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Abstract

In spectroscopy and diffraction methods, the signatures of
catalytically active sites are often submerged by the con-
tribution of spectator species. In some cases, the signals
may also superimpose with each other, hindering proper
peak identification. Rationalizing a reaction pathway
becomes very challenging, if not impossible, under these
circumstances. Accordingly, the implementation of tran-
sient, dynamic methods such as modulation/modulated
excitation spectroscopy (MES) can improve the analysis
of these signals. In MES, the catalyst sample is subjected
to periodic changes in the environment (e.g., reactant
concentration) that stimulate the active species periodi-
cally while spectra or diffractograms are recorded with
sufficient time resolution. Combined with phase-sensitive

detection (PSD) analysis, this approach selectively
enhances the signals of the responsive (and possibly
active) species and at the same time attenuates the contri-
bution from the spectator and static species. Overall, this
results in increased analytical capabilities irrespective of
the type of spectroscopy or diffraction technique that is
used for the experiment. In this chapter, we introduce the
basic concepts of MES, discuss the theory of PSD, and
provide general guidelines that are useful for whoever
encounters PSD data for the first time.

Keywords

Modulated/modulation excitation spectroscopy · Phase-
sensitive detection · In situ · Operando · Spectroscopy ·
Diffraction

42.1 Introduction

In recent years, operando spectroscopy contributed to shed-
ding light on the “black box” enclosing the mechanism of
catalytic processes [1]. Through our knowledge of light-
matter interaction, we have gained access to the molecular
events occurring on the catalyst surface that was not possible
a few decades ago. As a result, the rational design of catalytic
materials is starting to become more realistic than ever, and
the possibility to perform it is increasingly in our hands.
Despite its great successes, however, modern spectroscopy
still faces a number of limitations when applied to heteroge-
neous catalysis research due to the inherent complexity of
solid catalytic systems. The prevailing difficulties stem from
the following:

1. Catalysis results from simultaneous and often super-
imposed chemical phenomena [2]. These include reactant
adsorption, surface reaction, and product desorption. As a
consequence, the arising spectral signal will be a
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convolution of all of these processes. In some cases, one
of the processes, thus its spectral features, will predomi-
nate over the others in a steady-state process. Furthermore,
the spectroscopic signatures of different chemical species
may have similar energy values and, in practice, appear as
overlapping signals. For instance, Lewis-bound NH3,
water, and nitrate species possess vibrational signature in
the infrared (IR) spectrum at around 1620 cm�1. The
resulting observed peak is then the result of the overlap
of the signals of these three species, with no straightfor-
ward way of deconvolution [3].

2. In commercial catalyst formulations, the active phase is
present in a much lower concentration in comparison with
the other catalyst components (e.g., support, promoter,
and binder) in order to maximize the atom efficiency of
the active phase, which is usually more expensive and not
Earth-abundant. Conventional spectral features are there-
fore dominated by the signal originating from species
coordinated to the support, while the active phase, which
is the catalytically relevant component, can only contrib-
ute weakly because of its low concentration and the occur-
ring turnover. In addition, the active phase itself can be
further divided into catalytically relevant and spectator/
unresponsive species. Normally, the spectator species pre-
dominate in number, and it remains a challenge to extract
the signal contribution from the real species responsible
for the activity [4].

3. Reactive intermediates are short-lived species owing to
their thermodynamic instability. In rare instances, inter-
mediate species are sufficiently stable that they can be
isolated and characterized extensively. This is especially
true for some organic reactions [5, 6], but it is not the norm
for inorganic reactions and those that occur via a radical
mechanism. The transient presence of intermediates in the
reaction is further complicated by the fact that, compared
to the reactants and products, only a very small fraction of
the intermediates is present at any given time and thus will
most likely be obscured by the signal contributed by the
reactants and products.

Difference spectroscopy may partially solve the problem
of separating the signal of the active phase from that of the
support [7], but it fails to address the other issues.
Chemometric methods can be employed to resolve complex
envelopes of superimposed signals and are increasingly
gaining popularity, but they normally require large datasets
and computing power. Alternatively, a different experimental
approach may be implemented. First described in a seminal
work more than two decades ago [8], modulated excitation
spectroscopy (MES, as it is also often called, modulation
excitation spectroscopy) holds the potential of addressing
all of the aforementioned difficulties.

