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Abstract— Passive imaging cameras at millimeter and sub-

millimeter wavelengths are currently entering a new era with the 

development of large format arrays of direct detectors. Several of 

these arrays are being developed with bare absorbing meshes 

without any antenna coupling (lens or horn) structures. The design 

of such arrays is typically done resorting to geometrical 

considerations or basic broadside plane wave incidence analysis. 

This paper presents a spectral technique for the analysis of such 

focal plane arrays in reception using Fourier Optics, which is valid 

also for moderately skewed incident angles. The analysis 

constitutes a step improvement with respect to previously used 

methods by providing an accurate and efficient way to estimate the 

point-source angular response and the throughput from a 

distributed incoherent source of an absorbing mesh in the focal 

plane of a quasi-optical component (e.g. a parabolic reflector or 

lens). The proposed technique is validated with full-wave 

simulations.  

After presenting the analysis, the paper compares the 

performance of arrays of bare absorber in the focal plane of a 

quasi-optical component to those of corresponding antenna based 

arrays. It is found that absorbers lead to a comparable trade-off, 

in terms of spill-over and focusing efficiency, only for very tight 

samplings. For larger samplings, the focusing efficiency of 

absorbers is significantly lower than the one for antennas.  

 

Keywords—Submillimeter wave detectors, Quasi optics, 

Radiometry, Reflector antenna feeds. 

I. INTRODUCTION 

Sub-millimeter imagers for stand-off security applications 

are widely used to detect hazardous objects concealed under 

clothing [1]–[4]. Future security imagers will require larger 

Field of Views (FoVs), comparable to the size of a human body 

(i.e. images with over 100000 pixels), and video rate speeds (>
10 Hz). The presence of many detectors in the focal plane of an 

optical system (e.g., charged coupled device (CCD) like 

configuration) enables the use of systems with none or very 

limited mechanical scanning. As a consequence, the 

requirement on the detector’s sensitivity is relaxed, in such 

configuration, thanks to the possibility of using an integration 

time comparable to the frame rate. In the last years, there has 

been a significant effort in developing large format Focal Plane 

Arrays (FPAs) of bare absorbers based detectors with medium 

sensitivities for commercial sub-millimeter imaging cameras. 

Some current cameras make use of cryogenic Kinetic 

Inductance Detectors (KIDs) [5]–[9] or uncooled micro-

bolometers [10], [11]. 

Traditionally, since the heat capacity of most bolometers 

scales with the area, antenna coupling structures have been used 

to reduce the bolometer physical dimension [12], at the cost of 

a more complex FPA architecture (e.g., fly’s eye lens arrays 

[13] or horn arrays [14]). Instead, in [15], the use of FPAs of 

bare absorbers was proposed for tightly sampled large format 

configurations, i.e. in combination with optical systems with 

limited mechanical scanning. Such configurations have been 

recently implemented in astronomical instruments [7], and 

security imagers [8], [9]. There have been astronomical 

instruments developed with hybrid configurations such as 

multi-mode horns coupled to distributed absorbers [16], [17]. 

 
Fig. 1. The Fourier Optics scenario for broadside or oblique plane wave 

incidence onto a parabolic reflector with a square strip mesh absorber in its 

focal plane.   

 

The trade-offs which dominate the design of focal plane 

arrays based on antenna feeds are well-known, [18], [19], 

especially when the systems are required to operate over narrow 

frequency bands. Focal plane arrays of bare absorbers are, 

however, much less studied. The amount of power received, 

and the obtainable angular resolution are significantly different 

from the one of antenna feeds. The difference raises from the 

fact that absorbers, unlike single port antennas, respond 

incoherently to multiple aperture field distributions induced by 

the incident field [20]. As a consequence, the effective area in 

absorbers cannot be related to the directivity as in the case of 

antennas. Section II discusses the effective area of an ideal 

absorber in comparison with that of antennas, highlighting that 

its value cannot be related to transmitting parameters such as 

directivity. 

In [15], a basic study for deriving the trade-offs between the 

performances of bare absorbers and antennas was presented 

within the scope of astronomical instruments. In this 
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contribution, instead, an accurate analysis of FPAs based on 

bare absorbers is performed resorting to a spectral analysis 

technique that links the spectrum of the optical system to the 

one of the distributed absorber. The latter allows considering 

generic optical systems, even with low focal-to-diameter 

number, 𝑓#, (commonly referred also as F/D ratio [21]) and 

distributed absorbers. With respect to previous works, the 

terminology used here is more common to the reflector antenna 

community [19].  

There have been several works [16], [17] that model 

distributed absorbers under multi-mode horns by combining 

mode matching techniques with a partially coherent summation 

of modes. Here, instead, we treated absorbers distributed 

directly in the focal plane. A schematic representation of the 

studied geometry is shown in Fig. 1. A canonical geometry of a 

symmetric parabolic reflector under plane wave illumination is 

chosen. Such geometry represents well the behavior of more 

complex multi-reflector systems for detectors closed to the 

focal point [21]. Moreover, the use of such geometry is 

commonly used to derive basic imaging system performance, 

and to compare different array elements  [22], [23].   

The tool used for the analysis of this canonical problem is 

described in Section III. It is based on a Fourier Optics (FO), 

[24], spectral field representation. The power received by a 

periodic absorber is evaluated by using a Floquet mode based 

equivalent circuit model similar to the one introduced in [25], 

whose generators are obtained by expanding the direct fields in 

terms of plane waves coming from the quasi-optical system 

(reflector in Fig. 1). In particular, the methodology in [25] is 

extended to skew incidence, and to any type of periodic 

absorber. The analysis of reflector systems in reception has also 

been used for characterizing antenna feeds [26], [27]. Using this 

approach, we accurately derive both the point source angular 

response of a bare absorber under a reflector, and the power 

received from an angularly distributed incoherent source.  

In Section IV, the analysis of the power received from a 

point source as a function of the incident angle onto the optical 

system allows the introduction of aperture and focusing 

efficiencies of an absorber under an optical system. The 

aperture efficiency quantifies how much power is received from 

a broadside plane wave. The focusing efficiency quantifies how 

much the achieved angular response of the optical system is 

diffraction limited. It is worth noting that both of these 

efficiencies are calculated in reception.  

For point sources, it turns out that the use of absorbers leads 

to a power received comparable to that obtained by antenna 

feeds, but at the cost of much lower focusing efficiency. The 

maximum of the product between the spill-over and focusing 

efficiency is 37% for absorbers with a dimension of  =
1.2𝜆𝑓#, whereas in case of Gaussian antennas the maximum is 

82% [28] for an antenna aperture dimension of about 2𝜆𝑓#. 

Therefore, an array of absorbers guarantees an effective use of 

the reflector area, comparable to that of antenna arrays, only in 

a highly populated FPAs with spacing 𝑑 ≤ 0.75𝜆𝑓#. 

In Section V, we derive the throughput, 𝐴𝛺, from an 

incoherent distributed source associated with an absorber 

located in the focal plane of an optical system. This term is 

typically adopted in optical research communities, and 𝐴Ω/𝜆2 

is commonly referred to as the number of effective spatial 

modes, [20]. Here, the throughput is expressed in terms of 

antenna efficiencies. Whereas for single-mode antennas the 

throughput is bounded to 𝐴𝛺 ≤ 𝜆2, for absorbers it has an upper 

limit related to the reflector physical area (i.e. 𝐴𝛺 ≤ 𝜋𝐴𝑟𝑒𝑓) 

leading to a larger received power (or better sensitivity) with 

respect to antenna based FPAs, but at the cost of a reduced 

angular resolution.  

In the literature, the term 𝐴𝛺/𝜆2 is approximated resorting 

to basic radiometry calculations via geometrical 

approximations [29] or Airy pattern considerations [15]. Here, 

instead, a more rigorous methodology that makes use of an 

accurate evaluation of the angular response of the optical 

system is proposed. It includes coherence effects coming from 

the optics, such as phase errors due to the curvature of the 

optics, specially for low F/D ratios, or non-ideal absorber 

geometries, or changes in the frequency response because of 

resonant geometries, [8], [30]. 

The proposed method is validated in Section VI by full wave 

simulations. Section VII contains some concluding remarks. 

Finally, Appendix describes the model for the coupling of the 

absorbers to the optical system.  

