
Proving correctness of refactoring tuples to records
A correct-by-construction approach on a Haskell-like language

Jeroen Bastenhof1

Supervisor(s): Jesper Cockx1, Luka Miljak1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jeroen Bastenhof
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Luka Miljak, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Refactoring is a useful tool for increasing the over-
all quality of software without making changes to
how it interacts with the environment. To verify
that a refactoring operation correctly transforms an
expression, one can provide a formal proof. Us-
ing Agda, a dependently-typed language, as a proof
assistant, we investigate the feasibility of proving
the correctness of refactoring tuples to records for
a small-scale language that shares similarities with
Haskell. We construct this language in Agda using
intrinsically-typed terms and define an accompa-
nying refactoring function for refactoring tuples to
records. We prove that the refactoring is well-typed
and that it replaces all tuple occurrences. Big-step
semantics are used to show the relation between the
intrinsically-typed language and its resulting out-
put value. Additionally, we show that we can con-
struct a relation between the values of an expres-
sion before and after refactoring. By presenting
these proofs we gain more insights into the feasi-
bility of proving the correctness of tuple to record
refactoring. Furthermore, we argue that the proofs
given for this small-scale language can serve as in-
spiration for proving comparable properties of the
refactoring in the context of Haskell and beyond.

1 Introduction
Whenever one refactors software, they do that to improve the
structure and design of a program without altering its external
behaviour [1]. Extensive testing is an approach that is able to
increase the confidence that the external behaviour remains
unaltered after applying the refactoring. However, doing so
provides no explicit guarantees as opposed to a formal verifi-
cation of its correctness [2].

According to a study conducted in 2021 by AlOmar et
al. [3], previous research primarily focused on formally
proving the correctness of common refactoring operations
on class-based, object-oriented programming languages like
Java and C++. Amongst these refactoring operations, the
pull-up/down and renaming transformations were observed
to be the most popular. The formal verification of refactor-
ing operations’ correctness in functional programming lan-
guages has received relatively less attention and research fo-
cus compared to their counterparts in class-based, object-
oriented languages. As such, the coverage of commonly per-
formed or language-specific refactoring operations in this do-
main is comparatively sparse or absent.

The objective of this research is to explore the feasibil-
ity of proving the correctness of the refactoring process that
transforms tuples into records for a Haskell-like language, to
which we will refer as record refactoring. A similar refac-
toring operation that targets the functional programming lan-
guage Erlang is described by Lövei et al. [4]; however, the
correctness of this operation remains unproven.

To keep the proofs manageable in terms of size and com-
plexity, we work with a simplified subset of Haskell that we

refer to as the Haskell-like language. Only the most important
aspects that relate to record refactoring are retained to allow
us to reason about record refactoring in a larger context while
preserving the validity of the work.

Using Agda [5], a dependently typed programming lan-
guage, as a proof assistant, the aim is to model a small lan-
guage on which the verification of the refactoring can be per-
formed. By using a proof assistant, we are less likely to make
mistakes while constructing formal proofs. This is because a
proof assistant aids us in finding edge cases that might oth-
erwise go unnoticed in pen and paper-based proofs. These
edge cases are found by checking that all steps that a proof
is made of follow the rules of the specified logic. Additional
background information on Agda is provided in section 2.2.

The following contributions, which provide insights into
the feasibility of proving record refactoring correctness, are
presented in this paper.

• An intrinsically-well-typed Haskell-like language with
representations for tuples and records is given that serves
as the foundation for the refactoring operation as well as
all proofs that follow this refactoring (section 3).

• Big-step semantics are provided that describe the be-
haviour of a language by relating terms to values (sec-
tion 4).

• A refactoring transformation from tuples to records is
given that creates new record declarations and replaces
all tuple occurrences with an instance of a declared
record (section 5).

• A proof is given that shows that the refactoring operation
does not break well-typedness (included in section 5 on
refactoring and follows from the use of an intrinsically-
well-typed language).

• A proof is given that shows that the refactoring operation
eliminates all tuples from an expression (section 6).

• A relation between the values of the big-step semantics
of an expression before and after refactoring is provided
(section 7).

We discuss the contents of this paper with regard to the
language specification and its relation to Haskell in section 9.

2 Background information
This section aims to give more detailed background informa-
tion on the problem that this paper is concerned with. We do
this by elaborating on the refactoring operation and the tool-
ing that is used.

2.1 Refactoring tuples to records
Tuple-to-record refactoring is a technique that can be ap-
plied to existing software. It works by constructing an ob-
ject declaration, using record syntax, where the types of its
attributes match that of the tuple elements. The record syntax
for declaring objects requires an identifying name for the type
as well as the accessors for its fields. After declaring the new
object, all tuple instances with the same type signature can be
replaced with the new construct.

An example of the type of refactoring we are concerned
with is shown in listing 1 and largely inspired by an exam-
ple listed in work by Miran [6]. It is apparent that seeing
(String, String, Int) does not tell us anything about the
structure of the data, whereas seeing Person immediately tells
us we are working with data that resembles a person. The
astute reader might object to this claim arguing that we can
solve this particular problem by constructing a type alias for
the tuple, type Person = (String, String, Int), and their
objection undeniably holds true. However, using a type alias
is not enforced by the type system, which might lead to in-
consistent use. To enforce this, newtype should be used in-
stead, for which we would have to define accessors ourselves.
Additionally, if we were to extend the Person type in the fu-
ture, updating the record approach would be more manage-
able since the fields provide a level of abstraction.

