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Automated Seismic Acquisition Geometry Design
for Optimized Illumination at the Target:
A Linearized Approach

Sixue Wu™', Dirk J. Verschuur, and Gerrit Blacquiere

Abstract—1In seismic exploration methods, imperfect spatial
sampling at the surface causes a lack of illumination at the target
in the subsurface. The hampered image quality at the target
area of interest causes uncertainties in reservoir monitoring and
production, which can have a substantial economic impact. Espe-
cially in the case of a complex overburden, the impact of surface
sampling on target illumination can be significant. The target-
oriented acquisition analysis based on wavefield propagation and
a known velocity model has been used to provide guidance for
optimizing the acquisition parameters. Seismic acquisition design
is usually a manual optimization process, with consideration of
many aspects. In this study, we develop a methodology that
automatically optimizes an irregular receiver geometry when the
source geometry is fixed or vice versa. The methodology includes
objective functions defined by two criteria: optimizing the image
resolution and optimizing the angle-dependent illumination infor-
mation. We use a two-step parameterization in order to make the
problem more linear and, thereby, solve the acquisition design
problem by using a gradient descent algorithm. With simple
and complex velocity models, we demonstrate that the proposed
method is effective, while the involved computational cost is
acceptable. Interestingly, the optimization results in our examples
show that the conventional uniform geometry already satisfies the
resolution requirement, while optimizing for angle coverage can
provide a large uplift and is strongly dependent on the velocity
model.

Index Terms— Computational seismology, controlled source
seismology, image processing, inverse theory, seismic instruments.

I. INTRODUCTION

EISMIC exploration is an expensive methodology.
STo ensure optimum data quality with a limited bud-
get, seismic acquisition needs to be designed carefully. One
of the important factors that influence both the data qual-
ity and the cost is seismic acquisition geometry. It should
be designed such that the acquired data meet the quality
requirements.
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In classical acquisition design, geometries are decided prior
to the acquisition based on the basic geological information,
such as target depth and maximum reflector dip angle [1].
This approach ensures that the overall seismic image has good
resolution, good angle coverage, and a high signal-to-noise
ratio. However, certain targets can be inadequately imaged due
to the complex geological overburden [2], [3]. The hampered
image quality at the target area of interest can cause high
uncertainties in reservoir monitoring and production, which
can lead to high expenses. In such a circumstance where the
subsurface information is already available, the acquisition
geometry can be optimized to ensure the image quality at the
target area.

Model-based acquisition analysis is a well-established
approach to help us design a better acquisition geometry
that ensures improved image quality at the target of interest.
It uses modeling methods based on ray-tracing, the one-way
wave equation, and the two-way wave equation to compute
the illumination criteria to appraise the acquisition geometry.
This analysis is feasible because the macrosubsurface velocity
model with major reflectors is mostly available before the
acquisition, especially in a monitoring scenario. This a priori
velocity model is used for modeling wavefield attributes that
can indicate the illumination quality. For example, Muerdter
and Ratcliff [4] use ray-trace modeling; Volker ef al. [5] and
Van Veldhuizen et al. [6] use one-way wave equation model-
ing; Regone [7] and Gardner et al. [8] use finite-difference
modeling; and Kumar er al. [9] use full wavefield model-
ing that includes multiple scattering wavefields. The results
from these model-based acquisition analysis methods qualify
the target illumination property of the acquisition geometry
and enable us to redesign the acquisition by changing the
acquisition parameters to fulfill the illumination requirements.
The acquisition geometry is usually optimized by manually
changing the acquisition parameters in the analysis until its
illumination quality is acceptable.

Automated acquisition design can be realized by using
optimization methods. Depending on the types of criteria, the
methods can be divided into two categories. One category is
using statistical methods to optimize the acquisition parame-
ters. This type of method aims to minimize the error that is
projected from the data space to the model space by changing
the acquisition geometry [10]-[15]. The other category is a
deterministic method, which is based on physical models.
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For instance, Araya-Polo et al. [16] describe a submodular
optimization algorithm, and Latiff et al. [17] describe a particle
swarm algorithm to optimize the acquisition parameters. Both
types of methods face the challenges of large parameter
space and the nonlinearity of the design problem. Research
has shown that global optimization algorithms are effective
for solving nonlinear problems; however, the computational
costs remain high [18]. Linearized optimization algorithms
are fast. However, linearization between the current sampling
parameters and the illumination criteria is nontrivial since
the sampling parameters are the spatial coordinates of the
sampling points.

We introduce a two-step approach to parameterize the acqui-
sition design problem via the density sampling function such
that it can be solved by a linearized optimization algorithm.
We focus on stationary geometries so that focal beam analysis
can be conveniently used to qualify the illumination property
in relation to the acquisition geometry. An optimization prob-
lem is formulated based on two illumination criteria (image
resolution and illumination angle diversity), and a gradient
method is used to solve it. The corresponding computational
cost is low compared to global optimization methods. In this
work, we consider a known velocity model, stationary geome-
tries, and illumination criteria. The most suitable scenario
would be an ocean bottom node (OBN) type of survey or
a floating cable type of survey [19] in a reservoir monitoring
scenario in the marine environment since the main criterion
in the marine seismic acquisition is the illumination coverage,
while, in land seismic acquisition, we should also consider
aspects, such as the surface-wave noise suppression and the
signal-to-noise ratio in the design besides illumination criteria.

In the following of this article, first, we define the illumina-
tion criteria as the results of focal beam analysis in Section II.
Next, we optimize the spatial sampling for the illumination
criteria in Section III. Numerical examples, including analyses
with regard to the inversion parameter and the effects of
a velocity error, are presented in Section IV. Features and
limitations of the method are discussed in Section V. Finally,
our conclusions are drawn in Section VI.