II. EFFECTIVE AREA IN ABSORBERS 

The powers received by antennas or absorbers due to an 

incident plane wave, 𝑃𝑟 , can be evaluated via an effective area: 

 

 𝐴𝑒𝑓𝑓( , 𝜙) =
𝑃𝑟(𝜃,𝜙)

𝑆𝑖
 , (1) 

 

where 𝑆 = |𝐸 |
2/(2𝜁 ) is the incident power density, with 𝜁  

being the free space wave impedance (377 Ω).  

Antennas are typically characterized also by directivity 

transmitting patterns, and the corresponding effective area can 

be related to the directivity by 𝐴𝑒𝑓𝑓
𝑎𝑛𝑡 = 𝐷 𝑟𝜆

2/4𝜋. Instead, the 

directivity is not a useful parameter to derive the effective area 

for electrically large distributed absorbers, since their radiation 

patterns cannot be related to a coherent aperture distribution. 

For this reason, it is more convenient to use the effective area 

as reference parameter for comparing the properties between 

antennas and absorbers.  

An ideal electrically large planar absorber, see the inset of 

Fig. 3, can be achieved using a thin continuous sheet with a 

conductive material, 𝜎, and thickness, ℎ on top of quarter 

wavelength backshort, ℎ𝑏𝑠 = 𝜆/4 [31], [11]. The surface 

resistance of this sheet, since its thickness is smaller than the 

skin depth, can then be chosen to be 𝑅𝑠 = 𝜁 = 1/(ℎ𝜎) (Ω/□) 

[32].  

To evaluate the power absorbed by such ideal absorber, one 

can use the equivalent circuit shown in Fig A.1, where the 

TE/TM equivalent lines are decoupled. For a generic plane 

wave incidence, 𝑒 = 𝐸 𝑝̂ 𝑒
−𝑗𝑘⃗⃗𝑖∙𝑟 , assuming that the back-short 

has no losses, and considering an electrically large absorber of 

area 𝐴, the power absorbed is the active power density flowing 

across any 𝑧 > 0 transmission line cross section multiplied by 

the physical area of the absorber. After some algebraic 

manipulations, the absorbed power can be expressed as a 

function of the back short distance, ℎ𝑏𝑠, for each plane wave 

angle of incidence (  , 𝜙 ) and polarization 𝑝̂ , as follows: 
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3 

 

 𝑃𝑎𝑏𝑠
𝑃𝑊(  , 𝜙 ) = 𝑆 𝐴 cos   [(𝑝̂ ∙  ̂𝜌 )

2
𝜒𝑇𝑀 + (𝑝̂ ∙ 𝜙̂ )

2
𝜒𝑇𝐸](2) 

 

where  ̂𝜌 = sin   (cos𝜙 𝑥̂ + sin 𝜙 𝑦̂) and 𝜙̂  =

− sin 𝜙 𝑥̂ + cos𝜙 𝑦̂. The efficiencies 𝜒𝑇𝑀 =
4 cos𝜃𝑖

(1+cos 𝜃𝑖)
2+cot2(𝑘0 cos 𝜃𝑖ℎ𝑏𝑠)

 and 𝜒𝑇𝐸 =

4 cos𝜃𝑖

(1+cos 𝜃𝑖)
2+cos2 𝜃𝑖 cot2(𝑘0 cos𝜃𝑖ℎ𝑏𝑠)

 take into account for the 

impact of the back short. 

Figure 2 shows the normalized received power of the ideal 

planar absorber versus the plane wave angle of incidence for a 

standard back short distance, i.e. 𝜆/4. Both a  ̂- and 𝜙̂-

polarized incident plane waves are considered. The curves 

differ from the standard Lambert's cosine law, commonly used 

in optics, due to the presence of the back short. The larger is the 

back short (e.g. as the ones used in [9]) the larger is the angular 

variation.  

 

 
Fig. 2. Power absorbed by an ideal planar absorber and a strip absorber for a  ̂- 

(TM) and 𝜙̂-polarized (TE) plane wave incidence at different incidence angles. 

Both designs use back shorts at 𝜆/4 distance. The curves are normalized to 

𝑃 𝑛 = 𝑆 𝐴. 

 

Equation (2) shows that, for broadside plane wave incidence 

and ℎ𝑏𝑠 = 𝜆/4, the power received by the ideal absorber is the 

incident power density times the absorber area. Hence, for this 

case, the effective area is identical to the physical one. Instead 

for single mode1 antennas the effective area can be related to 

the directivity by the relation 𝐴𝑒𝑓𝑓
𝑎𝑛𝑡 = 𝐷 𝑟𝜆

2/(4𝜋), where the 

directivity depends on the angular distribution of the antenna 

radiation pattern. Therefore, an antenna with an angular 

receiving power pattern of cos  , similar to the one shown in 

Fig. 2, has an effective area of 𝐴𝑒𝑓𝑓
𝑎𝑛𝑡 = 𝜆2/𝜋 irrespectively of its 

dimensions. In case of electrically large absorbers, the effective 

area, instead, increases linearly with the physical area, while 

having the same angular receiving pattern.  

Figure 3 shows the effective area of the ideal absorber (with 

an infinite and a finite back short of the same size than the 

absorber). This effective area is reported as a function of the 

absorber’s physical area calculated using full wave simulations 

done with CST MS [33] under broadside plane wave 

illumination. The simulated geometry is shown in the inset of 

the figure.   

                                                           
1 Single mode antenna referred to antennas with a feeding port that excites a 

specific equivalent current distribution. 

It is apparent that the effective area of absorbers matched to 

the wave impedance, 𝜁 , remains equal to the physical area, 

even when the dimension of the overall absorber is small in 

terms of the wavelength. For the sake of comparison, the 

effective area of a matched antenna radiating above an infinite 

ground plane characterized by an equivalent electric current 

distribution 𝑗𝑎 = 𝑟𝑒𝑐𝑡(𝑥,  /2)𝑟𝑒𝑐𝑡(𝑦,  /2)𝑥̂, is also shown in 

the same figure. For small dimensions, in terms of the 

wavelength, the antenna effective area can be much larger than 

the physical area. However, their designs are much more 

complex since they require the design of an impedance 

matching network which is frequency and dimension 

dependent. 

 

 
Fig. 3. Effective area of the ideal absorber (with an infinite and a finite back 

short of the same size than the absorber) versus the physical area compared to 

the effective area of an impedance matched antenna with uniform square 

electric distribution above an infinite ground plane. The distance to the back-

short is 𝜆/4 for all cases. 

III. FOURIER OPTICS BASED ANALYSIS 

In [25] an analytical method, based on a Fourier Optics (FO) 

approach, for calculating the power absorbed by a resistive 

linear strip mesh in the focal plane of an optical system, was 

presented. The FO method can be used to derive in a simple 

way a spectral wave expansion of the direct field focused on the 

focal plane. For certain canonical optical configurations (e.g., 

parabolic reflector), an analytical expression of the spectrum 

can be derived. Other proposed approaches for deriving the 

spectrum resort to asymptotic procedures which make use of 

numerical evaluations of the Physical Optics (PO) field as in 

[34]. In [25], the spectral plane wave expansion derived by 

using FO was linked to a periodic spectral field representation 

in the surrounding of the absorbers (via a Floquet mode 

expansion [35]). In this section, the extension of the analysis to 

generic planar periodic absorbing geometries, and slightly off-

broadside incidence, is presented. The mathematical derivation 

is shown in the Appendix, while in the following sections the 

extension will be used for the accurate estimation of both the 

aperture efficiencies, and the point-source responses of an 

imaging system based on bare absorber’s FPAs. 
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Direct Field for Slightly Oblique Illumination 

 

When an optical system is illuminated by a plane wave of 

amplitude, 𝐸 , wave-vector Δ ⃗⃗ ⃗⃗ ⃗
 =   sin Δ  (cos Δ𝜙 𝑥̂ +

sin Δ𝜙 𝑦̂) +   cos Δ  𝑧̂ (Fig. 1), and polarization unit vector 

𝑝̂  (i.e., 𝑒 (𝑟) = 𝐸 𝑝̂ 𝑒
−𝑗Δ𝑘⃗⃗⃗⃗⃗⃗ 𝑖∙𝑟⃗⃗⃗ ⃗), an equivalent sphere centered at 

the focus of the focal plane can be used to evaluate a plane wave 

spectrum (PWS) representation of the direct focal field, 𝑒𝑑( ⃗): 

 

 𝑒𝑑( ⃗) =
1

4𝜋2 ∬ 𝐸⃗⃗𝑑( ⃗⃗𝜌)𝑒
𝑗𝑘⃗⃗𝜌 ∙ 𝜌⃗⃗⃗+∞

−∞
 𝜌𝑑 𝜌𝑑𝛼 (3) 

 

where 𝐸⃗⃗𝑑( ⃗⃗𝜌) = 𝑗2𝜋𝑅𝑒−𝑗𝑘𝑅 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌)/√ 2 −  𝜌
2  , with 𝑅 

being the radius of the equivalent sphere (Fig. 1),  ⃗⃗𝜌 the spectral 

vector given by  ⃗⃗𝜌 =  𝑥𝑥̂ +  𝑦𝑦̂ =   sin  (cos 𝜙 𝑥̂ +

sin𝜙 𝑦̂), and 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌) is the Geometrical Optics (GO) field 

[36] component tangent to the equivalent sphere. This GO field 

is only defined over the angular sector subtended by the optical 

system ( ≤   ), as shown in Fig. 1.  

