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Abstract

Motivation: Protein function prediction is a difficult bioinformatics problem. Many recent methods use deep neural
networks to learn complex sequence representations and predict function from these. Deep supervised models re-
quire a lot of labeled training data which are not available for this task. However, a very large amount of protein
sequences without functional labels is available.

Results: We applied an existing deep sequence model that had been pretrained in an unsupervised setting on the
supervised task of protein molecular function prediction. We found that this complex feature representation is effect-
ive for this task, outperforming hand-crafted features such as one-hot encoding of amino acids, k-mer counts, sec-
ondary structure and backbone angles. Also, it partly negates the need for complex prediction models, as a two-
layer perceptron was enough to achieve competitive performance in the third Critical Assessment of Functional
Annotation benchmark. We also show that combining this sequence representation with protein 3D structure infor-
mation does not lead to performance improvement, hinting that 3D structure is also potentially learned during the
unsupervised pretraining.

Availability and implementation: Implementations of all used models can be found at https://github.com/stamakro/
GCN-for-Structure-and-Function.

Contact: ameliavm@ugr.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins perform most of the functions necessary for life. However,
proteins with a well-characterized function are only a small fraction
of all known proteins and mostly restricted to a few model species.
Therefore, the ability to accurately predict protein function has the
potential to accelerate research in fields such as animal and plant
breeding, biotechnology and human health.

The most common data type used for automated function predic-
tion (AFP) is the amino acid sequence, as conserved sequence implies
conserved function (Kimura and Ohta, 1974). Consequently, many
widely used AFP algorithms rely on sequence similarity via BLAST

(Altschul et al., 1990) and its variants or on hidden Markov models
(Eddy, 2009). Other types of sequence information that have been
used include k-mer counts, predicted secondary structure, sequence
motifs, conjoint triad features and pseudo-amino acid composition
(Cozzetto et al., 2016; Fa et al., 2018; Sureyya Rifaioglu et al.,
2019). Moreover, Cozzetto et al. showed that different sequence fea-
tures are informative for different functions.

More recently, advances in machine learning have partially
shifted the focus from hand-crafted features, such as those described
above, to automatic representation learning, where a complex
model—most often a neural network—is used to learn features that
are useful for the prediction task at hand. Many such neural
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network methods have been proposed, which use a variety of archi-
tectures (Bonetta and Valentino, 2020).

Some studies combined the two approaches, starting from hand-
crafted features that are fed into a multi-layer perceptron (MLP) to
learn more elaborate representations (Fa et al., 2018; Sureyya
Rifaioglu et al., 2019). Others apply recurrent or convolutional
architectures to directly process variable-length sequences. For in-
stance, Kulmanov et al. (2018) used a neural embedding layer to
embed all possible amino acid triplets into a 128-dimensional space
and then applied a convolutional neural network (CNN) on these
triplet embeddings. Moreover, Liu (2017) and Cao et al. (2017)
trained Long Short-Term Memory (LSTM) networks to perform
AFP.

The motivation behind these deep models is that functional in-
formation is encoded in the sequence in a complicated way. A disad-
vantage is that complex models with a large number of parameters
require a large amount of training examples, which are not available
for the AFP task. There are about 80 000 proteins with at least one
experimentally derived Molecular Function Gene Ontology (GO)
(Ashburner et al., 2000) annotation in SwissProt and 11 123 terms
in total.

In contrast, a huge number of protein sequences of unknown
function is available (>175M in UniProtKB). Although these
sequences cannot be directly used to train an AFP model, they can
be fed into an unsupervised deep model that tries to learn general
amino acid and/or protein features. This learned representation can
then be applied to other protein-related tasks, including AFP, either
directly or after fine-tuning by means of supervised training. Several
examples of unsupervised pretraining leading to substantial per-
formance improvement exist in the fields of computer vision
(Doersch et al., 2015; Gidaris et al., 2018; Mathis et al., 2019) and
natural language processing (NLP) (Devlin et al., 2018; McCann
et al., 2017; Peters et al., 2018). In bioinformatics, pretraining was
shown to be beneficial for several deep neural network architectures
on protein engineering and remote homology detection tasks (Rao
et al., 2019).

A deep unsupervised model of protein sequences was recently
made available (Heinzinger et al., 2019). It is based on the NLP
model ELMo (Embeddings from Language Models) (Peters et al.,
2018) and is composed of a character-level CNN (CharCNN) fol-
lowed by two layers of bidirectional LSTMs. The CNN embeds each
amino acid into a latent space, while the LSTMs use that embedding
to model the context of the surrounding amino acids. The hidden
states of the two LSTM layers and the latent representation are
added to give the final context-aware embedding. These embeddings
demonstrated competitive performance in both amino acid and pro-
tein classification tasks, such as inferring the protein secondary
structure, structural class, disordered regions and cellular localiza-
tion (Heinzinger et al., 2019; Kane et al., 2019). Other works also
trained LSTMs to predict the next amino acid in a protein sequence
using the LSTM hidden state at each amino acid as a feature vector
(Alley et al., 2019; Gligorijevic et al., 2020). Finally, a transformer
neural network was trained on 250 million protein sequences, yield-
ing embeddings that reflected both protein structure and function
(Rives et al., 2019).

Protein function is encoded in the amino acid sequence, but
sequences can diverge during evolution while maintaining the same
function. Protein structure is also known to determine function and
is—in principle—more conserved than sequence (Weinhold et al.,
2008; Wilson et al., 2000). From an AFP viewpoint, two proteins
with different sequences can be assigned with high confidence to the
same function if their structures are similar. It is therefore generally
thought that combining sequence data with 3D structure leads to
more accurate function predictions for proteins with known struc-
ture, especially for those without close homologues.