II. ILLUMINATION CRITERIA

We use focal beam analysis as the forward model to
compute the illumination quality criteria in terms of two focal
functions: the resolution function and the amplitude-versus-ray
parameter (AVP) function, for stationary geometries. The focal
beam analysis is a model-based acquisition analysis method.
It can appraise the influence of the acquisition geometry in
terms of the image resolution and angle-dependent amplitude
information [5], [6], [9], [20]. In this section, we review
the key formulations of focal beam analysis with respect to
primary reflections of the acoustic wavefield in preparation
for solving the inverse problem.

A. Resolution Function

The formulation of focal beam analysis is based on the
modeling approximation of the wave equation, where the
wavefield is described by downgoing and upgoing wavefield
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extrapolations [21]. Detailed derivations from the acoustic
wave equation to the one-way wavefield extrapolation oper-
ators can be found in [22].

The resolution function is defined as the con-focal image of
a unit reflection point at the target location ry [23]. We can
write the following expression for each frequency component:

P(r;rk):/A /A F(r,r,)D(x,)W(x,, ry) Ry

x W(ry, ry)S(xs) F(ry, r)dr,dry, (1)
with
N,
D)= d(r, —ry) @)
m=1
and
Ny
S(ry) =Y d(r, — 1) 3)
=1

where r, = (x,, yr,z,) and r; = (x;, vy, 25) are the lateral
locations of receivers and sources at the acquisition levels,
respectively; ry = (xx, vk, zx) is the target location in the sub-
surface at the target depth level z; r = (x,y,zx) are the
lateral locations at the target depth level z;; A, and Ay are the
areas where the receivers and sources are located, respectively;
and P (r; ry) represents the monochromatic resolution function
of the target at r;. The forward wavefield propagation oper-
ators W(ry,ry) = ((0G(ry,r5))/0z) extrapolate the source
wavefields to the target and W(r,,ry) = ((6G(r,,1t))/07)
extrapolate the reflected wavefield from the target to the
receiver locations, where G represents the acoustic Green’s
function in the frequency domain. They are the so-called
Rayleigh-II integrals in acoustical and seismic literature. The
focusing operators F = W* focus on the wavefields recorded
at the acquisition levels to the target point. For stationary
geometries, the receiver and source sampling functions D(r,)
and S(ry) can be expressed as the sums of delta functions,
where r,, and r; are the discrete receiver and source locations
at the surface acquisition level z, and zy, respectively; and N,
and N, are the number of receivers and the number of shots,
respectively. In the case of nonflat topography, all sources and
receivers are redatumed to the acquisition levels z, and zg,
respectively. Since we assume a unit reflection point, the
reflectivity at the target Ry has the value of one. Equation (1)
can also be seen as the point spread function for analyzing the
acquisition imprint: the term W (r,, ry) Ry W (1, ry) represents
seismic prestack reflection data; afterward, it is sampled by
D(r,) and S(ry), and refocused via the operators F(r,r,),

F(ry,r) to the target depth level.
Using the definition of focal beams, the above equation can

be expressed as
P(r;r;) = B, (r; 1) By (x; 18) 4)

with

B, (r;r) = / F(r,r,)D(r,)W(x,, rp)dr, 5)
A

r
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and
By(r; ry) = / W(re, rs)S(rs)F(rs, r)dr (6)
As

where B, and B, are the focal receiver and source beams,
respectively. Equation (4) indicates that the resolution function
can be obtained by a multiplication of the source and receiver
beams in the space—frequency domain. The definitions of
focal beams in (5) and (6) represent the backpropagation
of the emitted source wavefield and the recorded receiver
wavefield. The source beam B shows how well the target can
be illuminated from the source side, and the receiver beam B,
shows how well the reflected wavefield can be recorded from
the receiver side. Note that the decoupling of the receiver and
the source beam can only be applied for stationary source
and receiver geometries; in other words, the receiver locations
are the same for every source location and vice versa. The
receivers and sources do not have to be on the same depth
level; they can be redatumed to the same depth level in our
wavefield modeling approach. With the known propagation
and focusing operator, we can quantitatively evaluate the
acquisition influence from the receiver and source geometries
by the focal beams. The resolution function indicates the
illumination quality by the combined imprint of the source
and receiver geometries in the spatial domain. Two attributes
of the resolution function are the peak amplitude and the width
of the main peak. Sidelobes are related to spatial aliasing.
The formulation here is for a single frequency component.
The broadband resolution function is obtained by summing
over all monochromatic resolution functions, that is to say,
applying an imaging condition.

B. AVP Function

The AVP function is defined as the bifocal image of an
angle-independent, unit reflector at target depth in the linear
radon domain. We can write the bifocal image in the space—
frequency domain as follows:

P(r.,-; rk)z/A,. /A /Ak /AkF(rj,r,)D(r,)W(r,,r’)R(r/ — r)

x W(r,ry)S(ry) F(ry, rp)dr’drdr,dry  (7)

where r; = (x;, y;, zx) varies laterally around the target point
at ry, ' = (x',y’, zx) denotes a lateral location on the target
depth level z;, and Ay is an area at the target depth level.
The reflectivity R(r' — r) = o(r' — r) is a delta function,
representing an angle-independent reflection [24], since the
goal is to estimate the geometry imprint instead of the angle-
dependent reflectivity. Assuming stationary geometries and
local homogeneity around ry, (7) can be written as a spatial
convolution of the receiver beam and the complex conjugate
of the source beam [23]. Therefore, the AVP function can
be simplified as a multiplication of the receiver beam after
reversing the ray parameters and the source beam in the linear
radon domain

P(p; ri) = By (—p; 12) Bs (p; 1) (8)

where p is the ray parameter vectors and P(p; ry) represents
the monochromatic AVP function of the target at r;. The
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Fig. 1. (a) 3-D velocity model with a target point located at (1500 m, 1500 m,
525 m). (b) Example acquisition geometry, where the blue dots represent the
receivers and the red dots represent the sources. The receiver point interval
is 40 m, and the line interval is 200 m; the source point interval is 20 m, and
the line interval is 100 m.
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Fig. 2. Broadband focal beam analysis result of the example geometry:

(a) focal receiver beam in the spatial domain, (b) focal source beam in the
spatial domain, (c) resolution function, (d) focal receiver beam in the linear
radon domain, (e) focal source beam in the linear radon domain, and (f) AVP
function.

focal receiver and source beams in the linear radon domain,
B, (p; r;) and B(p; i), show the angles of detection from
the target and the angles of illumination from the target,
respectively. The AVP function shows the angle-dependent
illumination quality influenced by the combined receiver and
source geometries. The attributes of the AVP function are
spatial bandwidth and spectral completeness. The broadband
AVP function is obtained by summing the monochromatic
AVP functions along lines of constant ray parameter [25].

