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Abstract

As financial fraud becomes increasingly sophisti-
cated, traditional detection methods struggle to un-
cover the complex relational patterns underlying il-
licit behavior. This paper investigates the effective-
ness of combining Graph Neural Networks (GNN5s)
and Transformers for fraud detection on relational
data transformed into graph structures. Focus-
ing on the IBM Anti-Money Laundering (AML)
dataset, two hybrid architectures are proposed: In-
terleaved, which alternates between GNNs and
Transformers to exploit local and global informa-
tion sequentially, and Full-Fusion, which fuses
parallel GNN and Transformer representations at
both feature and decision levels. The results show
that integrating Transformers significantly boosts
performance over standalone GNN baselines, with
improvements up to 10% in the F1 score in small-
scale datasets. It is also demonstrated that gating-
based fusion strategies enhance model stability and
accuracy, and further, that PEARL-based positional
encodings do not result in any conclusive improve-
ment of the models. These findings highlight
the value of combining local message passing and
global attention mechanisms for structured finan-
cial anomaly detection, and pave the way for more
robust, adaptable graph-based solutions in fraud an-
alytics and more.

1 Introduction

Machine Learning and Artificial Intelligence are evolving at a
rapid pace, and with them comes the growing need for models
that can not only perform well but also adapt to increasingly
complex problems. This project explores how machine learn-
ing models, specifically Graph Neural Networks (GNNs) and
Transformers, can be applied on relational data that has been
transformed into graph structures.

The focus is on the financial sector, where fraud detec-
tion is becoming more critical than ever due to the increasing
sophistication of fraudulent schemes. Traditional detection
methods often fall short when it comes to uncovering hidden
relationships in data, which is where graph-based approaches
come in. Prior work, such as that by Akoglu et al. [1], has
shown how effective graph-based anomaly detection can be in
capturing subtle, structured patterns of fraud. More recently,
Egressy et al. [2] achieved strong results using graph models,
reinforcing the promise of this direction. That said, there is
still a noticeable gap when it comes to broad, hands-on exper-
imentation with different model architectures. This project
aims to address that by testing a variety of graph-based learn-
ing techniques on sample banking fraud scenarios and evalu-
ating their effectiveness.

The research question can be formally expressed as fol-
lows: "How well does a Full Fusion or Interleaved archi-
tecture using Graph Transformers and GNNs on the edges of
sampled subgraphs perform on the IBM Transactions for Anti
Money Laundering (AML) [3] dataset, compared to existing

literature?” The focus is on the capacity of Graph Transform-
ers to capture edge embeddings, and combining that with the
node embeddings of the GNNs for a more accurate model.

Thus, the main contributions of this paper are threefold:
(1) A complete implementation and detailed examination of
the two proposed architectures (Full Fusion and Interleaved
specifically) are presented. (2) An ablation study demon-
strates that each architecture outperforms its individual com-
ponents when evaluated in a vacuum, using models with
equivalent parameter counts. (3) The relevance and utility of
PEARL-based positional encodings are analyzed within both
architectures and datasets.

2 Background and Related Work

In this section, a comprehensive overview of all concepts
used to construct the architectures is given, from basic con-
cepts to state-of-the-art models that inspired and contribute to
the architecture’s performance. This section also makes use
of mathematical formulas, for which all relevant notation is
mentioned and (briefly) explained in section A./ of the Ap-
pendix.

2.1 Background/Preliminaries

Graphs

Graphs and their representations stay at the cornerstone of all
machine learning techniques to come. The financial network
represented by the AML data can be structured as the multi-
graph G = (V,&,X,E), a multigraph referring to a graph
with the possibility of more than one (directed) edge con-
necting a node to another. In this case, V' is a set of n nodes
representing accounts and £ C V' x V corresponds to a set
of edges representing transactions between accounts. If the
graph is node-attributed or edge-attributed, the node attribute
matrix X € R?*dn assigns attributes to each node, and the
edge attribute tensor EE € R™"*"* 4 assigns attributes to each
edge.
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Figure 1: Illustration of the Message Passing framework’s two steps:
message passing (left) and aggregation (right). Focused only on the
node labeled *X’.