Structural information is often encoded as a protein distance
map. This is a symmetric matrix containing the Euclidean distances
between pairs of residues within a protein and is invariant to transla-
tions or rotations of the molecule in 3D space. One can obtain a bin-
ary representation from this real-valued matrix, called protein
contact map, by applying a distance threshold (typically from 5 to

20 Å). This 2D representation successfully captures the overall pro-
tein structure (Bartoli et al., 2007; Duarte et al., 2010). The protein
contact map can be viewed as a binary image, where each pixel indi-
cates whether a specific pair of residues is in contact or not.
Alternatively, it can be interpreted as the adjacency matrix of a
graph, where each amino acid is a node and edges represent amino
acids that are in contact with each other. To extract meaningful in-
formation from contact maps, both 2D CNNs (Zheng et al., 2019;
Zhu et al., 2017) and graph convolutional networks (GCNs) (Fout
et al., 2017; Zamora-Resendiz and Crivelli, 2019) have been
proposed.

Only Gligorijevic et al. (2020) have explored the effectiveness of
a pretrained sequence model in AFP, but it was done in combination
with protein structure information using a GCN. We suspect that a
deep pretrained embedding can be powerful enough to predict pro-
tein function, in which case the structural information would not
offer any significant performance improvement. Therefore, we set
out to evaluate pretrained ELMo embeddings in the task of predict-
ing molecular functions, by comparing them to hand-crafted se-
quence and structural features in combination with 3D structure
information in various forms. We focus on the Molecular Function
Ontology (MFO), as it is the most correlated ontology to sequence
and structure (Anfinsen, 1973), but also perform small-scale experi-
ments on Biological Process Ontology (BPO) and Cellular
Component Ontology (CCO). Figure 1 provides an overview of the
data and models used in our experiments. We demonstrate the ef-
fectiveness of the ELMo model (Heinzinger et al., 2019) and show
that protein structure does not provide a significant performance
boost to these embeddings, although it does so when we only con-
sider a simple protein representation based on one-hot encoded
amino acids.

2 Materials and methods

2.1 Protein representations
We considered two types of representations of the proteins (Fig. 1).
The first one describes the sequence using amino acid features and
the second one the 3D structure, in the form of distance maps.

For each sequence of length L, we extracted amino acid-level fea-
tures using a pretrained unsupervised language model (Heinzinger
et al., 2019). This model is based on ELMo (Peters et al., 2018) and
outputs a feature vector of dimension d¼1024 for each amino acid
in the sequence. We denote this as a matrix XE 2 RL�d. As proposed
by Heinzinger et al. (2019), we also obtained a fixed-length vector
representation of each protein (protein-level features, denoted as
xE 2 Rd) by averaging each feature over the L amino acids.

To compare ELMo with simpler sequence representations, we
used the one-hot encoding of the amino acids, denoted by the matrix
X1h 2 f0;1gL�d with d¼26. As before, we obtained a protein-level
representation x1h 2 Rd, which contains the frequency of each
amino acid in the protein sequence, completely ignoring the order.
We also used a protein-level representation based on k-mer counts
(with k¼3,4,5). To reduce the dimensionality of this representation,
we applied truncated singular value decomposition (SVD) keeping
the first d 2 f1024; 2000;3000;4000; 5000g components
(xkmer 2 Rd).

With respect to structural information, we considered the pro-
tein distance map. This L�L matrix contains the Euclidean distan-
ces between all pairs of beta carbon atoms (alpha carbon atoms for
Glycine) within each protein chain. We used DeepFold (Liu et al.,
2018) to extract a 398-dimensional protein-level feature vector from
the distance map (xDF 2 Rd). We also converted the distance map to
a binary contact map using a threshold of 10 Å. Finally, we tested an
amino acid-level structural representation XSA 2 RL�d, with d¼17
features. These features include the secondary structure (one-hot
encoded 8-states ‘HBEGITS-’) and relative accessible surface area
obtained from DSSP (Define Secondary Structure of Proteins)
(Kabsch and Sander, 1983), along with the sine and cosine of the
backbone angles ½/;w; h; s� (Lyons et al., 2014).
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2.2 Function prediction methods
We trained and evaluated several classifiers which use the protein
representations defined above (Fig. 1). Details about the hyperpara-
meters are provided in Supplementary Material S1 (Supplementary
Tables S1, S2).

We first considered methods operating on the protein-level fea-
tures (either ELMo embeddings xE, one-hot encodings x1h, k-mer
counts xkmer, or DeepFold features xDF). As these feature vectors are
of fixed size for all proteins, we can apply traditional machine learn-
ing algorithms. Here, we tested the following classifiers: k-nearest
neighbors (k-NN), logistic regression (LR) and multilayer percep-
tron (MLP) with one hidden layer. We denoted these models as
kNN_fE , 1 h, kmer, DFg, LR_fE , 1 h, kmer, DFg and MLP_fE ,
1 h, kmer, DFg, respectively.

We also trained several convolutional networks on the amino
acid-level representations (XE; X1h XSA) and contact maps. The
architectures are composed of convolutional layers; either 1D, 2D
or graph-based. As the input size is variable in the sequence dimen-
sion, these layers are followed by a global pooling operation, to ob-
tain a fixed-size vector for each protein. This embedding vector is
then used to predict the corresponding C outputs (GO terms)
through fully connected (FC) layers. In the output layer, we applied
the sigmoid function, so that the final prediction for each GO term
is in the range [0,1]. We tested either one or two FC layers
(Supplementary Table S3, Supplementary Material S1).

The one-dimensional convolutional neural network (1D-CNN)
applies dilated convolutions in two layers (Supplementary Fig. S1)
and we refer to this model as 1DCNN_fE , 1 h, SAg. We also bench-
marked DeepGOCNN (Kulmanov and Hoehndorf, 2020), a 1D-
CNN with 8192 convolutional filters of various sizes operating on
one-hot encoded amino acids, followed by one FC layer. We denote
this model as DeepGOCNN_1h.

