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Abstract

The Bayesian approach is a very important approach for tackling problems in statistics. It involves choosing
a distribution that reflects the prior knowledge and thus takes all knowledge into account in contrast to the
frequentist approach. It also assumes that the parameters (the regression coefficients) follow a distribution
called the posterior distribution instead of fixed constants. When a specific choice of this prior is made, this
needs to be justified as the prior directly influences the posterior distribution of the regression coefficients. It is
also possible to consider priors that do not carry a lot of information and such priors will be compared in this
project.

In this thesis, the Bayesian approach will be used to apply a multinomial logistic regression model to data
concerning students’ study habits and beliefs. The data is provided by a research group called PRIME and they
focus on mathematics education at the TU Delft. Multinomial logistic regression is used to find predictions of
the choices expressed in probabilities. Bayesian statistics is not only useful in a sense that it offers the possibility
to specify the prior knowledge, but also because the Bayesian way of thinking can be incorporated in evaluating
results. This can be done by constructing credible intervals for the predicted probabilities. Overlap between
intervals can then give insight on prediction quality.

In this project, the models are coded in R and here two packages are used: the UPG and the BRMS package. The
priors that are compared are the Gaussian and Cauchy distributions. Other than that there are also default
priors used in the packages, which can be compared to the Gaussian and Cauchy priors. In the end, a conclusion
can be drawn about the performance of each model based on the prediction accuracy. It can be concluded that
the BRMS package outperforms the UPG package in terms of accuracy both using default priors and overall using
default priors gives more accurate results than specifying the prior. However, the difference in the accuracy of
the model using the BRMS package is not significantly higher than the accuracy obtained from the UPG model
and the running time is a lot higher for the BRMS package. From the models with a specified prior, the model
with the Cauchy distribution as prior performed better.
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Chapter 1

Introduction

In statistics, there are two approaches of tackling a problem, the frequentist and the Bayesian approach. The
frequentist approach is sometimes also called the classical approach and is often the approach that is explained
when being introduced to statistics. Frequentist statistics is known for being the more objective choice, because
even if there is prior knowledge available, this is not taken into account. This is one of the advantages of
Bayesian statistics as this approach considers this prior knowledge as well as this objective data that is given
(Bolstad and Curran 2016).

The parameters are assumed to be fixed unknown constants when applying the frequentist approach. The
Bayesian approach, however, assumes that the parameters follow a certain probability distribution. Using the
Bayesian approach a predictive distribution is obtained, which cannot be done using the frequentist approach.

Despite the large number of advantages, due to the computational complexity, the Bayesian approach was
not often used. The formula for the predictive distribution requires some integration, which was not always
easily done numerically. Here, adding more parameters to the model could increase the complexity severely.

Nowadays, this is a lot easier as computers are faster and there are methods for taking random samples
from the desired predictive distribution, such as the Gibbs sampler. By taking a large number of samples an
approximation of the predictive distribution is found. More descriptive statistics such as the mean and standard
deviation result from applying the Markov Chain Monte Carlo Method (MCMC) (Bolstad and Curran 2016).

With this emergence of algorithms to make the Bayesian approach a more realistic option, it follows that
the Bayesian approach overall often performs better than the frequentist method, even when comparing the
models in terms of criteria used for frequentist methods to judge performance. This fueled the rising interest
for the Bayesian approach and also makes this approach useful today. Hence, in this research the focus will be
on applying and incorporating the Bayesian way of thinking as good as possible (Bolstad and Curran 2016).

As mentioned before, the Bayesian approach includes prior knowledge together with the already given data,
which is considered to be objective. The Bayesian approach relies solely on Bayes’ theorem. This theorem
combines these two components and yields the predictive distribution, which is called the posterior distribu-
tion. The prior knowledge is contained in what is called a prior distribution. This is thus also considered to
be a random variable and can be chosen. This choice of the prior is fundamental for the resulting posterior
distribution and is hence an important decision that needs to be taken.

It is often not the case that the prior distribution reflects all of the prior knowledge. Quite often it oc-
curs that when choosing the prior distribution not a lot of information is available and the choice is made
unconsciously without including any information. Such a prior that does not consider any prior knowledge
is referred to as an uninformative prior. As there are many choices for the prior, when specifying an uninfor-
mative prior distribution with certain mean and variance, this choice of prior needs to be justified (Robert 2007).

Considering different priors can thus be interesting as the posterior distribution is directly affected by this
decision. Hence, in this project different priors will be used to illustrate differences in accuracy and to find
which of the uninformative or weakly-informative priors perform best.



1.1 PRIME

In this project, the Bayesian approach will be applied to a data set obtained from PRIME. PRIME is a research
group that focuses on mathematics education at the TU Delft. The research team at PRIME works together in
the section Statistics of the Delft Institute of Applied Mathematics (DIAM) to increase motivation for students
and improve mathematics education. PRIME also aims to incorporate mathematics more into engineering. The
research at PRIME is thus split into the following two lines:

1. Increasing students motivation.
2. Improve students performance and incorporating mathematics into engineering.

This research belongs to the second line as the results from this project could be interpreted and applied to fur-
ther improve mathematics courses at the TU Delft, while making sure the context is interesting to the student.
There are already several things that are done to keep the students engaged such as using videos that explain
the mathematical concepts to actual problems and incorporating more applied examples.

The data used for this project contains survey results that were filled in by students from different programs
at the TU Delft. Some of the questions were aimed at evaluating students habits and beliefs about the mathe-
matics courses they were following at that time. These questions were mostly multiple choice and contain the
information needed to conduct this research. Some other questions were also asked about the students previous
results and about their expectations. These questions were used to predict the probabilities of the outcomes of
the questions about the students’ study study habits and beliefs.

To predict these probabilities multinomial logistic regression is applied. Logistic regression is a transforma-
tion of linear regression such that the outcome is a value between 0 and 1 and thus represents a probability
for some variable. Logistic regression works in the case there are 2 possible outcomes for the question that
needs to be answered. However, in this case the questions involving the students’ study habits and beliefs
all have more than 2 options. Hence, the extension of logistic regression called multinomial logistic regression
is used. To fully understand this concept, the first research question is * What is multinomial logistic regression?’.

To finally evaluate the students’ study habits and beliefs these two mathematical concepts are combined
together and thus a question that arises is: ‘How can we apply the Bayesian approach to multinomial logistic
regression?’. In (Schriemer 2023), the same data was already used to discuss the differences between the
two approaches, frequentist and Bayesian, when applying multinomial logistic regression. To delve deeper
into Bayesian statistics, this research mainly focuses on this. Now when applying the Bayesian approach to
multinomial logistic regression, an expression for the model needs to be constructed, which is another research
question. As mentioned before, the Bayesian way of thinking can be used to evaluate the results. The question
that then arises is how this Bayesian way of thinking can be used to interpret results. This Bayesian approach,
however, depends on the choice of the prior. Hence, another question that is answered in this project is ‘How
does choosing a different prior influence the results for evaluating students’ study habits?’.

1.2 Overview of this project

This project covers different subjects, so here the structure of the project is briefly summarized. In chapter
2, the background information is given that is needed to understand this thesis. First, logistic regression will
be discussed, which is further extended to multinomial logistic regression. This gives a basic understanding
and is fundamental in understanding the model. Since this thesis involves the Bayesian approach, the basics
of Bayesian statistics are discussed. Within Bayesian statistics, in this thesis specifically the prior is chosen
differently. So, in chapter 2, the choice of the prior is also discussed and the choices made in this thesis are
discussed.

Chapter 3 discusses the data provided by PRIME. This chapter also involves preprocessing, where the data is
cleaned so it is ready to use. Finally, most of the assumptions of the model were already checked in (Schriemer
2023). However, to give some additions, the correlations between the predictors are checked. This can be found
in section 3.3.

Now applying this data, formulating the model for the predictors and outcome variables as found in chapter 3
is done in chapter 4. To evaluate results, there are two packages that are used in this project: UPG and BRMS.
These are packages in R and use underlying algorithms, which are briefly discussed in chapter 4.

Finally, chapter 5 lists all results that follow from applying the model. The first model that is discussed is



the model applied to uniformly generated data. Then the UPG package is used to find results when applying
this to the whole data set from PRIME. Now, this data set can be split up using the Train-Test split method
to evaluate results. This is a way of comparing the fit and accuracy to assess validity of the model. Another
method that is applied for this is K-fold cross-validation. Here, the same default prior is considered. Now,
using the BRMS package also the default prior is first considered and then validated using K-fold cross-validation
and Leave-One-Out cross-validation. In the BRMS package it is possible to specify the prior. Hence, finally the
Normal distribution with mean 0 and variance 4 and the Cauchy distribution with center 0 and scale 2.5 are
considered as prior distributions.

Chapter 6 discusses the main conclusions that can be drawn from the results and summarizes the results
shortly. Other than that future research and limitations of this project are discussed. The code used for this
thesis can be found in the appendix as well as some additional plots as mentioned in the results.



Chapter 2

Background information

In this chapter the main background information that is needed to understand this project will be discussed.
First, logistic regression and its corresponding model is discussed. This is then extended to multinomial logistic
regression. The model used in this project applies the Bayesian approach, so in this chapter Bayesian statistics
will be discussed. As there are some choices made for the models used in this project, these will also be discussed
in this chapter. Here, the choice of the prior will be discussed for each model.

