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Abstract

The finite element method has proven itself to be an effective method of performing both linear and
non-linear structural analyses. This numerical method, however, has several limitations, of one which
is that the discretization of complex geometry requires human effort. The rise of the application of
machine learning models has opened new possibilities of approaching challenges within scientific fields.
The neural network, and more specifically, the physics informed neural network, is a promising method
and allows for performing analyses without any discretization that is necessary. This type of neural
network, which is less of a black box than the standard neural network, utilizes the concept of partial
differential equations to accurately predict solutions.

The objective of this thesis is to perform a structural analysis of a geometrically non-linear Timoshenko
beam using a physics informed neural network. The network is built using a variational principle (the
principle of virtual work) and a force residual. Furthermore, two optimization algorithms, the adaptive
weight loss algorithm and the adaptive activation function are separately used in conjunction with the
model to examine the potential improvements on the convergence rate.

It is found that the geometrically non-linear Timoshenko beam can be accurately modeled (relative
error of below 2% with respect to the finite element output) with a physics informed neural network.
This accuracy can be achieved with a model possessing a relatively shallow size of four hidden
layers containing eight neurons each. The adaptive weight loss algorithm and the adaptive activation
algorithm both improve the convergence rate of the model, though they are not necessary to maintain
the practicality of the model, as the convergence rate is adequate without these. It is recommended
that the hyperbolic tangent function is utilized in conjunction with the Adam optimizer. The adaptive
activation function can be incorporated into the model to improve the convergence rate significantly
without substantially increasing the computational cost of the model.
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1
Introduction

The analysis of the non-linear behavior of beam-columns is a critical aspect within the field of structural
engineering. This is particularly essential for predicting the performance of structures subjected to
extreme events such as earthquakes, wind loads, and other dynamic forces, where assumptions of
linearity can lead to significant inaccuracies and potentially unsafe designs. Over the years, engineers
have relied on the finite element method to conduct non-linear structural analyses.

The finite element method (FEM) is a powerful tool used for performing both linear and non-linear
structural analyses. However, one limitation of this method is the fact that the analyzed geometry needs
to be discretized (meshed) before any results can be presented. Meshes of poor quality can lead to
numerical inaccuracies such as singularities (inaccurate concentrations of stresses), artificial locking and
convergence issues which is why proper discretization of the analyzed geometry becomes critical when
performing any type of analysis using FEM. Proper discretization quickly becomes a time-consuming
endeavor when complex geometries are to be investigated, as generating an accurate mesh is not always
a fully automated process for such cases, despite recent advancements (Talebi et al., 2016).

A novel approach built on deep learning has surfaced as a promising substitute, which can perform
structural analyses, is a meshless based method and as such does not suffer from the aforementioned
pathologies (Raissi et al., 2019). This method, referred to as physics-informed neural networks (PINNs),
employs a neural network to approximatively arrive at a solution while enforcing physical principles,
often described by partial differential equations (PDEs), as a component of the loss function. This
ensures that no training data is necessary to produce accurate results compared to a traditional neural
network, while showing additional promise by being a meshless method.

The Euler-Bernoulli beam theory (Bauchau & Craig, 2009) is a popular theory utilized when performing
structural analyses of beams and is sufficiently accurate when describing slender1 beams. It, however,
fails to accurately capture the behavior of beams where shear deformation is significant, which holds
true for short and thick beams, whereas the Timoshenko beam theory (Timoshenko, 1921) does take
shear deformation into account.

Hornik et al. (1982) already established that a feedforward neural network with at least one hidden layer
can approximate any continuous function, given that a non-linear activation function is applied. With
PINNs, knowledge from physics is leveraged to improve the learning process. Thus, any phenomenon
within structural engineering that satisfies this criterium of continuity can be described by PINNs. In
this thesis, PINNs will be utilized to perform both linear and geometric non-linear elastic analyses of
one-dimensional beams assuming the Euler-Bernoulli and Timoshenko beam theory. The results of
these analyses will be verified with the finite element program DIANA. The objective of this thesis is to
accurately model the geometric non-linear elastic Timoshenko beam using PINNs.

1"slender" is here defined as beams whose length is several times greater than the cross-sectional dimensions, to the point that
deformation caused by shear is negligible.
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The structure of this thesis is as follows. In chapter 2, non-linearity and its sources within the context
of structural analyses will be explained. In chapter 3, the traditional neural network and the physics-
informed neural network will be described and compared, followed by the advantages and disadvantages
of neural networks. In chapter 4, the methodology that is utilized in this thesis is described. In chapter
5, the linear analyses of both the Euler-Bernoulli and Timoshenko beam will be described accompanied
by numerical examples. In chapter 6, the theoretical assumptions for the non-linear beam models will
be explained. The structure of the PINN model that is used for solving each beam case will be clarified
and the geometric non-linear analyses will be performed. In chapter 7, two stabilizing techniques will
be used and compared. In chapter 8, a parameter study on the PINN configuration for the non-linear
Timoshenko beam will be conducted. In chapter 9, the role of PINNs within monitoring along with its
limitations will be discussed. Lastly, the thesis will be concluded and some recommendations regarding
future studies will be made in chapter 10.



2
Structural Analysis and Beam

Theories

2.1. Linear and Non-linear Static Analyses

Within structural analysis the distinction is made between two types of models: linear and non-linear
models. Linear analyses hold a linear relationship between applied loads and the resulting deformations
as depicted in Figure 2.1. Within the context of FEM, this means that the stiffness matrix of the model
would remain constant. For non-linear analyses this will not be the case, as there is a non-linear
relationship between the loads and deformations resulting in a stiffness matrix which alters during the
load application.

Applied load

Displacements

Linear response

Non-linear response

Figure 2.1: An example of response curves of both linear and non-linear analyses.

For linear analyses it is assumed that the structure remains in the elastic domain and that the
corresponding displacements and rotations are sufficiently small. For non-linear analyses these do not
hold as the structure exhibits either material, geometric or contact non-linearity or any combination of
these.

2.2. Sources of Non-linearity

When performing structural analyses on any type of structure the consideration of contributing non-
linear effects becomes vital, as these could lead to a significantly different structure response. These
non-linear contributions can be time-dependent (such as creep of concrete, where deformation keeps
increasing over a period of time under sustained loading) and time-independent (such as plastic
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2.2. Sources of Non-linearity 4

deformation of steel). As such, building codes, such as the Eurocode, incorporate non-linear effects to
ensure safety in structural design. These include buckling of steel members and second-order effects
which are both (geometrically) non-linear phenomena (Gardner & Nethercot, 2005).

2.2.1. Geometric Non-linearity

Geometric non-linearity becomes applicable when the strain definitions are non-linear (finite strains),
such as when the true strain is opted for instead of the engineering strain definition, or when large
displacements are exhibited by the structure such that the kinematic relations are no longer linear,
despite assuming linear strains (finite displacements). An instance of the latter is when the deformed
shape becomes large enough such that the equilibrium equations of this structure can no longer be
accurately based on its undeformed shape. The equilibrium equations need to be written with respect
to the deformed structural geometry.

2.2.2. Material Non-linearity

Material non-linearity becomes relevant when the mapping between the stresses and strains are
non-linear. The material behavior becomes dependent on the strain history. Examples of non-linear
stress-strain relationships include hyperelasticity and elastoplasticity as visualized in Figure 2.2.

𝜎

𝜖

Linear elastic

Hyperelasticity

Elastoplasticity

Figure 2.2: Different stress-strain relationships where the stresses 𝜎 of a material are plotted against the strain 𝜀. Linear elastic
stresses are linearly dependent on the strains and the deformations are reversible. Hyperelastic stresses are non-linearly dependent
on the strains and the deformations are reversible. Elastoplastic stresses are non-linearly dependent on the strains, but the
deformations are irreversible after unloading.

2.2.3. Contact Non-linearity

Contact non-linearity results from the conditions at the interfaces of interacting bodies, such as friction,
separation, and slippage. Since this kind of non-linearity depends on the dynamic nature of the
interactions, it presents significant challenges in accurately predicting structural behavior. For instance,
friction prevents relative motion across surfaces, leading to intricate stress distributions that change
depending on the surface properties and applied force. This complexity is increased by separation and
re-contact events, which are frequently seen in cyclic loading scenarios. On the other hand, slippage can
result in localized plastic distortion and wear, which compromises the structures’ long-term integrity
and performance.

Contact non-linearity can be simplified in certain cases by modelling it as material non-linearity,
streamlining the analysis while still retaining sufficient accuracy. An example of this is utilizing a
smeared crack model when modelling cracked concrete, where a homogenized non-linear material is
used to represent the cracks (Weihe et al., 1998).
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2.3. Beam Theories

In the following paragraphs, the two beam theories, the Euler-Bernoulli beam theory and the Timoshenko
beam theory will be explained. The main characteristics of each theory and the differences between
them will be described. Each beam theory relies on its own kinematic definitions which influence
how the internal forces of a beam element are described and are independent of the type of structural
analysis conducted.

2.3.1. Euler-Bernoulli Beam Theory

The Euler-Bernoulli beam theory is a widely used theory to describe the behavior of one-dimensional
beams. It relies on the following kinematic assumptions:

1. The cross-section of the beam remains plane after deformation.
2. The cross-section does not deform in its own plane.
3. The cross-section remains normal to the neutral axis, even after deformation.

These assumptions suffice for isotropic, slender beams with solid cross-sections (Bauchau & Craig, 2009).

The first two assumptions imply that the cross-section can only undergo rigid translations and rotations.
The third assumption implies that the beam has an infinite shear stiffness, which indicates that the
resulting deformations are underestimated (if there are shear stresses present within the beam). The
Euler-Bernoulli beam is visualized in Figure 2.3.

Cross-section is perpendicular

to neutral axis

Cross-section remains

plane and is rigid

Neutral axis

𝑥

𝑤

Figure 2.3: The deformed state of an Euler-Bernoulli beam and its kinematic assumptions.

2.3.2. Timoshenko Beam Theory

The Timoshenko beam theory takes shear deformation into account and can be considered as a more
comprehensive theory than the Euler-Bernoulli beam theory. Here it is still assumed that the cross-
section remains plane, but that it is no longer perpendicular to the neutral axis. The shear strain 𝛾
dictates the rotation of the cross-section with respect to the axis that is perpendicular to the neutral axis.
This means that now, the rotation of the cross-section is not equal to the first derivative of the deflection,
as shown in Figure 2.4.
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The aforementioned assumptions are also utilized when it comes to plate theory. The Kirchhoff-Love
plate theory can be considered as a two-dimensional extension of the Euler-Bernoulli beam theory as
neglection of shear deformation is also assumed here. The Reissner–Mindlin plate theory takes shear
deformation into account and can be considered as an extension of the Timoshenko beam theory in
two-dimensional space.