An analytical approximation of this field, and its limits of 

applicability, are given in [25] for a parabolic reflector with a 

focal distance, 𝐹, under broadside plane wave illumination, 

𝑒 = 𝐸 𝑝̂ 𝑒
−𝑗𝑘0𝑧. This approximation is taken here as the 

reference for the analysis. The field expression for a general 

polarization of a broadside incident plane wave is 

 

 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 = 0) = 

−2𝑘0𝐸0

𝑘0+𝑘𝑧
𝑒−𝑗Δ𝑘𝑧𝑖𝐹[ ̂(𝑝̂ ∙  ̂𝜌) + 𝜙̂(𝑝̂ ∙ 𝛼̂)]circ( 𝜌,  𝜌 )   (4) 

 

where 𝛼̂ = (− 𝑦𝑥̂ +  𝑥𝑦̂)/ 𝜌, Δ 𝜌  and Δ 𝑧  are the  - and 𝑧-

components of the incident wave vector, respectively;  𝜌 =

  sin   , with    being the reflector subtended angle, and 

circ( 𝜌,  𝜌 ) equals 1 for | 𝜌| ≤  𝜌  and 0 elsewhere.  

 When an external plane wave is incident from a direction 

slightly off broadside, (Δ  , Δ𝜙 ), a key simplifying hypothesis, 

invoked typically in FO to evaluate the PWS  in a computational 

efficient way, is that the polarization of the incident field 𝑒 , in 

the phase reference plane of the focusing system (Fig. 4), is the 

same as for the broadside plane wave case, while the 

progressive phase shift is explicitly accounted for. This means 

that the following expression of the incident plane wave applies 

along the phase reference plane:  

 

 𝑒 (Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) ≃ 𝐸 𝑒

−𝑗Δ𝑘⃗⃗⃗⃗⃗⃗
𝜌𝑖 ∙ 𝜌⃗⃗⃗𝑖(𝑟)𝑝̂   (5) 

 

where Δ ⃗⃗ ⃗⃗ ⃗
𝜌 = Δ 𝑥 𝑥̂ + Δ 𝑦 𝑦̂ =   sin Δ  (cos Δ𝜙 𝑥̂ +

sin Δ𝜙 𝑦̂) is the transversal projection of the incident wave 

vector, Δ ⃗⃗ ⃗⃗ ⃗
 , and  ⃗ (𝑟) represents the observation point in the 

phase reference plane (see Fig.4).  

As discussed in [25], the field distribution on the equivalent 

sphere can be obtained by propagating the incident field via 

Geometrical Optics (GO) up to the equivalent sphere. Applying 

the approximation in (5), the GO field will be the same as 

broadside, except for a phase term: 

 

 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) ≃ 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌, Δ ⃗⃗ ⃗⃗ ⃗

𝜌 = 0)𝑒−𝑗Δ𝑘⃗⃗⃗⃗⃗⃗
𝜌𝑖 ∙ 𝜌⃗⃗⃗𝑖(𝑟)  (6) 

 

The approximation in (6) corresponds, for the worst 

polarization case, to neglect a field contribution proportional to 

tan Δ  . Retaining a 20% error on the field as tolerable, i.e. 

tan Δ  < 0.2, corresponds to an angular limitation Δ  < 11°.  
The choice of 20% error in the GO field amplitude is consistent 

with the one taken in [25] for deriving the limits of the FO. This 

error choice assures that the field computed with the 

expressions given here matches the PO one with less than a 

0.5  B difference over the whole FO region of validity defined 

in [25]. 

As shown in the inset of Fig. 4,  ⃗ =    ̂𝜌 can be 

parametrized with respect to an observation point on the FO 

equivalent sphere, 𝑟 = 𝑅𝑟̂, as 

 

  ⃗ = (𝑅 + 𝛿 ( )) sin   ̂𝜌  (7) 

 

where 𝛿 ( ) quantifies the phase delay from the reflector 

surface to the equivalent sphere (see inset of Fig. 4) and we 

made use of the fact that  ̂𝜌 =
𝑘⃗⃗𝜌

𝑘0 sin 𝜃
=  ̂. For a parabolic 

reflector this phase delay is 𝛿 ( ) = 2𝐹/(1 + cos  ) − 𝑅. 

 

 
Fig. 4. Geometry to evaluate the phase term of the PWS for slightly off-

broadside incidence with respect to a phase reference plane. 

By substituting (7) into (6) we can observe two phase terms. 

The first phase term (𝑅 sin   Δ ⃗⃗⃗⃗⃗
 𝑖 ∙  ̂𝜌) corresponds to a linear 

phase shift (beam steering) while the second one (𝛿 sin   Δ ⃗⃗⃗⃗⃗
 𝑖 ∙

 ̂𝜌) is a coma phase error (associated with asymmetric high side 

lobes [37]) coming from the curvature of the reflector. 

Assuming an equivalent sphere with the radius equal to the 

focal distance, i.e. 𝑅 = 𝐹, the beam steering observed at the 

focal plane (here defined as the flash point, Fig. 1), Δ ⃗⃗⃗⃗⃗⃗
 , can be 

evaluated directly from the linear phase term as  

 

 Δ ⃗⃗⃗⃗⃗⃗
 = 𝐹Δ ⃗⃗ ⃗⃗ ⃗

𝜌 /  .  (8) 

 

The flash point in (8) quantifies the location of the peak of 

the field focalized in the focal plane by the optical system when 

the linear phase term is dominant. In Fig. 5 an example of the 

variation of the two phase terms is shown versus the spectral 

angle  , when the plane wave incident on the reflector impinges 

Equivalent 

FO sphere

Reflector z

Phase Reference 

plane
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with a skewed angle with respect to broadside. 

 

 
Fig. 5. Phase terms of the slightly off broadside PWS in case of a reflector with 

𝑓# = 0.6 and 𝐷 = 100𝜆 illuminated by a plane wave with Δ  /(𝜆/𝐷) = 4,
Δ𝜙 = 0°.  

 

By using the approximation in (6), the phase term in the 

GO field can be expressed as a function of the spectral vector, 

 ⃗⃗𝜌, as follows: 

 

 𝑒−𝑗Δ𝑘⃗⃗⃗⃗⃗⃗ 𝜌𝑖 ∙ 𝜌̂(𝑅+𝛿𝑖(𝜃)) sin 𝜃 = 𝑒−𝑗Δ𝜌⃗⃗ ⃗⃗ ⃗⃗ 𝑖 ∙ 𝑘⃗⃗𝜌(1+𝛿𝑛(𝜃))  (9) 

 

where 𝛿𝑛( ) = 𝛿 ( )/𝑅 = (1 − cos  )/( 1 + cos  ). In [38], 

it is shown that the dominant phase aberration in dual reflector 

systems is the coma one. This coma phase term is explicitly 

given in [39] for a paraboloid illuminated by an antenna feed. 