2.1 Logistic Regression

Logistic regression is used in practice for the case in which the outcome variable is binary (i.e. either 1 or 0) and
aims to predict the probability of the outcome of the binary variable Y;. Using logistic regression the probability
that the outcome variable Y; = 1 can be evaluated. This probability is then denoted by 7;. Now, the probabil-
ity that the outcome variable equals 0 is exactly 1—m7;. As 7; is a probability, it must always hold that 7; € (0,1).

As a short recap, consider a simple linear regression line Y; = a + 8X; + ¢;. Here, it is assumed that
g; ~ N(0,0?). In this regression line i = 0,...,n is the row in the data set that is considered and there is only
one predictor variable X; involved in determining the outcome. As mentioned before, the outcome variable Y; is
in this case binary and can thus only attain values 0 and 1. This implies that Y;|X; ~ Ber(m;) fori =1,...,n.
This notation indicates that given X;, Y; follows a Bernoulli distribution, where the probability of a success is
equal to ;.

Now to determine probability m;, a transformation needs to be applied to this simple linear regression line.
Such a transformation function is called a link function. This transformation must make sure that m; stays in the
defined interval. A constraint for this function then is that the link function must be positive monotone. This
means that the function values should always be larger than 0 and the function should be increasing. To ensure
that this is the case, a cumulative probability distribution function can be used as the link function (Fox 2015).
This link function is denoted by A(+) such that m; = A(a+8X;). This implies that now Y;|X; ~ Ber(A(a+5X;).

A cumulative probability distribution can be used as it satisfies all requirements. For the transformation to
be well-defined, it must be continuously differentiable and symmetric. Similarly, it must tend to m; = 0 and
m; = 1 slowly as well as it should be strictly increasing. For the inverse transformation to be well defined the
transformation A(-) must be one-to-one. This is that each value for Y; is mapped to exactly one value of m; by
the link function. In this way, it follows that A=!(m;) = a + 8X; (Fox 2015).

Possible choices for the link function are the logit or the probit transformations, which both satisfy all the
requirements as specified above. The logit link function is defined as in equation 2.1 and the probit link function
is defined in equation 2.2. Here, the logit model considers the CDF of the logistic distribution. However, the
probit model considers the CDF of the standard normal distribution instead, which distinguishes the two models
from each other (Fox 2015).

1
= Ao+ BX;) = 11 o—(@+hXy) (2.1)

1 at+pX: 152
7 = ¢la+ BX;) = E/ e 29747 (2.2)



As these two models are very similar, it is important to highlight the key differences between the models to
be able to choose which model to use. According to (Fox 2015), the most important difference between logit
and probit is that considering the inverse transformations for the logit model gives us log odds which can be
interpreted directly. However the inverse of the probit model can not be interpreted directly. Another advantage
of the logit model is that it is less complex to evaluate as the probit model uses integral, which then needs to
be evaluated. This would add to the complexity of the model. Hence, for simplicity and convenience the logit
model will be used for this research.

The inverse of the logit model A~*(m;) gives the log odds. Here A~!(m;) = log, (7%= is called the logit of
m;. However, it was indicated before that the link function should be one-to-one. Hence, it also follows that
A=Y (m;) = a + BX;. Equating both sides then gives the following expression for the odds, where the odds are

denoted by 7:

log, ( Ti ) = a+BX; (2.3)

1—7TZ'

T gotBX (2.4)
1— T

This value ﬁ represents the probability of Y; = 1 divided by the probability that ¥; = 0. When the
probability of a success is higher that the probability of failure, then the odds ratio is larger than 1. The odds
are at least 0 as each probability m; > 0 and do not have an upper bound. It can then be deduced that the
logarithm of these odds increases as these odds increase since the logarithm is a monotone increasing function.
Example 2.1 now gives an applied example of logistic regression. Since there are probabilities involved, this
example considers a Bayesian problem, which will be explained in section 2.3.

Example 2.1 (Weather prediction) Consider the binary variable Y; that indicates whether it is going to
rain on day ¢ or not, where

v 1 Rain on day ¢
"0 No rain on day ¢

Say that this binary variable Y; depends on some variable X;, which is the amount of rain in mm on
the day before. The data that is available to predict the probabilities contains values for Y; and X;. As
explained before 7; indicates the probability that Y; = 1. Therefore, the probability that it will rain on
day i is m;. The probability that it will not rain on day 4 is then equal to 1 — m;. The value for 7; can
now be found using the formula in equation 2.1, where a training set is used to estimate o and 5. Here
m; = AMla+ BX;). These estimations for o and § are then called & and 3. Hence, it follows that

1
.
1+ e—(&+BX:)

When & and B are estimated, given the X;, 7; can be calculated.

This can also be elaborated to models with more than one explanatory variables x;1, ..., x;; that are involved
in predicting the outcome. The outcome is in this case still a binary variable y;. Then, the multiple regression
line is defined as y; = Bo + f1xi1 + - - - + Brxik + ;. Here, the k explanatory variables are used to determine the
outcome variable y;. Again, applying the logit transformation as the link function yields equation 2.5.

1

i = Ao+ Brain + -+ Bevin) = T G A

(2.5)

Now, an expression for the odds can be deduced using equation 2.5. From equation 2.5, it follows that

1
N 1 + e~ (Bo+Brzirt-+Brwir)
1+ e~ Bot+Brzit-+Przir) _ 1
1 + e~ (Bo+Brzirt+-+BrTir)
e~ (Bot+Brwirt-+Brzir)
- 1+ e~ Bot+Brzirt--+Brwir)

1—7Ti:1




Dividing the expression for m; by the expression for 1 — 7; then yields the following

T 1
— . 2.6
1— T i 1— v ( )
1 1 4+ e~ Pothrzirt-+Brwir)
= 1+ e—(Bot+Brziit-+BrTik) ' e—(Bot+Brzii+-+BrTik) (27)
1
- e~ (BotBrzii+-+Brwik) (28)
— ePotBizint-+Brxik (2.9)

Hence, the expression that follows for the odds is as follows

T _ ePotBrzit+Bntik
1-— urs

The interpretation of the odds is still the same. The odds are the probability of a success divided by the
probability of a failure. It is clear from this notation that when the value of say for example x;; increases with
exactly 1, then the odds are multiplied by e”'.

Example 2.2 (Weather prediction with 3 explanatory variables) Consider the same binary variable y;
from example 2.1. Say that this binary variable is now not just dependent on the rain on the day before,
but also on 2 other factors, such that y; depends on the following variables:

;1 Rain on the day before in mm
T2 Average amount of rain in the previous week in mm
;3 Humidity percentage on day i

With these variables one can construct m; = A(By + S1x:1 + Poxio + B3x43), which is the probability that
it will rain on day i. Using equation 2.5, the expression for m; becomes

1
= 1+ e—(Bot+Bizi1+B2zi2+B3%i3)

e

Plugging in the fitted values 30, 31, 32, ,gg that again follow from using a training set, gives the following

expression for the prediction
R 1

m; = = = x =
! 1+ e—(Bot+Bizi1+P2zi2+B3%i3)

2.2 Multinomial Logistic Regression

Logistic regression is the basic case in which the distribution of a binary variable is described in terms of
covariates using a linear predictor. However, in reality there are many cases where the outcome variable is a
categorical variable and thus has more than two possible outcomes. Therefore, an extension of logistic regression
is useful in the case that the target variable is categorical. This is exactly the purpose of multinomial logistic
regression. This results in the same model, when the logit model is used, as in equation 2.5. The only difference
between logistic regression and multinomial logistic regression is that the response variable y; can attain more
than two values. This results in the following model, where m;; is the resulting probability that a certain
category j was chosen such that j € {1,...,m — 1} and m is the number of categories. Here, the categories are
labelled with numbers from 1,...,m (Fox 2015).

eBoi+-+BriTik

i = for1<j<m-—1 2.10
i 1+ Zﬁ;l eBort+Brizik orl=i=m ( )
m—1
Tim=1—Y m; forj=m (2.11)
j=1



Equation 2.10 shows the expression for the model that will be used in this research to determine the probabilities
for the category j. Here, equation 2.10 gives the probabilities for 1 < j < m — 1. The probability of the last
category, category m, is defined as the sum of all probabilities substracted from 1. This is given in equation
2.11. Considering the expression for 1 < j < m — 1, the outcome 7;; is a probability as the numerator is always
less than the value in the denominator. Hence, it holds that m;; € (0,1). For j = m, it holds that for all i,
m; > 0 for every j € 1,..,m — 1. Since m;; gives the probability that a category is chosen, it also holds that

Z;n;ll mi; < 1. Therefore, it follows that 7, € (0,1).

Example 2.3 (Weather prediction of a categorical variable with 3 explanatory variables) Example 2.2
can be further extended to the case where y; is a categorical variable with more than 2 categories. Say y;
has 3 categories and is defined in the following way

1 Rain on day ¢
y¥i = { 2 Cloudy on day i
3 No rain and not cloudy on day

The purpose is now to determine the probability that it was cloudy, it was raining or neither of them on
day 7. The probability 7;; is in this case defined as the probability of weather of category j on day i. For
example 743 describes the probability that there was no rain and it was not cloudy on day 4. For y; =1
and y; =2 (so 1 < j < 2), m;; is given by

eBoi+B1jTi1+B25Tia+P3;wi3

Tii =
% 1+ Zl2=1 eBortBuziitBaziz+Bizis

The probability of the last category j = 3, where there no rain and it is not cloudy on day i, is determined
by the other two probabilities, i.e.
iz = 1 — (M1 + Ti2)

2.3 Bayesian statistics

There are two ways of tackling a problem in statistics, the frequentist approach and the Bayesian approach.
The most used method for estimation is the frequentist approach as in this case the parameters are assumed to
be fixed unknown values, which are then estimated e.g. using maximum likelihood estimation. The Bayesian
approach assumes that these parameters follow a certain probability distribution depending on the data, which
is called the posterior distribution. Here, the parameters are considered to be random variables. The two
methods can be distinguished by their perception. The Bayesian approach assumes there is some information
already available prior to the data gathering to find the posterior distribution and hence it can be said that this
approach is found to be more subjective than the frequentist approach.