42.2 Modulation and Phase-Sensitive
Detection

Selective and sensitive detection of signals containing rele-
vant information on catalytic reactions, such as catalytic
active site/material and active chemical species, is of great
challenge as described above in the limitations of general
spectroscopic methods. MES is a transient response tech-
nique. It makes use of periodic perturbation of a reaction
system with external parameter(s) called stimulus
(or stimulation) [2, 8]. The stimulus is chosen in a way that
the population of what we wish to monitor, e.g., the active
catalyst structure or active chemical species, is affected most
exclusively by the perturbation. Through the exclusive dis-
turbance of particular species/structure and their subsequent
detection, one can add selectivity to the detection. In princi-
ple, there is no limitation on the types of stimulus, and there
are many examples such as fluid (gas/liquid) concentration
[9, 10], temperature [11], electric field [12], light flux [13],
and X-ray energy [14]. One can choose the most appropriate
one depending on what one wishes to see and also on exper-
imental convenience and restrictions. By far the most com-
mon stimulus type is fluid concentration, because the extent
of a chemical reaction and the concentrations of active struc-
ture/species can be more easily modulated using a concen-
tration stimulus [15].

The experimental protocol and data processing procedures
are shown in Fig. 42.1. Let us assume that we use a periodic
sinusoidal perturbation of a catalytic system by an external
parameter as the stimulus (e.g., reactant concentration,
Fig. 42.1a). At the start of such periodic perturbation exper-
iments, typically there is an initial period when the chemical
system changes irreversibly to some extent and reaches a
stably oscillating period where the mean value is constant
(quasi steady state, Fig. 42.1a). It should be noted that there is
always some noise in the signal and the effects of noise are
more significant when the time resolution of our measure-
ments is increased (i.e., fast spectral acquisition). Figure 42.1
shows the stimulus and signal responses with lines, but in a
typical spectroscopic measurement, we record signal
responses as a function of a range of energy. The signal
intensity shown in Fig. 42.1 represents a response only at
one energy point, while in practice, there are distinct signal
responses at every energy point recorded in a set of spectra
(e.g., if IR spectroscopy is used and the spectra are recorded
in the range of 1000–4000 cm�1 at the spectral resolution of
1 cm�1, there are 3001 signal intensity responses in the
recorded time-resolved data). For simplicity, here only one
signal response at one energy point is described.

The first data processing generally performed in MES is a
simple averaging of the signal over the cycles into one period
after reaching a so-called quasi steady state after the initial
equilibration period (Fig. 42.1b). According to Poisson
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statistics, this reduces the data size and improves sensitivity
as well as the signal-to-noise ratio by about

ffiffiffiffi
N

p
. (N is the

number of averaged cycles.) Actively responding species
mainly respond at the same frequency as that of the stimulus,
and the signal intensity oscillates in a sinusoidal manner but
with some delay (φ) with respect to the stimulus (Fig. 42.1b).
The magnitude of the delay is dependent on the kinetics of
the underlying physicochemical processes (e.g., sorption,
reaction, convection, and diffusion) and consequently the
delay changes with the modulation frequency of the stimulus
(ω). In other words, the frequency of the stimulus affects the
magnitude of the delay, and kinetic studies can be performed
by varying the stimulus frequency.

One can study the averaged response and its delay
(Fig. 42.1b) to understand catalytic processes. However, the
relative intensity of the signal actively changing in response
to the stimulus is often extremely small and can be even at the
level of noise. One can improve the signal-to-noise ratio by
increasing the number of cycles (N ), but this increases the
burden in the experiments and data processing. In principle,
the averaged signal (Aave) consists of three signal elements
(Fig. 42.1c): (i) static signal (Astatic), (ii) actual signal of
interest (Areal), and (iii) noise (Anoise). Astatic may arise from
catalyst support material, solvent, and inactive spectator

species, often dominating the detected signal. They are all
important for the reaction one way or the other, but to under-
stand the catalytic reactions, their dominant signal intensity
should be reduced or eliminated completely. Areal is obvi-
ously the one we wish to extract to understand its chemical
origin. Anoise is always present for any detection method, and
typically it contains high-frequency elements with respect to
the stimulus frequency. What we wish to do is to extract only
Areal out of Aave, and this is exactly what is done in MES by its
mathematical processing, called phase-sensitive detection
(PSD, Fig. 42.1d) [8].

