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Online Graph Filtering Over Expanding Graphs
Bishwadeep Das , Student Member, IEEE, and Elvin Isufi , Senior Member, IEEE

Abstract—Graph filters are a staple tool for processing signals
over graphs in a multitude of downstream tasks. However, they
are commonly designed for graphs with a fixed number of
nodes, despite real-world networks typically grow over time.
This topological evolution is often known up to a stochastic
model, thus, making conventional graph filters ill-equipped to
withstand such topological changes, their uncertainty, as well as
the dynamic nature of the incoming data. To tackle these issues,
we propose an online graph filtering framework by relying on
online learning principles. We design filters for scenarios where
the topology is both known and unknown, including a learner
adaptive to such evolution. We conduct a regret analysis to
highlight the role played by the different components such as the
online algorithm, the filter order, and the growing graph model.
Numerical experiments with synthetic and real data corroborate
the proposed approach for graph signal inference tasks and show
a competitive performance w.r.t. baselines and state-of-the-art
alternatives.

Index Terms—Graph filters, graph signal processing, online
learning.

I. INTRODUCTION

GRAPH filters are a well-established tool to process net-
work data and have found use in a variety of applications,

including node classification [2], [3], signal interpolation [4],
and product recommendation [5]. They are a flexible parametric
and localized operator that can process signals defined over
the nodes through a weighted combination of successive shifts
between neighbours [6]. Being the analogue of filters in discrete
signal processing, graph filters can be interpreted in the graph
frequency domain [7]. Compared to other tools such as graph
kernels [8], filters do not need any prior knowledge about the
data w.r.t. the topology when used for inference tasks.

Most of the filters in literature are designed out over graphs
with a fixed number of nodes [6] despite graphs often growing
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through the addition of nodes, sometimes sequentially over time
[9], [10]. An example is collaborative filtering in recommender
systems where new users continuously join an existing network,
e.g., a social network recommendation [11] or an abstract user-
user collaborative filter network [12]. Such an expanding graph
setting poses a three-fold challenge: (i) The data comes in a
streaming nature, i.e., we do not have access to all the incoming
nodes at once. This requires an on-the-fly filter design as batch-
based solutions are no longer an alternative. (ii) The topology
may evolve slowly or rapidly; hence, influencing the online
filter design. (iii) The data over the incoming nodes is not guar-
anteed to follow a well-known distribution, thus requiring an
adaptation of the filter to the task at hand. Often times, we may
not even know how the incoming nodes connect to the existing
graph. Typically, this happens in the absence of information
for the incoming node, i.e., in pure cold-start recommendation,
where we know nothing about user preferences, but we need to
recommend items nevertheless [13]. The users may consume
items later on, which can be used to infer their attachment
but this can take time. Such challenges limit existing graph
data processing methods which rely on the knowledge of the
topology [14]. Another example where these challenges occur
is in epidemic spreading over networks. We want to predict the
future number of active cases for a city that is not yet affected
but anticipates some cases shortly after. It may be difficult to
obtain the underlying connections that influence the disease
spread; hence, using statistical models is typically an option
[9], [15]. In this scenario, filter design should account for the
evolving topological model as well as for the data over it. This
is possible by building upon online learning principles where
the learning models are updated based on the incoming data
stream [16], [17].

Existing works dealing with online learning over expanding
graphs can be divided into Attachment, Feature Aware Meth-
ods, and Stochastic Methods. Attachment and feature aware
methods know the connectivity of the incoming nodes and their
features. For example, the work in [18] performs online node
regression over fixed-size graphs by using their connectivity
pattern to generate random kernel features [19]. An extension of
this is the work in [20] which considers multi-hop connectivity
patterns. Works like [21], [22], and [23] track changing attach-
ment patterns over time but for graphs with a fixed number of
node, which can be relevant for a large-scale setting. Another
instance of online processing on expanding graphs is the work
in [24] which obtains embeddings for signals over expanding
graphs. Some works such as [25] classify an incoming node by
using its features and the filter trained over the existing graph.
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Then, there are works such as [26] that classify a stream of
incoming nodes by using their features to estimate the attach-
ment. The work in [27] classifies incoming nodes using spectral
embeddings updated from the known attachment information.
The kernel-based methods in this category [18], [20] rely on
pre-selecting a suitable kernel that can fit the data which may
be challenging to obtain. Additionally, the works in [28], [29],
[30], [31] develop distributed solutions to estimate the filter pa-
rameters locally at each node. Differently, in this paper, we work
with a centralized approach to estimate the filter, as we focus
more on the expanding graph scenario. All in all, these methods
concern either a graph with a fixed or a streaming number of
nodes but with available attachment or feature information that
may be unavailable.

Stochastic methods deal with unknown incoming node at-
tachment and use models for it. For example, [32] uses heuristic
stochastic attachment model to design graph filters only for
one incoming node, while [33] learns an embedding by using
a stochastic attachment to influence the propagation. In our
earlier works [34], [35], we learn the attachment behaviour for
inference with a fixed filter. However, this approach is limited
to studying the effect of one node attaching with unknown
connectivity and it assumes a pre-trained filter over the existing
graph. Differently, here we consider the filter design over a
stream of incoming nodes.

We perform online graph filtering over a stream of incoming
nodes when the topology is both known and unknown. Our
contribution is threefold:

1) We develop an online filter design framework for in-
ference over expanding graphs. This is done by casting
the inference problem as a time-varying loss function
over the existing topology, data, and the incoming node
attachment. Subsequently, we update the filter parameters
via online learning principles.

2) We adapt the online filter design problem to two scenar-
ios: (i) the deterministic setting where the connectivity
of each incoming node is available; (ii) the stochastic
setting where this connectivity is unavailable. For both
settings, we conduct a regret analysis to discuss the in-
fluence of the incoming node attachment and the role of
the graph filter.

3) We develop an online ensemble and adaptive stochastic
update where, in addition to the filter parameters, we also
learn the combination parameters of the different stochas-
tic attachment rules. This concerns the stochastic setting
where a single attachment model might be insufficient.
We also discuss the regret in this setting and analyze how
the ensemble affects it.

We corroborate the proposed approach with numerical exper-
iments on synthetic and real data from recommender systems
and COVID cases prediction. Results show that the online filters
perform better than other alternatives like kernels or pre-trained
filters; and, that stochastic online filters can also perform well
w.r.t. deterministic approaches.

This paper is structured as follows. Sec. II elaborates on the
sequentially expanding graph scenario, along with the basic
formulation of online inference with graph filters. Sec. III and

IV contain the online learning methods and their respective
analysis in the deterministic and in the stochastic setting, re-
spectively. Sec. V contains the numerical results, while Sec. VI
concludes the paper. All proofs are collected in the appendix.

II. PROBLEM FORMULATION

Consider a starting graph G0 = {V0, E0} with node set V0 =
{v0,1, . . . , v0,N0

} of N0 nodes, edge set E0, and adjacency
matrix A0 ∈ R

N0×N0 , which can be symmetric or not, de-
pending on the type of graph (undirected or directed). Let
v1, . . . , vT be a set of T sequentially incoming nodes where at
time t, node vt attaches to graph Gt−1 forming the graph Gt =
{Vt, Et} with Nt =N0 + t nodes, Mt edges, and adjacency
matrix At ∈ R

Nt×Nt . The connectivity of vt is represented by
the attachment vector at = [a1, . . . , aNt−1

]� ∈ R
Nt−1 , where a

non-zero element implies a directed edge from v ∈ Vt−1 to vt.
This connectivity suits inference tasks at vt, where the existing
nodes influence the incoming ones. This is the case of cold-
starters in graph-based collaborative filtering [5], [12]. Here,
the nodes represent existing users, the edges capture similarities
among them (e.g., Pearson correlation), and a cold starter is a
new node that attaches to this user-user graph. The task is to
collaboratively infer the preference of the cold-starter from the
existing users [36].

