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A B S T R A C T

In the recent years, studies on health consequences of smartphone usage time have increased, yet findings on the 
effectiveness of usage interventions remain unclear. This preregistered study investigates the effectiveness of a 
planning intervention to reduce total smartphone usage time. Additionally, it examines the interventions’ un
derlying mechanisms of self-efficacy, intention, action, and coping planning. A primary analysis of a randomized 
controlled trial, with data collected at three measurement points was conducted. Three cohorts of university 
students were recruited during the period prior to the end-of-term exams. A total of N = 787 participants were 
allocated to either an intervention condition (n = 389) or a control condition (n = 398). At baseline measurement 
(T1) the intervention condition formed up to three actions and three coping plans. Self-reported self-efficacy, 
intention, action, and coping planning as well as objectively measured smartphone usage were assessed up to a 
three-weeks follow-up. The effectiveness of the intervention and the mediating mechanisms were evaluated using 
linear mixed models. The analysis revealed no significant effect on total smartphone usage time. With respect to 
the interventions underlying mechanisms, results show a significant indirect effect of self-efficacy at T2, on a 
reduction in total smartphone usage time at T3 but no evidence for intention, action, or coping planning.

1. Introduction

Smartphones have become an indispensable tool for our daily lives. 
They provide connectivity, immediate access to a vast amount of in
formation and entertainment, and offer a diverse range of features that 
assist us with a variety of tasks (Vanden Abeele et al., 2018). However, 
increasing concerns about their negative impact on health, productivity, 
social relationships, and well-being are driving individuals desire for 
digital disconnection (Beisch & Koch, 2022; Vanden Abeele et al., 2024).

When displacing meaningful activities, such as face-to-face in
teractions with peers or sleep (Hall et al., 2019; Twenge et al., 2019), 
smartphone usage time has been associated with negative health out
comes. These include increased anxiety, stress, and compromised sleep 
quality (Thomée, 2018; Vahedi & Saiphoo, 2018). Additionally, smart
phone usage can negatively impact academic and work productivity due 

to frequent and short interruptions (Amez & Baert, 2020). It can blur 
work-life boundaries, leading to social stress and role conflict (Gadeyne 
et al., 2018; Kao et al., 2020), and challenge well-being through expo
sure to negative online interactions (e.g., idealized social media 
portrayal) (Faelens et al., 2019, 2021). Previous research suggests that 
relationships between smartphone usage time and well-being may 
follow an inverted U-shape, where moderate use is associated with 
optimal well-being, and both minimal and excessive use (e.g., more than 
4 h per day) is associated with negative mental health outcomes 
(Przybylski et al., 2020). These findings underscore the need for in
terventions that mitigate the maladaptive impact of smartphone usage 
time while maintaining its benefits.
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1.1. Interventions to disconnect from smartphone usage

Various digital tools, including smartphone applications have been 
applied as timers or blockers to reduce the total usage time or frequency 
of smartphone usage (Grüning et al.,2023; Keller et al., 2021; Zimmer
mann & Sobolov, 2023). These digital tools aim to assist users in 
monitoring or restricting their smartphone usage time to change their 
smartphone-related behaviour. However, screen time monitoring and 
restriction alone rarely lead to an actual reduction in smartphone usage 
time (Zimmermann, 2021). Research on technology-based interventions 
such as applications to reduce smartphone usage shows mixed effects 
regarding intervention effectiveness and lack an examination of under
lying psychological mechanisms (Purohit & Holzer, 2021; van Velt
hoven et al., 2018).

Interventions with a behaviour change focus mainly target digital 
disconnection and can be called digital detox interventions (Nassen et al., 
2023). Digital detox refers to a period of time during which an indi
vidual abstains from using technological devices, such as smartphones 
(Radtke et al., 2022). To date, research on digital detox interventions 
promoting smartphone abstinence yields inconsistent findings (Radtke 
et al., 2022). While some studies report adverse effects like smartphone 
craving and separation anxiety (Hanley et al., 2019; Vally & D’Souza, 
2019), other studies have found no negative intervention effects (e.g., 
Hall et al., 2021; Nguyen & Hargittai, 2023). However, further studies 
indicate positive effects, with a significant decrease in depression and 
anxiety (Lambert et al., 2022), suggesting that psychological well-being 
may benefit from smartphone disengagement (Brown & Kuss, 2020; 
Nguyen, 2021). Additionally, current research on digital detox in
terventions remains inconclusive on whether total abstinence or a 
strategic reduction in smartphone usage time is more effective 
(Brailovskaia et al., 2023; Plackett et al., 2023; Radtke et al., 2022).

These mixed findings highlight the need to closely examine the 
mechanisms within digital detox interventions (Vanden Abeele et al., 
2024). Notably, interventions incorporating self-regulation, that en
courages goal-oriented and effective smartphone use, have yielded 
positive health and well-being outcomes (Brailovskaia et al., 2023). This 
suggests that self-regulatory mechanisms could be crucial in targeting 
smartphone usage behaviour.

