<]
TUDelft

Delft University of Technology

Using a generic spatial access method for caching and efficient retrieval of vario-scale
data in a server-client architecture

Rovers, A; Meijers, Martijn; van Oosterom, P.J.M.

Publication date
2017

Document Version
Final published version

Published in
Proceedings of the 20th AGILE Conference on Geographic Information Science

Citation (APA)

Rovers, A., Meijers, M., & van Oosterom, P. J. M. (2017). Using a generic spatial access method for
caching and efficient retrieval of vario-scale data in a server-client architecture. In A. Bregt, T. Sarjakoski, R.
V. Lammeren, & F. Rip (Eds.), Proceedings of the 20th AGILE Conference on Geographic Information
Science: Societal Geo-innovation Wageningen University.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Using a generic spatial access method for caching and efficient retrieval
of vario-scale data in a server-client architecture

Adrie Rovers
Delft University of Technology
Julianalaan 134
Delft, The Netherlands
a3rovers@gmail.com

Martijn Meijers
Delft University of Technology
Julianalaan 134
Delft, The Netherlands
b.m.meijers@tudelft.nl

Peter van Oosterom
Delft University of Technology
Julianalaan 134
Delft, The Netherlands
p.j.m.vanoosterom@tudelft.nl

Abstract

This paper presents a methodology for using a generic data-driven spatial access method as a communication mechanism for vario-scale
data in a server-client setting. As a complete data set is often quite large, it is managed at the server side and supporting different scale levels
is important. We show that a generic R-tree like grouping method, commonly used for efficiently organizing and retrieving data from a
database, can be used in a networked architecture and that it allows off-loading processing tasks from a server to a client. This helps in making
web services more scalable. The method supports efficient retrieval of partial data by a client and makes it possible to reuse data by means of

caching. This can make communication more efficient.

Keywords: vario-scale data, vario-scale maps, spatial access methods, server-client architecture, caching

1 Introduction

Geographic information is used to solve a diversity of problems
in various application areas. Depending on the application,
different spatial models are used to represent reality. They can
include 2 or 3 spatial dimensions. For ages cartographers used
2D maps to model the shape of the earth, and more recently 3D
models are being used for the analysis, simulation, and
visualisation of our environment.

An important aspect concerning geographic information is
the amount of detail that is captured in the model. Is a road
represented as a line or as a polygon? Do we simplify certain
features or are they not relevant for the application domain and
not modelled at all? These considerations are commonly
captured in discrete levels of detail (LOD); for each fixed scale
a separate layer of geographic information is stored (Meijers,
2011). However, some data is stored redundantly as objects
might exist at multiple scale levels. In addition, consistency is
difficult to maintain because changes on one scale level should
propagate to the next.

1.1 Vario-scale data

Instead of storing separate layers for each discrete scale, a
spatial model could also describe a continuous LOD. Such a
model is described in van Oosterom and Meijers (2013) and
van Oosterom et al. (2014), where scale is represented as a 3™
dimension. A 2D base map is generalised and the results are
stored in a single 3D structure, called the Space Scale Cube
(SSC). The objects in this model have an importance range.
This range describes their suitability for a certain LOD (classic

SSC). Alternatively, they can be represented as polyhedra that
gradually fade or aggregate in the 3 dimension (smooth SSC).
See figure 1.

Figure 1: The Space Scale Cube
- -

~— . . =
= - ~

Smooth SSC

Classic SSC
Source: Adapted from van Oosterom et al. (2014).

1.2 Requesting a map over a network

To disseminate geo-information a distributed system can be
used. Huang et al. (2016) showed that vario-scale structures can
be used in a server-client architecture and that it is possible to
request maps at arbitrary scale. However, transferring data
takes time, which affects the responsiveness of the system, and
sometimes costs can be involved for every byte that is send over
the network. It is apparent that redundant data transfers, that is
sending the same data multiple times over the network, should
be avoided as much as possible.

In the scenario where separate geographic datasets are
maintained for each discrete scale level these redundant data

AGILE 2017 — Wageningen, May 9-12, 2017

transfers are unavoidable as some objects might exist at
multiple scales. Requesting more detail leads to the retrieval of
a completely new dataset for a selected geographic region.

