
MSc thesis in Geomatics

Visualizing massive computation fluid
dynamic outputs in game engines using

voxelization and dynamic loading

Constantijn Dinklo

April 2024

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Constantijn Dinklo: Visualizing massive computation fluid dynamic outputs in game engines using
voxelization and dynamic loading (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

3D geoinformation group
Delft University of Technology

Supervisors: Dr. C. Garcı́a-Sánchez
Dr. H. Ledoux

Co-reader: I. Paden

http://creativecommons.org/licenses/by/4.0/

Abstract

Computation Fluid Dynamics (CFD) simulations are used in a diverse set of fields such as
aerodynamics, automotive, biomedical engineering and wind impact. With the advance-
ments in technology the scale of these simulations has increased significantly. This has
resulted in massive CFD simulations — simulations that do not fully fit within RAM. Due to
the limitations in RAM, visualizing the results of massive CFD simulations has become an
issue, mainly on personal computers. Existing solutions necessitate either substantial exter-
nal servers equipped with sufficient RAM, a costly and inefficient approach that struggles to
accommodate increasingly larger CFD simulations, or reliance on manual intervention for
data loading and unloading. However, manual intervention introduces potential for error.

This thesis proposes a solution to automatically load/unload data from memory based on
real-time demand. To achieve the proposed solution the methodology is split into two main
stages: (a) pre-processing and (b) visualization.

The pre-processing is required to efficiently manage the massive amount of data during the
visualization step. It involves segmenting the study area into smaller, more manageable
regions. Furthermore, it generates multiple level of details for each region such that the
desired level of detail can be used as required.

The visualization is performed within game engines — Unity for this thesis. Game engines
provide a solid starting platform as they include aspects such as read/write operations, ren-
dering capabilities, and flexible code execution. During visualization, the relevant regions
— regions that are within the user’s point of view — are automatically loaded into mem-
ory. subsequently, regions that leave the user’s point of view are automatically loaded out
of memory. Utilizing iso-surfaces, volume rendering, and barbs, the loaded data is then
presented to the user.

The results showcase that visualizing massive CFD results within game engines is possible in
real-time. However, through the data transformation performed in the pre-processing step
the data has lost some accuracy. Thankfully, an downward trend can be seen in the loss of
accuracy as the level of detail increases. The result show that for data used in the thesis the
pre-processing takes between 390 seconds (6 minutes and 30 seconds) and 972 seconds (16
minutes and 12 seconds). Furthermore, a data size reduction of up to 84% can be seen after
the pre-processing has finished.

v

Acknowledgements

I would like to express my gratitude to my first supervisor, Dr. Clara Garcı́a-Sánchez, for
her continuous support throughout this graduation project. Even in times which seemed
dire she kept providing me with valuable feedback and suggestions to make sure this final
product was made a possibility. Special thanks also go to Dr. Hugo Ledoux for his insights
into possible solutions for the problems tackled during this thesis. Finally, many thanks to
Ivan Paden for his comments.

My family played a vital roll in allowing me to finish my graduation project. They provided
me with the support and encourage me to keep going, no matter how though the situation
got. As for my friends, the amount of enthusiasm and joy they provided me cannot be
matched by anything. The length of this thesis could not explain how important my family
and friends were during this entire project.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 3
1.3 Research Scope . 4
1.4 Thesis Overview . 4

2 Related Work 7
2.1 CFD visualizations . 7

2.1.1 Massive CFD visualization . 9
2.1.2 CFD visualization in Unity . 10
2.1.3 VTK in Unity . 12

2.2 Level of Detail . 12
2.3 Dynamic Loading . 13
2.4 Visualization Techniques . 14

2.4.1 Iso-Surfaces . 14
2.4.2 Volume Rendering . 16
2.4.3 Barbs . 16

3 Methodology and Implementation 19
3.1 Structure of OpenFOAM CFD outputs . 19
3.2 Constructing Multiple LoDs from a CFD output 21

3.2.1 Point Cloud . 21
3.2.2 Study area discretization . 22
3.2.3 Region LoDs . 26
3.2.4 Resulting File Structure . 28

3.3 Introduction to Unity . 28
3.3.1 Build-in Components . 29
3.3.2 Rendering Meshes . 29

3.4 Visualization . 31
3.4.1 Pre-Runtime Setup . 32
3.4.2 Dynamic regions . 33

3.5 Unreal Engine . 39

4 Results 41
4.1 Pre-Processing . 41

4.1.1 Split sizes . 41
4.1.2 Time analysis . 42
4.1.3 Data size . 43

4.2 User Inputs . 44
4.3 Data visualization . 45

4.3.1 Visualization of Scalars . 46
4.3.2 Visualization of Barbs . 47

ix

Contents

4.3.3 Frame rate . 48
4.4 Numerical Errors . 50

5 Discussion and Conclusion 57
5.1 Research overview . 57
5.2 Discussion . 59

x

List of Figures

1.1 Sketch to explain the size of CFD simulation results: the actual area does not
determine the scale of the CFD simulation. On the left side both areas are
split into 4 cells which is a smaller scale than on the right in which both areas
have been split into 16 cells. 2

1.2 For different points of view, different chunks need to be loaded into memory.
Areas shown in red should be loaded into memory. 3

2.1 Example of 3D visualization. Ahrens et al. [2005] 8
2.2 Eindhoven Campus CFD visualization Blocken et al. [2012] 8
2.3 Horizontal cross sections of 30 min averaged wind speed, U, at a height of

26 m above ground level for 30 days in January 2018 at 12:00 local time. The
day of the month is indicated within the lower right gray box. Gray arrows
indicate the large-scale wind direction from the lateral boundary conditions
provided by Weather Research and Forecasting 3 km mesoscale simulations.
Muñoz-Esparza et al. [2021] . 9

2.4 Volume rendering visualization of Dallas. Muñoz-Esparza et al. [2021] 10
2.5 Visualization of simulation with 1.3 billion elements. Provided to Paraview

by Michel Rasquin. Ahrens et al. [2005] . 11
2.6 Different Level of Details. MystiveDev [2021] . 12
2.7 Partitioning of tiles for the first 3 Google Map zoom levels Goo [2012] 13
2.8 The 17 different zoom levels on Google Maps TomTom [2020] 14
2.9 Different parts of the geometry are shown when that part is loaded. Friston

et al. [2017] . 15
2.10 Different possible ways to partition the world space into smaller regions. Chen

et al. [2005] . 15
2.11 Representation of an iso-surface in paraview. This displays the surface on

which the pressure value is 0.04 . 16
2.12 Volume Rendering of human head. Drebin et al. [1988] 17
2.13 Representation of barbs in paraview. The arrows indicate the direction in

which the wind is moving. 18

3.1 Shortened title for the list of figures . 19
3.2 A single face in OpenFOAM. 20
3.3 Each cell has a value depending on the quantity of interest being looked at. . . 20
3.4 Each cell in the CFD result is turned into a point. The final result is a single

point cloud within the study area. 22
3.5 The entire study area is split into regions of equal size. 23
3.6 Study area split into regions, not all of which are cubes. The dotted area

indicates the users Point of View. Red regions need to be loaded into memory. 24
3.7 One possible way to split the study area into regions 24

xi

List of Figures

3.8 This figure shows the calculations performed to get to the number of regions
the study area is split into and the dimensions each region gets. This example
is for m = 105. 25

3.9 Each region gets turned into multiple LoDs. 26
3.10 Different LoDs . 26
3.11 Shortened title for the list of figures . 27
3.12 The life cycle for Unity Script . 28
3.13 (a) A Mesh face. (b) The fragments that overlap with the mesh face. 30
3.14 The input and output of the vertex and fragment shaders. 30
3.15 (a) A 256× 256 texture that looks like grass. (b) The results of applying the

grass texture to a cube. 31
3.16 A numerical representation of a texture being applied to the mesh. The values

in the texture are colors of the format RGB. 32
3.17 A visual representation of how a 3D texture can be thought off. This is a

2× 2× 2 texture. 33
3.18 The scene after the CAD geometries and the camera have been added. 34
3.19 The different load, render and destroy distances for different LoDs of a re-

gion. The data for an LoD is loaded if the camera is within the yellow region,
displayed in the green region and destroyed inside the red region. (a) LoD1
(b) LoD2 . 35

3.20 Two regions in two different projects. The size of the regions are different.
While the load ratios are the same, the actual load distance gets calculated
accordingly. 36

3.21 For each voxel in the LoD a game object (go) is created. In this figure a game
object is represented through and arrow. 36

3.22 Iso-surface rendering. The first step in the ray that find the desired value is
returned. 38

3.23 All values alone the ray that fall within the range are combined to calculate
the final color. 39

3.24 This figure shows the general process the data takes to be visualized. First the
region data gets turned into LoDs. Secondly, the LoDs can get loaded into the
GameObject. Finally, the data gets rendered based on the desired rendering
type. 40

4.1 (a) The total time required to preprocess the data. (b) Time taken to create
folders for all regions. (c) Time taken to assign the points to each region. (d)
The time it takes to create all LoDs in correlation to the number of regions. . . 43

4.2 The data size of the processed data in relation to the original data size 44
4.3 The highlighted regions have one or multiple of their LoDs loaded into memory. 45
4.4 Barbs outside the highlighted regions showcases how data is not directly de-

stroyed once the camera moves past its loading distance. 46
4.5 This figure depicts how scalar values are presented. (a) Iso-surface (b) Volume

Rendering . 47
4.6 Volume rendering with different parameters. (a) -1.8 - -1.6 (b) -4.8 - -1.6 47
4.7 Pressure value in Region 245 between -3 and -1.5. (a) LoD 1. (b) LoD 2. (c)

LoD 3. (d) LoD 4. (e) LoD 5. 48
4.8 A jump within the iso-surface . 49
4.9 Volume rendering with different parameters. (a) -1.8 - -1.6 (b) -4.8 - -1.6 49
4.10 The Barb colors in their different direction (a) Barb in the X direction (b) Barb

in the Y direction (c) Barb in the Z direction . 50

xii

List of Figures

4.11 As the LoD of a region increases so do the number of barbs present in the
region. This figure displays the barbs at various LoDs. (a) Barbs at LoD 3. (b)
Barbs at LoD 4. (c) Barbs at LoD 5. 50

4.12 Overview of the study area in two scenarios. Scenario (a) provides little to
no understanding of the data. After adjusting the visualization parameters,
(b) provides a much better overview of the data. (a) Barbs for all magnitude
values are shown (b) Barbs for magnitude values between 0 and 2 are shown. 51

4.13 A scenario in which the user moves closer to an area of interest. As the user
moves closer the LoD of the visualization increases. (a) LoD 2 (b) LoD 3 (c)
LoD 4 . 53

4.14 A chart depicting the fps over the history of the application. The green region
represents the fps. 54

4.15 The center of the LoD voxels are compared to the cell from the original CFD
results in which the center of the voxel is located. 54

4.16 (a) All areas in the sparse region which the error is greater then 2% for LoD
5. (b) All areas in the dense region in which the error is 0%. for LoD 5. 54

4.17 (a) All areas in the dense region which the error is greater then 2% for LoD 5.
(b) All areas in the dense region in which the error is 0%. for LoD 5. 55

xiii

List of Tables

4.1 Based on the split size (left column), the number of regions in the width,
height and depth are shown. The last column shows the total number of
regions the study area is split up in. 41

4.2 This shows the actual width, height and depth of each region when the study
area is split. 42

4.3 The percentage of memory reduction between the original data and the data
resuling from the pre-processing. 44

4.4 Transition points for scalar values. 44
4.5 Transition points for vector values. 45
4.6 Dense region errors. (region 245) . 51
4.7 Sparse region errors. (region 0) . 52

xv

List of Algorithms

5.1 IndexToCoordinates . 62

5.2 RegionIndex . 62

xvii

1 Introduction

1.1 Motivation

Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that deals with the
numerical analysis and simulation of fluid flows Anderson and Wendt [1995]. It uses com-
putational methods, algorithms, and numerical techniques to solve the governing equations
of fluid motion, which are typically partial differential equations that describe the behavior
of fluids Anderson and Wendt [1995].

CFD finds application across diverse industries, including aerodynamics, automotive, Heat-
ing, Ventilation, and Air Conditioning (HVAC), and biomedical engineering. Specifically,
CFD is increasingly used to study the impact wind has within urban areas for addressing
aspects such as air pollution Canepa [2004] Chu et al. [2005] Hanna et al. [2006] Gromke
et al. [2008], natural ventilation of buildings Jiang and Chen [2002] Evola and Popov [2006]
Chen [2009], convective heat transfer Defraeye and Carmeliet [2010] Defraeye et al. [2010],
wind erosion and wind energy Mochida et al. [2007] Milashuk and Crane [2011]. To study
the impact the wind has on urban areas often requires simulating large areas Blocken et al.
[2012]. However, it is still desirable to know how the wind behaves within small regions,
such as between buildings of the study area. In order to incorporate this into the simula-
tion we often need to discretize the domain area into small regions, so-called cells in the
CFD field. The combination of a large study area and small cells results in an overall large
number of cells for the simulation, leading to results with very large data size (from GB to
TB).