C. Example of Focal Beam Analysis

We use a simple 3-D velocity model to illustrate the illu-
mination criteria defined by the focal beam analysis. The
frequency range is chosen as 5-40 Hz. The velocity model
with a salt body is displayed in Fig. 1(a), and a target point
is located at (x;,x2,z) = (1500 m, 1500 m, 525 m). For
the chosen target point, the receiver and source geometries
shown in Fig. 1(b) are assessed, and the broadband focal beam
analysis results are shown in Fig. 2. The focal receiver and
source beams can show the focusing and detecting abilities
of the receiver and source geometries separately in the spatial
domain [see Fig. 2(a) and (b)] and the azimuth angle coverage
in the linear radon domain [see Fig. 2(d) and (e)]. In this
example, the maximum propagation angle is set to 50°; thus,
the angle of illumination is limited. The resolution function in
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Fig. 2(c) is the multiplication of the focal beams in the spatial
domain. The AVP function in Fig. 2(f) is the multiplication
of the focal receiver beam in Fig. 2(d) after reversing the ray
parameters and the focal source beam in Fig. 2(e) in the linear
radon domain.

Fig. 1(b) shows an example acquisition geometry, where the
receiver point interval is 40 m, and the line interval is 200 m;
the source point interval is 20 m, and the line interval is 100 m.
Due to large receiver and source line intervals, the focal
receiver beam has sidelobes in the x,-direction, and the focal
source beam has sidelobes in the x;-direction in the spatial
domain. By virtue of the orthogonal aliasing directions in the
receiver and source cross-lines, the aliasing effects cancel out
in the resolution function, which shows a desired spiky peak in
Fig. 2(c). Fig. 2(d) shows missing angles because the receivers
are sparsely sampled in the xj-direction. The focal source
beam in Fig. 2(e) shows a full angle coverage, and no missing
angles because the source sampling in the x;-direction is
sufficient. However, the resulting AVP function has even more
missing angles since it shows the combined influence from
both source and receiver geometries. Note that the resolution
and AVP functions are two interconnected aspects of the
same illumination property. Resolution concerns the angle-
averaged image accuracy, and the AVP function describes the
angle-dependent information. The averaged reflectivity over all
azimuth angles in Fig. 2(f) gives a good structural image of the
given target point in Fig. 2(c). However, the receiver geometry
needs to be improved if a full-azimuth angle coverage is
desired at the target point (e.g., for an azimuth-dependent AVO
analysis). In this section, we have shown the focal receiver and
source beams to explain the computation of the focal functions.
For the inverse problem in the following, we will only use the
focal functions as the illumination criteria.

III. ACQUISITION DESIGN AS AN OPTIMIZATION PROCESS

Automated acquisition design is the inverse problem of
acquisition analysis, where the unknown is the sampling
geometry. We solve the inverse problem as an optimization
problem, where we aim to update the acquisition geometry
for optimum target illumination. In the forward model of
focal beam analysis, there are seven aspects that can influence
the focal beam result, that is to say, the target location, the
velocity model, the frequency range, the wavefield modeling
and migration operators, and the source and receiver samplings
on the acquisition surface. As described in the introduc-
tion, the velocity model is known as a priori knowledge.
To reduce the inversion parameters, we allow the parameters—
the target, the frequency range, the wavefield modeling, and
migration operators—to be user-defined in advance. A flow-
chart of the optimization method is shown in Fig. 3, where
the steps in the green boxes are the input, and the step in
the yellow box is updating the acquisition geometry. The
focal functions are computed for each updated geometry and
compared to the requirement. Ideally, the updating process
stops when the focal functions reach the requirement. The
challenges of solving this optimization problem are a large
amount of parameters, nonlinearity, and high computational
cost. We will address these aspects in the following.
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Fig. 3. Workflow of optimizing the receiver geometry for target illumination
with a fixed source geometry.

(@

Fig. 4. Feature of the sampling density transformation: (a) horizontal gradient
map is transformed to and (b) a set of sampling points whose spatial density
distribution is proportional to the input gradient map.

A. Parameterization

We use a strategy that contains two steps to parameterize
the acquisition design problem. First, the sampling density,
which is defined as the number of sampling points per unit
area, is chosen as the continuous parameter of the inverse
problem. Second, we transform the density distribution into a
realization of a sampling geometry via the weighted centroidal
Voronoi diagram [26]. In a 2-D space, the Voronoi diagram
partitions the plane into regions based on the weight given by
the continuous density function; the centroids of Voronoi cells
are then the sampling locations; and this process can be done
by Lloyd’s algorithm [27]. Thus, this transformation distributes
the centroids with a spatial distance that is inversely propor-
tional to the local density value. We can express the discrete
receiver locations {r,} and the discrete source locations {r;}
as follows:

{rm} = f(¢(rr)) 9)

and

{r)} = f(o(ry))

where ¢(r,) and ¢(ry) represent the sampling receiver and
source densities at each lateral location r, and ry, respectively;
f(-) denotes the process from a density distribution to a
discrete set of points representing the sampling geometry;
¢ (r,) is normalized such that the sum of ¢ (r,) is N,, the total
number of receivers; and ¢ (ry) is normalized such that the sum
of ¢(ry) is Nj, the total number of sources. Fig. 4(a) shows
a general example of the sampling density, where dark colors
represent high values and light colors represent low values.
Fig. 4(b) shows the sampling map after applying the weighted
centroidal Voronoi diagram algorithm. With a predefined total
number of samples, the resulting sampling is dense where the
density value is high, and the sampling is sparse where the
density value is low.