Example 2.4 (Bayesian vs Frequentist) Say a person lost some object and now needs to find this object.
The object can make a sound. The possible options of where the object can be are room A, B or C. Deciding
on which room to look in first is a problem that can be solved using either the Bayesian approach or the
frequentist approach.

Say that the sound that the object makes comes from room C. Furthermore, it is known that the last
location where the object was seen is in room B.

A frequentist would use just this information that the sound originated from room C to decide which room
to check first using some model. Using the Bayesian approach, the last location of the object together
with the fact that the sound came from room C will be taken into account and used in the model. Hence,
here it is clear that the Bayesian approach takes prior knowledge into account in predicting where to go
first, whereas the frequentist approach does not.

For this research, only the Bayesian approach will be considered as in a recent bachelor thesis (Schriemer
2023), the comparison between Bayesian and frequentist approach applied to multinomial logistic regression
is discussed. According to (Bolstad and Curran 2016), Bayesian methods frequently outperform frequentist
methods, which only makes it interesting to delve deeper into the Bayesian approach to find useful results.

10



The Bayesian approach is built upon Bayes’ theorem from basic probability theory.

Theorem 2.1 (Bayes’ theorem) Consider events A and B with P(A), P(B) > 0. Then

P(A[B) - P(B)

P(BI4) = =5

Bayes’ theorem follows from applying the definition of the conditional probability as defined in 2.1.

Definition 2.1 (Conditional probability) Consider the events A and B with P(A) > 0. Then the condi-
tional probability is defined as
P(BNA)
P(B|A) = ————
(Bl4) = T3

Using definition 2.1, the proof of Bayes’ theorem as given in theorem 2.1 is given below.

Proof 2.1 (Bayes’ theorem) Events A and B are given with P(4) > 0 and P(B) > 0. Now using definition

2.1 it follows that
P(AN B)

P(AIB) = — 5
This can be rewritten in the following way
P(AN B) = P(A|B) - P(B) ()

From definition 2.1 it also follows that

P(BN A)
P(A)
P(AN B)

T P(4)
P(A|B) - P(B)

T PB4

P(B|A) =

(by *)
O

The Bayesian approach is built upon Bayes’ theorem. Given a multinomial logistic regression model as
defined in equation 2.10 and 2.11, using Bayes’ theorem, a Bayesian expression can be found in terms of model
parameters for the regression coefficients. The main idea of Bayesian statistics is that it is assumed that the
regression coeflicients 815, ..., fr; are not point estimates, but instead follow a probability distribution, which
is called the posterior distribution. Here, there is some belief of the distribution of the 8’s, which is combined
with some observed data y, which together forms the posterior distribution. The data that is known in the
MLR model is the response variable y; which depends on the predictors x;1,...,2;;. The posterior distribution
is thus denoted by pg|y. Theorem 2.1 can now be applied again. Note that, in this conditional probability, the
probability of a continuous variable is determined given on some discrete variable. So in proof 2.2, it is shown
that Bayes’ theorem also holds in case of a mixture of discrete and continuous variables.

11



Proof 2.2 (Bayes’ theorem for continuous and discrete random variables) Consider the discrete random
variable Y that can attain values in some set V and a continuous random variable 8 that is in set U.
Then using definition 2.1 for the conditional probability, it follows that

p(BEUY V)
p(Bel)
_pBEUYEV)
ZyEV Py=y

pBeUlY eV)=

And similarly, the other way around it follows that

Ppeuyev
Pyev
_pBelY eV)

Jir £5(b)db

Pyevipeu =

This can be rewritten as
P(BEUY €V)=pyevisey [ fo(b)db
U

This can be used in the first conditional probability in the following way

p(8 € UlY e V) = Previsen Ju fo(B)db (2.12)

ZyEV Py=y

This proves the claim. O

In proof 2.2, an expression is given for Bayes’ theorem applied to the posterior distribution since equation

2.12 is the same as
_ Pyev|peUu - fU fﬁ(b)db
Zyev pY:y

/ faty (bly)db (2.13)
U

This corresponds exactly to the notation that was used for the posterior distribution before. In Bayesian
statistics, equation 2.13 is denoted in a more compact way, namely

_ byip Pp (2.14)

p
Bly Dy

Now py|s denotes the probability of a discrete random variable given some continuous random variable. This
is then referred to as the likelihood. This likelihood is used to update the prior beliefs about the distribution
of the ’s. This prior belief of the regression coefficients is denoted by pg and this distribution that the 3’s
are assumed to follow is called the prior distribution. By updating this prior distribution by the likelihood, it
follows that py|g - pg. Thus, another way of denoting the above formula for the posterior is:

Likelihood x Prior
Evidence

Posterior =

Here, the evidence is a known constant. Another way of denoting this is by leaving out the evidence and
denoting it as Posterior o< Likelihood x Prior, where notation suggests that the posterior is proportionate to
the likelihood times the prior (Bolstad and Curran 2016).

The probability py from equation 2.14 functions as a constant with the purpose of rescaling. This rescaling
constant is often left out of this expression of the posterior (Etz 2018). In these expressions, there is some
likelihood function involved. This is defined as in definition 2.2 (Bijma, Jonker, and Van Der Vaart 2017).
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Definition 2.2 (Likelihood function) Let X = (X7,...,X,,) be a random vector with probability density
pa(z1,...,%,) with parameter 8. Fixing © = (21, ...,,), then the likelihood function is given by

e(ﬁ;xla oo ,.Tn) = Hpﬁ(l'z)
i=1

In equation 2.14, the likelihood is given by the expression py|g. Applying definition 2.2 then yields py|g =
P(Y1 = y1,...,Y, = y,|B). Now since each of these Y;’s are different responses depending on student i, each of
the Y;’s are independent of each other. Thus,

n

PYi=y1,.... Yo =valB) = [[PYi = wilB) = [[ ps(wi) = €Bs v, - )

i=1 i=1

This corresponds to the likelihood function given in definition 2.2. Now, the likelihood is fixed information that
follows from the given data and the prior distribution is chosen. The term P(83, the prior distribution, then
indicates what the parameter values should look like. The posterior distribution then contains the information
the parameter 3 should follow. This is called Bayesian updating from the prior to the posterior distribution
(Zens, Frithwirth-Schnatter, and Wagner 2022).

In the frequentist setup, confidence intervals are introduced. Given a confidence interval, this can then be
interpreted such that 95% of the constructed confidence intervals contain the true mean. There is also a Bayesian
variant, which is called a credible interval. The interpretation of the credible intervals is more straightforward.
Given a 95% credible interval, this is interpreted as the probability that the true mean is in this credible interval
is 0.95 (Clyde 2022). Such credible intervals can then be constructed for the posterior distribution, but also for
the calculated probabilities by using the 0.025 and 0.975-quantiles. Say a 95%-credible interval is considered.
Then for an equal two-tailed distribution this credible interval lies between the 0.025th and 0.975th quantiles.
Using these credible intervals for the probabilities it can be checked when there is overlap between credible
intervals for different categories of the response variable. This adds to validation of the model.

Here, this could be in the context of the posterior distribution, but also in the context of the found proba-
bilities. As defined in section 2.2, the resulting probabilities are denoted by m;;. Here, j indicates the number
of categories of the categorical variable y;. For every category j, a credible interval can be created for 7;; for
each 7. This gives insight on prediction quality of the model for each category and based on this one can reason
whether the prediction was reasonable or not. Constructing these intervals for the probabilities gives more
context and interpretability to the results (Bolstad and Curran 2016).

2.4 Choice of the prior

As seen in the previous section, for the Bayesian approach to find the posterior distribution, a likelihood is
needed and a prior distribution is needed. A prior serves as the prior beliefs on the model parameters. Given
some data, this prior can be updated to a more realistic distribution. This is called Bayesian updating, where
the prior is updated using the observed data. This is a way to interpret the formula for the posterior distribution
with pg|y  py|s - pg- This means that this prior is important to be able to find some posterior. The choice of
the prior is thus a very important part of the model construction in Bayesian statistics.

An interesting question that now arises is how that choice of a prior can be made, because this is subjective.
There are two options when choosing a prior, either an informative or an uninformative prior is chosen.

An informative prior is a prior chosen given some knowledge about the possible result of the problem.
Assuming that there is some strong belief about the outcome of y, this is then incorporated in the prior
distribution and can be updated using the likelihood resulting from the data. In that way, a posterior distribution
follows based on an informative prior. Based on literature one can construct a informative prior, which is usually
hard to decide as there is often not much information available about the context of the problem that helps
in deciding on a prior. Now, there is also a weakly-informative prior, which is an informative prior that is
proper. Such a weakly-informative prior contains less information than is known as prior knowledge, hence
the name. The idea is for the prior to carry less information on purpose (Gelman 2006). Here, when using a
weakly-informative prior some suitable scales are identified for the model (M. Betancourt 2017).