A similar refactoring operation for the functional program-
ming language Erlang, where groups of related data are con-
verted to records, is described by Lövei et al. [4]. However,
they do not provide a formal proof of the correctness of the
refactoring operation. This appears to be a recurring prob-
lem in the existing literature where more effort is directed to-
wards proving the correctness of refactoring operations for
class-based, object-oriented languages as opposed to func-
tional languages [3].

1 -- Before: less expressive and extensible
2 lastName :: (String, String, Int) -> String
3 lastName (_, s, _) = s
4

5 -- After: more expressive and extensible
6 data Person = Person { initials :: String
7 , lastName :: String
8 , age :: Int
9 }

Listing 1: Tuple to record refactoring example based on work by
Miran [6].

2.2 Agda
Agda is a dependently typed functional programming lan-
guage. Dependent typing allows types to depend on terms as
opposed to having a clear separation between types and val-
ues [7]. To give a brief impression of what dependent typing
is about, we refer to a commonly used example of construct-
ing a Vec A n (see listing 2), which is a list annotated by its
length [7; 8; 9].

1 data Vec (A : Set) : N → Set where
2 [] : Vec A zero
3 _::_ : {n : N} → A → Vec A n → Vec A (suc n)

Listing 2: Dependent type example (Vec).

The vector from listing 2 is a type that is indexed on its
length as indicated by N → Set. Thus, ∀n ∈ N, Vec A n is
a valid type. The A is referred to as a parameter of Vec A n.
The type can be constructed by using one of its constructors.

The [] constructor creates the empty vector where the size is
forced to zero. The other constructor, _::_, takes a value of
type A and inserts it into a vector of arbitrary length, therefore
increasing its length by 1.

Due to the vector being indexed by its length, we can con-
struct a function that allows us to retrieve the head of a non-
empty list. Listing 3 uses pattern matching to extract an ele-
ment from a vector that contains at least one element. Fur-
thermore, we can easily extract the length of a vector by con-
structing an implicit argument that has a value identical to the
index N, as shown in listing 4.

1 head : ∀ {A n} → Vec A (suc n) → A
2 head (x :: xs) = x

Listing 3: Function for retrieving the head of a non-empty list.

1 length : ∀ {A n} → Vec A n → N
2 length {n = n} _ = n

Listing 4: Function that returns the length of a vector.

Due to Agda’s dependently typed nature, it can be used as a
proof assistant for constructing formal proofs. Whenever we
write a proof in Agda, we rely on Agda providing a correct
judgement. Therefore, it can be stated that this paper relies
upon Agda’s trustworthiness.

A proof in Agda can be represented as an algorithm. Under
the Curry-Howard correspondence, we can construct a com-
plete program1 that matches the signature of a proof. When
Agda’s type checker accepts the complete program, it essen-
tially means that it accepts the proof as a well-typed construct.
If the construct in Agda that represents your proof is incor-
rect/incomplete, Agda might still accept your proof. In such
cases, the ’proof’ does not tell us anything meaningful.

3 Intrinsically-typed Haskell-like language
To effectively reason about the correctness of the refactoring
operation and demonstrate its implementation, it is important
to possess a language construct that serves as the foundation
for performing said refactoring.

For the sake of this paper, the syntax that builds the
Haskell-like language we seek to refactor is constructed in
Agda using intrinsically-typed terms. An intrinsically-typed
term can be defined as an expression annotated with its de-
duced type. Intrinsic typing ensures that the constructed lan-
guage is well-typed by default.

The constructed language is based upon the simply typed
language calculus first introduced by Church [10]. Addition-
ally, we make use of de Bruijn indices to eliminate names
from lambda terms and therefore refer to variables as an in-
dex in a typed context [11]. This simplifies the process of
working with the language as, e.g., renaming operations do
not need to be considered. By using de Bruijn indices, we

1A complete program must not contain any statements that are
yet to be proven.

implicitly state that all identifiers must be unique, an impor-
tant precondition.

Additionally, a design that closely resembles the notation
for typing relations2 is used. This design makes it easier to
reason about the language from a pure theoretical perspective,
when needed. The most relevant rules related to the refactor-
ing that this paper is concerned with can be found in figure
1. From the information given above the horizontal line, we
can deduce/infer properties of the inferred statement below
the line. An explanation of the symbols used in the typing
relations is provided below for further clarity.

• Γ: a type-context that stores the types of variables within
scope.

• Γd: a global declaration context that stores all declared
record types.

• τ : a type.

Whenever we write Γ,Γd ⊢ e : τ , it can be interpreted as
having a term e where its typing judgement, given the envi-
ronments Γ and Γd, evaluates to a type τ .

The typing rules listed in figure 1 can be interpreted as fol-
lows;

• (TR1) The typing judgement of a tuple term is a com-
posite of the typing judgements of the expressions that it
is composed of.