Cross-section remains

plane and rigid,

but is no longer perpendicular

to the neutral axis

Neutral axis

−𝛾
𝜙

𝑥

𝑤

𝑑𝑤/𝑑𝑥

Figure 2.4: The deformed state of a Timoshenko beam. If the shear strain is equal to zero, then the beam becomes identical to the
Euler-Bernoulli beam.



3
Physics-Informed Neural Networks

While FEM has proven itself effective in conducting both linear and non-linear structural analyses, it
can require manual fine-tuning which can be time consuming when handling complex geometry, as
discussed in the introduction. We turn to PINNs to address this challenge, as these are proven to be
able to perform structural analyses (Kapoor et al., 2023) while also being a meshless method. First,
a brief description of a traditional neural network will be given, followed by the description of the
defining characteristics of PINNs which separate it from the traditional neural network. The preference
of utilizing PINNs over the traditional network in the context of this study will also become apparent in
this chapter.

3.1. Traditional Neural Networks

Neural networks are a type of machine learning model that can learn from data and perform various
tasks, such as classification and regression. This paragraph gives a brief description of how a traditional
neural network operates.

A neural network is made up of one or more layers, each of which is made up of several neurons. The
first layer, known as the input layer, is where the data enters the system. The final layer, known as the
output layer, creates the model’s output. The layers in between are called hidden layers, which perform
intermediate computations. Each neuron in a layer has a connection to every neuron in the following
layer, as illustrated in Figure 3.1 The weights of these connections, which express how much effect each
neuron has over the neuron in the layer that follows, are numerical values. Each neuron also has a
value called a bias, which is added to the weighted sum of the inputs from the previous layer. Every
neuron applies an activation function to its input, which establishes the neuron’s output. There are
various activation function types, such as the sigmoid, tanh and ReLU functions, each with its own
characteristics and consequences on the model.

The effectiveness of a neural network must be evaluated to determine how to improve it. This is
accomplished using a loss function, which determines the discrepancy between the model’s output
and the desired (true) output. The goal of the model is to reduce the loss function as much as is
attainable. The model must make the necessary weight and bias adjustments in order to minimize the
loss function. Back propagation, a technique that determines the gradient of the loss function with
respect to each weight and bias in the network, is used to do this. The gradient indicates how each
weight and bias should be altered in order to reduce the loss. The model then updates its weights and
biases by subtracting a fraction of the gradient, called the learning rate.

In neural networks, optimizers are algorithms that modify the parameters, such as weights and biases,
in order to minimize a loss function. This allows the model to learn from data. The loss function
gauges how well the model fits the data and how closely the outputs are predicted to be produced.
Different techniques, including gradient descent, are used by optimizers to update the parameters. Each

7



3.1. Traditional Neural Networks 8

Figure 3.1: A visual representation of a neural network with input (black), hidden (grey), and output (blue) layers. Here the
network contains a n amount of inputs and a m amount of neurons as output, where both input and output are self-defined. After
conducting a forward propagation, where an output is gathered after the network is fed the input, the loss will be calculated. The
loss is a function of both the output and the truth (the exact/desired value), and is commonly the mean squared error of both.
Based on the loss, the weights and biases of the network are updated to ensure a more accurate prediction. This update is done
using an optimizer such as gradient descent. The process where the weights and biases are updated through an optimizer is
called back propagation.

optimizer has its advantages and disadvantages. They may differ in ease of implementation, rate of
convergence and computational cost (Desai, 2020). Adaptive Moment Estimation (Adam) and Stochastic
Gradient Descent are examples of optimizers.

There are different types of neural networks, such as the convolutional neural network, which is used to
handle spatial data, and the physics-informed neural network, which is able to incorporate physical
laws.

ai+1= 𝛔
(
Wi+1

·ai+bi+1
)
,

where ai denotes the vector containing the numerical value of each neuron in layer i, Wi denotes the
matrix containing the weights in layer i, and bi denotes the vector containing the biases in layer i. 𝛔 is
an activation function responsible for non-linearity.

Following this, the neural network in Figure 3.1 would be described as:

a1= 𝛔
(
W1

·a0+b1
)
,

a2= 𝛔
(
W2

·a1+b2) ,
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a3= W3
·a2+b3.

Here a0 indicates the input vector x and a3 the output vector z. Note that there is no activation function
applied for the output layer. Consideration of whether to utilize an activation function for the output
layer depends on the context of the problem (Jagtap & Karniadakis, 2023).

3.2. Defining Characteristics of PINNs
PINNs are defined as a variant of a neural network that includes information about physical laws,
often described by partial differential equations (Raissi et al., 2019). This provides the network with
additional leverage in its learning process. Training now becomes significantly faster, as there is already
established prior knowledge with which the network can be guided. This is in contrast to traditional
neural networks, which can only rely on data for learning.

The application of PINNs can be especially useful when the underlying physics are understood, but the
exact solution is difficult to obtain due to, for example, the complexity of the equations involved. This
represents solving a forward problem. PINNs can also be utilized to solve inverse problems, that is, to
solve for underlying parameters.

3.2.1. The Loss Function

The loss function, which assesses how effectively a neural network approximates the solution of a PDE
and complies with the specified boundary and initial conditions, is one of the fundamental elements of
PINNs. The loss function consists of a PDE term, a data term, a boundary term, and an initial term
(Kapoor et al., 2023). Each term stands for a distinct element of the physical issue and makes a unique
contribution to the total loss. The data term becomes necessary when solving inverse problems.

The data loss term is the mean squared error between the predicted outputs of the neural network and
the observed data points. This term ensures that the neural network fits the data that is available. The
data term can be written as:

ℒ𝐷𝑎𝑡𝑎 =
1
𝑁𝐷

𝑁𝐷∑
𝑖=1

(𝑢𝑃𝐼𝑁𝑁 (𝑥𝑖 , 𝑡𝑖) − 𝑢𝑜𝑏𝑠(𝑥𝑖 , 𝑡𝑖))2 ,

where 𝑁𝐷 represents the number of points where the output is known, and 𝑢𝑜𝑏𝑠(𝑥𝑖 , 𝑡𝑖) represents the
known (exact) output at (𝑥𝑖 , 𝑡𝑖). 𝑢𝑃𝐼𝑁𝑁 (𝑥𝑖 , 𝑡𝑖) denotes the predicted outcome of the neural network.

The PDE loss term is described as:

ℒ𝑃𝐷𝐸 =
1

𝑁𝑃𝐷𝐸

∑𝑁𝑃𝐷𝐸

𝑖=1 𝑓 (𝑥𝑖 , 𝑡𝑖)2 ,

where 𝑓 (𝑥𝑖 , 𝑡𝑖) denotes the equation for a governing physical law.

The boundary loss term is described as:

ℒ𝐵𝐶 =
1

𝑁𝐵𝐶

∑𝑁𝐵𝐶

𝑖=1

(
𝑢𝑃𝐼𝑁𝑁

(
𝑥 𝑖
𝑏
, 𝑡 𝑖

𝑏

)
− 𝑢𝐵𝐶

(
𝑥 𝑖
𝑏
, 𝑡 𝑖

𝑏

))2
,

where 𝑢𝐵𝐶(𝑥 𝑖𝑏 , 𝑡
𝑖
𝑏
) denotes the known function at the boundaries (𝑥 𝑖

𝑏
, 𝑡 𝑖

𝑏
).

Similarly, the initial loss term is described as:

ℒ𝐼𝐶 =
1

𝑁𝐼𝐶

∑𝑁𝐼𝐶

𝑖=1
(
𝑢𝑃𝐼𝑁𝑁

(
𝑥 𝑖
𝐼
, 𝑡 𝑖

𝐼

)
− 𝑢𝐼𝐶

(
𝑥 𝑖
𝐼
, 𝑡 𝑖

𝐼

) )2
,

where 𝑢𝐼𝐶(𝑥 𝑖𝐼 , 𝑡 𝑖𝐼) denotes the initial condition function at (𝑥 𝑖𝐼 , 𝑡 𝑖𝐼).
The loss function becomes:

ℒ = ℒ𝐷𝑎𝑡𝑎 + 𝜆1ℒ𝑃𝐷𝐸 + 𝜆2ℒ𝐼𝐶 + 𝜆3ℒ𝐵𝐶 . (3.1)

Here 𝜆1 ,𝜆2 and 𝜆3 are weights utilized to balance each term in the loss function. These can be fixed
values set at the start or also adapted over time. The loss function for a traditional neural network would
only consist of ℒ𝐷𝑎𝑡𝑎 .
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Figure 3.2: An example of how geometry is handled with FEM and PINNs. Within FEM (left), here, the domain of the geometry
is discretized into quadrilateral elements with 4 integration points per element before performing the structural analysis and
obtaining the output at the nodes and the integration points. For PINNs the calculations are performed on an arbitrarily defined
set of points within the domain. The main difference is that with FEM the geometry has to be divided in sub-domains (elements)
where with PINNs this is not necessary.

3.2.2. Collocation Points

Within the domain of the geometry specific locations, also called collocation points (Raissi et al., 2019),
have to be assigned at which the specified physical laws have to be enforced. These discrete points can
have an arbitrary distribution as depicted in Figure 3.2.

Though the collocation points can be arbitrary placed, there are methods devised in generating a
collocation point distribution that would enhance the numerical efficiency of the network, such as Latin
Hypercube sampling (LHS). The basic notion of LHS, as used in the work of Raissi et al. (2019), is
that the domain is split into N intervals, with N being the amount of total collocation points. For each
interval there is a collocation point allocated and the exact location within each interval is drawn from an
uniform distribution. This sampling method ensures that there is a more comprehensive representation
of the domain. There is supporting evidence, however, that utilizing a simple equidistance grid as a
sampling method is superior for lower dimensional problems (Leiteritz & Pflüger, 2021).

3.2.3. Optimizers

The goal is to have the PINN model predict the true output as accurately as possible. Optimizers are
used to update the model parameters, the weights and biases, to reach this goal. Optimizers update
these model parameters based on the output of the loss function. After the PINN model performs a
forward propagation, a corresponding value of the loss function will yield. The gradient of the loss
function at this value will be calculated. The aim is to take a small step in the direction which will result
in a lower value of the loss function and update the model parameters to reach this objective. This is
gradient descent and the equation within the context of neural networks is as follows:

wn+1 = wn − 𝛼∇ℒ (wn) ,
where wn denotes the weights and biases for iteration n and 𝛼 denotes the step size or learning rate.
Since the loss function takes as input all the weights and biases of the PINN model, the gradient becomes
a vector of n entries, with n being the total number of weights and biases the PINN model contains.
The loss function of a model with a single weight and no bias terms (which corresponds to a network
containing only a single input and output neuron) can therefore be expressed as a graph function with
the gradient being the tangent of the function at that point.

