An algorithm for replanning

R.P.J. van der Krogt A. Bos M.M. de Weerdt
C. Witteveen

Delft University of Technology
{r.p.j.vanderkrogt,a.bos,m.m.deweerdt,c.witteveen} @its.tudelft.nl

Abstract

An important aspect of agents is how they construct a plan to reach their
goals. However, since most real-world agents live in a dynamic environment,
often they will be confronted with situations where their plans are no longer
feasible or optimal. In such situations, agents have to change their plan to
deal with the new environment. In this paper we describe such a replanning
process using a computational framework, consisting of so-called resources
and skills, to represent the planned activities of an agent. An algorithm
is introduced which can be used to replan the activities, taking the new
environment into account.

1 Introduction

Often, agents have to achieve a number of given goals without a predefined way
of how to do it. Therefore, they have to make a plan that consists of a number of
actions, leading from the current state of the world to one of the states in which
the goals have been accomplished. To assist them in planning tasks, a number
of systems exists, e.g. Blackbox [5], Graphplan [1] and HSP [2]. These planners
perform well under the assumptions they make: deterministic effects and sole
cause of change [7]. The former states that the effects of all actions are known
and static. The latter states that the world changes only because of the agent’s
actions. These assumptions are convenient during the planning phase, because
they make the problem more manageable. However, once agents start executing
their plan in a dynamic environment these assumptions no longer hold. Most
likely, the agents are not the only one to live in the environment (violating the
sole cause of change-assumption), and the agents’ actions might have other effects
than expected (making the effects non-deterministic), e.g. a robot’s arm may get
stuck and not move as expected.

This demonstrates the need for methods to replan an agent’s actions in a
dynamic environment. One way to replan is to give up the plan, and use standard
planning tools to create a new plan. This is, however, a rather inefficient approach:
not only will it likely take more time than adapting the current plan, it will also
waste all the effort an agent has put in optimizing the current plan. Besides being
inefficient, such an approach might also ruin agreements that have been made with

other agents. Therefore, we believe that using specialized plan revision methods
(like in [3, 4]) to adapt the current plan into a plan which takes into account the
new situation, is the preferred way of coping with a dynamic world. This paper
introduces algorithmic methods for plan revision. Our method is not dependent on
Strips as [4], but on a richer formalism based on skills and resources, as described
in the next section. Therefore we focus on the availability of resources, while
Hanks and Weld focus on the search through a graph of plans.

The remainder of this paper is organized as follows. First, in Section 2, we
present a framework for representing an agent’s plan and describe problems that
may arise in a dynamic environment. Then, in Section 3, we give a detailed
description of the algorithm. In the last section (Section 4) we discuss our future
work.

2 A framework for planning and replanning

This section gives an overview of the framework we will use to model the plan
of an agent. This is a modified version of the framework as described in [6]. We
model processes, such as production or transportation, by skills. An application of
a skill consumes a set of resources and produces a disjunct set of resources. These
skills can be combined to reach certain goals. Such a combination is called a plan.

2.1 Resources, skills, goals and plans

We assume an enumerable set of resources R. Resources can be used (and pro-
duced) exactly once. Each resource r € R is identified by its type (a predicate
symbol) and a unique identifier. We use predicate symbols to describe the type of
a resource, like t g o1 for the type “truck in Baltimore”, and Ig};g for the type “free
transport capacity from New York to Baltimore” To fully specify a resource, we
give a predicate symbol followed by the unique identifier. For example, the term
tnyo(34) represents “truck in New York number 347, and ¢par(36) for “truck in
Baltimore number 36”1, A resource scheme is the set of all resources with the
same predicate symbol. Furthermore we have an extended resource scheme which
is a finite multi-set of resource schemes. (2Y0 NYO 4oy o)
A skill is a rule of the form RS; < RS: BAL" BAL»"BAL o

where RS, and RS> are extended resource sche-
mes. We use in(s) to denote RSy and out(s)
to denote RSsy. An example of a skill is given
in Figure 1. This represents a drive of a truck
from New York to Baltimore: from a truck cur-
rently in New York (¢nyo), it is possible to
produce room for two loads from New York to Baltimore (

NYO NYO
tBAL BAL BAL

tNYO

Figure 1: A skill (top) and its
graphical representation

g—ig) and a truck in

Baltimore (tpar). An application of a skill transforms a set of resources Ry to a
set of resources Ry. Such an application is specified by an instantiation 8 changing
each occurrence p of a predicate symbol in in(s) and out(s) to an occurrence of
a fully specified resource, i.e. adding a unique identifier to each occurrence of p.