Having vario-scale data structure, the opportunity arises to
reuse data that is already present on the client. When requesting
a new map, it should be possible to reuse previously retrieved
data, only request missing data, and make at the client side a
complete map by combining the new response with previously
cached responses. A communication method is needed that uses
the client cache and that supports retrieval of partial vario-scale
data from the server, while keeping the service scalable and
responsive.

This paper shows that a generic data-driven spatial access
method can be used as a mechanism for (partial) retrieval of
vario-scale data in a server-client architecture, as described in
Rovers (2016). We show that the Hilbert R-tree, which is
commonly used for organizing and retrieving data from a
database, can be employed in a server-client setting and that it
can help make web services more scalable.

Section 2 gives a short theoretical background by introducing
spatial access methods and the Hilbert R-tree. Section 3
describes the methodology. Section 4 describes our proof of
concept implementation and shows the results of a benchmark
used to assess the new method. Finally, Section 5 concludes the

paper.

2 Spatial access methods

To implement a vario-scale model, data should be structured in
such a way that it can be physically embedded in computer
memory, ultimately stored as bits. Storage structures, indexes
and compression techniques are needed. The fundamental issue
for storage is that computer memory addresses are only 1-
dimensional. This means that with the storage of spatial data
some kind of mapping is needed. Gaede and Giinther (1998)
explain that there does not exist a mapping from n-dimensional
to 1-dimensional space such that all objects that are close in
reality are also stored close in 1-dimensional space. An
ordering can only be imposed on a single dimension. Therefore,
n-dimensional, and thus spatial data, require specialised
structures in order to be used efficiently.

Methods that support efficient storage and retrieval of spatial
data are commonly referred to as spatial access methods. A
spatial access method applies both to spatial indexing as well
as clustering (van Oosterom, 1999). An index helps in
efficiently finding the right locations of data without having to
perform a full search. It is a supplementary structure and
therefore requires storage space in memory. Clustering has the
goal to group data that is likely to be requested together on the
same or nearby computer memory (disk pages) to minimize
access time. This is a bottleneck in database performance. The
minimal unit of transfer is often a disk page and without
clustering a lot of transfers between memory and secondary
storage might be needed.

2.1 Space Filling Curve

Clustering can be based on the organization of the index, but
also space filling curves can be used for this purpose. A Space

Filling Curve (SFC) can be used to group higher dimensional
objects close together in 1-dimensional memory by imposing a
linear ordering on the objects. This makes it possible to use
common 1-dimensional indexing structures, such as the B-tree
(van Oosterom, 1999).

Different SFC types exist. Figure 2 shows two common
curves on a discrete 2D target domain. These are the Morton
and the Hilbert curve. The SFC represents a path through a grid.
The paths of SFCs are different and therefore some curves
maintain better spatial proximity than others.

Figure 2: Two space filling curves

tinltlnlalne] [reetriete[ety

U Janqpy

\ anilandianibam

LN N PP apum
LN TN b nilllh g *

\ L4 r——J L—, fum

jandkandbandhan)

ITNTUNTENTY T il

Morton Hilbert

2.2 Bounding volume hierarchies

Bounding volume hierarchies build a tree structure on a set of
objects. Pointers to the objects are typically stored in the leaf
nodes of the tree. Higher-level nodes group lower-level nodes
together and store a bounding volume that encloses the entire
sub-tree. Bounding volumes of nodes may overlap. The tree is
searched top-down by testing for overlap between the query
geometry and the bounding volumes. If there is no overlap with
a higher-level node there can also be no overlap with any of its
children. The rest of the branch does not need to be searched.

The efficiency of the index depends on the algorithm that
distributes the objects among the nodes. The common approach
for creating these structures is by inserting the objects one by
one in the tree (top-down). The objects are inserted in those
nodes that need the least enlargement. The order of insertion
has a large impact on the distribution. Well known examples
are the R-tree (Guttman, 1984) and its variants: R+ tree (Sellis
etal., 1987), R* tree (Beckmann et al., 1990). Figure 3 provides
an example: a 2D R-tree.

Figure 3: The R-tree

L]
[alelc] J[olE[FTA][6[T[aT] [K[LMIN][oTP[Q[R]

2.3 Hilbert R-tree

Another way to distribute the objects in a bounding volume
hierarchy is by using a SFC. The Hilbert R-tree sorts objects,
typically using the centroid, by their value on the Hilbert curve
(Kamel and Faloutsos, 1994). Given this ordering, objects are
grouped together into leaf nodes (Figure 4). The same goes for

AGILE 2017 — Wageningen, May 9-12, 2017

nodes. They are recursively grouped into higher-level nodes
until the root-node is reached. The advantage of the Hilbert R-
tree is that it is built bottom-up, giving a more compact tree.