Assuming that a certain prior can be used for a model implies that it is believed that the parameters follow
this certain distribution without including any knowledge from the context of the problem to decide on this
prior distribution. Now, this prior is referred to as an uninformative prior as there is no prior knowledge while
choosing the prior (Bolstad and Curran 2016).
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In this research, the data obtained from PRIME is applied using the Bayesian approach, so the prior must
be chosen for the model. As there is no informative prior available, this project will involve default priors from
packages in R which are compared to some other uninformative priors, such as the Cauchy distribution and the
Gaussian distribution.

2.4.1 Default prior of the UPG package

The prior that is used in (Schriemer 2023) is the default prior of the UPG package in R. Recall the multinomial
logistic regression model where the predicted probability m;; is defined as in equations 2.10 and 2.11. Bayes’
rule is defined as pg|y o< py|g - pg, Where the prior is given by pg. In the UPG package, it is assumed that the
regression coeflicients follow independent Gaussian distributions with mean equal to 0 and a specified variance.
The variance for this prior can be specified separately for the intercept and the other regression coefficients.
This is done by defining parameters Ag and By. Here, the value of Ay defines the variance of the intercept
and the value of By is the variance of all other parameters. Consider regression coefficients for a category j
such that 8; = (Bo;,. .. ,5kj)T € RF*1. Here, 3y corresponds to the intercept and Sy is any other regression
coefficient with d € {1,...,k}. In this case the total number of regression coefficients is denoted by k. Then
the prior used in the UPG package is defined by

Bo ~ N(0, Ap)
By~ N(0,By) fordel,... k

This is the case for just one category but in general for any category j € 1,...,m this is
Bj ~ Ni(0, 4;)

In this notation, A; is defined as the prior covariance matrix. In the default case, the regression coefficients are
assumed to have variance equal to 4 (Zens, Frithwirth-Schnatter, and Wagner 2022). This yields

Bo ~ N(0,4)
Ba~ N(0,4) fordel,...,k

2.4.2 Default prior of the BRMS package

The BRMS package is used to fit the same model. However, when for this package it is actually possible to
choose the prior by specifying a string in stan language, which then translates it to a prior. Now it is also
possible to not specify this parameter and then the function brm() sets back to a default. The specifications of
the default prior are given by the function prior_summary(). The default prior distribution for all regression
coefficients and for each category is assumed to be an improper flat prior. The intercept is assumed to follow
a Student t-distribution with 3 degrees of freedom, center 0 and scale 2.5. The flat prior that was set on all
the regression coefficients will according to the documentation not affect this. The intercept has its own class,
which makes it easy to specify the prior for this class. The improper flat prior that is considered to be the
prior distribution for each of the regression coefficients refers to an improper uniform density. This prior is an
example of an uninformative prior as it uses no information about the model. The uniform distribution results
in an improper posterior distribution. These improper flat priors are weakly informative. The improper uniform
prior is considered to be U(0, A) as A — oo (Gelman 2006). The combination of these two priors is weakly
informative for the specified parameters.

2.4.3 Cauchy prior

A prior that could be used besides the flat prior and the Student t-distribution is the Cauchy distribution.
According to (M. Betancourt 2017), the Cauchy distribution can be a weakly informative prior depending on
the chosen parameter. For this project we take the center 0 and scale 2.5 as this corresponds to the Student
t-distribution, which was used as a prior as a default in the BRMS package.

14



2.4.4 Normal prior

In section 2.4.1, the prior that is used is considered to be a Gaussian distribution with mean 0 and variance 4.
For the sake of comparison of the models, it could be interesting to see which package performs better. Hence,
for this part also a N(0,4)-distribution will be used. The documentation mentions that a N (0, 10)-distribution
is a very weakly informative prior to use. Therefore, this choice is reasonable.

According to (M. Betancourt 2017), the Gaussian distribution is a weakly informative prior, when choosing
good values for the shape parameter. Figure 2.1 shows the priors with the Gaussian, Cauchy and Student t-
distribution. The figure shows that the Cauchy and Gaussian distribution are the more heavy-tailed distribution
compared to the Student t-distribution. Figure 2.1 is found using the code in appendix D.

Different priors
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Figure 2.1: Different prior distributions used in the BRMS package.
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Chapter 3

PRIME data analysis

In this chapter, the data provided by PRIME will be discussed. To obtain some useful insights on the data and
to find results, the data needs to be preprocessed. In this section, the data is analysed and certain decisions are
discussed, which were important while filtering out missing values and less important features from the data.
It is also important to assess which features are more important than others for this research. This will also be
done in the section preprocessing. To gain some more insight on the dependencies between the features in the
data, the independence of the predictors are analysed in the section Analysis of the data,

3.1 PRIME data

PRIME distributed a survey asking questions about students’ study behaviour and beliefs and some other
questions related to this. The data set obtained from PRIME consists of an excel file that contains the answers
that were filled in by students from different faculties studying at the TU Delft. In the context of study habits
and beliefs, there are 8 questions included in the survey. These questions should give some understanding on
students’ study habits and beliefs.

The survey is divided in 8 subtopics:

e Informed consent

e Learning Strategies Free Report

e Prior Math Achievement

e Learning Strategies

e Math Self-Efficacy

e Study habits and beliefs about learning
e Grade goal

e Demographics

The topic of interest is study habits and beliefs about learning and in the model this is based on Prior Math
Achievement, Math Self-Efficacy and Grade Goal. Hence, these three variables are called the predictors in the
model, see figure 3.1.
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Prior Math Grade

!

Study habits

Math Self-Efficacy | and beliefs

I

Grade Goal

:

Figure 3.1: Questions corresponding to the topic study habits and beliefs.

Prior math grade: The prior math grade is a variable that is obtained from just one question. The possible
answers range between 1 and 10 and are all integers as this variable is categorical. The grade represents the
most recent math grade from previous education, such as secondary school mathematics.

Math Self-Efficacy: The mathematics self-efficacy gives insight on how confident a student is in the mathe-
matics course they are taking. This variable is not just measured by one answer to one question, but there are
5 statements, which the students need to rank from 1 to 5. Here, 1 implies that the student strongly disagrees
with the statement and 5 means that the student strongly agrees with the statement. These 5 rankings all
together result in the Math Self-Efficacy predictor required. To combine all the rankings, in this model the
average of the rankings are considered.

Grade Goal: This is the grade that the student aims to achieve for the mathematics course they are taking.
To determine the grade goal, there are three questions that need to be answered by the student:

1. Which grade are you aiming for in this mathematics course? Possible answers range from 1 to 10.

2. What is the lowest grade you would be satisfied with for this mathematics course? Possible answers range
from 1 to 10.

3. Which grade do you expect to earn for this mathematics course? Possible answers range from 1 to 10.

Combining the responses in one variable is done by taking the average of the responses for each student. This
average will now be referred to as the grade goal, which then contains the information from the three components.

Each of these predictor variables, constructed as mentioned above, then predict the outcome variable study

habits and beliefs. This outcome variable consists of 8 questions, see figure 3.2, which carry information about
study habits and beliefs combined. To each question the model is applied individually.
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- How do you usually decide what to study next? (5 possible answers)

All other things being equal, what type of exam do you study more for? (4
possible answers)

When you study, do you typically read a textbook/article/other source
matetial more than once? (3 possible answers)

If you quiz yourself while you study, why do you do so? (4 possible answers)

Study habits and beliefs J
about learning

Y

Imagine that while you are studying a type of problem and you become
———— convinced that you know the answer to the problem, what do you do next?
(3 possible answers)

Which of the following best describes your pattern of study? (3 possible

|
answers)
What time of the day do you most often do your studying? (4 possible
answers)
During what time of the day do you believe your studying is most effective?

(4 possible answers)

Figure 3.2: Questions corresponding to the topic study habits and beliefs.

Consider question 4 from figure 3.2. The student can now give 4 possible answers to the question, which are
shown in figure 3.3. Each of these categorical responses are encoded with numbers ranging from 1 to 4. The
multinomial logistic regression model now uses the responses from the three predictors in figure 3.1 and the
responses to question 4 from figure 3.3. The aim of the model is to predict the probabilities for each category
1 to 4 from figure 3.3 that the category was chosen by the student with certain choices for the predictors.

If you quiz yourself while you study, why do you do so?
| learn more that way than | would through rereading (1)
To figure out how well | have learned the information I'm studying (2)
| find quizzing more enjooyable than reading (3)

| usually do not quiz myself (4)

Figure 3.3: Question 4 from study habits and beliefs.

This can be done for all questions that influence the study habits and beliefs. Thus, the result from the
model is a probability vector for each question from figure 3.2 that indicates the probability that a category
will be chosen by the student.

3.2 Preprocessing

The survey conducted by PRIME contains 286 responses from students following mathematics courses at the
TU Delft. As explained in the previous section, there are three predictors that predict the probabilities for the
outcomes of the questions in figure 3.2. Before applying the model to the data from PRIME, the data must be
preproccesed. Preprocessing includes dealing with missing values and cleaning up the data. To start off with
cleaning the data, the first step is creating a dataframe consisting of only the columns that are needed for the
modelling steps. Now this dataframe only contains valuable information that is needed for the model. The
data is an excel file that contains the responses, so there could be questions that have not been filled in. These
missing values are replaced by 0’s as there are no variables that can attain the value 0. Now for each variable the
number of zeros is counted to check how many missing values there are. Apparently, there are missing values

18



for the predictor variable grade goal and some missing values for some of the study habits questions. There are
exactly 7 missing values for grade goal, so these rows are deleted from the data set. Now checking the number
of zeros in the data set again indicates that there are no missing values in the data set anymore. All missing
values are thus taken care of and the data is ready to run for the model. The final number of rows left in the
data set is 279. The code for this preprocessing can be found in appendix B.