To incorporate contact map information, we trained GCN mod-
els. In this case, the protein 3D structure is viewed as a graph with
adjacency matrix A 2 f0; 1gL�L, where each amino acid of the se-
quence corresponds to a node and an edge between two nodes
denotes that they are in contact. The graph convolution operator
that we mainly used was the first-order approximation of the spec-
tral graph convolution defined by Kipf and Welling (2019) as:

X0 ¼ D̂
�1=2

ÂD̂
�1=2

XW; (1)

where Â ¼ Aþ I is the adjacency matrix with self-loops, D̂ the diag-

onal degree matrix with D̂i;i ¼
PL

l¼1

Âi;l and W the weight matrix that

combines the node features. Equation (1) describes the diffusion of
information about each amino acid to the neighboring residues,
where the neighborhood is defined by the graph. We tested the
model proposed by Gligorijevic et al. (2020) that has three

convolutional layers (GCN3_fE , 1 h, SAg_CM, Supplementary Fig.
S2). As we intended to use simple models, we also considered a
reduced version of this network, with only one convolutional layer
(GCN1_fE , 1 h, SAg_CM, Supplementary Fig. S3).

To test the ability of predicting function based on contact maps
alone, we evaluated two alternative approaches. The first one is
based on the GCN model described above (Kipf and Welling, 2019)
keeping A as before, but with X 2 RL�1 containing the degree of
each node as amino acid feature. Therefore, by applying the convo-
lution operation of Equation (1), the network only learns graph con-
nectivity patterns (GCN1_CM). The second approach processes the
maps as L�L images and learns image patterns using a 2D-CNN
model with two convolutional layers (Supplementary Fig. S4). We
denoted this model as 2DCNN_CM.

Moreover, we investigated alternative ways of combining se-
quence and structure information, such as a combined 1D-CNN and
2D-CNN model that is simultaneously trained to extract a joint rep-
resentation (Supplementary Fig. S5). In this case, we concatenated
the outputs of the two convolutional parts before the global pooling
layer. We refer to this model as 1DCNN_Eþ2DCNN_CM and
1DCNN_1hþ2DCNN_CM. As a second approach, we concaten-
ated the protein-level ELMo embeddings and the DeepFold features
½xE; xDF� in a 1422-dimensional vector and trained the MLP model
(MLP_EþDF).

Finally, as baseline methods, we used the naive (Radivojac et al.,
2013) and BLAST (Altschul et al., 1990) methods. The naive
method assigns a GO term to all test proteins with a probability
equal to the frequency of that term in the training set. BLAST anno-
tates each protein with the GO annotations of its top BLAST hit.

2.3 Training details
For the k-NN classifier, we considered Euclidean distance and k val-
ues from f1,2,3,5,7,11,15,21,25g. For logistic regression, we trained
an independent binary classifier for each GO term using L2 regular-
ization. We used stochastic gradient descent to accelerate the opti-
mization. The optimal value for the penalty coefficient k was tuned
jointly for all terms from the values 10�3; 10�4 and 10�5.

The neural network models (MLP, 1D-CNN, 2D-CNN, GCN
and the combined 1D-CNN with 2D-CNN) were trained in a mini-
batch mode with a mini-batch size of 64. For the 2D-CNN and the
combined 1D-CNN with 2D-CNN models, we grouped protein
samples of similar size together into mini-batches of sizes [1, 4, 8,
16, 32, 64] due to memory limitations. We trained all models by
minimizing the average binary cross entropy over all GO terms. To
prevent overfitting, we applied dropout (Srivastava et al., 2014)
with drop probability 0.3 after the global pooling layer. For param-
eter updating, we used the Adam optimizer (Kingma and Ba, 2015)
with an initial learning rate of 5� 10�4, which we reduced by a fac-
tor of 10 every time the validation loss did not improve for five

Fig. 1. Protein representation types considered in this study, which encode (a) amino acid sequence information (ELMo embeddings, one-hot encodings, k-mer counts) and (b)

3D structure information encoded by secondary structure and backbone angles, the DeepFold features, or in the form of contact map (as an image or graph adjacency matrix).

(c) The protein representations (columns) that are fed as input to each classification model (rows) are indicated by a shaded box, colored blue for amino acid and protein-level

features and orange for contact map representations
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consecutive epochs. For DeepGOCNN, we used the hyperpara-
meters reported by Kulmanov and Hoehndorf (2020).

For all classifiers, we used the validation ROCAUC to select the
optimal set of parameters, epoch and number of FC layers wherever
applicable.

2.4 Data
We compared models that only use sequence information to models
that also include structure, using proteins from the Protein Data
Bank (Berman et al., 2000). We refer to this dataset as PDB. To bet-
ter assess the sequence-only models, we also applied them to a larger
dataset (referred to as SP) that includes all available sequences in the
SwissProt database in January 2020. Finally, we also evaluated the
ELMo-based models on the CAFA3 benchmark (Zhou et al., 2019)
(CAFA dataset).

For the PDB and SP datasets, we considered proteins with se-
quence length in the range [40, 1000] that had GO annotations in
the Molecular Function Ontology (MFO) with evidence codes
’EXP’, ’IDA’, ’IPI’, ’IMP’, ’IGI’, ’IEP’, ’HTP’, ’HDA’, ’HMP’, ’HGI’,
’HEP’, ’IBA’, ’IBD’, ’IKR’, ’IRD’, ’IC’ and ’TAS’. We used CD-HIT
(Fu et al., 2012) to remove redundant sequences with an identity
threshold of 95%. After these filtering steps, we had a total of
11 749 protein chains in PDB and 80 176 protein sequences in the
SP dataset.

