually. Additionally, a value of 0 for the total energy
is a common convention in literature, see for example Fermi [47].

The assertion that the Hamiltonian must be equal to zero is an important difference between
this work and the existing literature on this subject. The applicability of contact Hamiltonian
systems has already been recognized from a mathematical standpoint by Bravetti et al. [6],
resulting in the equations of motion including the vertical vector field. However, when the
variables are given a physical interpretation (in particular, the ‘extra dimension’ represented
by the internal energy U) as we do here, the vanishing of the Hamiltonian is crucial. Leaving
the vertical vector field in leads to extra ‘parasitic’ dynamics that are unphysical and delude
us from the intended meaning of the variable U .

Why the Hamiltonian must vanish The assumption that the contact Hamiltonian should
be equal to zero is rather striking, and the preceding arguments do not provide a sound
mathematical basis for it. Indeed, we could (and should) be quite leery of canceling terms
using zero factors, for it often leads to unanticipated consequences or even downright contra-
dictions. This is why we provide some more mathematically oriented arguments to show that
this is indeed allowed.

Recall from Equation (3-19) that, by definition, K = −XK ⌟ α. In the previous section, we
defined Legendre submanifolds as manifolds on which the contact form pulls back to zero:
in other words, tangent vectors to a Legendre manifold produce zero when contracted with
the contact form. So, K measures in essence how ‘non-Legendrian’ an integral manifold of
XK is. We have stipulated earlier that Legendre submanifolds contain physically meaningful
trajectories. That is, the dynamics must take place on a Legendre submanifold to be physical,
which is why K = 0.

As an additional argument, we can show that

£Xhor
K

K = 0 ⇒ dK

dt
=£Xver

K
K = −K

∂K

∂U
. (3-59)
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Figure 3-5: Integral curves of XK for b = 0.3 kg
s , m = 1 kg and k = 10 kg

s2 . The left plot shows
the physical trajectory (K = 0) in black, together with some neighboring non-physical trajectories
that approach the black trajectory with increasing time. The trajectories on the right are all
unphysical but show the case where we would choose a zero initial value for U (also with some
perturbations). The ‘wobble’ is caused by the exponentially decaying value of the Hamiltonian
being counterbalanced by the nonuniform decrease of the mechanical energy in the system. In
this case, U clearly does not represent the internal energy of the heat bath or any other physical
variable.

Hence, if the Hamiltonian does not vanish, it evolves exponentially over time (for its change
is proportional to its own value). If γ > 0, the Hamiltonian decays exponentially from its
initial value:

K(t) =K0 e−γt. (3-60)

As a result, any nonphysical trajectories will approach a Legendre submanifold as time pro-
ceeds; the associated vector fields also become ever more tangent to the Legendre submanifold.

Based on the expression for K, an expression for U may also be derived:

U(t) = 1
γ
(K0 e−γt −E). (3-61)

If K = 0, the internal energy is equal to the negative of the mechanical energy in the system.
These findings are illustrated by Figure 3-5: the left plot shows perturbations of the ‘ideal’
physical trajectory. The right plot shows the trajectories for an initial value of U = 0 (also
with perturbations); as a result of the above equation, U ‘wobbles’ around its zero point; but
it is clearly not a physical trajectory.

Finally, recall that the contact form α is not uniquely determined with respect to the asso-
ciated contact structure. It can be multiplied with any nonzero function and still represent
the same contact structure.
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We can regard this ambiguity as a gauge transformation of the system (cf. Balian and Valentin
[40]). However, the Hamiltonian is not intrinsically invariant under these transformations;
if α′ = fα (f being a function without zeros), then the mapping Ψ ′α and the corresponding
Hamiltonians are also different: [24, p. 321]

Ψ−1
α′ (K) = Ψ−1

α (
1
f

K). (3-62)

The vertical component is directly dependent on the numerical value of the Hamiltonian.
As a result, the only way to maintain invariance under the gauge transformation (which we
assert to be crucial for it to be of physical significance) is to set K = 0.

In the following section, we exploit the intrinsic ambiguity of the contact 1-form to symplectify
the contact Hamiltonian system.

3-2-4 Symplectification of contact Hamiltonian systems

In this section, we use a procedure called symplectification to cast the contact manifold of
the previous section on a symplectic manifold in a canonical fashion. The advantage of this
method is that the calculations for the dynamics are considerably simplified since we can use
the theory for symplectic Hamiltonian systems outlined in Section 3-1. To quote Vladimir
Arnol’d, who originally came up with the concept of symplectification, [26, 41]

“One is advised to calculate symplectically but to think rather in contact geometry
terms.”

In addition, we show that the resulting symplectified Hamiltonian system explains the par-
ticular form of a widely adopted existing model for the damped harmonic oscillator: the
time-dependent Caldirola-Kanai Hamiltonian.

Symplectification of contact manifolds

To make the process of symplectification mathematically precise, we first need to move to a
slightly different space than the manifold M used in the previous section. M is the product
manifold of the cotangent bundle of Q (the space of the position q) with the real line to accom-
modate for the internal energy U . In contrast, we now start with the extended configuration
manifold Qe ≅ R2, equipped with an extra position coordinate qe

14. That is,

(qe, q) ∈ Qe. (3-63)

14In this case, the ‘0’ is a label for the extra position coordinate qe — we wish not to refer to the other
position as q1 because there is only one real position of the mass. Because the other coordinates are not
numbered, we do not make the notational distinction between contravariant and covariant components, and
use a subscript to label the extra coordinates.
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Figure 3-6: A contact element on the manifold Qe is a line through the origin in the tangent
space. The manifold of contact elements of Qe is the space of all contact elements at every
tangent space to Qe.

The manifold of contact elements Consider now the manifold of contact elements of Qe.
This is a fiber bundle with base Qe, and the fibers at each point are the space of lines
(through the origin) in the tangent space to Qe at that specific point. For more details about
the manifold of contact elements, the reader is referred to Appendix B.

The fibers of this bundle are projective spaces; more specifically, they are diffeomorphic to the
real projective line PR. The fibers are therefore compact manifolds. It can be shown that the
manifold of contact elements of Qe (or any manifold) is diffeomorphic to the projectivization
of its cotangent bundle T∗Qe: we denote this by PT∗Qe [14, 23, 24].

The manifold PT∗Qe is three-dimensional. Consider a chart for PT∗Qe with coordinates
(qe, q, p), where p represents the slope of the line in the tangent space, illustrated in Figure 3-
6. This chart cannot cover the entire manifold, for the fiber is compactified at the point p = ∞
(in this specific chart).

Because p is meant to represent momentum, and infinite momentum lies outside our realm
of interest, this space can be thought of as roughly equivalent (for practical purposes) to
M . That is to say, by disregarding the point p = ∞, we end up with a manifold that is
diffeomorphic to M .

The manifold of contact elements PT∗Qe is equipped with a natural contact structure [14],
represented by

αe = dqe − p dq . (3-64)

Observe the similarity with the contact form α defined in Equation (3-43):

αe =
1
γ

α, qe =
U

γ
. (3-65)

Because the contact forms differ simply by multiplication, they represent the same contact
structure (provided that γ is nonzero).

Contact Hamiltonian system in Darboux coordinates The contact Hamiltonian system
(M, α, K) of the damped harmonic oscillator can be defined on the manifold of contact ele-
ments as well, with the silent understanding that M and PT∗Qe are slightly different from a
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topological perspective. Since the new contact form is scaled by 1
γ , we can use Equation (3-62)

to find the new Hamiltonian Ke:
Ke =

1
γ

K. (3-66)

Furthermore, because U = γqe, the contact Hamiltonian in the new coordinates is

Ke(qe, q, p) = p2

2m
+ 1

2
kq2 + γqe. (3-67)

Numerically, Ke is equal to the total energy in system (the scaling factor is removed). Observe
also that the units of the Hamiltonian have been changed from power to energy.

The corresponding Hamiltonian vector field is then

XKe =
p

m

∂

∂q
− (γp + kq) ∂

∂p
+ [p

2

m
−Ke(qe, q, p)] ∂

∂qe
. (3-68)

If we enforce that K = 0 (as motivated in the previous section), then Ke vanishes as well and
the vector field becomes

XKe ∣Ke=0 =
p

m

∂

∂q
− (γp + kq) ∂

∂p
+ p2

m

∂

∂qe
. (3-69)

This contact Hamiltonian system can be lifted to the symplectification of the contact manifold
PT∗Qe.

Symplectification of a contact Hamiltonian system The procedure known as symplecti-
fication of a contact manifold turns a contact manifold in a symplectic manifold, thereby
raising its dimension by one. The power of this method resides in the fact that this can be
done in a canonical fashion: it is uniquely determined by the contact structure of the contact
manifold [14].

The symplectification procedure exploits the natural ambiguity that contact forms have, and
that has been pointed out in Section 3-2-1. Multiplying the contact form αe with any nonzero
real number15 λ ∈ R×

λ(dqe − p dq). (3-70)

The above expression represents all the contact forms that give rise to the same contact
structure as αe. Hence, if λ is considered to be an additional coordinate in its own right, we
move to a four-dimensional space with coordinates (qe, q, p, λ); this is the space of all contact
forms on the contact manifold.

We now adopt the coordinates ρ and ρe, defined as follows

ρ ∶= −λp ρe ∶= λ. (3-71)

In these coordinates, Equation (3-70) becomes

ρe dqe + ρ dq =∶ ϑe. (3-72)
15R× denotes both the real multiplicative group and the underlying set, being the real line excluding zero.
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Observe that this is precisely the Liouville form on the cotangent bundle T∗Qe in Darboux
coordinates, denoted by ϑe. From this form, we obtain the canonical symplectic structure on
T∗Qe as follows

ωe ∶= −dϑ = dqe ∧ dρe + dq ∧ dρ . (3-73)

The coordinate λ, and therefore ρe and ρ, are not canonical coordinates, for they depend on
the particular choice of the contact form, to begin with. Indeed, in this particular choice of
αe one point in the fiber is left out (p = ∞), which effectively rules all the points for which
ρe = 0.
In reality, only the points for which both ρ and ρe vanish should be taken out of the manifold,
because the other cases can be covered by picking a different coordinate chart (this will be
made clear later). The resulting space is the cotangent bundle of Qe without its zero section,
denoted by Ṫ∗Qe [24, 41].
As illustrated by the point above, the former discussion relies heavily on the choice of the
particular coordinate chart. Therefore, we wish to make the symplectification procedure more
mathematically precise using the language of principal bundles.

Liouville geometry and principal G-bundles

A principal G-bundle is a smooth bundle P
σÐ→ B, where P is equipped with a free right

G-action ◂ , G being a Lie group [48]. Furthermore, let

P

B

σ ≅bundle

P

P /G
σ′

where σ′ is the quotient map that sends each point in P to the corresponding point in the
orbit space P /G. In other words, if we define the equivalence relation between two points
x1, x2 ∈ P as

x1 ∼ x2 ∶⇔ ∃g ∈ G ∶ x2 = x1 ◂ g, (3-74)
then

σ′ ∶ P → P /G ∶ x↦ [x]∼, (3-75)
with [x]∼ being the equivalence class with respect to ∼ and P /G = P / ∼.16

Principal R×-bundles In our context of symplectification, the Lie group in question is the
real multiplicative group R×. The group acts on the cotangent bundle of Qe without zero
section17 (i.e. Ṫ∗Qe) through dilation of its fibers. In the coordinates defined above, we define
the group action ◂R× as:

◂ ∶ Ṫ∗Qe ×R× → Ṫ∗Qe ∶ (qe, q, ρe, ρ) ◂ λ = (qe, q, λρe, λρ) λ ∈ R×. (3-76)
16This is the definition used in the lectures of F. P. Schuller, see [48].
17The zero section must be removed from the cotangent bundle because otherwise, the group action defined

above is not free (the origin of any cotangent space is stabilized by the entire group). If the group action is
free, the orbits are diffeomorphic to the group itself. if this is not the case, not all the orbits are diffeomorphic
to each other, and the ‘bundle of orbits’ would not be a fiber bundle. In this case, the origin (being the orbit
of the origin) is of course not diffeomorphic to the other orbits (lines with a point removed).
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The orbit space of Ṫ∗Qe with respect to ◂R× is precisely equal to the projectivization of the
cotangent bundle PT∗Qe. As a result, we have the principal R×-bundle structure given by
the following diagram:

Ṫ∗M

Ṫ∗M

PT∗M.

◂R×

σ

The symplectification Ṫ∗Qe is therefore a principal R×-bundle, with as base manifold the
contact manifold PT∗Qe. The projection map σ is equal to

σ ∶ Ṫ∗Qe → PT∗Qe ∶ (qe, q, ρe, ρ) ↦ (qe, q,−ρ/ρe). (3-77)

A geometric picture of this construction is given in Figure 3-7. Both Ṫ∗Qe and PT∗Qe are
also bundles over the extended configuration space Qe. The fiber Ṫ∗xQe is the cotangent space
to x without the origin. The group action ◂R× manifests itself as dilations of the fiber: this
is indicated by the arrows. The orbits of this group are lines through the origin, with the
origin removed (which are diffeomorphic R× itself, since the action is free).

Delft Center for Systems and Control

x

q

qe

ρe

ρ

p

1σ

Ṫ∗xQe PT∗xQe

Qe

Figure 3-7: Illustration of the principal R×-bundle Ṫ∗M πÐ→ PT∗M . x is a point in the extended
configuration space Qe, where we attach fibers Ṫ∗xQe and PT∗xQe. The orbits of the group action
◂R× on Ṫ∗Qe are identified by σ and mapped to the orbit space PT∗M .

The space of all orbits is a circle with antipodal points identified, which is again diffeomorphic
to a circle: this is the space PR, and it is the fiber PT∗xQe of PT∗Qe at the point x. The
projection map that takes a point in PT∗xQe to its associated point in the orbit space is σ.
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In Figure 3-7, the coordinate chart used for PT∗Qe is indicated as well: p = −ρ/ρe, which is
the negative of the slope of that line. This coordinate chart covers almost the entire fiber,
apart from one point (representing an orbit): the north and south poles of the circle on the
right.

From the perspective of PT∗Qe, ρe and ρ can also be seen as homogeneous coordinates for
this space.

Principal bundles in system theory To illustrate the concept of principal bundles and their
relevance, we give an instructive example of principal bundles in control theory. For more
information, the reader is referred to Hermann [49].

Linear time-invariant (LTI) systems can be represented both as a collection of state-space
matrices or in the frequency domain using a transfer matrix. The state-space representation
is typically specified by a collection of four matrices: A, B, C, D. For an LTI system with n
states, m inputs and o outputs, we have:

A ∈ Rn×n, B ∈ Rn×m, C ∈ Ro×n, D ∈ Ro×m. (3-78)

Hence, the ‘manifold of LTI systems’ with these dimensions is diffeomorphic to [50]

R`, ` = n2 + nm + on + om. (3-79)

This is the total space of the principal bundle.

A state space representation of a transfer matrix is not unique: any similarity transform of the
state space yields different state space matrices that correspond to the same transfer matrix.
Hence, the structure group is in this case the general linear group of dimension n, GL(n,R),
which contains all the similarity transforms. The group action ◃GL(n,R) is defined as follows:

(A, B, C, D) ◃ T = (TAT −1, TB, CT −1, D). (3-80)

The orbit space R`/GL(n,R) can be identified with the space of transfer matrices. The
projection map that takes the state space representation to a transfer matrix is given by

σ(A, B, C, D) = C(sI −A)−1B +D, (3-81)

which is invariant with respect to the group action.

The topology of the orbit space, and therefore of the space of transfer matrices, is highly
nontrivial. This makes the process of system identification very challenging, for there are
usually no easy coordinate charts of this space [49, 50].

Homogeneous Hamiltonian systems

In this section, we will lift the contact Hamiltonian system defined in Section 3-2-3 to the
symplectified manifold, resulting in a symplectic Hamiltonian system with a Liouville struc-
ture.
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Liouville structures The symplectified space Ṫ∗Qe has a symplectic structure because the
cotangent bundle (with zero section removed) is canonically equipped with one. Moreover,
the group action that makes it into a principal bundle provides an augmented structure: a
symplectic Liouville structure, which requires that the symplectic 2-form is homogeneous of
degree 1 with respect to the group action ◂R×. That is,

(◂λ)∗ωe = λ ωe, λ ∈ R×, (3-82)

where ∗ refers to the pullback of the mapping ◂λ. This condition is indeed satisfied for ωe as
defined in Equation (3-73) [24]. Because the group action ◂R× is free, the symplectic Liouville
structure is said to be fibered [24].

It can be shown that there is again a mapping between the smooth functions on the manifold
with Liouville structure and vector fields that preserve this structure18, along the same line as
for the symplectic manifolds in Section 3-1 and the contact manifolds earlier in this section.

The smooth functions, in this case, are not completely arbitrary, since they must also comply
with the Liouville structure. More precisely, they must be homogeneous of degree 1 with
respect to the group action ◂R×. For a function H on Ṫ∗Qe to be homogeneous means that
it must satisfy the following condition:

(◂λ)∗H = λH. (3-83)

In the coordinates defined above, this is equivalent to:

H(qe, q, λρe, λρ) = λH(qe, q, ρe, ρ) λ ∈ R×, (3-84)

which is to say that H commutes with the group action ◂ .

Thus, we have an isomorphism between the vector fields preserving the Liouville structure
and the homogeneous functions on the manifold. Because we are dealing with a symplectic
manifold, the Hamiltonian isomorphism is defined in terms of the symplectic form ωe like so
(and in an identical fashion to Equation (3-7)),

ω♯e(dH) =XH. (3-85)

This gives rise to the notion of homogeneous Hamiltonian systems, consisting of a manifold
with fibered symplectic Liouville structure and a homogeneous Hamiltonian function H.

Equations of motion for the symplectified system The contact Hamiltonian system for
the damped harmonic oscillator, as defined by Equation (3-67), can now be lifted to a homo-
geneous Hamiltonian system on the symplectified space. The relation between the contact
Hamiltonian and the corresponding homogeneous Hamiltonian is defined as [14, 24, 41]

Ke(qe, q, p) =H(qe, q,−1, p), (3-86)

or equivalently
H(qe, q, ρe, ρ) ∶= −ρeKe(qe, q,− ρ

ρe
). (3-87)

18For a vector field X to preserve the Liouville structure means (i) that it preserves ωe, i.e. £Xωe = 0, and
(ii) that it is invariant under the group action: (◂λ)∗X =X (λ ∈ R×).
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Based on Equation (3-67), we obtain the following expression for the homogeneous Hamilto-
nian:

H(qe, q, ρe, ρ) = −ρe [
1

2m
(− ρ

ρe
)

2
+ 1

2
kq2 + γqe]. (3-88)

The Hamiltonian vector field is easily obtained, for we can use the mapping ω♯e. As already
mentioned this is a major advantage of performing calculations in the symplectified space.
We have

XH = ω♯e(dH), (3-89)

with
dH = ∂H

∂qe
dqe +

∂H

∂q
dq + ∂H

∂ρe
dρe +

∂H

∂ρ
dρ . (3-90)

It is instructive to first specify the partial derivatives of H in terms of Ke, so as to compare
the generic equations of motion obtained from H to those obtained from Ke (cf. Equation (3-
68)). Using Equation (3-87), the partial derivatives can be expressed in terms of the contact
Hamiltonian Ke:

∂H

∂q
= −ρe

∂Ke

∂q
,

∂H

∂qe
= −ρe

∂Ke

∂qe
,

∂H

∂ρ
= −ρe

∂Ke

∂p

∂p

∂ρ
= ∂Ke

∂p
,

∂H

∂ρe
= −Ke − ρe

∂Ke

∂p

∂p

∂ρe
= −Ke −

∂Ke

∂p

ρ

ρe
= ∂Ke

∂p
p −Ke.

(3-91)

The homogeneous Hamiltonian vector field is then

XH = (
∂Ke

∂p
p −Ke)

∂

∂qe
+ ∂Ke

∂p

∂

∂q
+ ρe

∂Ke

∂qe

∂

∂ρe
+ ρe

∂Ke

∂q

∂

∂ρ
. (3-92)

The equations of motion qe and q remain identical to those obtained earlier. This is to be
expected, since otherwise, the dynamics of the symplectified system could not correspond to
the dynamics of the contact Hamiltonian system.