Depending on the availability of at, we can have a deter-
ministic attachment setting or a stochastic attachment setting.
In a deterministic setting, the incoming node attachment vector
at is known or it is estimated when vt appears. This occurs in
growing physical networks or in collaborative filtering where
side information is used to establish the connectivity [12]. The
expanded adjacency matrix At ∈ R

Nt×Nt reads as

At =

[
At−1 0Nt−1

a�t 0

]
(1)

where At−1 is the Nt−1×Nt−1 adjacency matrix and 0Nt−1

is the all-zero vector of size (Nt−1). In a stochastic setting,
at is unknown (at least before inference), which is the typical
case in cold start collaborative filtering [35]. A new user/item
enters the system and we have neither side information nor
available ratings to estimate the connectivity. The attachment
of vt is modelled via stochastic models from network sci-
ence [9]. Node vt attaches to vi ∈ Vt−1 with probability pi,t
forming an edge with weight wi,t. The probability vector
pt = [p1,t, . . . , pNt−1,t]

� ∈ R
Nt−1 and the weight vector wt =

[w1,t, . . . , wNt−1,t]
� ∈ R

Nt−1 characterize the attachment and
imply that [at]i = wi,t with probability pi,t, and zero otherwise.
We consider vector at be composed of independent, weighted
Bernoulli random variables with respective mean and covari-
ance matrix

E [at] = pt ◦wt ; Σt = diag(w◦2
t ◦ pt ◦ (1− pt)) (2)

where diag(x) is a diagonal matrix with x comprising the diag-
onal elements, and x◦2 = x ◦ x is the element-wise product of a
vector x with itself. The new adjacency matrix for a realization
at is the same as in (1). The attachment is revealed after the
inference task; e.g., after a cold start user has consumed one or
more items and we can estimate it.
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Fig. 1. Online filter learning process at time t through the addition of node
vt with signal xt and the update of the filter h(t). (Left) node vt attaches to
the previous graph Gt−1 forming Gt; the edges in blue denote the existing
edges while those in orange denote the edges formed by the incoming node;
(Centre) Signal xt is predicted, then the true value xt is revealed, and the
filter parameter h(t) is updated from h(t− 1); (Right) the next node vt+1

attaches to Gt.

A. Filtering Over Expanding Graphs

Let xt ∈ R
Nt be the graph signal over graph Gt, which

writes in terms of the previous signal xt−1 ∈ R
Nt−1 as xt =

[xt−1, xt]
� with xt being the signal at the latest incoming

node vt. To infer xt, we consider the temporary graph signal
x̃t = [xt−1, 0]

� where the zero at vt indicates that its value is
unknown. To process such signals we use graph convolutional
filters, which are linear and flexible tools for processing them
[6]. A filter of order K acts on x̃t to generate the output ỹt on
graph Gt as

ỹt =

K∑
k=0

hkA
k
t x̃t (3)

where hk is the weight given to the kth shift Ak
t x̃t. Substituting

the kth adjacency matrix power

Ak
t =

[
Ak

t−1 0Nt−1

a�t A
k−1
t 0

]
(4)

into (3), we write the filter output as

ỹt =

[ ∑K
k=0 hkA

k
t−1xt

a�t
∑K

k=1 hkA
k−1
t−1 xt

]
(5)

where we grouped w.l.o.g. the output at the incoming node vt
in the last entry. I.e.,

[ỹt]Nt
:= x̂t = a�t

K∑
k=1

hkA
k−1
t−1 xt = a�t Ax,t−1h. (6)

Here h= [h1 . . . , hK ]� ∈ R
K collects the filter coefficients

and Ax,t−1 = [xt,At−1xt, . . .,A
K−1
t−1 xt]∈R

Nt−1×K contains
the higher-order shifts of xt. The coefficient h0 does not play
a role in the output x̂t, thus the zero in the Ntth position of
x̃t does not influence the inference task on the incoming node.
In the stochastic setting, the output is random as it depends on
the attachment rule. In turn, this needs a statistical approach to
characterize both the filter and its output. We shall detail this
in Section IV.

Remark 1: The above discussion considers one incoming
node at a time which is common in the streaming setting.
The analysis can be extended to multiple nodes arriving at a
certain time interval. Here, we consider inference tasks where

the existing nodes affect the incoming streaming ones. For tasks
where the influence is bidirectional, the adjacency matrix in (1)
is symmetric and the analysis follows analogously. One way to
do this is to build on [32], where we discuss the case for a single
incoming node.

B. Online Filter Learning

Our goal is to process signal x̃t to make inference on the
incoming nodes vt by designing the filters in (3). We consider
a data-driven setting where we estimate the filter parameters
from a training set T = {vt, xt,at}t=1:T in which each datum
comprises an incoming node vt, its signal xt, and the attachment
vector at. Given set T , we find the filter parametersh by solving

argmin
h∈RK

T∑
t=1

ft(x̂t, xt;h) + r(h) (7)

where ft(x̂t, xt;h) := ft(h, xt) measures the goodness of fit
between the prediction x̂t and the true signal xt and r(h) is a
regularizer. For example, ft(·, ·) can be the least-squares error
for regression problems such as signal denoising or interpola-
tion; or the logistic error for classification problems such as
assigning a class label to node vt. For convex and differentiable
ft(·, ·) and r(h), we can find an optimal filter that solves the
batch problem over T . However such a solution is not ideal
since the incoming nodes vt are streaming and evaluating a
new batch for each vt is computationally demanding. A batch
solution also suffers in non-stationary environments where the
test set distribution differs from T . Targeting a non-stationary
setting with incoming nodes, we turn to online learning to
update the filter parameters on-the-fly [17].

We initialize the filter before the arrival of incoming nodes,
h(0) by training a filter over G0, using A0 and x0. The training
follows a regularized least square problem with �2 norm squared
loss on the filter. We call this Pre-training. In high-level terms,
the online filter update proceeds at time t as follows:

1) The environment reveals the node vt and its attachment
at in the deterministic setting.

2) We use the filter at time t, h(t− 1) to infer the signal
value x̂t at the incoming node using (6).

3) The environment reveals the loss as a function of the filter
h(t− 1) and the true signal xt as

lt(h, xt) = ft(h, xt) + r(h) (8)

which is evaluated at h(t− 1).
4) We update the filter parameters h(t) based on the loss and

the current estimate h(t− 1).
5) In the stochastic setting, the true attachment at is

revealed.
With this in place, our problem statement reads as follows:
Problem statement: Given the starting graph G0 = {V0, E0},

adjacency matrix A0, graph signal x0, and the training set T ,
our goal is to predict online a sequence of graph filters {h(t)}
w.r.t. loss functions lt(h, xt) to process signals at the incoming
nodes for both the deterministic and the stochastic attachments.
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Algorithm 1 Deterministic Online Graph Filtering (D-OGF)

Input: Graph G0, A0, x0, T = {vt, xt,at}t=1:T .
Initialize: Pre-train h(0) over G0 using A0, x0.
for t= 1 : T do

Obtain vt and true connection at, update At

Predict x̂t = a�t Ax,t−1h(t− 1) (cf. (6))
Reveal loss lt(h, xt) (cf. (9))
Update h(t) using (10)
Update xt

end for

III. DETERMINISTIC ONLINE FILTERING

Targeting regression tasks1, we can take ft(h, xt) as the
squared error and r(h) as the scaled l2-norm penalty to define
the loss

lt(h, xt) =
1

2
(a�t Ax,t−1h− xt)

2 + μ||h||22 (9)

where μ > 0. For the online update, we perform projected
online gradient descent [16], which comprises one projected
gradient descent step evaluated at h(t− 1) as

h(t) = Π
H
(h(t− 1)− η∇hlt(h, xt)|h(t−1)) (10)

with set H bounding the filter energy E(h) = ||h||22 and Π
H
(·)

denotes the projection operator on H. Here, η > 0 is the step
size, and the gradient has the expression

∇hlt(h, xt) = (a�t Ax,t−1h− xt)A
�
x,t−1at + 2μh. (11)

The gradient depends on at through the term (x̂t − xt)
A�

x,t−1at. Operation A�
x,t−1at is a weighted combination of

only those columns of A�
x,t−1 where the corresponding entry of

at is non-zero. In turn, each column of A�
x,t−1 contains shifted

graph signals at each node, which get scaled by the difference
between the predicted and the true signal xt, ultimately, indi-
cating that a larger residue leads to a larger gradient magnitude.
The online learner in (10) updates the filter parameters for every
incoming node.