1.2. Self-regulatory mechanisms: Self-efficacy, action planning, and 
coping planning

Behaviour change theories, such as the Health Action Process 
Approach (HAPA; Schwarzer, 2008), emphasize the significance of 
self-regulatory processes in initiating and sustaining intended behaviour 
changes. Within this framework, self-efficacy and planning are key 
factors for translating behavioural goals into action (Schwarzer & 
Luszczynska, 2008).

Self-efficacy refers to an individual’s belief in their capability to 
successfully complete a specific task, overcome difficult situations, or 
adopt to a novel course of action (Bandura, 1997). Moreover, 
self-efficacy is crucial for the successful implementation of plans to 
change behaviour, enhancing individuals’ beliefs in their ability to 
overcome obstacles and adhere to their action plans, even in the face of 
challenges (Sniehotta et al., 2005). Ample research on behaviour change 
interventions has demonstrated that self-efficacy is relevant for in
dividuals to implement and sustain behaviour change (Schwarzer & 
Luszczynska, 2008; Zhang et al., 2019). In the context of reducing 
smartphone usage time, which can potentially encompass various 
challenges (e.g., ignoring incoming notifications), fostering self-efficacy 
beliefs may be essential. For example, Keller et al. (2021) showed that 
self-efficacy acts as a critical mechanism within an intervention app 
aiming to reduce problematic smartphone use. In particular, this inter
vention notably enhanced self-efficacy beliefs, which was in turn asso
ciated with a significant reduction in problematic smartphone 
behaviour. Nonetheless, more research is needed to further explore the 

role of self-efficacy in the context of digital detox interventions targeting 
smartphone usage time.

In addition to the role of self-efficacy, action and coping planning 
may serve as potential predictors for the intention-behaviour relation
ship (Zhang et al., 2019). Action planning can be defined as a prospec
tive self-regulator strategy that links a situational cue (e.g., ‘When I 
study for my psychology exam, …‘) with a specific behavioural response 
(e.g., ‘ …, I will lock my smartphone in the kitchen drawer.‘) (Hagger & 
Luszczynska, 2014; Sniehotta et al., 2005). Action planning requires the 
prior forming of an intention to change a behaviour (i.e., the level of 
effort put into enacting a desired behaviour; Zhang et al., 2019) and is 
suggested to mediate the intention-behaviour relationship (Webb & 
Sheeran, 2006) by forming a mental association between the situational 
cue (when, where) and the behavioural response (how). In turn, coping 
planning represents the anticipation of possible barriers that might 
impair the intended behavioural action. It includes planning on how to 
overcome and manage these barriers (Zhang et al., 2019). While pre
vious studies have explored the efficacy of planning on various 
health-related behaviours (e.g., physical activity, healthy nutrition, 
Fleig et al., 2011; Hagger & Luszczynska, 2014; Zhang et al., 2019), they 
have not addressed the effect of planning on the reduction of smart
phone usage time (Radtke et al., 2024).

1.3. Young adults as the target group for a digital detox

Students represent a substantial proportion of 18–29-year-olds, an 
age group in which the prevalence of smartphone ownership is high 
(Pew Research Center, 2018). With a high frequency of use, that is more 
than 5h per day, university students’ smartphone usage time often in
terferes with their learning and studying habits (Amez et al., 2023). 
Furthermore, high smartphone usage time among university students 
has been linked to increased levels of depression, anxiety, and sleep 
problems, underscoring their susceptibility to mental health challenges 
(Singh & Samah, 2018). These factors combined make university stu
dents a particularly relevant group for studying the effectiveness of a 
planning intervention targeting smartphone usage time.

1.4. Aims and hypotheses

The present study aims to examine the effects of a planning inter
vention (vs. a control condition) which targets the reduction of smart
phone usage time among university students during their exam 
preparation phase. It is examined whether planning is an effective 
strategy to reduce daily smartphone usage time and in particular social 
media usage time on smartphones. Based on evidence for the effec
tiveness of planning interventions addressing the change of other be
haviours (Zhang et al., 2019), we expect that participants in the 
intervention condition show lower levels of overall smartphone usage 
time (‘H’ = Hypothesis; H1a) and social media usage time (H1b) than 
participants in the control condition. Additionally, we propose that the 
effect of the planning intervention on reduced overall smartphone usage 
time is mediated by self-regulatory variables, including self-efficacy 
(H2a), intention (H2b), action planning (H2c), and coping planning 
(H2d).

2. Methods and materials

This study reports primary analyses from a two-condition random
ized controlled trial (RCT) testing the effectiveness of a planning inter
vention on smartphone disconnection among university students. An 
existing publication by Nunez et al. (2022) has examined cohort effects 
of baseline variables. The RCT was conducted during exam preparation 
phase before the end-of-term exams, with data collected among uni
versity students during the 2020 winter term (cohort 1; between 
January and February 2020), the 2020 summer term (cohort 2; between 
May and July 2020), and the 2021 winter term (cohort 3; between 
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January and February 2021). The RCT preregistration can be accessed at 
the Clinical Trial Register at Clinicaltrials.gov (trial registration number: 
NCT04550286). The study was approved by the Ethics Committee at 
Witten/Herdecke University.