The set of all skills will be denoted with S.

IMind that these resources may refer to the same truck, but at a different place.

Let S be a set of skills, and let R; and Ry be (disjunct) sets of resources.
We say that Ry can tmmediately be produced from R; wsing S, abbreviated by
R; s Ry, if there is a skill s € S and an instantiation 6 such that in(s)f C
Ry, i.e. all specific resource instances of the input of the skill occur in R;, and
Ry = (R1 —1in(s)08) Uout(s)d, i.e. the specific input instances are deleted from the
original set of resources Rj, while the corresponding output instances of the skill
are added to the remaining resources. We say that Ra is produced from Ry using
S, if Ry % Ry holds, where F§ denotes the reflexive, transitive closure of .

Skills are applied to a given set of resources R to realize a goal scheme. A goal
scheme is an extended resource set denoting the types of the resources required.
A goal scheme GS' is realizable from R using an instantiation 6, if R % GS6.

We represent a plan by a bi-partite Directed Acyclic Lyas
Graph (DAG) P = (Nr U Ng, E), where Np C R is
a set of resource nodes, Ng is a set of skill nodes ng
where s € § and E a set of arcs. An example plan rwsis ws paL
is given in Figure 2. For any two nodes a € Ng and
ngs € Ng. (a.ns) € E means that resource a is used by
an application of skill s, and (ns,a) € E means that TeaL B e
resource a is produced by an application of s. The

set of input resources of P will be denoted by In(P),
whereas Out(P) refers to the set of final products of
P. We will use d*(n) to denote the out-degree of a Figure 2: A plan
node n and d~(n) to denote the in-degree of node n.

A plan fragment is a special kind of plan to define services an agent can provide.
Using plan fragments, we need less actions to find a way to realize a set of goals
and thus we make the problem more tractable. A superskill is the representation
of a plan fragment PF as a skill which consumes I'n(PF) and produces Out(PF').
The internals of PF' are hidden in the superskill.

2.2 Problems

We assume that at forehand, an agent either selects or computes a plan that
satisfies its initial goals. However, due to the dynamic nature of the world a
previously constructed plan may become obsolete or inefficient. For example:

e goal removal Goals may be removed and therefore resources may become
obsolete, for example because another agent has taken over the responsibility
of goal satisfaction. An agent’s plan then may be optimized: each of the skills
that are used to produce these resources is a candidate to be removed.

e goal addition The agent is asked to satisfy a new goal. Possibly, the new goal
is already produced as a by-product of the plan, but more likely, the plan
has to be changed to include skills to reach the new goal. It is also possible
that the new goal can only be produced if an existing goal is given up (thus
freeing resources). If the latter is the case, the agent will have to decide if it
will trade the old goal for the new one.

o broken skills Errors in the real world occur, causing skills to be “broken”.
That is, an error may cause a skill to no longer produce one or more of its

products (e.g., a reduction in the capacity of a truck). If these products are
not used in the plan (they are pure by-products), the plan still satisfies all
goals. Otherwise, we need to find an alternative way to produce the lost
products. Or, one of the basic resources (e.g., a truck) of a plan may not be
available due to some mishap. Again, alternative ways to realize the plan
must be found.

As we have seen, an agent’s plan is based on assumptions (e.g., availability of
resources, and absence of errors) about the real world, that might be violated due
to unanticipated events. It is impossible to consider all possible contingencies at
forehand. Therefore, we assume that a plan is valid for most situations, but for
those situations in which the plan fails to meet its goals, the agent has to adjust
its plan to the new situation. The agent thereby has to take into account that the
adjusted plan does not change the structure too much.