• (TR2) The typing judgement of a record instance term is
a composite of the typing judgements of the expressions
that it is composed of. Additionally, the typing judge-
ments should satisfy a known record declaration.

• (TR3) A lookup operation on an expression that reduces
to a tuple has a typing judgement that corresponds with
the type of the term at the given position.

• (TR4) A lookup operation on an expression that reduces
to a record instance has a typing judgement that corre-
sponds with the type of the term at the given position.

The astute reader might notice that the typing relations for
the record-related rules (TR2 and TR4) in figure 1 lack the
accompanying labels for the record name and its field acces-
sors. For the declaration context, we also make use of de
Bruijn indices [11], indicating the lack of a record name. For
the field accessors, we argue that using an implicitly gener-
ated field accessor can be elaborated3 into a generic lookup
over its contents, making the accessors superfluous at the un-
derlying level. From a parser’s point of view, this information
is still vital and must be provided.

Listing 5 consists of the translated typing relations from
figure 1 to Agda. Observe that there is a strong resem-
blance between the typing relations and the code. The
TypeResolver is a construct used to group the types of an
arbitrarily sized sequence of intrinsically-typed terms, there-
fore mimicking the sequences of terms from rules TR1 and
TR2 depicted in figure 1.

2A typing relation is a collection of inference rules where each
rule assigns a type to a term [12].

3Expressing/simplifying a language construct in an abstracted
manner to reduce overhead at the underlying level.

Γ,Γd ⊢ e1 : τ1 Γ,Γd ⊢ e2 : τ2 ... Γ,Γd ⊢ en : τn

Γ,Γd ⊢ tuple (e1, e2, ..., en) : tupleT (τ1, τ2, ..., τn)
TR1

x : recordDecl (τ1, τ2, ..., τn) ∈ Γd

Γ,Γd ⊢ e1 : τ1 Γ,Γd ⊢ e2 : τ2 ... Γ,Γd ⊢ en : τn

Γ,Γd ⊢ recInst x (e1, e2, ..., en) : recT (τ1, τ2, ..., τn)
TR2

Γ,Γd ⊢ e : tuple (τ1, τ2, ..., τn)
x : τx ∈ (τ1, τ2, ..., τn)

Γ,Γd ⊢ tLookup e x : τx
TR3

Γ,Γd ⊢ e : rec (τ1, τ2, ..., τn)
x : τx ∈ (τ1, τ2, ..., τn)

Γ,Γd ⊢ rLookup e x : τx
TR4

Figure 1: Typing rules for tuples, record instances, and lookup ac-
tions in the Haskell-like language.

4 Big-step semantics
Big-step semantics, introduced under the name natural se-
mantics by Kahn [13], is used to describe the relation between
input terms and the resulting value [9]. We can use a sequence
of inference rules to show this relation, similar to what we did
for denoting typing relations in section 3. We use the notation
e ⇓ v to indicate that some term e relates to a value v.

The inference rules used to denote the big-step semantics
of the constructs directly related to the refactoring operation
are shown in figure 2. The representation in Agda can be
found in listing 6 and uses a call-by-value strategy as opposed
to Haskell’s call-by-need strategy. In addition to the symbols
listed in section 3, we introduce supplementary symbols be-
low.

• γ: a value-context where every value v ∈ γ has a corre-
sponding type t ∈ Γ.

• v: a value.

• e: an intrinsically-typed term.

An explanation of the big-step semantic rules shown in fig-
ure 2 can be found below.

• (BR1) A compound expression of terms related to a par-
ticular value that a tuple consists of can be related to a
tuple value that groups the values of these terms.

• (BR2) A compound expression of terms related to a par-
ticular value that a record instance consists of can be
related to a record value that groups the values of these
terms. A corresponding record declaration must be re-
ferred to when constructing the record instance.

• (BR3) A lookup in an expression that relates to a tuple
output should relate to the value at the position of the
lookup in the related value.

• (BR4) A lookup in an expression that relates to a record
instance output should relate to the value at the position
of the lookup in the related value.

1 data TypeResolver ... : List Type → Set where
2 []T : TypeResolver Γ Γd []

3 _::_ : (Γ , Γd ⊢ t)
4 → TypeResolver Γ Γd ts

5 → TypeResolver Γ Γd (t :: ts)
6

7 data _,_⊢_ : Ctx → DataCtx → Type → Set where
8 ...
9 tuple : TypeResolver Γ Γd ts

10 ------------------------

11 → Γ , Γd ⊢ tupleT ts
12 recInst : (recDecl ts) ∈ Γd

13 → TypeResolver Γ Γd ts
14 -----------------------

15 → Γ , Γd ⊢ recT ts
16 tLookup : Γ , Γd ⊢ tupleT ts
17 → t ∈ ts
18 ------------------------

19 → Γ , Γd ⊢ t
20 rLookup : Γ , Γd ⊢ recT ts
21 → t ∈ ts
22 ----------------------

23 → Γ , Γd ⊢ t

Listing 5: Intrinsically-typed terms in Agda for the rules listed in
figure 1.

The ReductionResolver is a construct similar to the
TypeResolver (see section 3) that supports arbitrarily sized
sequences of term-value relations. It tries to approach the
notation of rules BR1 and BR2 from figure 2 as much as pos-
sible.