Algorithm 1 summarizes the learning process. The compu-
tational complexity of the online update at time t is of order
O(K(Mt +Mmax)), where Mmax is the maximum number of
edges formed by vt across all t. Note that Mmax �Nt−1, i.e.,
the maximum number of edges formed by any incoming node is
smaller than the existing number of nodes. Appendix D breaks
down this complexity.
Regret analysis. We analyze the deterministic online graph
filtering algorithm to understand the effect of the filter updates
and how the expanding graph influences it. Specifically, we con-
duct a regret analysis that quantifies the performance difference
between the online updates and the static batch solution where

1For classification tasks, we can consider the surrogate of the gradient of
the logistic loss which is also convex and differentiable, as seen in [37].

all the incoming node information is available. The normalized
regret w.r.t. a fixed filter h� is defined as

1

T
RT (h

�) =
1

T

T∑
t=1

lt(h(t− 1), xt)− lt(h
�, xt) (12)

where
∑T

t=1 lt(h(t− 1), xt) is the cumulative loss incurred by
the online algorithm. The regret measures how much better or
worse the online algorithm performs over the sequence com-
pared to a fixed learner. An upper bound on the regret indicates
the worst-case performance and it is of theoretical interest. If
this bound is sub-linear in time, the average regret tends to zero
as the sample size grows to infinity, i.e., limT→∞

1
T RT (h

�) =
0 [38]. This indicates that the algorithm is learning. We assume
the following.

Assumption 1: The incoming nodes form a maximum of
Mmax �Nt edges for all t.

Assumption 2: The attachment vectors at and the stochastic
model-based weight vectors wt are upper-bounded by a scalar
wh. I.e., for all t we have

[at]n ≤ wh, [wt]n ≤ wh. (13)

Assumption 3: The filter parameters h are upper-bounded in
their energy, i.e., E(h) = ||h||22 ≤H2.

Assumption 4: For all attachment vectors at, the residue rt =
a�t Ax,t−1h− xt is upper-bounded. I.e., there exists a finite
scalar R> 0 such that |rt| ≤R.

Assumption 1 holds for graphs in the real world. A node
makes very few connections compared to the total number
of nodes, i.e., the attachment vector at will be sparse with a
maximum of Mmax non-zero entries. Note that our stochastic
model does not take this into account. Assumption 2 bounds
all edge-weights which is commonly observed. Assumption 3
ensures finite parameters which mean the filter output does
not diverge. This can be guaranteed by projection on to H.
Assumptions 3 and 4 imply bounded filter outputs. Then, we
claim the following.

Proposition 1: Consider a sequence of Lipschitz losses
{lt(h, xt)} with Lipschitz constants Ld, [cf. (9)] and a learning
rate η[cf.(10)]. Let also Assumptions 1–4 hold. The normal-
ized static regret RT (h

�) for the online algorithm generating
filters {h(t)} ∈ H relative to the optimal filter h� ∈H is upper-
bounded as

1

T
RT (h

�)≤ ||h�||22
2ηT

+
η

2
L2
d (14)

with Ld =RC + 2μH where ||A�
x,t−1at||2 ≤ C.

Proof: From Lemma 1 in Appendix D, we have that the
loss functions are Lipschitz. Then, we are in the setting of
[Thm. 2.13, 16] from which the rest of the proof follows. �

There are two main filter-related factors that influence the
regret bound in (14): the filter energy H2 and the residual
energy R2. A smaller H can lead to a lower bound but it can
also increase the prediction error by constraining the parameter
set too much. Moreover, a higher regularization weight μ also
penalizes high filter energies ||h||22. So, for the projected online
learner with a high regularization weight μ, a high H can help
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the inference task, even if it increases the regret bound. Second,
from Assumption 4, the residue R is likely small when a filter
approximates well the signal on the incoming node. This can
happen when the signal values on the incoming node and the
existing nodes are similar or when the existing topology and
signals over it are expressive enough to represent the incoming
node values. Examples of the latter are locally smooth graph
signals that can be approximated by a low order filter K. For
high values of K, all nodes have similar signals, implying that
many potential attachment patterns can generate xt. This would
make that the manner of attachment irrelevant.

IV. STOCHASTIC ONLINE FILTERING

Often, the true attachment for the incoming nodes is initially
unknown and it is only revealed afterwards. This is the case with
rating prediction for cold start recommender systems, where
users have initially little to no information, and thus, their
connections cannot be inferred. However, their connections can
be inferred after they have consumed some items. Instead of
waiting for feedback, we can use expanding graph models to
infer the signal value and subsequently update the filter online.
To address this setting, we first propose an online stochastic
update for the filters via specific heuristic models. Then, we
propose an adaptive stochastic approach that learns also from
an ensemble of topological expansion models.

A. Heuristic Stochastic Online Filtering

We model the connectivity of node vt via random stochastic
models. Specifically, we use the existing topology At−1 to fix
the attachment probabilities pt and weights wt using a heuristic
attachment rule. Given at is a random vector, the environment
reveals the statistical loss

lt(h, xt) = E[ft(h, xt)] + r(h) (15)

where the expectation concerns the stochastic attachment
model. For ft(h, xt) being the squared loss, we have the mean
squared error expression

lt(h, xt) = E

[
1

2
(a�t Ax,t−1h− xt)

2

]
+ μ||h||22

=
1

2
((wt ◦ pt)

�Ax,t−1h− xt)
2

+
1

2
(Ax,t−1h)

�ΣtAx,t−1h+ μ||h||22 (16)

where Σt is the attachment covariance matrix [cf. (2)]. The
first term on the r.h.s. of (16), s2t =

1
2 ((wt ◦ pt)

�Ax,t−1h−
xt)

2 is the squared bias between the expected model output
(wt ◦ pt)

�Ax,t−1h and the true signal xt. The second term
1
2 (Ax,t−1h)

�ΣtAx,t−1h is the variance of the predicted out-
put, and the third term penalizes a high l2-norm of h.2 The
projected online gradient descent update of the filter parameters
h(t) is

h(t) = Π
H
(h(t− 1)− η∇hlt(h, xt)|h(t−1)) (17)

2We could also consider adding a penalty parameter to the variance
contribution if we want to tweak the bias-variance trade-off in the filter update.

Algorithm 2 Stochastic Online Graph Filtering (S-OGF)

Input: Graph G0, A0, x0, T = T = {vt, xt,at}t=1:T

Initialize: Pre-train hs(0) over G0 using A0, x0.
for t= 1 : T do

Obtain vt and pt, wt following preset heuristics
Predict x̂t = (wt ◦ pt)

�Ax,t−1h
s(t− 1)

Incur loss lst (h, xt) [cf. (16)]
Update hs(t) using (17)
Reveal at, update At and xt

end for

with gradient

∇hlt(h, xt) = ((wt ◦ pt)
�Ax,t−1h− xt)A

�
x,t−1

(wt ◦ pt) +A�
x,t−1ΣtAx,t−1h+ 2μh. (18)

The stochastic loss [cf. (16)] is differentiable and strongly
convex in h. Following Assumption 4, the bias st, and the
gradient (18) are also upper-bounded, making the loss Lips-
chitz. Algorithm 2 summarizes learning in this setting. The
complexity of the online stochastic filter learning at time t
is of order O(K(Mt +Nt)). Check Appendix D for further
details. Note the dependency on Nt, the size of the graph
at time t. Since we do not know the true attachment at the
time of making the prediction, the stochastic attachment model
assigns probabilities to each node, along with the weights. This
leads to the dependance on Nt while making the prediction
[cf. (16)]. This does not exist in the deterministic case, as we
know at.
Regret analysis: To characterize the role of the stochastic topo-
logical model on the filter update, we compare the cumulative
loss between the online stochastic update and the deterministic
batch solution. This allows quantifying the performance gap by
not knowing the attachment pattern. The regret reads as

1

T
Rs,T (h

�) =
1

T

T∑
t=1

lst (h
s(t− 1), xt)− ldt (h

�, xt) (19)

where lst (·) denotes the stochastic loss and ldt (·) the determin-
istic loss. Similarly, hd(t− 1) and hs(t− 1) denote the online
filter at time t− 1 in the deterministic and stochastic settings,
respectively. We claim the following.

Theorem 1: At time t, let graph Gt−1 have Nt−1 nodes and
hs(t− 1), hd(t− 1) be the filters learnt online in the stochastic
and deterministic scenarios, respectively. Let the nth element
of probability vector pt be [pt]n. Given Assumptions 1–4, the
Lipschitz constant Ld, and learning rate η, the normalized static
regret for the stochastic setting is upper-bounded as

1

T
Rs,T (h

�)≤ 1

T

( T∑
t=1

w2
hY

2(||pt||22 +Mmax)

+ 2RwhY
√

||pt||22 +Mmax + w2
hY

2σ̄2
t

+ Ld||hs(t− 1)− hd(t− 1)||
)

+
||h�||22
2η

+
η

2
L2
dT (20)
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where σ̄2
t = maxn=1:Nt−1

[pt]n(1− [pt]n) and ||Ax,t−1h||2 ≤
Y .