2.1. Sample and procedures

Study participants were recruited nationwide in Germany at 
different universities using on-campus and off-campus advertisements 
via social media platforms, university mailing lists, and flyers, as well as 
short presentations in lectures at the institution conducting the study. 
Eligibility criteria for participation included a minimum age of 16 years, 
a current enrolment as a student at a German university, regular usage of 
a smartphone with an Android operating system, proficient German 
language skills, having at least one graded exam scheduled in the 
consecutive semester, and not actively seeking treatment for test anxi
ety. Study participation was voluntary. As an incentive for full study 
participation, all participants were given the opportunity to partake in a 
lottery including various prizes consisting of adventure activity gift 
cards and other vouchers (worth 830 EUR in total). Additionally, psy
chology students of Witten/Herdecke University received course credit 
for full participation.

A total of N = 787 participants (n = 569 women; 72.3 %) with a mean 
age of 22.81 years (SD = 3.72, range 17–48) were assessed for eligibility 
and registered for the study online. They provided their e-mail address, 
informed consent, and completed the baseline assessment (‘T’ = Time; 
T1). Upon completion of the baseline questionnaire, all students were 
given general advice on how to organize their study environment and 
study behaviour to improve their performance during the exam prepa
ration phase before the end-of-term exams (e.g., pauses during exam 
preparation, ways to organize study materials, etc.; see Appendix S1).

Using a random digit generator, participants were then assigned to 
either the intervention (n = 389) or control condition (n = 398). 
Randomization was conducted via SoSci Survey’s internal randomiza
tion function, which ensures equal probability of assignment to each 
condition (Leiner, 2019). No stratification was applied. Participants in 
the intervention condition received online written instructions to 
generate three action and three coping plans to reduce smartphone 
usage time during the exam preparation phase. To ensure equivalent 
time duration, participants in the control condition received a survey 
related to their dietary habits (e.g., ‘How often do you typically consume 
dairy products?‘), which was not related to the subject of the interven
tion. At post-intervention, participants received online questionnaires at 
7 days (T2) and 14 days (T3) following baseline (T1). Besides data 
analysed in this study, participants provided additional self-reported 
data after their first graded exam at T4 (on average 34 days after 
baseline) and at T5 (on average 95 days after baseline). The study design 
is illustrated in Fig. 1.

Moreover, all participants were asked to install a screen time appli
cation (academia.murmuras.com) on their smartphones. The mobile 
application assessed participants’ smartphone usage time during the 
post-intervention period (between T1 and T3). The time of mobile usage 
data was logged in the background. The application did not inform 

participants about their smartphone behaviour. Of the eligible partici
pants, n = 716 participants installed the study app, of which n = 555 
(out of 716: 77.51%) participants had study app-measured data points 
on overall smartphone usage enabling behavioural data analysis. Fig. 2
provides a CONSORT flowchart.

2.2. Intervention

In the intervention condition, participants were provided with the 
same general advice on study behaviour and environment as those 
assigned to the control condition (Behavior Change Technique Ontology; 
BCIO 007051; Marques et al., 2024). Next, they were informed that the 
presence and use of smartphones could lead to distraction during the 
exam preparation phase. They were also advised to take breaks from 
their smartphone and other electronic devices while studying. Partici
pants in the intervention condition were first asked to reflect on their 
smartphone use and create a plan for switching it off and placing it out of 
sight and reach during the weeks before their end-of-term exams. They 
were then instructed to develop three individual action plans (BCIO 
007010; Marques et al., 2024). These plans needed to specify: ‘when’ the 
students would study (day of the week and time), ‘where’ they would 
study (location), and ‘how long’ they would put their smartphone away 
(duration). Example plans were provided, and participants were asked 
to develop three personalized plans following an ‘if-then’ structure (e.g. 
‘If I study for my biology exam on Thursday at 4 p.m., then I will turn off 
my smartphone and place it in my bedroom drawer until I finish 
reviewing two chapters’; Gollwitzer & Sheeran, 2006). Students were 
encouraged to ensure that their plans aligned with their study habits, 
could be implemented into their daily routines, and were precise and 
complete. They were then asked to enter each action plan into three 
provided blank fields within the online questionnaire. This procedure 
was followed by instructions to develop three individual coping plans 
(BCIO 007008; Marques et al., 2024), that is, the anticipation of possible 
barriers to engaging in the planned behaviour and how to overcome 
these barriers: ‘If situation X appears, then I will cope with it by doing Y’ 
(Sniehotta et al., 2006). Participants were first prompted to identify 
situations where it might be challenging for them to refrain from using 
their smartphone while studying. They were asked to develop three 
coping plans to address these challenges, using an if-then structure (e.g., 
‘If I have a question for my fellow students while studying, then I will 
write it on a piece of paper and ask them after my study session is 
completed.‘; Gollwitzer & Sheeran, 2006). To support this process, 
example coping plans were provided. The instructions emphasized that 
the coping plans should be practical and align with students’ study 
habits and their daily routines. Participants were then instructed to enter 
their three coping plans into designated blank fields provided in the 
online questionnaire. Subsequently, participants were advised to read 
their action and coping plans out loud, take a photo of their plans and 
use the photo as their smartphone background. A detailed description of 
the delivery and the content of the intervention and control procedure is 
presented in Appendices S2 and S3.