Stochastic gradient descent (SGD) is an extension of the traditional gradient descent. Here, the gradient
for each iteration is calculated on only a small batch of the total available data. This ‘mini-batch’
is randomly selected from the total available data, and training is significantly less computationally
expensive as a result.

The Adam (Adaptive moment estimation) optimizer is based on SGD. SGD maintains one fixed learning
rate for all the weights and biases, in contrary to Adam which maintains an unique learning rate for
each model parameter. The algorithm requires little memory and has been shown to be very effective
(Kingma & Ba, 2014).
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Figure 3.3: Two separate training samples compared of a linear Euler-Bernoulli beam problem that have been carried out, with
the left having a learning rate of 0.0001 and the right having a learning rate of 0.01. The loss of the training sample on the right
experiences a quicker initial drop, but strongly oscillates around the minimum after a few thousand iterations

The learning rate has a major influence on the overall duration of training. A low learning rate results
in an overall steady approach to the minimum, while taking more iterations for the model to find the
minimum. A large learning rate results in an overall quicker decrease of the loss function. However, it
becomes more likely for the algorithm to ‘overshoot’ past the minimum. The loss will tend to diverge or
oscillate around the global minimum as portrayed in Figure 3.3.

3.2.4. Limitations of PINNs

Despite the potential that PINNs possess, there are several limitations that persist. A common issue is
the phenomenon of the network getting stuck in a local minimum, due to the non-convex nature of the
loss function. As a result, the model reaches a suboptimal solution. The end state of the neural network
is therefore heavily reliant on the initial state of the parameters. The concept is visualized in Figure 3.4.

The exploding gradients is another common issue neural networks face. This occurs when the model
parameters are updated during back propagation. During back propagation the gradients are computed
for each layer and each layer’s gradient depends on the layers that come after it. As the gradients are
propagated back through each layer, they are multiplied by the weights associated with that layer and
the gradients can thus grow exponentially after each layer if these weights happen to be large. This
causes the model parameters to update in excessively large steps, resulting in instability. A neural
network with many hidden layers exacerbates this issue. Gradient clipping is a technique that is used to
inhibit this issue. It entails setting a specific limit on the gradients to prevent them from becoming too
large.

A similar issue to the exploding gradients is the issue of vanishing gradients, where the gradients
become so small due to the weights being small, such that the model parameters barely change. If the
gradients in the last layer are very small, then the gradients in the former layers end up being negligible,
due to these small weights causing the gradients to shrink exponentially after each layer.

Activation functions are directly related to the vanishing gradients issue, with the hyperbolic tangent
and sigmoid activation functions shown in Figure 3.5, for instance, being overall more prone to it. The
derivatives of these functions attain a maximum value of 1.0 and 0.25 respectively. If the gradient is
small in the last layer, then the updates in the former layers become exponentially less. The sigmoid is
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Figure 3.4: An illustrative example of a loss function with the model parameters as input portraying the importance of initialization
of the model parameters. Due to the non-convex nature of loss functions, an unfortunate initialization may result in the network
getting stuck in a local minimum resulting in suboptimal performance.

even more sensitive than the hyperbolic tangent function, as the maximum the function attains here is
less and as such the compounding effect across the layers is more severe.

(a) The hyperbolic tangent function and its derivative. (b) The sigmoid function and its derivative.

Figure 3.5: Examples of Activation Functions.

3.3. Applications of PINNs within Structural Engineering

PINNs have been utilized to solve problems in numerous fields, including structural engineering and
there have been multiple methods proposed to enhance its performance, such as Hybrid PINNs, that
utilize convolutional neural networks to solve PDEs, and Bayesian PINNs (Lawal et al., 2022). It is
important to note that there are limitations for these new approaches just as there are limitations
of conventional PINNs. The training of Hybrid PINNs, for instance, is very sensitive to the initial
hyperparameters. A significant amount of the studies involved the application of conventional PINNs,
however, showing sufficient promise on its own based on the accuracy and computational efficiency it
delivers (Kapoor et al, 2023; Guo & Fang, 2023; Bazmara et al, 2023). The focus of this thesis will be on
the conventional PINN.

Within the context of structural engineering, Bazmara et al. (2023) investigated the non-linear buckling
behavior of a three-dimensional functionally graded porous, slender beam resting on an elastic
foundation (Winkler-Pasternak). PINNs have been utilized to output the critical nonlinear buckling
load and the framework has been validated for various boundary conditions. It was concluded that the
PINN model accurately predicted the buckling load.
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Guo & Fang (2023) constructed a framework involving PINNs for parameter identification (solving
inverse problems). The constructed model was used to identify stiffness parameters of frame structures
with satisfactory accuracy. It was concluded that the PINN could estimate the stiffness parameters
accurately despite being based on a limited dataset.

Chen et al. (2023) proposed a PINN framework able to solve for the geometrically non-linear one-
dimensional Euler-Bernoulli beam, The transfer learning technique was applied to enhance computa-
tional efficiency. The PINN model produced accurate results, but was overall slower than FEM.

Grossman et al. (2024) investigated the computational expense of PINNs by having it solve different
differential equations and compared the computational times to FEM.

It was discovered that the FEM generally was computationally less expensive for solving lower
dimensional PDEs. But it was also noted that the PINN model saw no rise in computational cost when
transitioning from the 2D to the 3D Poisson equation, possibly indicating that PINNs might be more
efficient in high-dimensional settings than FEM and that the ‘curse of dimensionality’ might be less
applicable to it, as supported by Hu et al. (2024).

The main benefit of PINNs, however, is that it is a mesh-free method. The discretization of complex
geometries using FEM cannot currently be accurately performed without human interaction, increasing
the time demand for performing analyses (Talebi et al., 2016), which is something not considered in the
aforementioned studies.



4
Research Questions and Methodology

The aforementioned pathologies FEM suffers from, and the rise of the physics informed neural network
with its meshless approach makes it a promising substitute worth investigating. More specifically
in this study, the possibility of conducting a geometrically non-linear analysis will be investigated as
this is, as mentioned previously, a critical aspect when considering safe structural design and is thus
very prevalent in existing building codes (Gardner & Nethercot, 2005). Here, the Timoshenko beam is
investigated as it is a more comprehensive beam theory compared to the Euler-Bernoulli beam theory.
The main question therefore is:

“How can physics-informed neural networks (PINNs) solve for the deflections of a geometric non-linear Timoshenko
beam?”

With the corresponding sub-questions being:

1. How can PINNs solve for the beam deflections for a linear beam problem?
2. How is geometric non-linearity introduced in the PINN model?
3. What configuration of the PINN model is necessary for effectively addressing the Timoshenko

problem for a one-dimensional beam?
4. How to increase the convergence rate of the proposed model?

The linear beam problems will be investigated first to provide more context and to highlight the
difference in approach between the linear and non-linear problems. An effective configuration of the
network structure, that is the input neurons, output neurons and amount of hidden layers, will be
provided to address the Timoshenko beam. Furthermore, a significant amount of the literature is
dedicated to improve the convergence rate of training models. Two algorithms, the adaptive activation
function and the adaptive weight loss algorithm, will be investigated.

The PINN model will be built using Python utilizing the library PyTorch. Gathering data is not necessary,
as it is a forward problem that is being solved. It is, however, necessary to verify the output of the PINN
model. Analytical expressions will be used to verify the linear cases, whereas the non-linear cases will
be verified with the Finite Element program DIANA FEA version 10.8. Two-noded beam elements,
L7BEN, with two degrees of freedom, the vertical and horizontal translations, have been utilized for
discretizing the beam model. This element type will be used for the non-linear Euler-Bernoulli FEM
analysis as there is no shear deformation assumed for this element type. For the Timoshenko beam FEM
analysis L6BEA elements will be used, which are two-noded as well, but includes shear deformation.
In DIANA, all three convergence criteria are applied: the energy, displacement and force convergence
norms are satisfied simultaneously with a convergence tolerance of 1.0*10−5.

Non-dimensionalization of the equations in the PINN model will be utilized where it is deemed
necessary. This technique will be applied to the model if the model has not converged to the solution
after 50,000 iterations for the non-linear cases and after 100,000 iterations for the linear cases. This limit
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Figure 4.1: The process that is employed for building the PINN model.

is based on practicality as there is no guarantee that an accurate solution will not be achieved after this
specified number of iterations. The process is summarized in Figure 4.1.

The performance metric that will be used to compare the accuracy of the output of the PINN model
with respect to the FEM model is the relative error:𝑤𝑃𝐼𝑁𝑁 − 𝑤𝑟𝑒 𝑓

𝑤𝑟𝑒 𝑓


where 𝑤𝑃𝐼𝑁𝑁 is the vector of the predicted displacements of the PINN model, and 𝑤𝑟𝑒 𝑓 is the vector
containing the exact analytical displacements when examining the linear cases. When examining the
non-linear cases, the FEM output is used for 𝑤𝑟𝑒 𝑓 .

For the non-linear cases, the loss functions will be formulated by utilizing the principle of virtual work
based on the Green-Lagrange strain theory assuming Von Kármán strains. For both the Euler-Bernoulli
and the Timoshenko beam A brief description of the principle of the virtual work is given in chapter 6.

Each optimization algorithm (the adaptive activation function and the adaptive weight loss algorithm)
will be incorporated in the non-dimensionalized geometrically non-linear Timoshenko beam case and
the result will be compared to the same model without using this algorithm.



5
Linear Analysis of One-Dimensional

Beams

The linear cases of both beam theories will be examined to contextualize the research question and to
highlight the difference in approach that is used for the non-linear cases. First, the linear Euler-Bernoulli
beam is examined followed by the linear Timoshenko beam.

5.1. Euler-Bernoulli Beam

An Euler-Bernoulli beam with a constant bending stiffness can be described with the following differential
equation:

𝐸𝐼
𝑑4𝑤

𝑑𝑥4 = 𝑞, (5.1)

where w is the transverse deflection of the beam, E is the Young’s modulus of the beam and 𝐼 the second
moment of area, with 𝑞 being the distributed line load acting on the beam. For a simply supported
beam with length L, the boundary conditions are:

𝑤 (0) = 𝑤 (𝐿) = 0,
𝑑2𝑤

𝑑𝑥2 (0) = 𝑑2𝑤

𝑑𝑥2 (𝐿) = 0,

which results in the following analytical solution:

𝑤𝑒𝑥𝑎𝑐𝑡 (𝑥) =
𝑞𝐿4

24𝐸𝐼

(
𝑥

𝐿
− 2𝑥3

𝐿3 + 𝑥4

𝐿4

)
.