3.3 Analysis of the data

There are a few assumptions that were made for this model. The model is essentially the same as the model
used in a previous project by (Schriemer 2023). Most of the assumptions were checked in this project, so these
are the still valid for this project, because the data is also the same as used in (Schriemer 2023). However, the
correlations between the variables will be elaborated on.

Internal consistency was treated, however since some predictors are constructed based on other features, the
internal consistency for these need to be checked as well. In order to check this the correlations are calculated
for the predictors. These are calculated using the default in R which is the Pearson method. This is also the
most common used method for the correlation coefficient. The correlation according to Pearson is described in
definition 3.1 (Berman 2016).

Definition 3.1 (Pearson’s correlation) Pearson’s correlation of two variables x and y is defined as follows:
Dici (@i — )y — 7)
V2in (@i — 2V (4 — 9)?

Consider predictors 2 and y to which the Pearson correlation can be applied to all points (z;,y;). This results
in a correlation matrix when applied to all predictors, which can be visualized as in figure 3.4.
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Figure 3.4: Correlation between independent variables

Figure 3.4 shows that there is clearly not a lot of correlation between the sub-questions that are used to
construct the predictor Mathematics Self Efficacy. The variable used for the model is indicated by SE mean
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as this is the average of SE1, ..., SE5. In the figure a darker block indicates that the correlation coefficient is
high and a light block refers to low correlation. High correlation is when the value is closer to 1 and a lower
correlation is closer to 0.

Each of these correlations can be looked at more in depth. This can be done by looking at the scatter plots
of the pairs with a higher correlation than expected. As it is expected that there is correlation between variables
that are constructed from each other. Similarly, it is expected that the predictor variables are all independent
of each other and thus have a low correlation.

Some of the pairs for which the correlation was slightly higher are plotted in figure 3.5.

Scatterplots of variables with high correlation
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Figure 3.5: Scatter plot of pairs with high correlation.

In the figure, the slightly higher correlations are reflected in the plots. It is clear that there is a slight
linear line visible in each of these scatter plots. This can be compared to some pairs that seems to have a low
correlation based on the heat map in figure 3.4. This is visualized in figure 3.6.
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Scatterplots of variables with low correlation
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Figure 3.6: Scatter plot of pairs with low correlation.

Comparing the scatter plots from figure 3.5 to the ones in figure 3.6 leads to the conclusion that the pair in
figure 3.5 are quite correlated. However, according to (Tabachnick and Fidell 2013) these are still not considered
strongly correlated as this would mean a correlation of 0.90 or higher, which is not the case. Hence, here it can
be concluded that there are some pairs that are moderately correlated, but the assumption of independence of
predictors is still satisfied. The code needed to generate the scatterplots and the heat map can be found in
appendix B.
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Chapter 4

Model definition

This chapter includes a description of the model used for this project. Here, the multinomial logistic regression
model is applied to the data obtained from PRIME. It is important to define variables, parameters and indices,
which is also done in this chapter. The model will be applied in R by using the UPG package which uses Markov
Chain Monte Carlo method using the Gibbs sampler. This will be elaborated on in this chapter.

4.1 Multinomial Logistic Regression Model

To apply Multinomial Logistic Regression, there are certain parameters and variables that need to be defined in
the context of the data that is provided. Multinomial logistic regression is used to predict a probability m;; that
the outcome variable y is equal to some category j for a student i with its specific values of the explanatory
variables. Hence, the aim is to predict a dependent variable y;, which is for each iteration of the model one of
the questions from figure 3.2. There are 8 questions that describe the students’ study habits and beliefs, which
implies that each student ¢ answered each of these 8 questions. Hence, the outcome variable is an (n x 8)—matrix
as there are n students that answered these 8 questions. To obtain results for esch of the 8 questions the code
in appendix C and D are used, where the question number needs to be specified as part of the preprocessing.
The outcome variable y; is an n-dimensional vector, which represents the responses given by the n students
for a fixed question . Again, the responses j € {1,...,m} are the categories of each question. For the sake of
reducing complexity, the model is built for each response variable from figure 3.2 separately.

As explained in chapter 3, there are three predictors involved in predicting the probabilities that the outcome is
equal to some category j. These three predictors are denoted as X1, X5, X3, where these variables represent the
prior math grade, grade goal and the mathematics self-efficacy. These predictor variables are then incorporated
in the multinomial logistic regression model as described in chapter 2.

Now, as the variable of interest is the probability, this is defined as m;; = P(y; = j). Hence, in words this
means that m;; denotes the estimation of the probability that a student with same values of explanation would
choose category j for some fixed question. The expression for the multinomial logistic regression model is then
described in definition 4.1.

Definition 4.1 (MLR model) Given some outcome variable y; that can attain values j € {1,...,m} with
m > 2 and predictor variables X, X5, X3, then for each student ¢ € {1,...,n} the probability m;; that
student ¢ has chosen category j is defined as

B0 +81; Xi1+B2; Xi2+Bs; Xiz

5 = for j 1,... -1
Tij 14+ E;’;}l ePort+BrXi1+B2Xiz+ P51 X3 ( orJ e { ’ DL }>

m—1
Tim = 1 — Zﬂ-im (fOI‘j:’l’ﬁ,)
j=1

4.2 Markov Chain Monte Carlo method

The Markov Chain Monte Carlo method (MCMC) is the underlying method for sampling from the posterior
distribution as used in the UPG package. It is a commonly used family of algorithms and has been involved
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in the emergence of Bayesian approach (McElreath 2020). As the name already suggests, this algorithm con-
siders some Markov Chain which is then simulated using the Monte Carlo method. In order to understand the
algorithm, there is first some prior knowledge about Markov Chains and the Monte Carlo method that needs
to be reviewed. The method involves a Markov Chain which is a random walk, see definition 4.2, as defined in
(Grimmett and Welsh 2014).

Definition 4.2 (Markov Chain) Consider a sequence of of random variables Z = (Z, : n > 0). This
sequence is now called a Markov Chain, when the Markov Property is satisfied. In words, this means that
the distribution of the (n + 1)st value of the sequence only depends on the nth value and is conditionally
independent of all other values of the sequence before that. Formally, it holds that for all n > 0

P(Zny1 = ing1|Zn =tin, ..., Zo = ip) = P(Znt1 = int1|Zn = in)

Such a sequence that satisfies the Markov property is then used in the MCMC algorithm. Before explain-
ing how this is applied to MCMC, Monte Carlo simulation needs to be explained. The Monte Carlo method
is a method to find an approximation of some properties of a distribution by repeatedly generating random
samples from that probability distribution. Now these random samples that are generated from a probability
distribution are then random variables that can be denoted by Z,. The main idea of MCMC is using Monte
Carlo to draw random samples to find some properties and each of these random samples that are taken then
form a Markov Chain. Hence, the sequence Z = (Z,, : n > 0) of Monte Carlo simulations is considered to be a
Markov Chain. This means that the next random sample Z;;1 resulting from the Monte Carlo simulation only
depends on the current sample Z; and does not depend on all the random samples that were generated before
that (Van Ravenzwaaij, Cassey, and Brown 2016).

In the Bayesian setting, the MCMC algorithm can be used to approximate the posterior distribution of the
model parameter. This is the underlying method that is used in most of the packages in R. A lot of information
can be derived about the posterior distribution using the MCMC method. To apply MCMC to the Bayesian
approach, it can be useful to draw random samples Z; from the posterior distribution. This sequence, denoted
by Z = (Z, : n > 0), is then a Markov Chain. The stationary distribution of this Markov Chain is now the
posterior distribution. In this way MCMC can find the sample means, quantiles and more properties of this
posterior distribution, while keeping the compilation time of the program realistic (Van Ravenzwaaij, Cassey,
and Brown 2016).

This is now the underlying method used for approximating the posterior distribution for the UPG package and
the BRMS package. However, there is still a difference as the UPG package uses MCMC using Gibbs sampling and
the BRMS package uses Hamiltonian Monte Carlo sampling. This will be discussed briefly in the next sections.

4.3 MLR using the UPG package

The abbreviation UPG refers to Ultimate Polya Gamma. The package uses latent variable representation based
on some random variables that follow a Polya Gamma distribution. An observed variable contains information
that can directly be observed. A latent variable influences an observable variable. This means that a latent
variable is not directly observable or measurable (Price 2023).

Using this notation involving latent variables is used to find several different logistic regression models. More
details on the exact representation of this can be found in (Zens, Frithwirth-Schnatter, and Wagner 2023). To
find the resulting estimates Gibbs sampling algorithms are used.

The UPG package uses MCMC using the Gibbs sampler to fit the model. Unlike most packages, the UPG
package doesn’t require a formula as input. Recall the model notation as in definition 4.1. Instead of a formula
the predictors X are given as input in the form of a matrix and the response variable y is a vector given as
input. Now, there are several other parameters that need to be specified such as the model that is used, which
is in this case the Multinomial Logistic Regression model. Other than that, the baseline category needs to
be given. The default value for this is the category that occurs the most often. However, for consistency the
baseline category is chosen to be category 1 for all of the models. Note that the categories are relabelled when
fitting the model, so this does not necessarily need to be the last category. The probability for category 1 is
now based on all other probabilities so the regression coefficients for category 1 are equal to 0. The number
of iterations is chosen to be 10.000, which should be enough to give an accurate result without increasing the
running time too much. There is also a parameter that specifies the burn ins using during Gibbs sampling. It is
recommended to take this parameter equal to 2000 when estimating a model according to the documentation.
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Gibbs sampling will be further explained in the following subsection.