PSD is the mathematical treatment often implemented in
the hardware in signal processing such as lock-in amplifiers.
On the other hand, the lock-in (i.e., extracting the signal at the
same frequency as that of the stimulus, k¼ 1 in Fig. 42.1d) is
performed numerically in MES, and this has major advan-
tages over the hardware lock-in due to the richer information
contained (i.e., less oversimplification of the data). What PSD
does mathematically is presented by the equation in
Fig. 42.1d. In a nutshell, the averaged signal (Aave) is multi-
plied by another sine function at the frequency of kω. The
sine function also contains a new variable ϕPSD

k which is
called phase angle. Generally, the multiplied sine function
has the fundamental frequency of the stimulus (ω), meaning
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b) c)
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Fig. 42.1 (a) Sinusoidal stimulus of an external parameter and a
representative response of active species/structures affected by the stim-
ulus; (b) the one-period response obtained after averaging over the
multiple modulation cycles after reaching quasi steady state; (c) the
three signal elements consisting of the actual response (Aave), namely

static signal (Astatic), actual signal of interest (Areal), and noise (Anoise);
(d) the mathematical engine of MES, phase-sensitive detection (PSD);
and (e) the phase-domain response after PSD at the fundamental stim-
ulus frequency demodulation (k ¼ 1)
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that k ¼ 1 (if k ¼ 1, k is often not written). The thus obtained
response is integrated over the period (T ) and then normal-
ized by multiplying with 2/T (Fig. 42.1d). Interestingly, the
resulting response after PSD is not a function of time any
longer but of ϕPSD(Fig. 42.1e). PSD is also called demodu-
lation, and k is sometimes called the demodulation index.

Let us evaluate what PSD does more closely. Regarding
the stimulus, Samplitude sin (ωt) is transformed by PSD to a
cosine function of the same amplitude (Samplitude cos (ϕ

PSD))
where the domain changes from time (t) to phase angle
(ϕPSD). For the actively responding signal, the domain also
changes and Aamplitude cos (φ � ϕPSD) is obtained after PSD.
This phase-domain signal is a very similar sinusoidal func-
tion containing the delay term (φ) with the same amplitude as
that of the signal we wish to extract (Areal) which is
Aamplitude sin (ωt þ φ). Most importantly, in the phase
domain, the static signal (Astatic) is completely vanished and
so is the noise (Anoise). Precisely, only the noise signal vary-
ing at the same frequency as kω will appear in the phase
domain, but this is negligible because high-frequency noise is
generally dominating. Hence, what we can achieve with MES
and especially by its mathematical engine PSD is that we can
add selectivity to the measurement and boost its detection
sensitivity by removing the static signals and reducing the
noise while retaining the key information of interest. After
PSD and the initial averaging process (Fig. 42.1b), in MES,
one can often achieve 2–3 orders of magnitude improvement
in signal-to-noise. This drastic improvement in the sensitivity
is extremely useful or even necessary to study the weak and
transiently present signals in catalytic reactions.

The mathematical expression for the active sites/species
(Aamplitude cos (φ � ϕPSD), Fig. 42.1e), shows that the ampli-
tude of the response (Aamplitude) is at its maximum when φ �
ϕPSD ¼ 0, i.e., ϕPSD is equal to φ, which is called the “in-
phase” condition. This “in-phase” condition has interesting
and useful implications. From the phase-domain response,
one can easily check when (at which phase angle) the signal
becomes maximum by varying ϕPSD, and this value is
directly related to the delay of the active species/structure.
If we have multiple species and thus multiple bands in the
time-resolved spectra with different kinetic responses, these
bands will show maximum value in the phase domain at
different ϕPSD. By converting in-phase ϕPSD to φ for different
bands (e.g., different chemical species/structures), one can
understand what is happening first and gain insights into
transformation pathways. This analysis is called in-phase
angle analysis [2, 16].