The transformation function has a nondeterministic charac-
teristic: it can generate completely different sampling sets from
the same input density distribution because the transformation
algorithm uses a random number generator. On the one hand,

(10)
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this characteristic allows the actual sampling locations to be
flexible. The parameter—sampling density—can be seen as a
macrosolution of the acquisition geometry, which can be used
for flexible acquisition systems, regular acquisition systems,
and potentially automated devices. On the other hand, this
characteristic causes uncertainty in the illumination quality,
which is assessed by the focal functions that depend on
the realization of the sampling geometry. This aspect will
be analyzed in numerical examples. Overall, we are able
to linearize the relationship between the parameters and the
illumination criteria, by using the continuous density function
instead of the spatial coordinates of all individual sampling
points as parameters, and by turning the density-to-sampling
transformation into a separate step.

B. Consider the Receiver Side

To further reduce the inversion parameters, we consider
optimizing only the receiver geometry when the source geom-
etry is fixed or vice versa. The scenario of a fixed source
geometry is used to formulate the inversion method. The
methodology holds likewise for optimizing the source geom-
etry with a fixed receiver geometry because sources and
receivers are interchangeable due to reciprocity [28]. The
resolution and the angle distribution at the target can be
represented by the resolution function and the AVP function,
respectively. The reference resolution and AVP function can
be user-defined (e.g., a perfect spike resolution function and
a flat AVP function). In this article, we choose the resolution
and AVP function determined from the full 3-D regular source
and receiver geometries, which obeys the Nyquist sampling
criterion to be the reference for comparison. The reference
geometry is considered to have the best attainable illumination.

This scenario can be considered as determining an optimum
OBN layout in the marine environment subject to a limited
amount of OBN’s and assuming a full 3-D sampling on the
source side. The objective of the simplified problem is to auto-
matically optimize a receiver geometry for good illumination
of the chosen target, as close to the reference focal functions
as possible.

C. Fixed Number of Receivers

A dense spatial sampling that satisfies the Nyquist crite-
rion [29] gives the best illumination achievable. Note that
the Nyquist requirement is defined by a regular geometry.
Beyond the Nyquist requirement, more spatial sampling can
increase fold and, therefore, improves signal-to-noise ratio
and, thus, image quality. Below the Nyquist requirement,
we expect the illumination improves with increasing receivers
until the spatial sampling satisfies the Nyquist criterion [29],
on the condition that the geometry of each sampling number
is optimum. If we allow the number of sampling points to
vary during optimization, an inversion scheme will update the
geometry to one of which sampling number is close to the
Nyquist requirement. The choice of using an indefinite number
of receivers will be discussed in Section V.

In an ideal scenario, the geometry is a full 3-D sampling.
However, in practice, the acquisition geometry is limited by
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economic factors and the number of inventories, such as
in a marine seismic acquisition. For the examples in this
article, we fix the number of sampling points far below
the Nyquist requirement to gain insight into how we can
subsample the data below the Nyquist requirement. This rep-
resents the scenario of a fixed budget, so we can demonstrate
different realizations of sparse irregular geometries obtained
by an optimization algorithm. The setting of a fixed number
of receivers also reduces the nonlinearity of the problem.
However, the optimization problem becomes mathematically
not well defined—there is always an error term remaining,
and there will exist many geometry solutions of a simi-
lar error value. In other words, there is no unique solu-
tion. Typically, the amount of stationary equipment is also
restricted in practice. In summary, we are dealing with a
nonlinear problem with many possible solutions that have the
same error.

D. Geometry Optimization for Target Illumination

The resolution function and the AVP function are used as
the illumination criteria. They represent two interconnected
aspects of the illumination property. They are used to formu-
late two individual objective functions detailing the purposes
of optimizing the image resolution and optimizing the angle-
dependent information.

1) Optimizing the Image Resolution: To optimize the image
resolution, we have the following objective function:

T =Y NP, gers 1) — P(x, 5 o)1

X,y

(1)

where P(r, ¢rr; i) represents the resolution function from the
reference receiver density distribution ¢, which is chosen
as a full 3-D sampling that satisfies the Nyquist criterion;
P(r, ¢; i) represents the resolution function from the receiver
density to be optimized, ¢. Thus, it follows that only the image
amplitude at target level z; is considered when comparing to
the reference. The gradient is given by substituting (4) and (5)
in (11), and taking the derivative of the residual E(r; ;) =
P(r, ¢ret; 1) — P(r,¢; rr) with respect to ¢ by applying
the adjoint method [30]. Note that (11) is formulated for
one frequency; the gradient is formulated for a range of
frequencies, i.e., a sum over all frequencies. The gradient
required is

VsJi = —ZZ W (r,, ry) E(r; 1) By (r; 1) W (r,, 11 )dT
w Ay

12)

where A is an area at the target depth level. From a physics
perspective, the multiplication of the source beam By and the
residual £ can be viewed as propagating the residual to the
surface, sampled by the source geometry, and backpropagated
to the target. After that, the product E(r; ry)B;(r; ry)—the
residual now including the source sampling effect—is again
forward propagated from the target level to the acquisition
surface and then correlated with the upgoing one-way wave-
field from the target. In the end, summing over all frequencies
can be viewed as applying the imaging condition. Note that
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the objective function and the gradient are for one target point.
In the case of multiple target points, the objective function and
the gradient are summed over all target points.