Typically, the coma phase term is given for the small angle 

approximation as cubic dependence of   [40]. Therefore, the 

GO field in (4) can be expressed as function of the flash point 

position, as follows: 

 

 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) ≃ 𝐸⃗⃗𝐺𝑂( ⃗⃗𝜌, Δ ⃗⃗ ⃗⃗ ⃗

𝜌 = 0)𝑒−𝑗Δ𝜌⃗⃗⃗⃗ ⃗⃗ 𝑖 ∙ 𝑘⃗⃗𝜌(1+𝛿𝑛(𝜃)) (10) 

 

The coma phase term, Δ ⃗⃗⃗⃗⃗⃗
  ∙   ⃗⃗𝜌𝛿𝑛( ), in (10) can be 

neglected depending on the 𝑓#, and the numbers of scanned 

beams (i.e. 𝑁 = 𝛥  /(𝜆/𝐷) ). By imposing such coma phase 

term over the FO sphere to be smaller than 𝜋/8, we can evaluate 

the maximum number of scanned beams where the focalized 

field is almost a linear translation of the broadside one, i.e.: 

 

 𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 = 0.25[𝑓# + √𝑓#

2 − 0.25 ]
2

  (11) 

 

In Fig. 6 the field focalized in the focal plane by a parabolic 

reflector with 𝑓# = 0.6 is shown for two plane wave incidences: 

broadside and Δ  = 4𝜆/𝐷 (corresponding to 4 beams 

scanning). The field is evaluated with and without the coma 

phase term in the PWS, and compared with the field solution 

obtained by GRASP [41] when the PO solver option is used. It 

can be noted that the coma phase term changes the amplitude 

level of the first side lobe, and the location of the maximum 

field (not anymore given by (8)). It is evident that, for this low 

𝑓#, the coma phase term cannot be neglected even for a single 

scanned beam, i.e. 𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 ≤ 1, as derived in (11).  

 

 
Fig. 6. Direct fields focalized by a reflector with 𝑓# = 0.6 and 𝐷 = 100𝜆. The 

reflector is illuminated by two plane waves: at broadside and with Δ  /(𝜆/𝐷) =
4, Δ𝜙 = 0°. Dash and dotted lines represent the fields with and without 

including the coma phase term in the PWS, respectively. The solid lines are 

relevant to the fields calculated with GRASP. 

 

Evaluation of the Total Field 

 

Following a procedure similar to the one highlighted in [25], 

and summarized in the Appendix, the coupling mechanism 

between the impinging field and the absorber can be 

represented via an equivalent Floquet circuit, see Fig. A1. The 

periodic absorbing mesh response to a plane wave is included 

in the circuit via an equivalent admittance matrix, 𝑌̅𝑎𝑏𝑠 ( ⃗⃗⃗ ). The 

components of this matrix can be derived analytically for a few 

structures as in [42] and [43], or evaluated numerically using 

periodic boundary conditions via a commercial electromagnetic 

tool such as CST MS, as in [44] and [35]. The input voltage 

waves, 𝑉+
 𝐸/  

( ⃗⃗𝜌), in the equivalent Floquet circuit can be 

related to the spectrum of the direct field coming from the 

optics, (3), by using (A.1) and (A.2). This methodology can be 

applied to any periodic structure embedded into a generic 

dielectric stratification (transverse to 𝑧-direction). 

By solving the equivalent circuit, one can evaluate the 

spectral total average fields,  𝐸⃗⃗𝑡 , 𝐻⃗⃗⃗𝑡 , at any 𝑧-quote, that 

includes both the absorber and optical system spectral 

responses. The spectral electric field, averaged over each 

absorber period (𝑑𝑥 , 𝑑𝑦), are related to the voltage solution, 

𝑉
𝑇𝐸/𝑇𝑀

( ⃗⃗𝜌, 𝑧), whereas the magnetic field to the current 

solution, 𝐼
𝑇𝐸/𝑇𝑀

( ⃗⃗𝜌, 𝑧), as given in (A.5)–(A.8).  

The spatial fields representing the response of the absorber 

to the optical system under a slightly off broadside incidence, 

𝑒𝑡( ⃗, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ), can therefore be evaluated as the inverse Fourier 

transform of the spectral total field evaluated at broadside times 

the linear and coma phase terms: 

 

𝑒𝑡( ⃗, 𝑧, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) =   (12) 

1

4𝜋2 ∬ 𝐸⃗⃗𝑡 ( ⃗⃗𝜌, 𝑧, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 = 0)𝑒−𝑗𝑘⃗⃗𝜌 ∙ Δ𝜌⃗⃗ ⃗⃗ ⃗⃗ 𝑖(1+𝛿𝑛)𝑒𝑗𝑘⃗⃗𝜌∙𝜌⃗⃗⃗ 𝜌𝑑 𝜌𝑑𝛼

+∞

−∞
   

   

Only for the scanning angles imposed by (11), one can 

neglect the coma phase term,  ⃗⃗𝜌 ∙ Δ ⃗⃗⃗⃗⃗⃗
 𝛿𝑛, and the spatial fields 
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can be computed as a linear translation to the flash point, Δ ⃗⃗⃗⃗⃗⃗
 , of 

the broadside spatial total field: 

 

 𝑒𝑡( ⃗, 𝑧, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) ≃ 𝑒𝑡( ⃗ − Δ ⃗⃗⃗⃗⃗⃗

 , 𝑧, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 = 0). (13) 

IV. POINT-SOURCE RESPONSE 

In this section, we derive the response of resistive periodic 

absorber under a focusing system when the latter is illuminated 

by a single plane wave of amplitude 𝐸 , impinging from a 

direction Δ ⃗⃗ ⃗⃗ ⃗
  (Fig. 1). Using (12), i.e. a coherent summation of 

the spectral total fields, averaged over each unit cell of the 

periodic absorber, we can estimate the total spatial electric and 

magnetic field, 𝑒𝑡( ⃗ ) and ℎ⃗⃗𝑡( ⃗ ), at the focal plane. These 

fields are in effect evaluated as an inverse Fourier Transform of 

the PWS of the optical system times the spectral plane wave 

response of the absorber. The shape of the total fields depends 

on the response of the absorber to plane waves with incidence 

angles impinging from broadside up to the reflector subtended 

angle,   . Once the fields are known, the power absorbed by a 

finite periodic mesh can be evaluated, assuming local 

periodicity, as the integral, over the absorber area  , of the 𝑧-

component of the Poynting's vector associated with the spatial 

total fields, as follows: 

 

 𝑃𝑎𝑏𝑠(𝑓, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) = 

 
1

2
𝑅𝑒 {∬ [𝑒𝑡( ⃗ , Δ ⃗⃗ ⃗⃗ ⃗

𝜌 ) × ℎ⃗⃗𝑡
∗( ⃗ , Δ ⃗⃗ ⃗⃗ ⃗

𝜌 )]
𝑤/2

−𝑤/2 
∙ 𝑧̂𝑑 ⃗}  (14) 

 

Aperture Efficiency 

 

The aperture efficiency, 𝜂𝑎𝑝, of an absorber under a reflector 

relates the effective area, 𝐴𝑒𝑓𝑓 , to the physical area, 𝐴𝑟𝑒𝑓 , of the 

reflector (or of the considered quasi-optical system). This 

efficiency can be calculated as the ratio between the power 

absorbed, (14), for broadside incidence, and the power incident 

to the reflector, 𝑃 𝑛 = 𝑆 𝐴𝑟𝑒𝑓: 

 

 𝜂𝑎𝑝(𝑓) =
𝑃𝑎𝑏𝑠(𝑓,Δ𝑘⃗⃗⃗⃗⃗⃗

𝜌𝑖= )

𝑃𝑖𝑛
=

𝐴𝑒𝑓𝑓

𝐴𝑟𝑒𝑓
  (15) 

 

As an example, we evaluate this efficiency for the case of 

the ideal planar absorber described in the previous section but 

under an optical system. For focusing systems with subtended 

angles smaller than 20°, i.e. 𝑓# > 1.4, the angular response of 

the ideal absorber can be considered nearly constant (see Fig. 

2). In this case the absorber spatial fields in (12) will resemble 

the direct fields arriving from the optical system. Thus, the 

aperture efficiency will be, for an ideal reflector, the well-

known spill-over efficiency2, 𝜂𝑠𝑜, of the corresponding Airy 

pattern, except for the cases of electrically small impedance-

matched absorbers which are not considered here.  