4.3.1 Gibbs sampling

Gibbs sampling is used when it is hard to sample from the joint distribution, but easy to sample from the con-
ditional probabilities. Here, the samples are taken from univariate Gaussian distributions. Consider example 4.1.

Example 4.1 (Gibbs Sampling) Consider some posterior distribution p(y|z) that we want to obtain
samples from. With Gibbs sampling it is easy to sample from the conditional distributions, p(y|z) and
p(xly). Tt is assumed that these follow a Gaussian distribution with center 0 with the covariance matrix
as the variance.

Now, say the aim is to generate S samples. Start with initial values (x(o),y(o)). Now, the algorithms
applies the following steps:

1. Initialize starting values (z(%), ()
2. Find (M) by sampling from p(zM|y(©))

3. Use (M to find y(» by sampling from p(y™ |z(1))
From this the first sample (21, y(M) follows.

4. Find 2@ by sampling from p(m(2)|y(1))

5. Use 2 to find y® by sampling from p(y?|z()
From this the second sample (z(?),4®)) follows.
This goes on until S samples are generated.

In this case take some starting value for 5(?). Now using the Gibbs sampling scheme the next point 8 is
taken from a Gaussian distribution, determined by the previous point. Now, the Gibbs sampler keeps sampling
until the number of specified samples is reached.

4.4 MLR using the BRMS package

As mentioned before, the BRMS package uses the Hamiltonian Monte Carlo method to generate the posterior
distribution. This package differs from the UPG package in a sense that in this package the model is translated
to C++ and fitted with Stan. The results that follow from this are then converted to an object in R. Figure
4.1 from (Biirkner 2017) gives an overview of how the model exactly works.

The user passes all model
information to brm

v

brm calls make_stancode
and make_standata

. T J
Model code, data, and additional
arguments are passed to rstan

The model is translated to C++,
compiled, and fitted in Stan

\ J

v

The fitted model is post-

processed within brms

v

Results can be investigated
using various R methods defined

on the fitted model object

Figure 4.1: Modelling steps in the brm() function in R (Biirkner 2017).
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From figure 4.1, it is clear that the first step that is taken is to preprocess the data to input in the model.
How it works in BRMS for categorical response variables is that the response variable Y should be a matrix, where
the number of rows is n (the number of students) and the number of columns is m (the number of categories
for the specified question). The matrix is now constructed such that the results are converted in transposed
vectors, where for Y; = j, row ¢ consists of a 1 in column j and 0 in all other columns.

4.4.1 Hamiltonian Monte Carlo sampling

The Hamiltonian Monte Carlo method works in a way where some auxiliary variables are introduced. This
method is more physics related as the variables that are introduced are considered to be momentum. Further-
more, the Hamiltonian function is involved, which is the function of total energy in a system. There are two
types of energy involved: kinetic energy and potential energy. In this section there won’t be a very elaborate
explanation about these concepts from physics as this is beyond the scope of the project. The main focus will
be on the mathematics behind it and the relevant information for this project. Now consider Bayes’ formula
Paly X py|g - pp (M. J. Betancourt and Girolami 2013).

The Hamiltonian Monte Carlo method takes draws from the joint distribution of py g. In this joint dis-
tribution Y is used to denote the auxiliary variables. Now this joint distribution can be used to define the
Hamiltonian. The Hamiltonian is a function used in physics and gives the total energy in a system. In this case
the Hamiltonian becomes the following (M. J. Betancourt and Girolami 2013).

H(Y,B) = —log(pv.p)
= —log(py|s - PB)
= —log(py|p) — log(ps)
=T(Y|B)+V(B)

Here T(Y|3) denotes the kinetic energy in the system and V(3) denotes the potential energy and thus
result in the total energy which is the Hamiltonian. What this now does is, the function V' (3) is passed on to a
program written in Stan language. This is important as this contains the information of the prior distribution.

The current parameter 6 is then combined with some p randomly drawn from a MultiNormal(0, M) dis-
tribution where M is the Euclidean metric and this refers to the Multivariate Normal distribution. This then
becomes the joint system (p,#). Using the Hamilton equations this can be expressed as

o0 oH_ ot
o 9p  Ip
dp oH 0T 0V

ot 90 90 90

This yields

060  oT
o T,
9 9T 9V
%= 00 00

These differential equations can now be solved numerically using the Leapfrog integrator. The Leapfrog inte-
grator applies an integration algorithm to solve a system of differential equations numerically and specifically
finds stable solutions. The Leapfrog integrator starts with (p,#), where p is drawn from MultiNormal(0, M).
By now discretizing over intervals of length € it applies L leapfrog steps in which p and 6 are updated. By
applying L leapfrog steps to e intervals after L - € time the estimation (p*,0*) is found. The next step in HMC
is to apply the Metropolis Acceptance step, where the error is measured to judge whether the numerical result
from the leapfrog is good enough. In this step the result (p*,0*) are compared to (p, ) and the probability of
the estimated (p*, 6*) to be accepted is then

min(1, H(p",6%) — H(p,6))

If the resulting (p*,0*) is not accepted, the previous parameter is returned back to use in the next step for
another iteration through the Leapfrog. Hence, here it is clear that the parameters before the current one can
decide the next parameter, so this is not a Markov Chain. (M. J. Betancourt and Girolami 2013)
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Chapter 5

Results

The multinomial logistic regression model as described in chapter 4 will be applied to the data from PRIME.
This is done using the UPG package in R. The UPG package gives the option to use the Bayesian approach to
multinomial logistic regression. The package returns the posterior means together with an indicated credible
interval, which comprises 0.025 and 0.975-quantiles of the posterior distribution of individual parameters in
the model by default. For simplicity, the results for only one question from 3.2 will be discussed. For this
chapter, the question: ‘If you quiz yourself while you study, why do you do so?’” will be considered. The credible
intervals for the UPG model applied to all data will be discussed elaborately. Some additional plots are given
in the appendix. The code for the results following from applying the UPG models can be found in appendix C
and the code for the BRMS model results can be found in appendix D.

5.1 UPG model applied to uniformly generated data

In general in the case that there is no data available, the data can be generated for the sake of assessing the
performance as the ground truth is known in this case. Here, the information that is already available before
obtaining data is the range of values of the predictor variables and the possible category options for the outcome
variable. Using this information, it is assumed that each predictor follows a uniform distribution with values in
their defined range. Similarly, the predictor variable can be modelled with a random uniform distribution with
categories ranging from 1 to 4 in this case. This is dependent on the number of categories that corresponds
to the considered question. Here, the uniform distributions are randomly generated, which implies that the
results should not be as accurate. The idea is that the model uses the uniformly generated data to predict
the probabilities for each category j that students with the same given information choose that category. The
category with the highest probability can now be compared to the choices that were made in reality according
to the generated data. The prediction is then accurate when the category with the highest probability is equal
to the category that was given from the data. The ratio of accurately predicted divided by the total number of
data points n is then defined as the accuracy. This definition of accuracy will be used throughout the project
to assess the performance of each model. Running the code for this, see appendix C, results in an accuracy of
exactly 0.22 in approximately 34.16 seconds. Hence, as expected this model does not perform very well, as a
result of the randomness of the data.

5.2 UPG model applied to PRIME data

UPG stands for Ultimate Polya Gamma as the UPG package is based on Ultimate Polya Gamma MCMC algorithms
which are very efficient (Zens, Frithwirth-Schnatter, and Wagner 2022). The underlying model of the UPG package
is a Random Utility Model, as further explained in (Schriemer 2023), using the Gibbs sampler using Markov
Chain Monte Carlo method to find posterior estimates. Using the default prior as defined in the UPG package,
the model can be applied to the data. This results in posterior means for individual parameters and their
corresponding credible intervals. Now the predictions can be obtained using the built in function ’predict’. This
function now gives the predicted probabilities again with their corresponding credible intervals. The predicted
probabilities obtained using the posterior means for the first 15 students can be found in table 5.1. This
table indicates for each student the probability for each category that a student with the same choices for the
explanatory variables chooses a certain category. Then the column with actual choice according to the given
data indicates the choice that was actually made. The last column indicates whether the category with the
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highest probability corresponds to the actual choice that was made. The category with the highest probability
also corresponds to the category j that has the highest log-odds. Recall the definition of the log-odds:

log < W%j ) = Boj + B1; X1 + B2j X2 + B3 Xi3
m
The category with the highest probability then corresponds to the category with the highest odds, :J , and
since the logarithm is monotone increasing also the highest log-odds. So this last column in table 5.1 indicates
whether or not the predicted probabilities were accurate. Trivially, a one indicates that the choice was correctly
predicted and a zero indicates that the category with the highest probability is not the same as the actually
chosen category. The amount of the correctly predicted probabilities divided by the total number of students
gives the accuracy. In this case, using all the data, the accuracy is 0.4265233. Running the model takes more

or less 36 seconds.