For ρe, we have
ρ̇e = ρe

∂Ke

∂qe
= ρe

∂Ke

∂qe
= γρe ⇒ ρe = Ceγt, (3-93)

where C is an integration constant which we can choose to be 1, so ρe(t) = eγt.

In addition, ρ̇ = ρekq = eγtkq. Since p = −ρ/ρe, the dynamics of p can be obtained from ρ̇e and
ρ̇ using the product rule:

ṗ = − ρ̇

ρe
+ ρ

ρe

ρ̇e

ρe
= −kq − γp, (3-94)

which is equivalent to the expression obtained in Section 3-2-3.

Observe that these equations of motion are invariant under the earlier defined group action
◂R×, which means that the vector field indeed preserves the Liouville structure.
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Liouville submanifolds In Section 3-2-3 we devoted considerable attention to the fact that
the contact Hamiltonian should be numerically equal to zero for the equations of motion
to represent a physical trajectory. This is equivalent to stating that the trajectories lie in
Legendre submanifolds.

As pointed out by van der Schaft [41] and Libermann and Marle [24], because of the equiv-
alence between contact and Liouville structures, the notion of Legendre submanifolds can
be lifted to the symplectified space as well. Indeed, from Equation (3-72) we can observe
that if αe pulls back to zero on the trajectories in the contact manifold, so should ϑe on the
lifted trajectories, for they only differ by multiplication with ρe. These are called Liouville
submanifolds; they are a special subclass of Lagrangian submanifolds19

Using Equation (3-92), we find the following (numerical) equality

[XH ⌟ ϑe](qe, q, ρe, ρ) = −ρeKe(qe, q,− ρ

ρe
), (3-95)

which means that the contact Hamiltonian (i.e. the total energy in the system) must be equal
to zero for the lifted trajectories to lie in a Liouville submanifold.

For yet another perspective regarding this point, we can make use of the symplectic nature of
the homogeneous Hamiltonian. Indeed, no matter what the value of Ke is, the homogeneous
Hamiltonian H must be constant over time because it does not explicitly depend on it. Since
the dynamics are symplectic, we can simply use Poisson brackets to support this fact:

Ḣ = {H, H} + ∂H

∂t
= 0. (3-96)

Hence, we can set the Hamiltonian equal to a constant, say H(t) = H0. But, we also know
from H = ρeKe = eγtKe. It is now very easy to see that Ke either decays exponentially (if
γ > 0), for it then cancels exactly the exponential growth of ρe, or it equals to zero. This is
equivalent to Equation (3-60). On Liouville submanifolds, both the homogeneous Hamiltonian
and the contact Hamiltonian vanish, which is equivalent to the particular choice of H0 = 0.

If we assume that the dynamics take place on a Liouville submanifold, the Hamiltonian vector
field becomes

XH∣H0=0 = −
1
m
( ρ

ρe
) ∂

∂q
+ 1

m
( ρ

ρe
)

2 ∂

∂qe
+ ρekq

∂

∂ρ
+ γρe

∂

∂ρe
. (3-97)

If this vector field is be projected to PT∗Qe we obtain Equation (3-69) using the pushforward
of the projection map σ.

Relation with the Caldirola-Kanai Hamiltonian

In this section, we show that the homogeneous Hamiltonian is equivalent to a well-known
existing model for the damped harmonic oscillator, the Caldirola-Kanai Hamiltonian (and
Lagrangian).

19Lagrangian submanifolds satisfy the weaker condition that the symplectic 2-form ωe vanishes when re-
stricted to them. This is implied by the vanishing of ϑe, but the converse is not necessarily true.
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The Caldirola-Kanai Hamiltonian, commonly attributed to Caldirola [1] and Kanai [2], is a
method to describe the linearly damped harmonic oscillator using a Lagrangian or Hamilto-
nian function that explicitly depends on time. It was originally motivated for the purposes
of quantum mechanics.

We depart from the Lagrangian function, for it depends directly on the physical coordinates
q and q̇, as opposed to the Hamiltonian. The Caldirola-Kanai Lagrangian is

LCK(q, q̇, t) = eγt(1
2

mq̇2 − 1
2

kq2). (3-98)

The correct equations of motion are readily derived through the Euler-Lagrange equations:

d
dt
(∂LCK

∂q̇
) − ∂LCK

∂q
= 0,

d
dt
(eγtmq̇) + eγtkq = 0,

eγt(mq̈ +mγq̇ + kq) = 0,

mq̈ +mγq̇ + kq = 0.

(3-99)

The Caldirola-Kanai Hamiltonian is obtained from the Lagrangian by means of a Legendre
transform. The Legendre transform is effected with respect to the canonical momentum

ρ = ∂LCK

∂q̇
= eγtmq̇, (3-100)

which is manifestly different from the kinematic momentum p =mq̇ = ρe−γt.

The Hamiltonian is then equal to

HCK = ρq̇ −LCK =
ρ2

2m
e−γt + 1

2
kq2eγt. (3-101)

Because the Hamiltonian is explicitly time-dependent, the associated Hamiltonian vector field
will be time-dependent as well20.

The construction of the vector field associated with a time-dependent Hamiltonian follows
the same construction rules as a normal Hamiltonian using the isomorphism defined by ω♯,
but ‘frozen’ at each instant of t. The Hamiltonian vector field on T∗Q is

XHCK = −eγtkq
∂

∂ρ
+ e−γt ρ

m

∂

∂q
. (3-103)

20A time-dependent vector field on a manifold N is a mapping X ∶ R×N → TN such that for each t ∈ R, the
restriction Xt of X to N ×{t} is a vector field on N [24]. An additional construction of importance, called the
suspension of the vector field, is the mapping

X̃ ∶ R ×N → T(R ×N) (t, n) ↦ ((t, 1), (n, X(t, n))), (3-102)

that is to say, the suspension lifts the vector field to the extended space that also includes t and assigns the
time coordinate with a trivial velocity of 1 [19].
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The suspension of this vector field on R ×T∗Q is

X̃HCK = −eγtkq
∂

∂ρ
+ e−γt ρ

m

∂

∂q
+ ∂

∂t
. (3-104)

The suspension is important because it allows us to perform the time-dependent transforma-
tion from the canonical momentum ρ to the kinematic momentum p: φ ∶ (q, ρ, t) ↦ (q, eγtp, t).
The transformed vector field in terms of the physical coordinates p, q, t is

φ∗(X̃HCK) = (−kq − γp) ∂

∂p
+ p

m

∂

∂q
+ ∂

∂t
, (3-105)

where φ∗ is the pushforward of the mapping φ. The extra term in p arises as a consequence
of the fact that the mapping from ρ to p depends also on t.
The similarity between the derivation of the equations of motion — in particular, the crucial
role of the product rule — and the one given by Equation (3-94) is striking. Indeed, if we
substitute into the Caldirola-Kanai Hamiltonian −ρe = eγt, we obtain

HCK = −
ρ2

2mρe
− ρe

1
2

kq2 = −ρe[
1

2m
( ρ

ρe
)

2
+ 1

2
kq2], (3-106)

which is precisely equal to the homogeneous Hamiltonian given in Equation (3-88) excluding
the term in qe. The dependence on qe is not required, since it is replaced by an explicit
dependence on time that would otherwise be used to produce the exponential factor eγt.
Many interpretations have already been given for the particular form of HCK; for example
through time-dependent canonical transformations, or by a rescaling of time itself (see i.a.
Tokieda and Endo [51], Caldirola [1] and Bravetti et al. [6]). Here we can see that the
Caldirola-Kanai can be regarded as alternative form of the homogeneous Hamiltonian system,
where the dynamics of the additional coordinates ρe and qe are replaced by their explicit
solution in time. Additionally, the role of the mysterious canonical momentum ρ is explained
as being a coordinate of the symplectified space, or as a homogeneous coordinate for the
underlying contact space21.

3-2-5 The harmonic oscillator with serial damping

In this section, we extend the method outlined in Section 3-2-3 to a harmonic oscillator with
two dampers: one in series and one in parallel. This system plays an important role in
Chapter 4.

System dynamics

The harmonic oscillator with two dampers is shown in Figure 3-8 together with the cor-
responding bond graph representation. Comparing this to Figure 3-3, there is another 0-
junction present in the system that compares flows (velocities) rather than efforts (forces).
The equations of motion can be readily derived:

mq̈1 = −kq − bpq̇1,

kq = bs(q̇1 − q̇)
(3-107)

21This has caused considerable confusion in literature, as stated by Schuch [52].
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Figure 3-8: Schematic of the harmonic oscillator with two dampers: one in series and one in
parallel. The corresponding bond graph representation is shown on the right.

Due to the presence of the serial damper, the situation is somewhat curious, since there are
two positions in the system; one measuring the spring deflection q and the position of the
mass q1. The subscript ‘1’ refers to the fact that q1 is the position measured at the 1-junction
in the bond graph shown in Figure 3-3. However, the node connecting the serial damper and
the spring has no mass, and therefore no second-order dynamics: as such, the overall order
of the system is two.
Whereas position is stored in a spring, but momentum is stored in a mass. Hence, we let
p = mq̇1 — but q̇ ≠ p/m in general. That is to say, a spring is naturally associated with a
position coordinate, while a mass has momentum, though its position does not partake in the
dynamics directly.
Using the damping coefficients γs ∶= k/bs and γp ∶= bp/m, the equations of motion become:

q̇ = −γsq + p/m

ṗ = −γpp − kq.
(3-108)

Contact Hamiltonian system

In order to establish the contact structure for the harmonic oscillator with two dampers, we
must find the expression for the work done by the system on the dampers. We will do so
using the structure of the bond graph shown in Figure 3-8.
Bonds carry two signals: an effort and a flow. Both can be assigned with a direction; they are
always opposite. The direction indicates whether either the effort or flow should be regarded
as the input of the element attached to the bond. For example, traditionally (though this is
a matter of convention), an I-element takes efforts as an input, and returns a flow. That is to
say, one applies a force to a mass with a change in velocity as a result. Conversely, a spring
is stretched along a certain distance to return a force proportional to it; it takes a flow and
returns an effort [53]. In a bond graph, this is indicated by a causality stroke, which is placed
at the side of the bond that determines the flow.
If a causality convention is chosen, all the I- and C-elements in the bond graph should conform
to this convention22. This is not the case for R-elements; they are indifferent to causality. The

22Not doing so leads to a differential algebraic system (DAE).
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reason for this is that there is no integral/derivative present in the mathematical description
of their dynamic behavior: they relate an effort and flow, which are both time derivatives.
So, depending on the system architecture, a particular R-element may receive an effort and
return a flow, or vice versa [53].

This can be observed from Figure 3-8: the serial damper (on the 0-junction) receives an effort
and returns a flow, while the parallel damper receives a flow and returns an effort (1-junction).
This distinction is reflected in the work form associated with the damper. For the parallel
damper, we have

βq = γp p
°

effort

× dq .
°
flow

(3-109)

The variable that is varied externally is the flow, hence dq.

For the serial damper, we have the opposite situation. Here, the effort is varied externally,
which is equal to −dp. The minus sign is a consequence of the power direction in the bond
connecting the 1-junction and 0-junction23. The flow is equal to q̇1 − q̇ = kq/bs = γsq (using
Equation (3-107)). Hence, we have

βp = γs q
°
flow

× −dp .
²
effort

(3-110)

Combining these work forms, we find the contact form for the system with two dampers:

α = dU − βq − βp = dU − γp p dq + γs q dp . (3-111)

The exterior derivative of the contact form α is then equal to

dα = (γs + γp)dq ∧ dp , (3-112)

and the Reeb vector field is simply
Rα =

∂

∂U
. (3-113)

Now to find the Hamiltonian and the system dynamics. In the following, we will only consider
the horizontal component of the Hamiltonian vector field, for the various reasons pointed out
in Sections 3-2-3 and 3-2-4. The horizontal component is given by (cf. Equation (3-30)):

Xhor
K = dα♯ (dK − (Rα ⌟ dK)α)

= dα♯ ((∂K

∂q
+ γpp

∂K

∂U
)dq + (∂K

∂p
− γsq

∂K

∂U
)dp).

(3-114)

The mapping dα♯ acts on the basis 1-forms as follows:

dα♯ (dp) = 1
γs + γp

( ∂

∂q
+ γpp

∂

∂U
) dα♯ (dq) = 1

γs + γp
(− ∂

∂p
+ γsq

∂

∂U
). (3-115)

23Intuitively, it is clear from Figure 3-8 that the force acting on the damper is proportional to the decrease
in momentum. Also, in Equation (3-108) we can observe that the damping force is negatively proportional to
q̇1, which is itself positively proportional to the momentum of the mass.
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The extra terms in ∂/∂U appear again to ensure that the vector field is horizontal.

Using the same reasoning applied in Section 3-2-3, we can observe that the contact Hamilto-
nian must be proportional to the sum of the mechanical and internal energy of the system.
In addition, we wish to cancel the factor (γs +γp) present in the mapping dα♯ by multiplying
the contact Hamiltonian with the same factor. Hence we, have

K = (γs + γp)(
p2

2m
+ 1

2
kq2 +U). (3-116)

Assuming again that K = 0, the contact Hamiltonian vector field is then:

XK =Xhor
K = ( p

m
− γsq) ∂

∂q
+ (−kq − γpp) ∂

∂p
+ (γp

p2

m
+ γskq2) ∂

∂U
, (3-117)

since the cross terms in ∂/∂U cancel out. Next to the familiar dissipated power for the
parallel damper, we also have the dissipated power of the serial damper

γskq2 = γsq
°
flow

× kq
¯

effort

, (3-118)

in the dynamics of U . Hence, this vector field yields the correct dynamics for p and q as given
by Equation (3-108), as well as for the internal energy U .

3-3 Jacobi structures for general systems

In this section, we take the concepts of Sections 3-1 and 3-2 one step further to more general
mechanical systems. In particular, we focus on multi-degree of freedom (MDOF) systems. As
it turns out, a contact structure is not sufficient to describe such systems. Instead, we use a
generalization of contact and symplectic structures, being Jacobi structures.

To illustrate the need for a Jacobi structure, we use the mechanical MDOF system shown in
Figure 3-9. The corresponding equations of motion are

q̇1 = p1
m1

,

q̇2 = p2
m2

,

ṗ1 = −
b1
m1

p1 −
b2
m1

p1 +
b2
m2

p2 − k1q1 − k2q1 + k2q2,

ṗ2 = −
b2
m2

p2 +
b2
m1

p1 − k3q2 − k2q2 + k2q1.

(3-119)

To proceed with the method discussed in Section 3-2-3, we have to find the work form that
specifies the work done by the system on the dampers. The work done on the first damper
(b1) is

β1 = (
b1
m1
)p1 dq1 . (3-120)
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Figure 3-9: Multi-degree of freedom mechanical system with two masses, two dampers, and
three springs. The corresponding bond graph representation is shown below.

The second damper (b2) is placed between the two masses; the flow is relative. The effort is
proportional to this flow; i.e.

β2 = b2(
p2
m2
− p1

m1
)d(q2 − q1) . (3-121)

Hence, the contact 1-form that specifies the dissipation is

α = dU − ( b1
m1
)p1 dq1 − b2(

p2
m2
− p1

m1
)d(q2 − q1)

= dU − [( b1
m1
+ ( b2

m1
))p1 − (

b2
m2
)p2]dq1 − [( b2

m2
)p2 − (

b2
m1
)p1]dq2 .

(3-122)

From this expression, we can observe a crucial difference with the contact forms of the single
degree of freedom systems (cf. Equations (3-43) and (3-111)). In contrast to the single-degree
of freedom case given in the previous section, α is here not of the form

dU − γϑ, (3-123)

where ϑ is the Liouville form on the cotangent bundle of the configuration manifold T∗Q.
This has important ramifications, for the Liouville form (and its exterior derivative) facili-
tates the pairing between the position and momentum coordinates. In the case of a single
degree of freedom system, the pairing is trivial because there is only one momentum and one
position coordinate. For more complicated systems this is no longer the case, as illustrated
Equation (3-122).
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The exterior derivative of α is

dα =[ b1
m1
+ ( b2

m1
)]dq1 ∧ dp1 − (

b2
m2
)dq1 ∧ dp2

+ ( b2
m2
)dq2 ∧ dp2 − (

b2
m1
)dq2 ∧ dp1 ,

(3-124)

which indicates indeed that there is also a ‘mixing’ of p1 and q2 and p2 and q1 in the resulting
2-form. As a result, the mapping dα♯ will not produce the mapping that we would expect in
the purely symplectic case.
From a conceptual standpoint, this is not quite surprising: there is no inherent reason why the
form that describes dissipation should somehow also include the pairing structure: they are
fundamentally different, and both are required for the geometric description of the mechanical
system. In the previous section, we were indeed rather lucky to find, in that particular case,
that the dissipation form α also included the pairing structure. This severely limits the
applicability of contact Hamiltonian systems to dissipative mechanical systems.
The multi-degree of freedom systems for which α is of the form dU − γϑ are those that do
exhibit no damping on the relative velocities of the masses, and for which all dampers have
the same damping coefficient. This is a very restrictive requirement, and we wish to do better.
To do so, we introduce a generalization of contact and symplectic structures called a Jacobi
structure in the next section, and subsequently apply it to the system shown in Figure 3-9.

3-3-1 Jacobi structures

A Jacobi structure on a manifold M is a bilinear mapping of the functions on M [54]

{ , } ∶ C∞(M) ×C∞(M) → C∞(M) ∶ (f, g) ↦ {f, g} (3-125)

called the Jacobi bracket. This mapping needs to satisfy three properties:

(i) it must be skew-symmetric
{f, g} = −{g, f}, (3-126)

(ii) it satisfies the Jacobi identity

{f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0, (3-127)

(iii) it is local
supp{f, g} ⊂ supp f ∩ supp g, (3-128)

where supp denotes the support of a function.

Manifolds equipped with a Jacobi structure are called Jacobi manifolds.
It can be shown that any Jacobi structure can be uniquely defined in terms of a bivector
field24 Λ and a vector field R. The corresponding Jacobi bracket is then given by: [24, 54]

{f, g} = Λ(df , dg) + f(R ⌟ dg) − g(R ⌟ df). (3-129)
24A bivector is the contravariant counterpart of a 2-form: it is a skew-symmetric tensor with valence (2, 0)

[55].
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Not just any combination of a bivector field and vector field give rise to a Jacobi structure.
As shown by Lichnerowicz [56], Λ and R must satisfy two conditions:

JΛ, ΛK = 2R ∧ Λ JR, ΛK = 0, (3-130)

where J , K is the Schouten bracket25. A Jacobi manifold is therefore a triple (M, Λ, R) [24].
A Jacobi structure induces a mapping from the functions on the manifold to the vector fields
on the manifold (sometimes called the Hamiltonian correspondence) [7, 58] defined as follows:

Ψ ∶ C∞(M) → X(M) ∶ Xf = Λ♯(df) + fR, (3-132)

where f is the Hamiltonian function, Xf the associated Hamiltonian vector fields. The sharp
mapping Λ♯ is defined as:

Λ♯ ∶ T∗M → TM ∶ Λ♯(η) = Λ ⌟ η, (3-133)

or equivalently
Λ(η, χ) = Λ♯(η) ⌟ χ. (3-134)

We will now demonstrate that both symplectic and contact manifolds are particular subclasses
of Jacobi manifolds.

Symplectic manifolds are Jacobi

For a symplectic manifold (M, ω) with dimension 2n, the vector field R is simply zero and
the bivector Λ field is defined by:

Λ(η, χ) = ω(ω♯(η), ω♯(χ)) η, χ ∈ Γ(T∗M), (3-135)

with ω♯ defined as in Equation (3-7).
If ω is expressed in Darboux coordinates, i.e.