Graph Neural Networks
Graph Neural Networks (GNNs) are a machine learning
tool which apply the message-passing (MPNN) paradigm to



graph-structured data. In each layer, a node updates its em-
bedding by aggregating (e.g. summing or averaging) trans-
formed features from its neighbors (messages).

One such layer can be represented as follows:

GNN_Layer(X, E) = XM where X(© = X, (1)

xM"-v(x", P M(Xf“,Ej%X;”) )
JEN(3)

However, this equation is based on the assumption that
edge features stay constant throughout the layer. This as-
sumption may lead to limit the power of the GNN to learn
better latent representations of the graph. To address this,
more recent work has resulted in the addition of an edge up-
date module within the classic GNN architecture, where edge
features are also updated at the same time as node features in
the aggregation step, by using a Multi-Layer Perceptron on
the edge embedding concatenated with the node embeddings.
This approach has generally lead to an improvement in the
GNN’s performance across many datasets, and represent the
current standard for most GNN architectures. As such, a new
formulation for a GNN layer emerges:

GNN_LayerEU(X, E) = (XN, EM)), 3)

where XV = x, E© =F )
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This general neighborhood-aggregation framework has led
to many performant models such as GCN, GraphSage, PNA,
and more. However, Xu et al. [4] show that most “vanilla”
GNNs (e.g. simple graph convolutions, GraphSAGE) lack
full expressivity and cannot distinguish certain graph struc-
tures, showcasing an inherent limitation of such a model on
its own.

Transformers

Another way to generate embeddings for data was introduced
in ”Attention is All You Need” by Vaswany et al. [5]. There,
the authors introduced the concept of self-attention as a pow-
erful alternative to convolutions or recurrence, a key resource
in transformer architectures as part of the encoder layer. Self-
attention learns more global/long-range dependencies within
the input, by processing data all together and letting all el-
ements attend to all others. This discovery has led to many
state-of-the-art results in fields such as Natural Language Pro-
cessing.

Further, within the encoder layer of an architecture, besides
the self-attention module, a Feed-forward Neural Network is
employed per element, transforming features locally after the
global information exchange, resulting in better overall em-
beddings.

The processing of data through an encoder layer can be
expressed mathematically as such:

Attention(Q, K, V') = softmax (QKT> Vv (7
T Vi
h; = Attention(XW2, XWX, xWY)
(8)
MultiHead(X) = Concat(hy, . .., hy,)W° 9)
X’ = LayerNorm(X + MultiHead(X))
(10)

FFN(z) = max(0,zW; + b1)Wo + by (11)
X" = LayerNorm(X’ + FFN(X")) (12)

EncoderLayer(X ) = LayerNorm (LayerNorm(X
+ MultiHead(X)) + FFN(X")) (13)

Where the LayerNorm function works to normalize input fea-
tures’ values to stabilize and accelerate the training process.
The function re-centers and scales the values of the features to
have a mean of 0 and standard deviation of 1, without chang-
ing the distribution’s shape.

Recent work has extended the power of embeddings using
self-attention and adapted it to graph-structured data. Graph
Transformers further integrate structural biases inherent to a
graph (such as edge connectivity) into self-attention, making
them effective for graph representation learning.

Feed Forward Feed Forward
NN NN
[ Self-Attention j

Encoder Layer

Positional Encoding

Input tokens

Figure 2: Illustration of the Transformer Encoder module, with Po-
sitional Encodings included.

Positional Encoding

Within the work done by Vaswany et al. [5], Positional En-
coding was mentioned as one of the methods used by trans-
formers to better parametrize the underlying structure and po-
sition of the tokens within the input.

Unlike NLP, within graph-structured data, there is no natu-
ral ordering of tokens that can be assumed. However, graphs
do possess plenty of structural information, given by the node
and edge structure, which can be used in order to generate



meaningful positional encodings. By incorporating encod-
ings that respect the graph structure, transformer-based graph
learning models can better capture the relationships between
nodes and improve their performance.