On the PDB dataset, we used 5-fold cross validation. At each
fold, we randomly sampled 10% of the training data to use as a val-
idation set. We excluded GO terms that had fewer than 40 positive
examples in the training set or fewer than 5 in the validation or test
sets and removed proteins that had no annotations after this filter-
ing. To ensure diversity in the evaluation, we only evaluated on pro-
teins from the held-out test set that had at most 30% sequence
identity to the training set, as determined by BLAST. The number of
protein chains and MFO GO terms resulting from each cross-
validation fold can be found in Supplementary Table S4
(Supplementary Material S2).

For the SP dataset, we randomly split the data into a training
(80%), a validation (10%) and a test set (10%). We further defined
a subset of the test set using BLAST, in which all proteins had se-
quence identity smaller than 30% to any of the training proteins.
We performed the same GO term filtering steps as before. Finally,
we had 63 994 training, 8004 validation and 3530 test proteins,
annotated with C¼441 MFO terms.

The CAFA training and test sets were provided by the organizers
(Zhou et al., 2019). The test set contains 454 proteins. We randomly
split the given training set into 90% for training (28 286 proteins)
and 10% for validation (3143 proteins), annotated with C¼679
MFO GO terms. We did not apply sequence similarity filters on the
CAFA dataset, as in that case, we intend to exploit information pre-
sent in closely related proteins.

Finally, we evaluated the ELMo embeddings on the Biological
Process (BPO) and Cellular Component (CCO) ontologies using the
PDB and CAFA datasets. Here, to save computational time, we did
not apply cross validation on the PDB data, but a single train/valid-
ation/test split. We ensured that no test protein had more than 30%
identity to any training protein and filtered rare terms as for the
MFO. For BPO, the PDB dataset contained 8406 training, 1050 val-
idation and 400 test proteins annotated with C¼1108 terms and
for CCO, 7214 training, 902 validation and 319 test proteins anno-
tated with C¼228 terms (Supplementary Table S5, Supplementary
Material S2).

2.5 Performance evaluation
The performance was measured using the maximum protein-centric
F-measure (Fmax), the normalized minimum semantic distance (Smin)
(Clark and Radivojac, 2013; Jiang et al., 2016) and the term-centric
ROCAUC. For the PDB dataset, we provided the mean and stand-
ard deviation of the 5 cross-validated folds. When evaluating one
train/test split, we estimated 95% confidence intervals (CI’s) using
bootstrapping: we drew random samples with replacement from the
test set until we obtained a set of proteins with a size equal to the

original test set and calculated the metric values in this new set. We
repeated this procedure 1000 and 100 times for the PDB and SP test
sets, respectively.

2.6 Clustering of supervised embeddings
We extracted supervised embeddings for each protein chain in the
PDB dataset from the trained MLP, 1D-CNN, GCN and 2D-CNN
models using different input features. As embedding vector, we took
the output of the hidden layer for the MLP model, and the output of
the global pooling layer for the convolutional models. These embed-
ding vectors were of size 512 in all cases, which we compared to the
1024-dimensional protein-level ELMo embeddings.

The clustering was done using a single train/test split of the PDB
dataset. For each test protein, we found its 40 nearest training pro-
teins in the embedding space using the cosine distance as a distance
measure. Then we computed the Jaccard distance between the neigh-
borhoods found for each test protein using two different embed-
dings. This gave us a distribution of neighborhood dissimilarities for
each pair of embedding types. We used the median of this distribu-
tion as a measure of distance between embeddings and applied hier-
archical clustering with complete linkage to group similar
embeddings together.

We also tested whether differences in the 40 nearest neighbors
also lead to differences in the predictions or performance of the dif-
ferent methods. For each model, we calculated the protein-centric
Fmax for every individual protein and used one minus the Pearson
correlation of those values as a distance measure to re-cluster the
models. In this experiment, for the ELMo embeddings we used the
performance of LR_E.

3 Results

3.1 Deep, pretrained embeddings outperform hand-

crafted sequence and structure representations
We first compared the unsupervised ELMo embeddings of protein
sequences and the DeepFold distance map embeddings to hand-
crafted sequence and structure representations at the task of predict-
ing MFO terms. We performed 5-fold cross validation on the PDB
dataset with at most 30% sequence similarity between test and
training proteins. We used the amino acid-level features (XE; X1h

and XSA) in a 1D-CNN model and two GCN models, and compared
to the k-NN, logistic regression (LR) and multilayer perceptron
(MLP) classifiers, which use the protein-level features (xE; x1h; xkmer

and xDF). As seen in Figure 2, the models using pretrained embed-
dings significantly outperform their counterparts using other fea-
tures on all evaluation metrics. In addition, DeepFold outperformed
hand-crafted secondary structure and backbone angles features
(XSA), but was worse than the ELMo embeddings (Fig. 2). Also, the
protein-level x1h representation (k-mers with k¼1) consistently out-
performed xkmer which uses larger k values.

Furthermore, we benchmarked these representations in predict-
ing BPO and CCO terms on the same PDB dataset, this time using a
single train/test split (while still ensuring at most 30% similarity
between test and training proteins). The results (Supplementary Fig.
S6, Supplementary Material S2) show that xE features outperformed
xDF; x1h and the baselines in both ontologies. The comparison be-
tween DeepFold and one-hot did not yield a clearly superior repre-
sentation, as the results varied per ontology and classifier.

3.2 ELMo features are competitive in MFO and CCO in

CAFA3
To get an additional evaluation of the ELMo embeddings compared
to the state-of-the-art, we used them in the CAFA dataset (454 test
proteins, 679 MFO terms). Table 1 shows the performance of
kNN_E, LR_E, MLP_E and 1DCNN_E in this dataset. All had
quite competitive performance, outperforming at least 80% of the
methods participating in CAFA3 (Zhou et al., 2019), while having
100% coverage, meaning that they could make predictions for all
test proteins. Our top model, MLP_E, achieved an Fmax of 0.55,

4 A.Villegas-Morcillo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btaa701/5892762 by Bibliotheek TU

 D
elft user on 08 D

ecem
ber 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa701#supplementary-data


outperforming all but 4 of the methods that had participated in the
challenge, as well as DeepGOCNN_1h, which in our experiments
scored an Fmax of 0.43 (Table 1).