2) Optimizing the Angle-Dependent Information: To opti-
mize the angle-dependent information, we have the following
objective function:

B =Y IIP(, prets 10) — P(p, §; 1)

Px>Py

13)

where P(p, ¢ret; Ti) represents the AVP function from the
reference receiver density ¢r, and P(p, ¢; ry) represents the
AVP function from the variable density ¢. This criterion
means that we consider the angle-dependent imprint that
is associated with the target depth level compared to the
reference. The reference beam from the full 3-D sampling
is considered to have the best attainable angle distribution.
Similar to (12), the gradient is given by substituting (8)
in (13) and taking the derivative of the residual E(p;ry) =
PP, ¢rer; 1) — P(p, ¢; rr) with respect to ¢. The gradient
required is

VoJo = =2 Z/ W(r,, r ) L HE@; v) By (r; 1)}
w A

x W*(r,, re)dr  (14)
where £7'{.} represents the inverse linear radon transform.
From a physics perspective, the gradient estimation can be
viewed as combining the residual in the linear radon domain
with the source beam in the linear radon domain, transforming
to the spatial domain, forward propagating from the target to
the acquisition surface, correlating with the one-way wavefield
from the target, and applying the imaging condition. Again,
the objective function and the gradient are for one target point.
In the case of multiple target points, the objective function and
the gradient are summed over all target points.

3) Algorithm: We use a gradient descent scheme with a
line search procedure to solve the optimization problem. Since
the problem is nonlinear and not well defined, different initial
guesses are used to find the approachable minimum. Initial
guesses are chosen as the one-way wavefield amplitude at
the acquisition surface and concentrated circles of different
radius above the target. The pseudoalgorithm of geometry
optimization using J; is given in Algorithm 1. Due to the
parameterization approach, the same density distribution can
be transformed to different sampling sets that have a range
of misfit values and varying gradients. We apply Gaussian
smoothing to the calculated gradient to reduce the dependence
of one specific sampling set. In addition, we use a predefined
maximum number of iterations and select the smallest J; (¢")
after the process is finished. At a later stage of the iteration,
there is only a small sampling density update, and density
can be seen as nearly repeated. Inherently, the density is
transformed to different geometries that may have different J;
values; therefore, the algorithm accounts for the nondetermin-
istic feature in the parameterization approach. The algorithm
of geometry optimization using J, follows the same procedure
with the corresponding equations replaced in Algorithm 1.
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Algorithm 1 Geometry Optimization Using J;

.....

number of initial guesses)
1: for each initial guess do
2:  Set iteration number i = 1
3:  whilei <i,, do
4 Transform ¢ to geometry D(r,) using the algorithm
described in [26]
Compute resolution function P(r; ry) by equation 1
: Compute objective function J; by equation 11
7: Compute gradient V4J; by equation 12, and apply a
Gaussian smoothing

AN

8: Line search procedure, select step size o
9:  Update density ¢'*! = ¢’ + aVyJ

10: i=i+1

11:  end while

12: end for

13: Select density with the lowest J; value
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Fig. 5. (a) 3-D velocity model with the target point represented by a red dot
and (b) and (c) velocity model cross sections. The spatial coordinate of the
target point is (2000 m, 2000 m, 570 m).

IV. NUMERICAL EXAMPLES
A. Simple 3-D Salt Model

A simple 3-D velocity model with an ellipsoidal salt body is
used to test the method (see Fig. 5). The target point located at
a depth of 570 m is indicated by a red dot in the 3-D velocity
model. For computational efficiency, the frequency range used
here is 5-10 Hz. Based on the Nyquist criterion for a regular
geometry, the full 3-D geometry that ensures a minimal alias-
ing effect for the corresponding bandwidth requires roughly
1400 receivers. This number is estimated by first calculating
the Nyquist sampling interval (c/(2 * fmax)) using the water
velocity ¢ 1500 m/s and then counting the number of
receivers on the acquisition surface, where there is wavefield
energy modeled by propagating an impulsive response from
the target to the acquisition surface. In this example, the
source geometry and the reference receiver geometry are full
3-D geometries that satisfy the Nyquist criterion. For geometry
optimization, the receiver number is limited to 100, which
is around 7% of the Nyquist requirement. Fig. 6 shows that
the reference resolution function has no sidelobes, and the
AVP function has a full angle coverage. The AVP function
has a nonflat spectrum due to the influence of the salt
overburden. We consider that the focal functions from the full
3-D sampling on both the source and receiver sides represent
the best attainable illumination. We optimize the receiver
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in (c) and (d) indicates the cross section locations of plots (e) and (f). The
red line in (e) and (f) represents the evaluated geometry, while the blue line
represents the reference geometry. (g) and (h) Residuals of the resolution
function and the AVP function, respectively, displayed in absolute scale.

geometry for a maximum match to the target illumination
obtained by the reference receiver geometry by using J; and
J, separately.

Fig. 7 shows the focal beam analysis results of a uniform
geometry with 100 receivers. This represents the conventional
scenario since OBNs are typically evenly deployed. Fig. 7(a)
shows that the acquisition area has a uniform spatial sampling
density, which is transformed to the corresponding receiver
geometry via the weighted Voronoi algorithm in Fig. 7(b).
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Fig. 8. Geometry optimization results using J; under the simple salt model:
(a) optimized receiver density distribution, (b) optimized receiver geometry,
(c) corresponding resolution function, and (d) AVP function. The dashed
line in (c) and (d) indicates the cross section locations of plots (e) and (f).
The red line in (e) and (f) represents the evaluated geometry, while the blue
line represents the reference geometry. (g) and (h) Residuals of the resolution
function and the AVP function, respectively, displayed in absolute scale.

The consequent resolution function has a sharp peak in
Fig. 7(c) and 7(e); the residual in Fig. 7(g) is small with the
maximum error being 1% of the scale of the resolution func-
tion. The resulting AVP function covers high angles with many
azimuths in the middle range missing [see Fig. 7(d) and (f)].

Fig. 8 shows the optimization results using Jj, i.e., using
the resolution function as the criterion. Compared to the
focal analysis results of the uniform geometry, both the
residuals of the resolution function and the AVP function
have a lower amplitude [see Fig. 8(g) and (h)] although
the optimization scheme only uses the resolution function to
compute the update. This is probably because the resolution
and AVP functions are two interconnected aspects of the
same illumination property. Resolution concerns the angle-
averaged image accuracy, and the AVP function describes the
angle-dependent information. Optimizing for one could lead to
certain improvements in the other criterion. Fig. 9 shows the
optimization results using J,, where the AVP function is used
as the criterion. It is clearly visible that the residual of the AVP
function in Fig. 9(h) is the lowest compared to the residuals in
Figs. 7(h) and 8(h), and the cross section of the AVP function
in Fig. 9(f) shows the closest match to the reference.