Common approaches for graph positional encoding include
spectral methods, such as Laplacian eigenvectors, that cap-
ture global graph structure, and distance-based encodings that
use shortest-path or random walk statistics to reflect rela-
tional information between nodes. By incorporating these
positional signals into the Transformer’s self-attention mech-
anism, graph-based models can better capture both local and
global dependencies.

Fusion layer

Fusion combines multiple feature sources or modalities in or-
der to obtain a more adequate representation of data. In fraud
graphs this can mean fusing node features, edge features, or
outputs of different models. Fusion is often categorized by
when the combination happens.
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Figure 3: Illustration of early and late fusion methods used by mul-
timodal fusion networks.

Early Fusion (Feature-level Fusion), where data from
different modalities (or graph components) are combined at
the input or early in the network. Early fusion “allows in-
teractions between modalities to be captured early” [6]. A
simple implementation is Concat-then-MLP, different modal-
ities’ features are concatenated and passed through MLP lay-
ers. This straightforward fusion can work well if the modali-
ties are compatible. However, it may force the model to learn
to separate modalities implicitly.

Late Fusion (Decision-level Fusion) , where modalities
are processed separately and fused at the end. In this ap-
proach, one network branch might learn from node features

and another from edge features, then their outputs are com-
bined (e.g. averaged or via a classifier). Late fusion is useful
when one modality might be missing at inference time, as
each branch can operate independently.

Hybrid/Full Fusion combines early and late strategies.
Hybrid fusion merges features at multiple points (both
feature-level and decision-level). For instance, one might
fuse node and edge information in intermediate layers (early)
and also fuse final logits (late). Such multi-stage fusion can
capture deeper interactions, but is more complex to design
than the former.

2.2 Related Work

Graph Neural Networks
Starting from the foundation of the classic message-passing
GNN, Xu et al. introduce the Graph Isomorphism Net-
work (GIN)[4] to overcome its limmited expressive power,
designing a GNN probably as powerful as the Weisfeiler-
Lehman graph isomorphism test. Similarly, Schlichtkrull et
al. proposed the Relational Graph Convolutional Network
(R-GCN) [7] for learning over heterogeneous graphs with
relation-specific parameters. While both models laid impor-
tant groundwork in enhancing GNN capabilities, they are
largely outclassed in the context of the proposed methods,
which explores architectures that go beyond these earlier de-
signs in both flexibility and representational power.

As such, the method used has a greater focus on more re-
cent advances, such as:

Principal Neighbourhood Aggregation [8] Corso et al. ar-
gue that using multiple aggregators (mean, max, etc.)
and degree-scalers improves a GNN'’s capacity, espe-
cially with continuous features. PNA combines several
aggregation functions with learned scaling by node de-
gree, generalizing the standard sum or mean. In their
experiments, PNA outperforms prior GNNs on synthetic
and real benchmarks. In financial graphs where transac-
tion amounts and frequencies vary widely, PNA’s multi-
aggregator scheme can capture patterns across different
degrees of node connectivity.

Mega-GNN [9] Currently the state-of-the-art in GNN-based
AML performance, Bilgi et al propose MEGA-GNN.
They improve over the classic GNN by employing a two-
stage aggregation process in the message passing layers:
“first, parallel edges are aggregated, followed by a node-
level aggregation of messages from distinct neighbors”
[9]. For the purposes of this work, the focus will be on
the variant of MEGA with unidirectional Message Pass-
ing which is less powerful than the one integrating both
Reverse MP and EgolDs, but serves as a good compari-
son point for the PNA.

Overall, modern GNNs combine expressive aggregators,
multi-relation handling and parameter scaling to capture com-
plex relational patterns in fraud data.