The scale of a CFD simulation is determined primarily by the number of cells used in the
simulation. The number of cells is in turn directly correlated to the ratio of the size of the
study area to the size of each cell. Notably, a small study area can still qualify as large-scale
if the cell sizes are small, and conversely, a large study area with considerably larger cell
sizes might be considered as a small scale CFD simulation (see Figure 1.1).

The advancement in hardware and computational capabilities has facilitated CFD analyses
at larger scales Muñoz-Esparza et al. [2021]. Despite the advancements in processing larger
CFD simulations, visualizing large CFD simulations results still poses a challenge. While
it is acceptable for simulations to run for an extended duration, the visualization process
demands real-time interaction, enabling users to navigate freely throughout the environment
and view results from diverse perspectives.

Several software options specialized in CFD visualization, such as Autodesk CFD Verma and
Samar [2018], Tecplot 360 Tecplot [2023], ANSYS ANSYS [2023], and Paraview Ahrens et al.
[2005], are available. However, the majority of these solutions necessitate payment plans
Verma and Samar [2018] Tecplot [2023] ANSYS [2023], which might be feasible for commer-
cial entities but can be restrictive for start-ups and researchers with budgetary constraints.
Free alternatives, like Paraview, are widely used due to their accessibility. While these free
tools effectively visualize standard-sized CFD simulations, the visualization of massive CFD

1

1 Introduction

Figure 1.1: Sketch to explain the size of CFD simulation results: the actual area does not
determine the scale of the CFD simulation. On the left side both areas are split into 4 cells
which is a smaller scale than on the right in which both areas have been split into 16 cells.

simulations presents a distinct challenge. The concept of a ”massive” CFD, in the context
of this thesis, refers to any CFD dataset that cannot be accommodated entirely within a sys-
tem’s Random Access Memory (RAM). Since there is no access to payed CFD software it is
not clear whether these are capable of visualizing results of massive CFD simulations.

Due to limitations in RAM, the standalone version of Paraview encounters difficulties visu-
alizing entire massive CFD results. While Paraview does offer options to handle massive
CFD simulations, these methods rely on external servers and parallelization Ahrens et al.
[2005]. However, setting up and maintaining such servers can be costly. Furthermore, the
external servers must still possess RAM capacities larger than the storage size of the CFD
results Ahrens et al. [2005], presenting inefficiencies when scaling to even larger CFD simu-
lations. Hence, it’s crucial that any proposed solution in this thesis functions efficiently on
personal computers without requiring external assistance.

At a fundamental level, this thesis proposes a method to visualize massive CFD simulations
by dividing the entire dataset into smaller chunks. These chunks can then be loaded in
and out of memory as needed. This approach aligns with one of the potential methods for
visualizing massive CFD simulations in the standalone version of Paraview. However, in
Paraview this method requires manual loading of each chunk into memory when visualiz-
ing. Subsequently if there is not enough RAM available, the manual unloading of chunks is
required. This process can be a cumbersome and error-prone. If not managed meticulously,
this manual intervention may lead to memory overload and system crashes. A more effec-
tive solution would automate the process of loading and unloading chunks in and out of
memory when required.

In the context of visualizing massive CFD simulations, only the data within the user’s Point of
View (PoV) needs to be loaded into memory (Figure 1.2). To determine which chunks need

2

1.2 Research Question

Figure 1.2: For different points of view, different chunks need to be loaded into memory.
Areas shown in red should be loaded into memory.

to be loaded in, every chunk needs to check whether it is with in the user’s PoV. However,
as mentioned earlier, the user should be able to freely move around the environment. This
can alter which chunks fall within the user’s PoV.

Unfortunately, this method of moving around the environment and automatically load-
ing/unloading data is not well supported by current CFD visualization tools. However,
Game Engines do provide an environment which is built to support movement and automa-
tion of loading/unloading data. Game Engines are specialized pieces of software designed
to develop games within them. They provide the building blocks from which almost any
game can be created. Furthermore, games are diverse, which means that Game Engines are
capable of providing buildings blocks for a wide variety of applications, not necessitating a
strict restriction to developing games.

Game Engines provide a good starting platform from which to build the required appli-
cation. They provide an environment in which data can be placed, read/write operations
to perform the necessary loading/unloading of data, provide the ability to render data in
user defined manner (through shaders), and provide flexible code execution through user
defined scripts. For this thesis, the Game Engine of choice is Unity. It is used extensively
within the game development world and is well documented.

1.2 Research Question

Based on the motivation behind this project and the capabilities of game engines outlined
within the motivation, the main research question that this thesis will look to answer is as
follows:

Can massive Computational Fluid Dynamic results be visualized using Game Engines in
real-time while presenting valuable information?

To facilitate the integration of CFD data into Unity, it must be pre-processed into a format
which Unity can handle. Given the substantial scale of the data, the time demand becomes
a crucial consideration. Consequently, a key inquiry addressed in this thesis is:

3

1 Introduction

What is the time requirement for pre-processing the CFD data?

Furthermore, this modification of the data will result in both a reduction in the overall data
size and the accuracy of the data. This is a trade-off designed to allow for the visualization
of such massive CFDs. Therefore some further questions will be answered, including:

How much reduction in memory does the modifications of the data provide?

What is the error introduced into the data by the modifications?

1.3 Research Scope

This thesis deals strictly with the visualization of a CFD result. It does not examine how CFD
simulations are setup or calculated. It is assumed that the CFD result is complete and error
free. This thesis encompasses the entire process from CFD result data to data reduction,
data processing, and ultimately, visualization.

CFD outputs exhibit diverse data structures based on the software used for their gener-
ation and the applied calculation parameters. While the methodology described in this
thesis is generic, the prototype developed specifically targets CFD results generated through
OpenFOAM. It is anticipated that other CFD outputs may require adjustments in their data
structure to align with the proposed solution. The requirement that this thesis imposes on
the CFD data is that every data value can be assigned to some point within the study area.

Furthermore, all results and discussion presented within this thesis are framed within the
context of Unity. Alternative Game Engines and other software capable of visualizing CFD
results are not discussed within this thesis, with the exception of a brief overview of Unreal
Engine. Any comparisons drawn to other CFD output visualizations are made with refer-
ence to Paraview. Since this thesis does not delve into all possible tools available it makes
no claim as to whether these tools are the best for the solution.

The focus of this thesis is to assert the feasibility of visualizing massive CFD results within
Unity using dynamic data loading techniques. There are countless visualization techniques
to visualize data, within this thesis only iso-surfaces, volume rendering, and barbs will be
discussed.

1.4 Thesis Overview

The contents of this thesis is described in four main chapters. Chapter 2 discusses visualiza-
tion and data managment techniques related to this thesis. It discusses how CFD results are
currently visualized. This includes a short insight into how current massive CFD results are
handled. Furthermore, it discusses how level of detail and dynamic loading are currently
used to handle large amounts of data.

Chapter 3 outlines the methodology this thesis proposes to visualize massive CFD results.
Both the pre-processing steps and the actual visualization process are discussed. Further-
more, the implementation of the visualization is presented as it is strongly linked to the
methodology.

4

1.4 Thesis Overview

Chapter 4 then discusses the results of both the pre-processing and visualization methods
propossed in Chapter 3.

Chapter 5 starts off by answering the proposed research questions. This is followed with
a discussion of these results. Afterwards, the main contributions made by this thesis are
presented. Finally, the limitations and the recommended future work is outlined.

5

2 Related Work

This chapter discusses related work on which this thesis is build. It specifically explores
three primary subjects. Firstly, it examines the existing methodologies for visualizing CFD
simulations, including massive simulations. Secondly, the concept of level of detail is dis-
cussed. Finally, it explores dynamic loading in the context of this thesis.

2.1 CFD visualizations

CFD visualization, also known as post-processing operations, refers to the process of pre-
senting the outcomes derived from CFD computations in a manner comprehensible to hu-
man perception. The output of a CFD simulation comprises a sequence of numerical values,
elaborated upon in Chapter 3.1. While each individual numerical datum within the data can
be understood, comprehending their collective implication poses a challenge. Consequently,
to gain practical understanding of the results, these numerical outputs are transformed into
visual representations in either 2D or 3D formats.

In 2D representation, visual outputs can be bar or line charts, typically depicting numerical
attributes inherent in the data, such as the distribution of density values across the data
through the use of a histogram. On the other hand, 3D visualizations are employed to project
geometries and volumes into a three-dimensional spatial context. An example showcasing
a 3D visualization within Paraview is illustrated in Figure 2.1 Ahrens et al. [2005]. This
method serves to enhance the understanding of complex numerical data by translating it
into visual renderings that are easier to analyze.

In their paper Blocken et al. [2012], the authors employ visual CFD post-processing tech-
niques to assess pedestrian discomfort caused by wind conditions. Initially, they conduct a
wind simulation covering the TU Eindhoven campus. Subsequently, they generate a visual
representations of the velocity distribution over the campus in Figure 2.2, derived from the
outcomes of the CFD simulation. These results enable the classification of data into distinct
quality classes, which, in turn, facilitate the characterization of the discomfort experienced
by pedestrians due to prevailing wind conditions.

As mentioned in chapter 1, there are many tools available for CFD visualization. Each soft-
ware package possesses capabilities and constraints which differ from software to software.
However, due to limitations in scope, this thesis will focus on Paraview as a foundational
benchmark.

Paraview serves as an open-source program, allowing unrestricted utilization without the
necessity of licenses, unlike most of the other software packages. Notably, it is compatible
with major operating systems, ensuring compatibility across computing platforms Ahrens
et al. [2005]. Additionally, Paraview stands as a widely adopted software tool for visualizing
CFD outputs, owing to its comprehensive documentation and extensive usage within the

7

2 Related Work

Figure 2.1: Example of 3D visualization. Ahrens et al. [2005]

Figure 2.2: Eindhoven Campus CFD visualization Blocken et al. [2012]

8

2.1 CFD visualizations

field. These attributes make it an ideal baseline for exploring CFD visualization methodolo-
gies within the context of this thesis.

2.1.1 Massive CFD visualization

Papers such as Muñoz-Esparza et al. [2021] have produced very large CFD output datasets.
Visualizing these results is complex. In order to visualize some of the results in the paper,
they take a slice of the data at a specific height and visualize the data as a 2D overlay. This 2D
visualization can be seen in Figure 2.3 which show the results of the simulation performed
over Dallas. In the same paper there is a single instance of visualizing the results in 3D
(Figure 2.4). Besides mentioning that is was developed using VAPOR Clyne et al. [2007]
there is no further indication of memory requirement or process required to generate the
presented visualization.

Figure 2.3: Horizontal cross sections of 30 min averaged wind speed, U, at a height of 26
m above ground level for 30 days in January 2018 at 12:00 local time. The day of the
month is indicated within the lower right gray box. Gray arrows indicate the large-scale
wind direction from the lateral boundary conditions provided by Weather Research and
Forecasting 3 km mesoscale simulations. Muñoz-Esparza et al. [2021]

Paraview also mentions the visualization of large scale CFD results. Figure 2.5 depicts a
visualization of a CFD simulation performed in PHASTA with 1.3 billion elements. To
visualize this result a total of 256 thousand Message Passing Interface (MPI) processors are
used. Unfortunately they make no mention of how much time is required to generate this
visualization. Neither do they make any mention on how much memory the data requires.

9

2 Related Work

Figure 2.4: Volume rendering visualization of Dallas. Muñoz-Esparza et al. [2021]

Sparse mentions of other large scale CFD visualization are present in other papers. However,
they too fail to accurately mention how these are created. Furthermore, as an anecdotal
example, while watching tutorial videos on how to use VAPOR Clyne et al. [2007], a CFD
visualization tool, there is frequent mention of being careful to not visualize large CFD
simulations at the highest accuracy for concerns of memory overload and system crashes.

2.1.2 CFD visualization in Unity

Unity Engine is a game engine produced by Unity Technologies. While originally designed
for game development is has since expanded to be used in a wide variety of industries
including Architecture and Construction, Automotive, Energy, etc.

Unity has been used previously to visualize CFD outputs. In their paper ”CFD post-
processing in Unity3D” Berger and Cristie [2015], Matthias Berger and Verina Cristie explain
how they took a CFD output and visualized the results in Unity3D. Unity3D is the same as
Unity, simply specifying that it is being used in 3D as there is also a 2D option. One of their
main goals is to provide an interface that is easier for non-expert users to use to visualize a
CFD output. They list the following benefits for using Unity to post-processing a CFD:

1. Does not require a license to execute

2. Platform independent

3. Optimized for visual performance

10

2.1 CFD visualizations

Figure 2.5: Visualization of simulation with 1.3 billion elements. Provided to Paraview by
Michel Rasquin. Ahrens et al. [2005]

4. Does not require expert knowledge and skills to run

All of the first three advantages are shared with Paraview. The fourth advantage is of course
subjective and should be taken with some wariness.