Fig. 1. Study Design with Five Measurement Points for the Control and Intervention Conditions. 
Note. The present study analyses focused on the assessments between T1 and T3 which were prior to the end of term-exams.
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2.3. Measures

Except for covariates, app-usage was assessed across three time 
points (T1 = Day1 till Day7, T2 = Day8 till Day14 and T3 = Day15 till 
Day21). Self-efficacy was assessed at T1 and T2, whereas intention, 

action, and coping planning were self-reported at T1, T2, and T3 (each 
one week apart). The item examples listed below were translated from 
German.

Fig. 2. Flowchart showing the Condition Allocation and Participant Dropout across the Assessment Points. 
Note. ‘T’ = Time. The total sample consists of three independent cohorts. Cohort 1 (n = 174), cohort 2 (n = 233), cohort 3 (n = 380). Participants were excluded when 
they failed to answer the control item (i.e., those who chose the options [1] completely disagree or [2] mostly disagree when instructed to ‘Please choose [4] mostly 
agree’). Participants were included when they chose response options close to the correct answer of the control item (i.e., [3] neither or [5] completely agree), as they 
did not differ from those who chose the correct control item response on the dependent variables. Data from T4 and T5 (presented in grey font) was not analysed in 
this study.
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2.3.1. App-measured smartphone usage data
Across 21 days following baseline, objective data on daily minutes of 

(1) overall smartphone usage time and (2) social media usage time were 
measured by a screen time application. We calculated weekly scores of 
average daily minutes of overall smartphone usage time and overall 
social media usage time. In instances of very high levels of smartphone 
or social media minutes per day, univariate outliers (z ≥ 3.29) were 
winsorized to one unit higher than the next highest value with z ≤ 3.29 
(Tabachnick & Fidell, 2007).

2.3.2. Self-efficacy
Participants’ self-efficacy to reduce smartphone usage time during 

study time was assessed by six self-report items with responses ranging 
from ‘completely disagree’ (1) to ‘completely agree’ (6). A sample item 
read: ‘I am confident that I can switch my smartphone into airplane 
mode while studying’. Cronbach’s alpha was α = .78 at T1 and α = .77 at 
T2.

2.3.3. Intention
Intention to decrease smartphone usage time during study periods 

was assessed using five items adapted from Sniehotta et al. (2005). 
Intention items (e.g., ‘I intend to keep my smartphone out of sight and 
reach during study time.‘) were answered on a 6-point scale (1 =
completely disagree; 6 = completely agree). Across measurement points 
and conditions, Cronbach’s alpha was α = .79 at T1, α = .77 at T2 and α 
= .79 at T3.

2.3.4. Action planning
Action planning to reduce smartphone usage time during the exam 

preparation phase was assessed with three items adapted from Sniehotta 
et al. (2005). Participants responded to items such as ‘I have made 
detailed plans when I will switch my smartphone into airplane mode 
while studying’ on a 6-point scale (1 = completely disagree; 6 = completely 
agree). Cronbach’s alpha was α = .82 at T1, α = .85 at T2, and α = .87 at 
T3.

2.3.5. Coping planning
Self-reported coping planning of reduced smartphone usage time 

during the exam preparation phase was measured with a 6-point scale 
(1 = completely disagree; 6 = completely agree). The three items used the 
stem ‘I have made detailed plans … ’ followed by statements such as 
‘how to deal with incoming smartphone notifications while studying’. 
The coping planning items were also adapted from Sniehotta et al. 
(2005). Cronbach’s alpha was α = .73 at T1, α = .76 at T2 and α = .79 at 
T3.

2.3.6. Covariates
The covariates included sex (not male = 0; male = 1), age, and 

perceptions of procrastination and self-efficacy at baseline. Procrasti
nation was assessed using a 6-point scale (1 = completely disagree; 6 =
completely agree) using items such as ‘I delay the start of tasks until the 
last minute’. Also, two dummy-coded cohort variables (cohort 2: 1 =
students from cohort 2; cohort 3: 1 = students from cohort 3) were used 
for the respective semester of study participation.

2.4. Data analysis

An a-priori power analysis for a repeated-measures ANOVA with 
G*Power v3.1 was calculated regarding the reduction of smartphone 
usage time compared to a control condition with a power of 1–β = .95 
and a p value of .05. A sample size of 116 participants would be needed 
to identify a small effect (Cohen’s d = .17) (Faul et al., 2007). It has to be 
emphasized that the present analysis varies from the ANOVA-based 
power analysis by employing multilevel modelling to accommodate 
the nested data structure. Multilevel models offer the advantage to ac
count for between- and within-group variability (Bolger & Laurenceau, 

2013).
Data were analysed based on the intention-to-treat approach. 

Descriptive statistics of study variables and bivariate correlations were 
analysed using SPSS 28 (IBM Corp., 2021). Accommodating the nested 
data structure for repeated measures, Rstudio (R Core Team, 2021) and 
the lme4 package (Bates et al., 2015) were used to run multilevel 
models. A restricted estimated maximum likelihood (REML) procedure 
was applied to account for missing data (McNeish, 2017). For the 
mediation analyses, the lavaan R package was used.