ω =
n

∑
i=1

dqi ∧ dpi , (3-136)

then the associated bivector can be found to be Equation (3-132):

Λ =
n

∑
i=1

∂

∂qi
∧ ∂

∂pi
. (3-137)

The associated Jacobi bracket reverts to the familiar Poisson bracket on the symplectic man-
ifold. A Poisson structure is a particular instance of a Jacobi structure where the vector field
R is equal to zero. This makes the Poisson/Jacobi bracket also a derivation on the algebra of
smooth functions (over the real numbers). Consequently, Poisson brackets satisfy the Leibniz
property in addition to the conditions for Jacobi brackets given above [54].

25The Schouten bracket of an r-vector field A and an s-vector field B on a manifold is a (r + s − 1)-vector
field JA, BK, defined by its action on a closed (r + s − 1)-form ζ as follows:

JA, BK(ζ) = (−1)rs+sA ⌟ d(B ⌟ ζ) + (−1)rB ⌟ d(A ⌟ ζ) . (3-131)

For r = s = 1, the Schouten bracket simply reverts to the ordinary Lie bracket [57].
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Contact manifolds are Jacobi

A strictly contact manifold26 (M, α) with dimension 2n + 1 is also a Jacobi manifold. The
vector field R = Rα is the Reeb vector field. and the bivector Λ is equal to

Λ(η, χ) = dα (dα♯ (η), dα♯ (χ)), (3-138)

where dα♯ is defined as in Equation (3-29) and η, χ are semi-basic 1-forms on M .

If α is expressed in Darboux coordinates:

α = dq0 −
n

∑
i=1

pi dqi , (3-139)

then
R = ∂

∂q0 . (3-140)

The expression for the bivector can be found as follows through the action of Λ♯ on a general
1-form ζ ∈ Γ(T∗M) (by comparison with Equation (3-132)):

Λ♯(ζ) = dα♯ (ζ − (R ⌟ ζ)α)

=
n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) ⌟ (ζ − (R ⌟ ζ)α)

=
n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) ⌟ ζ −

n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) ⌟ ((R ⌟ ζ)α)

=
n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) ⌟ ζ −

n

∑
i=1

pi
∂

∂pi
(R ⌟ ζ)

=
n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) ⌟ ζ − (

n

∑
i=1

pi
∂

∂pi
∧ ∂

∂q0) ⌟ ζ.

(3-141)

From this expression, we gather that

Λ =
n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) + (

n

∑
i=1

pi
∂

∂q0 ∧
∂

∂pi
). (3-142)

We will now apply the Jacobi structure to general mechanical systems.

3-3-2 Jacobi structure of mechanical systems

The geometric structure of a mechanical system has four components:
26For contact structures that are not globally determined by a single contact form, Marle [54] introduced

the concept of a Jacobi bundle.
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1. An odd-dimensional manifold M = T∗Q × R, where Q is the configuration manifold of
the mechanical system. It is extended by one dimension to incorporate the dissipated
(internal) energy U and therefore always odd-dimensional. In the following, we as-
sume the ‘Darboux’ coordinates (q1, . . . , qn, p1, . . . , pn, U). This manifold has a bundle
structure M

πÐ→ T∗Q, where π is the projection map that ‘forgets’ the U -coordinate.

2. A closed 2-form with constant rank 2n, defined as the negative of the exterior derivative
of the Liouville form on T∗Q:

ω = −dϑ =
n

∑
i=1

dqi ∧ dpi , (3-143)

i.e. ω is the canonical symplectic 2-form on T∗Q.

3. A dissipation form α that encodes the work done by the system on its environment:

α = dU − β, (3-144)

where β = π∗βT∗Q is a pullback of a form on T∗Q, which means that it cannot depend
on U . When there is no dissipation, β = 0.

4. A Hamiltonian function K ∈ C∞(M), equal to the sum of the mechanical energy of the
system and the internal energy:

K = E +U, (3-145)

with E = E(q1, . . . , qn, p1, . . . , pn) the mechanical energy of the system.

In the purely conservative case discussed in Section 3-1, there is no dissipation, so the extra
dimension in U does not play a role, and the system may be completely described on T∗Q
with its symplectic structure.

For the simple dissipative mechanical systems in Section 3-2, the form α would both encode
the pairing structure and the dissipation form, since dα would be of the form dU − γϑ. We
now separate these functionalities (i.e. pairing and dissipation) to distinct components, for
which the symplectic and contact systems are particular cases.

The Jacobi structure for general mechanical systems is constructed in an analogous manner
to the one for contact manifolds, apart from the fact that we now have a separate 2-form ω,
instead of using dα. We can already expect that this will work given the right conditions, for
the derivations in Section 3-2 did not use the fact that dα is indeed the exterior derivative of
α.

However, not just any ω and α will make this work. Recall that the maximum nonintegrability
of α is equivalent to α ∧ (dα)n being a volume form on the contact manifold. Along the same
line, we require the following condition on ω and α:

α ∧ (ω)n ≠ 0 (3-146)

everywhere on M . That is to say, the above form is a volume form on M [7]. If M , ω and α
are defined as given above, this condition is clearly satisfied:

α ∧ (ω)n = n! dU ∧ (
n

⋀
i=1

dqi ∧ dpi). (3-147)
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If Equation (3-146) is satisfied we can — similarly to the discussion in Section 3-2-2 — define
the splitting of the tangent bundle as follows:

T∗M = ker α⊕ ker ω. (3-148)

Vector fields in the kernel of α are called horizontal, while vector fields in the kernel of ω are
vertical. Define the Reeb vector field R (for this Jacobi structure) as the unique vector field
that satisfies the following conditions:

R ⌟ α = 1 R ⌟ ω = 0. (3-149)

In Darboux coordinates, we have
R = ∂

∂U
. (3-150)

In addition, define semi-basic forms as the forms that annihilate the vertical vector fields; in
Darboux coordinates, they are forms that have no component in dU .

The decompositions of vector fields into horizontal and vertical components, and of 1-forms
into semi-basic components and multiples of α are analogous to Equations (3-25) and (3-26)
respectively.

The construction of Λ is analogous to the case of contact manifolds: the sharp mapping first
isolates the semi-basic component of the argument, after it is mapped to a horizontal vector
field through ω♯:

Λ♯(ζ) = ω♯(ζ − (R ⌟ ζ)α). (3-151)

Using the coordinates defined above, we find:

Λ =
n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) − ∂

∂U
∧ [

n

∑
i=1
( ∂

∂qi
∧ ∂

∂pi
) ⌟ β]. (3-152)

The dynamics of the general mechanical system are then equal to

XK = Λ♯(dK), (3-153)

assuming again that K is numerically equal to zero, so as to make the vertical component of
the Hamiltonian vector field disappear.

For computational convenience, this mapping can also be represented by a matrix:

⎛
⎜
⎝

q̇
ṗ

U̇

⎞
⎟
⎠
=
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 In 0
−In 0 0
0 0 0

⎞
⎟
⎠
−
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
∧
⎛
⎜
⎝

0 In 0
−In 0 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

βq

βp

0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(∇K)

=
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

0 In 0
−In 0 0
0 0 0

⎞
⎟
⎠
−
⎛
⎜
⎝

0 0 −βp

0 0 βq

βp −βq 0

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
(∇K)

=
⎛
⎜
⎝

0 In βp

−In 0 −βq

−βp βq 0

⎞
⎟
⎠
(∇K),

(3-154)
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where βq and βp represent the q- and p-components of the form β, and ∇K is the gradient
of K. The minus sign in front of the βp-components is usually canceled because those com-
ponents often already carry a minus sign as a consequence of the power direction of the bond
connecting the 0- and 1-junctions on which they are defined (e.g. in the case of the serial
damper in Section 3-2-5).

Application to 2-DOF mechanical system

We now revisit the mechanical system shown in Figure 3-9. The four structure components
are

• The manifold M = R5 = T∗Q ×R, for which we choose coordinates (q1, q2, p1, p2, U).

• The 2-form ω is the canonical symplectic structure on T∗Q:

ω = dq1 ∧ dp1 + dq2 ∧ dp2 . (3-155)

• The dissipation form is given by Equation (3-122):

β = [( b1
m1
+ b2

m1
)p1 − (

b2
m2
)p2]dq1 + [( b2

m2
)p2 − (

b2
m1
)p1]dq2 . (3-156)

• The Hamiltonian is equal to the sum of kinetic, potential, and internal energy in the
system:

K = p2
1

2m1
+ p2

2
2m2

+ 1
2

k1(q1)2 + 1
2

k3(q2)2 + 1
2

k2(q2 − q1)2 +U. (3-157)

The expression for β is given by Equation (3-122) as a part of the dissipation form α. The
exterior derivative of K is

dK = ( p1
m1
)dp1 +(

p2
m2
)dp2 +[k1q1 + k2(q1 − q2)]dq1 +[k3q2 + k2(q2 − q1)]dq2 +dU . (3-158)

Using either Equations (3-152) and (3-153) or Equation (3-154), we obtain the correct equa-
tions of motion for the system:

q̇1 = p1
m1

,

q̇2 = p2
m2

,

ṗ1 = −
b1
m1

p1 −
b2
m1

p1 +
b2
m2

p2 − k1q1 − k2q1 + k2q2,

ṗ2 = −
b2
m2

p2 +
b2
m1

p1 − k3q2 − k2q2 + k2q1,

U̇ = b1
p2

1
m2

1
+ b2

p2
2

m2
1
+ b2

p2
2

m2
2
− 2b2

p1p2
m1m2

.

(3-159)
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54 Geometric Structures in Dissipative Mechanics

The reason why the equation for U is always correct is that we force the vector field to
annihilate the dissipation form α; as such, any work done by the dampers must constitute
the change in U . Because the Hamiltonian is equal to zero, there are no other contributions
to U̇ .

Observe from Equation (3-159) that the rate of change of U can be written in terms of the
Rayleigh dissipation matrix:

U̇ = ( p1
m1

p2
m2
)
⎛
⎜
⎝

b1 + b2 −b2

−b2 b2

⎞
⎟
⎠

⎛
⎜
⎝

p1
m1
p2
m2

⎞
⎟
⎠

. (3-160)

It is important to point out though that our method does not rely on the fact that the
damping force relies on the momenta/velocities in a linear fashion: we made no assumptions
on β, apart from the fact that it does not depend on U . Hence, any type of force that performs
work in the direction of the generalized coordinates can be incorporated in this fashion. This
is in contrast with the Rayleigh method.

Nonautonomous systems

For the purposes of control, the above formalism may also be extended with external inputs;
i.e. flow sources, effort sources, or sources that contribute to the internal energy. In the
port-Hamiltonian formalism proposed by Van Der Schaft [59], the external sources are simply
added to their respective Hamiltonian functions. It is then possible to interconnect several
mechanical systems by means of power-preserving connections.

When subject to external inputs, the vector field X governing the dynamics of the mechanical
system is the superposition of the time-dependent ‘input vector field’ Xu and the Hamiltonian
vector field generated by the Jacobi-structure:

X =Xu +XK . (3-161)

In matrix form, the equations of motion given by Equation (3-154) become

⎛
⎜
⎝

q̇
ṗ

U̇

⎞
⎟
⎠
=
⎛
⎜
⎝

0 In βp

−In 0 −βq

−βp βq 0

⎞
⎟
⎠
(∇K) +

⎛
⎜
⎝

uq

up

uU

⎞
⎟
⎠

, (3-162)

where uq, uq and uU represent the flow sources, effort sources and source of internal energy
(i.e. a heat source).
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Chapter 4

Split-Quaternion Representations of
Dynamical Systems

In this chapter, we propose split-quaternions as an alternative representation of linear two-
dimensional dynamical systems instead of the traditional state-space representation. This
representation is based on the fact that the algebras of split-quaternions and two-dimensional
linear matrices are isomorphic. We argue that the split-quaternion representation allows for
easier system classification and computation of the system solution. In addition, we show
that the shape of the integral curves of an underdamped system can be easily extracted from
the associated split-quaternion, in comparison to the conventional procedure using complex
eigenvectors.

First, we introduce the notion of split-quaternions in Section 4-1 and how they correspond to
matrices. Second, in Section 4-2, we relate the split-quaternions to general two-dimensional
linear dynamical systems. Finally, in Section 4-3, we use the damped harmonic oscillator as
a representative system so as to give physical interpretation to the split-quaternion represen-
tation and analyze the shape of the integral curves.

The discussion in Section 4-1 mainly concerns facts about split-quaternions that have been
established in the past. Their application to dynamical systems (i.e. the subject of Section 4-2
and Section 4-3) has not been researched previously; as such, the results presented in these
sections are all new.

4-1 The algebra of split-quaternions

In this section, we present the split-quaternion number system, its basic properties, and its
relation with two-dimensional matrices.
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56 Split-Quaternion Representations of Dynamical Systems

4-1-1 Basic properties of split-quaternions

Like conventional quaternions, the split-quaternions form a number system that consists of
linear combinations of four basis elements, which are denoted by 1, î , ̂, and k̂.1 The mul-
tiplication operation for split-quaternions is associative but not commutative — formally
speaking, we are dealing with an algebraic structure called a noncommutative (unital) ring.

The multiplication table for the split-quaternion basis elements is shown in Table 4-1; mul-
tiplication of general split-quaternions follows from this table by distributivity. The set of
split-quaternions is denoted by Ĥ, since H is reserved for conventional quaternions.2

Table 4-1: Multiplication table for the split-quaternion algebra.

1 î ̂ k̂

1 1 î ̂ k̂

î î -1 k̂ -̂
̂ ̂ -k̂ 1 -î
k̂ k̂ ̂ î 1

The distinctive feature that sets split-quaternions apart from conventional quaternions resides
in the diagonal elements of Table 4-1. For quaternions, all basis elements but 1 square to
−1, which is not the case for the split-quaternions (only î does). This is also the reason
why split-quaternions are ‘split’, for this difference in sign makes their norm (to be defined
later) into an indefinite quadratic form. That is to say, whereas quaternions have a ‘metric
signature’ (in a very imprecise sense of the word metric) of (+,+,+,+), the split-quaternions
have (+,+,−,−). The different metric signature makes the split-quaternion number system
different from its conventional quaternion counterpart.

Importantly, the split-quaternion number system can also be seen as an algebra; i.e. a four-
dimensional vector space over the real numbers combined with the split-quaternion product
operation. More specifically, the split-quaternions form a unital noncommutative associative
algebra.

The dihedral group

On their own, the basis elements of the split-quaternions {1, î , ̂, k̂} form a finite group under
multiplication, namely the dihedral group D4. This group represents all the symmetries of
a square: the identity, a 90-degree rotation, and two reflections, as illustrated in Figure 4-1
[61].

The structure of the dihedral group can be visualized by means of its cycle graph in Figure 4-
2. Many important properties of the split-quaternion algebra and the applications in this
chapter can be traced back to the shape of this cycle graph. One example is the ‘split’ nature

1Even though they behave similarly, the imaginary unit i is not to be confused with the split-quaternion
basis element î , because they each belong to an entirely different number system.

2The set of (split-)quaternions ‘H/Ĥ’ is named in honor of sir William Rowan Hamilton, who also developed
the Hamiltonian formalism: the fruits of his work truly form the central theme in this thesis [60].
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Delft Center for Systems and Control

1 î ̂ k̂

Figure 4-1: The dihedral group D4 is the symmetry group of a square. This group is isomorphic
to the group formed by 1, î , ̂ and k̂ under multiplication.

of the quaternions: the î -element generates an order-4 cycle, while ̂ and k̂ generate order-2
cycles. In contrast, the cycle graph for conventional quaternions is entirely symmetric for all
these elements [61].

Delft Center for Systems and Control

Figure 4-2: The cycle graph of the dihedral group D4. There are five cycles: one of order four
which represents the rotations (or the element î ) of the square, and four order-2 cycles, which
are all the possible reflections. The colored element represents the identity.

Split-quaternion (total) norm

Similar to conventional quaternions, we make a distinction between the scalar or real part
and the vector part of a split-quaternion. For an arbitrary split-quaternion a ∈ Ĥ, [62]

a = a0 + a1î + a2̂ + a3k̂ (4-1)

the real part is
sca(a) ∶= a0, (4-2)

and the vector part is
vec(a) ∶= a1î + a2̂ + a3k̂. (4-3)

Because the vector part and real part are used so often in this chapter, we adopt a more con-
venient shorthand notation for them, instead of sca() and vec(). Given any split-quaternion,
the real part is denoted by the same symbol with a subscript of 0, without having to explicitly
define the split-quaternion components as we did in Equation (4-1). In addition, the vector
part is denoted by the symbol of the split-quaternion, but set in boldface. For instance, for
the split-quaternion b, we denote its real part by b0 ∶= sca(b) and its vector part by b ∶= vec(b).
An alternative expression for b is then

b = b0 + b. (4-4)
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In addition, every split-quaternion has a unique conjugate split-quaternion, which has the
same real part but the opposite vector part:

a∗ ∶= sca(a) − vec(a)

= a0 − a

= a0 − a1î − a2̂ − a3k̂.

(4-5)

Using the conjugate, we can define the squared split-quaternion norm:

N ∶ Ĥ→ R ∶ N(a) ∶= aa∗ = a2
0 + a2

1 − a2
2 − a2

3. (4-6)

The split-quaternion norm is (in stark contrast to the norm defined for quaternions) indefinite:
it can be positive, negative or zero. Split-quaternions can therefore be categorized into three
regimes based on the sign of their squared norm. In the tradition of special relativity, these
regimes are named as follows:

• a is timelike if N(a) > 0,

• a is lightlike if N(a) = 0,

• a is spacelike if N(a) < 0.

Like the space of split-quaternions, Minkowski spacetime is also four-dimensional. However,
the signature of the Minkowski metric is different from the split-quaternion signature: it is
either (−,+,+,+) or equivalently (+,−,−,−) depending on the sign convention one chooses to
adhere to. The terminology (i.e. spacelike, timelike, lightlike) applies nonetheless [63, 64].

Based on the squared split-quaternion norm, the split-quaternion norm is defined as

∥∥ ∶ Ĥ→ C ∶ ∥a∥ ∶=
√
N(a) =

√
a2

0 + a2
1 − a2

2 − a2
3. (4-7)

Because of the indefiniteness of N, ∥a∥ is an imaginary number if a is spacelike, for its squared
norm is negative in that case.

Vector norm

Apart from the split-quaternion norm, we may also define a (squared) norm of the vector
part alone. The squared vector norm is defined in accordance with the total squared split-
quaternion norm given by Equation (4-6):

N(a) = a2
1 − a2

2 − a2
3. (4-8)

This is not an abuse of notation, for a can be seen as a split-quaternion in its own right with
the same vector part as a but with a zero scalar part. It is therefore a valid argument for
the split-quaternion norm, and we can use the same function with no ambiguity. The vector
norm is then defined in accordance:

∥a∥ =
√
N(a) =

√
a2

1 − a2
2 − a2

3. (4-9)
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In the remainder of this chapter, the distinction between the squared norm of the entire split-
quaternion and the squared norm of the vector part plays a crucial role. Therefore, we will
refer to N(a) as the squared total norm, and to N(a) as the squared vector norm. Likewise,
we refer to ∥a∥ as the total norm, and to ∥a∥ as the vector norm of the split-quaternion a.

The quadratic form given in Equation (4-8) is also not positive-definite. As a result, we can
establish a classification based on the squared vector norm (instead of the squared total norm)
as well:

• a is timelike / a has a timelike vector if N(a) > 0,

• a is lightlike / a has a lightlike vector if N(a) = 0,

• a is spacelike / a has a spacelike vector if N(a) < 0.

Because one can classify based on both the (squared) vector norm and the (squared) total
norm, one may identify nine hypothetical cases, since each falls into one of three regimes.
However, the squared vector norm is not completely independent from the squared total
norm: observe that

N(a) < 0 ⇒ N(a) < 0, (4-10)

which is to say that a spacelike split-quaternion always has a spacelike vector part. The
converse is not necessarily true. Furthermore, a lightlike split-quaternion must have a lightlike
or spacelike vector part, i.e.

N(a) = 0 ⇒ N(a) ≤ 0 (4-11)

These two statements rule out three hypothetical combinations for the regimes of the total
norm and the vector norm (spacelike - timelike, spacelike - lightlike and lightlike - timelike).
Hence, six possible combinations remain; they are listed in Table 4-2.