Proof: See Appendix A. �
The regret bound in (20) depends on the stochastic expanding

model and the incoming data as follows:
• The sum of squared norms of the probability vectors corre-

sponding to the attachment rule, via the terms
∑T

t=1 ||pt||22
and

∑T
t=1

√
||pt||22 +Mmax. This makes the choice of

attachment probability pt important as it influences the
online learner. For example if pt = 1Nt−1

for all t, the
sum

∑T
t=1 ||pt||22 is of the order T 2, which means the

regret bound diverges. Thus, the attachment rule should
be selected such that

∑T
t=1 ||pt||22 is of order O(T ) or

less. However, not all decaying attachment probabilities
will reduce the bound reducing. It is necessary to have an
inverse dependence on Nt, as is the case for the uniform
distribution. This is for example the case of the uniformly
at random attachment as we elaborate in Corollary 1.

• The term w2
hY

2

T

∑T
t=1 σ̄

2
t is the sum of the maximum vari-

ance for an attachment rule σ̄2
t over time. The maximum

value of σ̄2
t is 0.25, attained for an attachment proba-

bility of 0.5. For an attachment rule which has either
high or low attachment probabilities per node, σ̄2

t will
be low, thus contributing less to the regret bound. This
means a lower regret can result from stochastic attach-
ment rules with a smaller uncertainty in attachment over
the nodes.

• The average distance between the stochastic and deter-
ministic filters over the sequence 1

T

∑T
t=1 ||hs(t− 1)−

hd(t− 1)||2. If the filter trained with a stochastic attach-
ment is further away from the filter updated with known
attachment, the regret is higher. This can happen when the
attachment rule cannot model the incoming node attach-
ment and the filter prediction incurs a higher squared error.
However, we can use this term to modify the filter update.
One way to do this is to include a correction step to update
the online filter after the true connection has been revealed.
We will discuss this in Remark 2.

• The term ||h�||22
2ηT + η

2L
2
d suggests similar factors which

affect the deterministic regret will also affect the stochastic
regret [cf. (14)].

We now present how this regret bound reduces for the uni-
formly at random attachment.

Corollary 1: Consider a uniformly at random attachment
with [pt]n = 1

Nt−1
. As the sequence length grows to infinity,

i.e., T →∞, the regret upper bound becomes

1

T
Rs,T (h

�)≤w2
hMmaxY

2 +RwhY (Mmax + 1)

+
1

T

T∑
t=1

Ld||hs(t− 1)− hd(t− 1)||2

+
||h�||22
2ηT

+
η

2
L2
d (21)

Proof: See Appendix B. �
Corollary 1 shows that the regret bound in (20) can be im-

proved upon with the right choice of attachment rules. Even

though the attachment rule helps, there is a chance it fails
to model the true attachment process, in which case the term
1
T

∑T
t=1 Ld||hs(t− 1)− hd(t− 1)||2 can diverge, ultimately,

not making the learner not useful in the steady state.

B. Adaptive Stochastic Online Filtering

Oftentimes, a single attachment rule cannot describe the con-
nectivity of the incoming nodes and an ensemble of stochastic
rules is needed. This is seen in the regret bound in Theorem 1,
which depends on the distance between the stochastic and de-
terministic online filters. This poses the additional challenge of
how to combine these rules for the growing graph scenario. To
tailor the combined rule to the online setting, we consider a
linear combination of different attachment models and update
the parameters as we do for the filter coefficients. Specifically,
consider M attachment rules parameterized by the probabil-
ity vectors {pm,t}m=1:M and the corresponding weight vec-
tors {wm,t}m=1:M . Here, [pm,t]i denotes the probability of
vt attaching to vi ∈ Vt−1 under the mth rule and [wm,t]i the
corresponding weight. Upon defining the dictionaries Pt−1 =
[p1,t, . . . ,pM,t] ∈ R

Nt−1×M and Wt−1 = [w1,t, . . . ,wN,t] ∈
R

Nt−1×M , we combine these models as

p̄t =Pt−1m and w̄t =Wt−1n (22)

where the combination parameters m and n belong to the
probability simplex

SM = {α ∈ R
M , 1�

Mα= 1, α	 0M}. (23)

with 1M being the vector of M ones. For an existing node vi,
the ith row of Pt contains the corresponding rule-based proba-
bilities. Equation (22) ensures that p̄t represents a composite
probability vector of attachment with [p̄t]i =

∑M
l=1 ml[pl,t]i

representing the probability of vt attaching to vi. It also en-
sures that the weights in w̄t lie in [0, wh]. By representing
the expanding graph model via the latent vectors m and n,
we can analyze them in lieu of the growing nature of the
problem. This eases the setting as both p̄t and w̄t grow in
dimensions with t since learning these values directly becomes
challenging.
Online learner: The instantaneous stochastic loss becomes

lt(h,m,n, xt) =
1

2
((Wt−1n ◦Pt−1m)�Ax,t−1h− xt)

2

+
1

2
(Ax,t−1h)

�Σ̄tAx,t−1h+ μ||h||22
(24)

where Σ̄t=diag((Wt−1n)
◦2 ◦ (Pt−1m) ◦ (1Nt−1

−Pt−1m))
is the covariance matrix of this adaptive method. We then pro-
ceed with an online alternating gradient descent over the filter
parameters h, the composite probability parameters m, and the
composite weight parameters n as

h(t) = Π
H
(h(t− 1)− η∇hlt(h,m,n, xt)|h(t−1)) (25)

m(t) = Π
SM

(m(t− 1)− η∇mlt(h,m,n, xt)|m(t−1)) (26)

n(t) = Π
SM

(n(t− 1)− η∇nlt(h,m,n, xt)|n(t−1)) (27)
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Algorithm 3 Adaptive stochastic online filtering (Ada-OGF)
Input: Starting graph G0, A0, x0, T
Initialization: Pre-train hs(0), Initialize m(0) = 1M/M ,
n(0) = 1M/M . Compute P0 and W0.
for t=1:T do

Obtain vt, p̄t =Pt−1m(t− 1), w̄t =Wt−1n(t− 1)
Prediction:(Wt−1n(t− 1) ◦Pt−1m(t−

1))�Ax,t−1h
s(t− 1)

Reveal loss lt(h,m,n, xt)
Update h(t) following (25)
Update m(t) following (26)
Update n(t) following (27)
Reveal at, update At, xt, Pt, and Wt

end for

where ΠSM (·) is the projection operator onto the probability
simplex SM and the gradient closed-form expressions are given
in Appendix D. After the update, the environment reveals the
true attachment at and we update At and xt. We also up-
date Pt based on the ensemble of attachment rules applied
on the updated topology and the weight dictionary as Wt =
[Wt−1; e

�
t ] ∈ R

Nt×M where et ∈ R
M contains independent

positive random variables sampled uniformly between zero and
the maximum possible edge weight wh. Algorithm 3 highlights
the adaptive stochastic online learning. The computational com-
plexity at time t for Ada-OGF is of order O(K(M0 +Nt) +
NtM). See Appendix D for more details.

The loss function in (24) is jointly non-convex in h, n, and
m. It is marginally convex in n and h but not in m due to the
nature of the covariance matrix. We can run multiple projected
descent steps for each of the variables, but proving convergence
is non-trivial. However, convergence to a local minimum of lt(·)
may not even be needed as we are in an online non-stationary
setting where the arrival of another node leads to a new loss
function. Thus, it is reasonable to take one or a few projected
steps for each incoming node even without a full convergence
guarantee.
Regret analysis: For the regret analysis of the stochastic adap-
tive online method, we claim the following.