5 Record refactoring
A refactoring can be defined as a transformation of one pro-
gram into another. As such, we can model a refactoring in
Agda as a function that transforms some language construct
Γ,Γd ⊢ t to a new, refactored, construct Γ′,Γd′ ⊢ t′. We can
reduce the operation of refactoring said construct by breaking
the transformation into smaller sub-problems4. An example
of such a sub-problem is to refactor the types only, i.e., con-
struct a function ref-type : Type → Type and use that to in-
dicate that t' = ref-type t.

An important aspect worth mentioning is that, since the
Haskell-like language is intrinsically-well-typed (see section
3), the result of the refactoring will be well-typed as well.
Thus, performing the refactoring is at the same time a proof
that the new language construct is well-typed. A side-effect
of this is that the implementation of the transformation be-
comes more complex (see section 9.1).

Within this paper, we consider record refactoring as a re-
placement of all tuple occurrences by record instances of
globally-declared records. Thereby, we treat all tuples as if
they were different from each other and argue that if two or
more tuples share the same type, they can make use of the
same record declaration after refactoring. The reason for this

4This is not always possible when the refactoring operation be-
haves differently depending on the surrounding language constructs.

γ,Γd ⊢ e1 ⇓ v1 γ,Γd ⊢ e2 ⇓ v2 ... γ,Γd ⊢ en ⇓ vn

γ,Γd ⊢ tuple (e1, e2, ..., en) ⇓ tuple (v1, v2, ..., vn)
BR1

x : recordDecl (τ1, τ2, ..., τn) ∈ Γd

γ,Γd ⊢ e1 ⇓ v1 γ,Γd ⊢ e2 ⇓ v2 ... γ,Γd ⊢ en ⇓ vn

γ,Γd ⊢ rec x (e1, e2, ..., en) ⇓ rec (v1, v2, ..., vn)
BR2

γ,Γd ⊢ e ⇓ tuple (v1, v2, ..., vn)
x : τx ∈ (τ1, τ2, ..., τn)

Γ,Γd ⊢ tLookup e x ⇓ vx
BR3

γ,Γd ⊢ e ⇓ rec (v1, v2, ..., vn)
x : τx ∈ (τ1, τ2, ..., τn)

Γ,Γd ⊢ rLookup e x ⇓ vx
BR4

Figure 2: Big-step semantics for tuples, record instances, and lookup
actions in the Haskell-like language.

is that we cannot ’observe’ in what context a tuple is being
used. An example of such a case is a program that works
with complex numbers and points represented as tuples (see
listing 7) where we cannot distinguish what record declara-
tion should be used where without the alias being present.

5.1 Structure of refactoring operation
A top-level overview of the structure of the proof can be
found in listing 8. Observe that the resulting type is com-
posed of all intermediate sub-problems that aid in the refac-
toring. Completing the proof, which appears to be a regu-
lar function, shows that we can map any construct to a new,
refactored, construct where all5 tuples have been replaced by
record instances.

5.2 Refactoring types and type contexts
Since the refactoring is only concerned with replacing tuples
by records, the types of all other constructs remain the same.
Since the types of record fields and tuple elements can both
be represented by a list of types, mapping a tuple type to a
record type is trivial. Therefore, refactoring the types and
type contexts can easily be realized by recursively mapping
all tuple-type occurrences to record types.

5.3 Extending the declaration context
To exchange a tuple occurrence for a record instance, we must
provide a record declaration for said tuple and swap the tuple
construct with a record instance referring to this declaration.
In case of a tuple lookup, we change the operation to a record
lookup that extracts a record element from a refactored ex-
pression evaluating to a record instance.

To obtain the new record declarations, we treat an arbi-
trary expression in the Haskell-like language as a tree and
use a postorder traversal where we extract the type signature
of a tuple occurrence, convert it to a record declaration, and

5See section 6 for a proof that there are no remaining tuples post-
refactor.

1 data ReductionResolver ... :
2 TypeResolver Γ Γd ts
3 → PolyList ts → Set where
4

5 []R : ReductionResolver γ Γd []T []

6 _::_ : (γ , Γd ⊢ e ⇓ v)
7 → ReductionResolver γ Γd tr vs

8 → ReductionResolver γ Γd (e :: tr)
9 (v :: vs)

10

11 data _,_⊢_⇓_ : Env Γ → (Γd : DataCtx)
12 → (Γ , Γd ⊢ t) → Value → Set where
13 ...
14 ⇓tuple : ReductionResolver γ Γd tr vs
15 ---------------------------------

16 → γ , Γd ⊢ tuple tr ⇓ tuple vs
17 ⇓recInst : ReductionResolver γ Γd tr vs
18 -----------------------------------

19 → γ , Γd ⊢ recInst x tr ⇓ rec vs
20 ⇓tLookup : γ , Γd ⊢ e ⇓ tuple vs
21 -----------------------------

22 → γ , Γd ⊢ (tLookup e x)
23 ⇓ (poly-list-lookup vs x)
24 ⇓rLookup : γ , Γd ⊢ e ⇓ rec vs
25 -----------------------------

26 → γ , Γd ⊢ (rLookup e x)
27 ⇓ (poly-list-lookup vs x)

Listing 6: Big-step semantics in Agda for the rules listed in figure 2.