Figure 4: Two-dimensional schematic example of sorting and
grouping objects according to their centroid using a SFC.

SR

A I I
3 Efficient partial data retrieval

The goal of this research is to achieve efficient communication,
without too many redundant data transfers, for vario-scale data
in a server-client architecture. It aims in minimizing network
usage by grouping objects together and marking them explicitly
as cacheable. It also aims in achieving scalability, i.e. the ability
to facilitate many concurrent users, by providing the client the
possibility to determine delta-requests, so that we can use the
processing power of the client and off-load work from the
server. A data-driven spatial access method is used to let the
client retrieve partial data, based on the following objectives:

1. cluster data likely to be used together into packages on the
server, based on scale and geographic extent,

2. let the client retrieve packages using a spatial index
structure,

3. and use the client cache to re-use packages.

3.1 Requirements

To make communication suited for a server-client setting we
place the following restrictions on the method:

e Leaf nodes will refer to data packages: This is usually
the approach followed for databases, where the size of
each leaf corresponds to the size of a disk page. The
structure is used to make a sub-selection and to retrieve
the disk pages with candidate answers from secondary
storage. Precise computation on the objects takes place in
memory. In a server-client setting similar conditions
apply. The most time is spent on retrieving the data.
Besides the actual time to transfer data there are per-
interaction set-up costs for the TCP/IP stack and the
headers in HTTP requests. Therefore, it is more efficient
to transfer data in groups. Objects should be grouped in
packages just as objects are clustered on a disk page.

e Constant package size: Packages should approximately
have the same size when measured in bytes. A maximum
threshold should be specified. This restriction is needed
because the number of coordinates and therefore the size
of geometry is variable. Just grouping an equal number of
objects together does not give packages of constant size
and would result in different transfer and processing times

on the client. The responsiveness of the client would be
unpredictable.

e Full nodes: Full nodes lead to a more compact index and
is more efficient for transfer over a network.

e Tree is balanced: A balanced tree minimizes the worst-
case search time of the index and makes the client more
stable.

e Axis aligned minimum bounding box: Rectangles can
be compactly encoded and allow fast filtering
computations.

3.2 Clustering objects to create packages

An important consideration is what size the packages should
be. On the one hand, large packages are better for reducing
overhead costs. On the other hand, this means that additional
candidate answers are retrieved that will not match the query.
If a client must retrieve packages with a large spatial extent in
relation to its viewport a lot of data may be transferred that is
not directly needed. However, if a client stores the additional
data in cache it is likely that it can be used for sequential
queries.

To achieve efficient clustering the aim is to minimize the
volume of and overlap between packages. They should be as
compact as possible. This will increase the percentage of
correct candidate answers that are retrieved over the network.

Clustering can be done using different techniques. However,
in our proof of concept implementation we created the
packages using a Hilbert SFC. For each object the value on the
curve is calculated using its centroid (of 3D box: 2D spatial
extents and 1D importance range). This value is used to impose
a linear ordering on the objects. Groups are made based on this
ordering.

3.3 Spatial index

The Hilbert R-tree is used as a spatial index on the client. It is
balanced and has full nodes. This makes the tree compact and
efficient for searching. Furthermore, the tree is fast to build and
easy to implement. Because a SFC is used to determine which
nodes should be grouped together the method is generic and can
be extended to higher dimensions.

3.4 Communication between client and server

As first step, the client retrieves the index and uses it to find the
sub-selection of packages that contain candidate answers. The
client retrieves the needed packages, either from cache or over
the network, and processes them to find exactly matching
objects. Figure 5 illustrates the communication steps. Initially,
the client sends a single GET request for the index.
Subsequently, it performs a series of actions for every new map
it needs to construct. For every map query the client traverses
the index using the bounding box of its viewport and its
corresponding importance value (imp). The size of a viewport
(in world coordinates) is an indication of the LOD that is
needed, which can be translated to an importance value. All
packages needed, as indicated by the index, are retrieved from
the server, if they are not already in cache, and are filtered to

AGILE 2017 — Wageningen, May 9-12, 2017

get only the objects for the correct LOD. Finally, the objects
are rendered and the newly retrieved packages are cached.