Corollary 2: Given the hypothesis of Theorem 1 and an
adaptive stochastic online method overM attachment rules with
{Pt}, the normalized static regret w.r.t. the deterministic batch
learner is upper-bounded as

1

T
Rs,T (h

�)≤w2
hY

2 1

T

T∑
t=1

(
||Pt−1||2F +Mmax

)

+RwhY
1

T

T∑
t=1

||Pt−1||22+RwhY (1 +Mmax)

+ w2
hY

2 1

T

T∑
t=1

P̄t

+
1

T

T∑
t=1

Ld||hs(t− 1)− hd(t− 1)||2

+
||h�||22
2ηT

+
η

2
L2
d (28)

Algorithm 4 Prediction Correction Online Graph Filtering
(PC-OGF)

Input: Graph G0, A0, x0, T = T = {vt, xt,at}t=1:T

Initialize: Pre-train hs(0) over G0 using A0, x0.
for t= 1 : T do

Obtain vt and pt, wt following preset heuristics
Predict x̂t = (wt ◦ pt)

�Ax,t−1h
s(t− 1)

Incur loss lst (h, xt) [cf. (16)]
Update hs(t) using (17)
Reveal at, update At and xt

Update hs(t) using (10)
end for

where P̄t = maxn=1:Nt−1
||[Pt−1]n,:||2 and Mmax is the max-

imum number of edges formed by each incoming node.
Proof: See Appendix C. �

Compared to the single heuristic attachment model, the regret
in (28) depends on the sum of l2 norm squared of all the M
attachment rules. It also depends on P̄t, which is the maximum
norm of the vector of probabilities for all rules for each node.

The bound in (28) holds when selecting one attachment rule
at each time, i.e., ||m(t)||= 1 for all t. However, a smaller
norm of m(t), corresponding to considering all rules leads to
a lower regret bound, potentially improving the performance.
Moreover, we expect the term concerning the distance between
the stochastic and determinisitc filters to reduce due to the adap-
tive updates, thus, reducing the bound. We shall empirically
corroborate this in Section V.

Remark 2: Prediction Correction Online Graph Filtering
(PC-OGF): In the stochastic algorithms the bounds (20) and
(28) show that the regret is influenced by the difference between
deterministic filters (that know the attachment) and the stochas-
tic filters (that do not know the attachment) via the term ||hs(t−
1)− hd(t− 1)||2. One way to reduce the regret is to leverage
the attachments after they are revealed and correct the learned
stochastic filter coefficients via a deterministic update. This
corresponds to using the prediction correction framework [39].
The prediction step corresponds to performing the filter update
based on the predicted output in the absence of connectivity
information. The correction step performs an additional update
on the prediction step by updating the filter for a loss function
with the known attachment. The prediction and correction steps
corresponds to one step of S-OGF and D-OGF, respectively.
Algorithm 4 highlights this approach. The computational com-
plexity of this at time t is of order O(K(Mt +Nt +Mmax)),
as it comprises one step of S-OGF followed by one of D-OGF.

V. NUMERICAL EXPERIMENTS

We corroborate the proposed methods for regression tasks
on both synthetic and real data-sets. We consider the following
baselines and state-of-the-art alternatives.

1) D-OGF [Alg. 1]: This is the proposed online method
for deterministic attachment. We search the filter order
K ∈ {1, 3, 5, 7, 9} and the learning rate η and the regu-
larization parameter μ from [10−6, 1].
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2) S-OGF [Alg. 2]: This is the proposed online method
using one stochastic attachment rule. We consider a uni-
formly at random attachment rule for pt. For wt, we
use the same weight for each possible edge, which is
the median of the edge weights in Gt−1. We obtain the
regularization parameter μ and step-size η via grid-search
over [10−5, 10−1].

3) Ada-OGF: [Alg. 3]. This is the proposed adaptive
stochastic online method. We take M = 5 with attach-
ment rules based on the following node centrality met-
rics: i) Degree centrality; ii) Betweenness centrality
[40]; iii) Eigenvector centrality [41]; iv) Pagerank; v)
Uniform.

4) PC-OGF [Remark 2]: This is the two-step update
method. For the prediction step, we perform S-OGF with
uniformly-at-random pt and wt as considered for S-OGF
above. For the correction step, we perform one step of
D-OGF. Both steps share the same learning rate η ∈
[10−5, 10−1] and μ ∈ [10−5, 10−1].

5) Batch: This is the filter designed by taking into account
the whole node sequence, i.e.,

h� = argmin
h∈RK+1

T∑
t=1

(a�t Ax,t−1h− xt)
2 + μ||h||22 (29)

which has a closed-form least-squares expression for μ >
0 ∈ [10−3, 10].

6) Pre-trained: This is a fixed filter trained over the existing
graph G0 and used for the expanding graphs. We train the
filter over 80% of the data over G0. The regularization
parameter is chosen over [10−3, 10].

7) OKL Online Multi-Hop Kernel Learning [18]: We con-
sider a Gaussian kernel with variance σ2 ∈ {0.1, 1, 10}.
The number of trainable parameters is the same as that
of the filters for a fair comparison.

8) OMHKL Online Multi-Hop Kernel Learning [20]: This
method considers multi-hop attachment patterns which
are then fed into the random feature framework. We take
the multi-hop length as the filter order. We consider one
kernel for each hop with the same variance selected from
σ2 ∈ {0.1, 1, 10}. We did not optimize over the combin-
ing coefficients for each multi-hop output. This is to keep
the comparisons fair, as OMHKL has more parameters.
Instead, we take the mean output, while updating the
regression parameter for each multi-hop.

The hyper-parameters are chosen via a validation set. For each
parameter, we perform a grid search over a specific range
for each data-set, as indicated above for each approach. We
use the same filter order as determined for D-OGF for the
other online filters. We use the same filter order as deter-
mined for D-OGF for the other online filters. For all data
sets, we divide the sequence of incoming nodes into a train-
ing and a test sequence. The first 80 percent of the incoming
node sequence are taken as the training nodes. The remain-
ing 20 percent are the test nodes. The nodes in the training
sequence are used to tune the hyper-parameters, while the

test set is used to evaluate the online method for the selected
hyper-parameters.

A. Experimental Setup

We consider a synthetic setup based on a random expanding
graph model; and two real data setups based on recommender
systems and COVID case predictions.
Synthetic: We start with a graph G0 of N0 = 100 nodes and
an edge formation probability of 0.2. The edge weights of A0

are sampled at random from the uniform distribution between
zero and one. Each incoming node vt forms five uniformly
at random edges with the existing graph Gt−1. Each newly-
formed edge weight is the median of the edge weights in G0.
The existing graph signal x0 is band-limited w.r.t. the graph
Laplacian, making it low-pass over G0 with a bandwidth of three
[14]. We generate the true signal xt at the incoming vt in three
ways to have three different types of data that fit the different
methods.

1) Filter: The true signal xt is generated using a pre-trained
filter of order five on G0. This setting is the closest to
the proposed approach and is meant as a sanity check. It
also helps us to investigate the differences between the
deterministic and the stochastic attachments.

2) WMean: xt is the weighted mean of the signals at the
nodes vt attaches to. This is a neutral setting for all
methods.

3) Kernel: xt is obtained from a Gaussian kernel follow-
ing [18]. This prioritises kernel-based solutions and it is
considered here as a controlled setting to compare our
method in a non-prioritized setup.

We average the performance of all methods over 10 initial
graphs G0 and each having T = 1000 incoming nodes with 800
incoming nodes for training and 200 for testing.
Cold-start recommendation: We consider the Movielens100K
data-set that comprises 100, 000 ratings provided by 943 users
over 1152 items [42]. We build a 31 nearest neighbour starting
graph of 500 random users and consider the remaining 443 users
as pure cold starters for the incoming sequence. We use the co-
sine similarity of the rating vectors to build the adjacency matrix
of this graph. We use 50 percent of the ratings of each new user
vt to build at. We evaluated all methods over 10 realizations
of this setup, where, in each realization, we shuffle the order
of incoming users. All methods perform online learning over
16875 and 6155 ratings in the training and test sets, respectively.
COVID case prediction: Here, we predict the number of
COVID-19 infection cases for an uninfected city in an existing
network of currently infected cities. We consider the data from
[43] that has daily case totals for 269 cities and focus on a subset
of 302 days of this data-set as in [44]. We randomly select 50
cities and build a five nearest neighbour-directed graph G0. The
edge weight between cities vi and vj is Aij = exp(− ||ti−tj ||2

2σ2 ),
where ti and tj are the vector of COVID cases from day one to
250 for cities vi and vj , respectively. We also use this interval to
calculate the attachment vector at for any incoming city node.
We evaluate the performance on each of the days 255, 260, 265,
270, 275, and 280 and predict the COVID case strength for each
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TABLE I
AVERAGE NRMSE AND STANDARD DEVIATION OF ALL APPROACHES FOR ALL DATA-SETS

Synthetic Data Real Data
Method Filter WMean Kernel Movielens100K COVID

NRMSE Sdev NRMSE Sdev NRMSE Sdev NRMSE Sdev NRMSE Sdev
D-OGF (ours) 0.02 0.003 0.02 0.005 0.25 0.04 0.26 0.01 0.21 0.02
S-OGF (ours) 0.18 0.02 0.26 0.06 0.28 0.07 0.28 0.007 0.31 0.02
Ada-OGF (ours) 0.18 0.02 0.25 0.04 0.28 0.05 0.28 0.007 0.26 0.007
PC-OGF (ours) 0.18 0.02 0.22 0.02 0.23 0.04 0.27 0.01 0.26 0.003
Batch 0.04 0.007 0.09 0.04 1.3 0.29 6.7 0.1 0.17 0.03
Pre-trained 0.08 0.03 0.09 0.03 0.53 0.28 0.84 0.02 2.5 0.9
OKL 0.17 0.01 0.23 0.02 0.25 0.04 0.27 0.01 0.25 0.02
OMHKL 0.17 0.01 0.32 0.1 0.34 0.09 0.27 0.01 0.25 0.02

node city in the sequence. For each day, we carried out twenty
realizations where we shuffle at random the order in which the
cities are added to the starting graph.