Table 4-2: All the possible combinations of the regime of the split-quaternion and the regime
of its vector part. Spacelike split-quaternions can only have a spacelike vector, while lightlike
split-quaternions can only have lightlike or spacelike vector parts. The numbering of these cases
coincides with the classification of dynamical systems in Section 4-2-2.

N(a)

spacelike lightlike timelike
spacelike 1© — —
lightlike 2© 3© —N(a)
timelike 4© 5© 6©

The importance of the classification in Table 4-2 will become relevant in Section 4-2-2, where
it is applied to the qualitative classification of dynamical systems.

In the remainder of this chapter, the split-quaternion properties that are defined above are
used extensively. For the convenience of the reader, an overview of these properties and their
definitions is provided in Table 4-3.
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Table 4-3: Overview of the split-quaternion properties that are often used in this chapter.

Terminology Notation Definition Expression

Split-quaternion a a0 + a1î + a2̂ + a3k̂

Conjugate split-quaternion a∗ a − vec(a) a0 − a1î − a2̂ − a3k̂

Scalar part sca(a) = a0 a0

Vector part vec(a) = a a1î + a2̂ + a3k̂

Squared (total) norm N(a) aa∗ a2
0 + a2

1 − a2
2 − a2

3

(Total) norm ∥a∥
√
N(a)

√
a2

0 + a2
1 − a2

2 − a2
3

Squared vector norm N(a) aa∗ a2
1 − a2

2 − a2
3

Vector norm ∥a∥
√
N(a)

√
a2

1 − a2
2 − a2

3

Lorentzian 3-space

In contrast to the entire split-quaternion, the vector part of the split-quaternion does live in
a space with a Lorentz structure, having three dimensions instead of four. In general, the
Lorentzian n-space is defined as the real vector Rn space equipped with the Lorentzian inner
product.

⟨a, b⟩L ∶= a1b1 − a2b2 − . . . − anbn, a, b ∈ Rn. (4-12)

Since the Lorentzian inner product has signature (+,−, . . . ,−), the Lorentzian n-space is
denoted by R1,n−1. For n = 4, the Lorentzian space is equal to Minkowski spacetime, which
forms the mathematical setting of the theory of special relativity.
Based on the Lorentzian inner product3, the Lorentz norm can be defined as follows:

∥a∥ =
√
⟨a, a⟩L, (4-13)

For the Lorentzian 3-space R1,2, the Lorentzian norm coincides with the vector norm for
split-quaternions defined in Equation (4-8). Hence, if the vector part of a split-quaternion is
regarded as a three-dimensional object in its own right (rather than a split-quaternion with
zero real part), it is an element of R1,2. For this space, we view the split-quaternion basis
elements î , ̂, k̂ as unit basis vectors to distinguish the vector components.
Next to the Lorentzian inner product, we can also define a Lorentzian cross product, which
exists only for R1,2. Given two vectors a, b, in R1,2 their Lorentzian cross-product is defined
as: [62]

a ×L b ∶= det
⎛
⎜
⎝

−î ̂ k̂
a1 a2 a3
b1 b2 b3

⎞
⎟
⎠

(4-14)

= (a3b2 − a2b3)î + (a3b1 − a1b3)̂ + (a1b2 − a3b1)k̂, (4-15)
3Because the Lorentzian inner product fails to be positive definite, it is not strictly an inner product, but

rather a pseudo-inner product. Likewise, the Lorentzian norm is called a pseudonorm.
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where we have assumed î , ̂, k̂ as basis vectors.

The split-quaternion product can be concisely expressed in terms of the Lorentzian inner
product and cross product. For two split-quaternions a and b with their respective vector
parts a and b, we have the following relation:

ab = a0b0 − ⟨a, b⟩L + a0b + b0a + a ×L b. (4-16)

4-1-2 Relation with two-dimensional matrix algebra

In this section, we demonstrate how the split-quaternion algebra relates to the algebra of real
2 × 2-matrices.

Algebra isomorphisms

Formally, an algebra is a vector space V over a field F, combined with an F-bilinear product
operation [48]:

• The split-quaternion algebra is an algebra over the field of real numbers (F = R), where
the product operation is split-quaternion multiplication (see Table 4-1);

• The 2 × 2-matrices also form an R-vector space; the product operation is matrix multi-
plication.

An algebra isomorphism is an isomorphism between vector spaces that also commutes with
the respective product operations in both vector spaces. With slight abuse of notation, let
Ĥ and R2×2 denote the respective algebras of split-quaternions and matrices as well as the
underlying sets. A map φ ∶ Ĥ→ R2×2 is an algebra isomorphism if [65]

(i) φ is a bijective mapping between Ĥ and R2×2 (as sets);

(ii) φ is linear with respect to the vector addition and R-multiplication;

(iii) φ commutes with the product operations for matrices and split-quaternions. For
two split-quaternions a, b and the corresponding matrices φ(a) and φ(b), this means
that:

φ(ab) = φ(a)φ(b). (4-17)

Because we are dealing with vector spaces, it is sufficient to map the basis elements of the
split-quaternions to four linearly independent ‘basis’ matrices, and show that the resulting
matrices observe the same multiplication rules as defined in Table 4-1. Indeed, define the
mapping φ by

φ ∶ Ĥ→ R2×2 ∶ 1↦ (1 0
0 1) î ↦ ( 0 1

−1 0)

̂ ↦ (0 1
1 0) k̂ ↦ (1 0

0 −1).
(4-18)
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It is easily verified that (i) these matrices span R2×2 and (ii) that the isomorphism commutes
with the multiplication operation for split-quaternions and matrices (cf. Table 4-1). Due
to the bilinearity of the product operation, any linear combination of the basis elements will
therefore satisfy the rules as well. Hence, we have established an algebra isomorphism between
the split-quaternions and the 2 × 2-matrices.
Based on the mapping φ for the basis vectors, a general quaternion a maps to:

φ(a0 + a1î + a2̂ + a3k̂) = (a0 + a3 a1 + a2
a2 − a1 a0 − a3

). (4-19)

Likewise, the inverse mapping of an arbitrary matrix yields

φ−1(b0 b1
b2 b3

) = b0 + b3
2
+ (b1 − b2

2
)î + (b1 + b2

2
)̂ + (b0 − b3

2
)k̂. (4-20)

Relation between matrix and split-quaternion properties

A striking feature of the isomorphism φ is that it maps the natural properties of the split-
quaternion to the natural properties of the associated matrix. Given that A = φ(a) with a ∈ Ĥ
and A ∈ R2×2, we have the following correspondence:

• The sum of matrices corresponds to the sum of the split-quaternions. If B = φ(b), then

A +B = φ(a + b). (4-21)

• Matrix multiplication corresponds to split-quaternion multiplication:

AB = φ(ab). (4-22)

• The adjugate of the matrix maps to the conjugate of the split-quaternion:4

adj(A) = φ(a∗). (4-23)

• The trace of the matrix is equal to twice the real or scalar part of the split-quaternion:

tr(A)
2
= sca(a) = a0. (4-24)

• The determinant of the matrix is equal to the squared total norm of the split-quaternion:

det(A) = N(a). (4-25)

• The equivalence of the determinant and the split-quaternion norm suggests that the
multiplicative inverse of a split-quaternion does not always exist: it must be nonzero.
In that case, it is clear that

φ(a−1) = A−1 N(a) ≠ 0. (4-26)

The determinant property also shows us what the regime of the product of two split-
quaternions is; this is shown in Table 4-4.

4The adjugate of a matrix is the transpose of its cofactor matrix [50].
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Table 4-4: Regime transition under the action of split-quaternion multiplication. The timelike
split-quaternions form a group under multiplication, the lightlike and spacelike split-quaternions
do not: lightlike split-quaternions do not have an inverse and the spacelike split-quaternions are
not closed.

× space light time
space time light space
light light light light
time space light time

• Importantly, the eigenvalues of a 2 × 2-matrix A can be expressed in terms of its trace
and its determinant:

λA =
tr(A) ±

√
tr2(A) − 4 det(A)

2
. (4-27)

The argument of the square root in the above expression is equal to the negative of the
squared vector norm of a. We therefore have:

λA =
2a0 ±

√
4a2

0 − 4N(a)
2

= a0 ± i∥a∥, (4-28)

where ∥a∥ is imaginary if a is spacelike. Hence, the real part and the vector norm
the split-quaternion coincide with the real and imaginary parts of the eigenvalues of
the matrix, where the latter is multiplied by the imaginary unit i. When the vector is
either spacelike or timelike, the i cancels, and the overall eigenvalue is real. This striking
correspondence is the main reason for the benefits of the split-quaternion representation
of dynamical systems, which is discussed in Section 4-2-2.

An overview of the correspondence between matrix and split-quaternion properties is given
in Table 4-5.

Table 4-5: Overview of the correspondence between the algebra of split-quaternions and the
algebra of 2 × 2 matrices, given that A = φ(a) and B = φ(b). In the top section, we compare
matrices to split-quaternions, which means that they are related by the isomorphism φ. The
bottom section compares scalar properties: these are numerically equal.

Matrix Split-quaternion

Sum A +B a + b Sum
Matrix product AB ab Split-quaternion product
Inverse A−1 a−1 Inverse
Adjugate adj(A) a∗ Conjugate

Determinant det(A) N(a) Squared norm
Trace tr(A)

2 a0 Real / scalar part
Eigenvalues λA a0 + ai Scalar part & vector norm
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64 Split-Quaternion Representations of Dynamical Systems

4-2 Dynamical systems as split-quaternions

In this section, we show how split-quaternions can be used to represent two-dimensional
linear dynamical systems in their full generality. We start of in Section 4-2-1 by establishing
the split-quaternion representation of a dynamical system. Subsequently, in Section 4-2-2 we
show how the split-quaternion representation leads to a more convenient procedure for system
classification. Finally, we exploit the split-quaternion properties to compute the solution of
the corresponding dynamical system in Section 4-2-3.

4-2-1 The Lie algebra of vector fields

A linear dynamical system is specified by a linear vector field on a vector space. In our
context, the vector space is R2. Combined with the Lie bracket, these vector fields form a
so-called Lie algebra. We demonstrate in this section how the Lie algebra of vector fields can
be specified in terms of split-quaternions.

Lie algebras

The split-quaternions form an associative, noncommutative unital algebra over the real num-
bers, which is isomorphic (as an algebra) to the algebra of 2 × 2-matrices. Every associative
algebra can be turned into a Lie algebra by defining the Lie bracket as the commutator of
the multiplication operator of the algebra5. For the split-quaternion algebra, the Lie bracket
is defined as

[ , ] ∶ Ĥ × Ĥ→ Ĥ ∶ [a, b] ∶= ab − ba. (4-29)
In analogous fashion, we have the equivalent definition for the matrix algebra:

[ , ] ∶ R2×2 ×R2×2 → R2×2 ∶ [A, B] ∶= AB −BA. (4-30)

Clearly, these Lie algebras are isomorphic.
The Lie algebras defined above are abstract, which is to say that they are not defined in terms
of a specific Lie group. The Lie algebra of 2 × 2-matrices combined with the bracket defined
above is isomorphic to the Lie algebra gl(2,R) (it is often even defined this way). These are
the linear vector fields on a vector space: the vector field is a section of the tangent bundle,
and the mapping that defines the section must preserve the linear structure of the vector
space.
The algebra gl(2,R) is the Lie algebra of the general linear group GL(2,R), which is the
group of all automorphisms of R2 (as a vector space). Hence, the elements of GL(2,R) are
the infinitesimal automorphisms of that vector space. From the vector field perspective, the
Lie bracket of vector fields X and Y is equal the Lie derivative of X with respect to Y :

[X, Y ] =£XY. (4-31)

If the bracket of X and Y vanishes, X and Y are said to commute. If two vector fields
commute, then the associated transformations (i.e. elements of GL(n,R)) do so as well: it
does not matter in which order the transformations are applied.

5By definition, the multiplication operation is bilinear, and the commutator is alternating. The associative
property is needed for the Jacobi identity to be satisfied, which is the third criterion for a Lie algebra [66].
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Basis vector fields

Because of the isomorphism between the Lie algebra of split-quaternions and gl(2,R), the
linear vector fields (i.e. linear dynamical systems) on R2 can be represented by a split-
quaternion. Since the linear vector fields are directly represented by a matrix, it suffices to
map that matrix to a split-quaternion using Equation (4-20). In particular, because we are
dealing with a vector space (of vector fields) we can relate the split-quaternion basis elements
each to a specific basis vector field. Any other linear vector field can then be constructed by
taking linear combinations of these basis vector fields.
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Figure 4-3: Basis vector fields corresponding to the basis elements of the split-quaternions.
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66 Split-Quaternion Representations of Dynamical Systems

The four basis vector fields and their integral curves are visualized in Figure 4-3.

• The identity element 1 corresponds to the identity matrix; the associated vector field X1
is given by X1 = x ∂

∂x+y ∂
∂y , where x and y are coordinates for R2. These are infinitesimal

dilations of the plane. The integral curves are star-shaped.

• The element î corresponds to the vector field Xî = y ∂
∂x − x ∂

∂y , which represents an
infinitesimal circular rotation (clockwise). The integral curves are concentric circles
centered at the origin.

• The element ̂ corresponds to the vector field X̂ = y ∂
∂x + x ∂

∂y , which represents an
infinitesimal squeeze mapping or infinitesimal hyperbolic rotations. The integral curves
are rectangular hyperbolae, whose asymptotes are the lines specified by the equations
x = y and x = −y.

• Finally, k̂ corresponds to the vector field Xk̂ = x ∂
∂x − y ∂

∂y . This vector field also repre-
sents an infinitesimal squeeze mapping or hyperbolic rotation, but the asympotes of the
hyperbolae are the x- and y-axis instead.

Volume-preserving vector fields Importantly, Xî , X̂ and Xk̂ are volume-preserving trans-
formations: the vector fields are divergence-free. Any linear combination of these vector
fields also preserves volume. Because the divergence of a linear vector field is equal to the
trace of its matrix representation, these are all the matrices with zero trace. As a result, the
vector part of a split-quaternion (or a split-quaternion with zero real part) represents the
volume-preserving component of the vector field.

The volume-preserving linear transformations form a subgroup of GL(2,R): this is the special
linear group SL(2,R). If represented as a matrix subgroup of GL(2,R), SL(2,R) consists of
all the matrices with a determinant of 1. The associated algebra sl(2,R) is isomorphic to the
algebra of traceless matrices, or equivalently, the split-quaternions with no real part.

Because we are dealing with R2, the conservation of volume is the same as conservation
of area — this is manifestly not the case for higher dimensions. Indeed, the special linear
group SL(n,R) is isomorphic to the symplectic group Sp(n) only if n = 2. The associated Lie
algebra sp(2) comprises the volume-preserving vector fields, which are also called symplectic or
Hamiltonian6. The Hamiltonian function that generates each of these vector fields through the
symplectic form ω = dx ∧ dy is simply equal to the implicit equation of the integral curves. An
overview of the split-quaternion - vector field correspondence and the Hamiltonian functions
(if applicable) is given in Table 4-6.

Commuting vector fields The center of a Lie algebra consists of all those elements for
which the Lie bracket operation produces zero, regardless of which other algebra element is
the second argument. For gl(2,R), these are all the scalar multiples of the identity, which are
the split-quaternions that have no vector part. For this reason, the real part and vector part
of the split-quaternion coincide with a natural decomposition of the associated vector field

6In general, every symplectic vector field is Hamiltonian, but not the other way around. As a consequence
of the Poincaré Lemma (a special case of the de Rham cohomology) these notions are identical for contractible
spaces. Clearly, R2 falls under this category.
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Table 4-6: Vector field representation of the split-quaternion basis elements. The Hamiltonian is
the function that generates the associated vector field through Hamilton’s equations: ẋ = ∂H/∂y
and ẏ = − ∂H/∂x .

Ĥ R2×2 Vector field Hamiltonian Transformation

1 (1 0
0 1) x

∂

∂x
+ y

∂

∂y
— Dilation

î ( 0 1
−1 0) y

∂

∂x
− x

∂

∂y
1
2(x

2 + y2) Clockwise rotation

̂ (0 1
1 0) y

∂

∂x
+ x

∂

∂y
1
2(y

2 − x2) Squeeze mapping

k̂ (1 0
0 −1) x

∂

∂x
− y

∂

∂y
xy Squeeze mapping

into a volume/area preserving component of the vector field, and the infinitesimal increase (or
decrease) in volume. These components can be considered independently, precisely because
the associated transformations commute.

4-2-2 System classification with split-quaternions

In this section, we demonstrate how the properties of the split-quaternion representation
can be exploited to classify the associated dynamical system in a convenient and exhaustive
manner. In system theory, the classification of a linear dynamical system gives one an idea
about the overall qualitative behavior of the system solution. Moreover, this practice is vital
for the study of nonlinear systems too: the linearization of a nonlinear system around one
of its fixed points replicates in many cases the correct behavior (cf. the Hartman-Grobmann
theorem) [67]. This means that qualitative findings derived from the linearized system remain
to be true — at least locally — for the nonlinear system as well.

Consider the linear dynamical system given by the differential equation

ẋ = Ax A ∈ R2×2, (4-32)

where A is the state matrix; we henceforth denote the associated split-quaternion by a ∶=
φ−1(A). Usually, (the fixed point of) a linear dynamical system is classified based on the
eigenvalues of A into one of several categories:

- saddle point,
- source or sink,
- spiral,
- center,
- ...

Other types of fixed points may arise when A has one or more zero eigenvalues. As will
become clear, it are especially those degenerate cases which are handled remarkably well by
the split-quaternion representation, i.e. without being considered exceptions to the rule.
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68 Split-Quaternion Representations of Dynamical Systems

The classification procedure using the split-quaternion representation makes use of three
properties (cf. Section 4-1-2):

(i) The regime of the squared total norm N(a), equal to the determinant of A;

(ii) The regime of the squared vector norm N(a), equal to the square of the imaginary
part of the eigenvalues of A;

(iii) The regime of the real part a0, equal to half the trace of A.

The classic Poincare diagram can be restated in terms of split-quaternion properties, as shown
in Figure 4-4. For the split-quaternion representation, this diagram classifies based on the
regime (i.e. sign) of both the total and vector norm, and the real part which determines
stability in some cases.
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Figure 4-4: The split-quaternion Poincaré diagram is based on the regime combinations defined
in Table 4-2. The determinant axis coincides with the squared norm of the split quaternion being
0. The parabolic double stroke line corresponds to the split-quaternions with zero vector norm.
A further distinction is made with the scalar part of the split-quaternion, which, for each of the
regimes, determines (asymptotic) (in)stability.

However, the classification in Figure 4-4 is not completely exhaustive, for it does not dis-
tinguish between the degenerate cases if N(a) = 0. We will therefore discuss all the regime
combinations listed in Table 4-2 and the corresponding class of dynamical systems in more
detail (adhering to the same numbering scheme).

Spacelike total norm

1© For spacelike split-quaternions, there is only one possibility: a negative split-quaternion
norm corresponds to a negative determinant, which means that the fixed point is a saddle
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point. We can distinguish one particular case: if the scalar part of the split-quaternion is
zero (a0 = 0), the saddle is balanced and generates a proper squeeze mapping, which is a
symplectomorphism of the phase space. The split-quaternion is therefore Hamiltonian.
An example of the latter is the linearization of the unstable fixed point of a rotational
pendulum.

Lightlike total norm

2© Spacelike vector norm: in this case, there is not just a single fixed point but an entire
fixed line in the phase space. This fixed line is stable or unstable depending on the sign
of a0.

3© Lightlike vector norm: this case is degenerate to the second degree; it coincides with
the origin in the Poincaré diagram. The associated vector field is purely translational.
An example is an object in uniform motion.

Timelike total norm

4© Spacelike vector norm: this case gives rise to eigenvalues that are purely real; the fixed
point is called a node. Depending on the sign of the scalar part, the fixed point can be
an unstable node or source (a0 > 0) or a stable node or sink (a0 < 0). An example of
such a system is the overdamped harmonic oscillator.