An attrition analysis and a randomization check were run for base
line variables using chi-square and t-tests, which were followed by lo
gistic regressions. Randomization to study conditions was represented 
by a binary outcome variable classified as 0 for the control condition or 1 
for the intervention condition. Similarly, a binary attrition variable was 
coded for each participant, with attrition categorized as either not 
retained (0) or retained (1) for longitudinal analyses. It was tested 
whether baseline variables showed similar levels in both study condi
tions as well as for participants retaining or not retaining for analyses.

Univariate outliers were identified using analyses of z-scores, 
resulting in 67 univariate outliers for smartphone usage time and 120 
univariate outliers for social media usage time, which were winsorized 
(z ≥ 3.29) (Tabachnick & Fidell, 2007). Multivariate outliers were 
identified using analyss of Mahalanobis distance, with 35 multivariate 
outliers detected, based on critical chi-square values (p < .001). Multi
variate outliers were not excluded from the analyses, as sensitivity an
alyses revealed similar results regardless of their inclusion.

Linear two-level models were estimated including the daily assess
ment of smartphone usage (within-level) nested in participants (be
tween-level) for overall smartphone usage time and social media usage 
time. The models examined the interaction between experimental con
ditions (0 = control condition; 1 = intervention condition) and time 
(linear day trend) and demonstrated changes in smartphone usage time 
and social media usage time between the two experimental conditions 
across the post-intervention period. The linear mixed models were 
specified using a maximal random effect structure for all predictor 
variables (Barr et al., 2013). When models did not converge, we reduced 
the random effects structure until convergence was met (Bolger & 
Laurenceau, 2013).

In addition, we specified four mediation models, in which self- 
efficacy, intention, action planning and coping planning were tested as 
proposed mediators. To assure a temporal order of the mediators 
(assessed at post-intervention: T2), the overall smartphone usage time 
from study days 8–14 (corresponding to the week after T2) was used to 
compute a mean score. Baseline levels of mediators and covariates were 
grand-mean centred and included in the model as predictors. The 
mediation models were tested using bootstrapping (5000; Preacher & 
Hayes, 2008) and bootstrap-corrected confidence intervals were 
computed (CIbc).

We included sex, age, procrastination, self-efficacy and cohort vari
ables as between-person covariates. Sex (1 = male vs. 0 = not) and 
cohort effects of cohort 2 (1 = cohort 2 vs. 0 = not) and cohort 3 (1 =
cohort 3 vs. 0 = not) were dummy-coded. Age, procrastination and self- 
efficacy were grand-mean centred. All covariates were used for sensi
tivity analysis.

3. Results

Descriptive statistics of study variables are presented in Appendix S4.

3.1. Sample characteristics, randomization check, attrition analysis, and 
manipulation check

The study included N = 787 participants (n = 569 women (72.3%); n 
= 212 men (26.9%) and n = 6 with a non-binary report (0.8%). Par
ticipants had a mean age of 22.81 years (SD = 3.73), ranging from 17 to 
48 years old. The sample consisted of students from over >100 German 
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universities, with n = 577 (73.3%) students enrolled in advanced un
dergraduate and graduate programs, and n = 210 (26.7%) students 
enrolled in their first year of undergraduate studies. Most students (n =
611, 77.6%) were enrolled in their first-degree program, while n = 176 
(22.4%) students were enrolled in their second-degree program (see 
Table 1).

The randomization check revealed no unique between-condition 
differences at baseline, pointing to a successful randomization. The 
attrition analysis revealed that compared to those who dropped out 
before T3 (n = 252) completers (n = 536) had higher self-efficacy (non- 
retainers: M = 4.26, SD = .85; retainers: M = 4.39, SD = .81; p = .03) and 
lower procrastination (non-retainers: M = 3.08, SD = .36; retainers: M =
3.02, SD = .35; p = .02).

Manipulation checks revealed a significant increase in intention to 
reduce smartphone usage time across the measurement points in the 
intervention condition compared to the control condition (b = 0.23, SE 
= 0.09, 95% CI [0.06, 0.41], p = .01). Compared to the control condi
tion, participants in the intervention condition reported higher increases 
in action planning (b = 0.21, SE = 0.05, p =< .001, 95% CI [0.11, 0.31]) 
and coping planning (b = 0.45, SE = 0.11, 95% CI [0.22, 0.67], p < .001) 
(see Appendix S5).

3.2. Smartphone usage over time

The first analysis aimed to test the intervention effect on objectively 
measured daily smartphone usage time (model 1) and social media 
usage time (model 2) over a 21-day post-intervention period. Using 
linear two-level models with assessment points nested in individuals, the 
intraclass correlation (ICC) of daily smartphone usage (ICC = .63) and 
daily social media usage time (ICC = .63) indicates that variance in 
smartphone and social media usage time was mainly explained by dif
ferences between participants (level 2). Regarding the time predictions, 
the control condition did not show statistically significant changes in 
smartphone usage time (b = − 1.87, SE = 3.55, p = .60, 95% CI [− 8.84, 
5.09] or social media usage time (b = 2.14, SE = 1.37, p = .12, 95% CI 
[− 0.55, 4.82]) across the assessment points. The Time × Group inter
action did not reach statistical significance indicating that no between- 
condition differences in smartphone usage time (b = 3.90, SE = 5.09, p 
= .45, 95% CI [− 6.08, 13.88] or social media usage time (b = − 1.65, SE 
= 1.91, p = .39, 95% CI [− 5.39, 2.10] could be observed. The random 
effects of associated intercepts were statistically significant, indicating 
between-participant variability in baseline levels of smartphone usage 
and social media usage time. The significant random slope variances 
imply that changes over time for these outcomes vary across participants 
(Bolger & Laurenceau, 2013) (see Table 2.