They also list 2 disadvantages for using Unity to visualize CFD results:

1. The post-processing step has to be implemented from scratch

2. The results in Unity3D are far less accurate than established post-processing software

In short, these disadvantages indicate that Unity is not a dedicated CFD post-processing
software. The need to implement the post-processing from the ground up entails developing
every facet of the pipeline, from loading to filtering to visualization. This also includes
creating data structures which can support the CFD data. While Unity provides some tools
to handle the process, such as file reading, these tools are not designed to directly visualize a
CFD output. Therefore, this thesis will explain and discuss the steps taken to accomplish this
process. The second drawback, pertaining to less accurate visualization, will be discussed
in more detail in the results chapter of this thesis. Although Matthias and Verina mention
this as a disadvantage the extent of the reduction in accuracy is not explicitly quantified in
their paper.

Matthias and Verina’s study area encompasses approximately 14 million cells. In their ap-
proach to visualize the CFD output, they initially partition the study area into a regular
grid (kxlxm), such that each cell is defined by dimensions (space length / k x space width / l
x space height / m). This segmentation is undertaken with the objective of facilitating effi-
cient access to desired information. They emphasize the need to carefully balance the sizes
of the cells. Excessively large cells would compromise visualization accuracy, while overly

11

2 Related Work

small cells could lead to substantial computer memory consumption. Achieving an optimal
compromise between these considerations results in an effective visualization.

2.1.3 VTK in Unity

Since Paraview uses the Visualization Toolkit (VTK) to visualize their results it might be
logical to also use that library in Unity. However, when adding VTK to Unity through the
Unity Asset Store there were compilation errors. Through research during this thesis it
became clear that multiple people had similar issues that weren’t resolved. Because of this
issue, the possibility of using VTK within Unity was dropped. There is an alternative paid
version of VTK for Unity, however, since this thesis does not have any budget this option
was also discarded. While VTK could be a potential advantage in the visualization process,
Unity does already have well optimized built-in functionality to display geometries.

2.2 Level of Detail

Level of Detail (LoD) refers to the amount of detail an entity should be assigned in some
state. The definition and application of LoD vary depending on the specific context. In the
context of this thesis, LoD is employed to dictate the level of precision required for the CFD
visualization. LoD, fundamentally, serves as a strategic compromise between precision and
efficiency in the visualization process. It is noteworthy that a higher LoD demands increased
storage space.

LoD finds application in a variety of fields, such as Computer Graphics, Geographic Infor-
mation Systems (GIS), Architecture, 3D printing, Games and Data Visualization. In Com-
puter Graphics a higher LoD might mean that the number of points and faces used to
represent an object increase. As can be seen in Figure 2.6 the higher the number of triangles,
the more detail is provided in the monkey’s face. Of course this comes with the trade off
that the higher resolution face requires more data and takes longer to render.

Figure 2.6: Different Level of Details. MystiveDev [2021]

12

2.3 Dynamic Loading

For a relatable everyday example, consider Google Maps. Google Maps partitions the world
into discrete tiles Goo [2023]. Based on the zoom level there are a different number of tiles
which cover the entire surface, show cased in Figure 2.7 Goo [2012]. At the top zoom level
the entire surface of the earth is covered with a singular tile. This tile can only display
minimal detail as it needs to encapsulate the entire world. As the LoD increases (zooming
in) the number of tiles increases thereby decreasing the area a single tile needs to display.
This results in tiles being capable of providing a more precise and detailed view of the area
they cover. As can be seen in Figure 2.8, a tile a zoom level 17 has much more detail than a
tile at zoom level 7 TomTom [2020].

Figure 2.7: Partitioning of tiles for the first 3 Google Map zoom levels Goo [2012]

2.3 Dynamic Loading

At a fundamental level, dynamic loading is a principle that revolves around the dynamic
loading of software components at run-time rather than at compile time.

In their paper Friston et al. [2017] the authors dynamically load remote geometries into
Unity. The geometries are stored on a remote 3D Repo server. They designed their own
3DRepo4Unity library which is implemented in .NET. This library dynamically loads in the
geometries from the 3D Repo. As part of the geometry gets loaded it is displayed in Unity.
As seen in Figure 2.9 not the entire geometry needs to be loaded for parts to be shown.

Another example of dynamic loading comes from the paper ”Locality Aware Dynamic Load
Management for Massively Multiplayer Games” Chen et al. [2005] where parts of the world
are only loaded as needed. In Massive Multiple Games the worlds in which players play
are very large. This means that not the entire world can be loaded at once. They solve this
issue through partitioning the world space into multiple regions (Figure 2.10). Each region
can then be loaded for a player when they are in or close to that region. Figure 2.10 shows
players in purple with a gray area of interest around them. Only regions and items that
(partially) fall within the region of interest are loaded for that player.

To build on the example mentioned previous with Google Maps. Google Maps only needs
to load a tile if it satisfies the following conditions; the tile belongs to the current zoom level
and the tile is within the area the user is currently looking at Goo [2012]. All other tiles do
not currently need to be loaded into memory, saving valuable space. When the user moves

13

2 Related Work

Figure 2.8: The 17 different zoom levels on Google Maps TomTom [2020]

around the map, Google Maps recalculates which tiles are required and loads the desired
tiles. While this approach enhances the loading time, it is also necessitated by the fact that
(most likely) not all tiles can fit into memory. To keep all tiles within memory would require
55.1 GB of memory Goo [2012].

2.4 Visualization Techniques

This section provides a brief explanation of the visualization techniques used in this thesis.
For this thesis, visualization techniques are methods used during visualization of data to
gain a better understand of that data.

2.4.1 Iso-Surfaces

Iso-surfaces are surfaces in three-dimensional space that represent a constant value of a par-
ticular quantity or property. These surfaces are used extensively in scientific visualization,
particularly in fields such as fluid dynamics, medical imaging, and molecular modeling. For

14

2.4 Visualization Techniques

Figure 2.9: Different parts of the geometry are shown when that part is loaded. Friston et al.
[2017]

Figure 2.10: Different possible ways to partition the world space into smaller regions. Chen
et al. [2005]

15

2 Related Work

example, in fluid dynamics, iso-surfaces could represent boundaries of constant velocity,
pressure, or temperature within a fluid flow simulation (see Figure 2.11.

Figure 2.11: Representation of an iso-surface in paraview. This displays the surface on which
the pressure value is 0.04

2.4.2 Volume Rendering

Volume rendering is a technique used in computer graphics and imaging to generate a
2D image from a 3D volume dataset Westover [1990]. Volume rendering allows for the
visualization of complex internal structures and properties within 3D datasets that may
not be readily apparent from traditional 2D projections. As illustrated in Figure 2.12, the
employment of volume rendering techniques unveils certain bone structures which would
not have been possible through surface rendering alone.

2.4.3 Barbs

In computer graphics, ”barbs” usually refers to markers or indicators placed within the
environment to denote direction or magnitude. They are commonly used in visualization
to represent vector fields, such as fluid flow, magnetic fields, or wind patterns. Figure 2.13
depicts the use of barbs to indicate wind velocity direction.

16

2.4 Visualization Techniques

Figure 2.12: Volume Rendering of human head. Drebin et al. [1988]

17

2 Related Work

Figure 2.13: Representation of barbs in paraview. The arrows indicate the direction in which
the wind is moving.

18

3 Methodology and Implementation

The content of this chapter is the analysis of the methodology developed to address the
research questions of this thesis. The methodology is divided into two main steps: (a) Pre-
processing the data into manageable regions, (b) Visualizing the regions in Unity. However,
first the structure of a CFD output will be discussed to gain an understanding the input data
for the pre-processing.

While all the steps are performed on 3D data sets, many of the steps have exemplary images
depicted in 2D for simplicity.

3.1 Structure of OpenFOAM CFD outputs

A CFD dataset is meant to capture an environment in which the simulation needs to occur.
This includes both the area in which the fluid needs to flow and the Computer Aided Design
(CAD) geometries containing or affecting the fluid flow (i.e. engine walls or buildings). The
CAD geometries (Figure 3.1a) within the simulation are captured through the use of meshes
and generally come in the form of STL or OBJ files Sousa et al. [2018]. The rest of the space,
the space in which the fluid is located, is discretized using cells (Figure 3.1b and 3.1c) Sousa
et al. [2018].

(a) (b) (c)

Figure 3.1: This shows the process of generating a CFD input with snappyHexMesh method.
(a) Initial area with CAD geometry. (b) Area divided into cells. (c) Final cell structure
which fits around the CAD geometry. Ahrens et al. [2005]

Figure 3.1 shows the basic steps to create a CFD mesh using the snappyHexMesh method.
First the CAD geometries (note that it can be more then 1) are placed within the area.
Secondly, the area is split into cells. Finally, the cells are modified to fit around the CAD
geometries. Since this thesis does not look at generating CFD models or performing the
calculation, this thesis will not go into detail about the multitude of methods which can be
used to generate these cell structures. The main take away from this is how cells capture the
environment around the CAD geometries, not how the cells are generated. Furthermore,
this thesis looks specifically at the CFD structure created by OpenFOAM.

19

3 Methodology and Implementation

Figure 3.2: A single face in OpenFOAM.

All cells in the CFD are made up of a set of faces Ope [2004]. Faces are made up of an
ordered list of points, such that neighbouring points are connected through an edge (see
Figure 3.2). The direction of the normal of the face is defined by the right hand rule i.e.
looking towards a face, if the numbering of the points follows an anti-clockwise path, the
normal vector points towards you Ope [2004].

The list of faces which make up a cell can be in arbitrary order. As stated in the OpenFOAM
documentation, each cell needs to have the following properties:

1. Convex: Every cell must be convex and its cell centre inside the cell

2. Closed: Every cell must be closed, both geometrically and topologically where:

• geometrical closedness requires that when all face normals are oriented to point
outwards of the cell, their sum should equal the zero vector to machine accuracy.

• topological closedness requires that all the edges in a cell are used by exactly two
faces of the cell in question

Furthermore, the set of cells within the data need to be contiguous, that is they must com-
pletely cover the entire domain and must not overlap each other Ope [2004]. This constitutes
the CFD Mesh, the resulting folder structure looks as follows:

PolyMesh

Points

Faces

Cells

A simulation is performed on a set of quantities of interest (velocity, density, etc). These
determine which values the simulation will predict. Each cell in the CFD contains a value
for each quantity of interest (figure 3.3).

Figure 3.3: Each cell has a value depending on the quantity of interest being looked at.

The value for each quantity of interest is stored in its own file. The number of values within
this file is equal to the number of cells in the simulation. Each value in a file is linked to the

20

3.2 Constructing Multiple LoDs from a CFD output

corresponding cell in the cells file. (e.g. the 12th value in the k file is assigned to the 12th
cell).

k

U

...

The combination of the CFD mesh and the quantities of interest values combine to create
the CFD output structure. The corresponding final file structure looks as follows:

CFDOutput

PolyMesh

Points

Faces

Cells

Values

k

U

...

...

The complete CFD output contains more files, however, they are of no interest for this
thesis.

3.2 Constructing Multiple LoDs from a CFD output

Given the limitation of loading the complete CFD result into memory due to its size, this the-
sis proposes a methodology to manage data by dividing the entire study area into discrete
regions. Each region will contain a portion of the study area’s data, mainly the data within
the area this region occupies. Additionally, these regions are designed to facilitate the dis-
play of their data at various LoDs. To achieve this, multiple LoD datasets are generated for
each region, enabling selective loading of desired LoDs. The proposed methodology follows
a structured three-step approach: firstly, transforming the CFD output cells into a point
cloud; secondly, segmenting this point cloud into distinct regions; and finally, generating
multiple LoDs for each region through a voxelization process.

3.2.1 Point Cloud

The first step entails converting the CFD cells into a point cloud. While OpenFOAM has the
capability to supply the center of each cell, this information might not be available within the
dataset and hence needs to be derived from the provided data. The transformation of each
cell into a point is accomplished by determining its geometric centroid Weisstein [2023]. For
a given set of n points the geometric centroid can be computed using the following formula,
where mi is the weight of point i and xi denotes the position of point i: Weisstein [2023]

21

3 Methodology and Implementation

Figure 3.4: Each cell in the CFD result is turned into a point. The final result is a single point
cloud within the study area.

x =

n
∑

i=1
mixi

n
∑

i=0
mi

(3.1)

In the context of this thesis, each point is of equal value when determining the cell’s center.
Consequently, each point i is given the same weight wi. Therefore, the formula can be
simplified to the following: Weisstein [2023]

x =

n
∑

i=1
xi

n
(3.2)

Given that each cell needs to be convex, it is guaranteed that the geometric centroid falls
within the cell. Furthermore, the quantities of interest associated with each cell c are now
attributed with the point i generated from cell c. The resulting data set is a point cloud with
a number of points equal to the number of cells in the CFD simulation.

This step provides a reduction in memory requirements. Initially, the data necessitated
storage for all individual points, a list of points comprising a face, and another list of faces
constituting a cell. However, after the transformation into a point cloud, only a singular
point per cell needs to be stored.

3.2.2 Study area discretization

When the entire area is represented as a singular large point cloud, there is no efficient
method to swiftly determine which data to load/unload from memory at any specific in-
stance. To identify all the points closest to the user, a calculation of each point’s distance

22

3.2 Constructing Multiple LoDs from a CFD output

Figure 3.5: The entire study area is split into regions of equal size.

from the user is necessary. To facilitate more manageable data handling the study area is
partitioned into discrete regions (see Figure 3.5). Instead of assessing the distance of each
point, it becomes feasible to compute the distance to each region. Consequently, data within
that region can be efficiently managed based on requirements. To discretize the study area
into regions, this thesis proposes dividing the area into cubes. This approach is primarily
adopted for two key reasons.