We measure the performance via the root normalized mean
square error NRMSE

NRMSE =

√
1
T

∑T
t=1(x̂t − xt)2

max
t

(xt)− min
t

(xt)
. (30)

where x̂t and xt are the predicted and true signal at vt, re-
spectively. This measure gives a more realistic view of the
performance since the incoming data does not follow a specific
distribution and it is susceptible to outliers [45]. Additionally,
we measure the normalized static regret (NReg) [cf. (12)] for
the online methods w.r.t. the Batch solution.

B. Performance Comparison

Table I comprises the NRMSEs and the standard deviations
for all methods. We observe the following:
Deterministic approaches: D-OGF outperforms OKL and
OMHKL across all the data-sets. The difference is more pro-
nounced for the data generated using the Filter and the WMean
method, as they are suited for filters, whereas for the Kernel
data, the difference is smaller. For the Movielens data-set, the
difference is also small. We suspect this is because we train one
filter across many graph signals (each graph signal corresponds
to a different item) over the same user graph, whereas the kernel
method ignores the graph signals. It is possible to improve
the prediction accuracy by considering item-specific graphs as
showcased in [12], [35]. Next, we observe that D-OGF performs
better than pre-trained throughout the experiments. This is be-
cause the online filters adapt to the incoming data stream, while
the pre-trained does not. The only case we can expect a similar
performance is where the incoming data is similar to the data
over the existing graph.

Concerning the batch solution, we find that the deterministic
online learner outperforms Batch in all data-sets apart from the
COVID data-set. This shows the limitations of batch-based so-
lutions, i.e., an over-dependence on the observed training data,
and also an inability to adapt to the sequence. For Filter and
WMean data, the training and test set distributions are similar,
so the difference between D-OGF and Batch can be attributed to

the adaptive nature of D-OGF. In the other data-sets, the change
in distribution is detrimental for the batch learner, particularly
in the Movielens data.
Stochastic approaches: The S-OGF and Ada-OGF approaches
have a similar performance for Filter, Kernel and Movielens
data, with Ada-OGF performing better for WMean and Covid
data. This makes sense for the synthetic data as the constructed
graphs expand following a uniformly at random attachment
rule, the same rule used for S-OGF. The standard deviation
is on the lower side for Ada-OGF. Since the existing signal
x0 is band-limited, the signal values obtained via a filtering/
mean operation with a uniformly at random attachment will also
be similar. However, Ada-OGF performs better for the COVID
data. This is because the incoming data in the COVID data-set is
quite different from the synthetic data. It does not have proper-
ties like smoothness and thus a uniformly at random attachment
cannot help in predicting the number of cases. In such a setting,
a more adaptive approach will help. For Movielens data, there
is no difference between the two methods, possibly due to the
high number of ratings.
Deterministic vs stochastic: The deterministic methods out-
perform the stochastic counterparts as expected. The gap is
closer for the Kernel and Movielens data. For Movielens
this can be attributed to the subsequent filter updates that
are done for different graph signals over a fixed graph. This
can cause high prediction errors. The same holds also for
the kernel method, as it is based on the same graph. Since
the filter takes the signal into account, it might be affected
more.

In the Movielens, Kernel, and COVID data, the pre-trained
filter does not update itself and is thus at a disadvantage,
compared to the online methods. For COVID data, the signal
over the incoming node, i.e., the number of cases can be quite
different from the signals over which the pre-trained filter is
learnt, accounting for a higher error. Among the proposed on-
line methods, the stochastic online methods perform poorly w.r.t
pre-trained for Filter and WMean data. This is expected as the
data distribution of the incoming data is similar to that over G0

for these scenarios.
The PC-OGF method performs better than the stochastic

methods for all data, showing the added value of correcting
for the true attachment. It even outperforms D-OGF for Kernel
data.
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Fig. 2. Box plot of the squared errors for each method in the Movielens
data-set.
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Fig. 3. (Left) Box plot of the squared errors across all data points over the
six days. (Right) Box plot on the right zoomed in to highlight differences
between all methods.

C. Analysis of Online Methods

We now investigate more in detail the online methods.
Outliers: In Figs. 2 and 3 we show the violin plots of the
squared errors over the test set for the Movielens and COVID
data. The deterministic methods suffer more from higher outlier
errors. This could be attributed to errors in estimating the attach-
ment vectors. For Movielens data, we calculate this similarity
over a subset of the items and for certain splits of the items this
may lead to estimation errors for the similarity and thus also for
the attachment vector. One reason why the stochastic methods
are not prone to outliers could be the term in the loss functions
[cf. (16), (24)] that penalizes the prediction variance, ultimately,
acting as a robust regularizer. Notably, for the Movielens data
the errors in the stochastic online learners are fixed at certain
levels. This is because the data-set has only five fixed values
as ratings and because both S-OGF and Ada-OGF predict fixed
values [cf. first term in (16)]. For the Covid data, we calcu-
lated the number of outliers in the squared error. The outlier
counts are D-OGF = 144, S-OGF = 123, Ada-OGF = 119,
OKL = 94, OMHKL = 98. This could also be due to the way
the starting graph and the links of the incoming nodes are
constructed. The figure on the right zooms in on the plot in the
range between zero and 0.4. The D-OGF has lower NRMSE,
implying the presence of many samples with low squared error.
The patterns for the other methods are similar.

Filter order, p, w: Next, we investigate the role of the filter
order as well as the impact of training both the attachment
probabilities pt and weights wt. Thus, we also want to compare
with an alternative adaptive approach where we update only
p while keeping w fixed to the true edge weights. We call
this Ada2-OGF. We generate Filter data, WMean data, and
Kernel data with a variance of 10. The filter orders evaluated
are K ∈ {1, 3, 5, 7, 9}. Fig. 4 shows the variation of RNMSE
of the filter approaches with filter order K. We see that Ada2-
OGF performs worse than Ada-OGF apart from the Filter
data. This suggests that updating both p and w is beneficial
than just updating p. For the filter data, we see that all the
three stochastic approaches perform the same. This is because
we same stochastic rule, i.e., uniformly at random attachment
for data generation. S-OGF uses the same, while Ada-OGF
learns it.
Learning rate: Fig. 6 shows the normalized cumulative regret
at each time of D-OGF w.r.t. the batch learner for different val-
ues of the learning rate η for each synthetic-dataset. Increasing
η leads to a lower regret, but after one point, the regret increases.
For the Kernel data, for example, we see that the regret increases
sharply between learning rate η = 3 and η = 5. This shows that
η indeed influences the online learner and its optimal value is
in principle neither too high or too low. A higher value than the
optimal misleads the online learner by focusing too much on
the current sample. This can lead to high prediction errors for
some samples, as seen in the spikes in the plots. A lower value
learns about the incoming data-stream at a slower rate.
Regret: Fig. 5 plots the normalized cumulative regret at each
time for S-OGF and Ada-OGF w.r.t. the batch solution for
the Filter (left), WMean (center) and Kernel (right) data, re-
spectively. In all three cases, the average cumulative regret
converges, implying that the cumulative error or the gap with
the batch solution does not diverge. This shows that the stochas-
tic learners, despite not having access to the connectivity at
the time of making a prediction, can learn from more incom-
ing nodes. Second, Ada-OGF showcases a lower regret than
S-OGF, showing that it can learn faster from the incoming
nodes by trying to predict the attachment behaviour. This is in
agreement with the regret bounds in Theorem 1, Corollaries 1
and 2.