3.3. Effects of the intervention condition on changes in smartphone usage 
time mediated by self-efficacy, intention, and planning

In the model with self-efficacy as the mediator, an increase at T2 (b 
= 0.16, SE = 0.08, 95% CIbc [0.01, 0.32]) was observed for the inter
vention (vs. control condition), which was associated with a decrease in 
smartphone usage time during the following seven days (b = − 21.37, SE 
= 7.16, 95% CIbc [− 35.00, − 7.65]) (see Fig. 3). The bootstrap-corrected 
confidence interval values indicated an indirect effect (b = − 3.43, SE =
2.14, 95% CIbc [− 8.45, − 0.03]).

In the model with intention as the mediator, the intervention (vs. 
control) condition was positively associated with increases in intention 
at T2 (b = 0.23, SE = 0.12, 95% CIbc [0.05, 0.41]), which was associated 
with reduced smartphone usage time during the following seven days (b 
= − 13.37, SE = 5.51, 95% CIbc [− 24.35, − 2.77]). The bootstrap- 
corrected confidence interval reflected a negative indirect effect (b =
− 3.06, SE = 1.96, 95% CIbc [− 7.81, − 0.19]).

The mediation model with action planning as the mediator showed 
that the intervention (vs. control condition) was positively related to 
increases in action planning at T2 (b = 0.48, SE = .12, 95% CIbc [0.25, 
0.72]) which, in turn, was associated with non-substantial reductions in 
smartphone usage time during the following seven days (b = − 5.42, SE 
= 4.45, 95% CIbc [− 14.13, 3.28]. For coping planning as the mediator, 
increases in T2 coping planning (b = 0.53, SE = 0.10), CIbc 95% [0.34, 
0.73]) were observed for the intervention (vs. control) condition, which 
showed no substantial changes in smartphone usage time during seven 
days after T2 (b = − 3.26, SE = 4.32, 95% CIbc [− 12.13, 5.16]).

Sensitivity analyses across all models revealed that the patterns of 
results remained similar when covariates were added, except for a non- 
substantial indirect effect for intention as mediator. Models from 
sensitivity analyses are listed in Appendix S6.

4. Discussion

This study examined the effects of a planning intervention to reduce 
smartphone usage time and the underlying self-regulatory mechanisms 
of such an intervention. Contrary to our initial hypotheses, the planning 
condition (vs. the control condition), did not show a direct effect on an 
overall reduction in smartphone usage time or social media usage time 
(not supporting H1a and H1b). Notably, while the intervention had an 
influence on self-efficacy and indirectly on reduced smartphone usage 
time (supporting H2a), the indirect effects of intention, action, and 
coping planning on a reduction of smartphone usage time were non- 
significant (not supporting H2b, H2c and H2d).

4.1. Effects of planning on smartphone disconnection

Our findings are somewhat surprising as planning has been identified 
as an effective strategy across diverse health behaviour change domains 
(Zhang et al., 2019). However, the effectiveness of planning mechanisms 
might vary for behaviour change within the context of digital discon
nection (Vanden Abeele et al., 2024). There are several reasons that 
could explain a lack of direct effects of the planning intervention.

One key consideration is the fragmented nature of smartphone usage 
time. Fragmentation, that is, usage sessions being dispersed in numerous 
brief sessions throughout the day rather than occurring in a few pro
longed periods, is notably evident in the context of social media appli
cations, where push notifications and spontaneous ‘checking’ 
behaviours are common (Deng et al., 2019; groβe Deters & Schoedel, 
2024; Hendrickson et al., 2019). Users often find themselves instinc
tively checking their smartphones for new messages or updates in social 
media apps, even in the absence of explicit prompts (Fitz et al., 2019; 
Klimmt et al., 2017; Kushlev & Leitao, 2020; Montag et al., 2015). Our 
study focused on total daily usage during study periods, which may have 
overlooked a more nuanced view of smartphone usage patterns and 
changes, such as reductions during specific times. Future studies could 

Table 1 
Demographic Information about the Total Sample and per Condition.

Demographic information Total 
sample (N 
= 787)

Intervention 
condition (n =
389)

Control 
condition (n =
398)

Gender, n (%) ​
Women 569 (72.3) 281 (72.3) 288 (72.4)
Men 212 (26.9) 107 (27.4) 105 (26.4)
Non-binary 6 (.8) 1 (.3) 5 (1.3)

Age in years: M (SD) 22.81 (3.73) 22.80 (3.85) 22.80 (3.62)
Number of exams: M (SD) 4.38 (1.91) 4.37 (1.98) 4.38 (1.84)
Semester information, n (%) ​

First study program 611 (77.6) 301 (77.4) 310 (77.9)
Second study program 176 (22.4) 88 (22.6) 88 (22.1)
First year 
undergraduate students

210 (2.76) 112 (28.8) 98 (24.6)

Advanced 
undergraduate and 
graduate students

577 (73.3) 277 (71.2) 300 (75.4)
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integrate Ecological Momentary Assessment methods (Stieger & Lewetz, 
2018) and additionally examine the frequency of usage or app pick-ups 
to provide a more nuanced understanding of the dynamics of smart
phone usage time.