Transformers

Ying et al. (2021) introduced Graphormer [10], demonstrat-
ing that Transformers can perform competitively on graph-
structured tasks when enhanced with suitable structural en-



codings. By incorporating features such as shortest-path dis-
tances, node centralities, and edge attributes into attention
biases, Graphormer adapts the standard Transformer to bet-
ter capture graph topology. More recently, Lin et al. (2024)
proposed FraudGT [11], a Transformer tailored for financial
fraud detection. It incorporates edge-aware mechanisms, in-
cluding message-passing gates and edge-based attention bi-
ases, to highlight key transaction features. FraudGT achieves
strong performance gains, both in accuracy and computa-
tional throughput, on large transaction graphs.

Building on this motivation, the work adopts a standard
Transformer encoder within both interleaved and full fu-
sion architectures, leveraging its global attention capabilities
while retaining the structural bias of GNNs. This design is
informed by prior successes like Graphormer and FraudGT,
but simplifies the architecture to focus on integration rather
than specialized graph encodings.

Positional Encodings

Within the realm of positional encodings in graph tasks,
Kanatsoulis et al. [12] introduce PEARL, a general and ef-
ficient framework for learnable graph positional encodings
(PEs). PEARL leverages the insight that message-passing
GNNs act as nonlinear functions of Laplacian eigenvectors,
allowing it to approximate powerful, permutation-equivariant
functions of graph structure with linear complexity.

Building on PEARL, the R-PEARL (Random PEARL)
framework replaces deterministic initializations with random
Gaussian vectors to learn expressive, eigenvector-like posi-
tional encodings. It enables tasks like substructure counting
and matches or outperforms spectral methods (e.g., SignNet,
SPE) on various benchmarks. While PEARL and R-PEARL
demonstrate strong performance with learnable positional en-
codings, they require careful tuning of hyperparameters (e.g.,
number of samples, GNN layers) and are sensitive to choices
like sampling distribution and architecture.

Fusion Layers

Common fusion mechanisms include simple concatenation
plus an MLP or gating units.

Concat + MLP in PEARL The aforementioned positional
encoding framework, PEARL, also employs effectively
a concatenation plus MLP strategy: it concatenates the
positional data with the original node features, and fur-
ther passes it through a GNN, which has MLP layers.
This approach, also adopted in R-PEARL, reinforces the
viability of concat-based fusion as a practical and effec-
tive method for integrating positional information into
graph models.

Gated Multimodal Unit (GMU) [13] learns to  weigh
modalities via multiplicative gates. A GMU takes two
input modality vectors, uses a sigmoid gate to decide
how much each modality influences the output, and
combines them multiplicatively. Arevalo et al. show
that GMUs outperform naive fusion on a movie genre
prediction task.

Gating Units - Dynamic Feature Fusion [14] Sheng et al.
introduce a novel dynamic feature fusion mechanism

that combines global graph structures and local seman-
tics using gated fusion, which enables the selective
combination of features from different sources and im-
proves the overall performance of the model. Com-
pared to classic graph neural network methods, the pro-
posed approach with gated fusion achieves better perfor-
mance and robustness in detecting fraudulent activities
in blockchain transactions, particularly in the presence
of incomplete or missing data.

In summary, fusion layers let GNN or Transformer mod-
els combine multiple information sources. As fusion meth-
ods, Concatenation-then-MLP is simple and often effective
for combining multiple features, and gated units like GMUs
allow the model to learn when and how much to trust each
modality.

3 Proposed Architectures

As stated previously, the aim of this work is to better compre-
hend whether the addition of a transformer layer on top of the
MPNN paradigm for graph-structured data yields a sensible
improvement. In that direction, this paper proposes two ways
of fusing the global graph structure embedded by a Trans-
former with a local one provided by a Graph Neural Network.
Each one is visualized in its own separate illustration, Figure
4 and 5 respectively.

(1)
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Figure 4: Illustration of the Interleaved architecture

3.1 The Interleaved Architecture

This general architecture capitalizes on the fact that Graph
Neural Networks are able to embed local structure within
both the nodes and the edges of the graph (1), which gives a
good local perspective of the transactional graph for the trans-
former to learn from (2). On top of that, a second message-
passing round more evenly distributes the information among
neighboring nodes to capture even more of the graph’s under-
lying structure(3).