For the PINN model the input layer is chosen to consist of a single neuron s, which is a vector consisting
of the locations of all collocation points on the beam and a vector suffices since it is one-dimensional
problem. The output layer reflects the number of degrees of freedom (DOFs) in the system. In this case,
the output layer consists of a single neuron 𝑤𝑃𝐼𝑁𝑁 which is a vector containing the predicted deflection
at each collocation point. Following from Eq. (3.1), the loss function for this case becomes:

ℒ = (𝑤𝑃𝐼𝑁𝑁 (0) − 0)2 + (𝑤𝑃𝐼𝑁𝑁 (𝐿) − 0)2 +
(
𝑑2𝑤𝑃𝐼𝑁𝑁

𝑑𝑥2 (0) − 0
)2

+
(
𝑑2𝑤𝑃𝐼𝑁𝑁

𝑑𝑥2 (𝐿) − 0
)2

+ 1
𝑁𝑃𝐷𝐸

𝑁𝑃𝐷𝐸∑
𝑖=1

(
𝐸𝐼

𝑑4𝑤

𝑑𝑥4 − 𝑞

)2

,

(5.2)

where 𝑁𝑃𝐷𝐸 is the amount of collocation points of the interior of the beam. The initial conditions
are irrelevant, since a static problem is described. As an example, a simply supported beam with the
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(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.1: The loss history of the PINN model after training and the predicted beam deflection after 100,000 training iterations.

following parameters is investigated: 𝑞 = 131 𝑘𝑁
𝑚

, 𝐿 = 13 𝑚, 𝐼 = 3.6 × 10−4 𝑚4 , 𝐸 = 2.05 × 108 𝑘𝑁

𝑚

2
.

The PINN model consists of one input layer and output layer, as stated before, and 3 hidden layers
containing 10 neurons each. The interior of the beam consists of 40 equidistant collocation points,
bringing the total to 42 if the boundaries are included. The weights and biases are initialized with an
uniform distribution X ∼ U ( -0.001 , 0.001). The model has been trained for 100.000 iterations with a
learning rate of 0.01 using the Adam optimizer. The hyperbolic tangent is used as the activation function
for all layers except the output layer. The results are displayed in Figure 5.1.

The predicted solution in Figure 5.1 is very inaccurate despite the number of iterations that have passed.
The loss decreases by order of magnitudes in the first thousand iterations, after which the loss begins to
oscillate. This oscillation can be inconvenient if there is a set training iteration limit, instead of a loss
tolerance limit, where the training is more likely to end on an iteration which coincides with high loss
and thus a less accurate result.

A cause for this issue is that there is a large discrepancy between the variables present in equation (5.1).
This leads to a slow and unstable training because the optimization algorithm is less consistent when
accounting for this discrepancy (Wang et al., 2023). Non-dimensionalization is therefore a technique
that could alleviate this issue.

We introduce the following non-dimensional variables:

�̃� =
𝑥

𝐿
, �̃� =

𝑤

𝐿
, �̃� =

𝑞𝐿3

𝐸𝐼
,

resulting in the following non-dimensionalized differential equation:

𝑑4�̃�

𝑑�̃�4 = �̃�.

The loss function for the non-dimensionalized case becomes:

ℒ = (�̃�𝑃𝐼𝑁𝑁 (0) − 0)2 + (�̃�𝑃𝐼𝑁𝑁 (1) − 0)2 +
(
𝑑2�̃�𝑃𝐼𝑁𝑁

𝑑�̃�2 (0) − 0
)2

+
(
𝑑2�̃�𝑃𝐼𝑁𝑁

𝑑�̃�2 (1) − 0
)2

+ 1
𝑁𝑃𝐷𝐸

𝑁𝑃𝐷𝐸∑
𝑖=1

(
𝑑4�̃�𝑃𝐼𝑁𝑁

𝑑�̃�4 − �̃�

)2

.

(5.3)

In Figure 5.2, the results of the model utilizing this new loss function are shown.

For the dimensionalized case, the relative error after training is equal to 162%, where the model
fails to converge, whereas it is 0.0267% for the non-dimensionalized case. It is worth noting that the
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(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.2: The PINN model with the non-dimensionalized loss function. The loss after 100.000 iterations is now orders of
magnitude lower.

(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.3: The PINN model after training it for 2000 iterations. The model achieves satisfactory accuracy after 2000 iterations.

non-dimensionalized PINN model achieves a relative error of 0.98% after only 2000 iterations as shown
in Figure 5.3.

5.2. Timoshenko Beam

The linear Timoshenko beam can be described with the following coupled ODEs:

𝐸𝐼𝜙𝑥𝑥 + 𝐺𝐴𝑠

(
𝑤𝑥 − 𝜙

)
= 0,

𝐺𝐴𝑠

(
𝑤𝑥𝑥 − 𝜙𝑥

)
+ 𝑞 = 0,

where G is the shear modulus, A𝑠 is the effective shear area and 𝜑 the rotation of the cross-section with
respect to the w-axis. The non-dimensional variables are as follows:

�̃� =
𝑥

𝐿
, �̃� =

𝑤

𝐿
, �̃� =

𝑞𝐿

𝐺𝐴𝑠
, 𝜒 =

𝐸𝐼

𝐿2𝐺𝐴𝑠
,

which results in the following non-dimensional coupled ODEs:

𝜒𝜙𝑥𝑥 + �̃�𝑥 − 𝜙 = 0,
�̃�𝑥𝑥 − 𝜙𝑥 + �̃� = 0.
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(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.4: The loss history and output after 100.000 iterations of training the PINN model simulating a simply supported
Timoshenko beam model.

The 𝜒 holds theoretical significance. It describes the ratio between bending and shear stiffness. If
𝜒 tends to zero (the beam has infinite shear stiffness), then �̃�𝑥 = 𝜙 and so the system reverts to an
Euler-Bernoulli beam scenario.

The output layer of the PINN model now consists of two output neurons, 𝑤𝑃𝐼𝑁𝑁 and 𝜙𝑃𝐼𝑁𝑁 . For
the following numerical example, the same situation and parameters that have been used for the
Euler-Bernoulli example are kept the same. 𝐴𝑠 is set to 8.333e-5 m2. The exact solution of a simply
supported beam subject to a distributed line load is:

𝑤𝑒𝑥𝑎𝑐𝑡 (𝑥) =
𝑞𝐿4

24𝐸𝐼

(
𝑥

𝐿
− 2𝑥3

𝐿3 + 𝑥4

𝐿4

)
+ 𝑞𝐿2

2𝐺𝐴𝑠

(
𝑥

𝐿
− 𝑥2

𝐿2

)
.

The loss function of the non-dimensionalized Timoshenko beam in this case becomes:

ℒ = (�̃�𝑃𝐼𝑁𝑁 (0) − 0)2 + (�̃�𝑃𝐼𝑁𝑁 (1) − 0)2 +
(
𝜙𝑃𝐼𝑁𝑁 (0) − 0

)2 +
(
𝜙𝑃𝐼𝑁𝑁 (1) − 0

)2

+ 1
𝑁𝑃𝐷𝐸

𝑁𝑃𝐷𝐸∑
𝑖=1

(
𝜒𝜙𝑃𝐼𝑁𝑁,𝑥𝑥 + �̃�𝑃𝐼𝑁𝑁,𝑥 − 𝜙𝑃𝐼𝑁𝑁

)2

+ 1
𝑁𝑃𝐷𝐸

𝑁𝑃𝐷𝐸∑
𝑖=1

(
�̃�𝑃𝐼𝑁𝑁,𝑥𝑥 − 𝜙𝑃𝐼𝑁𝑁,𝑥 + 𝑞

)2
.

(5.4)

The results of the regular dimensionalized model after training are shown in Figure 5.4.

The accuracy of the trained model remains very insufficient, even after 100.000 iterations, reaching a sim-
ilar loss magnitude to the dimensionalized Euler-Bernoulli case. The results of the non-dimensionalized
model are shown in Figure 5.5.

The chaotic oscillations of the losses in the aforementioned examples are the result of selecting a
relatively high learning rate of 0.01. Selecting a lower learning rate results in a more stable training
progress, but at the cost of sacrificing overall efficiency. The results are shown in Figure 5.6.

The model achieves a relative error of 0.0008% after training it for 100.000 iterations which is order
of magnitudes lower than with a learning rate of 0.01, as shown in Figure 5.7. It takes overall longer,
however, for the model with this learning rate to achieve a satisfactory accuracy. There exists a trade-off
between a low and high learning rate, where the former results overall in better accuracy in the long term
whereas the latter achieves a more accurate result faster, but has relatively lower accuracy in the long
term, as displayed in Figure 5.7. For the linear beam cases, it is recommended that a non-dimensionalized
model is used with a high learning rate in conjunction with a set loss tolerance limit. This ensures
that an accurate output is reached relatively quickly, while the unpredictable output caused by the
oscillatory nature of a high learning rate is nullified.
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(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.5: The loss history and output after 100.000 iterations of training the non-dimensionalized Timoshenko beam PINN
model. The relative error after training is 0.0349%.

(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.6: The loss history and output after 100.000 iterations of training the non-dimensionalized Timoshenko beam PINN
model with a learning rate of 0.0001.

(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 5.7: A comparison between learning rates when solving the linear Timoshenko beam case after training for 8000 iterations.



6
Non-linear Analysis of

One-dimensional Beams

In this chapter the geometrically non-linear Euler-Bernoulli beam will be investigated, followed by the
geometrically non-linear Timoshenko beam. A brief description of the utilized theory will be given and
the applied equations in the PINN model will be derived.

6.1. Green-Lagrange Strain

For implementing geometric non-linearity we utilize the Green-Lagrange strain:

𝜖𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑚

𝜕𝑥𝑖

𝜕𝑢𝑚
𝜕𝑥 𝑗

)
.

Consider a beam within a two-dimensional space. Let:

𝑢1 = 𝑢0 (𝑥1) − 𝑥3𝜙 (𝑥1) ,
𝑢2 = 0,
𝑢3 = 𝑤 (𝑥1) ,

(6.1)

where 𝑢0 is the axial deformation at the neutral axis, 𝑢1 is the axial deformation along any fiber of the
beam, 𝑢2 is the out of plane deformation and 𝑢3 the deformation of the fiber at the neutral axis in the
𝑥3 direction, as depicted in Figure 6.1. 𝜙 is the angle between the deformed and undeformed plane
cross-section of the beam.

Let x1 = x, x2 = y, x3 = z. Utilizing the defined displacements in (6.1), the resulting strains will be:

𝜖𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜙

𝜕𝑥
+ 1

2

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜙

𝜕𝑥

)2

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2

,

𝜖𝑦𝑦 = 0,

𝜖𝑧𝑧 =
1
2𝜙

2 ,

𝜖𝑥𝑦 = 𝜖𝑦𝑥 = 0,

𝜖𝑥𝑧 = 𝜖𝑧𝑥 =
1
2

(
𝜕𝑤

𝜕𝑥
− 𝜙

(
1 + 𝜕𝑤

𝜕𝑥

))
.