Firstly, the textures derived from the data in future stages must adhere to specific dimen-
sions, mainly set at 2n × 2n × 2n, where ’n’ represents any positive integer. This requirement
necessitates an equal number of data points in all directions. To maintain proportional
consistency in all dimensions, the data points should represent an area which is equal in all
dimensions (width, height, depth). If the region is imbalanced in one or two dimensions, the
resulting data points in the texture will also exhibit dis-proportionality in those respective
dimensions. The rationale behind utilizing cube-shaped regions is more thoroughly eluci-
dated in Section 3.4.2, where the rendering process of the data is explained, highlighting the
importance of maintaining proportional consistency in all dimensions.

Secondly, critical consideration is that a region should be loaded into memory based on
its proximity to the user, irrespective of the user’s viewing direction. Notably, the loading
process involves loading the entirety of a region or none of it. As depicted in Figure 3.6,
certain regions, although containing substantial portions outside the user’s PoV, necessitate
loading in their entirety. This results in the loading of undesired data into memory. While
cube-shaped regions do not entirely eliminate this issue, they present a compromise that
strives to maintain an equitable trade-off as much as possible. By employing cube-shaped
regions, this approach aims to mitigate the problem by offering a more balanced compro-
mise between loading unnecessary data and optimizing memory usage, considering various
viewing angles and minimizing the amount of extraneous data loaded into memory.

However, due to the dimensions of the study area being fixed, achieving regions that are a
perfect cube (with all sides equal) might not be feasible. Consider the scenario illustrated
in Figure 3.7, where each region possesses dimensions of 100x110, deviating from a 100x100
perfect cube. This deviation is necessary to cover the entire study area, as adhering strictly
to regions of a 100x100 dimension would leave parts of the study area uncovered by the
regions. Although it’s possible to fill these gaps with regions of alternate dimensions, doing

23

3 Methodology and Implementation

Figure 3.6: Study area split into regions, not all of which are cubes. The dotted area indicates
the users Point of View. Red regions need to be loaded into memory.

so adds complexity and is thus deemed undesirable for the sake of simplicity. It is important
to note that multiple dimensions could fulfill the requirements (e.g. in Figure 3.7, each region
could adopt dimensions of 50x55, creating 24 regions). Deciding which dimension to choose
is elaberated on later in this thesis.

Figure 3.7: One possible way to split the study area into regions

To accomplish creating regions which are as cube-like as possible, a single desired measure-
ment m is provided by the user. m is the desired width, height and depth of all regions. From
this measurement the number of times the study area can be subdivided in each direction
d = {width, height, depth} is determined through the following formula:

num regionsd = round(
study aread

m
) (3.3)

The result needs to be rounded since the subdivision needs to divide the study area a whole
number of times (no fractions). Then, to determine the actual width, height and depth of
each region the study area is again divided, however this time by the number of times it
needs to be subdivided in that direction:

region sized =
study aread

num regionsd
(3.4)

24

3.2 Constructing Multiple LoDs from a CFD output

Using these formulas results in knowing into how many regions the study area will be
subdivided and the dimensions of all regions. All regions then have the following dimen-
sions region sizewidth, region sizeheight, region sizedepth and the total number of regions can be
calculated through num regionswidth ∗ num regionsheight ∗ num regionsdepth.

Figure 3.8: This figure shows the calculations performed to get to the number of regions the
study area is split into and the dimensions each region gets. This example is for m = 105.

This thesis chooses a few different measurements m, mainly 200, 250, 300, 350 and 400, to
discuss in Chapter 4. While this thesis will discuss some variance in dimensions, this thesis
does not delve into determining the optimal dimensions for a given study, as each dimension
set carries its own set of advantages and disadvantages, necessitating a contextual evaluation
beyond the scope of this thesis.

After the segmentation of regions, the points within the point cloud are organized into their
corresponding designated regions. This process involves iterating through all the points in
the point cloud. The algorithm 5.2 is employed to ascertain the specific region to which each
point belongs. As a result, each region r encompasses a defined cube-like area within the
study region, and all points falling within the boundaries of this area are allocated to the
respective region r.

For every region, its position and the points assigned to the region are written to file to be
used when generating the LoDs for each region. The position of a region is defined as the
location of its bottom left corner. For Figure 3.7, Region 0 would have location (0, 0), Region
1 location (110, 0), ..., Region 5 location (220, 100). Furthermore, a single file dimensions
indicating the dimensions of each region is saved.

For a study area split into N regions, the structure looks as follows:
Regions

Region0
bounds

Region1
bounds

...

RegionN
bounds

dimensions

25

3 Methodology and Implementation

3.2.3 Region LoDs

Figure 3.9: Each region gets turned into multiple LoDs.

Following the preceding step, the study area and data have been discretized into a number
of distinct regions. However, within each region, the data lacks a structured organization.
The absence of such structuring limits the loading process, as either all the data or none of
it can be loaded from a given region. By transforming the data into a structured dataset,
it becomes feasible to load specific parts of the data without necessitating a comprehensive
search through the entire dataset.

To structure the data, the region undergoes a subdivision into equal distinct areas known
as voxels. The number of voxels used to subdivide a region is contingent upon the de-
sired LoD. For a designated LoDd, the region is partitioned into 2d voxels along the width,
height, and depth dimensions. Consequently, an LoDd is comprises of 2d × 2d × 2d = 8d

individual voxels. Each voxel can be used to store some data point for that LoD. Figure 3.10
provides a visualization of LoDs ranging from 0 to 5, albeit depicted in a two-dimensional
representation for simplicity. For each region a number of LoDs are created.

Figure 3.10: Different LoDs

For every quantity of interest q, a value vq is attributed to each voxel. The value vq represents
the average value of q for all points that fall within the voxel’s boundary. In the current
methodology, equal weighting is allocated to all points within the voxel to calculate the
value vq. Alternative methodologies that involve assigning different weights to points based

26

3.2 Constructing Multiple LoDs from a CFD output

on various parameters such as distance from the center are not explored. This decision is
primarily driven by the pursuit of simplicity and a reduced need for extensive calculations.

The adoption of a structured data format for storing data values eliminates the necessity to
explicitly define the location of each data point. Instead, for a specified LoDd, determining
the location of each data value only necessitates knowledge of the bottom-left coordinate
and the dimensions of the region (see algorithm 5.1).

The scenario can occur where no points fall within a voxel’s boundaries. There are two sce-
narios where a voxel might contain no points. Firstly, a voxel might happen to be positioned
outside the center of any cell (see Figure 3.11a). As the LoD increases, the voxels within
the region become smaller. This can result in voxels smaller then the cells, particularly in
the outer regions of the simulation where cell sizes are larger. Consequently, no cell center
falls within the voxel resulting in no points being inside the voxel. Secondly, a prism might
fall within a CAD geometry (see Figure 3.11b). Since no CFD cells reside within CAD ge-
ometries, there won’t be any points falling within the voxel in this situation. Presently, an
efficient method to discern between these cases is unavailable (further elaborated in Chapter
5).

(a) (b)

Figure 3.11: Visual representation of the two scenarios in which voxels have no value. (a)
spares set of data values in the region. (b) cells inside CAD geometries.

However, it is imperative that every voxel possesses a value. Therefore, if a voxel vd withing
LoDd is devoid of a value, it references voxels from a lower LoD (LoDd−1). By definition,
the voxel in LoDd is encompassed within one of the voxels in LoDd−1. Consequently, the
value of the corresponding voxel from LoDd−1 is assigned to the no-value voxel vd. This
necessitates the systematic creation of LoDs from low to high, as higher LoDs occasionally
depend on values from lower LoDs to ensure every voxel receives a value.

For each quantity of interest the results for each LoD are written to file to be used later in
the program during run-time. For a quantity of interest k with M LoDs the file structure
would simply be:

k

0

1

2

...

M

27

3 Methodology and Implementation

3.2.4 Resulting File Structure

For a data set containing N regions and M LoDs the folder structure looks as follows:
Regions

Region0
k

0

1

2

...

M

U

...

p

bounds

Region1
...

RegionN
dimensions

Every region has its own subfolders, 1 for each quantity of interest (k, U and P in the example
above). Each of these folders contains a file with a number which indicates the level of the
tree that file represents. In addition each region contains a file with the bounds, which
contain the regions x, y, z position of its bottom-left corner. Furthermore, a dimensions file
is provided which contains the dimensions of each region.

3.3 Introduction to Unity

This section provides a brief overview of how Unity works to gain the necessary under-
standing for this thesis.

Unity works with game objects that can be placed into the world space. These are the simplest
entities and only contain a location, rotation and scale; together called a transform. This
entity does nothing except exist in a space in the world. From there, components can be
attached to game objects to determine what a game object does. Often components are user
written scripts. For example, a script can be coded to alter the y rotation of the game object,
making it look as if the object is rotating around the y-axis.

All Unity scripts placed onto game objects go through a life cycle. Since the entire life cycle is
very complex, only the relevant parts for this thesis are presented here (Figure 3.12). For a
full overview please go to the following link: https://docs.unity3d.com/Manual/ExecutionOrder.html

Figure 3.12: The life cycle for Unity Script

The first step in a scripts life cycle is the start function. This function is used to initialize

28

https://docs.unity3d.com/Manual/ExecutionOrder.html

3.3 Introduction to Unity

values. The next function is the update function, here the values of the game object can be
updated. For the example above, the y rotation of the game object should be updated in
this function. In the Render part of the life cycle the game object is rendered to the screen
(if required). The life-cycle keeps looping over the Update and Render functions until the
game object gets destroyed. When a game object gets destroyed it calls its Destroy function
which should be used to free up memory and other actions needed when a game object is
removed.

Furthermore, game objects can be activated or deactivated. Deactivated game objects are not
destroyed, but do not continue their life-cycle, they are also not rendered. game objects can
also contain children game objects. This is not the same as attaching a component to a game
object. Children of a game object that is deactivated are also automatically deactivated.

3.3.1 Build-in Components

Unity also has build in components which can be added to game objects . These components
are programmed by Unity to accomplish a specific task. These are provided as many of
them are frequently used in many games.

Camera

One example of a build-in component is a camera component. Attaching the camera com-
ponent to a game object makes that game object function as a camera which the user can use
to view the scene while the program is running.

While the camera component provides the ability to view the scene by default it only shows
the scene from a single view point. However, for visualizing CFD results it is desired to be
able to view the scene from any view point. This requires the addition of a script component
which defines how the camera can be moved through out the scene. Notice that both the
Camera component and the script component are added to the same game object such that
the script component allows the user to move the game object through the game world and
the Camera component makes the game object act like a camera.

LODGroup

An LODGroup is a build-in Unity Component meant to handle swapping between different
LoDs automatically. Each LoD within an LODGroup is given a % at which it becomes visible.
This % refers to the height ratio between the GameObject’s screen space height to the total
screen height. i.e. If the transition to LoD1 is set for 50%, LoD1 will be rendered when the
GameObject takes up 50% of the screens height.

3.3.2 Rendering Meshes

This section provides a brief overview of how a generic mesh is rendered in Unity. Fur-
thermore, it explain what shaders are and how they are used during rendering. The actual
meshes and shaders used to visualize the CFD results are discussed in Chapter 3.4.

In Unity, the visualization of a mesh necessitates the attachment of two components to a
gameobject: (1) mesh filter and (2) mesh renderer. The mesh filter component serves the purpose
of managing and storing the mesh’s structural elements, e.g. its points and faces. The mesh
renderer component is responsible for the actual rendering of the mesh structure onto the

29

3 Methodology and Implementation

screen. This rendering process is achieved by employing shaders, which are specialized
programs executed on the Graphics Processing Unit (GPU).

A shader operates through two primary steps: the vertex shader and the fragment shader.
The vertex shader executes a specific operation on each vertex of the mesh it is applied to.
As an example, in figure 3.13a the vertex shader would run on v1, v2, v3 and v4. The
fragment shader runs on all fragments (explained later) that cover the mesh (see Figure
3.13b). Importantly, the execution of shader code occurs in parallel. This means that as
the shader code runs on a vertex or fragment it has no awareness of the other vertices and
fragments.

(a) (b)

Figure 3.13: (a) A Mesh face. (b) The fragments that overlap with the mesh face.

Each vertex shader receives as input a vertex and all associated data linked to it, such as
normals, color, and UV channels. The output of the vertex shader is a user-defined data
structure denoted as f rag, which can be anything. This structure typically includes the
transformed position of the input vertex, its normals, and potentially some UV channels.
Frequently, the primary function of the vertex shader is to handle the transformation of
vertex positions from world space to screen space.