In essence, the Interleaved architecture can be expressed
through the following equations, with reference to equations
6 and 13 from Section 2.

(XM, W) = GNNLayerEU(X, E) (14)
El(i)] = EncoderLayer(Ei(L)j) V(i,j) €€ (15)
(X® E®)) = GNNLayerBEU(X ", E®?)) (16)

The final graph embedding is, as such, (X2, B(3)), which
is then fed through a prediction head consisting of an MLP
that takes as input the edge features concatenated with both
node features, and outputs a binary value, stating whether the
model considers the transaction illicit or not.

(3)
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Figure 5: Ilustration of the Full Fusion architecture

3.2 The Full Fusion Architecture

Conversely, the Full Fusion approach capitalizes on the fact
that the models capture different modalities and may work
with different embedding sizes, allowing for more expres-
sive representations of data. The input is passed in parallel
through both a Transformer and a GNN (1), the edge embed-
dings are then fused through an early fusion approach (2),
which is then fed again through a Transformer and GNN and
fused at the end to capture more of the graph structure before
the prediction head (3). Besides the potential to collect more
relevant and valuable relationships with more adequate em-
bedding sizes, which Transformers especially benefit from,
there is also the potential of controlling specifically how the
combination of information is done: As specified in section
2, gating mechanisms may provide a learnable way for the
model to consider how much of each representation should
be kept in the final graph embedding.

Using the same notation as before, the fusion architecture
can be written as an equation as expressed below. Note that
the ”Fuse” function works by taking two embedding tensors
and returns one with both modalities merged.

Ei(i)jj = EncoderLayer(E;_,;) V(i,j) € £ (17)

(XM, EY) = GNNLayerEU (X, E) (18)

£, = Fuse(E4), ) 19
Ez‘(iZj7T = EncoderLayer(E;_, fusea) V(i,75) € E

(20)

(X®, EZ)) = GNNLayerEU (X, E{1) ) @1

B2 — rse (£, £8) @

Similarly to the Interleaved architecture, the final graph

embedding (X, Eéi)ed) is fed through the same prediction
head, concatentating node and edge embeddings and being
passed through a neural network with a binary output.

3.3 Integrations with Prior Work

In order to obtain greater results on the AML datasets, the
architectures were refined with the techniques presented in
the “Related Work™ section. More precisely, the following is
studied:

R-PEARL generates node-level positional encodings [12]
which are applied prior to the first GNN layer. This choice
reflects R-PEARL’s design focus on generating structural en-
codings for nodes. These encodings are then propagated to
the edges through the edge MLPs within the GNN layer. As a
result, the subsequent transformer layer on edge embeddings
can leverage structural information derived from R-PEARL,
allowing it to better capture the underlying graph topology.

MEGA-GNN [9] is used as a core GNN layer in both
architectures. MEGA-GNN is particularly well-suited for
multigraphs due to its sophisticated edge update functions
and multi-channel aggregation mechanisms. Additionally, it
achieves strong standalone performance on AML datasets,
approaching state-of-the-art F1 scores, making it a natural fit
for this task.

GMU-based fusion layers are implemented within the Full
Fusion architecture, inspired by prior work demonstrating
their effectiveness in fraud detection tasks [14].

4 Experimental Setup

Dataset In order to quantify the results of the architectures
and their possible improvements over their components,
each model is tested on the IBM Anti Money Laundering
(AML) datasets, more particularly the Small datasets,
with both degrees of illicit activites. The aim of this
dataset is (binary) edge classification: decide whether a
transaction is illicit or not based on information pertain-
ing to it, such as amount of money sent, identifier of the
sender, identifier of the person who receives the money,
and more. More particular details can be found on the
dataset’s page [3].