(6.2)

We assume Von Kármán strains, which indicate that significant rotations and small strains are considered
(Khodabakhshi & Reddy, 2017). Furthermore we assume the engineering strain definition (𝛾𝑥𝑧 = 2𝜖𝑥𝑧).
The strains in (6.2) then simplify to:
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Neutral axis

𝑥1

𝑥3

𝑢0

𝑢1

𝑢3

−𝜙

Figure 6.1: The defined displacements. 𝜙 is positive if the angle goes counter-clockwise around the x2 axis, which is orthogonal
to the x1-x3 plane, pointing into the page.

𝜖𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜙

𝜕𝑥
+ 1

2

(
𝜕𝑤

𝜕𝑥

)2

,

𝜖𝑦𝑦 = 𝜖𝑧𝑧 = 𝜖𝑥𝑦 = 0,

𝛾𝑥𝑧 =
𝜕𝑤

𝜕𝑥
− 𝜙.

(6.3)

The strains in (6.3) apply to the Timoshenko beam. Note that (6.1) describe displacements which result
in a constant shear strain along the cross-section (𝛾𝑥𝑧 in (6.3)). This is not in accordance with the fact
that the shear strain is not necessarily constant across the cross-section. The total strain energy in the
cross-section can be made accurate by applying a shear correction factor, as shown in Figure 6.2. The
shear correction factor depends on the cross-section; this factor is equal to 5/6 for a homogeneous
rectangular cross-section.

For the Euler-Bernoulli case there is no shear deformation, 𝛾𝑥𝑧 = 0, and so (6.3) simplifies to:

𝜖𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤

𝜕𝑥2 + 1
2

(
𝜕𝑤

𝜕𝑥

)2

,

𝜖𝑦𝑦 = 𝜖𝑧𝑧 = 𝜖𝑥𝑦 = 0,

𝜙 =
𝜕𝑤

𝜕𝑥
.

(6.4)

Note that in (6.4), the non-linear terms of the shear strain have become negligible.

6.2. Principle of Virtual Work

For performing the analysis using PINNs, the principle of virtual work is considered in formulating the
loss functions. This principle states that a system is in equilibrium if the internal virtual work is equal to
the external virtual work:

𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝛿𝑊𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ,

where 𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 is the total virtual strain energy stored in the system and 𝛿𝑊𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is the work
applied due to external forces. In the context of a beam system subjected to transverse and axial forces,
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Neutral axis

𝑥

𝑧

True shear strain distribution

Incorrect shear strain distribution

due to assumed displacement field

Modified shear strain distribution

to account for assumed displacement field

Figure 6.2: Utilizing the Timoshenko beam theory results in an uniform transverse shear distribution (red) for the cross-section,
which is not in accordance with the true shear distribution. A shear correction factor has to be applied so that the total shear
strain energy is still correct.

𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and 𝛿𝑊𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 can be specified as:

𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =

∫
𝑉

𝛿𝜖𝑖 𝑗𝜎𝑖 𝑗𝑑𝑉,

𝛿𝑊𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =

∫
𝑙

𝑞 (𝑥) 𝛿𝑤 𝑑𝑥 +
∫
𝑙

𝑓 (𝑥) 𝛿𝑢 𝑑𝑥 +
𝑛∑
𝑖=1

𝐹𝑖𝛿𝑢𝑖 (𝑥𝑖),

𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 ,

(6.5)

where 𝜖 is the internal strain, 𝜎 is the internal stress, 𝑞 (𝑥) is the distributed transverse load along the
beam, 𝛿𝑤 is the virtual transverse displacement, 𝛿𝑢 is the virtual axial displacement, 𝐹𝑖 is the point
load at i and 𝛿𝑢 𝑖(𝑥𝑖) is the displacement at location 𝑥𝑖 where the point load is applied. E is the elastic
modulus.

6.3. Euler-Bernoulli Beam

For the analysis of a geometrically non-linear Euler-Bernoulli beam the kinematic relations in Eq.
6.5 are assumed. Combining (6.4) and (6.5) results in the following internal work equation for the
Euler-Bernoulli beam:

𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸

∫ 𝐿

0

∫
𝐴

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤

𝜕𝑥2 + 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝐴 𝑑𝑥

− 𝐸

∫ 𝐿

0

∫
𝐴

𝑧
𝜕2𝛿𝑤

𝜕𝑥2

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤

𝜕𝑥2 + 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝐴 𝑑𝑥

+ 𝐸

∫ 𝐿

0

∫
𝐴

𝜕𝛿𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤

𝜕𝑥2 + 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝐴 𝑑𝑥.

(6.6)
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Note that 𝛿𝜖𝑥𝑥 =
𝜕𝛿𝑢0
𝜕𝑥

− 𝑧
𝜕2𝛿𝑤

𝜕𝑥2 + 𝜕𝛿𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑥
. Furthermore, we can state:

𝐼 =

∫
𝐴

𝑧2 𝑑𝐴,

𝑆 =

∫
𝐴

𝑧 𝑑𝐴,

where S is the first moment of area. This is equal to zero for a cross-section that is symmetric around
the neutral axis. If this is the case, then (6.6) simplifies to:

𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥 + 𝐸𝐼

∫ 𝐿

0

𝜕2𝛿𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑥2 𝑑𝑥

+ 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥.

Combining the internal and external work equations and separating them with respect to each type of
virtual displacement, we get:

𝛿𝑊 𝛿𝑢0 = 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥 −

∫ 𝐿

0
𝑓 (𝑥) 𝛿𝑢0 𝑑𝑥 −

𝑛∑
𝑖=1

𝐹ℎ,𝑖𝛿𝑢0,𝑖 = 0,

𝛿𝑊 𝛿𝑤 = 𝐸𝐼

∫ 𝐿

0

𝜕2𝛿𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑥2 𝑑𝑥 + 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥 −

∫ 𝐿

0
𝑞 (𝑥) 𝛿𝑤 𝑑𝑥

−
𝑛∑
𝑖=1

𝐹𝑣,𝑖𝛿𝑤𝑖 −
𝑛∑
𝑖=1

𝑀𝑖
𝛿𝑤𝑖

𝑑𝑥𝑖
= 0,

where 𝐹ℎ,𝑖 are the external axial point loads, 𝐹𝑣,𝑖 are the external transverse force loads and 𝑀𝑖 are the
external applied moments. 𝛿𝑊 𝛿𝑢0 relates to the axial deformations of the system whereas 𝛿𝑊 𝛿𝑤 relates
to the transverse and bending deformations of the system.

The loss function of a geometrically non-linear Euler-Bernoulli beam, considering virtual work, would
be the following:

ℒ = 𝜆1ℒ𝑊𝛿𝑢𝑜
+ 𝜆2ℒ𝑊𝛿𝑤

+ ∑𝑛
𝑖 𝜆𝑖ℒ𝐵𝐶,𝑖 ,

with:

ℒ𝑊𝛿𝑢𝑜
= 𝛿𝑊2

𝛿𝑢0
,

ℒ𝑊𝛿𝑤 = 𝛿𝑊2
𝛿𝑤 .

An issue that arises is that the trivial solution, where there are zero displacements, is something which
now has to be avoided unlike the linear cases with the strong form formulations. We introduce the
following term to also be a part of the loss function:

ℒ𝑔 =
𝜆2
𝑔(∫ 𝐿

0 |𝑢𝑃𝐼𝑁𝑁 (𝑥)| 𝑑𝑥 +
∫ 𝐿

0 |𝑤𝑃𝐼𝑁𝑁 (𝑥)| 𝑑𝑥
) 2 ,

where 𝜆𝑔 is a scalar utilized tot balance this loss term. This term is meant to penalize the model if it
attempts to converge towards the trivial solution. Because of this term, the trivial solution no longer is a
(global) minimum, instead it becomes a "peak". The final loss function becomes:

ℒ = 𝜆1ℒ𝑊𝛿𝑢𝑜
+ 𝜆2ℒ𝑊𝛿𝑤

+ ∑𝑛
𝑖 𝜆𝐵𝐶,𝑖ℒ𝐵𝐶,𝑖 +ℒ𝑔 .
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𝐹𝑣

𝐹ℎ

𝐸, 𝐼, 𝐴, 𝐿

Figure 6.3: The case investigated for the non-linear Euler-Bernoulli beam analysis.

Property Value
Elastic modulus, E [kPa] 2.05 × 108

Second moment of area, I [𝑚4] 1.6 × 10−4

Cross-sectional area, A [𝑚2] 1.15 × 10−2

Length, L [𝑚] 10
Vertical point load, 𝐹𝑣 [kN] 10
Horizontal point load, 𝐹ℎ [kN] 200

Table 6.1: The properties of the case used for the non-linear Euler-Bernoulli analysis using a symmetric cross-section.

A cantilever beam with a vertical point load and a horizontal compressive load acting on the edge is
investigated as portrayed in Figure 6.3. The beam properties are described in Table 6.1.

The analysis with the PINN model was done using 1 input neuron and 2 output neurons (horizontal and
vertical displacement vector). The beam interior consists of 99 equidistant collocation points, bringing
the total to 101 if the boundaries are included. The weights and biases are initialized with an uniform
distribution X ∼ U (0, 0.01). The model has been trained for 50.000 iterations with a learning rate of 0.001
using the Adam optimizer and the hyperbolic tangent is used as the activation function for all layers
except the output layer. Furthermore, the hyperparameters 𝜆1 = 𝜆2 = 1, 𝜆𝐵𝐶 = 100000 and 𝜆𝑔 = 0.1.
The results are shown in Figures 6.4 and 6.5.

The mentioned initialization of the weights and biases, X ∼ U (0, 0.01), is purposefully chosen such
that the beam remains close to the undeformed state before any training. This results in the beam
converging faster to the FEM solution. In Figure 6.6, the results are shown of the same model using a
Xavier normal distribution as a initialization method instead. Gloriot & Bengio (2010) introduced the
Xavier initialization as a method of avoiding the phenomena of vanishing and exploding gradients.
The initial weights can cause the initial deflection of the beam (and so also the loss) to be very large,

(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 6.4: The result of the cantilever example with a learning rate of 0.001. The relative error of the PINN solution with respect
to the FEM solution is 4.99%.
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(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 6.5: The result of the cantilever example with a learning rate of 0.0001. The relative error of the PINN solution with respect
to the FEM solution is 3.62%.