The fragment shader runs on every fragment that overlaps the mesh. A fragment is essen-
tially a pixel on the screen and is created by Unity’s internal code. In figure 3.13b each
of the regions is a fragment. As input the fragment shader takes an instance of the f rag
data structure produced by the vertex shader. As output the fragment shader produces a
RGBA color (see Figure 3.14). Notice that frequently there are more fragments than vertices.
For each fragment a f rag data structure is constructed by linearly interpolating from the
f rag data structures produces by the vertex shaders. Within the fragment shader the f rag
input along with user written logic can be used to determine the resulting color value. The
resulting color value will be drawn to the screen for that pixel (fragment).

Figure 3.14: The input and output of the vertex and fragment shaders.

It can be useful to provide extra information to the shader besides the mesh structure. This is
accomplished through the user of materials. Materials are data containers which make their

30

3.4 Visualization

data accessable for shaders. This can be something like a color. By creating two materials,
one with a yellow color and one with red color, the same shader can be used with different
material input to display both a yellow and red object.

A common data input of a material is a texture. Textures are matrixes of data which can be
used by the shader. There is no clear definition of what a texture needs to do since at its
core it is a bunch of numbers which can be used as liked by the developer. Most commonly
textures are used to provide details on the surface for meshes. As seen in Figure 3.15, when
applying a texture to a cube the cube looks like it is covered by grass.

(a) (b)

Figure 3.15: (a) A 256× 256 texture that looks like grass. (b) The results of applying the grass
texture to a cube.

Figure 3.16 show cases how the numerical values of a texture are stored behind the scenes.
This is a 2× 2 2D texture being applied to a mesh and the result. Notice how the shape of
the texture gets stretched to match the shape of the mesh.

Texture can also come in the form of a 3D texture. Figure 3.17 show cases how data is
stored in a 3D texture. Textures should always have dimensions of powers of 2 (e.g. 4x4x4,
256x256x256). However, it is noteworthy to mention that the memory requirement of a
3D texture increases very quickly as its dimensions increase. A 16x16x16 (24) dimension
texture has a 128KB storage requirement where as a 256x256x256 (28) dimension texture
has a 512MB storage requirement. This requires caution to be exercised when using higher
dimension textures.

3.4 Visualization

This section describes the steps taken to actually visualize the CFD results. It takes the pre-
processed data and turns it into a real time visualization process. During visualization the
user moves the camera freely through out the environment in which the CFD simulation was
preformed. At any point only a single quantity of interest can be visualized. Furthermore,
this thesis only explores iso-surfaces and volume rendering visualization for scalar values
and barbs for vector values. The visualization is completely accomplished within Unity.

31

3 Methodology and Implementation

Figure 3.16: A numerical representation of a texture being applied to the mesh. The values
in the texture are colors of the format RGB.

3.4.1 Pre-Runtime Setup

The initial setup process involves integrating CAD geometries, provided by OpenFOAM in
STL format, into the Unity scene. While Unity does not natively support STL files, they can
be converted into OBJ files STL [2023], a format compatible with Unity. The resulting OBJ
files can be imported into the scene. It’s important to note that certain adjustments might
be necessary, such as rotating the OBJ files, as the orientation of the y and z axes could
vary between different programs. For this thesis, the resulting imported objects required a
rotation of -90 degrees around the x-axis and 180 degrees around the z-axis. Furthermore,
a game object with a camera component and the movement script defined earlier is added to
the scene. The resulting setup can be seen in Figure 3.18. By placing the CAD geometries
and camera into the scene before run-time it reduces the initial loading time required.

Additionally, an empty game object is added to the scene with only a script attached to it.
This is required due to the fact that the only way to run user defined code is through scripts
attached to game objects . This game object will be refered to as the main game object and
provides the backbone on which the dynamic data loading is performed. The functionality
of the script is further explained in the next sections.

Lastly, the user needs to specify some values. While the study area has been discretized
into regions, regions need to know when and which data to load/unload into memory. To
accomplish this a load, render, and destroy distance for each LoD is specified by the user.
Additionally, the file path to the folder containing the pre-processing results is required.

32

3.4 Visualization

Figure 3.17: A visual representation of how a 3D texture can be thought off. This is a 2× 2× 2
texture.

3.4.2 Dynamic regions

During visualization, it is crucial to understand that the entire dataset of a region is not
loaded into memory at once. Instead, the data corresponding to a LoD within a region is
loaded in or out of memory. At any given time, zero, one, or multiple LoDs for the regions
can be present in memory. However, only a singular LoD can be displayed on the screen
simultaneously.

To determine which LoD to load and visualize, the program needs to assess the distance
between the camera and each region. This necessitates the setup of regions. Within the start
function of the main game object , each region is configured to ensure effective utilization in
subsequent operations:

1. The boundary of each region is read and its center is computed.

2. A Unity game object is created for each region and positioned within the world at the
location of the region.

3. An LODGroup component is attached to the newly created game object .

4. A reference to the region is stored in the main game object .

During runtime, LoDs within the previously created regions are dynamically managed. This
process occurs in three primary phases: loading, rendering, and destruction.

During each update phase in Unity’s lifecycle, the main game object’s script calculates the
distance from the camera to each region. This distance is then compared to user-defined
distances set earlier. If the camera’s proximity to an LoD of a region is closer than the
defined load or render distance, the corresponding data is loaded or rendered, respectively.
Conversely, if the camera surpasses the defined destroy distance, the data is unloaded.

A region comprises of multiple LoDs. As each LoD should be loaded, rendered, or destroyed
at different distances relative to the camera, distinct distances are designated for each LoD.
For instance, consider the variations in distances for LoD1 and LoD2 showcased in Figure
3.19a and Figure 3.19b. While these distances differ for each LoD within a region, they
remain consistent across various regions. In other words, LoadDistanceA = LoadDistanceB
for LoD1 in region A and region B.

The distance between the region and the camera is determined as the distance from the
camera’s position to the center of the region. This choice of using the center of the region
rather than its edges was made due to the computational efficiency of a single calculation.

33

3 Methodology and Implementation

Figure 3.18: The scene after the CAD geometries and the camera have been added.

Given that this computation needs to be performed for every region in each iteration of
the life cycle loop, the optimization of this calculation’s speed is critical. However, this
method results in the area in which the region becomes visible to be a spherical area around
the center of the region (refer to Figure 3.19), while the region itself is a cubic structure.
Consequently, this requires the user to get slightly closer to the region when approaching
from a corner

Moreover, the user specified distances are represented as ratios rather than actual distances.
These ratios are subsequently multiplied by the size of a region to determine the actual
distance (see Figure 3.20). The size of a region is defined as half the average of all its dimen-
sions. This approach of using ratios instead of fixed distances is to facilitate the variations
in region sizes across different projects. Larger regions may necessitate being loaded from
greater distances due to their visibility from farther away. Without this ratio-based approach,
recalculating these distances for each project would be required. While some adjustments
to these ratio-based values might still be necessary, they serve as a fundamental guideline
adaptable to various situations.

Loading

If any LoD within a region falls within the user-defined loading distance, the data associ-
ated with that specific LoD will be loaded into memory. This process involves asynchronous
reading of the data from file. The asynchronous reading prevents the program from freez-
ing while the, potentially large, data is being loaded, ensuring smooth execution until the
process is complete. Only the LoD data for the current quantity of interest is loaded.

While reading the data into memory, various global statistics of the dataset are computed,

34

3.4 Visualization

(a) (b)

Figure 3.19: The different load, render and destroy distances for different LoDs of a region.
The data for an LoD is loaded if the camera is within the yellow region, displayed in the
green region and destroyed inside the red region. (a) LoD1 (b) LoD2

including but not limited to minimum and maximum values. These statistical computa-
tions become crucial for subsequent operations. Following the data’s successful loading into
memory, the subsequent steps depend on whether the current quantity of interest pertains
to a scalar or a vector.

Scalar Loading

Upon successful loading of the scalar data the following happens. A game object tailored for
the LoD is instantiated, with both a Mesh Filter and a mesh renderer component attached. The
mesh assigned to the Mesh Filter is a native Unity cube mesh with 8 vertices and 12 faces
(2 faces per side of the cube). The mesh renderer uses a custom shader which is discussed in
more detail in the rendering section.

The earlier loaded LoD data is converted into a texture. Since the data and a texture have the
same structure (as described earlier) the value at index i of the data can be assigned to index
i in the texture. However, textures require that values are between 0 and 1 (normalized).
Therefor, as the values are being assigned from the data to the texture they are normalized.
This is accomplished by taking value i from the data, subtracting the minimum data value
and dividing it by the range (maximum value - minimum value) of the data. Notice how
the minimum value and range are taken from the entire data currently read into memory.
This is why these values where stored when the data values were read in. Furthermore, if
the minimum or maximum value change during run-time all textures will need to be recal-
culated. The generated texture is then given to the material of the mesh renderer component.
Finally, the game object is added as a child to the regions game object and assigned to the
LODGroup of this region.

Vector Loading

Upon successful laoding of the vector data the following happens. A parent game object
pgol representing LoD l is created. Following this, for each vecter value v within the LoD a

35

3 Methodology and Implementation

Figure 3.20: Two regions in two different projects. The size of the regions are different. While
the load ratios are the same, the actual load distance gets calculated accordingly.

game object go is instantiated, see Figure 3.24. These individual go instances are positioned
within the region. The position is determined based on the index and can be computed
using the formula 5.1. Moreover, each go instance is oriented to align with the direction of
the vector v it represents.

Every go game object is equipped with a mesh filter and a mesh renderer component. The Mesh
Filter references an arrow mesh sourced from David Ball’s collection Bell [2018]. Meanwhile,
themesh renderer utilizes Unity’s default material and shader. The RGB color of the material
assigned to the mesh renderer is configured to reflect the XYZ components of the vector v,
that is color = (v.x, v.y, v.z), where v is first normalized.

Each go is then attached as a child object to pgol . Furthermore, pgol is attached as a child
to the region’s game object. Finally, pgol is deactivated to make neither it nor its children
render at this point.

Figure 3.21: For each voxel in the LoD a game object (go) is created. In this figure a game
object is represented through and arrow.

36

3.4 Visualization

Rendering

When the camera surpasses the predefined rendering distance threshold specific for a par-
ticular LoD, the associated data for that LoD should be rendered. It’s essential that the
rendering distance should always be less than the loading distance to ensure the data for
this LoD is loaded.

By default, all the data loaded would be rendered. However, the user should be able to
adjust which data they want to see at any given point. Therefor, the user can provide some
addition value of which data they currently want to view. For an iso-surface this is a single
scalar value. For volume rendering this is a range specified by the scalar values a & b where
a < b. For barbs, 4 ranges are provided, one for each of the axis (x, y, z) and one range for the
magnitude of the vectors. Furthermore, for the barbs a scale value is provided in the form
of a scalar value. The barb meshes are scaled in size based on the scale value provided.

Iso-surface

The visualization of the iso-surface within a region is facilitated by a custom shader, the
foundation of which was provided by Matias Lavik Lavik [2020]. This shader relies on a
material comprising a texture and a scalar value. The scalar parameter determines the value
at which the iso-surface is to be rendered. The texture parameter corresponds with the
texture created for this LoD during the loading phase.

Within the vertex shader, there are transformations applied to the position of the vertices of
the mesh and its normals, transforming them from world space to screen space. To accom-
plish this Unity provides the functions UnityObjectToClipPos and UnityObjectToWorldNor-
mal for a vertex’s position and normal respectively.

In the fragment shader, it utilizes the interpolated position of the vertex as the initial starting
point. Using this position, a ray is cast through the mesh. The direction of this ray coincides
with the direction from the camera to the point on the mesh, as depicted in figure 3.22.
This ray traverses the mesh in a predetermined number of steps, mainly num steps. For this
thesis num steps = 1024. The length of each step is determined as

√
3/num steps. Here,

√
3

signifies the maximum distance across the cube, spanning from one corner to the opposite
corner. Increasing num steps provides greater accuracy, but also slows down rendering.

At each step of the ray’s traversal, the shader samples the texture at the current location
of the ray. If the value obtained from the texture corresponds to the desired value, the ray
marching stops and the following happens. The value at that particular point goes through
a transfer function, yielding a RGB color value to be displayed. Subsequent to this, lighting
computations based on the vertex’s normal are applied to this color. Finally, the shader sets
the opacity (A) of this color to 1 (fully opaque), resulting in the RGBA value which is then
returned.

Here it becomes clear why the voxels need to be as cube-like as possible and in extension
why the regions need to be as cube-like as possible. If the voxel is dispropotionatly large in
one dimension the value that the voxel represents gets stretched in that dimension.

Volume Rendering

Volume Rendeing works in much the same way. The vertex shader preforms the exact
same operations. Additionally, the ray marching described is also preformed. However,
where the iso-surface returned after hitting its desired value the first time, volume rendering
keeps going. The transfer function through which the value goes not only provides an RGB

37

3 Methodology and Implementation

Figure 3.22: Iso-surface rendering. The first step in the ray that find the desired value is
returned.

color, but also an opacity A. When the ray marching finds a vlue within the specified range
the follwing happens. The value goes through a transferfunction providing a RGB and A
value. The resulting RGB value and opacity then go through the equations 3.5 and 3.6.
Where src is equal to the value calculated up to this point. At the start of the ray marching
src = (0, 0, 0, 0). If src.a >= 1 the ray marching stops and the current src value is returned.
Figure 3.23 shows how the ray marching hits multiple desired values. The color and opacity
value are then updated at each step. The value of the final step is returned.

color.rgb = src.a ∗ src.rgb + (1− src.a) ∗ col.rgb (3.5)

color.a = src.a + (1− src.a) ∗ col.a (3.6)

Barbs

When rendering the barbs, the game object pgol corresponding to the current LoD l that
requires visualization should be activated. Additionally, the scale of the go meshes needs to
be set equal to the magnitude of the vector value go is representing multiplied by the scale
value provided by the user. Furthermore, any go game object representing a vector that falls
outside the boundaries of the four provided ranges must be deactivated.