To gauge the usefulness of ELMo features in BPO and CCO, we
also evaluated kNN_E on these ontologies as well. We did not tune
the parameter k in this experiment but arbitrarily set it to 5. In BPO,
kNN_E achieved an Fmax of 0.34 compared to 0.40 for the top
method which would place it in the top-50 out of 146 participants.
In CCO, it achieved an Fmax of 0.60 which was close to the top per-
formance of 0.62 and the 0.61 of DeepGOCNN_1h (Kulmanov and
Hoehndorf, 2020).

Taken together, these results show that ELMo features are a
promising protein representation for AFP.

3.3 Simple models with good features beat complex

models with one-hot encoded amino acids
In all convolutional networks that we tested, either one or two FC
layers were selected, based on the performance on the validation set.
In Supplementary Table S3, we see that there is no performance gain
from the second FC layer for models that use ELMo embeddings,
while most of the other models require this extra layer to improve
their performance. This implies that classes are more linearly separ-
able in the embedding spaces learnt by models that use ELMo than
those that use hand-crafted features.

In Figure 2, we compare models that learn convolutional filters
to extract patterns from amino acid-level ELMo embeddings to

standard classifiers that use the average of these embeddings along
the sequence dimension (protein-level), using the PDB dataset. We
observed that LR_E achieved equal ROCAUC to the GCN3_E_CM
(0.82 6 0.006 and 0.82 6 0.004, respectively). The GCN3_E_CM
achieved a better Smin (0.49 6 0.003) than LR_E (0.51 6 0.004),
and a better Fmax (0.50 6 0.004, compared to 0.47 6 0.009). The
kNN_E had comparable Smin to LR_E and worse ROCAUC than
all. The two-layer MLP on the protein-level embeddings (MLP_E)
achieved the best results on all metrics (Fmax¼0.52 6 0.005,
Smin¼0.48 6 0.003, ROCAUC¼0.84 6 0.005). This model was
closely followed by 1DCNN_E with ROCAUC¼0.83 6 0.007 and
GCN1_E_CM with Fmax¼0.51 6 0.007. The three convolution-
based models provided the same Smin (0.49), which is the second
best after MLP_E.

More importantly, we found a simple logistic regression model
combined with pretrained features learnt by a deep neural network
(LR_E and LR_DF) considerably outperformed all models that used
one-hot encodings of amino acids on all three evaluation metrics
(Fig. 2). These models include our custom 1D-CNN, DeepGOCNN
(Kulmanov and Hoehndorf, 2020) and a GCN that also uses protein
structure information (Gligorijevic et al., 2020). These results dem-
onstrate the usefulness of transfer learning in a task with limited
labeled training data such as AFP.

3.4 GCN performs similarly to 1D-CNN when using

ELMo embeddings
We then tested whether combining the ELMo embeddings with con-
tact map information in a GCN improves the performance, for
which we considered the PDB dataset. Figure 2 shows the mean and
standard deviation of the Fmax, normalized Smin and ROCAUC,
across five cross-validated folds. The 3-layer GCN proposed in
Gligorijevic et al. (2020) trained with the ELMo embeddings
(GCN3_E_CM) performed similarly to the 1DCNN_E model based
on the three metrics though 1DCNN_E had marginally better
ROCAUC (0.83 6 0.007 compared to 0.82 6 0.004). We also tested
whether a simpler GCN model would be more efficient and found
that just a one-layer graph convolutional network (GCN1_E_CM)
performed comparably to the more complex GCN model (Fig. 2),
having only 2% worse ROCAUC. To ensure that our observation
about GCNs does not depend on the choice of the graph convolu-
tion operator, we repeated the experiments using three other graph
operators and obtained similar results (Supplementary Table S6,
Supplementary Material S3).

On the contrary, when using one-hot encoded amino acids as
features, both GCN3_1h_CM and GCN1_1h_CM clearly outper-
formed 1DCNN_1h. We also tested the DeepGOCNN_1h model
(Kulmanov and Hoehndorf, 2020), which performed 2-5% better

Fig. 2. Fmax (a), Smin (b) and ROCAUC (c) of models trained using either ELMo

embeddings (orange), one-hot encodings (blue), k-mer counts (brown), DeepFold

(green) or structural features (pink), averaged over the cross-validated 30% se-

quence identity PDB test subsets. The arrows denote that lower values (in Smin) and

higher values (in Fmax and ROCAUC) correspond to better performance. The error

bars denote the standard deviation of the cross-validated results. The dashed line

corresponds to the performance of BLAST and the dashed dotted line to the naive

baseline

Table 1. Fmax of sequence-based methods on the CAFA test set

with 454 proteins and C¼ 679 MFO GO terms

Method Fmax "

Naive� 0.33

BLAST� 0.42

kNN_E 0.50

LR_E 0.51

MLP_E 0.55

1DCNN_E 0.53

DeepGOCNN_1h 0.43

CAFA3 rank 1� 0.62

CAFA3 rank 2� 0.61

CAFA3 rank 3� 0.61

CAFA3 rank 4� 0.61

CAFA3 rank 5� 0.54

Note: The performance of the models with an asterisk (BLAST and naive

baselines, along with that of the five highest scoring models) were taken from

the study by Zhou et al. (2019).
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than our custom 1DCNN_1h depending on the metric
(Fmax¼0.41 6 0.004, Smin¼0.59 6 0.002 and ROCAUC¼0.68 6

0.004). DeepGOCNN_1h also had equal Fmax with GCN1_
1h_CM, but the latter had 3% better Smin and 9% better ROCAUC,
making it clearly the best model that uses this representation
(Fig. 2).