5© Lightlike vector norm: in this case, the two eigenvalues are equal to each other. This
can be easily seen from Equation (4-28):

λA = a0 ± ∥a∥i = a0 a0 ≠ 0, (4-33)

i.e. both eigenvalues are equal to the real part of a if ∥a∥ = 0. If the squared vector
norm vanishes, the null space of the matrix A − a0I is

There are then two subcategories to be distinguished, corresponding to whether the
associated matrix is diagonalizable or not:

(a) If the matrix is diagonalizable, it must be a scalar multiple of the identity [68]. This
is because the rank of the matrix A−λI must be equal to 0 for the eigenspace to be
two-dimensional; A − λI i.e. the zero matrix. The corresponding split-quaternion
is then purely real; i.e. a = λ. Because it has no vector part, the vector is then
lightlike in the most trivial fashion. The associated fixed point is a star, which can
either be stable or unstable depending on the sign of the real part (this particular
case is not shown in Figure 4-4).

(b) Conversely, if the vector norm is zero but the vector part is not, the matrix is
not diagonalizable: the null space of A − λI is one-dimensional, and can therefore
not be spanned by two independent eigenvectors. The fixed point is an improper
node, which is again stable or unstable depending on the sign of the real part. An
example of this type of system is the critically damped harmonic oscillator.
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6© Timelike vector norm: this is the case where the eigenvalues of A are complex. If a0 = 0,
the eigenvalues are imaginary and the fixed point is a center. Again, for a0 > 0 it is an
unstable spiral node and for a0 < 0 a stable spiral node. An example is an underdamped
(or even undamped) harmonic oscillator.

It is clear from the present discussion that the split-quaternions offer a very natural rep-
resentation of linear dynamical systems, in particular because of the relation between the
split-quaternion norms and real part, and the eigenvalues of the state matrix. All six cases
are again summarized in Table 4-7.

Table 4-7: Overview of the classification of fixed points based on the regime of the associated
split-quaternion and its vector part.

# N(a) N(a) Fixed point
1© spacelike spacelike Saddle
2© lightlike spacelike Line
3© lightlike lightlike Uniform motion
4© timelike spacelike Source / sink
5© timelike lightlike Degenerate node
6© timelike timelike Spiral node / center

4-2-3 The exponential function of split-quaternions

In order to obtain the system solution, one usually computes the matrix exponential of the
state matrix A. In this section, we demonstrate that the same can be done for the split-
quaternion representation, which has some computational advantages. The exponential func-
tion for split-quaternions is defined in an analogous fashion to its matrix equivalent, i.e. in
terms of a Taylor-like series:

exp ∶ Ĥ→ Ĥ ∶ exp(a) ∶=
∞
∑
k=0

ak

k!
. (4-34)

Because this definition is completely analogous to the one for matrices, the exponentials in
the split-quaternion domain or the matrix domain are equivalent, given the isomorphism φ
defined by Equation (4-19):

exp(a) = φ−1(exp(φ(a))). (4-35)

In this expression, the ‘exp’ on the left hand side refers to the split-quaternion exponential,
while the ‘exp’ on the right is the matrix exponential.

To evaluate the exponential function of a split-quaternion, let us first use the following prop-
erty of the (split-quaternion) exponential7 [69]

[a, b] = 0 ⇒ exp(a + b) = exp(a) exp(b), (4-36)
7This is a consequence of the Baker-Campbell-Haussdorf formula, which applies to Lie algebras in general.
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i.e. we can only decompose the exponential of a sum if the two elements commute. We can
regard an arbitrary split-quaternion

a = a0 + a1î + a2̂ + a3k̂ (4-37)

as the sum of the real part a0 and the vector part a1î +a2̂+a3k̂. As discussed in Section 4-2-1,
the real part is distinguished from the other three parts in the sense that it commutes with
every other element. As a result, we have:

exp(a) = ea0 exp(a1î + a2̂ + a3k̂). (4-38)

It is important to emphasize that this is not possible for the other individual vector com-
ponents, since î , ̂ and k̂ do not commute with each other. We therefore only have to be
concerned with the evaluation of exp(a). To do so, recall that we can consider the vector
part of a split-quaternion to be a split-quaternion in its own right, but with zero real part.
We, have by definition, that a∗ = −a, which means that the squared vector norm is simply
the negative of the square of the vector part, i.e.:

N(a) = aa∗ = −a2. (4-39)

Let us now introduce the concept of unit split-quaternion vectors, which are vector split-
quaternions with a vector norm of ±1. The unit vector may be obtained by normalization of
the vector part:

â = a√
∣N(a)∣

, N(a) ≠ 0, (4-40)

which squares to

â2 = −N(â) = − N(a)
∣N(a)∣ = − sgn(N(a)), N(a) ≠ 0. (4-41)

Normalizing lightlike vectors is not possible, because they have all the same length of zero:
there is no point in making the distinction between vector and unit vector.

Based on the regime of the vector part, three possibilities arise: [70, 71]

• If a is timelike, then â2 = −1. We can therefore say that the unit vector ‘behaves’ like
the imaginary unit i (i2 = −1). In general, we can identify the split-quaternion (with
timelike vector part) a0 + ∥a∥â with the complex number a0 + ∥a∥i.

• If a is lightlike, then a2 = 0, and the notion of the unit vector is not well-defined.
Because the vector is nilpotent with degree 2, it is analogous to the nilpotent unit ε (for
which we have that ε2 = 0). Split-quaternions with timelike vector part can be identified
with the dual number a0 + ε.

• Finally, if a is spacelike, then â2 = 1. The unit vector behaves like the idempotent unit
j, with defining property j2 = 1 (j ∉ R!).8 Likewise, a split-quaternion with spacelike
vector part is analogous to the split-complex number (or hyperbolic number) a0 + ∥a∥j.

8Again, we must take care not to confuse the hyperbolic unit with the split-quaternion basis element ̂.
They behave the same and are related in the sense that they give rise to ‘split’ behavior, but are part of a very
different number systems.
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The connection between split-quaternions and the generalized complex numbers9 (i.e. com-
plex, dual and split-complex) sheds some additional light on the behavior of the eigenvalues
of the associated matrix A by means of the root locus plot (see Equation (4-28)). A typical
branch of the root locus consists of a complex pole pair approaching the real axis when the
gain is increased. When they finally collide on the real axis, they each go their opposite ways
on the real axis, essentially breaking the symmetry with respect to the real axis.
In contrast, the split-quaternions and their relation with hypercomplex numbers paint a
slightly more elegant picture, which is shown in Figure 4-5:

• As shown above, when the pole pair is complex, the associated split-quaternion vector
is timelike. The eigenvalues are naturally conjugate with respect to the real axis, i.e.

λA = a0 ± ∥a∥i. (4-42)

• When the pole pair collides on the real axis (often called the branch point), the imaginary
part of the eigenvalue is zero, and the vector is lightlike. Observe that we can make the
case that, because the branches continue separately afterward, they cannot be exactly
the same. Indeed, the eigenvalues are

λA = a0 ± ε. (4-43)

The nilpotent unit ε is often interpreted as a differential, or an infinitesimally small
quantity.10 We argue that, in this case, the pole pair is still conjugate, but the poles
differ only by an infinitesimal amount.

• When the gain is increased even further, the poles are real and the symmetry with
respect to the real axis is broken. However, we can infer from the preceding discussion
that the imaginary part is now hyperbolic instead, i.e.

λA = a0 ± ∥a∥j. (4-44)

Of course, it is possible to project these points on the real axis, but this obscures
the natural symmetry of the root locus branch. In Figure 4-5, we therefore place the
hyperbolic part on a third axis.

Let us now return to the exponential function. We can manipulate the definition of exp(a)
as follows:

exp(a) = ea0 (
∞
∑
k=0

ak

k!
)

= ea0

⎡⎢⎢⎢⎢⎣

∞
∑
k=0

(a2)k

(2k)! +
∞
∑
k=0

a(a2)k

(2k + 1)!

⎤⎥⎥⎥⎥⎦
.

9For a more detailed account of generalized complex numbers, the reader is referred to Harkin and Harkin
[71].

10A common application of dual numbers is automatic differentiation: because higher powers vanish, they can
be used to generate first-order polynomial approximations. The unit ‘circle’ for dual numbers consists of two
vertical lines crossing the horizontal axis at ±1. These lines can again be interpreted as linear approximations
of the actual unit circle (or unit hyperbola) associated with (split-)complex numbers. The plane is spanned
by the j-axis and the real axis is the split-complex plane. The ‘projection’ to the real axis is in this plane a
reflection with respect to the light cone (first diagonal).
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Figure 4-5: A generalized version of a root locus plot in terms of hypercomplex numbers. The
traditional root locus is set in the complex s-plane (shown in blue), but we added a third axis for
the hyperbolic part of the eigenvalue. When the gain is increased, the initially complex pole pair
ventures towards the real axis. If the pole pair is critically damped, both poles are separated from
the real axis by an infinitesimal distance of ε. Increasing the gain even more pushes the pole pair
into the hyperbolic regime (the associated split-quaternion vector is now spacelike). Observe that
in this picture, the symmetry with respect to the real axis is preserved. In the traditional root
locus, these points are projected onto the real axis, indicated by the dashed lines.

Furthermore, if a is not lightlike, we have:

exp(a) = ea0

⎡⎢⎢⎢⎢⎣

∞
∑
k=0

∥a∥2k (â2)k

(2k)! + â
∞
∑
k=0

∥a∥2k+1 (â2)k

(2k + 1)!

⎤⎥⎥⎥⎥⎦
.

Once again, there are three possibilities, depending on the regime of a:

• If a is timelike, then the above expression reverts to

exp(a) = ea0[
∞
∑
k=0

∥a∥2k (−1)k

(2k)! + â
∞
∑
k=0

∥a∥2k+1 (−1)k

(2k + 1)! ],

= ea0[cos(∥a∥) + â sin(∥a∥)].

(4-45)

This is roughly equivalent to the Euler identity for complex numbers.

• Secondly, if a is lightlike, we can simply use the definition of the exponential in its
original form:

exp(a) = ea0
∞
∑
k=0

ak

k!
,

= ea0[1 + a +
∞
∑
k=2

ak−2a2

k!
],

= ea0(1 + a).

(4-46)
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• Finally, if a is spacelike, we have

exp(a) = ea0[
∞
∑
k=0

∥a∥2k

(2k)! + â
∞
∑
k=0

∥a∥2k+1

(2k + 1)!],

= ea0[cosh(∥a∥) + â sinh(∥a∥)].

(4-47)

The dynamical system given in Equation (4-32) has the following solution [72]

x(t) = exp(At)x0 = φ( exp(at))x0 t ∈ R+, (4-48)

where the exponential of at takes the following value:

exp(at) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ea0t[cos(∥a∥t) + â sin(∥a∥t)] a timelike,

ea0t(1 + ∥a∥t) a lightlike,

ea0t[cosh(∥a∥t) + â sinh(∥a∥t)] a spacelike.

(4-49)

Computing the split-quaternion exponential instead of the traditional matrix exponential
avoids the need for either generalized eigenvectors (in the degenerate case) and/or complex
eigenvectors, which arguably offers a computational advantage.

In the next section, we replace the general dynamical system by a mechanical system so as
to give the split-quaternion representation a physical interpretation.

4-3 Application to mechanical systems

We will now proceed by using a mechanical prototypical example instead of the generic
dynamical system of the preceding section. This mechanical system is the harmonic oscillator
with two dampers: one in series and one in parallel, as discussed in Section 3-2-5. The reason
for this particular mechanical system is twofold: first, it helps to establish the connection
between this chapter and Chapter 3, and second, it allows us to gain a physical intuition
behind the split-quaternion representation.

Furthermore, the oscillator with two dampers is chosen because the extra damper fills the one
entry in the corresponding state matrix that would otherwise remain zero in the case of the
conventional damped harmonic oscillator. Therefore, this system can represent (in theory)
all the possible two-dimensional systems discussed in the previous section.

4-3-1 Equations of motion

The harmonic oscillator with two dampers is shown in Figure 3-8, and its equations of motion
are given by Equation (3-107). In matrix form, the equations of motion are:

(q̇
ṗ
) = (−

k
bs

1
m

−k − bp

m

)(q
p
).
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Alternatively, using the parameters γp ∶= bp/m, γs ∶= k/bs, and Ωn ∶=
√

k/m, we have the
following:

(q̇
ṗ
) = ( −γs

1
m

−mΩ2
n −γp

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

(q
p
). (4-50)

Although the above state matrix can represent all possible linear two-dimensional systems in
theory, we will make some assumptions regarding the parameters in order to enforce that the
system is indeed an actual oscillator:

(i) The damping coefficients are larger than or equal to zero: λs ≥ 0, λp ≥ 0;

(ii) The mass is strictly positive: m > 0;

(iii) The spring constant is strictly positive: k > 0.

These assumptions imply that the determinant of the matrix given in Equation (4-50) is
strictly larger than zero, which precludes the fixed point from being a saddle 1©, an (un)stable
line 2© or uniform motion 3©. Furthermore, because the damping is positive of zero, the system
is stable in the sense of Lyapunov (i.e. the solutions are at least bounded).

The split-quaternion associated with the state matrix of the doubly damped system can easily
be found using the mapping defined by Equation (4-20). We must, however, be careful when
dealing with physical systems, because the entries of the A-matrix are not dimensionless.

In a vector space, units are associated with the basis vectors, not with the vector components.
For example, consider a two-dimensional vector space spanned by an axis for apples and and
an axis for pears. If we wish to represent that someone possesses three apples and four pears,
the components of that vector are (3, 4), and the unit vectors are (1 apple, 1 pear).
Along the same line, we must define the units in the state matrix in the split-quaternion basis
elements 1, î , ̂, k̂. To do so, define the reference quantities m0 and t0. The basis elements
are then mapped in terms of these reference quantities:

φ(1) = (
1
t0

0
0 1

t0

), φ(î ) =
⎛
⎝

0 1
m0

−m0
t2
0

0
⎞
⎠

, (4-51)

φ(î ) =
⎛
⎝

0 1
m0

m0
t2
0

0
⎞
⎠

, φ(k̂) = (
1
t0

0
0 − 1

t0

). (4-52)

If we would use SI units, m0 = 1 kg and t0 = 1 s.

Using these reference quantities, the split-quaternion associated with the state matrix given
in Equation (4-50) becomes

a = −1
2
(t0γs + t0γp)1 +

1
2
(m0

m
+ mΩ2

nt2
0

m0
)î + 1

2
(m0

m
+ mΩ2

nt2
0

m0
)̂ + 1

2
(t0γp − t0γs)k̂. (4-53)

Clearly, all the components of the split-quaternion are dimensionless. This really is not too
wild of an idea: after all, the split-quaternion represents the matrix itself, and not the two-
dimensional vector space that it acts on. The units are inherited from the vector space, so
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we should add them only when returning from the split-quaternions back to the realm of the
matrices.
The preceding argument only explains why we can work around this issue without performing
illegal operations, but it does not give a satisfactory answer as to why we would be interested
to add numbers that are seemingly incompatible. Indeed, observe that γs and γp have the
same units, whereas 1

m and Ω2
n do not. So, in which sense can the î and ̂-components

be of any significance? To answer this question, note that the rescaling of units is a linear
transformation on the vector space given by a diagonal matrix (with nonzero diagonal entries):

N = (ν1 0
0 ν2

) ν1, ν2 ∈ R∗. (4-54)

These matrices form the group isomorphic to (R∗)2. This transformation of the vector space
manifests itself on the A-matrix as

A′ = N−1AN. (4-55)
It is easy to see that the basis matrices (or vector fields) for 1 and k̂ are invariant under
this transformation, while the î and ̂-matrices are not (that is, without making use of the
reference quantities).
A geometric explanation is that the eigenvectors of the identity matrix and the k̂-matrix
point along the axes, and are therefore invariant under rescaling of these axes. As a result of
this fact, the î and ̂ components will not transform properly under a unit transformation.
For example, it is common practice in physics to rescale the state space of the undamped
harmonic oscillator as follows [4, 73]

p↦ p

m
q ↦mΩnq, (4-56)

such that the Hamiltonian reverts to the standard quadratic form 1
2(q

2 + p2). This is pre-
cisely the transformation that removes the ̂-component of the split-quaternion. This would
essentially resolve this unit problem, because it only arises when we attempt to make the
distinction between the î and ̂-component. However, we are interested in the full range of
geometrical properties that the trajectories in the phase plane can exhibit, including those
that are not invariant under the action of the structure group (R∗)2.
As a final argument, we can say that the rescaling of the axes, while common in physics and
mathematically allowed, is of little use for engineers, since they tend to stick to SI units in
the first place. The scale of the axes is therefore a physical reality. This is why we choose not
to discard the ̂-component by rescaling.
To conclude, it is not so much the case that unit transformations are not allowed in the
split-quaternion space, but the question as to what the units of the ̂-components are is moot.
Unfortunately, the notation in Equation (4-53) is rather obfuscating. Hence, we take the
freedom to choose m0 = 1(kg) and t0 = 1(s), and write the split-quaternion as follows:

a = −1
2(γs + γp) + 1

2(
1
m +mΩ2

n)î + 1
2(

1
m −mΩ2

n)̂ + 1
2(γp − γs)k̂. (4-57)

Leaving out the reference quantities requires the silent understanding that all the components
are dimensionless, and that we are not just adding apples and pears.
In the next section, we investigate the influence that each of the split-quaternion components
has on the physical behavior of the mechanical system.

E. B. Legrand Master of Science Thesis



4-3 Application to mechanical systems 77

4-3-2 Physical interpretation of the split-quaternion representation

In this section, we look at various aspects of the split-quaternion representation and relate
them to the physical properties of the oscillator described in the previous section.

Squared total norm

The squared total norm of the split-quaternion given in Equation (4-57) is equal to

N(a) =mΩ2
n + γpγs. (4-58)

The assumptions made earlier regarding the sign of m, k, λs and λp ensure that this is a
positive number, which is to say that the split-quaternion a as a whole is timelike.

The squared total norm can be interpreted as the effective potential energy in the system.
Indeed, when there is no damping, N(a) =mΩ2

n, i.e. the spring constant of the oscillator. The
second term appears only if both γp and γs are nonzero. This is because the presence of both
dampers introduces a phase shift in the damping. Whereas the parallel damper dissipates
in proportion the momentum p, the serial damper damps in proportion to the position q.
Hence, their combined presence shifts the phase of the damping action in the cycle of the
oscillator. The term γpγs can be seen as a correction term to take into account this phase
shift, if one where to express the equation entirely in terms of the position of the mass (cf.
Equation (3-107)).

Real part

The real part of the split-quaternion representation of the harmonic oscillator with two
dampers is (cf. Equation (4-57)),

a0 = −1
2(γs + γp). (4-59)

This real part therefore represents the combined effect of both dampers.

As can be observed from Equation (4-49) and Figure 4-3, the real part a0 appears in the
system solution as part of the argument of the exponential that envelopes the inner part of
the solution, but it does not influence it in any other fashion. This is a consequence of the
fact that the vector fields proportional to X1 commute with all the other vector fields, as
discussed in Section 4-2-1.

In the context of the mechanical system, this commuting of vector fields means that the
overall transformation of the state-space that is generated by the vector field can be seen as
the composition of two separate transformations.

The first is a purely exponential contraction of the phase space (assuming γs, γp > 0), which is
the overall effect of the dampers. We call this transformation nonconservative, for it removes
mechanical energy from the system.

Second, we have the remaining transformation that is generated by the overall effect of the
vector part a. The latter cannot be decomposed into separate î , ̂ and k̂ transformations,
because the vector fields that generate them do not commute. The transformations generated
by the vector part of a are conservative (in contrast to the exponential contraction): this
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decomposition of the transformations therefore amounts to separating the dissipative and
conservative effects in present in the mechanical system. That is to say, we decompose the
system solution into two parts:

exp(at) = exp(a0t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dissipative

exp(at)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
conservative

. (4-60)

From the above expression, it can be seen that the dissipative component of the solution is
rather simple: it is simply a contraction by ea0t = e−(γs+γp)t. This is why we will now focus
exclusively on the nature of the second transformation, being the conservative part. From the
split-quaternion point of view, this means that we assume that the real part vanishes, and
only take the vector part into account.