Destroying

If the camera goes beyond the destroy distance for a specific LoD of a region all data and
game objects associated with that LoD in that region need to be destroyed. To destroy a
game object Unity provides a GameObject.Destroy() method which both destroys the object
and frees its memory. For the data loaded into memory, Unity (or C#) has an automatic

38

3.5 Unreal Engine

Figure 3.23: All values alone the ray that fall within the range are combined to calculate the
final color.

garbage collection system. An automatic grabage collection system automatically frees up
any memory which is not references in the program. Therefore, all that is required to free
up the memory in which the data is loaded is to set the variable which stores the data to
null.

3.5 Unreal Engine

The visualization steps have all been explained in the scope of Unity. However, it is desired
that this visualization methodology works in other game engines as well. Therefore, this
section will quickly discuss how this concept can be applied in another popular game engine,
Unreal Engine.

Like Unity, Unreal Engine uses game objects, materials and textures. This allows for most of
the methodology to be used exactly the same way as it was used in Unity. The main differ-
ences is whether some of the calculations are performed in the material or in the shader. In
Unity the material is only a data container in which no calculations are performed. However,
in Unreal Engine the material can perform calculations, such as determining step size of the
ray tracing, providing that information directly to the shader. Note that in Unreal Engine
the shader does retain the ability perform these calculations.

Furthermore, like Unity, Unreal Engine has build in capabilities to import OBJ files. In
addition Unreal Engine also comes with a build in camera game object. The code used in
Unity to allow the user to move the camera can also be added to this camera game object
(albeit it be in C++ not C#).

In conclusion, almost the entire methodology should be reproducible in Unreal Engine. The
main difference should be nuanced implementation details such as how game objects or
texture are created.

39

3 Methodology and Implementation

Figure 3.24: This figure shows the general process the data takes to be visualized. First the
region data gets turned into LoDs. Secondly, the LoDs can get loaded into the GameOb-
ject. Finally, the data gets rendered based on the desired rendering type.

40

4 Results

In this chapter the result of the methodology will be discussed. This includes the time
requirement during the pre-processing to convert the CFD output data format into the re-
quired data format for Unity. Furthermore, the visual results of iso-surface and volume
rendering for scalars and barbs for vector values will be shown. Finally, the error within
the processed data is discussed. All the results are in relation to two quantities of interest,
mainly pressure (p) for scalar values and velocity (U) for vector values. Furthermore, for
this thesis LoDs 0 to 5 were generated for each region.

The study area used for this thesis comes from the results generated in the paper written
by Aviva Opsomer Opsomer [2020]. The study area is located in Clementi, Singapoure and
encompasses and area of around 4.7km by 7km and 720m in height. The dataset is composed
of 27,365,873 cells.

4.1 Pre-Processing

All pre-processing steps were processed using Python 3.7.7 on a PC with the following
specifications: NVIDIA GeForce RTX 2060 graphics card, 8GB RAM and Intel(R) Core(TM)
i7-9700 CPU @ 3.00GHz (8CPUs).

4.1.1 Split sizes

As mentioned in 3.2.2, this thesis will analyse the pre-processing results for a couple of
different region split sizes. Table 4.1 shows the input measurement m in the first column,
which is the desired dimension for a region. The other columns show the number of regions
which the study area is split into. Table 4.2 shows the actual dimensions of a region when
split with the desired measurement m. As seen in the last column, as the split size decreases
linearly the total number of regions increases exponentially.

Desired split Number of regions Number of regions Number of regions Total number
size (m) in width in height in depth of regions

400 12 2 18 432
350 14 2 20 560
300 16 2 23 736
250 19 3 28 1596
200 24 4 35 3360

Table 4.1: Based on the split size (left column), the number of regions in the width, height
and depth are shown. The last column shows the total number of regions the study area
is split up in.

41

4 Results

Both the time and memory stats will be discussed in relation to these split sizes. While these
split sizes will be compared to one another there is no claim made about which is optimal.
What is optimal can differ based on many variables; such as the time available to perform
the pre-processing, the size of the study area, the desired accuracy of the visualization, etc.

Average Split (m) Width (m) Height (m) Depth (m) Total # of Regions
400 396.43 360.01 391.57 432
350 339.80 360.01 352.42 560
300 297.32 360.01 306.45 736
250 250.38 240.00 251.72 1596
200 198.22 180.00 201.38 3360

Table 4.2: This shows the actual width, height and depth of each region when the study area
is split.

4.1.2 Time analysis

The initial stage in the pre-processing involves discretizing the study area into distinct re-
gions. Discretizing the study area is almost instant. However, to efficiently process and store
data for later use, a folder for each region are created. Within the region’s folder a file con-
taining the boundaries of this region is created. Furthermore, a folder for each quantity of
interest is created within the region’s folder. This equates to (2+ quantity o f interest count)
files/folders being created per region. Meaning that for all regions a total of num regions ∗
(2+ quantity o f interest count) files/folders are created. While quantity o f interest count is
a variable within the formula, it is a constant within each project. This results in a linear
time increase (Figure 4.1b) with respect to the number of regions the study area is discretized
into.

Secondly, the points need to be assigned to their corresponding regions. For this part, the
algorithm needs to loop over every single points once regardless of the number of regions
there are. Furthermore, indexing the point into its corresponding region takes a constant
amount of time (see algorithm 5.2) and is not associated with the number of regions there
are. Therefor, there is a base time required regardless of the number of regions. Figure 4.1c
shows that regardless of the number of regions there is still around 80 seconds required to
segment the points into their associated regions. A linear increase is still present due to the
fact that for each region a file with the associated points needs to be written to file. This
means that the number of files written increases proportionally to the number of regions.

Finally, for each region, multiple LoDs need to be created. Figure 4.1d shows the time it
requires to calculate and write these LoD to file. Again it is clearly visible that there is
a linear trend between the number of regions and the time it takes to LoD them. Similar
to sorting the points into their corresponding region, sorting a point of a region into its
corresponding voxel takes constant time. Therefore, the time it takes to create an LoD is
correlated to the number of points within the region. Each region will have a different
number of points within it, leading to different processing times per region. However,
note that the entire study area still contains the same number of points. Therefore, when
looping over all regions, the total number of points looped over will be equal regardless
of the number of regions. The reason for the linear increase comes from the constant time
operations each region needs to complete. A region needs to allocate memory for each LoD
and it needs to write this LoD to file.

42

4.1 Pre-Processing

(a) (b)

(c) (d)

Figure 4.1: (a) The total time required to preprocess the data. (b) Time taken to create folders
for all regions. (c) Time taken to assign the points to each region. (d) The time it takes to
create all LoDs in correlation to the number of regions.

Figure 4.1a shows the total time taken to pre-process that data for a given number of regions.
All operations within the pre-processing steps linearly increased with respect to the number
of regions. Therefore, it should be no surprise that the total time also increases linearly.

4.1.3 Data size

During the pre-processing phase the data size is reduced. Through the use of the new
structured data format only the data values themselves need to be stored, not their location.
The location of each point can be found using the index of the data and the algorithm 5.1.
This removes all the data needed to define the structure of each cell in the original CFD
results. As seen in figure 4.2, the data requirement is below that of the original data. The
data requirement does increase linearly in relation to the number of regions. However, it
seems unlikely that the desired number of regions increases to the point that the memory
requirement surpasses the original memory requirement.

In spite of the data reduction, the number of data points has actually increased. For instance,
at LoD 5, the dataset comprises of 110,100,480 data points over the 3360 regions, which is
much greater then the 27 million original data points. Unfortunately, most of these data
points fall within spare regions of the original data making them less significant. However,
this provides a good sign for solutions that have smaller regions or higher LoDs in dense
areas, discussed further in chapter 5.2.

43

4 Results

Number of Regions Memory Reduction (%)
432 84.47
560 83.33
736 81.79
1596 73.90
3360 57.80

Table 4.3: The percentage of memory reduction between the original data and the data re-
suling from the pre-processing.

Figure 4.2: The data size of the processed data in relation to the original data size

4.2 User Inputs

As described in Chapter 3.4.1 the user needs to provide some inputs, mainly the load, render
and destroy distance for each LoD. This section provides an overview of the inputs used
within this thesis. These input where manually tested and this combination was found to
work best for this data.

It should be noted that ratios for higher LoDs should always be smaller than ratios for lower
LoDs (see Table 4.4 and 4.5). The reason behind this is that higher LoDs should only be
loaded and rendered as the camera gets closer to the region. Subsequently, higher LoDs
should be destroyed earlier as the camera moves away from the region. Higher LoDs take
up more memory and should thus be removed from memory as soon as possible to make
space for new data. Additionally, as the camera moves away from the region, lower LoDs
might still be visible and should thus not be destroyed.

Table 4.4 shows the ratios chosen for the scalar values. The only exception to the ratio rule
is present here. The distance at which an LoD gets rendered is not determined by a distance
ratio, but rather the percentage of the screen height that region currently takes up.

LoD Load Distance Ratio Swapping Height (%) Unload Distance Ratio
0 12 10 16
1 10 20 14
2 8 30 12
3 6 40 10
4 3 50 9
5 2 70 8

Table 4.4: Transition points for scalar values.

44

4.3 Data visualization

LoD Load Distance Ratio Render Distance Unload Distance Ratio
0 4.5 3.5 11
1 4 2.8 10
2 3.5 2.3 9
3 3 2 8
4 2.5 1.7 7
5 2 1.5 6

Table 4.5: Transition points for vector values.

It should be noted that the destroy ratio is generally larger than the load ratio, at the very
least it can never be smaller. The consequence of this is that there are times when the data
is loaded while the camera is further then the load ratio. The reason to do this is the keep
recently viewed LoDs in memory. As the user has not moved very far from the LoD they
might come back into range shortly. By keeping the data in memory for at least some extra
time it reduces the number of times the data needs to be loaded.

4.3 Data visualization

The purpose of this thesis was the ability to visualize massive CFD results. In this section
an overview of how visualization turned out is discussed. It show cases the visualization
of iso-surfaces, volume rendering and barbs. Furthermore, it displays how the visualization
change as the LoD change. Additionally, the change in visualization due to parameters is
outlined. This is done for both a single region and the entire data set. A single region
provides a better understanding of how changing the LoD effects the visualization.

(a) (b)

Figure 4.3: The highlighted regions have one or multiple of their LoDs loaded into memory.

Firstly, an overview of how regions are dynamically loaded. Based on the position of the
camera data from different regions is loaded into memory. In Figure 4.3 the regions which
are loaded are visualized. As the camera moves from one location in 4.3a to different location
in 4.3b the set of regions which is loaded into memory changes. As mentioned in chapter
3.4 the region’s data does not get loaded, but rather the LoDs of a region. In Figure 4.3
regions in the center of the cluster of loaded regions have higher LoDs loaded then their
outer counterparts.

Furthermore, as mentioned earlier, the data does not get destroyed as soon as it falls outside
the loading distance. The destroy distance determines this. In Figure 4.4 this phenomenon

45

4 Results

Figure 4.4: Barbs outside the highlighted regions showcases how data is not directly de-
stroyed once the camera moves past its loading distance.

can be seen as there are arrows showing in regions that are not currently in loading range
(highlighted regions).

4.3.1 Visualization of Scalars

The purpose of iso-surfaces and volume rendering is to display which areas contain a set of
values, either with a singular value or a range of values. Figure 4.5 depicts an example of
each.

As seen in Figure 4.5a, the iso-surface looks like a solid surface. At any point when the
desired value is found the opacity is set to 1. This means that any data behind it does not
get included in the calculation for the final color.

However, in Figure 4.5b the volume rendering does not create a solid surface. Some of the
data behind it can be seen. For a clear example of this see Figure 4.6. While data is rendered
in-front of the building, the building can still be seen through the data.

Furthermore, as the camera gets closer to the region it is representing the LoD of that region
should increase. Figure 4.7 depicts a singular region as the camera approaches. It is clearly
visible that as the camera approaches the LoD increases and provides a more detailed outline
of the data.

There are two main issues with the visualization of the iso-surfaces and volume rendering.
Firstly, at region boundaries the data can seem like it jumps. As seen in Figure 4.8, the data
within one regions displays the iso-surface in one location. At the surface boundary the data

46

4.3 Data visualization

(a) (b)

Figure 4.5: This figure depicts how scalar values are presented. (a) Iso-surface (b) Volume
Rendering

(a) (b)

Figure 4.6: Volume rendering with different parameters. (a) -1.8 - -1.6 (b) -4.8 - -1.6

jumps to a new location. While jumps like these can happen, the more likely situation is that
there is a gradual transition from one to the other. However, as regions are each rendered
separately they have no way to compunicate this and display a gradual transition.