(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 6.6: The output of the same model but with a Xavier normal distribution utilized as initialization method. The initial loss
is so large that no accurate solution is achieved after the same amount of training iterations

however, which can necessitate more training iterations before reaching an accurate solution. In this
case, the model failed to converge within the 50,000 iterations.

6.4. Timoshenko Beam

Applying (6.3) to get the internal virtual work components of the beam results in the following for the
axial component:∫

𝑉

𝛿𝜖𝑥𝑥𝜎𝑥𝑥𝑑𝑉 = 𝐸

∫ 𝐿

0

∫
𝐴

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜙

𝜕𝑥
+ 1

2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝐴 𝑑𝑥

− 𝐸

∫ 𝐿

0

∫
𝐴

𝑧
𝜕𝛿𝜙

𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜙

𝜕𝑥
+ 1

2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝐴 𝑑𝑥

+ 𝐸

∫ 𝐿

0

∫
𝐴

𝜕𝛿𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕𝜙

𝜕𝑥
+ 1

2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝐴 𝑑𝑥.

(6.7)

If the cross-section is symmetric with respect to the neutral axis, (6.7) simplifies to:
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∫
𝑉

𝛿𝜖𝑥𝑥𝜎𝑥𝑥𝑑𝑉 = 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥

+ 𝐸𝐼

∫ 𝐿

0

𝜕𝛿𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑥
𝑑𝑥

+ 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥.

(6.8)

For the shear component, it is:∫
𝑉

𝛿𝛾𝑥𝑧𝜎𝑥𝑧𝑑𝑉 = 𝐺

∫ 𝐿

0

∫
𝐴

(
𝜕𝛿𝑤

𝜕𝑥
− 𝛿𝜙

) (
𝜕𝑤

𝜕𝑥
− 𝜙

)
𝑑𝐴 𝑑𝑥

= 𝐺𝐴𝑆

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

− 𝜕𝑤
𝑑𝑥

𝛿𝜙 − 𝜙
𝜕𝛿𝑤
𝑑𝑥

+ 𝜙𝛿𝜙 𝑑𝑥.

(6.9)

The total internal work therefore is the summation of (6.8) and (6.9):

𝛿𝑊 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥

+ 𝐸𝐼

∫ 𝐿

0

𝜕𝛿𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑥
𝑑𝑥

+ 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥

+ 𝐺𝐴𝑆

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

− 𝜕𝑤
𝑑𝑥

𝛿𝜙 − 𝜙
𝜕𝛿𝑤
𝑑𝑥

+ 𝜙𝛿𝜙 𝑑𝑥.

Combining the internal and external work equations and separating them with respect to each type of
virtual displacement as done earlier, we get:

𝛿𝑊 𝛿𝑢0 = 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑢0
𝜕𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥 −

∫ 𝐿

0
𝑓 (𝑥) 𝛿𝑢0 𝑑𝑥 −

𝑛∑
𝑖=1

𝐹ℎ,𝑖𝛿𝑢0,𝑖 = 0,

𝛿𝑊 𝛿𝑤 = 𝐸𝐴

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑑𝑥 + 𝐺𝐴𝑆

∫ 𝐿

0

𝜕𝛿𝑤
𝑑𝑥

𝜕𝑤
𝑑𝑥

− 𝜙
𝜕𝛿𝑤
𝑑𝑥

𝑑𝑥

−
∫ 𝐿

0
𝑞 (𝑥) 𝛿𝑤 𝑑𝑥 −

𝑛∑
𝑖=1

𝐹𝑣,𝑖𝛿𝑤𝑖 = 0,

𝛿𝑊 𝛿𝜙 = 𝐸𝐼

∫ 𝐿

0

𝜕𝛿𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑥
𝑑𝑥 + 𝐺𝐴𝑆

∫ 𝐿

0
𝜙𝛿𝜙 − 𝜕𝑤

𝑑𝑥
𝛿𝜙 𝑑𝑥 −

𝑛∑
𝑖=1

𝑀𝑖𝛿𝜙𝑖 = 0.

The loss equations of the Timoshenko PINN model are:

ℒ = 𝜆1ℒ𝑊𝛿𝑢𝑜
+ 𝜆2ℒ𝑊𝛿𝑤

+ 𝜆3ℒ𝑊𝛿𝜙
+ ∑𝑛

𝑖 𝜆𝑖ℒ𝐵𝐶,𝑖 +ℒ𝑔 .

Note that there is an additional loss term added related to 𝜙, which now is a separate degree of freedom.
The loss terms, similar to the Euler-Bernoulli case, are defined as:

ℒ𝑊𝛿𝑢𝑜
= 𝛿𝑊2

𝛿𝑢0
, ℒ𝑊𝛿𝑤 = 𝛿𝑊2

𝛿𝑤 , ℒ𝑊𝛿𝜙 = 𝛿𝑊2
𝛿𝜙 .
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Property Value
Elastic modulus, E [kPa] 2.05 × 108

Second moment of area, I [𝑚4] 1.6 × 10−4

Cross-sectional area, A [𝑚2] 1.15 × 10−2

Length, L [𝑚] 1
Vertical point load, 𝐹𝑣 [kN] 1000
Horizontal point load, 𝐹ℎ [kN] 20000

Table 6.2: The properties of the case used for the non-linear Timoshenko analysis using a symmetric cross-section.

(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 6.7: The output of the Timoshenko beam analysis after training the model for 50000 iterations. The relative error is 186%
with respect to the FEM solution.

The PINN model now has three output neurons: 𝑢, 𝑤, and 𝜙. The input remains a singular neuron
which is the vector of collocation points along the beam.

For the numerical example, the same cantilever example will be utilized with the relevant parameters
described in Table 6.2.

The analysis was conducted with 101 collocation points. The weights and biases are initialized with an
uniform distribution X ∼ U (0, 0.01). The model has been trained for 50.000 iterations with a learning
rate of 0.001 using the Adam optimizer and the hyperbolic tangent is used as the activation function for
all layers except the output layer. 𝜆1 = 𝜆2 = 𝜆3 = 10−6 , 𝜆4 = 105, and 𝜆𝑔 =

√
0.00001. The results are

shown in Figure 6.7.

The issue that arises by using the introduced penalty term, ℒ𝑔 , is the trial and error nature of finding
the optimal value of 𝜆𝑔 . The accuracy of the PINN output is heavily reliant on the magnitude of ℒ𝑔

relative to the other loss terms. The PINN result shown in figure 6.8 included a loss ℒ𝑔 of 0.021 after
training, whereas the losses of ℒ𝑊𝛿𝑢𝑜

, ℒ𝑊𝛿𝑤𝑜
and ℒ𝑊𝛿𝜙 were 0.026, 0.008 and 0.034 respectively. The ℒ𝑔

having a loss of the same magnitude as the other three mentioned is detrimental for the accuracy of
the model, as ℒ𝑔 is simply implemented to avoid the trivial solution and does not contribute to the
mechanical formulation of the problem. To circumvent this issue, a more robust penalty term is needed.
Inspired by the FEM in which the force convergence criterion is used for non-linear analyses, consider
the following force residual:

ℒ𝑔1 = ∥𝑀𝑒𝑥𝑡 − 𝑀𝑖𝑛𝑡∥2 ,

ℒ𝑔2 = ∥𝑉𝑒𝑥𝑡 −𝑉𝑖𝑛𝑡∥2 ,

ℒ𝑔3 = ∥𝑁𝑒𝑥𝑡 − 𝑁𝑖𝑛𝑡∥2.

For every force type, the 𝑙2-norm squared is taken. In other words, these three terms ensure that there
is force equilibrium at every interior collocation point. Here, 𝑀𝑒𝑥𝑡 , 𝑉𝑒𝑥𝑡 and 𝑁𝑒𝑥𝑡 denote the moment,
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shear and axial force vectors due to the external loads, respectively. These describe the external load
acting on the beam with respect to its deformed shape. For the cantilever example, these would be:

𝑀𝑒𝑥𝑡 (𝑥) = 𝐹𝑣 (𝐿 − 𝑥) − 𝐹ℎ𝑤 (𝑥) ,
𝑉𝑒𝑥𝑡 (𝑥) = −𝐹𝑣cos𝜃 (𝑥) + 𝐹ℎsin𝜃(𝑥),
𝑁𝑒𝑥𝑡 (𝑥) = 𝐹ℎcos𝜃(𝑥) + 𝐹𝑣sin𝜃(𝑥).

The internal force components 𝑀𝑖𝑛𝑡 , 𝑉𝑖𝑛𝑡 and 𝑁𝑒𝑥𝑡 for an arbitrary cross-section, following the Timo-
shenko beam theory, are:

𝑀𝑖𝑛𝑡 (𝑥) = 𝐸

∫
𝐴

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
𝑧 𝑑𝐴 + 𝐸𝐼

𝜕𝜙

𝜕𝑥
,

𝑉𝑖𝑛𝑡 (𝑥) = 𝐺𝐴𝑠

(
𝜙 + 𝜕𝑤

𝜕𝑥

)
,

𝑁𝑖𝑛𝑡 (𝑥) = 𝐸𝐴

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
+ 𝐸

∫
𝐴

𝜕𝜙

𝜕𝑥
𝑧 𝑑𝐴.

For a symmetric cross-section, the coupling terms between normal force and bending vanish and these
equations simplify to:

𝑀𝑖𝑛𝑡 (𝑥) = 𝐸𝐼
𝜕𝜙

𝜕𝑥
,

𝑉𝑖𝑛𝑡 (𝑥) = 𝐺𝐴𝑠

(
𝜙 + 𝜕𝑤

𝜕𝑥

)
,

𝑁𝑖𝑛𝑡 (𝑥) = 𝐸𝐴

(
𝜕𝑢0
𝜕𝑥

+ 1
2

(
𝜕𝑤

𝜕𝑥

)2
)
.