3.5 Protein structure does not add information to the

ELMo embeddings
To explain the lack of significant improvement when including the
contact map information, we investigated the behavior of the GCN
further, focusing on the 1-layer model, which was at least as good as
the 3-layer one. Keeping the architecture the same, we retrained and
tested the model, replacing each contact map with (i) a disconnected
graph, i.e. substituting A with the identity matrix (GCN1_E_I), and
(ii) a random undirected graph with the same number of edges as
the original (GCN1_E_R). As shown in Table 2, the performance
on a single train/test split of the PDB dataset (Supplementary Table
S5) remains the same as that of the original contact map for both
perturbations of the graphs, hinting that the sequence embeddings
are enough for learning a good functional representation. However,
replacing ELMo with one-hot encodings in this experiment
(GCN1_1h_I and GCN1_1h_R) led to a performance drop com-
pared to GCN1_1h_CM (Table 2).

We then trained a GCN model using the node degrees as features
(GCN1_CM), ‘forcing’ the network to learn to differentiate among
the different GO terms using only the contact map. The performance
of that network was remarkably worse than GCN1_1h_CM, having
Fmax¼0.43, Smin¼0.60 and ROCAUC¼0.64. To put these numbers
into perspective, the simple BLAST baseline had Fmax¼0.37,
Smin¼0.53 and ROCAUC¼0.62. In contrast, modeling the contact
maps as images and not as graphs and feeding them into a custom
2D-CNN (2DCNN_CM) achieved better performance (Fmax¼0.41,
Smin¼0.58 and ROCAUC¼0.68), although significantly worse than
the models that used sequence or pretrained DeepFold features.
Furthermore, the combined 1DCNN_Eþ2DCNN_CM
(Fmax¼0.46, Smin¼0.54 and ROCAUC¼0.74) did not outperform
1DCNN_E, and 1DCNN_1hþ2DCNN_CM (Fmax¼0.39,
Smin¼0.60 and ROCAUC¼0.61) was worse than 2DCNN_CM. In
contrast, MLP_EþDF provided slightly better (<2%) cross-
validation results than MLP_E with Fmax¼0.52 6 0.006,
Smin¼0.47 6 0.003 and ROCAUC¼0.85 6 0.005. All these results
show that integrating ELMo and structural features is not trivial.
Although contact maps can in general be used for MFO prediction,
in the presence of ELMo embeddings they are not particularly
useful.

3.6 Language modeling learns a coarse functional

representation
We also evaluated the sequence-only models in the larger SP dataset
(3530 test proteins, 441 MFO terms) (Supplementary Table S7,
Supplementary Material S4). The absolute performances are better,

but the superiority of ELMo embeddings is evident, as even simple
models such as kNN_E and LR_E outperform all more complex
models that use one-hot encodings. MLP_E was the top method
based on all three metrics in this dataset too (Supplementary Table
S7). Analyzing the performance per GO term, we found that al-
though kNN_E has a larger mean ROCAUC than 1DCNN_1h, its
superiority is mainly shown on the most frequent terms
(Supplementary Fig. S7a,b, Supplementary Material S5). On the
contrary, all other tested models that use ELMo embeddings tend to
have better performance for more specific terms (Supplementary
Fig. S8, Supplementary Material S5) and they consistently outper-
form the one-hot encodings-based models across all levels of the GO
graph (Supplementary Fig. S7c–h, Supplementary Material S5). This
shows that the more general functions can be learned during un-
supervised pretraining, but further supervised learning is needed for
the more specific ones.

3.7 Supervised protein embeddings give insights into

the behavior of the models
To better understand the differences between the models, we com-
pared the embeddings learned by each of them. We fed all trained
models with every protein from our PDB dataset and saved the 512-
dimensional embedding vectors, which gave us an 11 740 � 512
embedding matrix. We then calculated the rank of each of these
matrices to assess how ‘rich’ the learned representations are. As
shown in Supplementary Table S8 (Supplementary Material S6), all
methods that use the ELMo representation are either full-rank or
very close to full-rank (508–512). In contrast, the models that only
operated on contact maps learned much simpler, lower-dimensional
representations, with rank 310 for 2DCNN_CM and 105 for
GCN1_CM. By applying principal components analysis (PCA) to
the GCN1_CM embeddings, we found that 3 components explained
99.8% of the total variance (Supplementary Fig. S9, Supplementary
Material S6), suggesting that essentially this network learned a 3-
feature representation of the proteins.

We also compared the embeddings of the different supervised
models to the unsupervised ELMo embeddings. For every pair of
test-training proteins from our PDB dataset, we calculated their co-
sine similarity in the embedding space, as well as a measure of simi-
larity of their GO annotations based on the Jaccard index (Pesquita
et al., 2007). For the ELMo embeddings, we found that the two
similarity measures were significantly correlated (Supplementary
Fig. S10, with Spearman q¼0.07, permutation P-value < 10�4,
Supplementary Material S7). By extracting the embeddings from a
supervised model such as 1DCNN_E and MLP_E, the correlation
value doubled (q¼0.14, P-value < 10�4, Supplementary Material
S7). For the GCN1_E_CM, the correlation value was 0.11
(Supplementary Fig. S11, Supplementary Material S7). This verifies
that unsupervised pretraining is able to capture some information
about protein function, while additional supervised training pro-
vides extra information to the model.