Vector part

The vector part of a has three components. Based on the associated basis vector fields shown
in Figure 4-3 and Equation (4-57), the following observations can be made

• The î -component of the split-quaternion gives rise to a rotational vector field that is
rotationally symmetric, since the solution trajectories are concentric circles. A positive
component gives rise to a clockwise rotation. For the mechanical system, this component
is equal to 1

2(
1
m +mΩ2

n); it induces the oscillatory or periodic motion of the harmonic
oscillator.

• The ̂-component of the split-quaternion is a hyperbolic (saddle) vector field, its solution
trajectories are hyperbolae whose asymptotes are the diagonals of the phase plane. For
the mechanical system, this component is equal to 1

2(
1
m −mΩ2

n): it measures the im-
balance between the two terms that constitute the rotation. As a result, the combination
of the î and ̂-components is an ellipse that is stretched or squeezed along its primary
axes, but not rotated. The undamped harmonic oscillator is of this type.

• Finally, the k̂-component is also a hyperbolic (saddle) vector field whose asymptotes
are the horizontal and vertical axis. For the mechanical system, the k̂-component is
equal to the imbalance between the two dampers, i.e. 1

2(γp − γs). It also gives rise to a
stretch and squeeze of the trajectory, but now along the diagonals of the phase plane.
Therefore, it results in a phase shift or ‘wobble’ in the trajectory.

The influence of the vector components on the shape of the solution trajectories is visualized
in Figure 4-6.

Squared vector norm The vector norm of a split-quaternion is equal to the imaginary part
of the eigenvalues of the associated matrix. For the harmonic oscillator with two dampers
represented by the split-quaternion in Equation (4-57), the squared vector norm is equal to

N(a) = Ω2
n − 1

4(γ
2
s + γ2

p) + 1
2γsγp = Ω2

n − (1
2γs − 1

2γp)
2
. (4-61)

Provided that the full system exhibits dissipation, i.e. (γs + γp > 0), the sign of the squared
vector norm determines the regime of the mechanical system:
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Figure 4-6: Comparison between the influence of the ̂-component (left) and k̂-component on
the integral curves of Xî . The ̂ component stretches the elliptic trajectory along the horizontal
axis and squeezes it by the same amount in the vertical direction, while the k̂ component does the
same but along axes that are rotated by 45 degrees. As shown by the figures, this is a consequence
of the constructive or destructive interference of those vector fields in these particular directions.

• if N(a) > 0 (timelike vector), the system is underdamped (or undamped);

• if N(a) = 0 (lightlike vector), the system is critically damped;

• if N(a) < 0 (spacelike vector), the system is overdamped.

This can also be explained in terms of the damping ratio ζ of the system. Recall that the
eigenvalues of the matrix associated to the split quaternion are given by

λA = a0 ± ∥a∥i. (4-62)

The damping ratio is defined as

ζ ∶= R(λA)
∣λA∣

= a0√
a2

0 +N(a)
. (4-63)

Hence, if N(a) vanishes (provided that the system is indeed damped, so a0 ≠ 0), then ζ = 1
and the system is critically damped. Likewise, if N(a) > 0 we have that ζ < 1 and the system
is underdamped (and vice versa).

More generally, one can see that the vector norm measures whether either the ‘circular’ î -
component is dominant, or otherwise the combination of ̂ and k̂. In the former case, the
solution trajectory is elliptic, while in the latter case it is hyperbolic.

Normalized vector part By looking only at the vector part of the split-quaternion in Equa-
tion (4-57), we have removed the real part from the eigenvalues of the associated matrix. The
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remaining vector part corresponds to the conservative component of the vector field. To show
that the real part of the split-quaternion does not influence the eigenvectors of the matrix,
observe that

(A − λI)v = [(A + sI) − (s + λ)I]v. (4-64)

This implies that adding any scalar multiple of the identity to the matrix adds this scalar to
the value of all the eigenvalues, and leaves the eigenvectors unaltered. Since removing the
real part of the split-quaternion corresponds to subtracting a multiple of the identity from
the associated matrix, we can see that this does not affect the eigenvectors.

Furthermore, if we normalize the vector part, the vector norm is taken out of the equation
as well: since it is equal to the imaginary part of the eigenvalue, what remains are the
eigenvectors (in alternative form) of the associated matrix.

As discussed in Section 4-1-1, the vector part of a split-quaternion lives in a three-dimensional
Lorentzian space R1,2 with basis (î , ̂, k̂). Because the squared vector (Lorentzian) norm is
indefinite, we can distinguish three possible normalizations (cf. Section 4-2-3):

• timelike vectors have a positive squared norm, and their normalized length is 1;

• lightlike vectors have a squared norm of zero, they cannot be normalized;

• spacelike vectors have a negative squared norm, their normalized length is -1.

These normalized (if not lightlike) vectors live on three disconnected subspaces of R1,2:

• If a is timelike, its normalized vector â lives on the two-sheet unit hyperboloid, which is
the subspace defined as:

{a ∈ R3 ∣ a2
1 − a2

2 − a2
3 = 1}. (4-65)

This space consists of two separate sheets, referred to as the positive and negative sheet,
depending on the sign of the î -component.

• If a is lightlike, it cannot be normalized: it lives on the light cone, which is defined as:

{a ∈ R3 ∣ a2
1 − a2

2 − a2
3 = 0}. (4-66)

• If a is spacelike, its normalized vector â lives on the one-sheet unit hyperboloid, which
is defined as:

{a ∈ R3 ∣ a2
1 − a2

2 − a2
3 = −1}. (4-67)

These three subspaces are visualized in Figure 4-7.

Because the vector norm determines the regime of the damped mechanical system, we can
state that the two-sheet hyperboloid contains all the normalized underdamped systems, the
light cone contains all the critically damped systems and the one-sheet hyperboloid contains
all the normalized overdamped systems.

In the next section, we analyze the significance of the normalized vector part in greater detail
for the case of an underdamped system.
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î

̂ k̂

Figure 4-7: The disconnected ‘unit sphere’ in the Lorentzian 3-space. The red surface is the
one-sheet hyperboloid, containing all the spacelike unit vectors, or overdamped systems. The
gray sheet is the light cone, that contains all the lightlike ‘null’ vectors with zero norm, or
critically damped systems. Finally, the two blue surfaces constitute the two-sheet hyperboloid, or
underdamped systems.

4-3-3 Geometric analysis of underdamped systems

In this section, the normalized vector part â is related to the specific shape of the integral
curves of the dynamical system. The discussion is limited to underdamped systems, i.e. sys-
tems for which the split-quaternion vector part is timelike. For these systems, the trajectories
are spiral-shaped. Removing the real part from the split-quaternion eliminates the exponen-
tial contraction in the spiral. As a result, the conservative version of this trajectory is an
elliptic trajectory. This ellipse is subject to the same stretch and tilt of the original spiral, as
illustrated by Figure 4-8.
For underdamped systems, the eigenvectors are complex. This obscures the direct geometric
implications of the eigenvectors on the integral curves, in contrast to other types of fixed
points for which the eigenvectors are real (e.g. saddle points or nodes). Within the set of
complex eigenvectors (all a complex multiple of each other), there is one specific set for which
the real and imaginary part of the eigenvectors are orthogonal. In that particular case, the
real and imaginary part of the eigenvectors coincide with the principal axes of the elliptic
integral curves. Hence, one must first find the right set of eigenvectors in order to gain
insights regarding shape of the integral curves [68].
We argue that the split-quaternion representation, specifically its normalized vector part,
offers a more efficient way to extract the geometric information about the integral curves —
in particular when the eigenvectors are complex.
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Figure 4-8: Solution trajectories and vector field of an exemplary underdamped system. The
green trajectories are the actual solution of the system, while the blue trajectories are the conver-
vative version, i.e. with the real part of the split-quaternion removed.

For an underdamped system, the normalized vector is given by

â = (
1
m +mΩ2

n

2Ωd
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
â1

î + (
1
m −mΩ2

n

2Ωd
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
â2

̂ + (γp − γs

2Ωd
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
â3

k̂. (4-68)

Here, Ωd is the damped frequency of the oscillator, which is equal to the vector norm:

Ωd = ∥a∥ =
√

Ω2
n − (1

2γs − 1
2γp)

2
. (4-69)

Instead of the Cartesian coordinates for the normalized vector part used in Equation (4-68),
we will adopt a more parsimonious description in the form of the so-called pseudospherical
coordinates. These consist of a hyperbolic angle τ and a Euclidean angle σ, which specify
a point on either one of the sheets of the two-sheet hyperboloid shown in Figure 4-7. The
pseudospherical coordinates are related to the Cartesian coordinates through the following
relations:

â1 = ± cosh(τ) â2 = sinh(τ) cos(σ) â3 = sinh(τ) sin(σ). (4-70)

In addition, we have:

cosh(τ) = â1, sinh(τ) =
√

â2
2 + â2

3,

cos(σ) = â2√
â2

2 + â2
3
, sin(σ) = â3√

â2
2 + â2

3
.

(4-71)

The geometry of an elliptic trajectory is determined by its aspect ratio and its tilt angle, as
shown in Figure 4-9. For the aspect ratio many measures exist, of which the eccentricity e is
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Figure 4-9: Geometric parameters of the ellipse. Its shape is characterized by two lengths: the
semi-major axis r+ and the semi-minor axis r−. The various measures of the aspect ratio of the
ellipse given in Table 4-8 express the relative size of r+ with respect to r− in various ways. The
(first) eccentricity e parameter locates the focal points F1, F2 as a proportion of the semi-major
axis. The angle ϑ by which the semi-major axis is rotated with respect to the horizontal is called
the tilt.

the best known. Other measures of eccentricity are listed in Table 4-8; especially the third
flattening and third eccentricity play an important role in the remainder of the discussion.
To relate the normalized vector part (in pseudospherical coordinates) to the geometric features
of the elliptic integral curves, the solution trajectories of the basis vector fields given by
Table 4-6 can be weighted by the vector components to obtain the overall implicit form of
the elliptic trajectories.
For Xî , the solution curves have the implicit form

1
2(q

2 + p2) = cst, (4-72)

i.e. they are concentric circles of some radius. Second, for X̂, we have the implicit form
1
2(p

2 − q2) = cst. (4-73)

Thirdly, for Xk̂, the solution trajectories are of the form

pq = cst. (4-74)

From the above expression we can find the shape of the actual solution trajectory by weighing
each of these curves with the respective components of the normalized vector part:

(â1 − â2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=R

q2 + 2â3°
∶=S

pq + (â1 + â2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=T

p2 = cst. (4-75)

The actual radius of the trajectory is immaterial for the discussion, for it depends on the
initial condition chosen for the system and does not influence the shape of the ellipse. The
above expression is the implicit equation for an ellipse if [74]

S2 − 4RT < 0. (4-76)

Substitution shows that this condition is equivalent to a being timelike.
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Table 4-8: Commonly used parameters to measure the eccentricity (or alternatively, the flatten-
ing) of an ellipse in terms of its semi-major axis r+ and semi-minor axis r− [74].

Parameter Notation Formula

Semi-major axis r+ —

Semi-minor axis r− —

(First) eccentricity e
r2+ − r2−

r2+

Second eccentricity e′
r2+ − r2−

r2−

Third eccentricity e′′
r2+ − r2−
r2+ + r2−

(First) flattening f
r+ − r−

r+

Second flattening f ′
r+ − r−

r−

Third flattening f ′′
r+ − r−
r+ + r−

Eccentricity

The eccentricity of the ellipse specified by Equation (4-75) in terms of the parameters R, S
and T is equal to [74]

e =

¿
ÁÁÁÀ 2

√
(R − T )2 + S2

(R + T ) +
√
(R − T )2 + S2

. (4-77)

Since we have that R − T = −2â2, R + T = 2â1 and S = 2â3, the eccentricity may be expressed
as a function of the components of the split-quaternion too:

e =

¿
ÁÁÁÀ 2

√
â2

2 + â2
3

q1 +
√

â2
2 + â2

3
. (4-78)

Finally, using the relations stated in Equation (4-71), this expression can be succinctly written
in terms of the pseudospherical coordinates τ and σ:

e =
¿
ÁÁÀ 2 sinh(τ)

cosh(τ) + sinh(τ) . (4-79)

Tilt angle

The tilt angle ϑ of the ellipse is defined as the angle between the positive horizontal q-axis and
the major axis of the ellipse. Just like the eccentricity, we start from the general expression

E. B. Legrand Master of Science Thesis



4-3 Application to mechanical systems 85

in terms of the parameters R, T and S:

tan(ϑ) =
T −R −

√
(R − T )2 + S2

S
. (4-80)

Again, substituting the split-quaternion components, we have

tan(ϑ) =
â2 −
√

â2
2 + â2

3
â3

. (4-81)

Rather unsurprisingly, the î -component does not play a role in the tilt angle of the trajec-
tory: from Figure 4-3, we can see that the associated vector field Xî is indeed rotationally
symmetric, in contrast to X̂ or Xk̂.

Equation (4-81) may be expressed in terms of the pseudospherical coordinates (cf. Equa-
tion (4-71)) as wel:

tan(ϑ) = cos(σ) − 1
sin(σ) = − tan(σ

2
). (4-82)

Hence, we infer that the tilt angle is equal to half the pseudospherical angle, oppositely ori-
ented:

ϑ = −σ

2
. (4-83)

Orientation

The two-sheet hyperboloid consists of two disconnected surfaces. This begs the question what
the significance is of either of those surfaces. The hyperboloids are directed along the î -axis;
therefore, the sign of the î -component of a determines on which hyperboloid the vector is
located. Physically, the sign of the î -component determines whether the rotational part of the
vector field has a clockwise or counterclockwise rotation. By default, Xî is an infinitesimal
clockwise rotation (cf. Figure 4-3): as a result, if a0 is positive the rotation is clockwise and
vice versa.

The obtained relations show that the pseudospherical coordinates σ and τ are directly related
to respectively the tilt angle and the eccentricity of the elliptic trajectories. We will now inves-
tigate the role of these coordinates in two common projections of the two-sheet hyperboloid,
being the Poincaré model and the Cayley-Klein model. As it turns out, the coordinates in
these projections correspond with the eccentricity parameters defined Table 4-8.

Relation with models of the hyperbolic plane

The hyperbolic plane is a plane that has everywhere a constant negative Gaussian curvature.
The geometry of the hyperbolic plane is known as hyperbolic geometry, as opposed to Euclidean
geometry and spherical geometry, which are associated with surfaces of no curvature and
constant positive curvature respectively.

In contrast to the Euclidean plane and the sphere (which exhibits spherical geometry), the
hyperbolic plane cannot be isometrically embedded in three-dimensional space; this is for-
malized in Hilbert’s theorem on differential geometry [75]. This is why mathematicians must
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resort to so-called models of the hyperbolic plane. Many are in existence, for example the
hyperboloid model, the Poincaré disk, the Cayley-Klein disk, and the Poincaré half-plane.
The former three will be of our interest in this context. For more information concerning
hyperbolic geometry, the reader is referred to Needham [76, 77] and Thurston [75].

Hyperboloid model The hyperboloid model consists simply of the positive sheet of the two-
sheet hyperboloid, embedded in the Lorentzian 3-space. In this space, this sheet of the
hyperboloid has a constant negative Gaussian curvature equal to -1 [78]. Because of this
constant negative curvature, the positive sheet of the two-sheet hyperboloid can serve as a
model for the hyperbolic plane.

Both the Poincaré disk and the Cayley-Klein disk arise by projecting the hyperboloid surface
to a disk with unit radius in a particular fashion. In the î -̂-plane, these projections are
illustrated in Figure 4-10.

Delft Center for Systems and Control

î

̂

- −1

1−1

rpc

rk

Cayley-Klein disk

Poincaré disk

k̂

̂

1

Figure 4-10: Illustration of the projection on the Poincaré disk and the Cayley-Klein disk. The
Lorentzian 3-space is intersected along the î -̂-plane; both disks therefore appear as a line segment
with ‘radius’ 1.
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The Cayley-Klein disk The Cayley-Klein is the result of gnomonic projection of the posi-
tive hyperboloid sheet [79]. The advantage of gnomonic projection is that geodesics on the
hyperboloid map to straight lines in the disk. On the downside, this projection method is not
conformal (it does not preserve angles). As shown in Figure 4-10 and Figure 4-11, the pro-
jection of a point on the hyperboloid is the intersection of the line segment of that point with
the origin and the disk with unit radius, centered at the point î (i.e. the point in Lorentzian
3-space with coordinates (1, 0, 0)).

î

̂

̂

k̂

k̂

σ

rk

Figure 4-11: The Cayley-Klein disk and the hyperboloid model are related through gnomonic
projection. A geodesic of on the hyperboloid model is shown as well, its projected image in the
Cayley-Klein disk (also a geodesic) is a straight line. Illustration adapted from Balazs and Voros
[78].

If polar coordinates are used to specify a point in the Cayley-Klein disk, the rotation angle
σ remains identical to the corresponding pseudospherical coordinate, and from Figure 4-10 it
can readily be deduced that the radial coordinate rk ∈ [0, 1) is simply equal to

rk = tanh(τ). (4-84)

We can now use Equation (4-79) to relate the radial coordinate to the eccentricity of the
elliptic trajectory (the angular coordinate remains again identical):

e =
¿
ÁÁÀ 2 sinh(τ)

cosh(τ) + sinh(τ) =
√

2rk
1 + rk

. (4-85)
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This expression shows that the radius in the Cayley-Klein disk is equal to the square of the
third eccentricity of the elliptic trajectory e′′, also denoted by ‘m’ in literature (we will not
do so here, for it is already reserved for mass). In terms of the major and minor axes (r+ and
r− respectively), we thus have: [74]

rp =
r2+ − r2−
r2+ + r2−

= (e′′)2. (4-86)

The Poincaré disk The Poincaré disk is the image of the positive hyperboloid sheet under
stereographic projection with respect to the point −î , i.e. the point in Lorentzian 3-space
with coordinates (−1, 0, 0). That is to say, the projection of a point on the hyperboloid on
the Poincaré disk is equal to the intersection of the line segment connecting that point with
−î and the unit disk centered at the origin. This is illustrated in Figures 4-10 and 4-12.

î

̂

̂

k̂

k̂

σ

rpc

Figure 4-12: The Poincaré disk and the hyperboloid model are related through stereographic
projection. A geodesic of on the hyperboloid model is shown as well, its projected image in the
Poincaré disk (also a geodesic) is part of a circle that intersects the boundary of the disk at right
angles. Illustration adapted from Balazs and Voros [78].

If polar coordinates are used in the Poincaré disk, then the Euclidean rotation remains iden-
tical, and the radial coordinate is equal to

rpc = tanh(τ

2
) = sinh(τ)

1 + cosh(τ) . (4-87)
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Because stereographic projection projects each point on the positive hyperboloid uniquely onto
the Poincaré disk, every point on the disk corresponds to two possible elliptic trajectories:
one with clockwise and one with counterclockwise rotation.
As stated by Equation (4-86), the Cayley-Klein radius is equal to the square of the third
eccentricity. Along the same line, the radius in the Poincaré disk may be related to a specific
measure of elliptic eccentricity as well. Using the double angle formula for tanh, we have that

rk =
2rpc

1 + r2
pc

. (4-88)

Hence, we gather that the Poincaré radius is equal to the third flattening of the elliptic
trajectory, commonly denoted by n or f ′′. In terms of the major and minor axes of the
elliptic trajectory, the Poincaré radius is equal to

rpc =
r+ − r−
r+ + r−

= f ′′. (4-89)

Relation with eigenvectors

As mentioned, the normalized vector part â encodes the same information as the eigenvectors
of the associated matrix A. For an underdamped system, both the eigenvectors and the eigen-
values of the matrix are complex. These complex eigenvectors are not directly interpretable;
they can be multiplied by any complex number to obtain another eigenvector of the system.
In one particular instance (i.e. a specific length in C2), the real and imaginary part of the
eigenvectors align with the major and minor axes (r+, r−) of the elliptic trajectory, but this
requires additional computation to find the correct multiplication factor for the eigenvectors
[68].
Conversely, as demonstrated in the above discussion, the normalized split-quaternions are
naturally parameterized in way that corresponds directly to the shape parameters of the
solution trajectories. As vectors in the phase plane, the semi-major and semi-minor axes can
be expressed in terms of σ and τ as follows (where the semi-major axis has length 1):

r+ =
⎛
⎜
⎝

cos(σ
2 ) sin(σ

2 )
− sin(σ

2 ) cos(σ
2 )

⎞
⎟
⎠

⎛
⎜
⎝

1

0

⎞
⎟
⎠

r− =
⎛
⎜
⎝

cos(σ
2 ) sin(σ

2 )
− sin(σ

2 ) cos(σ
2 )

⎞
⎟
⎠

⎛
⎜⎜
⎝

0
1−tanh( τ

2 )
1+tanh( τ

2 )

⎞
⎟⎟
⎠

,

(4-90)

since r−

r+
= 1 − f ′′

1 + f ′′
.