Furthermore, the following non-dimensionalized virtual work equations of the Timoshenko beam are
used to enhance stability:

𝛿�̃� 𝛿𝑢0 =

∫ 1

0

𝜕𝛿�̃�0
𝜕�̃�

(
𝜕�̃�0
𝜕�̃�

+ 1
2

(
𝜕�̃�

𝜕�̃�

)2
)
𝑑�̃� −

∫ 1

0
𝑓 (�̃�) 𝛿�̃�0 𝑑�̃� −

𝑛∑
𝑖=1

�̃�ℎ,𝑖𝛿�̃�0,𝑖 = 0,

𝛿�̃� 𝛿𝑤 =
𝐸𝐴

𝐺𝐴𝑠

∫ 1

0

𝜕𝛿�̃�
𝑑�̃�

𝜕�̃�
𝑑�̃�

(
𝜕�̃�0
𝜕�̃�

+ 1
2

(
𝜕�̃�

𝜕�̃�

)2
)
𝑑�̃� +

∫ 1

0

𝜕𝛿�̃�
𝑑�̃�

𝜕�̃�
𝑑�̃�

− 𝜙
𝜕𝛿�̃�
𝑑�̃�

𝑑�̃�

−
∫ 1

0
�̃� (�̃�) 𝛿�̃� 𝑑�̃� −

𝑛∑
𝑖=1

�̃�𝑣,𝑖𝛿�̃�𝑖 = 0,

𝛿�̃� 𝛿𝜙 =

∫ 1

0

𝜕𝛿𝜙

𝜕�̃�

𝜕𝜙

𝜕�̃�
𝑑�̃� + 𝐺𝐴𝑆𝐿

2

𝐸𝐼

∫ 1

0
𝜙𝛿𝜙 − 𝜕�̃�

𝑑�̃�
𝛿𝜙 𝑑�̃� −

𝑛∑
𝑖=1
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�̃� =
𝑥

𝐿
, �̃�0 =

𝑢0
𝐿
, �̃� =

𝑤

𝐿
, 𝑓 (�̃�) =
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𝐸𝐴
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𝐸𝐴
, �̃� (�̃�) =

𝑞 (𝑥) 𝐿
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𝑀𝐿

𝐸𝐼
.

The loss function becomes:

ℒ = 𝜆1ℒ𝑊𝛿𝑢𝑜
+ 𝜆2ℒ𝑊𝛿𝑤

+ 𝜆3ℒ𝑊𝛿𝜙
+ 𝜆4ℒ𝑔1 + 𝜆5ℒ𝑔2 + 𝜆6ℒ𝑔3 +

∑𝑛
𝑖 𝜆𝑖ℒ𝐵𝐶,𝑖 . (6.10)
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(a) The computed loss throughout the iterations. (b) The displacement output after training.

Figure 6.8: The output of the PINN model after training it for 50000 iterations using the loss function described in Eq. 6.24. The
relative error is 1.85% with respect to the FEM solution.

[Layers] x [Neurons per layer] Relative error after training [%]
2 x 16 2.1
4 x 8 1.6
8 x 4 100.0

Table 6.3: Three different configurations of hidden layers compared.

The results shown in Figure 6.8 is the output of utilizing the non-dimensionalized virtual work equations
and the new loss function as described in (6.10), using the same PINN model structure as described for
the previous example, with all 𝜆 𝑗 = 1. The remaining hyperparameters are the same.

The influence of the PINN’s width and depth has been investigated. In Table 6.3 and Figure 6.9, the
results of three different configurations of hidden layers are shown. The 8x4 configuration is too shallow
and as a result lacks the capability to capture the non-linear behavior of the beam.

Figure 6.9: The comparison of different hidden layers’ configuration with respect to the FEM solution.



7
Stabilizing Techniques

Significant research has been conducted on understanding training pathologies and developing
algorithms that improve training efficiency with the goal of reducing computational cost. Among these
are the studies performed by Wang et. al (2021) and Jagtap et. al (2020). Wang et. al (2021) developed
an algorithm which scales the weights 𝜆𝑖 during training enhancing its effectiveness removing the need
to manually find the optimal values of these weights by trial and error. Jagtap et. al (2020) improved the
convergence rate by introducing a learnable hyperparameter into the activation function which, like the
weights and biases, also gets optimized during training. The influence of these two algorithms on the
training of the PINN model will be investigated. A manual seed will be used in PyTorch to keep the
initialization of the weights and biases fixed.

7.1. Adaptive Weight Loss Algorithm

Wang et. al (2021) introduced this algorithm due to the impracticality of having to manually adjust the
weights 𝜆𝑖 . The goal is to assign suitable weights such that the gradients of each loss term in the loss
function during backpropagation are of similar magnitude (Wang et. al, 2021). Here, only the data-fit
terms (in this case the boundary conditions) are assigned the weight factors. Loss terms that are PDE
residuals are not considered to have weight factors since it is assumed that their gradients are more
dominant than those of the data-fit terms. As such, the loss function in our context would then be:

ℒ = ℒ𝑊𝛿𝑢𝑜
+ℒ𝑊𝛿𝑤 +ℒ𝑊𝛿𝜙 + ℒ𝑔1 +ℒ𝑔2 +ℒ𝑔3 +

∑𝑛
𝑖 𝜆𝑖ℒ𝐵𝐶,𝑖 .

Furthermore:

�̃�𝑖 ,𝑡 =

max
(��∇ℒ𝑊𝛿𝑢𝑜 ,𝑡

�� , ��∇ℒ𝑊𝛿𝑤,𝑡

�� , ��∇ℒ𝑊𝛿𝜙,𝑡

�� , ��∇ℒ𝑔1 ,𝑡

�� , ��∇ℒ𝑔2 ,𝑡

�� , ��∇ℒ𝑔3 ,𝑡

��)
|∇𝜆𝑖 ,𝑡ℒ𝐵𝐶,𝑖,𝑡|

.

The weights are then updated with:

𝜆𝑖 ,𝑡+1 = (1 − 𝛼)𝜆𝑖 ,𝑡 + 𝛼�̃�𝑖 ,𝑡 .

Here 𝜆𝑖 ,𝑡 denotes the weight factor at training iteration t. 𝛼 is a hyperparameter which is recommended
to be set at 0.1 (Wang et. al, 2021). The PINN model has been trained with the Adam optimizer using
the adaptive weight loss algorithm for 50000 iterations, starting with unity 𝜆 for all boundary terms.
The weights are updated every 500𝑡ℎ iteration. The history of the weights during training are shown in
Figure 7.1.

Other optimizers are investigated as well, and the question arises how each performs as each possesses
its own dynamics regarding convergence. The RMSprop and Adagrad optimizers are investigated as
well. The results are summarized in Table 7.1.
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Figure 7.1: The history of the weight factors for each boundary term during training which were updated every 500𝑡ℎ iteration
using the Adam optimizer.

Figure 7.2: The output after training the model with and without the adaptive weight loss algorithm.

Optimizer Relative error [%]
Adam without adapative weights 1.93
Adam with adapative weights 1.22
RMSprop without adaptive weights 28.89
RMSprop with adaptive weights 2.82
Adagrad without adaptive weights 395.93
Adagrad with adaptive weights 153.45

Table 7.1: Different optimizers utilizing the adaptive weight loss algorithm compared. The weights are updated every 500𝑡ℎ
iteration. The learning rate is set at 0.001.



7.2. Adaptive Activation Functions 33

The inclusion of the adaptive weight loss algorithm resulted in a similar, if not slightly better, output
after training with the Adam optimizer. This may be attributed to the fact that the Adam optimizer can
handle continuously varying gradients well, due to the fact that it normalizes the updates using the
mean and variance of the gradients (also called the first and second moment, respectively). RMSprop
also handles gradients similar to Adam. It does not keep track of the first moment, however, unlike
Adam.

Adagrad is significantly less accurate, and this can be attributed to the way it handles past gradients.
Adagrad accumulates the sum of the squares of all past gradients for each parameter and adjusts its
learning rate based on these accumulated values. As a result, parameters associated with large gradients
over time experience a significant decrease in their learning rates, leading to slower updates.

7.2. Adaptive Activation Functions
Jagtap et. al (2020) proposed the notion of the activation function containing a learnable parameter,
like the weights and biases of the model, to accelerate convergence. The motivation for this is that
backpropagation and so also the vanishing and exploding gradient phenomenon are dependent on
the activation function. Finding and utilizing an optimal activation function therefore avoids these
pathologies and accelerates convergence.

Some common activation functions would then be expressed as follows:

Hyperbolic tangent : 𝑒
𝑎𝑥 − 𝑒−𝑎𝑥

𝑒 𝑎𝑥 + 𝑒−𝑎𝑥
,

Sigmoid : 1
1 + 𝑒−𝑎𝑥

,

ReLU : max (0, 𝑎𝑥) ,

where 𝑎 is the learnable parameter which continuously adapts during training of the model. Jagtap et.
al (2020) also proposed adding a fixed scaling factor n meant to enhance the effects of the parameter a.
The aforementioned activation functions would then be described as:

Hyperbolic tangent : 𝑒
𝑛𝑎𝑥 − 𝑒−𝑛𝑎𝑥

𝑒𝑛𝑎𝑥 + 𝑒−𝑛𝑎𝑥
,

Sigmoid : 1
1 + 𝑒−𝑛𝑎𝑥

,

ReLU : max (0, 𝑛𝑎𝑥) .

The PINN model has been investigated with the adaptive activation function utilizing the hyperbolic
tangent using n = 1 and n = 10 and are compared with the model with the standard fixed counterpart.
The results of the output are shown in Figure 7.3.

The output after training results in an almost identical accuracy for all three investigated combinations.
The difference is in the convergence rate as shown in Figure 7.4. Using n = 10 results in the model
achieving a significantly improved convergence rate, while with n = 1 the convergence rate is similar to
using the fixed activation function. In Figure 7.5, the history of the parameter a is shown during training.

From Figure 7.6 it is evident that the adaptive activation function is converging to a hyperbolic tangent
function with larger gradients around the origin for n = 10. The product na has a final value of 9.09 after
training has ended which results in the aforementioned shape of the function, whereas with n = 1 this
product is equal to 1.239.

The steepness of the activation function has an effect on the gradient dynamics. A steeper activation
function (na > 1) correlates to higher gradients which can accelerate convergence, but may also increase
the risk of encountering exploding gradients. In the first few thousand iterations the convergence is
significantly superior for n = 10 and this can be traced to the activation function which is steeper than
the initial function during this same iteration period.
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Figure 7.3: The results of using the adaptive hyperbolic tangent function after training the model for 50000 iterations.

Figure 7.4: The loss history for the different adaptive hyperbolic tangent functions.
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Figure 7.5: The history of the parameter a during training with the adaptive hyperbolic tangent function.

Figure 7.6: The initial hyperbolic tangent function before and after training for n = 1 and n = 10.



8
Parameter Study

In this chapter PINN parameters are investigated that could influence the performance of the geometri-
cally non-linear Timoshenko model. The parameters to be investigated are the activation function and
the learning rate. The influence of the amount of hidden layers has already been explored in chapter six.

8.1. Influence of the Activation Function

The activation function is responsible for introducing non-linearity in the model as previously mentioned,
and thus directly affects the performance of the model. Several activation functions are investigated
using a model containing two hidden layers, containing 16 neurons each. The results are shown in Table
8.1 and the results are visualized in Figure 8.1 .