Since the same sampling density distribution can be trans-
formed to different geometry realizations of varying illu-
mination quality, we transform the density distributions in
Figs. 7(a), 8(a), and 9(a) each to 100 different geometry
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Fig. 9. Geometry optimization results using J> under the simple salt model:
(a) optimized receiver density distribution, (b) optimized receiver geometry,
(c) corresponding resolution function, and (d) AVP function. The dashed
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The red line in (e) and (f) represents the evaluated geometry, while the blue
line represents the reference geometry. (g) and (h) Residuals of the resolution
function and the AVP function, respectively, displayed in absolute scale.

realizations and analyze their variations in J; and J, values.
Fig. 10(a) presents the histograms of J; values calculated
from the 100 geometries that are transformed from the density
optimized for J; (red), the density optimized for J, (green),
and the uniform density (blue). The density optimized for
J1 shows an improvement in resolution in general: the red
histogram has a lower mean value than the blue histogram;
and the variation of the red histogram is approximately one-
third of the variation of the blue histogram though there is
a small overlap between the two histograms. Even though
it appears that all density maps have relative large variation
in J; values, the resolution of three density distributions
are all close to the reference—there is no visible error in
Figs. 7(e), 8(e), and 9(e).

Fig. 10(b) presents the histograms of J, values calculated
from the 100 geometries that are transformed from the density
optimized for J; (red), the density optimized for J, (green),
and the uniform density (blue). The density optimized for J,
shows the best angle coverage among the three densities: the
mean value of the green histogram is the lowest and much
smaller than the blue histogram; the variation of the green
histogram is only 10% of the variation of the blue histogram.
Compared to Fig. 10(a), there is a larger difference when
optimizing for J,. This makes sense because the resolution
is mainly affected by the spatial sampling rate. Since the
total amount of sampling points remains the same during
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Fig. 10. (a) Histograms of J; values of 100 realizations of the receiver
density optimized for J; (red), the density optimized for J, (green), and the
uniform density (blue). (b) Histograms of J, values of 100 realizations of the
density optimized for J; (red), the density optimized for J, (green), and the
uniform density (blue).
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Fig. 11. (a) 3-D SEG /EAGE salt model with the target point represented by
ared dot and (b) and (c) velocity model slices where the target is denoted by
a red star. The coordinate of the target point is (8160 m, 4560 m, 2300 m).

optimization, there is not a large improvement in resolution.
Furthermore, the histogram distributions of density optimized
for J; and J, overlap each other. This is probably because the
density maps optimized for J; and J, in Fig. 8(a) and 9(a)
have high resemblances. From this analysis, we conclude that
the variation in objective function values due to the specific
geometry realization from the same density function will
have an impact on the optimization process, but the effect
is acceptable.

The density maps and geometries after optimization are
no longer uniform. The spatial variation in the density map
indicates the areas that should have a higher sampling rate
and the areas that could have a lower sampling rate. There
exist other geometry solutions with similar objective function
values since the optimization problem is nonlinear and not
well-defined. The solution space can be reduced by adding
extra constraints, such as acquisition deployment preferences.
For instance, there might be areas that are restrictive for
stationary receivers. The results show that a uniform geometry
already satisfies the resolution requirement; the optimization
for J; improves the resolution on a small scale; and a larger
improvement is limited by the total amount of sampling points.
Optimizing for J, shows a significant improvement in the
angle distribution compared to the uniform geometry. The
optimized geometries have a better angle coverage on all
azimuths, and the spectrum has small fluctuations compared
to the reference.

B. SEG/EAGE Salt Model

The geometry optimization scheme is also tested
for a subsampled Society of Exploration Geophysicists
(SEG)/European Association of Geoscientists and Engineers
(EAGE) salt model [31]. The velocity model is shown
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in Fig. 11, and the reference focal functions are shown in
Fig. 12. The peak of the resolution function is located at the
lateral location of the target. The complex salt overburden
has a clear imprint on the AVP function. In this example, the
frequency range is 5-10 Hz, and a regular Nyquist sampling
requires roughly 7300 receivers. This number is estimated by
first calculating the Nyquist sampling interval (c/(2 * fmax))
using the water velocity ¢ = 1500 m/s and then counting the
number of receivers on the acquisition surface, where there
is wavefield energy modeled by propagating an impulsive
response from the target to the acquisition surface. The
source geometry and the reference receiver geometries are
full 3-D geometries that satisfy the Nyquist criterion. The
receiver number is limited to 300, which is around 4% of the
Nyquist requirement.

First, we show the focal beam analysis results of a uni-
form geometry of 300 receivers (see Fig. 13). The resolution
function has a sharp peak in Fig. 13(c) and (e); the misfit in
Fig. 13(g) is small with the maximum being 0.8% of the scale
of the resolution function. However, there are high-amplitude
fluctuations in the AVP function compared to the reference
[see Fig. 13(d) and (f)]. Fig. 14 shows the optimization results
using J;, and Fig. 15 shows the optimization results using J»
with the SEG/EAGE salt model shown in Fig. 11. Comparing
the focal functions of these three cases, Fig. 14(g) shows the
smallest residual of the resolution function; Fig. 15(h) shows
the smallest residual of the AVP function; and the uniform
geometry has an acceptable resolution but a high residual in
angle coverage.