Another consideration is the potential for compensatory behaviour 
outside planned time intervals of smartphone non-use. This phenome
non resonates with the concept of ‘craving’ or increased desire following 
a period of restriction, where a rebound in behaviour occurs after a 
period of suppression (Erskine & Georgiou, 2010; Sayers & Sayette, 
2013). This aligns with findings from digital detox research, which 
found symptoms associated with craving, withdrawal, and potential 
overuse during and after phases of abstinence from smartphone or social 
media usage time (Eide et al.,2018; Stieger & Lewetz, 2018; Wilcockson 
et al., 2019).

4.2. The role of self-regulatory mechanisms on a reduction of smartphone 
usage time

A pivotal factor in the behaviour change process grounded in the 
theoretical framework of the HAPA model is self-efficacy (Schwarzer, 
2008). Consistent with our assumptions, the present planning inter
vention enhanced self-efficacy beliefs, which, in turn, was associated 
with a decrease in smartphone usage time. Our findings align with 
existing research by Keller et al. (2021) and suggest that when in
dividuals engage in planning to reduce smartphone usage time, it en
hances their confidence to do so.

Self-efficacy might have served as a psychological resource when 
facing obstacles or resisting temptations associated with smartphone 
usage time (Bandura, 1997). By fostering beliefs in participants’ capa
bilities to reduce smartphone usage time, the present findings under
score the importance of enabling individuals to self-regulate time spent 
with one’s smartphone. Furthermore, these results highlight the po
tential for self-efficacy to not only facilitate initial behaviour change but 
also sustain those changes over time, providing a resource against 
relapse. Therefore, future studies should enhance self-efficacy by in
terventions targeting digital disconnection and thereby supporting more 
self-regulated smartphone usage time.

Moreover, we found that the planning intervention significantly 
increased intention to spend less time with one’s smartphone, which in 
turn, led to reduced overall smartphone usage time. However, this effect 
diminished when covariates were added in sensitivity analyses. 
Furthermore, contrary to our hypotheses, neither self-reported action 

planning nor coping planning were significant mediators in reducing 
smartphone usage time.

The lack of mediating effects of intention and self-reported planning 
on a reduction of smartphone usage time may indicate that the impact of 
the planning intervention was not sufficiently intensive to result in a 
regular formation of action and coping plans. This may be due to the 
procedure relying on a single episode of action and coping planning. 
While one-time planning has been shown to be beneficial for health- 
related behaviours (Zhang et al., 2019), there is also evidence that 
booster sessions may be crucial to realize sustainable behaviour change, 
translating intentions into actions (Hagger & Luszczynska, 2014). For 
instance, Wicaksono et al. (2019) showed that adding plan reminders to 
the intervention led to better compliance and recall of the action plan. In 
addition, implementing booster planning sessions can help prevent re
lapses and prompt knowledge and skills related to the new behaviour 
(Fleig et al., 2013; Hagger & Luszczynska, 2014).

Another explanation for the lack of indirect effects of self-reported 
planning is that participants potentially encountered situations that 
made it difficult to integrate their initial plans into their daily routines 
such as changing study environment. The lack of opportunity to modify 
plans in response to changing circumstances or unexpected obstacles can 
significantly hinder the success of behaviour change efforts (Hagger & 
Luszczynska, 2014). Providing instructions on adjusting plans by for 
instance, giving participants the opportunity to specify situational cues 
that fit better in the daily routine (e.g., ‘If I study for my diagnostics 
exam on Tuesday from 9 to 12 a.m. at home, I will switch off my 
smartphone and place it in the kitchen drawer.‘) can increase 
adaptability.

Furthermore, as our primary intervention focus, our study utilised 
‘If-then’ plans solely. While action and coping planning offer a valuable 
approach, our findings suggest that their effectiveness might be 
enhanced when combined with other behaviour change techniques 
(BCTs). Existing literature indicates that integrating additional BCTs, 
such as goal setting, self-monitoring, and feedback can enhance the 
effectiveness of planning interventions (de Vries et al.,2013; Harkin 
et al., 2016; Marques et al., 2024). In the context of a reduction of 
smartphone usage time, researchers and practitioners have the oppor
tunity to combine planning interventions with digital self-control tools 
(DSCTs), which are software applications or digital features designed to 
help individuals regulate their digital behaviours, offering a more dy
namic and responsive framework for behaviour modification (Schwartz 
et al., 2021).

Table 2 
Estimates of Two-level Model Predictions of Smartphone and Social Media Usage Time, with Covariates and using the Control Condition as the Reference Group.