The ReLU activation function is unable to capture the behavior of the geometrically non-linear Tim-
oshenko beam. This can be attributed to the fact that the second derivative of the ReLU is zero. The
computation of the loss residuals becomes saturated. This is further evidenced by the Softplus activation
function, which is a logarithmic smooth approximation to the ReLU function. With the Softplus
activation function the model is able to accurately predict the solution. A vital part of the model
therefore is to select an activation function which has sufficient non-zero derivatives, as the ReLU can
become incapable of accurately capturing the behavior (Leng & Thiyagalingam, 2022). This issue can be
practically accounted for by selecting an activation function which has infinite non-zero derivatives,
such as the Tanh or Sigmoid functions.

8.2. Influence of the Learning Rate

Three different values of the learning rate are investigated where the training of the model ends once a
loss of 10−5 or lower has been achieved. The results are shown in Table 8.2.

A learning rate of 0.001 turns out to be the most efficient learning rate for this scenario. A learning rate
of 0.0001 is too slow to efficiently train the model, whereas a learning rate of 0.01 is too coarse. It is
worth noting that the latter is the most efficient learning rate when describing linear problems, as shown
in chapter five. For the geometrically non-linear Timoshenko beam problem the most efficient learning

Activation function Relative error after training [%]
Tanh 2.10
Sigmoid 1.65
ReLU 411.20
Softplus 2.20

Table 8.1: Performance of the model using different activation functions.
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Figure 8.1: Different activation functions compared.

Learning Rate Iterations
0.01 11033
0.001 9005
0.0001 17553

Table 8.2: The amount of iterations necessary for reaching a loss of 10−5 or lower for each learning rate.

rate is around the magnitude of 10−3. This can be attributed to the increased complexity of the model
and also the choice of residuals. The latter of which will be discussed in the next chapter.



9
Discussion

In this section, some practical aspects of PINNs will be discussed, such as the limitations of it faced in
this thesis and in general, its potential use case in monitoring and higher dimensional implementation.

9.1. Challenges

The one-dimensional geometrically non-linear Timoshenko beam is investigated where the loss term
contains a virtual work residual and a force residual. A disadvantage that has been experienced is that
the computational expense, for solving the proposed problem, is significantly higher than the FEM,
which corresponds to the findings of Grossman et al. (2024). There is evidence that suggest that the
PINN method, however, experiences no exponential increase in computational cost if the dimensionality
increases when solving for PDEs, as evidenced by Hu et al. (2024), possibly indicating that the PINN
method will be more computationally efficient when solving for high dimensional cases.

Another challenge is training stability. There have been techniques derived to tackle this issue, such
as non-dimensionalization, which has been applied here with significant success as a result. Proper
initialization of the PINN model also affects the training greatly. It is common practice to initialize
the model using a Xavier initialization method, as described in chapter six, to avoid the phenomena
of vanishing and exploding gradients so as to stabilize training. It is found that using an uniform
distribution initialization where the weights and biases are close to zero, as used previously, results in
superior convergence than with the Xavier initialization. Based on this, for geometrically non-linear
problems using the same residuals as presented here, it is advised to consider using the aforementioned
initialization instead of the Xavier initialization.

Furthermore, for each model solving a problem the optimal hyperparameters (hidden layers, amount
of layers, activation function, etc.) have to be found using trial-and-error. This is only an issue at the
beginning, when building the model. There is literature available that can serve as guidelines to mitigate
this issue, such as the work of Wang et al. (2023).

In this thesis the beam is assumed to be perfectly elastic throughout loading. It is shown here that
PINNs are able to accurately capture the non-linear behavior of beams. This is because the relevant
physics are implemented in the model, meaning the model can capture only what is defined a priori.
The model quickly becomes questionable when it only relies on physics which are not understood well.
This is another limitation of PINNs. For instance, the assumed dynamics of a structural system may
change due to environmental conditions which is not or cannot be accounted for in the PINN model.

In real-world contexts, PINNs can integrate sensor data of the investigated system to compensate for
dynamics that are erroneously assumed or simplified to still arrive at an accurate prediction, which ties
back to how PINNs can be used for structural health monitoring as well.
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9.2. PINNs and Monitoring

In this thesis, the proposed model has been verified with simulated data. This leads to the question on
how PINNs can be utilized when real-life (measured) data is present and what role PINNs can have
depending on the presence of simulated and real-life data or the lack thereof. In this thesis a forward
problem has been addressed, but PINNs can also be used to solve inverse problems. Some examples
regarding this will follow.

When investigating a system, PINNs can be trained using real-life data while being constrained to
physical laws, which is how data scarcity can be compensated for. For algorithms that do not use
any physical laws, distinguishing between alterations observed in a system due to impairment and
those caused by changing operational or environmental conditions is challenging (Figueiredo and
Brownjohn, 2022). With PINNs, the promise is that this can be extrapolated by utilizing physical laws,
thus improving generalization.

Lai et al. (2022) presented a monitoring framework where physics-informed modelling is integrated. A
cable-stayed bridge, which is considered here to be linear to mildly non-linear, is investigated using
an experimental dataset. It is shown that the hybrid model, the model that utilizes both PINNs and
experimental data, outperforms the purely physics-based approach. A limitation they noted is that the
performance deteriorates when the dynamic regime deviated significantly from the training data (Lia et
al., 2022).

Cross et al. (2021) demonstrated this promise of generalization of PINNs and stated that it is especially
useful when data is scarce, which is common in structural monitoring projects. They further commented
that the methodology would benefit of a better understanding of fatigue damage accrual.

To date, research on PINNs and structural health monitoring has primarily concentrated on modeling
and predicting dynamic behavior, while further studies are needed to assess their effectiveness in
quasi-static behavior, which is vital for long-term structural monitoring (Al-Adly & Kripakaran, 2024).
To that end, Al-Adly & Kripakaran (2024) investigated a Kirchhoff-Love plate using PINNs and synthetic
sensor data including simulated noise. They investigated PINN models, predicting displacements
and internal forces, that included PDE-constraints related to physical laws and those without. They
concluded that the PINN model that only included the boundary condition constraints and the sensor
data outperformed the one that also included the PDE-constraint at relatively low noise levels. This is
noteworthy since it implies using the former model is better for generalization while also being less
computationally expensive. It is shown from the results that the model with the PDE-constraint included
performs better when higher noise levels are present, though, indicating that utilizing PDE-constraints
results in an overall more consistent model when high noise levels are present. It is also concluded that
the PINNs also are able to accurately predict for inputs outside the range of training data.

Based on the mentioned studies, a schematic illustration is shown in Figure 9.1 used to visualize the
role pure data-driven approaches and physics-informed methods can have within structural health
monitoring.

9.3. Complex Geometries

Despite PINNs’ successful applications, a limitation so far is the application of it on complex geometries.
Multiple studies have been conducted on implementing strategies so that PINNs can manage more
complex geometries where traditional PINNs, here defined as PINNs utilizing a simple distribution of
the collocation points, fail to make accurately predictions. Sukumar & Srivastava (2022) constructed
an approach using a signed distance function to describe the domain. By utilizing this, the boundary
conditions are satisfied a priori, without utilizing separate loss terms for this. It is concluded that the
proposed PINN model consistently outperforms the traditional collocation method (which is used in
this thesis), highlighting the importance of satisfying the boundary conditions a priori. The numerical
examples presented are mainly focused on one- and two-dimensional shapes.

Costabal et al. (2024) focused on an approach using the Laplace–Beltrami operator, which is used to
encode the geometrical information, to create an input space that accurately represents the geometry
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Figure 9.1: The methods used to extrapolate observed data to regions which are unobserved. The advantages and disadvantages
of using a purely data-driven approach and a physics informed approach when extrapolating from observed data of a system.

discussed. The input vector is, contrary to traditional PINNs, no longer a set of coordinates where the
residuals are calculated, but rather the value of eigenfunctions of the Laplace-Beltrami operator at those
coordinates with the notion being that more information can be encoded for each point coordinate.
With this, complex fully three-dimensional surfaces have been investigated such as a heat sink and a
Stanford bunny among others. It is shown that this proposed PINN model can accurately predict the
solution whereas the traditional PINN fails to do so.

These examples show that while traditional PINNs may fail with complex geometries, recent advance-
ments enable the accurate modeling of complex shapes using techniques like those previously stated.
Depending on the geometry, a simple equidistant grid for the collocation points or an adaptively
distributed one as mentioned in chapter three can suffice for relatively simple shapes, while more
complex geometry (three-dimensional surfaces) may require more complex processes such as the
positional encoding method proposed by Costabal et al. (2024) or the signed distance function proposed
by Sukumar & Srivastava (2022).



10
Conclusions and Recommendations

In this chapter, the main findings of the research will be summarized and some recommendations will
be made based on this study. In this thesis the viability of using a physics informed neural network to
approximate a geometric non-linear Timoshenko beam solution is investigated.

For solving linear beam cases, it suffices to include the differential equation(s) describing the utilized
beam theory as a loss term while the remainder loss terms are the boundary conditions of the described
problem. It should be noted that the differential equation(s) should be non-dimensionalized to
significantly improve the convergence rate.

For the geometrically non-linear case a variational principle, the principle of virtual work, is used in
conjunction with the Green-Lagrange strain theory to formulate the geometric non-linear Timoshenko
virtual work equations. These virtual work equations form a part of the loss function, but do not suffice
on their own to solve the problem, as the model tends to the trivial solution. Two penalty terms are
introduced and investigated to alleviate this issue. The first penalty term directly penalizes the model
for remaining at the trivial solution which is multiplied by a scaling factor. The issue that arises is the
trial-and-error nature that is necessary to find the optimal value of the scaling factor such that it does
not dominate the loss function. The second penalty term is a force residual, which is more robust, as
there is no trial-and-error method for this penalty term necessary to guarantee convergence.

The PINN model has a single neuron as input, this being the collocation points along the beam. The
model has three output neurons, which correspond to the degrees of freedom the Timoshenko beam
theory describes, which are the horizontal and vertical translations and the cross-sectional rotation. The
amount of hidden layers has not only an influence on the computational cost, but also on the accuracy
the model can achieve. A model containing four hidden layers with as little as eight neurons per hidden
layer achieves a relative error of sub 2% with respect to the FEM solution.

Two additional algorithms which improve the convergence rate, the adaptive weight loss algorithm
and the adaptive activation function, have been investigated. Both algorithms positively influence the
convergence rate of the model, though the former significantly increases the computational cost of
the training. Based on this study, a non-dimensionalized model coupled with the Adam optimizer is
recommended to use which can eventually be supplemented with an adaptive activation function. The
adaptive activation function with n = 10 can be incorporated into the model to improve the convergence
rate significantly without significantly increasing the computational cost of the model.

While this research focused on one-dimensional geometric non-linear Timoshenko beams, future studies
could extend the PINN framework to incorporate material non-linearity. This would allow for a more
comprehensive model where material behavior is not purely elastic. Future studies could also include
extending the framework to model geometrically non-linear plates and frame structures.
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