Student \ Category 1 \ Category 2 \ Category 3 \ Category 4 \ Actual choice \ Correctly predicted \

1 0,30762561 | 0,42180346 | 0,07414183 | 0,19642911 | 2 1
2 0,28633805 | 0,41687529 | 0,10243466 | 0,19435199 | 2 1
3 0,29005795 | 0,43739646 | 0,08233445 | 0,19021115 | 2 1
4 0,14465704 | 0,46485674 | 0,03829729 | 0,35218893 | 4 0
5 0,30804015 | 0,37392481 | 0,13543621 | 0,18259883 | 2 1
6 0,2919788 | 0,39179336 | 0,0610939 | 0,25513394 | 1 0
7 0,19764704 | 0,46122461 | 0,0485231 | 0,29260525 | 4 0
8 0,29005795 | 0,43739646 | 0,08233445 | 0,19021115 | 2 1
9 0,29336295 | 0,42382782 | 0,0643345 | 0,21847473 | 2 1
10 0,24672062 | 0,40285258 | 0,05003779 | 0,30038901 | 4 0
11 0,44849975 | 0,32857179 | 0,10049731 | 0,12243116 | 1 1
12 0,25025216 | 0,47050885 | 0,05725808 | 0,22198092 | 2 1
13 0,26365913 | 0,44018033 | 0,06144568 | 0,23471486 | 2 1
14 0,18389395 | 0,50719251 | 0,09125116 | 0,21766238 | 4 0
15 0,2224259 | 0,46986441 | 0,0649793 | 0,24273038 | 4 0

Table 5.1: Mean of the predicted probabilities for each category with the actual choices for the first 15 students
in the data set.

Now, for these rows where the choice was not correctly predicted, it is useful to consider the credible intervals
for each prediction for each category. In table 5.1, the highlighted rows are the students for which the model
did not predict the choice actually made by the student correctly. These are thus the rows corresponding to
the zeroes in the column 'Correctly predicted’. Considering, for example, student 4 from table 5.1, it is clear
that student 4 chose category 4 for this question. However, from the probabilities it is clear that a student with
the same choices as student 4 has the highest probability to choose category 2. The probability for category
2 is also quite high compared to the other categories, but category 4 comes the closest. This is where the
credible interval is useful. From the credible interval it can be deduced whether there is overlap and whether
the prediction that was made was even close to predicting correctly. This is then a measure for validity of the
predictions. For the highlighted students, the credible interval can be constructed for each category using the
0.025-quantile and the 0.975-quantile.

Table 5.2 shows the 0.025-quantile of the predicted probabilities for each of the categories.
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Student \

Category 1 \ Category 2 \ Category 3 \ Category 4 ‘

0,24851822

0,35538195

0,04382016

0,14569952

0,19290683

0,31334272

0,04693573

0,12041049

0,22997725

0,37255313

0,05163877

0,14050699

0,07214323

0,32723691

0,00953726

0,2224295

0,16026892

0,22197449

0,0367071

0,08203255

0,21635202

0,29741681

0,02911116

0,17408792

0,12901684

0,36670263

0,01947705

0,21115473

0,22997725

0,37255313

0,05163877

0,14050699
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0,23343719

0,35356681

0,03514426

0,16260595

—
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0,17652843

0,30321089

0,02212232

0,20822252

—_
—_

0,30408805

0,21164923

0,03468121

0,06248561

0,174679

0,38133162

0,02449079

0,15203373

0,20669602

0,37303814

0,03388748

0,18062659

0,10492841

0,38109895

0,03259404

0,12470977

= = =] =
O = | W Do

0,16319142

0,40006606

0,03445375

0,18680728

Table 5.2: The 0.025-quantile of the predicted probabilities for each category for the first 15 students in the

data set.

In table 5.3, the 0.975-quantile is shown for the first 15 students. These 15 students correspond to the
same 15 students as were used in the other tables in this section. Also, the highlighted rows correspond to the

students from 5.1.

’ Student \ Category 1 \ Category 2 \ Category 3 \ Category 4 ‘
1 0,37003714 | 0,48853119 | 0,11093236 | 0,25258952
2 0,38766366 | 0,52204207 | 0,17930547 | 0,28513759
3 0,35186026 | 0,50341792 | 0,12035905 | 0,24421203
4 0,2441866 | 0,60658671 | 0,09459758 | 0,49726998
5 0,47915715 | 0,53995811 | 0,30707519 | 0,32582779
6 0,37323816 | 0,48878563 | 0,10642263 | 0,34842239
7 0,27677024 | 0,55486681 | 0,09283488 | 0,38190356
8 0,35186026 | 0,50341792 | 0,12035905 | 0,24421203
9 0,35882911 | 0,49421622 | 0,10087873 | 0,28029971
10 0,32744448 | 0,50464436 | 0,09192321 | 0,40451025
11 0,5958087 | 0,45923674 | 0,21157883 | 0,20851603
12 0,33493644 | 0,56112623 | 0,10490706 | 0,30281363
13 0,3242804 | 0,5087966 | 0,09638631 | 0,29371027
14 0,2790191 0,63366171 | 0,18549302 | 0,33074496
15 0,2855159 | 0,5417809 | 0,10479378 | 0,3029925

Table 5.3: The 0.975-quantile of the predicted probabilities for each category for the first 15 students.

Using the data from these highlighted students a credible interval for the probabilities can be obtained for

each category. This is plotted for each of the highlighted students, see figure 5.1.
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Probabilities with their credible intervals for each category
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Figure 5.1: Credible intervals for those students amongst the first 15 students where the category with the
highest probability does not correspond to the actual choice.

Figure 5.1 can help interpreting the results that follow from applying the model and the prediction accuracy
can be assessed. Again, consider student 4. As seen before the actual choice was category category 2 and
category 4 has the highest probability. In figure 5.1, we see that there is quite some overlap between the green
and purple intervals. Hence, there is some overlap between the credible intervals of these categories. Since the
credible intervals are interpreted as intervals with a 95% probability that the true probability is in this interval,
it is clear that this prediction was close to predicting the actual choice and was not far off.

On the other hand, for student 15 this is not the case. The actual choice here is category 4 and the category
with the highest probability is category 2. The second largest probability is indeed category 4, but in figure 5.1,
we see that there is no overlap between the credible intervals. This prediction is thus less accurate compared
to the prediction for student 4. This way of reasoning can be applied to all students for which the highest
probabilities do not correspond to the actual choices and for some it can be found that the predictions were not
far off.

Such credible intervals can also be constructed for the posterior distribution for each category j. These
credible intervals for the posterior estimates are given in a plot in appendix A.1.

5.3 UPG model using Train-Test Split method

5.3.1 Train-Test Split method

The main idea behind the Train-Test Split method is that the total data is split up in two sets: a training set
and a test set. The training set contains 90% of the data and the validation set contains the left over 10% of the
data. Both, the training and the test set, are disjoint and randomly chosen. This means that once the training
set is chosen randomly, the test set is fixed.

The training set is used to train the model and find the corresponding posterior distributions. This includes
information about the posterior such as the posterior means and the credible regions. This information for the
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B’s for each category are used to predict the choices for the students in the test set. The test set is now a
random set of students that contains 10% of the total data. The predictions that follow from this can now be
compared to the actual choices to be able to assess the accuracy of the model. This is summarized in figure 5.2.

Train model

Training set Posterior
(90%) ﬁ distributions for
B's
Data
(100%) Split data

Use this to predict test set data

\ Test set (10%) N Predictions of test

set

Figure 5.2: Overview of Train-Test Split method

The aim of the Train-Test Split method is to train a model and validate the model using this method of
splitting the data. Besides estimating the accuracy of the model, cross validation can also be used to compare
performance of different models (Refaeilzadeh, Tang, and Liu 2009).

5.3.2 Train-Test split method applied to the UPG model

The model from section 5.2 can also be applied to the data set that is split in a training and test set. The
training and test set are chosen randomly using the function sample() in R. The validation set is constructed
with 10% of the data, which is approximately 28 students chosen at random from the data set. The function
sample() then generates 28 random numbers between 1 and 279, which is the number of rows of the data set.
These random numbers are used as indices for the validation set and data set without this test set is then the
training set. As explained in the previous section, the training set is now used to find posterior means and these
are then used to predict probabilities using data from the validation set. Table 5.4, now gives the predictions
for all the students from the test set. The table is constructed in a similar way as table 5.1. Training the model
is finished is about 31 seconds.
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’ Student \ Category 1 \ Category 2 \ Category 3 \ Category 4 \ Actual choice \ Correctly predicted ‘
1 0,17776604 | 0,46947536 | 0,04822984 | 0,30452876 | 4 0
2 0,33521651 | 0,40124712 | 0,06472232 | 0,19881405 | 2 1
3 0,32309713 | 0,38821366 | 0,08294683 | 0,20574238 | 1 0
4 0,18069915 | 0,4606003 | 0,07292425 | 0,2857763 | 2 1
5 0,1138878 | 0,43971946 | 0,0390997 | 0,40729304 | 4 0
6 0,42720611 | 0,37585594 | 0,08929937 | 0,10763858 | 2 0
7 0,28188949 | 0,43829902 | 0,07296223 | 0,20684926 | 2 1
8 0,19011478 | 0,51853316 | 0,05981828 | 0,23153378 | 2 1
9 0,2868299 | 0,44604615 | 0,12885767 | 0,13826629 | 1 0
10 0,37806923 | 0,43188906 | 0,08016808 | 0,10987363 | 3 0
11 0,36026058 | 0,44223135 | 0,10465463 | 0,09285345 | 4 0
12 0,10536097 | 0,54366177 | 0,04229408 | 0,30868318 | 2 1
13 0,41755365 | 0,38207035 | 0,07802115 | 0,12235485 | 2 0
14 0,16527084 | 0,48779713 | 0,05491158 | 0,29202045 | 4 0
15 0,28768386 | 0,46169146 | 0,03764851 | 0,21297617 | 4 0
16 0,32433886 | 0,4185819 | 0,0863189 | 0,17076034 | 1 0
17 0,17261293 | 0,4416646 | 0,09262478 | 0,29309769 | 4 0
18 0,1114361 0,38792498 | 0,05523286 | 0,44540607 | 4 1
19 0,24508402 | 0,42725273 | 0,04503342 | 0,28262983 | 1 0
20 0,36026058 | 0,44223135 | 0,10465463 | 0,09285345 | 4 0
21 0,14068083 | 0,44932465 | 0,04935739 | 0,36063714 | 1 0
22 0,07564188 | 0,44263235 | 0,05067304 | 0,43105273 | 2 1
23 0,24058312 | 0,45219933 | 0,06093451 | 0,24628304 | 2 1
24 0,34601554 | 0,41260166 | 0,05024424 | 0,19113856 | 2 1
25 0,26641693 | 0,5135383 | 0,10152501 | 0,11851977 | 1 0
26 0,34601554 | 0,41260166 | 0,05024424 | 0,19113856 | 2 1
27 0,130542 0,46753873 | 0,05643323 | 0,34548604 | 2 1
28 0,2062584 | 0,46892298 | 0,11725376 | 0,20756486 | 2 1