In Fig. 7 the spill-over efficiency, evaluated for normal 

plane wave incidence on the reflector, versus the size of the 

                                                           

2 𝜂𝑠𝑜 ≃
∬ (|𝑒𝑥

𝑑(𝜌⃗⃗⃗)|
2
+|𝑒𝑦

𝑑(𝜌⃗⃗⃗)|
2
)𝑑𝜌⃗⃗⃗ 𝐴

∬ (|𝑒𝑥
𝑑(𝜌⃗⃗⃗)|

2
+|𝑒𝑦

𝑑(𝜌⃗⃗⃗)|
2
)𝑑𝜌⃗⃗⃗ ∞

 

ideal absorber, normalized to 𝜆𝑓#, is shown for 𝑓# = 2. When 

the absorbers would have a non-flat angular response over the 

reflector subtended angle, the total spatial fields, 𝑒𝑡( ⃗, 𝑧 =

0, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ), will be spatially wider than the direct fields, and 

therefore, the aperture efficiency would be lower than the spill-

over efficiency of the direct fields. This will be also the case 

when the absorber is not well matched or has a resonant 

frequency response. Therefore, the use of multi-layer absorbers 

with stable angular response [45]–[47] will improve the 

coupling with the optical system, especially for low 𝑓# optics. 

 

 
Fig. 7. Spill-over efficiency (solid) and HPBW (dash) for an ideal absorber 

under an optical system characterized by 𝑓# = 2 and diameter 𝐷 = 100𝜆 versus 

the physical size of the absorber normalized to 𝜆𝑓#.  

 

Figure 7 also reports the half power beam width (HPBW) 

normalized to the minimum theoretical HPBW given by a 

diffraction limited aperture (𝐻𝑃𝐵𝑊𝑚 𝑛 = 𝜆/𝐷) in the right axis 

versus the absorber size. It is worth noting that this curve is 

similar to the one presented in Fig. 4 of [15], since it is 

presented for a large 𝑓# and an ideal absorber. The HPBW of 

the point spread function is a figure of merit for the quality of 

the generated image. The penalty in terms of system angular 

beam-width is further quantified in the next sub-section. 
 

Point-Source Angular Response 

 

The angular response of an absorber coupled to an optical 

system, typically referred as the point spread function in optics, 

can be evaluated by calculating how much the absorbed power 

(14) changes versus the impinging plane wave wave-vector 

Δ ⃗⃗ ⃗⃗ ⃗
𝜌 . A normalized point spread function will be defined here 

as follows:  

 𝐹(𝑓, Δ  , Δ𝜙 ) =
𝑃𝑎𝑏𝑠(𝑓,Δ𝑘⃗⃗⃗⃗⃗⃗

𝜌𝑖)

𝑃𝑎𝑏𝑠(𝑓, )
  (16) 

 

Thus, the power absorbed can be expressed as: 

 

 𝑃𝑎𝑏𝑠(𝑓, Δ  , Δ𝜙 ) = 𝑆 𝐴𝑟𝑒𝑓𝜂𝑎𝑝(𝑓)𝐹(𝑓, Δ  , Δ𝜙 )  (17) 

 

To evaluate the angular response in a computationally 

efficient way, we can use the approximated spatial fields 

derived in (13). In the case of focusing systems with large 𝑓#, 

one can neglect the coma term for most of the FO validity 
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region. This approximation allows us to evaluate the power 

absorbed, (14), as a convolution of the spatial Poynting’s vector 

for broadside incidence, (Δ ⃗⃗ ⃗⃗ ⃗
𝜌 = 0), and the absorber domain 

(square in this case): 

 

 𝑃𝑎𝑏𝑠(𝑓, Δ ⃗⃗ ⃗⃗ ⃗
𝜌 ) ≃  

   
1

2
𝑅𝑒 {∬ [𝑒𝑡( ⃗  − Δ ⃗⃗⃗⃗⃗⃗

  ,0) × ℎ⃗⃗𝑡
∗( ⃗  − Δ ⃗⃗⃗⃗⃗⃗

  ,0)]
𝑤/2

−𝑤/2 
∙ 𝑧̂𝑑 ⃗} (18) 

 

The validity region of (18) is given by (11).  

Figure 8(a) shows the angular response of the ideal absorber 

compared to that of a uniform aperture antenna (inset in Fig. 3) 

coupled to a parabolic reflector with 𝑓# = 2  for different 

absorber sizes. It can be noted that, in both cases for physical 

dimensions small in terms of 𝜆𝑓#, the angular response 

resembles the well-known Airy distribution. Instead the imager 

angular response gets much wider when the physical dimension 

of the absorber increases than in the case of antennas. This 

implies that, as the absorber size increases, the HPBW increases 

faster than for a uniform aperture antenna.  

This peculiar behavior of the absorbers can be understood if 

one imagines an absorber large in terms of the wavelength 

divided in portions having dimension in the order of half 

wavelength, similarly to the multimode antenna proposed in 

[20]. Since the power received by each portion sums up almost 

incoherently, the result is an overall less angular discriminating 

optical system. For example, Fig. 8(b) shows that for a skewed 

plane wave incidence, the flash point of the direct field is at the 

edge of the detecting area. An ideal absorber will receive power 

proportional to the flux of the Poynting’s vector of the direct 

field, across the entire absorber area, but with maximum 

contribution from the portion of area at the flash point. On the 

contrary, an antenna, designed to receive coherently the direct 

field from broadside, will not receive properly this off-set direct 

field.  

 

Focusing Efficiency 

 

In Fig. 7 and 8, we have shown that the angular resolution 

of the imager in Fig. 1 gets worse with increasing dimension of 

the absorber. To quantify this angular resolution penalty, we 

now introduce a focusing efficiency that relates the solid angle 

of the Airy pattern, Ω𝐴 𝑟𝑦  to that of the actual imager angular 

response, Ω𝑜, as follows  

 

 𝜂𝑓 =
Ω𝐴𝑖𝑟𝑦

Ω𝑜
. (19) 

 

The imager solid angle is defined as follows 

 

 Ω𝑜 = ∫ ∫ 𝐹(𝑓,  , 𝜙) sin  𝑑 𝑑𝜙
𝜋

2
 

2𝜋

 
,  (20) 

 

and it is easy to demonstrate that  

 

 Ω𝐴 𝑟𝑦 =
𝜆2

𝐴𝑟𝑒𝑓
.            (21)  

                                                           
3 In the literature, the focusing efficiency for antennas can be referred to 

utilization efficiency [48], aperture efficiency [49] or taper efficiency [50]. 

 
(a) 

 
(b) 

Fig. 8. (a) Angular response to a plane wave impinging from Δ   of both an 

ideal absorber, and a uniform aperture antenna coupled to a parabolic reflector 

with 𝑓# = 2. The different curves correspond to several absorber and antenna 

sizes. (b) Sketch showing the detecting device (antenna/absorber) and direct 

field for a case of a squinted plane wave incidence. 

 

The focusing efficiency quantifies how much the angular 

response enlarges with respect to the diffraction limited case. In 

case of antenna feeds, this efficiency corresponds to the ratio 

between the achieved directivity in the optical system and the 

directivity of a uniform circular aperture3. In Fig. 9 this 

efficiency is shown as a function of the absorber size 

normalized to 𝜆𝑓# together with the spill-over efficiency for an 

ideal absorber under a reflector of 𝑓# = 2. It is apparent that for 

absorbers, the focusing efficiency is much lower than what 

would be theoretically possible for an antenna with a current 

distribution that is field matched to the direct field. 

The spill-over and focusing efficiencies are commonly used 

in the antenna reflector community. For comparison, we 

include in Fig. 9 these efficiencies for a reflector fed by a 

uniform aperture antenna of side length   (inset in Fig. 3). The 

spill-over efficiencies (for the antenna calculated as defined in 

[48]) are nearly the same for both types of feeds, but the 

focusing efficiency is significantly different. Indeed, except for 

very small sizes, the antenna type feeds are more directive with 

respect to a commensurate absorber.  
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Fig. 9. Focusing and spill-over efficiencies for both ideal antenna and absorbers, 

with a square dimension of side length  , under a reflector with 𝑓# = 2. The 

grey area indicates the region where the product of the two efficiencies, for the 

absorber and antenna feeds, are comparable.   

 

To quantify the trade-off between the two different 

efficiencies in Fig. 9, we also plot the product of these two 

efficiencies. The maximum value of this product is, in case of 

absorber feeds, only 37% and it is achieved for  = 1.2𝜆𝑓#, 

whereas antenna feeds achieved 71% for  = 1.55𝜆𝑓#, thanks 

to a higher focusing efficiency, which can reach 82% for 

Gaussian horns [28]. Note, in the case of antennas the product 

between the spill-over efficiency and the focusing one 

corresponds to the aperture efficiency [48], except for any other 

losses in the antenna feed itself. Instead, in the case of absorbers 

this product is simply a figure of merit that reminds the designer 

that larger absorbers lead to an inefficient use of the reflector 

aperture from an angular resolving point of view. 