1 type Complex = (Double, Double)
2 type Point = (Double, Double)
3

4 cpAbs :: Complex -> Double
5 cpAbs (re, im) = sqrt (re ** 2 + im ** 2)
6

7 manhDist :: Point -> Point -> Double
8 manhDist (x1, y1) (x2, y2) = abs (x1 - x2)
9 + abs (y1 - y2)

Listing 7: Example of using points and complex numbers repre-
sented by tuples.

prepend it to the original declaration context, Γd. As such,
we end up with a context Γd' = ds ++ Γd where ds is used
to represent the list of new declarations prepended to our ini-
tial declaration context.

The most complex part of record refactoring is to provide
a lookup proof for the new record declaration (d ∈ Γd′)
when constructing a record instance. This is trivial for the
lookup of a refactored tuple that is the root of an expres-
sion since the postorder traversal ensures that the declaration
for this tuple is the first element in the new declaration con-
text. Now, consider the example depicted in figure 3. The
lookup proof for the record declaration of the refactored tu-
ple on the right branch should point to the second declaration
in the refactored declaration context. Thus, we must be aware
of the outer context of an expression when generating such a
lookup. As the refactoring progresses recursively in a down-
ward movement, it is vital to provide a precise trace of the

1 ref : (e : Γ , Γd ⊢ t)
2 → ref-ctx Γ
3 , ref-d-ctx ((ref-tuples-to-decls e) ++ Γd)
4 ⊢ ref-type t
5 ref e = ref-h e (e-root e)

Listing 8: Top-level refactoring method for refactoring tuples into
records.

position we are currently in (from a top-level point of view).
This trace can then be used to generate the appropriate lookup
for the new declaration.

Figure 3: Example of the refactored declaration context at different
levels of a language construct. Dashed circles indicate refactored
tuples.

5.4 Providing lookback evidence
To provide a trace that allows us to pinpoint the location of
the current construct that is recursively being refactored, we
define a dependent type, EmbedInto e e', that provides said
evidence. As the name hints, EmbedInto tells us that an ex-
pression e is part of a larger construct e'. A simplified version
of this construct can be found in listing 9. We use the e-root
constructor to define the top-level construct. Upon moving
toward the next step, we provide the appropriate evidence to
ensure that the trace is well-defined.

1 data EmbedInto : ... → Set where
2 -- Types of all expressions are excluded
3 -- from this example

4 e-root : (e : Γ , Γd ⊢ t)
5 ---------------------
6 → EmbedInto e e
7 e-app-l : EmbedInto (e2 · e1) e
8 ---------------------------
9 → EmbedInto e2 e

10 e-app-r : EmbedInto (e2 · e1) e
11 ---------------------------
12 → EmbedInto e1 e
13 ...

Listing 9: Fragment of the dependent type used to provide evidence
that an expression is part of a larger construct.

6 No remaining tuples (post-refactor)
Using Agda, we can prove that an arbitrary refactored expres-
sion contains no tuples. We accomplish this by construct-

ing a proof that shows that any refactored expression can be
mapped to a construct that does not support tuples as input.
We refer to this construct as HasNoTuples and provide an
example in listing 10. Now, all that remains is to show that an
arbitrary refactored expression can be mapped to this con-
struct. This is done by creating a function that maps any
expression e : Γ , Γd ⊢ t to a HasNoTuples Γ' Γd' (ref
e). This appears to be a rather trivial proof as shown in listing
11. Notice that all constructs that were formerly expressed as
tuples can use the constructors for record-related constructs
(post-refactoring), as they have become records. Therefore,
we can conclude that the refactored expression is free of tu-
ples.

1 data HasNoTuples (Γ : Ctx) (Γd : DataCtx) :
2 Γ , Γd ⊢ t → Set where
3 num : ∀ {n}
4 → HasNoTuples Γ Γd (num n)

5 fun : {b : t :: Γ , Γd ⊢ u}
6 → HasNoTuples Γ Γd (fun b)

7 rec : {tr : TypeResolver Γ Γd ts}

8 {x : recDecl ts ∈ Γd}

9 → HasNoTuples Γ Γd (recInst x tr)

10 rlu : {e : Γ , Γd ⊢ recT ts} {x : t ∈ ts}
11 → HasNoTuples Γ Γd (rLookup e x)
12 ...

Listing 10: Fragment of language construct that does not support
tuples.

1 proof : (e : Γ , Γd ⊢ t) → HasNoTuples
2 (ref-ctx Γ)
3 (ref-d-ctx (ref-tuples-to-decls e ++ Γd))
4 (ref e)
5 proof (num n) = num
6 proof (fun b) = fun
7 proof (tuple tr) = rec
8 proof (tLookup e x) = rlu
9 proof (recInst x tr) = rec

10 proof (rLookup e x) = rlu
11 ...

Listing 11: Fragment of proof that refactored expressions do not
contain tuples.

7 Refactor value relation
Given an arbitrary expression, we show that we can derive a
relation between the value of the expression before and after
refactoring. By indexing a value on its type, we observe that
this relation coincides with refactoring types.