3 The replanning algorithm

Looking at the list of problems that might occur, we perceive that basically there
are two possibilities: Either the need for a resource at some level of the planning
graph disappears (due to a goal that is no longer needed, or due to a skill that
no longer needs an input) or we need to create a resource at some level of the
planning graph (because we need to include a new goal, because a skill requires
an extra resource or because a skill doesn’t produce a resource that is used by
another skill). This means that if we create two basic algorithms, one for resource
removal and one for resource addition, we can use these to build an algorithm for
each of the problems mentioned in the previous section.

The basic solution for the first possibility is simple: Starting at the obsolete
resource, we scan the plan for skills that are no longer required (because the only
product that was used is a free resource now). Because of the removal of this skill,
all resources that were used by this skill are now free, too. For these resources we
also check whether this means some skills can be removed. We keep checking and
removing skills like this, until there are no skills left that can be removed. This
algorithm is shown in Figure 3.

REMOVE _ SKILLS(P,r)
1. if r is produced by a skill s then
if Vo' produced by s - d+('r') =0 then
DELETE(s)

for all r'' consumed by s do
REMOVE _ SKILLS (P,r"’)

Figure 3: An algorithm to remove unneeded skills

Dealing with the second possibility can be done with two different kinds of plan
operations: we can eztend the plan with a plan fragment or we can replace a part
of the plan with a fragment. To gain information on how to include a fragment
to the plan we introduce two functions: Howto which will return information on
extending a plan with a plan fragment and overlap which will return how to replace
part of the plan with a plan fragment. After detailing these functions in the next
two sections, we present an algorithm which combines these functions to find a
way to replace lost resources.

3.1 Howto

If we need to provide a resource r in our planning
graph, we can simply add the necessary skills to
reach 7 (schematically depicted in Figure 4). For
example, if we need to provide a truck in B;}lti- Figure 4: Extending a plan
more, we could add a plan fragment that drives
a truck from its current location to there. Possibly, some of the skills used in
the plan fragment are not needed, since the original plan can provide the same
resources as these skills. The howto function takes as input a plan P and a plan
fragment PF and returns a tuple (sk,res), where sk is the set of skills that needs
to be added to the plan, and res is the set of resources that have to be included
in the plan before the fragment can be added (i.e. external resources required by
the plan fragment PF, that can not be provided by the plan P).

The procedure (which is given in Figure 5) works as follows: We start by
checking whether we need the plan fragment PF at all, i.e. if the goals PF produces
are not already available in the plan P. In general this will not be the case, after

nowto(P,PF) CHECK _ SKILL(s,P,PF)
1. if all goals of PF reached in P then 1. if s is marked then
return{(0, 0) return(0, 0)
2. (sk,res) = (0,0) 2. MARK (s)
3. for all skills s which produce goals in PF
that are not available in IE do 8 3. (sk,res) = (s, 0)
let(sk', res’) = CHECK _SKILL(3,P,PF) 4. for all resources r required by s do
sk — sk U sk’ - if r not available in P then
res — res U res’ if r produced by a skill s’ in PF then
4. return(sk,res) let (sk', res’) =cHEck _skiLL(s',P,PF)
sk = sk U sk’

res = res U res’

5. return(sk,res)

Figure 5: Algorithm for howto(P,PF)

which we start checking the skills of PF from top to bottom. For each skill s, we
check whether the resources it consumes (in(s)) are available in P. If there are
any, we can use those and add the skill to the plan without a problem. If not,
we will add the skills from PF' that provide the missing resources, if there are. If
there is no such skill in PF (the resource is an input for the plan fragment), we will
add the resource to the list of missing resources. We will use P @ sk to denote the
extension of a plan P with a plan fragment PF, where (sk,res) = howto(P, PF) 2.

3.2 Overlap

Besides extending a plan to provide a wanted re-
source, we can also try to change part of the plan
(schematically depicted in Figure 6). For example, in

the case of a broken truck we might consider using rail
transport instead. To do this, we need to determine . . .
which skills in the original plan P can be removed, if Figure 6: Replacing a skill
a plan fragment PF is added. Some skills s that can be removed because of adding
PF also produce side products that are used by other skills. These side products

have to be provided in another way. We will now specify a function, overlap, which

?Since the structure of the plan fragment is lost, this takes a bit of reasoning. Saving extra
data about the structure can prevent this.

will check if we can replace part of a plan P with a superskill S. The result of
overlap(P, S) = (sk,res), where sk is the set of skills that can be removed from P,
res the set of goals that will no longer be reached (more specifically: the resources
that provide these goals) and S a superskill representation of a fragment.