The packages and the index are identified as unique
resources. They are placed on the file system, but can
alternatively be stored in the database. A single GET request is
made for every resource. This allows caching and the use of
shared cache layers. Furthermore, it allows packages to be
placed on different servers which makes it possible to add
proxy servers or intermediary layers for load balancing.

Figure 5: Sequence diagram for the communication

Client Webserver Database

Initial access J L GET request (index)

Index in JSSON

A

P Index.JSON B| E

Cache index

|

Sequential acces (Ioop)J

Find importance for
area of viewport

Search index with
bbox and imp
loop /

Compare result
with cache

GET request
(package_id)

Retrieve packages
not in cache b

Package in JSON
Filter edges in
package on imp
Render and
display edges
Cache new
packages
Cache strategy J |:

If cache is full, then purge
insignificant packages T

F‘Eckage.JSOﬁ H

4 Proof of concept and Results

For the proof of concept a prototype client was developed that
can communicate with the server using the new Package-based
methodology. A classic SSC was generated from a topographic
base map for the province of Drenthe in the Netherlands
(Figure 6). The dataset has 1,110,123 edges and a total size of
625 MB. The edges were grouped into packages with a size of
500 KB. Details of the implementation are described in Rovers
(2016). The code is available on github?.

The new Package-based methodology for communication
(referred to as option P) was assessed by comparing the

! https://github.com/a3rovers/thesis/

prototype to the Alternative of retrieving ready-made maps
(option A). The alternative is stateless, i.e. each request is made
independent of any previous responses. The client simply
requests a completely new map from the server for every
interaction (panning, zooming, etc.). Reusing data that is
already present on the client is thus not possible (similar to
traditional multi-scale representations). Huang et al. (2016)
describe this communication mechanism for retrieving ready-
made maps.

Figure 6: A generalised map of Drenthe derived from the SSC

For the assessment we simulated different user scenarios
(Rovers, 2016). The efficiency of communication varies. For
some usage scenarios the amount of data transfers with a
package-based communication was reduced, in other scenarios
more data was needed. Figure 7 shows the sequence of queries
for a typical scenario where using option P is beneficial.

We measured the data transfers (Figure 8) and the time till
last byte (TTLB, cf. Figure 9) for both options. The total bytes
sent over the network for option A is 2.5 MB, for option P this
is 1.3 MB. The new method is thus more efficient regarding
data transfers. This is also the case for TTLB, even for some
queries where more data is transferred. There are two reasons
for this: a. the packages can be requested in parallel, while we
must wait until the entire map is constructed on the server for
option A, and b. the server is less complex for option P and only
has to send the requested packages, while for option A the
server has to find which data to send (by means of a database
query).

During interactive use the package-based methodology gets
more efficient. With long sessions, where a user visits the same
area multiple times, we can reduce the amount of data that is
needed increasingly. If the user minimally pans the map, for
option A completely new data is requested. For option P, it is
likely that the map can be reconstructed using the packages that
are already in cache (Figure 10).

AGILE 2017 — Wageningen, May 9-12, 2017

Figure 7: Sequence of queries for the user scenario: zoom-in
(1-14,17-19,21,31-33), pan (15,16,20,34), zoom-out (22-30).

.y 7 RN AN
J 4 . o F
N 3 b N o N
e 3 \ 14
lH ; =W m - -
. - R o N e . - 1
(16) 17 (18) (19) (20)
P “r" " SN J\’ S I
\ . ~) N, Y hY N
< - B
= m ¢ m m Im
. R ! D e L. o
(21) (22) (23) (24) (25)
> S Y Y T
Y Y \ b N 1 -
.y - v P \
" ! & [
26) @7 (28) (29) (30)
r_,\ r"_,‘ I SN
ki > 2 . 2 RN 1 ~,
N 5 Y o N,
(31) (32) (33) (34)

Figure 8: Data transfers. Note that with Option P data can be
reused for subsequent requests.

m Option A (2.5 MB in total)

W Option P (1.3 MB in total)
=
2
v
9.
>
AQV
e”
Eu

|||||III|||||||III|I ||||

Query
Figure 9: Response times

m Option A

_ m Option P
E.
2
=
o w
2
=,
D w
£
i:Jr

NIRRT RN ||IIII|I||I|

Query

Figure 10: Total packages needed to make a map. Colours
indicate whether a package is requested from the server, or can
be requested from the local cache.