Because of the uncertainty in illumination quality, again,
we transform the densities in Figs. 13(a), 14(a), and 15(a) each
to 100 geometries and analyze their variations in J; and J;.
Fig. 16(a) presents the histograms of J; values calculated
from the 100 geometries that are transformed from the density
optimized for J; (red), the density optimized for J, (green),
and the uniform density (blue). The density optimized for J;
shows a small-scale improvement in resolution: the mean value
of the red histogram is the lowest though a large portion of
it overlaps with the histogram of the uniform density. Note
that it may appear that all density maps have relatively large
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Fig. 13.  Focal beam analysis of a uniform receiver geometry under the
SEG/EAGE salt model: (a) receiver density distribution, (b) receiver geometry,
(c) corresponding resolution function, and (d) AVP function. The dashed line
in (c) and (d) indicates the cross section locations of plots (e) and (f). The
red line in (e) and (f) represents the evaluated geometry, while the blue line
represents the reference geometry. (g) and (h) Residuals of the resolution
function and the AVP function, respectively, displayed in absolute scale.

variation in J; values; however, they all have an acceptable
resolution since the error is barely visible compared to the
reference in Figs. 13(e), 14(e), and 15(e).

Fig. 16(b) presents the histograms of J, values calculated
from the 100 geometries that are transformed from the density
optimized for J; (red), the density optimized for J, (green),
and the uniform density (blue). In addition, we repeat the
complete optimization process for J, ten times to test the
overall stability with the inherent uncertainty of the sampling
set. The J, values of the outcome are plotted as a one-bin
histogram (orange) in Fig. 16(b). The density optimized for
J> has the best angle coverage: the green histogram has the
lowest mean value, and its variation is 10% of the variation of
the blue histogram. The J, values of the ten repeated tests
lie within the range of the green histogram. It shows that
optimizing for J; is stable, despite the variations in geometry
realizations during the optimization process.

The density maps and geometries after optimization in
Fig. 14(a) have a relatively symmetric shape, while the density
map in Fig. 15(a) has an irregular shape. This implies that the
resolution requirement is less affected by the complex overbur-
den than the AVP requirement, where the complex overburden
can have an asymmetric effect on the geometry. Moreover,
optimizing for J; already leads to a huge improvement in the
AVP function compared to the uniform situation. Nevertheless,
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Fig. 14.  Geometry optimization results using J; under the SEG/EAGE
salt model: (a) optimized receiver density distribution, (b) optimized receiver
geometry, (c) corresponding resolution function, and (d) AVP function. The
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(e) and (f). The red line in (e) and (f) represents the evaluated geometry,
while the blue line represents the reference geometry. (g) and (h) Residuals
of the resolution function and the AVP function, respectively, displayed in
absolute scale.

the density optimized for J, achieves the highest amplitude
accuracy over all azimuths and angles.

C. Velocity Error Analysis

Our acquisition design method requires the a priori
knowledge of the subsurface, and the acquisition geometry
is optimized for the input velocity model. A completely
wrong velocity model could lead to an acquisition geometry
that has an unacceptable illumination quality. In practice,
a macrovelocity model is typically obtained from vintage
seismic data, especially in a monitoring scenario. To analyze
the influence of the velocity error, we use a velocity model
that has been smoothed with a 600-m box of the velocity
displayed in Fig. 11 as the input velocity model and optimize
for J,. Therefore, the reference focal functions and the update
directions are computed using the smoothed velocity model
instead of the true velocity model during optimization.

As a result, Fig. 17(a) and (b) shows the optimized den-
sity and geometry using J, with the smoothed velocity;
Fig. 17(c)—(h) shows the focal functions that are computed
using the true velocity model such that we can evaluate the true
illumination quality. The optimized density has an irregular
shape and is different from the optimized density using the
true velocity in Fig. 15(a); the resolution function has a sharp
peak in Fig. 17(c) and (e); and the misfit in Fig. 17(g) is small
with the maximum being 0.8% of the scale of the resolution
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Fig. 15. Geometry optimization results using J, under the SEG/EAGE
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geometry, (c) corresponding resolution function, and (d) AVP function. The
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Fig. 16. (a) Histograms of J; values of 100 realizations of the receiver
density optimized for J; (red), the density optimized for J, (green), and the
uniform density (blue). (b) Histograms of J, values of 100 realizations of
the density optimized for J; (red), the density optimized for J, (green), the
uniform density (blue), and the one-bin histogram of the ten repeated tests of
optimizing for J, (orange).

function. Compared to the optimization result in Fig. 15, the
AVP function in Fig. 17(d) has detailed difference compared
to Fig. 15(d); the residual in Fig. 17(h) has slightly higher
error at approximately (p,, = —0.3, p,, = 0.1) % 1073 s/m
compared to Fig. 15(h); and overall, the residual levels in
Figs. 17(h) and 15(h) show similar quality of angle coverage.
In addition, the histogram of 100 geometries transformed
from the resulting density shows a similar J, distribution
compared to the one obtained by using the true velocity model
(see Fig. 18).
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Fig. 17. Geometry optimization results using J, under the smoothed
SEG/EAGE salt model: (a) optimized receiver density distribution, (b) opti-
mized receiver geometry, (c) corresponding resolution function, and (d) AVP
function that is computed with the true velocity model. The dashed line in
(c) and (d) indicates the cross section locations of plots (e) and (f). The red line
in (e) and (f) represents the evaluated geometry, while the blue line represents
the reference geometry. The reference focal functions are computed using the
true velocity model for comparison. (g) and (h) Residuals of the resolution
function and the AVP function, respectively, displayed in absolute scale.
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Fig. 18. Histograms of J, values of 100 realizations of the density optimized
for Jo, using the true velocity (green) and the smoothed velocity model
(purple).

V. DISCUSSION

We have demonstrated that the proposed gradient method
with several initial guesses is effective in designing a
3-D geometry for optimum illumination. In the examples of
the SEG/EAGE salt model, we used four initial guesses,
and the number of iterations for each individual process is
typically 50; thus, the total number of iterations is 200.
In comparison, a genetic algorithm needs 4500 evaluations of
the objective function to reach a geometry solution of similar
quality.

The reference AVP functions in Figs. 6(d) and 12(d) do
not have flat spectra because we have a laterally varying
velocity model, and we use the complex conjugate of the
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propagation operator as the migration operator in the cal-
culation of focal functions. Hence, there is an imprint of
the complex velocity in the AVP function. It is possible to
include an illumination compensation or to use a least-squares
migration in the focal function calculation to ensure a flat
AVP spectrum. However, such applications are not expected
to change much the optimization results because both the
reference and the updated focal functions are calculated using
the same migration operator.