Finally, we investigate the normalized regret over the whole
sequence for the online methods in Table II. Since we evaluate
this over the training set, we have positive values, which im-
plies the batch solution has a lower cumulative error. However,
having a positive regret during training can also lead to a lower
NRMSE than the batch solution over the test set, as is the case
for D-OGF [cf. Table I]. This is because the batch filter is
fixed and cannot perform as well as in the training set if the
distribution of data in the test set is different. The lower regret
for D-OGF compared to the stochastic approaches stems from
the fact that the connectivity is known and because the Batch
solution also has a similar loss function. The normalized regret
for PC-OGF is lesser than that of the stochastic approaches,
showing that incorporating the attachment can counter the
effect of the gap between the stochastic and deterministic
filter.
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Fig. 4. RNMSE for different values of filter order K for (left) Filter, (centre) WMean, and (right) Kernel data, respectively.
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Fig. 5. Evolution of the normalized cumulative regret for S-OGF and Ada-OGF for the synthetic (left) Filter, (center) WMean and (right) Kernel data for
T = 800, T and 400 incoming nodes, respectively.
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Fig. 6. Normalized cumulative regret evolution for different values of learning rate η for (left) Filter, (centre) WMean, and (right) Kernel data, respectively.
The reference average error for the batch solution over the training set are 3× 10−5, 6.8× 10−4, and 1.1× 10−2, respectively.

VI. CONCLUSION

We proposed online filtering over graphs that grow sequen-
tially over time. We adapted the formulation to the deterministic
scenario where the connection of the incoming nodes is known
and to a stochastic scenario where this connection is known up
to a random model. We performed a simple projected online
gradient descent for the online filter update and provided per-
formance bounds in terms of the static regret. In the stochastic
setting, the regret is a function of the rule-specific probabilities
along with their variance. Numerical results for inference tasks

over synthetic and real data show that graph filters trained
online learning perform collectively better than kernel methods
which do not utilize the data, pre-trained filters, and even a
batch filter.

For future work, we will consider the scenario where the
signal also varies over the existing graph, i.e., it has a spatio-
temporal nature. It is also possible to consider the scenario of
joint topology and filter learning over the expanding graphs,
where we estimate the true attachment of the incoming node
instead of a stochastic model along with the filter used for
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TABLE II
NORMALIZED REGRET FOR THE ONLINE METHODS

FOR SYNTHETIC DATA

Method Filter WMean Kernel
D-OGF 1.6× 10−4 0.03 0.01
S-OGF 2.2× 10−3 0.84 0.08
Ada-OGF 4.1× 10−3 0.82 0.11
PC-OGF 1.9× 10−4 0.27 0.02

making the inference. Finally, to account for the robustness of
the online methods, one can also perform a weighted update,
where the loss at a particular time is a weighted sum of the
previous samples. The complexity of the stochastic approaches
grow with the size of the graph. To tackle this, distributed filter
updates can be a viable approach.

APPENDIX A
PROOF OF THEOREM 1

The regret relative to the optimal filter h� is

Rs,T (h
�) =

T∑
t=1

lst (h
s(t− 1), xt)− ldt (h

�, xt). (31)

By adding and subtracting the terms
∑T

t=1 l
d
t (h

s(t− 1), xt)

and
∑T

t=1 l
d
t (h

d(t− 1), xt) we obtain

Rs,T (h
�) =

T∑
t=1

lst (h
s(t− 1), xt)− ldt (h

s(t− 1), xt)

+
T∑

t=1

ldt (h
s(t− 1), xt)− ldt (h

d(t− 1), xt)

+

T∑
t=1

lt(h
d(t− 1), xt)− ldt (h

�, xt). (32)

where ldt (h
s(t− 1), xt) is the deterministic loss at time t evalu-

ated with the filter updated in the stochastic scenario. The regret
in (32) comprises three sums over the T -length sequence, each
of which contributes to the overall regret.
The first term in (32),

∑T
t=1 l

s
t (h

s(t− 1), xt)− ldt (h
s(t−

1), xt) measures the difference in the stochastic and the de-
terministic loss for the filter updated online in the stochastic
setting. We substitute

lst (h
s(t− 1), xt) = ((wt ◦ pt)

�ȳt − xt)
2 + ȳ�

t Σtȳt (33)

+ μ||hs(t− 1)||22 (34)

where ȳt =Ax,t−1h
s(t− 1) and

ldt (h
s(t− 1), xt) = (a�t ȳt − xt)

2 + μ||hs(t− 1)||22 (35)

to get the difference at time t

lst (h
s(t− 1), xt)− ldt (h

s(t− 1), xt)

= ((wt ◦ pt)
�ȳt − xt)

2 − (a�t ȳt − xt)
2 + ȳ�

t Σtȳt.
(36)

After some simplification, we get

lst (h
s(t− 1), xt)− ldt (h

s(t− 1), xt)

= ((wt ◦ pt − at)
�ȳt)

2

+ 2(wt ◦ pt − at)
�ȳt(a

�
t ȳt − xt) + ȳ�

t Σtȳt. (37)

The r.h.s. of equation (37) has three terms. For the first term we
have

((wt ◦ pt − at)
�ȳt)

2 ≤ ||wt ◦ pt − at||22||ȳt||22
≤ w2

h(||pt||22 +Mmax)Y
2 (38)

where the first inequality follows from the Cauchy-Schwartz
inequality and the second inequality from Lemmas 2 and
Lemma 3 in Appendix D.

For the second term we have

2(wt ◦ pt − at)
�ȳt(a

�
t ȳt − xt)

≤ 2||wt ◦ pt − at||2||ȳt||2||a�t ȳt − xt||2
≤ 2RwhY

√
||pt||22 +Mmax (39)

where the first inequality follows from the Cauchy-Schwartz
inequality and the second inequality from Assumption 4, Lem-
mas 3 and 2. For the third term, we have

ȳ�
t Σtȳt =

Nt−1∑
n=1

[ȳt]
2
n[wt]

2
n[pt]n(1− [pt]n)

≤ w2
hσ̄

2
t Y

2 (40)

where the inequality follows the definition of σ̄2
t and Lemma 3.

Adding (38)-(40) we can upper-bound (37) as

T∑
t=1

lst (h
s(t− 1), xt)− ldt (h

s(t− 1), xt)

≤ w2
hY

2(||pt||22 +Mmax) + 2RwhY
√

||pt||22 +Mmax

+ w2
hσ̄

2
t Y

2. (41)

The second term in (32),
∑T

t=1 l
d
t (h

s(t− 1), xt)− ldt (h
d(t−

1), xt) measures the sum of the differences in the deterministic
loss between the deterministic and stochastic online filter. Since
ldt (·, ·) is Lipschitz with constant Ld from Lemma 1, we can
write

|ldt (hs(t− 1), xt)− ldt (h
d(t− 1), xt)|

≤ Ld||hs(t− 1)− hd(t− 1)||2 (42)

which implies lt(h
s(t− 1), xt)− lt(h

d(t− 1), xt)≤
Ld||hs(t− 1)− hd(t− 1)||2. Summing over t, we have

T∑
t=1

ldt (h
s(t− 1), xt)− ldt (h

d(t− 1), xt)

≤ Ld

T∑
t=1

||hs(t− 1)− hd(t− 1)||2. (43)
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The third term in (32),
∑T

t=1 l
d
t (h

d(t− 1), xt)− ldt (h
�, xt)

corresponds to the static regret in the deterministic case and has
the upper bound

T∑
t=1

(
lt(h

d(t− 1), xt)− ldt (h
�, xt)

)
≤ ||h�||22

2η
+

η

2
L2
dT (44)

as shown in Proposition 1.
By summing equations (41), (43), and (44), we obtain

Rs,T (h
�)≤

T∑
t=1

w2
hY

2(||pt||22 +Mmax)

+ 2RwhY
√

||pt||22 +Mmax + w2
hσ̄

2
t Y

2

+ Ld||hs(t− 1)−hd(t− 1)||
)
+
||h�||22
2η

+
η

2
L2
dT

(45)

Finally, dividing both sides by T and using Lemma 3, we
complete the proof. �

APPENDIX B
PROOF OF COROLLARY 1

We substitute pt =
1

Nt−1
1Nt−1

, in each term of the stochastic
regret bound. For the first term we have

T∑
t=1

w2
hY

2(||pt||22 +Mmax)

≤ w2
hY

2
T∑

t=1

1

Nt−1
+ w2

hMmaxY
2T (46)

Substituting Nt =N0 + t− 1, we have

T∑
t=1

w2
hY

2(||pt||22 +Mmax) (47)

≤ w2
hY

T∑
t=1

1

N0 + t− 1
+ w2

hMmaxY
2T (48)

Next, we bound the summation
∑T

t=1
1

N0+t−1 as3

T∑
t=1

1

N0 + t− 1
≤
∫ T

t=1

1

t+N0 − 1
dt (49)

which gives us

T∑
t=1

1

N0 + t− 1
≤ log(T +N0 − 1)− log(N0) (50)

Substituting (50) in (47), we have

T∑
t=1

w2
hY

2(||pt||22 +Mmax) (51)

≤ w2
hY

2(log(T +N0− 1)− log(N0)) + w2
hMmaxY

2T
(52)

3For a function f(t)> 0, we have
∑T

t=1 f(t)dt≤
∫ T
t=1 f(t)dt.