W New request
m Retrieved from cache

Total packages per query

e T T

Query

It should be clear that the performance of the method depends
on the effectiveness of the algorithm that clusters the data into
packages. If clustering is improved, also the efficiency of the
new method is improved.

5 Conclusion

We presented a method for partial retrieval from a larger
varioscale data set in a server-client setting based on a data-
driven spatial access method. The method supports efficient
retrieval of partial data by a client and makes it possible to reuse
the data by means of caching. It also allows for a relatively
simple server implementation, thereby off-loading work from a
server to a client. This can help in making web services more
scalable.

The Hilbert SFC was used for clustering and the Hilbert R-
tree was used as an index on the client. It should be investigated
if clustering can be improved or if different spatial access
methods can be used. If clustering is improved, also the
efficiency of the method will improve.

Also, clustering of the packages is dependent on the vario-
scale source data. It is assumed the data is effectively
generalised. In our test data, the geographic features had similar
extents. However, large geographic features could affect
clustering. In this case, it should be investigated if it is needed
to cut up the geometry so that they can be distributed among
different packages. Alternatively, the extents of the features
could be used as an additional dimension in the calculation of
the Hilbert key. This makes it more likely that large features
are grouped together in the same package.

Furthermore, the method is generic for the way in which data
is retrieved by a client. This gives support for the hypothesis
that the method can also facilitate communication for the
smooth SSC and other use cases with higher dimensional data,
such as 4D point clouds (van Qosterom et al, 2015). It is
expected that communication can be similar as with varioscale
data, and that only the implementation of the filter and
visualization steps need to be different.

References

Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B.
(1990) The R*-tree: An efficient and robust access method for
points and rectangles. In Proceedings of the 1990 ACM

AGILE 2017 — Wageningen, May 9-12, 2017

SIGMOD international conference on Management of data -
SIGMOD 90. Association for Computing Machinery (ACM).

Gaede, V. and Gunther, O. (1998). Multidimensional access
methods. CSUR, 30(2):170-231.

Guttman, A. (1984). R-trees. In Proceedings of the 1984 ACM
SIGMOD international conference on Management of data -
SIGMOD 84. Association for Computing Machinery (ACM).

Huang, L., Meijers, M., Suba, R., and van Oosterom, P. (2016).
Engineering web maps with gradual content zoom based on
streaming vector data. ISPRS Journal of Photogrammetry and
Remote Sensing, 114:274-293.

Kamel, I. and Faloutsos, C. (1994). Hilbert R-tree: An
improved R-tree using fractals. In Proceedings of the 20%
International Conference on Very Large Data Bases, VLDB
’94, pages 500-509, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Meijers, M. (2011). Variable-scale Geo-information. PhD
thesis, Delft University of Technology.

Rovers, A. (2016). Exploring the use of a generic spatial access
method for caching and efficient retrieval of vario-scale data in
a client-server architecture. Master’s thesis, Delft University of
Technology.

Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R+-
tree: A dynamic index for multi-dimensional objects. In
Proceedings of the 13™ International Conference on Very
Large Data Bases, pages 507-518.

van Oosterom, P. (1999). Spatial access methods. In
Goodchild, M. F., Longley, P. A., Maguire, D. J., and Rhind,
D. W., editors, Geographical Information Systems Principles,
Technical Issues, Management Issues, and Applications,
volume 1. John Wiley & Sons.

van QOosterom, P., Martinez-Rubi, O., Ivanova, M.,
Horhammer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde,
M., and Gongalves, R. (2015). Massive point cloud data
management: Design, implementation and execution of a point
cloud benchmark. Computers & Graphics, 49:92-125.

van Oosterom, P. and Meijers, M. (2013). Vario-scale data
structures supporting smooth zoom and progressive transfer of
2d and 3d data. International Journal of Geographical
Information Science, 28(3):455-478.

van Oosterom, P., Meijers, M., Stoter, J., and Suba, R. (2014).
Data structures for continuous generalisation: tGAP and SSC.
In Lecture Notes in Geoinformation and Cartography, pages
83-117. Springer Science Business Media.