To test to what extent different models learn similar embeddings, we
clustered them based on the overlap of their 40 nearest neighborhood

Table 2. Fmax, Smin and ROCAUC of the 1-layer GCN using the identity or a random matrix as adjacency matrices, and ELMo embeddings or

one-hot encodings as node features, compared to the naive and BLAST classifiers

Model Fmax " Smin # ROCAUC "

Naive 0.43 [0.410, 0.451] 0.61 [0.608, 0.620] 0.50 [0.500, 0.500]

BLAST 0.37 [0.346, 0.405] 0.53 [0.512, 0.556] 0.62 [0.597, 0.642]

GCN1_E_CM 0.51 [0.492, 0.540] 0.50 [0.477, 0.515] 0.76 [0.724, 0.789]

GCN1_E_I 0.52 [0.491, 0.541] 0.50 [0.483, 0.519] 0.76 [0.723, 0.793]

GCN1_E_R 0.50 [0.478, 0.527] 0.51 [0.485, 0.524] 0.77 [0.747, 0.798]

GCN1_1h_CM 0.43 [0.407, 0.449] 0.58 [0.567, 0.591] 0.71 [0.672, 0.673]

GCN1_1h_I 0.44 [0.416, 0.457] 0.59 [0.580, 0.600] 0.65 [0.611, 0.683]

GCN1_1h_R 0.43 [0.414, 0.454] 0.59 [0.576, 0.595] 0.70 [0.655, 0.727]

Note: All networks were evaluated using one 30% sequence identity test subset of the PDB dataset. The 95% confidence intervals were estimated using 1000

bootstraps.
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graphs, measured using Jaccard distance (Fig. 3a). We observed that the
embeddings of MLP_E are the most similar to ELMo (Jaccard distance
of 0.68, meaning that about one-third of the 40 nearest neighbors are
common). The models that used a 1-layer GCN (GCN1_E_CM,
GCN1_E_I and GCN1_E_R) learned relatively similar neighborhoods
to each other, clustering together at distance 0.77. Moreover, all ELMo-
based methods cluster together with 1DCNN_E, which has the most dif-
ferent representation out of them. In contrast, the models that do not use
ELMo features learned very different embeddings, as their neighbor-
hoods have nearly zero overlap both to each other and to the ELMo-
based models.

Finally, we investigated whether the observed differences in
embeddings imply different performances across proteins. The clus-
tering based on protein-centric performance (Fig. 3b) was very simi-
lar to the one obtained when using embedding similarities (Fig. 3a).
The rank correlation between both similarities was 0.92. However,
in absolute numbers, the performance similarities are much higher
than the neighborhood similarities (at least 0.35 overall and at least
0.67 among methods that use ELMo embeddings). This shows that
ELMo-based models tend to behave similarly.

4 Discussion

Our work continues upon two recent studies involving protein rep-
resentation learning (Heinzinger et al., 2019) and its combination
with protein structure applied to AFP (Gligorijevic et al., 2020). We
confirm the power of the unsupervised ELMo embeddings in captur-
ing relevant biological information about proteins (Heinzinger et al.,
2019). Simply embedding the proteins into the learned 1024-dimen-
sional space and applying the k-NN classifier led to better molecular

function prediction performance than the two baseline methods
(BLAST and naive), as well as several commonly used hand-crafted
features such as one-hot encoding of amino acids, k-mer counts, sec-
ondary structure and backbone angles. This implies that the ELMo
model was able to learn an embedding space in which the similarity
between two proteins reflects functional similarity reasonably well,
although it was only exposed to amino acid sequences and not to
GO annotations. We had similar results with DeepFold embeddings
(Liu et al., 2018) which model protein structures and a similar ob-
servation has been recently made for protein domain embeddings
(Melidis et al., 2020). However, the ELMo representation only
coarsely reflects protein function, as demonstrated by the poorer
performance of the k-NN classifier on the most specific terms.

As expected, we were able to improve the prediction accuracy
achieved by the unsupervised embeddings by training supervised
AFP methods on the embedding space. A set of logistic regression
classifiers trained individually for each GO term achieved compar-
able Smin and Fmax to the k-NN, while achieving significantly higher
ROCAUC in the PDB dataset. Contrary to expectation, the GCN
and 1D-CNN models trained on the amino acid-level embeddings
extracted by ELMo were barely able to outperform the logistic re-
gression model in terms of ROCAUC. They did outperform it in
terms of Smin and Fmax, though. However, in the SP dataset, which is
larger and contains more specific GO terms, the differences in Smin

are less profound (Supplementary Table S7). Moreover, replacing
the linear model (LR) with a non-linear one (MLP) gave a significant
performance boost, considerably outperforming all others in
ROCAUC and achieving competitive CAFA performance.
Supervised training also resulted in a more consistent performance
across all levels of GO term specificity. In contrast, for DeepFold
embeddings, training supervised methods did not improve upon the
k-NN performance. This is probably due to the fact that DeepFold
is a metric learning model tuned to recognize similar protein struc-
tures and not to generally model protein characteristics. All in all,
the competitive performance of the protein-level models highlights
the power of the unsupervised protein embeddings.

In Gligorijevic et al. (2020), the authors report on the superiority
of a 3-layer GCN using amino acid embeddings from a pretrained
language model based on a LSTM network over BLAST and a 1D-
CNN using a one-hot encoded amino acid representation. They at-
tribute this superiority to the use of graph convolutions to model the
protein 3D structure represented by contact maps. However, our
experiments show that a 1D-CNN with strong amino acid embed-
dings is competitive with the GCN. Both convolutional models
exhibited severe performance decline when replacing the ELMo
embeddings with one-hot encoded amino acids. Based on these, we
cannot exclude the possibility that the language model of
Gligorijevic et al. (2020) is by itself powerful enough to explain
(most of) the increase in performance. If that is indeed the case, it
would account for the fact that replacing the true contact map with
a predicted one does not cause a significant drop in performance
Gligorijevic et al. (2020). To support this claim, we trained another
GCN model from scratch, keeping the same architecture as our best
GCN, but replacing the contact map by a graph with all nodes dis-
connected. The performance of that network was similar to that of
the original (using the contact map). The same pattern was observed
when replacing the contact map with a random graph (both at train-
ing and test time), clearly demonstrating that the contribution of the
contact maps is rather small. This observation is interesting, as pro-
tein 3D structure is much more difficult and expensive to obtain
than the sequence.