The Lorentzian cross-product

Finally, we relate the action of the conservative part of the state matrix on the phase plane
to the action of vector part a of the associated split-quaternion through the Lorentzian cross-
product, defined in Equation (4-15).
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First, we define the notion of Lorentz orthogonality based on the Lorentzian inner product
(cf. Equation (4-12)): two vectors are Lorentz-orthogonal if their Lorentzian inner product
is equal to zero. In an analogous fashion to the conventional cross product, the Lorentz cross
product of two vectors is Lorentz orthogonal to both of those vectors.

Given that a is the vector part of the split-quaternion representation of the state-transition
matrix A, we wish to relate the vector field generated by A to the vector field generated by a
as ‘operator’: a×L(b) ∶= a×L b. The operator a×L has an invariant linear subspace: the plane
that is Lorentz-orthogonal to the vector a. This is visualized in Figure 4-13. Expressing a×L

as a matrix, we get:

[a×L](b) =
⎛
⎜
⎝

0 a3 −a2
a3 0 −a1
−a2 a1 0

⎞
⎟
⎠

⎛
⎜
⎝

b1
b2
b3

⎞
⎟
⎠

. (4-91)

The eigenvalues of [a×L] are {0,±i
√

a2
1 − a2

2 − a2
3}, i.e. the imaginary part of the eigenvalues

is the same as the imaginary part of the eigenvalues of A (or the eigenvalues of A with trace
removed), with the addition of zero. The zero direction is colinear with the vector a. This
means that in the Lorentz orthogonal plane, the action of [a×L] is the same as the action
of A − tr(A)

2 I (the associated matrix with trace removed) on the phase plane, given the right
basis.

î

̂

k̂

â

s+

s
−

Figure 4-13: Vector field generated by the Lorentzian cross product by a on the vectors in the
plane that is Lorentz-orthogonal to a. The vectors s+ and s− are the principal axes of (one of
the) elliptic trajectories. The positive sheet of the hyperboloid is shown as well.

We can find the correct basis by relating the major axes of the elliptic trajectory generated
by [a×L], denoted by (s+, s−) (also shown in Figure 4-13) to the major axes of the elliptic
trajectory (r+, r−) given by Equation (4-90).
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The semi-major axis s+ of the elliptic trajectory generated by the Lorentzian cross-product
can be obtained by projecting the vector a on the plane that is Lorentz orthogonal to it. The
semi-minor axis is simply found by applying the Lorentzian cross-product to the semi-major
axis. That is,

s+ = a − ⟨a, n̂⟩
⟨n̂, n̂⟩ n̂,

s− = a ×L s+,

(4-92)

where n̂ = a1î − a2̂ − a3k̂ is the normal vector to the plane that is Lorentz-orthogonal to a.
Please note that we are using two types of orthogonality: both Lorentz and Euclidean. The
inner product ⟨ , ⟩ refers to the Euclidean inner product, as opposed to the Lorentzian inner
product. We will now prove that s+ and s− as given above indeed are the principal axes of
the elliptic trajectory generated by the Lorentzian cross product.

Proof. For convenience, we will use the normalized vector â in place of a without loss of
generality. A unit normal vector to the Lorentz-orthogonal subspace is

n̂ = â1î − â2̂ − â3k̂.

Following Equation (4-92), the basis vectors are

s+ = â − ⟨â, n̂⟩
⟨n̂, n̂⟩ n̂

s− = â ×L s+ = −
⟨â, n̂⟩
⟨n̂, n̂⟩(â ×L n̂),

(4-93)

because the Lorentz-cross product distributes over addition and â ×L â = 0.
If (s+, s−) are the major axes of the elliptic trajectory generated by the cross product, then
they must be the real and imaginary part of an eigenvector of [â×L]. Hence, it must be the
case that

[â×L](s+ + s−i) = λ(s+ + is−), (4-94)
where λ is then an eigenvalue of the matrix [68]. This can be verified by replacing the action
of [â×L] with the cross product.
Plugging in the definition and exploiting the linearity of the Lorentz cross-product, we obtain:

â ×L (s+ + is−) = â ×L s+ + i(â ×L s−)

= s− + (â ×L s−)i

= s− + (â ×L (â ×L s+))i

= s− −
⟨â, n̂⟩
⟨n̂, n̂⟩(â ×L (â ×L n̂))i.

The triple cross-product expansion, or Lagrange formula, relates the regular cross product to
the corresponding dot product:

x × (y × z) = y ⟨z, x⟩ − z ⟨x, y⟩. (4-95)
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This well-known identity generalizes (easily verified) to the Lorentzian counterpart of the
cross- and inner product:

x ×L (y ×L z) = y ⟨z, x⟩L − z ⟨x, y⟩L. (4-96)

Using the Lagrange formula, the above expression becomes

â ×L (s+ + is−) = s− −
⟨â, n̂⟩
⟨n̂, n̂⟩(â ⟨â, n̂⟩L − n̂⟨â, â⟩L)i

= s− − (â
⟨â, n̂⟩L ⟨â, n̂⟩
⟨n̂, n̂⟩ − n̂

⟨â, n̂⟩
⟨n̂, n̂⟩)i

= s− − (â − n̂
⟨â, n̂⟩
⟨n̂, n̂⟩)i

= s− − s+i.

= −i(s+ + is−).

The latter is the scalar multiple of the vector s++s− by −i - hence, this is indeed an eigenvector
of the corresponding matrix. This means that indeed, s+ + s− are the principal axes of the
elliptic trajectoy generated by the Lorentzian cross-product. ∎

Knowing the eigenvectors of both matrices, the state matrix A and matrix generated by the
Lorentzian cross-product [a×L] can be related through the following similarity transformation:

A = T −1 [a×L]T, (4-97)

where the transformation matrix is constructed from the principal axes in both the phase
plane and the Lorentz orthogonal plane:

T = (r+ r−)(s+ s−)
−1

. (4-98)
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Chapter 5

Conclusions and Recommendations

Conclusions

The purpose of this thesis is twofold: first, to establish a fitting geometric framework for
mechanical systems with dissipation that also has a clear physical interpretation, and second,
to present the properties and advantages of the newly proposed split-quaternion representation
of dynamical systems.

Contact manifolds provide a suitable setting for simple mechanical systems, particularly those
with only a single degree of freedom. The contact Hamiltonian system reflects the thermo-
dynamic/mechanical information about the system, consisting of a contact 1-form, which
represents the first law of thermodynamics, and the Hamiltonian, being the sum of the me-
chanical and internal energy in the system. The contact form can also be interpreted as a
manifestation of the work-heat equivalence as it was initially shown by James P. Joule [80].
Similar to the contact form in thermodynamics being the Gibbs form, the contact form in
mechanical systems may be called the Joule form instead.

The newly proposed framework allows for unifying thermodynamic and mechanical systems
that would otherwise be treated separately. Indeed, the Hamiltonian contains both mechanical
and thermodynamic energy, and the Joule form specifies the transformation of one into the
other. As a result, we expect that this approach can readily be used to handle systems
containing thermodynamic and mechanical elements with a single Hamiltonian description.

The physical interpretation of the contact structure makes it straightforward to apply it
to any mechanical system simply from inspection. We have shown this by extending the
contact Hamiltonian system for the harmonic oscillator with parallel damping to the harmonic
oscillator with both a parallel and a serial damper. Apart from the compelling mathematical
symmetry of the contact form, being able to handle both types of dampers has essential
applications in economic engineering. Whereas the parallel damper acts on the price based
on the flow of goods (e.g., a transaction cost), the serial damper acts on the flow of goods
based on a price (e.g., depreciation or consumption).
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In addition, we have used the symplectified Hamiltonian system to explain the form of the
Caldirola-Kanai Hamiltonian, which has been widely regarded as the standard method to
incorporate dissipation into the Hamiltonian (in the case of the damped harmonic oscilla-
tor). However, the interpretation of the form of the Caldirola-Kanai Hamiltonian has been
the subject of debate in the past. We have shown that the the Caldirola-Kanai Hamiltonian
is equal to the homogeneous Hamiltonian of the symplectified system with part of the so-
lution substituted in it. Because contact Hamiltonian systems can always be symplectified,
a Caldirola-Kanai type expression can be obtained for any such system in the way that is
presented in this thesis.

For more general systems, the contact structure does not suffice. This is because the contact
structure derives the Hamiltonian isomorphism from the contact form, which is conceptually
wrong. Indeed, the nature of the dissipation in the system is by no means necessarily related to
the symplectic pairing of positions and momenta. This is not a problem for simple mechanical
systems, because there is only one pairing possible between the position and momentum.
The generalized structure that takes care of this is not a contact structure anymore, but the
physical interpretations of the associated 1-form and the Hamiltonian remain. As such, the
Jacobi structure allows the unification of thermodynamic and mechanical systems just as well.

The split-quaternion representation of two-dimensional dynamical systems provides immedi-
ate insights into the geometric nature of the system. Roughly speaking, the split-quaternion
are ‘super-eigenvalues’: they have the same structure (real part plus imaginary part), where
the imaginary part also contains the eigenvector information in the normalized vector (imag-
inary) part.

Deriving the qualitative nature of the system follows almost immediately from inspection of
the split-quaternion interpretation. Even the degenerate cases (e.g., if the eigenvalues are not
simple) do not have to be handled as exceptions in this procedure. Furthermore, the system
solution can be obtained without the need for eigenvectors. This offers, in our opinion, a
computational advantage, especially when the eigenvectors are complex.

We also argue that the normalized vector part of the split-quaternion presents the shape
information of the system more conveniently. This is because the normalized vector is a two-
dimensional object, whereas the eigenvectors are specified as two projective two-dimensional
objects. As a result, we can represent the shape of a trajectory unambiguously with a point
on either the light cone, two-sheet hyperboloid, or one-sheet hyperboloid, depending on the
regime of the system (i.e., underdamped, overdamped, and critically damped).

Overall, we fully acknowledge the incontrovertible mathematical fact that because the algebra
of split-quaternions is isomorphic to the algebra of 2 × 2-matrices, they cannot possibly do
more than the matrices can. Our point is instead that the split-quaternions representation
translates to the actual behavior of the dynamical system in a more intuitive and efficient
manner than the matrix representation does.
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Recommendations

Economic engineering

In this thesis, we have assigned the geometric infrastructure that underlies Lagrangian me-
chanics with a compelling economic interpretation: the Lagrange 2-form is analogous to the
Slutsky matrix in microeconomics. However, we have not elaborated on this result and rec-
ommend that further research in the field of economic engineering puts this hypothesis to the
test and investigates its potential consequences.

Geometric structures for dissipative mechanics

We have shown that any contact symplectic manifold can be lifted canonically to a sym-
plectic manifold through a procedure called symplectification. We have applied this to the
contact Hamiltonian system of the damped harmonic oscillator and demonstrated its corre-
spondence with the Caldirola-Kanai method. However, we have not symplectified the contact
Hamiltonian system for the oscillator with serial and parallel damper; this can be an interest-
ing subject for future research. According to our views, it should also be possible to derive a
Caldirola-Kanai-type Hamiltonian via this method for the damper with two oscillators. More-
over, every contact can be symplectified, so a Caldirola-Kanai type system can be derived for
any mechanical system that can be written as a contact Hamiltonian system.

Along the same line, it has been shown that any Jacobi structure can be lifted to a manifold
with a homogeneous Poisson structure; this is called Poissonization (symplectification is a
particular case of this) [54]. Hence, it might be possible to extend the practice of symplecti-
fication to the Jacobi structure for general mechanical systems.

On a more general note regarding the proposed Jacobi structure, we have not formally proven
that the proposed structure always meets the required conditions to be a Jacobi manifold.
Also, since there have been extensions for e.g., the Noether theorem and symplectic reduction
to contact manifolds, there may also be equivalent theorems for Jacobi manifolds. As such,
more research is required to investigate the mathematical properties of this specific type of
Jacobi structure in greater detail.

From the perspective of control theory, the Jacobi systems as described in this thesis can
be used in the framework of port-Hamiltonian systems (see Van Der Schaft [59]) and the
associated control formalism to facilitate energy-based control for general mechanical systems.

Finally, we would be interested to see whether a Hamilton-Jacobi-type equation can be de-
veloped for Jacobi manifolds as well (at least for this particular class of Jacobi structures).

Split-quaternion representation of dynamical systems

We have limited ourselves to using the split-quaternions to analyze the dynamical system
more conveniently. However, we have not ventured into the field of control using the split-
quaternion representation. Although, from a purely mathematical perspective, the split-
quaternions cannot do more than their matrix counterparts, their properties might make
some practices in control easier. For example, algorithms for pole placement are typically
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fairly numerically unreliable, which might be improved by using split-quaternions instead. For
precisely the same reason, the split-quaternion representation may also prove advantageous
for system identification.

Arguably the most prominent limitation of the split-quaternions is that they are not imme-
diately applicable to dynamical systems of dimensions greater than two. However, it may be
possible to consider larger (even-dimensional) systems as interconnections of several atomic
split-quaternion systems (representing a single pole pair). In any case, control applications
often focus on the dominant pole pair, which can, of course easily represented by a single
split-quaternion.

We have shown that the models of the hyperbolic plane can serve as a maps for the normalized
vector part of the split-quaternions, and have related the shape parameters of the solution
trajectories of an underdamped system. It is relatively straightforward to extend these ideas
to critically damped and underdamped systems, but this is not covered in this thesis.

Finally, we have not touched upon an important feature of the hyperbolic plane and its
models: geodesics. These represent the paths of the shortest distance connecting two points
on the hyperboloid (or in the Poincaré or Cayley-Klein disks). The measure of distance in
the Lorentz space as a whole is specified by the Lorentzian norm, which is equivalent to the
magnitude of the imaginary part of the eigenvalue. It is not altogether clear what the meaning
of these paths is in terms of the associated dynamical system: they represent a specific path
from the shape of one trajectory to another, thereby remaining in the same regime. We find
this question a very compelling subject for future research.
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Appendix A

Geometry of Lagrangian Mechanics

Just like the cotangent bundle, the tangent bundle admits a canonical structure, which is
called the vertical endomorphism. Its construction is slightly more convoluted than the
canonical symplectic structure of the cotangent bundle, but nevertheless essential for a proper
geometric interpretation of Lagrangian mechanics.

A-1 The double tangent bundle

The double tangent bundle is the tangent bundle to TQ, denoted by TTQ. This space has
not one, but two canonical vector bundle structures, defined by different projection maps
from TTQ to TQ. First, there is the trivial projection πTQ thats forgets about the tangent
elements to TQ. Secondly, there is (πQ)∗ the pushforward (tangent map) of the projection
map πQ ∶ TQ→ Q [19].

T(TQ)

TQ TQ

Q

πTQ(πQ)∗

πQ πQ

Vectors on the tangent bundle TQ (they live in T(TQ)) are called vertical if they are part of
the kernel of (πQ)∗. These vectors point entirely in the direction of the fiber: in the Lagrangian
formalism, they reflect a pure change in velocity, and no change in the generalized position.
The vertical lift Ψ maps a vector on Q to a vertical vector on TQ [17].

Ψv ∶ TqQ→TvTqQ ∶

Ψv(w) f =
d
dt

f(v + tw)∣
t=0

q ∈ Q, v, w ∈ TqQ, f ∈ C∞(TQ).
(A-1)
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In components, the effect of the vertical lift is as follows:

Ψv ∶ w = wi ∂

∂qi
∣
q

↦ Ψv(w) = wi ∂

∂vi
∣
(q,v)

. (A-2)

The vertical lift can also lift entire sections of TQ by simply applying the vertical lift pointwise.
Using the concept of the vertical lift, we can define the vertical isomorphism S from the
double tangent bundle to itself, first by projecting with (πQ)∗ and then lifting again:

S ∶ TTQ→ TTQ ∶ S(q, v)u = (Ψv ○ (πQ)∗)u u ∈ T(q,v)TQ. (A-3)

The action of S can also be stated in the form of the following diagram:

TTQ TTQ

TQ TQ

(πQ)∗

S

idTQ

Ψ

.

The action of the vertical endomorphism on the chart-induced basis is:

S ∶ ∂

∂qi
∣
(q,v)

↦ ∂

∂vi
∣
(q,v)

∂

∂vi
∣
(q,v)

↦ 0. (A-4)

The vertical isomorphism is therefore a tensor of valence (1, 1) — it takes a vector and
produces another. Locally, S can be expressed as:

S = ∂

∂vi
⊗ dqi . (A-5)

with ⊗ being the tensor product [17].
The Lagrangian formalism only applies to second-order vector fields. A second-order vector
field is a vector field X such that (πQ ○X) = idTQ; i.e. the following diagram commutes: [19]

TTQ

TQ TQ

(πQ)∗

idTQ

X

.

The identity on TQ is idTQ ∶ (q, v) ↦ (q, v). Therefore, for a vector field X to be second
order, we should have that the component in ∂

∂qi that is picked out by (πQ)∗ should be equal
to vi; for example

X =
n

∑
i=1
[vi ∂

∂qi
+ F i ∂

∂vi
]. (A-6)

The corresponding differential equations are
dqi

dt
= vi dvi

dt
= F i, (A-7)

which means that the second-order vector field coincides with the notion of a second-order
differential equation in qi.
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A-2 The Euler-Lagrange equations

With the infrastructure established in the preceding section, we can now define the precise
geometric setting of Lagrangian mechanics. Given a Lagrangian function L ∈ C∞(TQ), define
the Lagrange 1-form1

ϑL ∶= dL ○ S =
n

∑
j=1

∂L

∂vj
dqj . (A-8)

Observe that the Lagrange 1-form is also equal to the pullback of the Liouville form under
the Legendre transformation: ϑL = (FL)∗ϑ [19]. Secondly, we define the Lagrange 2-form as:
[17, 19]

ωL ∶= −dϑL =
∂2L

∂vi∂vj
dqj ∧ dvi + ∂2L

∂qi∂vj
dqj ∧ dqi . (A-9)

Because the exterior derivative and the pullback commute, the Lagrange 2-form is equal to the
pullback of the symplectic 2-form under the Legendre transform. If the rank of the Hessian

∂2L
∂vi∂vj is full (and constant), then ωL is nondegenerate and therefore defines a symplectic
structure on TQ. However, observe that ωL being symplectic or not depends on the nature
of the Lagrangian, while the symplectic structure in the Hamiltonian setting is canonically
derived from the cotangent bundle itself — there is no need for the Hamiltonian to be regular.

The final ingredient for the Euler-Lagrange equations is the energy function

E ∶= Z(L) −L, (A-10)

where Z = ∑ vi ∂
∂vi is the Liouville vector field on TQ.

The Lagrangian vector field XL is then the unique vector field that satisfies the equation: [27]

XL ⌟ ωL = dE , (A-11)

In components, the right hand side of this equation is:

dE = ∑
i,j

( ∂2L

∂vj∂qi
vj dqi + ∂2L

∂vj∂vi
vj dvi + ∂L

∂vj
dvj) − dL ,

dE = ∑
i,j

( ∂2L

∂vj∂qi
vj dqi + ∂2L

∂vj∂vi
vj dvi − ∂L

∂qj
dqj).