The general outline of the proof is presented in listing 12.
Here, we take the big-step semantics of an arbitrary language
construct and the big-step semantics of the refactored coun-
terpart and use that to show that we can construct a relation
v1 −→V v2. The relation v1 −→V v2 describes that value v1
of a non-refactored construct relates to v2 post-refactoring.

Similarly, we define the arrows −→PV and −→E for se-
quences of typed values. These sequences expand to a series
of value relations −→V . Even though both share the same
definition, we use −→PV for relations between internal se-
quences of the same size (e.g., tuple and record values) and
−→E for environments. This makes the expression more ex-
pressive.

1 proof : {e : [] , Γd ⊢ t}
2 → [] , Γd ⊢ e ⇓ v1
3 → [] , Γd' ⊢ ref e ⇓ v2
4 → v1 −→V v2
5 proof {e = e} e1 e2 =
6 proof-h (e-root e) e1 e2 tt

Listing 12: Top-level method for constructing the refactor value re-
lation (simplified refactored declaration context).

Listing 13 presents a simplified overview of the value rela-
tions. Observe that the relation for constructs like numbers
and characters is rather trivial since it enforces us to only
prove that their internal representation is identical. For se-
quences, we concatenate the evidence of value relations. A
special case is the relation for closures as they contain an en-
vironment of their own. We need to provide additional evi-
dence for these kinds of constructs by supplying the big-step
semantics for the bodies.

1 -- Value to value relation

2 _−→V_ : Value t → Value (ref-type t) → Set
3 num n1 −→V num n2 = n1 ≡ n2
4 char c1 −→V char c2 = c1 ≡ c2
5 clos b1 γ1 −→V clos b2 γ2 =
6 {vT

1−→vT
2 : v

T
1 −→V vT

2}

7 → (vT
1 :: γ1) , Γd ⊢ b1 ⇓ vU

1

8 → (vT
2 :: γ2) , Γd

1 ⊢ b2 ⇓ vU
2

9 → vU
1 −→V vU

2

10 tuple vs1 −→V rec vs2 = vs1 −→PV vs2
11 rec vs1 −→V rec vs2 = vs1 −→PV vs2
12

13 -- Sequence-to-sequence relation

14 _−→PV_ : PolyList ts
15 → PolyList (ref-type-list ts) → Set
16 [] −→PV [] = ⊤
17 (v1 :: vs1) −→PV (v2 :: vs2) =
18 (v1 −→V v2) × (vs1 −→PV vs2)
19

20 -- Environment relation

21 _−→E_ : Env Γ → Env (ref-ctx Γ) → Set
22 _−→E_ = _−→PV_

Listing 13: Value relations between non-refactored and refactored
constructs that originate from the same expression (simplified clo-
sure).

Since the relation is constructed in a step-wise manner and
internally relies on the refactoring operation, we again need
to provide additional evidence to construct the post-refactor
declaration context. To reiterate, the evidence we speak of

tells us that some expression e is embedded into a larger ex-
pression e' (see section 5.4). We take this into account in the
helper function for constructing the relation that is shown in
listing 14. Observe that whenever we encounter a function,
we insert new evidence into the environment relation that can
later be used to gather evidence for the resulting value of a
lookup expression.

1 proof-h : (ev : EmbedInto e e')
2 → γ1 , Γd ⊢ e ⇓ v1
3 → γ2 , Γd' ⊢ ref-h e ev ⇓ v2
4 → γ1 −→E γ2

5 → v1 −→V v2
6 proof-h ev ⇓num ⇓num γ = refl
7 proof-h ev ⇓var ⇓var γ = ref-lookup-v γ
8 proof-h ev ⇓fun ⇓fun γ e1 e2 =
9 proof-h (e-func ev) e1 e2 (v

T
1−→vT

2 , γ)
10 proof-h ev (⇓tuple rr1) (⇓recInst rr2) γ =
11 proof-h-rr-tup ev rr1 rr2 γ
12 proof-h ev (⇓tLookup e1) (⇓rLookup e2) γ =
13 ref-lookup-pl (proof-h (e-tup-l ev) e1 e2 γ)
14 ...

Listing 14: Helper function used to construct the refactor value re-
lation.

By constructing this relation, we show how the refactoring
operation affects the resulting value.

8 Responsible Research
The proofs written in Agda serve as the most important foun-
dation of the work presented in this report. To make this work
more transparent to the general public, all proofs are available
on a public GitHub repository.6 Not only does this make the
work more transparent, but it also makes it easier to reproduce
the research.

The theory that is presented in this work should be suffi-
cient for understanding the code written in the repository and
give insight into the bidirectional translation between theory
and Agda. For additional information on language design in
Agda, one can refer to the Programming Language Founda-
tions in Agda book [9]. In case of Agda itself, we recommend
looking at their online wiki [5].

9 Discussion
In this section, we reflect on the contents of this paper by
describing in section 9.1 why an intrinsically-typed language
is being used. This is followed by section 9.2 where we place
our research in a bigger context by comparing it to Haskell
(and beyond).