One of the hyperparameters of our networks was the number of
fully connected (FC) layers between the global pooling layer and the
output FC layer for the classification. In our experiments, we tested
our models with zero and one intermediate FC layer and used the
validation ROCAUC to select the optimal for each model. In cases
where the performance difference was less than 0.01, we chose to
keep the simpler model for testing, as having fewer parameters
makes it less prone to overfitting and more likely to better generalize
on unseen proteins. A clear pattern emerged from this selection: for
both GCN and 1D-CNN networks trained with ELMo embeddings,

Fig. 3. Hierarchical clustering of the models based on the similarity of the 40 nearest

neighbors of each protein in the embedding space (a) and the correlation in protein-

centric Fmax (b)
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the extra FC layer was not required. In contrast, for networks
trained with one-hot encoded amino acid features or without any se-
quence features, the more complicated architecture was always
selected. This means that in the feature space learned by the convo-
lutional layers, the different classes (GO terms) are ‘more linearly
separable’ when ELMo embeddings are used and learning a simple
mapping from that space to the output classes is enough for good
performance. In the absence of ‘good’ input features, it is harder for
the convolutions to learn a ‘good’ embedding space and as a result a
more complex classifier is needed.

One can reasonably assume that also in the case of the one-hot
features, it would be possible to learn a better (supervised) embed-
ding space that only requires one linear classification layer.
However, that would take a deeper architecture with more convolu-
tional layers to enable us to discover more complicated patterns in
protein sequences. This is problematic because the amount of avail-
able labeled data is not enough to train deep models with a larger
number of parameters. Our experiments showed that two recent
models, a 3-layer GCN (Gligorijevic et al., 2020) and a wide 1D-
CNN (Kulmanov and Hoehndorf, 2020), both operating on one-hot
encoded amino acids, were remarkably inferior to linear and nearest
neighbor methods that operate on pretrained features. Building a
more complex model increases not only training time but also the
man-hours spent deciding on the correct architecture and tuning the
larger number of hyperparameters. To make matters worse, one
would have to repeat almost the whole process from scratch if the
task changes e.g. from function prediction to structure prediction.
Unsupervised pretraining relieves part of that burden by creating
only one complicated deep sequence model to learn a meaningful
feature representation of amino acids or proteins, which can then be
fed to simpler classifiers to obtain competitive performance in sev-
eral tasks without much effort (Heinzinger et al., 2019), as we dem-
onstrated here.

Note that, DeepGOCNN combined with other data sources per-
formed better on the CAFA3 MFO benchmark than our MLP_E
model (Kulmanov and Hoehndorf, 2020). Here, we focused on com-
bining ELMo with protein structure information, but other, more
diverse data types such as coexpression and protein interactions
should be tested in conjunction with these advanced sequence fea-
tures in ensemble methods. We expect this to be highly beneficial in
the BPO, because ELMo did not achieve high CAFA3 performance
in that ontology and the CAFA-p results hinted that achieving good
BPO performance using sequence alone is difficult (Zhou et al.,
2019).

Our experiments suggest that combining structure information
in the form of a contact map with sequence information is not
straightforward, when high-quality sequence features are available.
Joining a 1D- and a 2D-CNN that independently extract sequence
and contact map features, respectively, did not improve perform-
ance over the 1D-CNN applied to sequence data only. It is unlikely
that contact maps do not contain any functional information, so our
observations could have two possible explanations: either the ELMo
embeddings contain 3D structure information or we are still unable
to leverage the full potential of contact maps.

To test the first hypothesis, one could train a classifier that takes
the amino acid-level features as inputs and predicts contacts between
amino acid pairs. Such models already exist and do quite well in the
CASP challenges using physicochemical properties, the position-
specific scoring matrix (PSSM) and predictions about secondary
structure, solvent accessibility and backbone angles (Cheng and
Baldi, 2007; Jones et al., 2015; Wang et al., 2017). By replacing
these features with sequence embeddings as in Bepler and Berger
(2019), we would expect a considerable improvement in the per-
formance of these models.

On the contrary, finding a more effective way of using distance
or contact maps is not trivial. Here, we considered a contact thresh-
old of 10 Å by following previous studies (Gligorijevic et al., 2020),
which is a more relaxed threshold than the one used in CASP chal-
lenges (8 Å), but also used alternative threshold strategies and
obtained similar results. One could argue that the distance matrix is
more informative and should be preferred, but our experiments did

not confirm that. A different way of using distance maps in a GCN
has been proposed by Fout et al. (2017) to predict protein interfaces.
First, instead of using a fixed distance threshold, Fout et al. define
each amino acid as being ‘in contact’ with its k-nearest residues,
which creates a directed graph as the property of being someone’s
nearest neighbor is not commutative. Moreover, the distances be-
tween the k-nearest residues were smoothed with a Gaussian kernel
and used as edge features over which a different set of filters was
learned (Fout et al., 2017). Further research is required to resolve
this issue, but our DeepFold results show that unsupervised pretrain-
ing is a promising path in this case too.

In conclusion, this study shows that deep unsupervised pretrain-
ing of protein sequences is beneficial for predicting molecular func-
tion, as it can capture useful aspects of the amino acid sequences.
We also showed that combining these sequential embeddings with
contact map information does not yield significant performance
improvements in the task, hinting that the embeddings may already
contain 3D structural information. As language modeling of pro-
teins is a new field with great potential, we think that future work
should perform systematic comparisons of those models in AFP, but
also other protein-related tasks.
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