During initialization, the dataset is reformatted
to the following table-like structure: [EdgelD,
from_id, to_id, Timestamp, Amount Sent,

Sent Currency, Amount Received, Received



Currency, Payment Format, Is Laundering]
and then further converted to a networkx graph repre-
sentation. For each epoch, a node is picked at random
and then an n-hop neighbourhood is sampled with a
fixed amount of edges chosen at random at each hop.

The dataset was partitioned into training, validation, and
test sets using a 60%-20%-20% split respectively. Fur-
thermore, the split is based on each day of transactions,
such that all datasets contain information of transactions
in all days, for higher accuracy. This allocation was cho-
sen to ensure a sufficiently large training set for model
learning while preserving adequate validation and test
samples for reliable tuning and performance evaluation.

Implementation details The implementation and training of
all models was facilitated by the use of the PyTorch and
PyTorch Geometric frameworks. The models have been
trained using the AdamW [15] optimizer for a maximum
of 60 epochs on the AML-Small datasets. This thresh-
old has been chosen as such because, through testing, no
further improvements were achieved by going over this
limit. Learning rates are adjusted for each model and
change over epochs using a cosine with warmup sched-
uler to achieve better convergence on the datasets. To en-
sure stable training, gradient clipping with a maximum
norm of 1.0 was applied.

Similarly, other hyperparameters such as dropout rates,
activation functions have been tuned to the best values
which were found empirically.

The only parameter that may be perceived as suboptimal
is the batch size, which, due to the large amount of edges
within a batch, was limited to an effective size of 4096
(for models that cannot accommodate the size stored in
CUDA memory, batch accumulation was employed as a
means to emulate it).

For reproducibility, all of the runs used in the process
of gathering the data have been assigned a random seed,
from which the results in the next section can be derived.

More implementation details can be found within the
project repository (see Appendix A.2).

Metrics The Fl-score is used as the main metric to quantify
each model’s capabilities. The average F1-score of the
minority class (illicit transactions) on the test set is re-
ported only for the model that achieved the highest vali-
dation performance. This metric was chosen because the
AML datasets feature a high class imbalance, with legal
transactions being prevalent and the task of classifying
transactions based on their likelihood to be illicit is in-
herently binary in scope. The Fl-score is computed as
follows:

TP
Precision = ———— 23
recision TP+ FP 23)
TP
Recall = ——— 24
T TPIFN @49
Precision - Recall
F-score — 2 recision - Reca 25)

Precision + Recall

Furthermore, the sample standard deviation is computed
and displayed to account for the randomness in initial-
ization and edge sampling.

Baselines For all results, two main baselines have been cho-
sen:
The PNA GNN by Corso et al. [8] with edge updates,
serving as a reference point in most literature on the
AML dataset [11], [9];
The MEGA-PNA GNN by Bilgi et al. [9], representing
the state-of-the-art in GNN performance on edge classi-
fication on the AML dataset.

Hardware All models have been trained using the DAIC
High-Performance Cluster [16], using NVIDIA A40 and
L40 GPUs in equal proportions for all tests.

5 Results

Table 2 lists the results of each method across the datasets,
with standard deviations calculated over a minimum of 3 and
an average of 5 runs. Each cell has been shaded in accordance
with the model’s performance versus the highest measured
value on the datasets: the darker the green color, the better
the model’s performance.

Furthermore, Table 1 represents the result of an ablation
study performed in order to show the impact the architecture
has, having parameter counts comparable to the baseline.

Performance Comparison Table 2 shows that both the In-
terleaved and Full Fusion architectures consistently out-
perform both the traditional PNA baseline and the state-
of-the-art GNN proposed by Bilgi et al., with increases
in F1 score as high as 10% on the Small_LI dataset. This
improvement is less visible on the datasets with higher
degrees of illicit activity, Small_HI in this case, where
the increments reach only up to half as much (4.5% com-
pared to the baseline).