9.1 On using intrinsically-typed terms
Throughout this paper, we worked with an intrinsically-typed
language as the foundation for the refactoring operation and
proofs. An alternative to using an intrinsically-typed lan-
guage would be to define both separately (i.e., have a lan-
guage consisting of terms only and define the typing relations
on the side).

6https://github.com/JerBast/brp-agda-refactoring-jbastenhof

Both approaches have their own trade-offs. An
intrinsically-typed language is well-typed by default and oc-
cupies less space than a separate language with an external
proof for it being well-typed [9]. Additionally, due to the re-
striction that we put on ourselves by making it intrinsically-
typed, it is easier for Agda to point out mistakes earlier on
(e.g., accidentally swapping record declarations with differ-
ent type signatures). A downside of using an intrinsically-
typed language is that, e.g., writing the refactoring becomes
harder as we are proving that the refactoring is well-typed at
the same time. The main benefit of using a separate language
with an external well-typedness proof, in the context of record
refactoring, is that we can separate the work. However, this
approach comes with the downside of having a higher chance
that mistakes surface at a later stage.

We chose to use an intrinsically-typed language, despite it
making the refactoring more complex. The main reason for
this is that the additional constraints make it easier for Agda
to point out potential mistakes sooner.

9.2 Bridge from Haskell-like to Haskell (and
beyond)

The refactoring operation and all proofs described in this pa-
per are centered around an intrinsically-typed Haskell-like
language. As previously mentioned, the Haskell-like lan-
guage is merely a simplified subset of Haskell that shares
similarities.

To make the Haskell-like language closer to Haskell, we
tried to stick to Haskell’s top-level definition of construct-
ing records, not its internal representation. All other con-
structs for defining data objects in Haskell were discarded
but left a trace in the global declaration context that, as of
now, only consists of record declarations. Record declaration
names were omitted because of the use of de Bruijn indices
[11]. Additionally, we argued that a parser could elaborate the
implicitly generated field accessors to generic lookups. De-
spite making these simplifications and concessions, we tried
to keep the essence of records, namely; a series of global dec-
larations required to construct elements of the declared type.
As such, it makes sense to state that this research does not
directly translate to proving the correctness of an identical
refactoring in Haskell, but instead, can be seen as a source of
inspiration or as an indication of its feasibility.

Additionally, there are more functional programming lan-
guages out there that support record-like types and tuples
(e.g., Erlang, OCaml, Standard ML). As the record repre-
sentation of the given examples is alike to that of Haskell,
we could potentially use this work as a source of inspira-
tion/feasibility indication for these languages as well.

10 Related work
Most related work in the field of proving refactoring cor-
rectness is directed towards class-based, object-oriented lan-
guages, pull-up/down and renaming transformations being
most popular, as opposed to languages that use a functional
paradigm [3]. By performing further research in the area
of refactoring operations for functional programming lan-
guages, we can decrease the knowledge gap between formal

https://github.com/JerBast/brp-agda-refactoring-jbastenhof

refactoring proofs for class-based, object-oriented languages
and functional ones.

As mentioned in section 2.1, a similar refactoring opera-
tion for refactoring tuples to records is described by Lövei
et al. [4], but a correctness proof remains absent. By adding
support for grouping arguments of a function and replacing
them with the record-like objects presented in their paper, we
can potentially prove similar properties for a language that is
more Erlang-like.

Horpácsi et al. [14] utilize an approach where they decom-
pose a refactoring operation in smaller refactoring steps for
which they can verify correctness more easily. They make use
of a nearly complete sub-language of Erlang for constructing
the proofs. However, they do not provide additional insights
into this sub-language as they consider it to be out-of-scope.
Additionally, there is the work of Barwell et al. [15] which
uses the dependently typed language Idris [16] to construct a
formal definition of the Haskell 98 subset on which they per-
form a renaming operation and prove structural equivalence.

The language specification of the HLL, on which we base
our proofs, matches the general outline of the language spec-
ifications presented in work by Wadler et al. [9] and Rouvoet
[8]. Both make use of de Bruijn indices [11] to refer to an ele-
ment of a context by its position. Wadler et al. generally use a
more formalized approach by defining special constructs for,
e.g., the type contexts. Rouvoet, on the other hand, uses a list
to keep the representation simple and allow functions from
the standard library7 to be reused. In this paper, we tend to
follow the latter approach to avoid making the language spec-
ification unnecessarily more complex.

11 Conclusions and Future Work
This section provides an overview of what we can conclude
from the research presented in this paper. Additionally, we
suggest what possible improvements/additions can be done
in the future.

11.1 Conclusions
Within this paper, we have shown that an intrinsically-typed
language can be constructed in Agda for which we can de-
fine a refactoring operation from tuples to records. Due to the
language being intrinsically-typed, both the language itself as
well as the refactoring are well-typed as well. Additionally,
we proved that the refactoring successfully converts all tuple
occurrences to record instances. Furthermore, we have shown
that we can relate the terms in our language to values by con-
structing big-step semantics and how the refactoring alters the
values. By proving these properties we have implicitly shown
that proving the correctness of record refactoring is feasible.

Furthermore, we compared our Haskell-like language to
Haskell and argued that our work can be used as a founda-
tion or source of inspiration for proving the same properties
on a similar refactoring performed on Haskell. The same ap-
plies to other functional programming languages that share
the notion of records and tuples.