The proposed gradient method does not guarantee a global
minimum solution due to the nonlinear parameter-data rela-
tionship. In solving an acquisition design problem, we do
not aim to obtain the global minimum. A local minimum is
acceptable for an acquisition design problem since it provides
improved illumination. With regard to the nonuniqueness of
the geometry solutions, we expect additional constraints to
reduce the ambiguity in solutions. In practice, we can generate
a group of solutions that have a similar error and then choose
one according to the acquisition preferences. For instance,
the receivers can only be deployed in a certain area due
to obstacles in the field; the inline direction of the marine
streamer usually depends on the ocean flow direction. These
extra constraints can help eliminate candidate geometries and
reach realistic proposals.

Acquisition geometry design consists of designing both the
source and the receiver geometries. In this article, we only
discuss optimizing one side, being either sources or receivers.
As demonstrated in the examples, we design the receiver
geometry with the source side fixed. Likewise, the source
geometry can be optimized with the receiver side fixed. The
gradient expression for optimizing the source geometry would
be (12) and (14) with S(ry) being replaced by D(r,). The
method described in this article can be extended to optimizing
both the source and receiver geometries simultaneously, where
the source geometry is optimized for several iterations, then
the receiver geometry is optimized with the latest source geom-
etry for several iterations, and so on [32]. This procedure is
similar to the double-loop inversion process described in [33].

One potential extension of the current method is to design
for long-offset data only. Full-waveform inversion (FWI),
widely commonly used technology in seismic velocity esti-
mation, typically requires high-angle diving waves. An acqui-
sition geometry that has a good angle coverage at high angles
is likely to be beneficial for FWI. Shen et al. [34] have shown
that the wide offsets of the OBN data were one of the key
ingredients for the quality uplift in the FWI velocity model.
For the geometry optimization, it is possible to apply a weight
to favor the large angles in the AVP function and only invert
for this weighted AVP function.

In this article, we have shown examples with a simplified
scenario with no noise presence, a single target point, and a
fixed receiver number. Noise is an important aspect to address
in seismic acquisition design. In a land acquisition environ-
ment, the seismic data processing suffers tremendously from
unsatisfactory signal-to-noise ratio, which is caused by strong
surface-wave noise; and in a marine acquisition environment,
the seismic data processing suffers more from surface multiple
reflections. The quantitative models of how noise affects the
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data quality should be established; after that, we can use them
as the acquisition design criteria or include them in the existing
design methods. Note that illumination is the only criterion
used here. In practice, we also need to consider the impact of
other processing techniques before imaging.

We have described the procedure of geometry optimization
for only one target point due to the chosen forward model.
In a seismic monitoring scenario, we typically focus on the
reservoir volume, and hence, a grid of multiple target points
can be chosen. The method described here can be extended to
optimize the illumination for multiple target points by adding
the objective function of each target point. The example of
multiple target points is not included in this study due to high
computational effort. In the examples shown in this article,
the optimized sampling density tends to be nonuniform. When
multiple target points are considered, the optimized sampling
density is expected to become more averaged, depending on
the extent of the subsurface target area. If the target area is
relatively small and the overburden is complex, we expect a
nonuniform density distribution. However, if the subsurface
target area is large to the extent that the criterion becomes
an overall good image of the entire subsurface, a different
forward model should be chosen instead of the focal beam
analysis for computational efficiency. For instance, a 3-D ray-
trace modeling, such as the one described in [35], would be
more suitable to assess the image quality of a large area in the
subsurface. If the scope of acquisition is to obtain adequate
velocity models of the subsurface, other approaches, such
as [36], should be referred to.

A fixed number of receivers are chosen to reduce the
nonlinearity of the optimization problem. With the current
gradient method, the easiest way to incorporate an indefinite
receiver number is to repeat the procedures in Fig. 3 or
Algorithm 1 for several different receiver numbers. We can
then compare the quality and the cost from different numbers
of receivers. It is also possible to make the receiver number
vary within a certain range, by adding a constraint on the total
number of receivers to J; and J, in (11) and (13), respectively.
However, keep in mind that a varying number of sampling
points will make the optimization problem more nonlinear.
A linearized algorithm is likely to end up in local minima.
Further research is required for a global optimization algorithm
incorporating such a constraint.

This methodology and the parameterization provide inter-
esting opportunities in designing the location of ocean-bottom
seismometers for crustal imaging purposes [37] or finding
an optimum distribution of an earthquake monitoring net-
work [38]. It requires the knowledge of the geological over-
burden, the location of the hypocenter, and the earthquake
mechanism. The criterion would be redefined to suit the
requirement in crustal imaging or earthquake monitoring. For
instance, the forward model should include converted waves
for crustal imaging. The gradient calculation would be mod-
ified according to the forward formulation; nevertheless, the
inversion framework can stay the same. The sampling density,
as a macrosolution of the geometry, provides the opportu-
nity of a linearized framework, which is computationally
efficient.
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VI. CONCLUSION

We have proposed and demonstrated a methodology that can
automatically optimize an irregular acquisition geometry for
an improved target illumination under a complex overburden.
The results indicate interesting geometry design strategies for
two different requirements. When the requirement is resolu-
tion, the uniform geometry already has an acceptable resolu-
tion. When the requirement is angle coverage, an optimized
geometry achieves a high amplitude accuracy over all azimuths
and angles compared to the uniform geometry. In the optimiza-
tion scheme, the parameter—sampling density—is a macroso-
lution of the acquisition geometry, which can be used for
flexible acquisition systems, regular acquisition systems, and
potentially automated devices. This parameterization allows
us to use a linearized optimization algorithm via a gradient
descent scheme to solve the acquisition design problem. The
focal beam analysis provides the link between the subsurface
and the target illumination for calculating the update. The
proposed method is effective and computationally efficient.
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