Ablation | Small LI Small HI #Params
PNA+EU | 22.294+3.00 67.32+£322 68,007
Interleaved \ 30.87 £3.21 68.27 +3.27 63,297
Fusion (C-MLP) | 27.37 £ 191 6698 +£1.07 72,757
Fusion (GMU) 29.34 +2.13 69.71 £2.02 71,137

Table 1: Ablation study of models with similar number of param-
eters relative to one another, showing the Minority-class F1 scores
(%). The best two results are highlighted.

Transformer-based Edge Embedding Results These re-
sults underscore a clear trend: incorporating transformer
modules into edge embeddings leads to consistent and
controlled performance improvements. This is also
solidified by the ablation study conducted in Table 1. In
situations where parameter counts are similar in value,
the expressive power of the transformer still brings a
consistent improvement which is more visible on the
datasets with low illicit activity.



Table 2: Minority-class F1-scores (%) of the models on the AML datasets. Best performing are shown in boldface, second-best in underlined

italics.
Model — Dataset Small_LI Small HI  #Params
PNA+EU 22.66 +£2.97 6529 +£233 32,197
MEGA-PNA + EU 40.80 £2.95 73.20 = 0.45 EEIREY)
Interleaved
+ PEARL 64,463
+ MEGA

+ MEGA, PEARL

Full Fusion (Concat-MLP)
+ PEARL
+ GMU
+ GMU, PEARL
+ GMU, MEGA

46.05 +0.55 7436 =+ 0.67 gyl
45.15 £ 1.58 74.57 £ 1.00 EERNEX
6971 =21 | IwAN Ky
68.62 =+ 2.69 pPACI
45.85 £ 1.59 74.97 £ 0.78 gENKIY]

72,157
73,923

68127 == 307 My

GMU Fusion The GMU (Gated Multimodal Unit) fusion
layer contributes significantly to the effectiveness of the
Full Fusion architecture compared to the Concatenate-
then-MLP approach. The addition of a gating mecha-
nism on top of the classic MLP and weighted average
approach allowed for a more robust method to prioritize
embeddings differently in early and late fusion, result-
ing in increased robustness, reduced parameter counts,
and close to no additional training overhead. In addition,
there is a visible reduction in the standard deviation of
the architectures employing the GMU compared to the
ones without it, indicating that such a fusion increases
consistency in gathering adequate results, no matter the
initialization.

Limitations of R-PEARL Finally, Table 2 shows two differ-
ent trends between the datasets: on the Small_HI dataset,
the architectures using PEARL typically yield compa-
rable or reduced performance compared to their coun-
terparts. However, this contrasts with the low-illicit
dataset, where PEARL indeed shows a perceptible im-
provement as an addition to the Full Fusion models,
reaching as high as a 5% increase in F1 score. This pat-
tern likely reflects the sensitivity of PEARL-based po-
sitional encodings to hyperparameters and data: Differ-
ent initializations can lead to significant variance in out-
comes.

6 Conclusions and Future Work

This paper addressed the research question of whether mod-
ifying the classic GNN-based edge classification architec-
tures with Transformer models operating on edge embed-
dings leads to measurable improvements in performance on
financial fraud detection tasks. Using the IBM AML dataset
as a benchmark, two hybrid architectures, Interleaved and
Full Fusion specifically, were evaluated and compared against
SOTA and common benchmarks.

The results demonstrate that both proposed architectures
significantly outperform standard GNN baselines, includ-
ing the highly performant MEGA-GNN, with improvements
reaching up to 10% in F1-score on datasets with sparse illicit

activity. The Interleaved model, in particular, showed strong
gains through sequential exploitation of local and global
structure, while the Full Fusion model proved the value of
multimodal integration, especially when enhanced with gated
fusion strategies like the GMU.

However, the impact of PEARL-based positional encod-
ings remains inconclusive, often resulting in neutral or neg-
ative performance compared to models without it. This out-
come shows a need for more consistent hyperparameter opti-
mization and deeper analysis of positional encoding schemes
in future research.

Moreover, the modularity and task-agnostic nature of the
proposed frameworks make them adaptable to other domains
and datasets beyond financial fraud, though such generaliza-
tion was not explored due to time constraints. Future work
should investigate (1) broader and more diverse datasets, (2)
improved neighborhood sampling techniques to reduce vari-
ance, and (3) further exploration and tuning of architectural
components such as positional encodings and fusion meth-
ods.