So far, a sinusoidal shape of stimulus has been assumed. In
practice, this shape is often not the most convenient one to
generate and, instead, a square-wave shaped stimulus is often
used because such shapes can be more easily generated, for
example, by valve switching for concentration modulation
and by light on-off or by means of a chopper for light flux

modulation. One may wonder about the influence of the
stimulus shape on the data analysis procedure and on
the quantitative nature of such analysis. More precisely, the
meaning of the amplitudes and delays of phase-domain sig-
nals when a square-wave stimulus is used can be questioned,
compared to the case of the unaltered amplitude of the active
species/structure signals after PSD when a sinusoidal stimu-
lus is used (Fig. 42.1). Within the linear response approxi-
mation, the analysis procedure has been well established and
shows even advantages of a square-wave stimulus compared
to a sine-wave one [2, 17]. Mathematically, A square-wave
(SW(t)) with an amplitude of ASW can be written as the sum
of odd-frequency sine functions with their amplitude scaled
by the factor of 4/π and with more reducing amplitudes at
higher frequencies.

SW tð Þ ¼ 4

π
ASW sinωt þ sin 3ωt

3
þ sin 5ωt

5
þ . . .

� �

¼ 4

π
ASW

X1
n¼1

sin 2n� 1ð Þωt½ �
2n� 1

ð42:1Þ
Clearly, a square-wave contains the sine wave of the funda-

mental frequency besides all other sine waves of odd frequen-
cies. In other words, with a square-wave stimulus, the system is
perturbed not only by the fundamental frequency (ω) but also
by the many higher frequencies (odd-frequency harmonics:
3ω, 5ω¸ 7ω¸. . .). The beauty of PSD is that by changing the
demodulation index k in the PSD equation (Fig. 42.1d), we can
selectively extract the response varying at kω frequency, which
can also be performed conveniently by Fourier transform [18].
It has been shown that the signal delayφk (in the phase domain,
it is also called phase delay) obtained by the high-frequency
demodulation (PSD with k > 1) is identical to that obtained
with the MES experiment at the higher stimulus frequency as
the fundamental frequency (e.g., MES experiment at (2n �
1)ω, n defined in Eq. 42.1). The same also holds for the
response amplitude, but to convert the amplitude to a compa-
rable scale, one needs to multiply the demodulated signal
amplitude by 2n � 1 (Eq. 42.1) after high-frequency demodu-
lation since the amplitudes of the higher frequency terms are
smaller by 2n � 1 (Eq. 42.1). Importantly, this means that one
square-wave stimulus experiment is equivalent to multiple
sine-wave stimulus experiments, facilitating to understand the
kinetic responses of the amplitude and delay of active signals. It
should be remembered that this is precise and exact only when
the responses are linear. In practice, one can obtain a more
linear response by reducing the stimulus amplitude [17]. In this
case, however, the amplitude of the higher frequency terms is
also reduced, and the signal-to-noise ratio may not be high
enough for reliable analysis.
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42.3 Use and Interpretation of
Phase-Resolved Data

The increasing number of reports on the use of MES and PSD
to elucidate mechanisms of catalyzed reactions calls for an
introduction into the use, analysis, and utility of the phase-
resolved data. In order to keep the discussion broad enough,
we consider two general signals close to each other
(Fig. 42.2a). The abscissa is generic and could be mute,
because the idea is to discuss any type of spectroscopy and
diffraction experiment performed under the paradigm of the
MES methodology. Moreover, it is clear from the PSD equa-
tion (Fig. 42.1d) that the formula is valid irrespective of the
method that is used to interrogate the sample. This is

demonstrated by the increasing variety of analytical methods
that have been coupled to the modulation approach in recent
years (ATR-IR, DRIFTS, PM-IRRAS, Raman, XAS, XRD,
XES, HEROS, and PDF) [15]. For the sake of clarity, we will
refer to the spectra as the data in Fig. 42.2a–d.

Figure 42.2a, e represents a common graph that is encoun-
tered in most works making use of MES and PSD: time-
resolved spectra (Fig. 42.2a) are presented together with their
corresponding phase-resolved data (Fig. 42.2e) obtained at
the fundamental demodulation frequency k ¼ 1. In
Fig. 42.2e, only half of the phase-resolved data upon PSD
is presented. The other half of the data is a mirror image of
these ones, as it follows from the sinusoidal phase angular
dependence of signals. While the information delivered by
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Fig. 42.2 (a–d) Simulated data sets of two generic signals A and B in
modulated excitation experiments in which (a) A does not vary, (b) A
and B vary with identical kinetics, (c) A is retarded compared to B, and
(d) A is present when B is absent (i.e., opposite kinetics). (e–h)
Corresponding phase-resolved data obtained at the fundamental

frequency of stimulus (k¼ 1). Only half of the full set of phase-resolved
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show relevant traces. (i–l) Phase angular dependence of A and B at the
maximum peak position. Red data in (a–d) represents the first half-
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comparison of Fig. 42.2a, e is inherently sufficient to claim
that the signals appearing in the phase-resolved data belong
to species responding to the external stimulus, there are a
number of further actions that can be taken to analyze the
phase-resolved data and take full advantage of MES.