The second issue occurs mainly in outer regions. In the outer regions most of the voxel
values within a region contain the same, or very close to the same, value. This results in
either the entire region being rendered or none of the region (see Figure 4.9). Consequently
this provides little to no data about those regions. Of course, for sections within the data
that contain mainly the same value, iso-surfaces and volume rendering will always provide
little value.

4.3.2 Visualization of Barbs

The purpose of each barb is to indicate the direction and magnitude of the value it is repre-
senting. This is accomplished through the use of a mesh arrow. The size of the arrow mesh
is proportionally to the magnitude of the value. Furthermore, the color of the mesh changes
depending on the direction of the value, see Figure 4.10. For this thesis, the velocity (U) is
the quantity of interest shown during these examples.

The number of barbs within a region is equal to the number of voxels within the current LoD

47

4 Results

(a) (b) (c)

(d) (e)

Figure 4.7: Pressure value in Region 245 between -3 and -1.5. (a) LoD 1. (b) LoD 2. (c) LoD
3. (d) LoD 4. (e) LoD 5.

being rendered. Figure 4.11 depicts how the number of barbs increase as the LoD increases
for a single region. While increasing the number of barbs within a region does increase
the accuracy of each, it does not provide a clear overview. Therefore, the parameters of
which barbs should be visualized can be altered. Figure 4.12 depicts two scenarios. In
the first scenario all barbs are shown, clearly this does not provide any detail about the
environment. However, in the second scenario the parameters have been adjusted to only
show values with a magnitude between 0 to 2. This provides a much better overview of the
study area.

Figure 4.13 provides an overview of how the LoD effects the visualization for the entire
study. As the camera gets closer to the taller buildings the number of barbs increases. As
the LoD increases a better overview of the velocity of the wind within the area can be seen.

4.3.3 Frame rate

Frame rate, denoted as fps (frames per second), represents the frequency at which individual
frames are presented during the visualization process. Each frame serves to display a distinct
image on the user’s screen. Higher frame rates typically result in smoother motion. fps
serves as a quantitative metric for measuring smoothness during application runtime.

In the runtime of the application, the FPS commonly operates slightly above 30 fps. Illus-
trated in Figure 4.14, the fps trajectory generally maintains smoothness over its history, albeit
with occasional troughs while data is loaded into memory. However, it tends to recover to

48

4.3 Data visualization

Figure 4.8: A jump within the iso-surface

(a) (b)

Figure 4.9: Volume rendering with different parameters. (a) -1.8 - -1.6 (b) -4.8 - -1.6

the 30 fps benchmark soon thereafter.

49

4 Results

(a) (b) (c)

Figure 4.10: The Barb colors in their different direction (a) Barb in the X direction (b) Barb in
the Y direction (c) Barb in the Z direction

(a) (b) (c)

Figure 4.11: As the LoD of a region increases so do the number of barbs present in the region.
This figure displays the barbs at various LoDs. (a) Barbs at LoD 3. (b) Barbs at LoD 4. (c)
Barbs at LoD 5.

4.4 Numerical Errors

During the pre-proecessing phase, the transformation applied to the data lead to alterations
in both the structure and values of the dataset. Consequently, there exists a likelihood of
discrepancies between the new transformed values and their original counterparts. This
section delves into the calculation of this error and presents an analysis of the error in two
distinct regions: a dense region and a sparse region.

The dense region is situated near the center of the simulation and characterized by an abun-
dance of original data points, while the sparse region is positioned closer to the edge of
the simulation and consists of a limited number of data points. Given the computational
expense associated with calculating the error, only two regions have been evaluated in this
study. The selection of a dense and a sparse region aims to provide a good representation
of the entire study and represent a broader trend across the simulation.

The methodology for assessing the error of the new data points went as follows (see figure
4.15). The center of the voxel of that data point was computed. The cell from the original
dataset in which the center falls was determined. The corresponding value of the new
dataset is then the value of the cell in which the voxel center falls. The error between these
two value was computed using the following formula:

50

4.4 Numerical Errors

(a) (b)

Figure 4.12: Overview of the study area in two scenarios. Scenario (a) provides little to no
understanding of the data. After adjusting the visualization parameters, (b) provides a
much better overview of the data. (a) Barbs for all magnitude values are shown (b) Barbs
for magnitude values between 0 and 2 are shown.

error = (newValue− oldValue)/oldValue (4.1)

The error of each voxel value is then calculated followed by finding the average of all the
errors. This average is considered the error percentage for that LoD. The results of these
calculations can be found in table 4.6 for the dense region and in table 4.7 for the sparse
region. In general, a steady downward trend in the average error can be seen in both the
dense and sparse regions.

LoD Average Pressure Pressure Velocity Magnitude Velocity Magnitude
Error (%) standard Deviation Error (%) standard deviation

0 23.42 0 92.61 0
1 15.11 0.13 35.11 0.14
2 14.05 0.33 24.31 0.12
3 77.76 161.91 2.96 0.11
4 1.55 4.56 1.14 0.37
5 6.50 121.93 0.42 0.03

Table 4.6: Dense region errors. (region 245)

Furthermore, we can visualize where the error is greatest and smallest. As seen in both
figure 4.16b and figure 4.17b a large portion of the data has no error compared to the original
data. However, areas that have a larger error (figure 4.16a and 4.17a) bring up the average
significantly.

51

4 Results

LoD Average Pressure Pressure Velocity Magnitude Velocity Magnitude
Error (%) standard Deviation Error (%) standard deviation

0 0.96 0 46.49 0
1 2.29 0.0009 25.58 0.06
2 2.68 0.0006 11.81 0.04
3 2.38 0.008 3.98 0.016
4 1.87 0.0092 1.70 0.0063
5 2.27 0.153 0.09 0.002

Table 4.7: Sparse region errors. (region 0)

52

4.4 Numerical Errors

(a)

(b)

(c)

Figure 4.13: A scenario in which the user moves closer to an area of interest. As the user
moves closer the LoD of the visualization increases. (a) LoD 2 (b) LoD 3 (c) LoD 4

53

4 Results

Figure 4.14: A chart depicting the fps over the history of the application. The green region
represents the fps.

Figure 4.15: The center of the LoD voxels are compared to the cell from the original CFD
results in which the center of the voxel is located.

(a) (b)

Figure 4.16: (a) All areas in the sparse region which the error is greater then 2% for LoD 5.
(b) All areas in the dense region in which the error is 0%. for LoD 5.

54

4.4 Numerical Errors

(a) (b)

Figure 4.17: (a) All areas in the dense region which the error is greater then 2% for LoD 5.
(b) All areas in the dense region in which the error is 0%. for LoD 5.

55

5 Discussion and Conclusion

5.1 Research overview

The aim of this thesis was to develop a method to visualize massive CFD simulation results,
with a focus on personal computers. The amount of RAM is a limiting factor in allowing
data into memory and thus visualization. Dynamic loading was proposed to solve this
issue by automatically loading data in and out of memory as needed. Furthermore, a data
transformation was proposed to provide a structured data set to work with for easier data
mangement. The questions defined in section 1.2 are reviewed below.

Can massive Computational Fluid Dynamic results be visualized using Game Engines in
real-time while presenting valuable information?

Answer: Mostly yes

This thesis has demonstrated that through the use of automatic dynamic loading the entire
study area could be visualized without requiring human input. As shown in chapter 4.3,
both scalar and vector values can be visualized within Unity through iso-surfaces, volume
rendering and barbs. The user can then move through the environment in real-time to
visualize that data from different locations and angles.

To accomplish real-time visualization the original CFD results had to go through a pre-
processing phase. The methodology proposed in this thesis only looks at CFD results gener-
ated from OpenFOAM. However, much of the methodology can work for other CFD results
as well. The main requirement for each quantity of interest value is that it can be associated
with a singular point in the study space. Therefore, this methodology should easily expand
to other CFD results.

By discretizing the study area into regions during the pre-processing phase, relevant data
could be loaded/unloaded as desired. Through unloading data that was no longer relevant
memory issue were avoided. Through the proposed methodology the amount of data in
memory at any given point is only correlated to the number of regions loaded. Therefore,
it is not correlated to the size of the study area. This allows the study area to grow in scale
without having to worry about memory issues.

However, some visualization problems are still present. Mainly, for iso-surfaces and volume
rendering there can be jumps in the data between region boundaries. Furthermore, the data
is not as accurate as the original CFD results. Nevertheless, the visualization still provides
an overview of the data which can be used for analysis.

What is the time requirement for pre-processing the CFD data?

Answer:

• With respect to the number of regions: linear

• With respect to the number of points within the CFD simulation: linear

57

5 Discussion and Conclusion

Since the number of regions the study area is split into depends on user input during the
pre-processing steps there is no definitive answer as to the time requirement. However, from
the results it can clearly be seen that as the number of regions increase, the time required
to pre-process all of these regions also increases with a linear correlation (see Figure 4.1a).
This comes as a result from the fact that for each region an equal number of LoDs need to
be constructed.

Furthermore, while the results section displayed all times in respect to the number of region
it is worth discussing the effect of the total number of points within the CFD simulation.
Despite the number of regions changing depending on the user input, the total number
of points do not change. Unfortunately, no study areas with a different number of points
was analyzed and no results can be shown. However, each step within the pre-processing
algorithm looped over all points within the CFD simulation exactly once. Therefore, the time
requirement increases linearly with respect to the number of points in the CFD simulation.

Overall, the total amount of time required for pre-processing was between 390 seconds (6
minutes and 30 seconds) and 972 seconds (16 minutes and 12 seconds). Fortunately, unlike
the visualization, the pre-processing does not have to take place in real time.

How much reduction in memory does the modifications of the data provide?

Answer: As the number of regions increases the memory reduction decreases.

During the pre-processing steps the data was altered such that the resulting data had a
structured format. Through using a structured format many of the attributes (such as points,
faces and cells) originally needed to define the layout of the original data were no longer
needed. This provided a data reduction from 84% for 432 regions to 57% for 3360 regions.

The original data requirement was static. However, with the methodology proposed in this
thesis the data requirement does increase as the number of regions increases. Therefore,
eventually the amount of data required will surpass that of the original data. This should be
taken into consideration when deciding the number of regions to split the study area into.
Regardless, each case studied within this thesis provided a reduction in data requirement.

What is the error introduced into the data by the modifications?

Answer: As the LoD of a region increases the error decreases.

Pre-processing the data introduces some errors within the resulting data. From the results in
section 4.4 it can be seen that as the LoD of a region increases the error percentage decreases.
This trend holds true for pressure and velocity in the dense region and velocity in the sparse
region. The only exception is the pressure in the sparse region. However the error percentage
hovers around the 2% and notably does not increase. Furthermore, in relation to the other
error percentages this can be considered a low error percentage, especially for the lower
LoDs.

A notable exception is the 77% error for pressure for a dense region at LoD 3. This is likely
due to the centers of the voxels falling within a cell of the original data that is far from the
average. This is further supported by the standard deviation of 161.91 seen for this data.

Overall the error introduced decreases as the LoD increases. For dense regions this down-
ward trend is likely to continue. Due to the higher number of points within these regions
higher LoDs will still contain points within all voxels.

58

5.2 Discussion

5.2 Discussion

Contributions

Through out this thesis several concepts have been presented. These allowed the proposed
methodology to take shape. While none of these techniques were novel ideas by themselves,
they were put together to formulate a new strategy and provide the ability to visualize
massive CFD results. The most important are discussed:

• Structured CFD results: Structured CFD results are not a new concept. However, they
provide some distinct advantages over their unstructured counter parts. The use of
a structured data provided a reduction in memory requirement. Furthermore, it pro-
vided the capabilities to load/unload the desired data with ease during the programs
run-time. Unfortunately, the use of a structured dataset did reduce the accuracy of the
data.

• LoDs and voxelization:

This thesis utilized LoDs to manage memory requirement during run-time. Through
using multiple LoDs the desired amount of data could be load/unloaded from mem-
ory. While lower LoDs provided less accurate visualizations, their lower memory
requirement provided a valuable trade-off which could be used display data at far
distances from the user. To generate the multiple LoDs, voxelization was utilized. For
a given LoDd in a region, 8d voxels were created to represent the data at the desired
accuracy.

• Automatic Dynamic Loading: Perhaps the biggest contribution of this thesis lies in
its demonstration of the efficacy of automated dynamic loading in handling massive
CFD results. It elucidates the feasibility of leveraging the users location within the
study area to dynamically load and unload the visible data. This provides a smooth
visualization experience. Notably, during visualization this methodology operates in-
dependently of study area’s size. Consequently, this approach functions regardless of
the scale of the study area.

Limitations

• Voxels inside CAD geometries: As mentioned earlier in section 3.2.3, voxels of any
LoD may not contain a value within them. This can happen due to two reasons: no
points inside the voxel or the voxel falls within a CAD geometry. At present, there
exists no efficient means to determine in which of the two cases the voxel falls. With
the current methodology, voxels for both cases are handled in the same manner. Due
to the inability to determine which case applies to a voxel errors occur in the resulting
data. For example, barbs are displayed inside CAD geometries and iso-surfaces go
straight through CAD geometries. This creates a limitation in the ability to accurately
visualize the CFD simulation data.