Tightly spaced FPAs of bare absorbers can sometimes be 

considered the preferred option due to a lower fabrication cost. 

As it can be seen from Fig. 9, bare absorber FPAs with  ≤
0.75𝜆𝑓#, and focusing efficiencies higher than 80%, have a 

product of the two key efficiencies comparable to the one of 

antenna feeds. However, the background noise coming from the 

box surrounding the absorber should be properly controlled or 

calibrated, since the absorber has a wide angular response 

leading to higher sensitivity to undesired sources [15]. 

The conclusions drawn here can be applied to detectors 

located close to the focus, where a multi-cascade reflector 

system can be well modelled with a simplified on-axis parabolic 

reflector [21]. The achieved spill-over and focusing efficiencies 

of detectors located far from the focus highly depend on the 

actual optical system configuration. 

V. DISTRIBUTED-SOURCE RESPONSE 

The optimization of a densely populated FPA requires to 

find a suitable trade-off between the sensitivity of each element 

and the imager resolution. In [15], the optimal FPA architecture 

that makes use of bare absorbers was studied in the case of 

background limited noise. Instead, most of the uncooled or 

medium cooled detectors are limited by the detector noise. In 

case of bolometric detectors [12], this noise is dependent on the 

bolometer physical dimensions,  . Therefore, the optimal FPA 

architecture for these detectors will depend significantly on the 

aperture and focusing efficiencies, which should accurately be 

quantified. 

The sensitivity of a passive imager can be related to the 

ability of the system in detecting variations in the temperature 

of a distributed incoherent source, [15], [51]. Thus, it is related 

to the power received from a distributed source, 𝑃𝑎𝑏𝑠
𝐷𝑆 , with an 

average temperature,  𝑠, and angular dimension much larger 

than the beam of the reflector (imager point spread function).   

The received power, 𝑃𝑎𝑏𝑠
𝐷𝑆 , over a certain bandwidth 𝐵𝑊 =

𝑓2 − 𝑓1, from incoherent sources operating in Rayleigh Jean’s 

limit with an average temperature,  𝑠 distributed over the full 

solid angle can be expressed as follows [52]: 

 

𝑃𝑎𝑏𝑠
𝐷𝑆 = 

 ∫
𝑘𝐵𝑇𝑠

𝜆2 𝐴𝑒𝑓𝑓(𝑓) ∫ ∫ 𝐹(𝑓,  , 𝜙) sin  𝑑 𝑑𝜙𝑑𝑓
𝜋

2
 

2𝜋

 

𝑓2
𝑓1

 (22) 

 

where 𝐴𝑒𝑓𝑓(𝑓) = 𝜂𝑎𝑝(𝑓)𝐴𝑟𝑒𝑓 is the effective area of the 

imager,  𝐵 is the Boltzmann’s constant, and 𝐹(𝑓,  , 𝜙) is the 

imager normalized angular response. Equation (22), with the 

efficiency definitions introduced in Section IV, becomes 

extremely useful for the design of absorbers. Using the 

definition in (19), equation (22) can be rewritten as follows 

 

 𝑃𝑎𝑏𝑠
𝐷𝑆 =  𝐵 𝑠 ∫

𝜂𝑎𝑝(𝑓)

𝜂𝑓(𝑓)
𝑑𝑓

𝑓2
𝑓1

. (23) 

 

This expression is valid for any coupling structure, such as 

antennas (single or multi-mode) and absorbers. For narrow 

band systems with bandwidth defined as 𝐵𝑊 = 𝑓2 − 𝑓1, where 

the integrand in (23) can be approximated constant around the 

central frequency 𝑓 , one can rewrite (23) as 

 

 𝑃𝑎𝑏𝑠
𝐷𝑆 ≃  𝐵 𝑠𝐵𝑊

𝜂𝑎𝑝(𝑓0)

𝜂𝑓(𝑓0)
  (24) 

 

In the scientific literature, instead of the ratio 𝜂𝑎𝑝(𝑓 )/

𝜂𝑓(𝑓 ), one typically finds the normalized throughput, 

𝐴𝑟𝑒𝑓𝛺𝑜/𝜆 
2 , or the number of effective modes, 𝑚𝑒𝑓𝑓 , of the 

system, [15], [20]. To clarify the discussion for the antenna 

community, one should consider that for single-mode antennas 

the aperture efficiency is proportional to the focusing efficiency 

itself, indeed 𝜂𝑎𝑝
𝑎𝑛𝑡 = 𝜂𝑟𝑎𝑑𝜂𝑓, where 𝜂𝑟𝑎𝑑 is the radiation 

efficiency [48] (i.e. the ratio between the gain and the directivity 

in reflectors). Thus, the normalized throughput becomes 

 

 
𝐴𝑟𝑒𝑓𝛺𝑜

𝜆0
2 = {

𝜂𝑎𝑝(𝑓0)

𝜂𝑓(𝑓0)
  for absorb rs                       

𝜂𝑟𝑎𝑑(𝑓 )   for sin l − mo   ant nnas
 (25) 

Therefore, for single-mode antennas: 𝐴𝑟𝑒𝑓𝛺𝐴/𝜆 
2 = 𝜂𝑟𝑎𝑑 ≤

1 and the power received becomes  𝐵 𝑠𝐵𝑊𝜂𝑟𝑎𝑑, which is the 

standard expression in microwave radiometry [52]. Instead, for 

bare absorber, 𝐴𝑟𝑒𝑓𝛺𝐴/𝜆 
2 can be a number much larger than 

unity. Note that for the case of Lambert's absorber without a 

reflector (𝜂𝑎𝑝 = 1), the absorber’s throughput becomes the 

well-known expression in radiometry [15]: 𝐴𝑟𝑒𝑓𝛺𝐴 =

𝜆 
2𝜂𝑎𝑝(𝑓 )/𝜂𝑓(𝑓 ) = 𝜋𝐴𝑟𝑒𝑓. 

The term 𝜂𝑎𝑝(𝑓 )/𝜂𝑓(𝑓 ) is plotted in Fig. 10 for the case 

of an ideal absorber under a parabolic reflector with 𝑓# = 2. The 
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normalized throughput 𝐴𝑟𝑒𝑓𝛺𝑜/𝜆 
2, derived accordingly to [15] 

by using Airy pattern considerations, is also reported in Fig. 10. 

The agreement is very good since the calculations were done 

for an ideal absorber under a large 𝑓# parabolic reflector. 

However, the analysis proposed in this paper can accurately 

quantify the normalized throughput for many other cases such 

as optics with small 𝑓# (common in integrated lenses [5]), 

absorbers with a non-flat angular response [9], or even resonant 

absorbers [7], [8], [30]. As an example, Fig. 10 also shows the 

normalized throughput for an ideal absorber under a 𝑓# = 0.6 

parabolic reflector. In such case, its value differs significantly 

from the one calculated with the Airy pattern formula [15], 

leading to a lower power received from a distributed incoherent 

source and, therefore, lower sensitivity. 

 

 
Fig. 10. Normalized throughput calculated as 𝜂𝑎𝑝/𝜂𝑓 versus the absorber size, 

 , for two optical systems with 𝑓# = 0.6 (grey) and 𝑓# =2 (black). The solid 

lines are related to the ideal absorbers, the dashed lines to an absorber based on 

resistive strips, and the dots to the relevant performed full wave simulations. 

VI. NUMERICAL EXAMPLES 

In this section, the results calculated with the proposed 

methodology are compared with those obtained by using full 

wave simulations. An absorber made of linear resistive strips 

above a 𝜆/4 back reflector is considered as a test case. For this 

case a reference analytical circuit is available in [42]. The 

absorber is composed of resistive mesh strips with a surface 

resistance of 𝑅𝑠 = 10 Ω/□ and width of 2.7 μm. The strips 

have a periodicity of 𝑑𝑦 = 102 μm, and back short distance of 

ℎ𝑏𝑠 = 150 μm. The total dimension of the absorber is  ×   

(Fig. 1). The operating frequency for this example is 500 GHz.  