Let us discuss the appearance of the phase-resolved data.
Several sub-cases can be encountered that depend on how
two signals behave with respect to each other along the time
axis. We will discuss the following sub-cases: (a) one signal
that we label as A remains unchanged, and the second
(B) varies following a given kinetics of consumption and
formation; (b) both signals vary following identical kinetics
(synchronous); (c) both signals vary following different
kinetics; and finally, (d), when A is present, B is not and
vice versa (the signals vary with opposite phase; asynchro-
nous). Figure 42.2a–d displays the sets of time-resolved
spectra during one modulation period in which either B or
both signals vary as indicated just above. Figure 42.3a–d
presents the corresponding simulated temporal dependence
of the two signals A and B in that modulation period. Ideally,
the dataset of Fig. 42.2a–d is the result of averaging of e.g.,
n time-resolved spectra (in Fig. 42.3, n ¼ 40) obtained in
m modulation periods to a single modulation period, which
we have shown above contributes to increase the signal-to-
noise ratio of the measurement significantly [19–21].

Figure 42.2e–h show the corresponding phase-resolved
dataset for each case obtained from application of the PSD
equation using k ¼ 1 and a half-period length T/2 (i.e., a half
range of the whole ϕPSD). This PSD at k ¼ 1 is very common
for most characterization techniques enabling such measure-
ments; however, for X-ray diffraction, it was demonstrated
that active responses appear at k ¼ 2 due to the fact that the
detected intensity in XRD is the square of the scattered
energy, leading to frequency doubling [22]. It should be
noted that the maximum intensity of the signals in the
phase-resolved data is typically scaled compared to the inten-
sity of the changes in the time-resolved data (in the case of
Fig. 42.2, the scaling factor is ca. 1.6; this scaling factor can
be explained more precisely by considering that (i) the ampli-
tude in the time domain is ca. 0.2 (Fig. 42.2a, b) and not
ca. 0.4 since the amplitude change from the mean value is
considered as in a sinusoidal wave); (ii) the amplitude
obtained after PSD at k¼ 1 needs to be scaled by 4/π because
of the square-wave stimulus and consequent scaling factor
(Eq. 42.1); and (iii) 0.4/(0.2∙4/π) yields roughly 1.6 [23, 20].

In Fig. 42.2a, only signal B varies while signal A remains
constant throughout the modulation period. The
corresponding phase-resolved data shows only the contribu-
tion of signal B, because signal A does not change in inten-
sity along the experiment and such signals are fully vanished
by PSD (Fig. 42.1). The intensity of signal B changes from a
maximum value to a minimum negative value following a
sinusoidal function (Fig. 42.2i). The dataset of Fig. 42.2e is

composed of 18 spectra in the range of phase angles ϕPSD of
0–180�. In the 190–360� range, the same set of spectra is
obtained but of the opposite sign, following the sinusoidal
phase angular dependence of signal intensity shown in
Fig. 42.2i. This data set is shown with intervals of ϕPSD ¼
10�, but more precise intervals of 5, 2, or 1� can be obtained
that might be required to better resolve kinetic behaviors of
signals in phase-resolved data [24].

Consider then that also signal A varies during the modula-
tion experiment and that the intensity of both signals exhibits
the same kinetics of decay and evolution as shown in
Fig. 42.3b. The two signals are set to exhibit different inten-
sities. Figure 42.2f shows the phase-resolved spectra of this
experiment. As in the previous case, the intensity of both
signals varies along a sinusoidal function (Fig. 42.2j) and the
two signals are in-phase as the maximum intensity reached by
signal A corresponds to the maximum intensity obtained for
signal B, but the two maxima do not correspond in absolute
value. The phase angular dependence of the intensity of the
two signals coincides (Fig. 42.2j); both signals cross the x-axis
at the same points (phase angle, ϕPSD) and rise to the maxi-
mum and minimum values at the same points. This case is, for
example, that very simple of an adsorbed species whose
vibrational spectrum is composed of two signals A and B of
different intensities: when the species appears in the experi-
ment, both signals grow simultaneously when the species
vanishes, both signals disappear with the same kinetics. This
case could also be that of two species, one assigned to signal A
and one to signal B, that display the same kinetic behavior.