• Cannot export visualized data: To visualize the iso-surfaces and volume rendering re-
sults no actual mesh or data is created. The shader simply draws the correct color to the
screen when required. Because no mesh or data is created the result of the iso-surface
and the volume rendering cannot be exported to file to be used later. Techniques do ex-
ist to extract iso-surfaces from voxels, such as the marching cubes algorithm, however,

59

5 Discussion and Conclusion

they are not implemented in this thesis.

• None rectangular study areas: The methodology proposed in this thesis relies on
a study area that is rectangular in shape to be able to split up the study area up
into cube-like regions. For study areas that are not rectangular (e.g.spheres, domes,
cylinders, etc) some regions will completely fall outside of the study area. While this
thesis proposes a solution to deal with voxels that do not contain any data points it
does not so for entire regions that have no data points. This problem can be resolved
by simply removing any regions that do not contain any data points. However, the
methodology in this thesis does not explore this path and undesirable side effects may
occur.

Recommendations and future work

• Voxels inside CAD geometries: As mentioned earlier, errors are introduces into the
resulting data due to the inability to distinguish whether a voxel falls within a CAD
geometry or contains no data points. Therefore, they are currently handled in the
same manner. However, if a distinction could be made between the two cases a prede-
termined special value could be assigned to voxels t hat fall within a CAD geometry.
Barbs could then be disabled if they have this value and the shader could handle the
special value as desired.

Methods do currently exist to determine if a voxel falls within a CAD geometry. How-
ever, the majority of the CAD geometries within the study area are combined into a
single large CAD geometry. Due to this the number of faces within the CAD geometry
is very large. Therefore, the time required to determine if a voxel falls within a CAD
geometry is incredibly long. Future solutions should look into methods that speed up
the process to determine if a voxel falls within a CAD geometry. A suggestion could
be to split up the large CAD geometry into smaller CAD geometries. The bounding
box of these smaller geometries can then be utilized to quickly determine if a voxel
could possible fall within the geometry.

• Slicing: Slicing can be used to gain a better understanding of the internal part of a
volumetric dataset. Currently the methodology provides no way to incorporate this
technique into the visualization. However, it is possible to include it. The part of the
data which the user wants to slice can be represented as a plane. The general equation
of a plane can be defined as ax + by + cz + d = 0. The parameters of this equation
a, b, c and d can be passed into the shader. These parameters can then be used inside
the shader to determine on which side of the plane the sampling point falls. If the
sampling point falls on the ’wrong’ side of the plane the value can be occluded from
the resulting value. The rest of the shader can work as it previously did.

• Sub-regions: Currently, this thesis suggests discratizing the study area into regions
and generating multiple LoDs for each region. However, due to the exponential in-
crease in the number of data points for successive LoDs, there exists a limitation on
the highest attainable LoD. The pre-processing and loading during run-time for high
LoDs can demand excessive time. Moreover, despite LoDs enabling observation of the
entire region at various amounts of detail, the entirety of the region can only be repre-
sented as a single LoD. This can be undesirable in situations where smaller sections of
the region are desired to be inspected.

60

5.2 Discussion

Therefore, to solve this issue, the potential to split up the region into sub-regions
should be considered. I propose one possible methods however other likely exist and
should be explored:

One option to create sub-regions is to repeat the pre-processing step proposed in this
thesis but treating a region as the study area. That is, pick a desired measurement m,
split the region into sub-regions of size m and finally create LoDs for each sub-region.
Each sub-region can then be displayed at a different LoD.

• None-linear voxel averages: For any voxel its value is calculated through taking the
average of all points that fall within that voxel. Currently an equal weight is allocated
to each point within the voxel. However, alternative weights could be assigned to
points based on various parameters. For example, a weight could be assigned depend-
ing on the point’s distance from the center. This method could lower the error within
the data set as points closer to the center could more closely resemble the actual value
at the voxel’s center.

• Optimal Parameters: The processes proposed in this thesis requires multiple parame-
ters; the region size, number of LoDs to create per region, the load, render, and destroy
distance. This thesis proposes some values for each of these parameters, however, they
were found through trial and error. No statistical analysis was preformed to find the
optimal parameters. Although optimal parameters may vary depending on the sys-
tem, due to factors such as processor specifications, available RAM, time constraints
and others, it remains feasible to establish guidelines towards favorable parameter set-
tings.

• Pre-processing in parallel: To continue the path of optimization, the pre-processing
steps can be further optimized. All pre-processing steps lend themselves to parallel
execution. An initial improvement could involve parallelizing the process across the
CPU, utilizing all available cores rather than the current singular core. However, a
more advanced optimization could leverage the GPU for parallelization. With the
number of cores being greater than that of the CPU, employing the GPU offers further
optimization.

• 2D visualization techniques: This thesis only explored visualizing the data in 3D.
However, analyzing CFD results can also entail 2D visualizations in the form of graphs.
Future research could look into incorporating 2D visualizations into the game engines.

61

5 Discussion and Conclusion

Algorithm 5.1: IndexToCoordinates (index, LoD, region width, region height,
region depth)

Input: index, LoD, region width, region height, region depth
Output: region index: The index of the region to which the point belongs

1 voxels per dimension← 2LoD;
2 voxels per side← voxels per dimension ∗ voxels per dimension;
3 voxel width← region width/voxels per dimension;
4 voxel height← region height/voxels per dimension;
5 voxel depth← region depth/voxels per dimension;

6 depth index ← f loor(index/voxels per side);
7 index ← index− (depth index ∗ voxels per side);

8 height index ← f loor(index/voxels per dimension);
9 index ← index− (height index ∗ voxels per dimension);

10 width index ← index;

11 x ← width index ∗ voxel width;
12 y← height index ∗ voxel height;
13 z← depth index ∗ voxel depth;
14 return (x, y, z);

Algorithm 5.2: RegionIndex (point, min coord, region width, region height,
region depth, num width, num height)

Input: The point for which the region is being determined point, the smallest
coordinate of the study area min coord, the width of a single region
region width, the height of a single region region height, the depth of a
single region region depth, the number of regions in the width direction
num width, the number of regions in the height direction num height

Output: region index: The index of the region to which the point belongs

1 width index ← f loor((point.x−min coord.x)/region width);
2 height index ← f loor((point.y−min coord.y)/region height);
3 depth index ← f loor((point.z−min coord.z)/region depth);
4 region index ← width index + (height index ∗ num width) + (depth index ∗

num width ∗ num height);
5 return region index;

62

Bibliography

(2004). OpenFOAM Documentation. OpenCFD Ltd.

(2012). Google maps structure.

(2023). 2d tiles overview.

(2023). Stl to obj.

Ahrens, J., Geveci, B., and Law, C. (2005). Visualization Handbook, chapter ParaView: An
End-User Tool for Large Data Visualization. Elsevier Inc., Burlington, MA, USA.

Anderson, J. D. and Wendt, J. (1995). Computational fluid dynamics, volume 206. Springer.

ANSYS, I. (2023). Ansys fluent.

Bell, D. (2018). Arrow pointer: 3d model.

Berger, M. and Cristie, V. (2015). Cfd post-processing in unity3d. Procedia Computer Science,
51:2913–2922. International Conference On Computational Science, ICCS 2015.

Blocken, B., Janssen, W., and van Hooff, T. (2012). Cfd simulation for pedestrian wind
comfort and wind safety in urban areas: General decision framework and case study for
the eindhoven university campus. Environmental Modelling Software, 30:15–34.

Canepa, E. (2004). An overview about the study of downwash effects on dispersion of
airborne pollutants. Environmental Modelling and Software, 19:1077–1087.

Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., and Amza, C. (2005). Locality aware
dynamic load management for massively multiplayer games. In Proceedings of the Tenth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’05,
page 289–300, New York, NY, USA. Association for Computing Machinery.

Chen, Q. (2009). Ventilation performance prediction for buildings: A method overview and
recent applications. Building and Environment, 44:848–858.

Chu, A., Kwok, R., and Yu, P. (2005). Study of pollution dispersion in urban areas using com-
putational fluid dynamics (cfd) and geographic information system (gis). Environmental
Modelling Software, 20:273–277.

Clyne, J., Mininni, P., Norton, A., and Rast, M. (2007). Interactive desktop analysis of high
resolution simulations: application to turbulent plume dynamics and current sheet for-
mation. New Journal of Physics, 9(8):301.

Defraeye, T., Blocken, B., and Carmeliet, J. (2010). Cfd analysis of convective heat transfer
at the surfaces of a cube immersed in a turbulent boundary layer. International Journal of
Heat and Mass Transfer, 53:297–308.

63

Bibliography

Defraeye, T. and Carmeliet, J. (2010). A methodology to assess the influence of local wind
conditions and building orientation on the convective heat transfer at building surfaces.
Environmental Modelling and Software, 25:1813–1824.

Drebin, R. A., Carpenter, L., and Hanrahan, P. (1988). Volume rendering. SIGGRAPH Comput.
Graph., 22(4):65–74.

Evola, G. and Popov, V. (2006). Computational analysis of wind driven natural ventilation
in buildings. Energy and Buildings, 38:491–501.

Friston, S., Fan, C., Doboš, J., Scully, T., and Steed, A. (2017). 3drepo4unity: Dynamic loading
of version controlled 3d assets into the unity game engine. In Proceedings of the 22nd
International Conference on 3D Web Technology, Web3D ’17, New York, NY, USA. Association
for Computing Machinery.

Gromke, C., Buccolieri, R., Di Sabatino, S., and Ruck, B. (2008). Dispersion study in a
street canyon with tree planting by means of wind tunnel and numerical investigations –
evaluation of cfd data with experimental data. Atmospheric Environment, 42:8640–8650.

Hanna, S., Brown, M., Camelli, F., Chan, S., Coirier, W., Hansen, O., Huber, A., Kim, S., and
Reynolds, R. (2006). Detailed simulations of atmospheric flow and dispersion in urban
downtown areas by computational fluid dynamics (cfd) models - an application of five
cfd models to manhattan. Bulletin of the American Meteorological Society, 87:1713–1726.

Jiang, Y. and Chen, Q. (2002). Effect of fluctuating wind direction on cross natural ventilation
in buildings from large eddy simulation. Building and Environment, 37:379–386.

Lavik, M. (2020). Unityvolumerendering. https://github.com/mlavik1/

UnityVolumeRendering.

Milashuk, S. and Crane, W. (2011). Wind speed prediction accuracy and expected errors
of rans equations in low relief inland terrain for wind resource assessment purposes.
Environmental Modelling and Software, 26:429–433.

Mochida, A., Tominaga, Y., Yoshino, H., Okaze, T., and Shida, T. (2007). Cfd prediction of
wind environment and snowdrift around a building. volume 14.

Muñoz-Esparza, D., Shin, H. H., Sauer, J. A., Steiner, M., Hawbecker, P., Boehnert, J., Pinto,
J. O., Kosović, B., and Sharman, R. D. (2021). Efficient graphics processing unit modeling
of street-scale weather effects in support of aerial operations in the urban environment.
AGU Advances, 2(2):e2021AV000432. e2021AV000432 2021AV000432.

MystiveDev (2021). 3 things i wish i knew when i started level design tutorial.

Opsomer, A. (2020). Exploring the effects of void decks on urban ventilation in singapore: A
computational design simulation approach for wind microclimate-informed urban plan-
ning.

Sousa, J., Garcı́a-Sánchez, C., and Gorlé, C. (2018). Improving urban flow predictions
through data assimilation. Building and Environment, 132:282–290.

Tecplot, I. (2023). tecplot-360.

TomTom (2020). Understanding map tile grids zoom levels. TomTom Developers.

64

https://github.com/mlavik1/UnityVolumeRendering
https://github.com/mlavik1/UnityVolumeRendering

Bibliography

Verma, G. and Samar (2018). Autodesk Cfd 2018 Black Book (Colored). CADCAMCAE Works,
Gurgaon, Haryana.

Weisstein, E. W. (2023). Geometric centroid.

Westover, L. (1990). Footprint evaluation for volume rendering. SIGGRAPH Comput. Graph.,
24(4):367–376.

65

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Motivation
	Research Question
	Research Scope
	Thesis Overview

	Related Work
	CFD visualizations
	Massive CFD visualization
	CFD visualization in Unity
	VTK in Unity

	Level of Detail
	Dynamic Loading
	Visualization Techniques
	Iso-Surfaces
	Volume Rendering
	Barbs

	Methodology and Implementation
	Structure of OpenFOAM CFD outputs
	Constructing Multiple LoDs from a CFD output
	Point Cloud
	Study area discretization
	Region LoDs
	Resulting File Structure

	Introduction to Unity
	Build-in Components
	Rendering Meshes

	Visualization
	Pre-Runtime Setup
	Dynamic regions

	Unreal Engine

	Results
	Pre-Processing
	Split sizes
	Time analysis
	Data size

	User Inputs
	Data visualization
	Visualization of Scalars
	Visualization of Barbs
	Frame rate

	Numerical Errors

	Discussion and Conclusion
	Research overview
	Discussion