 

Large 𝑓# Optics 

 

As described in the previous section, the angular response 

for absorbers under a large 𝑓# optical system, according to (18), 

is basically the convolution of the total field with the spatial 

domain of the absorber. In such a case, when the absorber can 

be considered ideal, the throughput can be evaluated using Airy 

pattern considerations as in [15]. The plane wave response of 

the considered absorber is shown in Fig. 2, showing similar 

angular response to the ideal absorber. The absorbed power has 

been evaluated by using the equivalent circuit proposed in [42], 

as well as the generic circuit for an arbitrary absorber shape 

described in the Appendix.  

In Figs. 11(a) and (b) the power absorbed by the linear strip 

mesh, placed under a parabolic reflector with 𝑓# = 2 and 

diameter 𝐷 = 100𝜆, is shown versus the plane wave angle of 

incidence, for two different physical dimensions of the absorber 

(the absorber is made of 7 and 14 resistive strips for the  =
2𝜆 and  = 4𝜆 cases, respectively). The incident plane wave is 

assumed having amplitude |𝐸 | = 1 V/m and polarization 

along 𝑥. The results are compared with those carried out by 

using full wave simulations. Specifically, first the direct field 

focalized by the reflector on a square area at a 𝑧-quote above 

the absorber (Fig. 12) is evaluated by using the Physical Optics 

solver of GRASP. Then, the field is used as an external source 

in CST MS to compute the power dissipated into the resistive 

strips. Since the procedure has to be repeated for each angle of 

the plane wave impinging on the reflector, Δ  , the computation 

of the angular response via the full wave (FW) simulations is 

time-consuming, and for this reason the results are reported 

only for a limited number of incident angles. On the contrary, 

the FO spectral method takes a few minutes for obtaining an 

accurate 2D angular response of the imager. The agreement 

between both methods is excellent. 

 

 

(a) 

 
(b) 

Fig. 11. Power absorbed versus the plane wave incident angle (non-normalized 

angular response) of a linear strip absorber with side length   coupled to a 

reflector with 𝑓# = 2: (a)  = 𝜆𝑓# and (b)  = 2𝜆𝑓#. Solid lines: calculated by 

using (18). Cross marks: obtained via full wave simulations. The inset 

illustrates the 2D response in u-v coordinates 

 

The aperture and the focusing efficiencies of a strip absorber 

under a 𝑓# = 2 parabolic reflector can be estimated by using 

both the FO and FW approaches. Results are summarized in 

Table I, showing excellent agreement. Normalized throughputs 

can also be estimated for the cases given in Table I by using 

(25). The aperture efficiencies are slightly lower than those 
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related to the ideal absorber (Fig. 9), due to the fact that the strip 

mesh structure presents a small mismatch with the incoming 

waves. In particular, the imaginary part of the strip absorbers 

presents an inductive behavior, that leads to only  3% 

absorption of the impinging power, for broadside plane wave 

illumination as shown in Fig. 2. The focusing efficiencies are 

instead comparable. Therefore, the normalized throughput is 

slightly lower than the one of the ideal absorber (Fig. 10). 

 
Fig. 12. A schematic representation of the geometry under discussion and of the 

GRASP + CST full wave simulation procedure. The direct field is obtained by 

GRASP and then used as an external source in CST. 
 

 
 

Small 𝑓# Optics 

 

The lower is the 𝑓#, the more difficult is to evaluate the 

performances of absorbers under optical systems. Firstly, the 

absorber angular response cannot be approximated by a 

convolution with the broadside total field since the shape of the 

direct field changes significantly even for an incident angle of 

a couple of HPBWs due to the coma phase term (Fig. 6). 

Secondly, the absorber plane wave response can affect 

significantly the shape of the total spatial fields. Thirdly, the 

absorber’s overall physical dimension can be comparable to the 

wavelength, or even smaller, making the FO + Floquet mode 

approach not applicable. 

The calculated angular response of a strip absorber of 2𝜆𝑓# 

(7 strips) in side length under a reflector with 𝑓# = 0.6 is shown 

in Fig. 13(b), and compared with full wave simulations. The 

agreement is very good even if the absorber is only 1.2𝜆 × 1.2𝜆. 

The full wave absorbed power is slightly higher in the 𝜙 = 0° 
cut, which can be associated with edge effects due to the 

finiteness of the strips. Smaller absorber dimensions, such as 

the case show in Fig. 13(a) (absorber with a  = 0.6𝜆 and only 

3 strips), will lead to larger discrepancies between the FO and 

FW simulations. Indeed, in such case the absorber effective area 

is larger than the physical one as shown in Fig. 3, and the edge 

effects are even more significant. Despite this, the agreement 

with full wave simulations is still quite good as shown in Fig. 

13(a) for both a finite and an infinite back short. 

 

 

(a) 

 
(b) 

Fig. 13. Power absorbed versus the plane wave incident angle (non-normalized 

angular response) of a linear strip absorber with side length   coupled to a 

reflector with 𝑓# = 0.6: (a)  = 𝜆𝑓# and (b)  = 2𝜆𝑓#. Solid lines: calculated 

by using (14). Marks: obtained via full wave simulations. The inset illustrates 

the 2D response in u-v coordinates 

 

The values of the simulated aperture and focusing 

efficiencies are summarized in Table II for both absorber 

dimensions. The FW simulated focusing efficiencies are about 

10% different in both cases due to the edge effects, whereas the 

aperture efficiency of the smallest case ( = 𝜆𝑓#) is 15% 

higher than predicted with the FO tool due to a larger effective 

area than the physical one. The values of the aperture efficiency 

for both cases are lower than the values given for large 𝑓#, due 

to the variation of the absorber response to the incident plane 

waves, as shown in Fig. 2; instead, the focusing efficiency is 

higher than the cases shown in Table I, because of the coma 

distortion in the direct field.  

In Fig. 10 the estimated values for the normalized 

throughputs in case of the linear resistive mesh are also shown 

for the two considered reflectors, using both the FO approach 

and the FW simulations. The values obtained for all cases are 

lower than the ones estimated in [15]. It can be noted that for 

some cases the absorber receives up to 40% less power than the 

one estimated in [15], leading to a less sensitive instrument. 
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TABLE I 

COMPARISON OF EFFICIENCIES FOR STRIP ABSORBER 𝑓# = 2  

 Fourier Optics Full Wave 

 𝜂𝑎𝑝 = 48% 𝜂𝑎𝑝 = 4 % 

 = 𝜆𝑓# 𝜂𝑓 = 70% 

𝐴𝛺/𝜆2 = 0.7 

𝜂𝑓 = 70% 

𝐴𝛺/𝜆2 = 0.7 

 

  = 2𝜆𝑓# 

 

𝜂𝑎𝑝 = 76% 

𝜂𝑓 = 27% 

𝐴𝛺/𝜆2 = 2.8 

𝜂𝑎𝑝 = 77% 

𝜂𝑓 = 27% 

𝐴𝛺/𝜆2 = 2.8 
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VII. CONCLUSION 

Passive imaging cameras at sub-millimeter wavelengths are 

being developed by using bare absorbing meshes without any 

antenna coupling (lens or horn) structures in the focal plane of 

a focusing system. The design of such arrays is typically done 

resorting to geometrical considerations or basic broadside plane 

wave incidence analysis. This work presents a spectral 

electromagnetic model that is based on linking a Plane Wave 

Spectral representation of the direct field focused by the optical 

system with a Floquet Wave representation of the field in the 

absorbing mesh. The results obtained by the present model have 

been compared, with excellent agreement, with those obtained 

by full wave simulations. Thus, the proposed spectral method 

provides an accurate and efficient way to estimate the key 

optical properties of the imager inside the region of validity of 

the Fourier Optics.  

The most important design aspect that emerges from the 

present study of focusing systems in reception is associated 

with the introduction of the intuitive focusing efficiency 

parameter. This parameter leads to two important conclusions. 