The overlap algorithm (given in Figure 7) works as follows: For each output
of the superskill that has a matching resource r in the plan, we walk through the
planning graph to search for skills that can be removed and goals that will no
longer be reached. We start with the skill s that produced r and check both the
skills that rely on s, and the skills that s relies on. For each skill we check in
this way, we will examine the produced and the consumed resources: A produced
resource will be added to the set of needed resources if it is not produced by the
superskill S and is a goal of P, for consumed resources r € In(P) we mark the
corresponding input of S (if there is any). When this search ends, we will add the
unmarked input resources of S to the set of needed resources too, completing the
set. We will use P ® sk to denote replacing part of a plan P with a superskill S
in this way, where (sk,res) = overlap(P, S).

overLapr(P,S) RESOURCE _UP(P,S r)
1. (sk,res) = (0,0) 1. (sk,res) = (0,0)
2. for all products of S find the corresponding 2. if r is produced by S then
resource(s) r € P and the skill s that produces MARK(T) in S, return((, 0)
it do . .
3. if goal of P th
if s is not marked then WS asgoalo en
, S res =r

let (sk' res’) =skiLLs(P, S, s)

sk = sk U sk’ 4. MARK(r)

res = res U res’ 5. if v is consumed by a skill s which is not

marked then
let (sk" Tes') =skKILLS(P, S, s)
sk = sk U sk’

res = res U res’

3. res = res U unmarked resources of S

4. return(sk,res)

skILLS(P,S,s) 6
1. (sk,res) = (s,0)
2. for each unmarked resource r produced by
s do

. return(sk,res)

RESOURCE _DOWN(P,S r)

, , 1. if r is an input of S, or r is an initial con-
let (sk’, res’) =RESOURCE_UP(P,S,r) dition of P then

sk iSk U sk s MARK(7) in S, return((, 0)
res — res U res

3. MARK(s) 2. MARK(r)
’ 3. return skiLLs(P, S, skill that produces r in

4. for each unmarked resource r consumed by P)
s do

let (sk’, res’) =RESOURCE _DOWN(P,S,r)

sk = sk U sk’

res = res U res’

5. return(sk,res) . i
Figure 7: The overlap function

3.3 Combining howto and overlap

To solve the problem of including a resource in the plan, we will use an algorithm
based on the howto and overlap functions. The algorithm will examine a number
of possible fixes in a breadth-first way. We will use a priority queue, prioritized
by the cost of a possible solution to decide which partial solution we will work on.
We define the cost of a possible solution PF*, which is a sequence of applied plan
fragments, to solve a problem in plan P as follows: let new(PF*) be the number
of new skills that will be added to P if we add PF* to P, changes(PF*) be the

number of changes (additions and removals of skills) to P if we add PF*, and
missing(PF*) the number of resources that need to be found before we can add
PF*. Then, cost(PF*) = zynew(PF*) + zychanges(PF*) + z3missing(PF*),
where 1 + x5 + 3 = 1. By setting the values of z; we choose priorities for the
different aspects of partial solutions. Suppose we want to favor solutions with
few missing resources® and solutions with additions over solutions with changes®.
Then, we use z3 > 1 > .