0 10 20

Time (–)

In
te

ns
ity

 (
–)

Time (–)

30 40 0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 (
–)

0.0

0.2

0.4

0.6

0.8

1.0
A

a) b)

c) d)

B

Fig. 42.3 Simulated temporal dependences of generic signals A and
B. PSD of the corresponding time-resolved delivers the data shown in
Fig. 42.2

972 A. Urakawa et al.



A more complex case is that obtained when the two
signals exhibit different kinetics but they still disappear/
appear in the same half-period. Keeping the situation of two
signals of different intensities, Fig. 42.2c shows very similar
data to those of Fig. 42.2b. However, the kinetics of decay
and growth clearly are not equal, implying that the phase-
resolved data intersect. The phase-resolved data are also very
similar to those shown in Fig. 42.2f. Here, the details are
important. To explain, let us consider the phase angular
dependence (Fig. 42.2k). Contrary to the previous case, the
two sinusoids do not overlap; rather their maxima are shifted
indicating a delay in the evolution of the two signals. This
shift also reveals that, for example, at ϕPSD ¼ 60�, signal A is
absent in the phase-resolved spectrum, because its intensity is
nil. Similarly, at ϕPSD ¼ 80�, signal B intersects the x-axis
and will not be present in the corresponding phase-resolved
spectrum. This demonstrates that the spectra at these two
ϕPSD values will display only the species corresponding to
signal B and the species assigned to signal A, respectively.
Therefore, spectra containing only the signal(s) of one spe-
cies can be obtained by PSD and can be selected [2]. This
analysis is the kinetic analysis of phase-resolved data. This
may deliver the same results as the analysis of the time-
resolved spectra as shown in Fig. 42.3 but could allow
improving the differentiation of signals of different species
that is sometimes not possible in the time-dependent dataset.

The other characteristic situation is shown in Fig. 42.2d,
where the two signals are retarded by a half-period: when A is
present, B is not, and vice versa in the subsequent half-
period. This case may correspond to the situation when one
species transforms into the other one, e.g., A transforms into
B reversibly during the experiment. The corresponding
phase-resolved data (Fig. 42.2h) always show lobes of the
opposite sign. The phase angular dependence of the signals in
Fig. 42.2l shows that signal A is maximum when signal B is
minimum (and vice versa) and that both signals cross the
x-axis at the same intersection points.

Clearly, the cases in Fig. 42.2a, c, and d represent two
signals belonging to two different species. The above analy-
sis suggests that rather than all phase-resolved data, a careful
selection of the phase-resolved data can improve our knowl-
edge about the behavior of the system.

While the analysis presented in Fig. 42.2 is relatively
straightforward in the case of vibrational spectra [17, 25], it
is particularly delicate in the case of X-ray absorption spec-
troscopy data. Given the nature of the experiment, there are a
number of points within the sequence of transformations that
can be performed on XAS data, from the raw near-edge data
to the Fourier transformed data, that can provide different
types of information. The raw XAS data can be treated by
PSD as demonstrated in Refs. [19, 20, 26]. PSD at this point
provides spectra in the whole energy range selected for the
measurement that are very similar to difference spectra

(though with significantly enhanced signal-to-noise ratio).
This allows the visualization of subtle changes in oxidation
state by the absorbing element, even for low levels of the
absorbing element, e.g., 0.3 wt% Rh/Al2O3, hence likely for
very small aggregated entities of the active phase [19]. Com-
parison with a difference spectrum obtained from the metal
foil and a corresponding spectrum of an oxidized phase of the
element (for example, PdO in the case of Pd) can support
qualitative identification of additional phases. This has been,
for instance, the case for the presence of Pd-C species in
modulation experiments consisting of alternate pulses of
CO and NO on Pd/Al2O3 [19]. Large deviations of the
phase-resolved spectra in the region starting 5 eV above the
Pd K-edge (E0 ¼ 24,350 eV) from the Pd-PdO difference
spectrum provided qualitative information on the formation
of carbide species that were reflected in the quantitative
analysis of the time-resolved EXAFS spectra, suggesting
expansion of the Pd-Pd bond length in the CO pulse from
2.73 to ca. 2.77 Å. The PSD of the normalized raw data
cancels the contribution of the edge jump that hampers iden-
tification of small changes around the edge energy and the
whiteline as well as of the predominant phase. Continuing
with the example of reduced Pd/Al2O3, the contribution of
metallic Pd representing the bulk of Pd nano-particles after
reduction in this material is cancelled by PSD.