Through this work, empirical evidence is provided that
combining the structural bias of GNNs with the representa-
tional capacity of Transformers offers a promising direction
for graph-based edge classification that is both performant
and extensible.

7 Responsible Research

This piece of research has been conducted by making respon-
sible use of Al technologies. The primary aim of this work
was to improve a model created to protect consumers, while
operating within the legal and ethical white lines. To that end,
all data utilized in this study, the AML dataset, is syntheti-
cally generated rather than drawn from real individuals or or-
ganizations, which both gives applicability of the results and
maintains the integrity and privacy of actual people’s data.
To support reproducibility, this paper provides a detailed
description of the methodology, including the project setup
and tools used. The code behind this paper and all hyper-
parameters used have been open-sourced, see Appendix A.2.
Any feedback, replication, and improvement of the existing



codebase to ensure higher robustness and transparency of the
results is welcome.
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A Appendix

A.1 Mathematical Notation Table

Symbol | Explanation

X i(t) Feature of node ¢ at layer ¢

X i(t“) Updated feature after aggregation

E;_; Edge feature from j to ¢

N (%) Neighbors of node i

N Number of hops to sample

M(-) Message function

U() Update function

mgil Message sent from j to ¢ at layer ¢
Aggregation operator (e.g., concat)

d; Degree of node ¢

A Aggregator set (e.g., mean, max)

S Scaler set (e.g., identity, deg)

s(dy) Scaler applied to degree d;

w(-),o(+) Mean and std aggregators

max(-), min(-) Max and min aggregators

® Tensor product (outer product)

M, Edge update function (eMLP)

X Input to Transformer encoder layer

X' Output of multi-head attention +
residual + norm

X" Output of feedforward layer + resid-

We WK WY, wo

ual + norm
Learnable projection matrices for at-
tention

QK V Query, key, and value matrices

d Hidden (embedding) dimension of
model

dy, Dimension of query/key vectors

FFN(-) Feed-forward network

LayerNorm(-)

Layer normalization function

Table 3: Notation used in equations, grouped by model.

A.2 Project Repository

This section covers the structure of the project repository used
for acquiring the data presented in this research paper.

The repository can be found at the following GitHub link.
To encourage further experimentation, all hyperparameters
specified for the runs is present within the /params folder,
in YAML format.

Besides hyperparameters, the repository contains imple-
mentations for the components used within the paper. The
project itself is a combination of the MEGA-GNN [9],
FraudGT [11] and R-PEARL [12] codebases, with the GMU
being implemented by hand from the description provided by
Arevalo et al. [13].

In addition to the components described above, the reposi-
tory is organized to facilitate both reproducibility and exten-
sibility. The directory structure separates model implemen-
tations, experimental parameters, and utility scripts, allowing
researchers to easily navigate and modify the codebase. De-
tailed instructions for setting up the environment and repro-
ducing results are provided in the README, alongside ex-
ample scripts for running experiments. All dependencies are
specified in a requirements file to ensure consistency across
different systems.

To encourage further work, the codebase is modular: new
models or datasets can be added with minimal changes, and
all major components are documented to aid understanding
and extension. The repository is publicly available and open
to extend / fork.

A.3 Statement on the Use of Large Language
Models

With respect to the policy on Generative Al use, Large Lan-
guage models were leveraged in the creation of this report.
The scope of application was limited, solely as a means to
improve LaTeX code, ensure proper accreditation, and get
constructive feedback on writing. The prompts for the afore-
mentioned categories are, verbatim, as follows:

* ”(Image) How legible are the numbers/results in this ta-
ble?”

* "How can I make my references in latex to be in the
correct order (i.e, numbered in the order they are cited)?”

* ”(Paragraph) Give me some feedback for how I phrased
this section.”


https://github.com/hcagri/aml-andrei/tree/dev
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