The algorithm to find a way to produce a resource g is shown in Figure 8.
It starts by checking if there is already a resource of the same resource scheme
as ¢ in the plan (step 1). If not, we will first add all plan fragments PF with
g € out(PF) to the quene. We then select the first element in the queue (one of
the partial solutions with least cost), find the ways to include a missing resource
for that plan fragment, and queue the extended solutions. We then select the new
front element of the queue and process it, until we have found a solution to our
problem, or we cross some predefined threshold (to make sure we do not search
forever trying to include a resource). This greedy algorithm can be used to build
NEwWGOAL(P,g)

1. if IrdR-r €E out(P)Ar € RA g € R then

use = to supply g ifl'lEl'rlflR -’ € out(P)Ar € RAT €ER
then

2. else ,
use ' to supply r

for all PF where g € out(PF) do

let (sk,res) =ovERLAP(P, PF) else
if sk # (0 then for all PF where 7 € out(PF) do
QUEUE(P ® sk,PF,res,cost(PF)) let (sk, res) =OVERLAP(P, PF)

if sk # () then
QUEUE(P ® sk,PF* 4+ PF res\
r,cosT(PF* + PF))
else
let (sk,res) =nHowTto(P, PF)
DEQUEUE(P.PF* ,wanted,cost} g[gi)[;]i((];g*sﬁ_ii,))-i_ PFres \

select a random r € wanted

else
let (sk, res) =nowTo(P, PF)
QUEUE(P & sk,PF,res,cosT(PF))

3. while no complete solution found and the
threshold is not crossed do

Figure 8: An algorithm that combines howto and overlap to include a new goal

a more optimized one, by taking into account domain specific knowledge.

The algorithms described above have been implemented and tested on a number
of transportation problems. The program reads a planning graph and a number
of plan fragments to start with, after which the user can select from a number of
problems to happen. The program then searches through the list of fragments to
fix the plan with. The program is able to extend plans with a number of fragments
to reach new goals and can also replace skills by others.

4 Conclusions and future extensions

We have remarked that a plan that is created under the assumptions of determinis-
tic effects and sole cause of change may not remain valid in a dynamic environment.
Other agents and failing actions may bring an agent in a situation where his plan
becomes obsolete or inefficient. If this happens the agent has to create a new valid
plan. One approach is to start planning all over again, but a better approach is to

3The number of missing resources could be seen as a measurement for the remaining work.
4 Additions won’t interfere with the current plan, whereas changing the plan might.

adapt the current plan to fit the new situation. We have developed a framework to

represent an agent’s actions and introduced algorithimns for removing and adding
resources to the plan, based on the functions remove skills, howto and overlap,

that can adapt a plan to the new situation by extending or changing the plan.

Although the revision algorithms correctly solve the problems of including and

removing resources from the plan, there are a number of improvements possible:

e The framework presented does not yet include timing information. Often,
an agent has to reach the goals before a certain deadline. To be able to deal
with deadlines, the framework and the algorithm will have to be changed to
take times into account.

e The cost function used, treats all goals and skills equally. More likely, differ-
ent skills have different costs, and different goals have different profits. Also,
the cost function used by the algorithm contains three constants, for which
an optimal value (or range) has to be found.

e If there are multiple agents, it is possible that the help of another agent is
required, or leads to a cheaper solution. A way to inquire and deal with this
information will be needed in multi-agent environments.

e Special tools could be developed, which create a suitable set of plan frag-
ments. The set of plan fragments should be large enough to be able to
construct plan adaptations with a few plan fragments, but it should not be
too large, since that will slow down the search.

References

[1]

2]

13l

4]

5]

[6]

[7]

A L. Blum and M.L. Furst. Fast planning through planning graph analysis. In
Proc. of the 14** Int. Joint Conf. on A.I. (IJCAI-95), 1995.

B. Bonet and H. Geffner. Planning as heuristic search: New results. In Euro-

pean Conference on Planning (ECP-99), 1999.

A. Gerevini and I. Serina. Fast plan adaptation through planning graphs: Local
and systematic search techniques. In Proc. of the 5** Int. Conf. on AIPS, 2000.

S. Hanks and D.S. Weld. A domain-independent algorithm for plan adaptation.
JAIR, Volume 2, 1995.

H. Kautz and B. Selman. BLACKBOX: A new approach to the application
of theorem proving to problem solving. In Working notes of the Workshop on
Planning as Combinatorial Search, held in conjunction with AIPS-98, 1998.

L.J. Moree, A. Bos, H. Tonino and C. Witteveen. Cooperation by iterated plan
revision. In Proceedings of the ICMAS-00, 2000.

D.S. Weld. Recent advances in Al planning. In Al Magazine, Volume 20, Num-
ber 2, 1999.