(A-12)

Let XL = ∑i (Ai ∂
∂qi +Bi ∂

∂vi ); the left hand side can then be written as follows:

XL ⌟ ωL = −∑
i,j

Ai ∂2L

∂qi∂vj
dqj +∑

i,j

Aj ∂2L

∂qi∂vj
dqi −∑

i,j

Bi ∂2L

∂vi∂vj
dqj +∑

i,j

Aj ∂2L

∂vi∂vj
dvi . (A-13)

Comparing this expression with Equation (A-12), it is immediately clear that

Aj ∂2L

∂vi∂vj
= vj ∂2L

∂vi∂vj
. (A-14)

1Cariñena [17] calls ϑ the Euler-Poincaré 1-form.
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We therefore have that Aj = vj , but only if the Hessian of L with respect to the velocities
is nonsingular. If this is indeed the case (i.e. L is regular), and the condition implies that
the vector field XL is second-order. We can use this knowledge to obtain a second condition
(since the terms in dqi cancel):

∑
i

Bi ∂2L

∂vi∂vj
= ∂L

∂qj
−∑

i

vi ∂2L

∂qi∂vj
. (A-15)

The Hessian of L in the velocities Mij = ∂2L
∂vi∂vj is also called the mass matrix of the system.

We have already assumed that this matrix is invertible. As such, we have that

∑
i

∂2L

∂vi∂vj

d2qj

dt2 +∑
i

∂2L

∂qi∂vj

dqi

dt
= ∂L

∂qj
, (A-16)

or equivalently
d
dt
( ∂L

∂vj
) − ∂L

∂qj
= 0. (A-17)

This is the traditional form of the Euler-Lagrange equations.

Provided that XL is a second-order vector field, the equation Equation (A-11) is equivalent
to the following statement:

£XL
ϑL = dL . (A-18)

The equivalence is easily shown using the Cartan formula:

£XL
ϑL = dL

d(XL ⌟ ϑL) +XL ⌟ dϑL = dL

d(XL ⌟ ϑL) −XL ⌟ ωL = dL

The fact that XL is second-order implies that XL ⌟ ϑL = Z(L). Therefore

d(Z(L)) −XL ⌟ ωL = dL

XL ⌟ ωL = dZ(L) −L

XL ⌟ ωL = dE .

Lagrangians are not unique: from Equation (A-11) we can deduce that the addition of a
closed 1-form (as a map from TQ → R) to the Lagrangian will not alter the Euler-Lagrange
equations. The closed 1-forms on Q therefore constitute the gauge group of Lagrangian
mechanics. An equivalent statement is that the Euler-Lagrange equations remain invariant if
a total derivative is added to the Lagrangian function [19].
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Appendix B

Contact Geometry

This appendix provides a short introduction to the basic concepts of contact geometry that
are relevant in this thesis.

B-1 Contact structures

A contact element on a manifold M is a point m ∈ M combined with a tangent hyperplane
ξm ⊂ TmM (a subspace of the tangent space with codimension 1). The word ‘contact’ refers
to the intuitive notion that if two submanifolds touch, they share a contact element: they are
in contact. Being in contact is a slightly weaker notion than tangency, for the magnitude of
the ‘velocity’ does not matter in the former case [23].

Contact elements to a two-dimensional manifold are simply lines through the origin in the
tangent space. Contact elements to a three-dimensional manifold are planes through the
origin, etc.

A contact manifold is a manifold M (of dimension 2n + 1) with a contact structure, which
is a smooth field (or distribution) of contact elements on M . Locally, any contact element
determines a 1-form α (up to multiplication by a nonzero scalar) whose kernel constitutes the
tangent hyperplane distribution, i.e.

ξm = ker αm (B-1)

This α is called the (local) contact form, and it acts like a ‘normal (co-)vector’ to the hyper-
plane. For the field hyperplanes to be a constact structure, it must satisfy a nondegeneracy
condition: it should be nonintegrable. This can be expressed as the the Frobenius condition
for nonintegrability: [14, 19, 23]

α ∧ (dα)n ≠ 0. (B-2)

Integrable distributions would have this expression vanish everywhere. Roughly equivalent
statements are that (i) one cannot find foliations of M such that ξ is everywhere tangent to
it, or (ii) that dα ∣ξ is a symplectic form.
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Figure B-1: The standard contact structure on R3, given by the contact form dq0 − p1 dq1; the
hyperplanes tilt more in the increasing y-direction.

The contact form for a contact structure may not be globally defined (e.g. in the case of the
bundle of contact elements, cf. Section 3-2-4). A contact form can only be defined globally
if the quotient TM/ξ is a trivial line bundle, i.e. the orientation of the contact structure is
preserved across the entire manifold [25].

The Darboux theorem for contact manifolds asserts that it is always possible to find local
coordinates (q0, q1, . . . , qn, p1, . . . , pn), expressed in which the contact 1-form is of the form

dq0 −
n

∑
i=1

pi dqi . (B-3)

This is also called the standard or natural contact structure. The standard contact structure
on R3 is illustrated in Figure B-1.

Finally, it is clear that the contact form singles out a special direction in the tangent space
at every point of the manifold. This direction is given by the unique Reeb vector field,

Rα ∈ X(M) ∶ Rα ⌟ dα = 0 and Rα ⌟ α = 1. (B-4)

The special direction identified by the Reeb vector field is referred to as the vertical direction.
Likewise, vector field components in the direction of the Reeb vector field are vertical.

In contrast, horizontal vector fields are those that vanish when contracted with the contact
1-form itself.

It is worth pointing out that the Reeb vector field depends on the choice of contact 1-form, and
is therefore not uniquely defined up to a multiplicative constant for a given contact structure.

B-2 The manifold of contact elements

A contact manifold is a manifold with a contact structure. One can, however, associate a
canonical (2n − 1)-dimensional contact manifold to any n-dimensional manifold Q, just like
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one can always find a canonical symplectic structure on T∗Q. Roughly speaking, this attaches
a fiber containing all possible contact elements to every point of the manifold Q. As it turns
out, this manifold of contact elements has a natural contact structure.

The manifold of contact elements CQ of an n-dimensional manifold Q is defined as [23]

CQ ∶= {(q, ξq) ∣ q ∈ Q and ξq a hyperplane on TqQ}. (B-5)

This manifold CQ has dimension 2n − 1.

It is clear that CQ has a natural bundle structure, being C
πÐ→ Q where the bundle projection

π forgets the contact element:

π ∶ CQ→ Q ∶ (q, ξq) ↦ q. (B-6)

Importantly, it can be shown that the manifold of contact elements to Q is isomorphic to the
projectivization of the cotangent bundle to Q, which we denoted by PT∗Q. This projectiviza-
tion can be defined in terms of an equivalence relation between two nonzero elements in the
cotangent bundle at every point in the manifold:

η, χ ∈ T∗q Q ∖ {0} ∶ (q, η) ∼ (q, χ) ⇔ η = λχ, λ ∈ R0, for all q ∈ Q. (B-7)

The equivalence relation identifies all the covectors in the cotangent space that are a nonzero
multiple of each other. It is precisely this identification that takes care of the ambiguity in
Equation (B-1), in that any nonzero multiple of a 1-form has the same kernel, and therefore
gives rise to the same contact structure. PT∗Q is then the quotient set of T∗Q (without zero
section) with respect to the equivalence relation ∼.
Visually, the projectivization of an n-dimensional vector space is the space of all lines through
the origin in that vector space, which has dimension n− 1. It can be shown that this space is
bundle-isomorphic to the manifold CQ [23].

As shown in Figure B-2, coordinates of the equivalence class of 1-forms are ‘projective coordi-
nates’, [p0 ∶ p1 ∶ . . . ∶ pn−1], where pi are coordinates for T∗q Q. The projective coordinates ac-
knowledge the invariance under multiplication by a nonzero number. The tuple (1, p1, . . . , pn)
provides coordinates that cover most of PT∗Q, i.e. all points where p0 is nonzero.

Now, it remains to be shown that the manifold of contact elements is itself a contact manifold.
Indeed, there is a canonical field of hyperplanes on CQ, which lifts the hyperplane tangent
to Q to a hyperplane tangent to CQ (this is akin to the tautological trick played in the
symplectic structure of the cotangent bundle). The contact structure distinguishes the curves
in CQ that are lifted versions from curves in Q. This is illustrated in Figure B-3 [30]. Said
otherwise, a tangent vector on CQ lies in the hyperplane defined by the contact structure if
its projection down on Q lies in the hyperplane on Q defined by the given point on the CQ.
This contact structure is associated with the 1-form:

α = dq0 +
n−1
∑
i=1

pi dqi , (B-8)

given where we chose the particular chart assuming that p0 ≠ 0.

The canonical contact structure on the manifold of contact elements is visualized in Figure B-
3 for a falling object. The base manifold Q is two-dimensional, containing time t and position
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Figure B-2: A point in the manifold of contact elements on Q = R2. A coordinate system for
CQ consists of q = (q0, q1) to indicate a point on Q, and projective coordinates [p0 ∶ p1], which
denote the contact element at that point. Without loss of generalization, one can choose p0 = 1,
and the remaining coordinate p1 covers all but one points in the projective space. A potential
confusion rests in this two-dimensional example, since both the ‘hyperplane‘ and the equivalence
class of 1-forms are both lines in the tangent and cotangent space respectively. This is not the
case for higher-dimensions, for which n − 1 ≠ 1.

q. A curve γ in Q can be seen as a path parameterized in time, i.e. γ ∶ t ↦ (t, q(t)). The
contact elements are lines in the tangent spaces to Q: they locally represent the slope that an
arbitrary curve q(t) can have. Hence, the contact variable v is in this case literally interpreted
as the velocity of the object. The contact structure is then

α = dq − v dt . (B-9)

When the curve on Q is lifted to CQ (i.e. the space including the velocity), the contact
structure forces the velocity coordinate v to be equal to the actual velocity of the curve in Q;
i.e. it selects those curves in CQ that are lifted from the base manifold.

B-3 Contact Hamiltonian systems

Just like in the symplectic case, the contact Hamiltonian formalism defines an automorphism
between a function on the contact manifold K ∈ C∞(M), and an associated ‘Hamiltonian’
vector field XK ∈ X(M). While the isomorphism is rather straightforward for symplectic
manifolds, the contact counterpart is more involved: this is the prime reason behind the com-
putational advantage of symplectification, as opposed to performing the calculations directly
on the contact manifold.

Coordinate-free derivation

Given a contact manifold (M, ξ) with contact form α (i.e. ξ ∈ ker α), the tangent bundle M
can be decomposed into two subbundles: [23, 24]

TM = ker α⊕ ker dα , (B-10)
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Figure B-3: Intuitive picture of the canonical contact on the manifold of contact elements. In
this case, let (t, q) ∈ Q, and let v be a coordinate for the contact (line) element. The standard
contact form is then dq − v dt. On the left, the curve corresponding to a falling object is shown
in Q. When this curve is ‘lifted’ to CQ, the contact structure imposes that it be locally tangent
to the contact structure, or that v = dq

dt
. If the vertical direction is projected down onto the

(q − t)-plane (C(Q) → Q), the hyperplanes defined by the contact structure are line elements
tangent to the trajectory, making v the actual velocity of the curve.

where ⊕ denotes the Whitney sum. The first subbundle is referred to as the horizontal bundle,
the second as the vertical bundle. The vertical subbundle is of rank 1 and its fiber is spanned
by the Reeb vector field (cf. Equation (B-4)). As mentioned to in Appendix B-1, any vector
field X ∈ X(M) may be decomposed accordingly. This decomposition is unique and given by

X = (X ⌟ α)Rα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Xver

+[X − (X ⌟ α)Rα]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Xhor

. (B-11)

Observe that indeed Xver ∈ ker dα and Xhor ∈ ker α [23, 24, 81].
We now wish to find the relation between the contact Hamiltonian K ∈ C∞(M) and the asso-
ciated Hamiltonian vector field XK ∈ X(M). This one-to-one relation is uniquely determined
by two conditions. Firstly, we impose that1

K ∶= −XK ⌟ α. (B-12)

This condition already provides us with the vertical component of the Hamiltonian vector
field, namely

Xver
K = −KRα. (B-13)

Secondly, the automorphism generated by the Hamiltonian vector field must be a contact
automorphism: it must preserve the contact structure. This condition is encoded in terms of
the Lie derivative:2

XK is an infinitesimal contact automorphism⇔£XK
α = sα, (B-14)

1This is the sign convention observed by Bravetti et al. [6] en van der Schaft [41], as opposed to Libermann
and Marle [24].

2Terminology differs somewhat in literature on this point: some authors, such as de León and Lainz [81]
only refer to contactomorphisms as the special case where g = 0; while the more general case is called conformal
contactomorphisms.

Master of Science Thesis E. B. Legrand



106 Contact Geometry

where s ∈ C∞(M). The function s is there because sα and α give rise to the same hyperplane
distribution. Using Cartan’s ‘magic’ formula, the Lie derivative can be expanded as follows:

£XK
α = sα

d(XK ⌟ α) +XK ⌟ dα = sα

−dK +XK ⌟ dα = sα

Contracting both sides with the Reeb vector field yields:

Rα ⌟ (−dK +XK ⌟ dα) = Rα ⌟ (sα)

−Rα ⌟ dK +Rα ⌟ XK ⌟ dα = s Rα ⌟ α

−Rα ⌟ dK −XK ⌟ Rα ⌟ dα = s.

Hence, we have s = −Rα ⌟ dK. Because the vertical component of XK is spanned by the
Reeb vector field, its contraction with dα vanishes. As a result, we can rewrite the previous
expression in terms of the horizontal component of XK :

XK ⌟ dα =Xhor
K ⌟ dα = [dK − (Rα ⌟ dK)α], (B-15)

We must therefore recover Xhor
K from the above expression. Define the mapping

α♭ ∶ TM → T∗M ∶X ↦X ⌟ dα , (B-16)

when restricted to the space of horizontal vector fields, this mapping is an isomorphism onto
the ‘semi-basic’ forms3. Define the inverse mapping of α♭ by α♯, such that

Xhor
K = α♯(dK − (Rα ⌟ dK)α). (B-17)

As such, the Hamiltonian vector field associated to the contact Hamiltonian K is

XK =KRα + α♯(dK − (Rα ⌟ dK)α). (B-18)

Coordinate expression

Given the contact manifold (M, ξ) with contact form

dq0 −
n

∑
i=1

pi dqi , (B-19)

and define the contact Hamiltonian K =K(q0, q1, . . . , qn, p1, . . . , pn). The vertical component
of the Hamiltonian vector field is straightforward (cf. Equation (B-4)):

Xver
K = −K

∂

∂q0 . (B-20)

3Semi-basic forms are forms that vanish when contracted with a vertical vector field [24].
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For the horizontal component, first evaluate the right hand side of Equation (B-15) in coor-
dinates:

Xhor
K ⌟ dα =

n

∑
i=1
(∂K

∂qi
+ pi

∂K

∂q0)dqi + ∂K

∂pi
dpi . (B-21)

In terms of the basis vectors, the mapping α♭ is

∂

∂qi
↦ dpi

∂

∂pi
↦ −dqi ∂

∂q0 ↦ 0 i = 1, . . . , n. (B-22)

The inverse transformation is slightly ambiguous at first sight, since any ∂
∂q0 cannot be re-

covered directly from the ‘forward’ mapping. However, we know that α♯ must produce a
horizontal vector field. Therefore, first perform the inverse mapping in the qi, pi-components
to obtain

−
n

∑
i=1
(∂K

∂qi
+ pi

∂K

∂q0)
∂

∂pi
+

n

∑
i=1

∂K

∂pi

∂

∂qi
. (B-23)

Contracting this expression with α produces −
n

∑
i=1

pi
∂K

∂pi
. Hence, we can use this knowledge

to find the actual horizontal component:

Xhor
K =

n

∑
i=1

p
∂K

∂pi

∂

∂q0 −
n

∑
i=1
(∂K

∂qi
+ pi

∂K

∂q0)
∂

∂pi
+

n

∑
i=1

∂K

∂pi

∂

∂qi
. (B-24)

As such, the coordinate expression of Equation (B-18) is

XK = (
n

∑
i=1

pi
∂K

∂pi
−K) ∂

∂q0 −
n

∑
i=1
(∂K

∂qi
+ pi

∂K

∂q0)
∂

∂pi
+

n

∑
i=1

∂K

∂pi

∂

∂qi
(B-25)

Furthermore, we have
£XK

α = −∂K

∂q0 α, (B-26)

and
£XK

K = −K
∂K

∂q0 . (B-27)
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Glossary

The entries in this glossary are separated in two sections. The first section contains the
notation of Chapters 2 and 3, being mainly concerned with differential geometry. The second
section pertains to Chapter 4, since some symbols have a different or more specific meaning
in the context of split-quaternions.

Chapters 2 and 3

α Contact 1-form
Ψα Hamiltonian isomorphism for the contact form α

β Work 1-form
Λ Bivector (Jacobi structure)
ξ Contact hyperplane distribution
ω Symplectic form
ωL Lagrange 2-form
η Heat 1-form
ϑ Liouville 1-form
ϑL Lagrange 1-form
E Mechanical energy
F Fiber derivative
H (Symplectic) Hamiltonian
H Homogeneous (Liouville) Hamiltonian
K Contact / Jacobi Hamiltonian
L Lagrangian
M Phase space
Q Configuration manifold
Qe Extended configuration manifold
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116 Glossary

Rα Reeb vector field of the contact form α

U Internal / dissipated energy
XH Hamiltonian vector field with respect to H

A Action functional
v Vector (bold notation)
pi Generalized momentum / price
q̇i Generalized velocity / flow of goods
qi Generalized position / stock level
PR Projective real line
R× Real multiplicative group / real numbers without zero
X(c)M Vector fields on the manifold M

Xc(M) Contact Hamiltonian vector fields / inf. contactomorphisms on M

⊕ Whitney sum
Γ(Z) Smooth sections of the bundle Z

PT∗M Projectivized cotangent bundle to M

Ṫ∗M Cotangent bundle to M with zero section removed
◂G Group action of the group G

∼ Equivalence relation
M/ ∼ Quotient set of M with respect to ∼
[ , ] Lie bracket
J , K Schouten bracket
∇ Function gradient
M

πÐ→ B Bundle with total space M , projection π and base B

{ , } Poisson / Jacobi bracket
C∞(M) Smooth functions on the manifold M

£Xη Lie derivative of η with respect to X

d Exterior derivative
∧ Exterior (wedge) product
○ Function composition
⊗ Tensor product
⌟ Interior product
TxM Tangent space to the manifold M at the point x

T∗xM Cotangent space of the manifold M at the point x

TM Tangent bundle of the manifold M

T∗M Cotangent bundle of the manifold M
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φ∗ Pullback of the map φ

φ∗ Pushforward of the map φ

ω♭ Flat mapping to the cotangent bundle based on ω

ω♯ Sharp mapping to the tangent bundle based on ω

Chapter 4

ε Idempotent unit
ζ Damping ratio
1, î , ̂, k̂ Split-quaternion basis-elements
X1, Xî , X̂, Xk̂ Vector fields associated with 1, î , ̂, k̂

a∗ Split-quaternion conjugate of a

i Imaginary unit
j Hyperbolic unit
sca(a) Scalar part of the split-quaternion a

a0 Shorthand notation for sca(a)
vec(a) Vector part of the split-quaternion a

a Shorthand notation for vec(a)
â Unit vector (part)
a General split-quaternion
Dn Dihedral group; symmetry group of an n-polygon
GL(n,R) General linear group over Rn

gl(n,R) Lie algebra of the general linear group over Rn

SL(n,R) Special linear group over Rn

sl(n,R) Lie algebra of the special linear group over Rn

Sp(n) Symplectic group group over Rn

sp(n) Lie algebra of the symplectic group group over Rn

N(a) Squared total norm of a

∥a∥ Total norm of a

N(a) Squared vector norm of a

∥a∥ Vector norm of a

⟨ , ⟩L Lorentzian inner product
×L Lorentzian cross product
⟨ , ⟩ Euclidean inner product
φ Ring / algebra isomorphism between real (2 × 2)-matrices and split-

quaternions
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R Real part (complex number)
I Imaginary part (complex number)
[ , ] Lie bracket
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