For quantitative purposes, Chiarello et al. [23] showed that
for XAS data, PSD can be carried out on the data in the
k-space followed by or after Fourier transform. While the
information contained in the PSD data should ideally be
identical, demodulation in k-space followed by Fourier trans-
form of the PSD data is preferable to visualize only the
changes occurring on the radial distribution function.
Hence, changes in the distances from neighboring atoms
and in the coordination number relative to a specific coordi-
nation shell are made visible by PSD. Because PSD elimi-
nates the contribution of species to the spectra that do not
respond to the modulation stimulus, the PSD of the k-space
data eliminates the contribution of the bulk phase that may
dominate in the radial distribution function. This approach
allowed the determination of small coordination number
values from fitting the data after sequential PSD and Fourier
transform, suggesting the growth of thin oxidic layers on
metal particles. For example, on nano-particles of typical
sizes of 2–6 nm, values for Pd-O and Pd-O-Pd were
2.0 � 0.2 and 1.8 � 0.6, respectively, for Pd/Al2O3 [23].
On larger particles (>10 nm), where the contribution of the
bulk to the XAS is even larger, an average Ru-O coordination
number of 0.25 � 0.09, a bond distance of 1.945 � 0.016 Å,
and a pseudo-Debye-Waller factor of 0.0035 � 0.0035 Å2

were determined for a reduced Ru/Al2O3 catalyst subject to
periodic oxidation-reduction indicating the presence of a very
thin oxide layer [20]. On the contrary, the PSD data after
Fourier transform contain also the information on the bulk
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phases [25], which overlaps strongly with the changes
induced by the modulation typically overwhelming them.

König et al. [24] have shown that the modulation-PSD
approach provides sufficient sensitivity to detect Ru-S bonds
in Al2O3-supported Ru that are believed to be located at the
surface of the large Ru particles (10–30 nm) with a Ru-S
coordination number of 0.07 � 0.02 at R ¼ 2.299 � 0.012.
This analysis of enhanced precision was possible only upon
the selection of suitable phase-resolved spectra among
the obtained set, as we have described in Fig. 42.2. Given
the surface nature of the heterogeneous catalytic processes,
the studies using XAS combined with modulated excitation
and PSD demonstrate that surface sensitivity can be
bestowed on XAS through this experimental approach.

We believe that this is also the case for XRD, another
typical bulk characterization method. High energy XRD
modulation experiments on Pd supported on ceria-zirconia
demonstrated the potential of XRD in determining the redox
behavior of small metal nano-particles that are otherwise not
resolved by XRD [21], especially because of the contribution
of the background scattering. This is completely removed by
the PSD thus allowing the observation of small diffraction
peaks. Marchionni et al. [27, 28] showed that reoxidation of
reduced Pd/Al2O3 occurs in two stages using high-energy
XRD. The phase-resolved XRD data exhibited different
degrees of combination of two features of different widths
in the range of the (101) reflection of PdO (2θ ¼ 32.5�). The
kinetic analysis demonstrated above, upon adequate selection
of the phase-resolved data, allowed to isolate the contribution

of an amorphous phase (ϕPSD ¼ 210�), characterized by a
very broad signal, from that of a more crystalline phase
(ϕPSD ¼ 70�), characterized by an overlapping sharp signal
[27]. Alternate CO and O2 pulses allowed demonstrating that
Pt nano-particles in Pt/Al2O3 oscillate between fully reduced
and an amorphous Pt-O layer [29]. The corresponding phase-
resolved XRD data (belonging to the case shown in
Fig. 42.2d) displayed sharp peaks in correspondence of Pt
reflections and very broad features of the opposite sign in
correspondence of the Pt oxide reflections.