7https://github.com/agda/agda-stdlib

11.2 Future Work
The HLL is the foundation of the work presented in this paper.
As the HLL is merely a simplified subset of Haskell, it would
be interesting to see how we can extend this in the future. By
gradually expanding the HLL to something more complex,
still related to Haskell, we could potentially find new cases for
which we can use similar techniques to those presented in this
paper. A starting point would be to allow more complex data
types to be constructed. Additionally, it would be interesting
to see if we can use a call-by-name, or even call-by-need,
approach instead of using a call-by-value evaluation strategy.

We discussed that by adapting the HLL to be more Erlang-
like, we could potentially prove correctness for the approach
described by Lövei et al. [4]. Furthermore, we described that
languages with a similar notion of records and tuples (like
Standard ML and OCaml) could potentially benefit from the
approaches described in this research as well. As such, it
would be interesting to see if we could adapt our HLL to these
languages and prove similar properties.

Acknowledgements
I would like to thank Luka Miljak and Jesper Cockx for their
guidance throughout this project. I thank Luka for providing
me with new insights that were of great use while writing this
paper. Additionally, I thank both Luka and Jesper for their
excellent feedback and for sparking my interest in this area
of research.

I would also like to thank the other members of my re-
search project for their support and enthusiasm. In particular,
I would like to thank José Carlos Padilla Cancio for inspiring
me with his value relation approach. Without this approach, I
would not have been able to finish my last proof.

References
[1] M. Fowler, Refactoring: Improving the Design of Exist-

ing Code. Addison-Wesley, 1999.
[2] D. Horpácsi, J. Kőszegi, and S. Thompson, “Towards

Trustworthy Refactoring in Erlang,” Electronic Pro-
ceedings in Theoretical Computer Science, vol. 216,
pp. 83–103, 7 2016.

[3] E. A. AlOmar, M. W. Mkaouer, C. Newman, and
A. Ouni, “On preserving the behavior in software refac-
toring: A systematic mapping study,” Information and
Software Technology, vol. 140, p. 106675, 2021.

[4] L. Lövei, Z. Horváth, T. Kozsik, and R. Király, “Intro-
ducing records by refactoring,” Proceedings of the 2007
SIGPLAN workshop on ERLANG Workshop, 2007.

[5] Agda Development Team, “Agda 2.6.3 documentation.”
https://agda.readthedocs.io/en/v2.6.3/, 2023.

[6] L. Miran, Learn you a Haskell for great good!: A be-
ginner’s guide, ch. Making Our Own Types and Type
Classes. No Starch Press, 2012.

[7] U. Norell, Dependently Typed Programming in Agda,
pp. 230–266. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2009.

https://github.com/agda/agda-stdlib
https://agda.readthedocs.io/en/v2.6.3/

[8] A. J. Rouvoet, “Correct by Construction Language Im-
plementations,” 2021.

[9] P. Wadler, W. Kokke, and J. G. Siek, “Programming
language foundations in Agda.” https://plfa.inf.ed.ac.uk/
22.08/, Aug. 2022.

[10] A. Church, “A formulation of the simple theory of
types,” Journal of Symbolic Logic, vol. 5, no. 2,
p. 56–68, 1940.

[11] N. G. de Bruijn, “Lambda calculus notation with name-
less dummies, a tool for automatic formula manipu-
lation, with application to the church-rosser theorem,”
Indagationes Mathematicae, vol. 75, no. 5, p. 381–392,
1972.

[12] B. C. Pierce, Types and programming languages. MIT
Press, 2002.

[13] G. Kahn, “Natural semantics,” in STACS 87: 4th Annual
Symposium on Theoretical Aspects of Computer Science
Passau, Federal Republic of Germany, February 19–21,
1987 Proceedings 4, pp. 22–39, Springer, 1987.

[14] D. Horpácsi, J. Kőszegi, and Z. Horváth, “Trustwor-
thy refactoring via decomposition and schemes: A com-
plex case study,” Electronic Proceedings in Theoretical
Computer Science, vol. 253, p. 92–108, 2017.

[15] A. D. Barwell, C. M. Brown, and S. Sarkar, “Proving re-
naming for Haskell via dependent types : a case-study in
refactoring soundness,” in 8th International Workshop
on Rewriting Techniques for Program Transformations
and Evaluation (WPTE 2021), 2021.

[16] E. Brady, “Idris, a general-purpose dependently typed
programming language: Design and implementation,”
Journal of Functional Programming, vol. 23, pp. 552–
593, 9 2013.

https://plfa.inf.ed.ac.uk/22.08/
https://plfa.inf.ed.ac.uk/22.08/

	Introduction
	Background information
	Refactoring tuples to records
	Agda

	Intrinsically-typed Haskell-like language
	Big-step semantics
	Record refactoring
	Structure of refactoring operation
	Refactoring types and type contexts
	Extending the declaration context
	Providing lookback evidence

	No remaining tuples (post-refactor)
	Refactor value relation
	Responsible Research
	Discussion
	On using intrinsically-typed terms
	Bridge from Haskell-like to Haskell (and beyond)

	Related work
	Conclusions and Future Work
	Conclusions
	Future Work