Model 1a: Smartphone usage time Model 2a: Social media usage time

Fixed Effects Est (SE) p 95% CI Est (SE) p 95% CI
Intercept at baseline 264.27 (13.19) <.001 238.55, 289.98 54.97 (5.05) <.001 45.13, 64.81
Time − 1.87 (3.55) .60 − 8.84, 5.09 2.14 (1.37) .12 − 0.55, 4.82
Group − 8.30 (10.96) .45 − 29.68, 13.08 − .10 (4.12) .98 − 8.12, 7.92
Group by time 3.90 (5.09) .44 − 6.08, 13.88 − 1.65 (1.91) .39 − 5.39, 2.10
Age − 1.44 (1.34) .28 − 4.05, 1.18 − 1.01 (.53) .05 − 2.03, 0.02
Sexa − 20.09 (11.51) .08 − 42.52, 2.34 − 10.36 (4.51) .02 − 19.44, − 1.81
Procrastination 42.42 (14.00) <.001 15.13, 69.71 − 2.51 (5.36) .64 − 12.96, 7.93
Self-efficacy − 22.35 (6.03) <.001 − 34.11, − 10.57 − 2.90 (2.31) .21 − 7.40, 1.62
Cohort 2b − 11.50 (14.88) .44 − 40.52, 17.51 .58 (5.73) .91 − 10.58, 11.74
Cohort 3c 20.27 (13.55) .14 − 6.14, 46.68 11.36 (5.21) .03 1.20, 21.50

Random Effects (variances) Estimate 95% CI Estimate 95% CI
Intercept 122.34 113.92, 129.81 42.99 39.75, 45.79
Time 43.10 38.18, 47.95 14.11 12.18, 15.99
Residual variance 93.17 91.89, 94.49 33.16 32.66, 33.68
ICC .63 ​ .63 ​
Pseudo-R2 .63 ​ .63 ​

Note. Est = Estimate; CI = Confidence interval; ICC = Intraclass correlation; CI = Confidence interval. Models are based on data from 497 ≤ n ≤ 555 participants and 
3878 ≤ n ≤ 10,498 observations due to missing values. Coefficients smaller than .005 were rounded to .01.

a Sex coded as 0 = not male, 1 = male.
b Cohort 2 coded as 1 = cohort 2.
c Cohort 3 coded as 1 = cohort 3.
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4.3. Strengths, limitations, and future directions

With a randomized controlled trial, an intensive-longitudinal design, 
a device-based measurement of smartphone usage time and a large 
sample, the present study adds to our knowledge of planning in
terventions in the field of digital disconnection. Additionally, the study 
provides insights into smartphone-related outcomes and the role of self- 
regulatory factors such as self-efficacy and planning.

Some limitations must be acknowledged. First, the primary outcome 
(i.e., smartphone usage time) was assessed over the post-interventional 
phase using total usage time per day. Future studies could additionally 
include a baseline measurement of smartphone usage time and capture 
fragmentation of usage patterns throughout the day. This may provide a 
more nuanced understanding of the temporal dynamics of the inter
vention mechanisms and the specific reduction of smartphone or social 
media usage during targeted periods (Hendrickson et al., 2019). Second, 
social media apps were categorized based on the classifications provided 
by the Google Play Store (Google Play, 2023). These categories are 
primarily driven by marketing considerations and may not adequately 
reflect the psychological or behavioural dimensions of app use (Sust 
et al., 2023). Future studies should consider classifying apps based on 
psychological theoretical frameworks, such as those proposed by 

Schoedel et al. (2022), to provide a more nuanced understanding of how 
disconnecting from different app features influences users’ psychologi
cal well-being (Schenkel et al., 2024). Third, our study did not account 
for the potential use of other digital tools, such as monitoring or 
device-locking apps, to manage smartphone usage time while studying. 
Future studies should identify the use of other digital tools by either 
adding this as an exclusion criterion or as a control variable. Fourth, 
while increased planning was reported in the intervention condition 
during the post-intervention phase, this did not translate into significant 
changes in smartphone usage time. Drawing on recommendations from 
Hagger & Luszczynska, 2014, adding booster sessions or planning re
minders can enhance the effectiveness of planning interventions. Addi
tionally, allowing participants to modify their plans, if initially found 
ineffective, may improve the translation from plans into action (Hagger 
& Luszczynska, 2014). Fifth, monitoring of participants’ plan adherence 
as well as continuous support for plan adherence should be implemented 
as additional intervention components after participants formed their 
plans. This could be applied using a smartphone application with fea
tures like self-monitoring, feedback on plan pursuit, and opportunities 
for plan adjustment (Michie et al., 2009; Schwartz et al., 2021). This 
could help individuals stick to their plans by minimizing distractions and 
managing time effectively.

Fig. 3. Self-efficacy, Intention, Action Planning, and Coping Planning as Separate Mediators between Conditions and Smartphone Usage Time. 
Note. Bootstrapping-corrected intervals are shown for path analyses.
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5. Conclusion

Present findings emphasize the potential of planning interventions 
for fostering self-efficacy, a crucial psychological resource for self- 
regulated smartphone usage time. However, the non-significant reduc
tion of total overall smartphone and social media usage time in the 
intervention condition, along with the outlined limitations highlight the 
need for further refinement of these interventions. Future studies should 
focus on enhancing planning interventions with additional elements that 
support and strengthen plan enactment, thereby improving their long- 
term effectiveness.
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