While most phase-resolved data are typically obtained and
shown at k ¼ 1, further analysis can be performed upon
demodulation using higher harmonics, typically k ¼ 3,
5, etc. [17, 25, 27]. This additional analysis is useful to
distinguish between species of different nature when this
differentiation is ambiguous at k ¼ 1. A detailed mathemat-
ical analysis is provided in Ref. [27] in combination with
kinetic considerations. Figure 42.4 shows the same data as in
Fig. 42.2c after PSD at k¼ 1, 3 and 5. The major effect of the
use of higher harmonics on the sets of phase resolved data is
to decrease the overall intensity, which is more significant at
k¼ 3 (Fig. 42.4b) and attenuates above this value. This is the
case because the contribution of higher harmonics to the
approximation of a square-wave stimulus decreases with
increasing k [2]. However, Fig. 42.4 also shows that the
decrease in intensity with increasing k occurs faster for
signal A, the A:B ratio decreasing in the order of 2.45
(k ¼ 1) > 1.60 (3) > 1.17 (5). Hence, in this process, a
simultaneous enhancement in the response of signals whose
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temporal dependence is faster is obtained relative to signals
evolving more slowly. In the case considered here, the
decreased A:B ratio with increasing k agrees with the tempo-
ral profiles of A and B signals in Fig. 42.3c, showing that
signal B appears and disappears faster than signal A in both
half-periods. It is also evident that with increasing k, it
becomes easier to see differences between the kinetics of
the two signals, as an increasing number of phase-resolved
data exhibits signals of opposite sign with increasing k.

42.4 Summary and Outlook

Over the last few decades, advances in nano-material engi-
neering and improvements in in situ and operando detection
methodologies have significantly enhanced our understanding
of catalytic materials and reaction mechanisms. At the same
time, many studies have exemplified the dynamic nature of
catalyst materials responding to reaction conditions (reactant/
product concentration, pressure, and temperature), highlight-
ing the necessity for operando studies to firmly establish
structure vs. activity relationships towards rational design
and optimization of next generation catalysts. These techno-
logical advances, however, are often not sufficient to sense
active chemical species and catalytic active sites due to their
low populations compared to other inactive or irrelevant chem-
ical species and material structures. MES allows both adding
detection selectivity towards what we wish to monitor (active
sites/structures) and boosting sensitivity drastically through
the averaging scheme and the subsequent mathematical treat-
ment, PSD. There are numerous application examples demon-
strating the power of MES in studying catalytic reaction
mechanisms [15], and this approach is increasingly gaining
popularity over the past decade due to its necessity as well as
its versatile character to combine with any analytical methods.

The important aspect which is not covered in this chapter
is the cell design to perform MES experiments. As described
above, various stimulus types can be used and, among them,
concentration modulation is the most common type of exper-
iment. It is very important to design spectroscopic cells so
that one can perform relevant studies (i.e., operando, with
simultaneous reactivity measurement) and exert a stimulus
with a desired shape (e.g., sinusoidal or square wave).
Flow-through cells are commonly used for concentration
modulation, and it is of critical importance to characterize
the flow and mixing behavior to precisely evaluate chemical
information. For reaction kinetic analysis, it is mandatory to
characterize in situ and operando cells in depth by under-
standing convection and diffusion, thus their nonideal behav-
ior as reactors and their influences on the signal responses
[10, 30–33]. When a stimulus is created by using substrates
of chemically identical nature such as isotopes [34, 35], it is
possible to combine MES with detailed kinetic studies using

the scheme of steady-state isotopic transient kinetic analysis
(SSITKA) [36] to elucidate molecular interactions, reaction
mechanisms, and reaction kinetics.

It is also important to highlight one major challenge with
MES on disentangling overlapping bands in the phase
domain. In theory, from the in-phase angles, one can differ-
entiate kinetics of the bands with a distinct chemical nature;
however, this fails largely when bands overlap because they
show mixed in-phase angles of the underlying bands. It is
possible to enhance the kinetic resolution of the bands with
different chemical origins by making use of high-frequency
demodulation (Fig. 42.4); however, it is not straightforward
to obtain chemically and kinetically pure spectra by MES. To
solve this problem, one can use multivariate spectral analysis
such as multivariate curve resolution (MCR) [37, 38].
Recently, combining the advantages of MES for sensitivity
enhancement and disentangling power of multivariate spec-
tral analysis has been demonstrated [39, 40]. Further appli-
cations of these new methodologies, their theoretical
development, as well as more insightful and detailed MES
studies are expected and are necessary to maximally make
use of these powerful methodologies for mechanistic and
kinetic studies of catalytic systems.
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