Firstly, when comparing bare absorber FPAs and antenna feeds 

of equivalent dimensions, the latter leads to higher focusing 

efficiencies, and therefore better imaging resolution. Only very 

tightly sampled absorber based FPAs lead to a comparable 

trade-off in terms of received power and angular resolution, 

when compared to antenna based FPAs. Secondly, while for 

antennas it is well known that the power received from a 

distributed incoherent source is 𝑃𝑎𝑛𝑡
𝐷𝑆 = 𝜂𝑟𝑎𝑑 𝑏 𝑠𝐵𝑊, for 

absorber based FPAs, the corresponding received power is 

typically quantified introducing an effective number of modes: 

𝑃𝑎𝑏𝑠
𝐷𝑆 = 𝑚𝑒𝑓𝑓 ×  𝑏 𝑠𝐵𝑊. Here, it is shown that the effective 

number of modes 𝑚𝑒𝑓𝑓  can be conveniently evaluated as the 

ratio between the aperture, 𝜂𝑎𝑝, and the focusing efficiency, 𝜂𝑓. 
 

APPENDIX: 

CIRCUIT FIELD REPRESENTATION FOR OPTICS COUPLED 

PLANAR ABSORBERS 

The field in the surrounding of a periodic absorber coupled 

to an optical system can be expressed as a coherent summation 

of the absorber response to each plane wave coming from the 

optical system. The spectral response of the absorber to a plane 

wave can be modeled by using the fundamental Floquet mode 

field representation, neglecting any finiteness effect, and 

assuming a periodicity less than half wavelength, i.e. 𝑑𝑥/𝑦 <

𝜆/2.  

In general, any periodic planar structure can be modelled by 

using the equivalent network shown in Fig. A1, where the TE 

and TM transmission lines represent the propagation of the 

respective fundamental Floquet modes having characteristic 

impedances 𝑍 
𝑇𝐸( 𝜌) = 𝜁   / 𝑧 and 𝑍 

𝑇𝑀( 𝜌) = 𝜁  𝑧/  , 

respectively, where  𝑧 = √  
2 −  𝜌

2. The matrix  

𝑌̅𝑎𝑏𝑠( 𝜌) = [
𝑌𝑎𝑏𝑠

𝑇𝐸𝑇𝐸( 𝜌) 𝑌𝑎𝑏𝑠
𝑇𝐸𝑇𝑀( 𝜌)

𝑌𝑎𝑏𝑠
𝑇𝑀𝑇𝐸( 𝜌) 𝑌𝑎𝑏𝑠

𝑇𝑀𝑇𝑀( 𝜌)
] 

 

represents the absorbers response to the TE and TM plane wave 

excitations. 

  

 
Fig. A1. Equivalent transmission line model of a periodic absorber with period 

smaller than half wavelength under a certain incident plane wave,  ⃗⃗𝜌.  

 

For a periodic structure placed at the focal plane of an 

optical system, the voltage sources in the Floquet equivalent 

network are related to the PWS of the direct field coming from 

the optical system, (3). They can be evaluated as:  
 

 𝑉+
𝑇𝑀( ⃗⃗𝜌) = √𝑑𝑥𝑑𝑦𝐸𝜃

𝑑( ⃗⃗𝜌)
𝑘𝑧

𝑘0
  (A.1) 

 𝑉+
𝑇𝐸( ⃗⃗𝜌) = √𝑑𝑥𝑑𝑦𝐸𝜙

𝑑( ⃗⃗𝜌)  (A.2) 

 

where 𝑑𝑥 and 𝑑𝑦 are the periods of the array along x and y, 

respectively; and 𝐸𝜃
𝑑( ⃗⃗𝜌) and 𝐸𝜙

𝑑( ⃗⃗𝜌) are the  - and 𝜙- spectral 

components of the direct field as given in (3) and (4). 

By using the scattering parameters representation of the 

structure, one can evaluate the current flowing,  𝐼
𝑇𝐸/𝑇𝑀

 ( ⃗⃗⃗ , 𝑧), 

and voltage drop, 𝑉
𝑇𝐸/𝑇𝑀( ⃗⃗⃗ , 𝑧), at the transmission line quote 

above the absorber as follows: 

 

  𝑉
𝑇𝐸/𝑇𝑀( ⃗⃗⃗ , 0

+) = 𝑉+
𝑇𝐸/𝑇𝑀 + 𝑉−

𝑇𝐸/𝑇𝑀
  (A.3) 

 𝐼
𝑇𝐸/𝑇𝑀

 ( ⃗⃗⃗ , 0
+) =

1

𝑍0
 𝐸/  (𝑉+

𝑇𝐸/𝑇𝑀 − 𝑉−
𝑇𝐸/𝑇𝑀

) (A.4) 

 

where  [
𝑉−

𝑇𝐸

𝑉−
𝑇𝑀] = 𝑆̅( 𝜌) [

𝑉+
𝑇𝐸

𝑉+
𝑇𝑀] are the reflected voltages at 

𝐴𝐴′/𝐵𝐵′ terminal, since 𝑆̅( 𝜌) = [
𝑆𝑇𝐸𝑇𝐸( 𝜌) 𝑆𝑇𝐸𝑇𝑀( 𝜌)

𝑆𝑇𝑀𝑇𝐸( 𝜌) 𝑆𝑇𝑀𝑇𝑀( 𝜌)
] 

…

…

…

…

TABLE II 

COMPARISON OF EFFICIENCIES FOR STRIP ABSORBER 𝑓# = 0.6  

 Fourier Optics Full Wave 

 𝜂𝑎𝑝 = 40% 𝜂𝑎𝑝 = 46% 

 = 𝜆𝑓# 𝜂𝑓 = 74% 

𝐴𝛺/𝜆2 = 0.53 

𝜂𝑓 = 82% 

𝐴𝛺/𝜆2 = 0.56 

 

  = 2𝜆𝑓# 

 

𝜂𝑎𝑝 = 68% 

𝜂𝑓 = 32% 

𝐴𝛺/𝜆2 = 2.1 

𝜂𝑎𝑝 = 67% 

𝜂𝑓 = 2 % 

𝐴𝛺/𝜆2 = 2.3 
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represents the scattering matrix of the transmission line at 𝑧 =
0+ quote.  

The averaged magnetic and electric spectral fields over the 

absorber unit cell can be derived as follows: 

 

 𝐸𝑘𝜌

𝑡 ( ⃗⃗𝜌, 𝑧) =
1

√𝑑𝑥𝑑𝑦
𝑉𝑇𝑀( ⃗⃗𝜌, 𝑧)      (A.5) 

 𝐸𝜙
𝑡 ( ⃗⃗𝜌, 𝑧) =

1

√𝑑𝑥𝑑𝑦
𝑉𝑇𝐸( ⃗⃗𝜌, 𝑧)    (A.6) 

 𝐻𝑘𝜌

𝑡 ( ⃗⃗𝜌, 𝑧) = −
1

√𝑑𝑥𝑑𝑦
𝐼𝑇𝐸( ⃗⃗𝜌, 𝑧)    (A.7) 

 𝐻𝜙
𝑡 ( ⃗⃗𝜌) =

1

√𝑑𝑥𝑑𝑦
𝐼𝑇𝑀( ⃗⃗𝜌, 𝑧)    (A.8) 

 

Combining expressions (A.5)–(A.8) one can express the 

average electric and magnetic spectral fields in Cartesian 

coordinates as: 

 

 [
𝐸𝑥

𝑡( ⃗⃗𝜌, 𝑧)

𝐻𝑥
𝑡( ⃗⃗𝜌, 𝑧)

] = [
𝐸𝑘𝜌

𝑡 ( ⃗⃗𝜌, 𝑧)

𝐻𝑘𝜌

𝑡 ( ⃗⃗𝜌, 𝑧)
] ( ̂𝜌 ∙ 𝑥̂) + [

𝐸𝜙
𝑡 ( ⃗⃗𝜌, 𝑧)

𝐻𝜙
𝑡 ( ⃗⃗𝜌, 𝑧)

] (𝜙̂ ∙ 𝑥̂)   

   (A.9) 

 [
𝐸𝑦

𝑡( ⃗⃗𝜌, 𝑧)

𝐻𝑦
𝑡( ⃗⃗𝜌, 𝑧)

] = [
𝐸𝑘𝜌

𝑡 ( ⃗⃗𝜌, 𝑧)

𝐻𝑘𝜌

𝑡 ( ⃗⃗𝜌, 𝑧)
] ( ̂𝜌 ∙ 𝑦̂) + [

𝐸𝜙
𝑡 ( ⃗⃗𝜌, 𝑧)

𝐻𝜙
𝑡 ( ⃗⃗𝜌, 𝑧)

] (𝜙̂ ∙ 𝑦̂)    

   (A.10) 
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