On dividing by T and taking its limit to infinite, we have

lim
T→∞

1

T

T∑
t=1

w2
hY

2(||pt||22 +Mmax)≤w2
hMmaxY

2 (53)

where the first term vanishes as T grows faster than log(T ).
For the second term we have

T∑
t=1

2RwhY
√

||pt||22 +Mmax (54)

≤ 2RwhY
T∑

t=1

1

2
(||pt||22 +Mmax + 1) (55)

≤RwhY

(
T∑

t=1

||pt||22 + T (Mmax + 1)

)
(56)

where we use the fact that the geometric mean is lesser
than or equal to the arithmetic mean. Utilizing the fact that
limT→∞

1
T

∑T
t=1 ||pt||22 is equal to zero (as shown above in

(53)), we have

lim
T→∞

1

T

T∑
t=1

2RwhY
√

||pt||22 +Mmax ≤RwhY (Mmax + 1)

(57)

For the third term w2
hY

2σ̄2
t , we have

T∑
t=1

w2
hσ̄

2
t ||ȳt||22 ≤ w2

hY
T∑

t=1

1

Nt−1

(
1− 1

Nt−1

)

≤ w2
hY

T∑
t=1

1

Nt−1
(58)

which holds for the uniformly at random attachment rule.
Given limT→∞

1
T

∑T
t=1

1
Nt−1

= 0, the third term vanishes in
the limit. Adding (53) and (57), along with the other terms from
the stochastic regret bound, we have the required bound for
Corollary 1. �

APPENDIX C
PROOF OF COROLLARY 2

To prove this corollary, we start with the result of Proposi-
tion 1. For the first term, we have ||pt||22 = ||Pt−1m(t− 1)||22,
which is upper bounded as ||m(t− 1)||22||Pt−1||2F . The maxi-
mum value of ||m(t− 1)||22 is one for m(t− 1) ∈ SM .

For the second term, we use the Arithmetic Mean-Geometric
Mean inequality as in Corollary 1 and use again ||pt||22 ≤
||Pt−1||2F .

Similarly, for the third term we have

σ̄2
t = max

n=1:Nt−1

[pt]n(1− [pt]n)

= max
n=1:Nt−1

[Pt−1m(t− 1)]n(1− [Pt−1m(t− 1)]n)

≤ max
n=1:Nt−1

[Pt−1m(t− 1)]n ≤ P̄t||m(t− 1)||2 ≤ Pt

(59)

Substituting σ̄2
t in the regret for the stochastic setting, we com-

plete the proof. �
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APPENDIX D
RELEVANT DERIVATIONS

Lemma 1: Under Assumption 1 and 3, the loss function
lt(h, xt) is Lipschitz in h. That is, the l2 norm of the gradient
of the loss at time t is upper-bounded as

||∇hlt(h, xt)||2 ≤ Ld (60)

where Ld = (RC + 2μH)
Proof: We apply the Cauchy-Schawrtz inequality on the

r.h.s. of (11) and get

||∇hlt(h, xt)||2 ≤ |a�t Ax,t−1h− xt|||A�
x,t−1at||2+2μ||h||2

≤RC + 2μH. (61)

where we use Assumption 1. �
Lemma 2: At time t, given the probability of attachment pt,

the weight wt, and the attachment at. Let Nt−1 be the number
of existing nodes. We have

||wt ◦ pt − at||22 ≤ w2
h(||pt||22 +Mmax). (62)

Proof: We can write the squared norm as

||wt◦pt − at||22 =
Nt−1∑
n=1

[wt]
2
n[pt]

2
n − 2[wt]n[pt]n[at]n + [at]

2
n

(63)

The second term in this summation is always negative, so we
can write

||wt ◦ pt − at||22 ≤
Nt−1∑
n=1

[wt]
2
n[pt]

2
n + [at]

2
n (64)

Note that
∑Nt−1

n=1 [at]
2
n ≤Mmaxw

2
h using Assumptions 1 and 2;

thus, we have

||wt ◦ pt − at||22 ≤ w2
h||pt||22 +Mmaxw

2
h (65)

�
Lemma 3: The term ||Ax,t−1h||2 is bounded in its �2 norm

for all t, i.e., ||Ax,t−1h||2 ≤ Y
Proof: From the expression of ỹt in (5), we have

||ỹt||2 ≤ ||
K∑

k=0

hkA
k
t−1xt||2 + ||a�t

K∑
k=1

hkA
k−1
t−1 xt||2 (66)

≤ ||
K∑

k=0

hkA
k
t−1xt||2 + ||at||2||

K∑
k=1

hkA
k−1
t−1 xt||2

(67)

The first term on the R.H.S. is bounded for a bounded h and
At−1. So is the second term, following Assumptions 1 and 2.
Thus both the output ỹt and

∑K
k=1 hkA

k−1
t−1 xt are bounded. We

denote the bound for ||
∑K

k=1 hkA
k−1
t−1 xt||2 as Y . �

Gradients: Here we provide the expressions for the gradients
w.r.t h, m, and n for the adaptive stochastic online learner.

∇hl
s
t (h,m,n, xt) = ((Wt−1n ◦Pt−1m)�

Ax,t−1h− xt)A
�
x,t−1(wt ◦ pt)

+A�
x,t−1Σ̄tAx,t−1h+ 2μh. (68)

The gradient w.r.t. m is

∇mlt(h,m,n, xt)

=P�
t−1(Wt−1n ◦Ax,t−1h)(Wt−1n ◦Pt−1m)�

×Ax,t−1h− xt) +P�
t−1((Ax,t−1h)

◦2 ◦ (Wt−1n)
◦2)

− 2P�
t−1(Pt−1m ◦ (Ax,t−1h)

◦2 ◦ (Wt−1n)
◦2). (69)

Finally, the gradient w.r.t n is

∇nlt(h,m,n, xt)

=W�
t (Pt−1m ◦Ax,t−1h)((Wt−1n ◦Pt−1m)�

Ax,t−1h− xt) (70)

�
Computational complexity: Here we provide the compu-
tational complexity of the online learners. All methods rely
on computing Ax,t−1 = [x̃t,At−1x̃t, . . . ,A

K−1
t−1 x̃t] at time t.

We construct Ax,t−1 with a complexity of order O(Mt−1K)
formed by shifting x̃t K − 1 times over Gt−1. At time t− 1,
we need not calculate Ax,t = [x̃t+1,Atx̃t+1, . . . ,A

K−1
t x̃t+1]

from scratch. From the structure of At [cf. (1)], we only need to
calculate the diffusions over the incoming edges K − 1 times,
which amounts to an additional complexity of O(MmaxK). The
computational complexity of each online method is detailed
next.

D-OGF: The complexity of update (10) is governed by the
gradient, which depends on the output at time x̂t = a�t Ax,t−1h.
It has a complexity of O(MmaxK +Mt−1K), where the com-
plexity for Ax,t−1h is Mt−1K and that for the diffusion over
the newly formed edges is O(MmaxK).

S-OGF: The only difference between S-OGF and D-OGF is
that we use the expected attachment vector (wt ◦ pt) to calcu-
late the output, which means the complexity incurred depends
on Nt−1 for all t.

Ada-OGF: The Ada-OGF, being a stochastic approach has
already a complexity of O(K(M0 +Nt)). However, it has an
extra complexity of O(Nt(M)) due to both the m and n update.
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