From the results in 5.4, the accuracy can be found. For the test set this is 0.4285714. This is slightly
higher than the accuracy from section 5.2. For these estimates for the probabilities credible intervals can be
constructed. Figure 5.3 shows the credible intervals for the first 15 students from table 5.4 whose actual choices
were different from the category with highest predicted probability. So, the credible intervals are constructed

Table 5.4: Predictions of the test set using the trained model from the training set

for the first few students that have a 0 in the last column in table 5.4.
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Probabilities with their credible intervals for each category
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Figure 5.3: Credible intervals for the first few students from the test set for who the category with the predicted
probability don’t correspond to the actual choices.

From figure 5.3 it can be noted that the credible intervals are quite large and thus carry less information.
The posterior estimates are very similar to the ones that were found in section 5.2. The credible intervals for
the posterior estimates are given in a plot in appendix A.2.

5.4 UPG Model using K-fold cross-validation

Cross validation can also be applied in such a way that every data point used for validation once. This is called
K-fold cross validation. Here, the data is split up in K sets of approximately equal size. Now, cross validations
is applied in K times. Each iteration uses 1 of the K sets for the validation set, also called the test set. The
other K — 1 sets are then used for the training set. In this way, each data point is used for the test set exactly
once and K — 1 times to train the model. This is summarized in figure 5.4. The figure depicts the splitting
process of K-fold cross-validation, where in this case K = 10.
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Figure 5.4: Overview of K-fold cross-validation with K = 10.

Applying K-fold cross-validation gives more insight into the validity of the accuracy. For each iteration in
the K-fold cross-validation algorithm, the model is fitted based on different data and validated using different
data. Hence, the prediction accuracy and estimated posterior distributions are independent of each other, since
each of the sets are chosen disjoint from each other. In case there would be overlap between the training and
test sets, this would lead to over-estimation of the model. For the K-fold cross-validation in this project, K
is chosen to be equal to 10. Taking a too large number of folds results in a test set that is too small, which
leads to a less accurate result (Refaeilzadeh, Tang, and Liu 2009). Taking K = 10 seems reasonable according
to (Refaeilzadeh, Tang, and Liu 2009).

In this way, this can be applied to the UPG package to measure the validity of the accuracy that was found
before. Here, the number of folds is considered to be 10. For each iteration, the training set is used to find
the posterior means. These posterior means are used to then apply this to the data from the test set using the
model from equation 2.10 to obtain the corresponding predictions of the choices. Each of these iterations take
approximately 6 seconds and in total running the whole K-fold cross-validation takes roughly 53 seconds. The
code in R used to obtain these results can be found in appendix C.

Iteration \ Accuracy ‘

0.4642857
0.3333333
0.3214286
0.4074074
0,5
0.4642857
0.4642857
0.4137931
0,25
0.3928571

O 00| | O U x| W| DN —
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o

Table 5.5: Accuracy for each iteration of 10-fold cross-validation.

For each iteration the accuracy is given in table 5.5. The average accuracy is then 0.4011677. It can be
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concluded that on average the predicting performance deviates from the predicting performance for all data
with approximately 0.02. This is a close approximation and hence the model performs approximately the same
when taking different training and test sets. The performance of the model is hence reliable. The model with the
highest accuracy is saved and for this model the credible intervals of the posterior estimates could be compared
to the credible intervals posterior estimates of the other two UPG models that were given before. The credible
interval plot can be found in appendix A.3. It appears that there are very slight differences which are listed in
this appendix. However, these differences are so small, there are not really any strong conclusions that can be
drawn from this. It also depends on the data that is tested on, because this is a small set the accuracy can go
up faster and in the same way the accuracy can also go down quickly.

5.5 BRMS model applied to PRIME data

The BRMS package can be used to predict the probabilities for each category using multinomial logistic regression
in a Bayesian sense. The function brm() can be used to predict these probabilities for each category. The
default prior is defined as in section 2.4.2 and multinomial logistic regression is applied as explained in section
4.4. Running the BRMS model takes approximately 410.121 seconds to compile. Now, applying the model again
results in posterior distributions containing the posterior means and the corresponding 95% credible intervals.
This can be fitted to end up with the predicted probabilities and their credible intervals. Table 5.6 gives the
predicted probabilities for the first 15 students and as done before a column with the actual choices and a
column that indicates whether the category with the highest probability corresponds to the choice.

] Student \ Category 1 \ Category 2 \ Category 3 \ Category 4 \ Actual choice \ Correctly predicted ‘

1 0,20679697 | 0,32852474 | 0,08628344 | 0,28839485 | 2 1
2 0,27510595 | 0,32644088 | 0,11450306 | 0,28395011 | 2 1
3 0,28378922 | 0,33893246 | 0,10000423 | 0,27727409 | 2 1
1 0,13694059 | 0,36941548 | 0,0456932 | 0,44795073 | 4 1
5 0,2009513 | 0,29840634 | 0,13681975 | 0,27382261 | 2 1
6 0,26563155 | 0,309407 | 0,06049773 | 0,36446372 | 1 0
7 0,18863001 | 0,36206071 | 0,05734032 | 0,39196896 | 4 1
8 0,28378922 | 0,33893246 | 0,10000423 | 0,27727409 | 2 1
9 0,28016226 | 0,33097417 | 0,07321085 | 0,31565272 | 2 1
10 0,22147263 | 0,31782365 | 0,04943551 | 0,4112682 | 4 1
11 0,42909306 | 0,25952202 | 0,11014913 | 0,2012358 | 1 1
12 0,24916957 | 0,36443852 | 0,07468166 | 0,31171025 | 2 1
13 0,25289309 | 0,34349572 | 0,07142909 | 0,33218211 | 2 1
14 0,18833785 | 0,39065245 | 0,12623612 | 0,29477359 | 4 0
15 0,21793781 | 0,36590804 | 0,08050891 | 0,33564524 | 4 0

Table 5.6: Mean of the predicted probabilities for each category with the actual choices for the first 15 students

in the data set.

The 95% credible intervals that is now constructed for these 15 students consists of the 0.025 and 0.975-
quantile. Table 5.7 gives the 0.025-quantile for each category.
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Student | Category 1 | Category 2 | Category 3 | Category 4
1 0,01210225 | 0,01099995 | 0,00170133 | 0,00127572
2 0,01132761 | 0,01023301 | 0,00219318 | 0,00116792
3 0,01184256 | 0,01127962 | 0,00206847 | 0,00110893
4 0,00188403 | 0,00649393 | 0,000299 0,00247671
5 0,0141112 | 0,00829148 | 0,00257582 | 0,00107297
6 0,00874795 | 0,00846661 | 0,00072388 | 0,00223391
7 0,0037401 0,00784055 | 0,00052715 | 0,00209945
8 0,01184256 | 0,01127962 | 0,00206847 | 0,00110893
9 0,00974833 | 0,01017628 | 0,00121148 | 0,0015279

10 0,00556719 | 0,00721336 | 0,00048965 | 0,00281309
11 0,0342663 | 0,00946477 | 0,0033552 | 0,00078436
12 0,00669428 | 0,01066005 | 0,00105445 | 0,00132411
13 0,00763825 | 0,00964868 | 0,00105174 | 0,00161777
14 0,00473022 | 0,01035497 | 0,00193598 | 0,00093359
15 0,00579626 | 0,00953629 | 0,00108393 | 0,00146799

Table 5.7: The 0.025-quantile of the predicted probabilities for each category for the first 15 students in the
data set

The 0.975-quantile is given in table 5.8. The blue rows are again the rows that are incorrectly predicted.
There are only three students amongst the first 15 in the data set for which the prediction was not accurate.

’ Student \ Category 1 \ Category 2 \ Category 3 \ Category 4 ‘
1 0,59807704 | 0,83727451 | 0,46681917 | 0,95439893
2 0,57910255 | 0,8379709 0,59054836 | 0,95502238
3 0,5806534 0,84341946 | 0,51686596 | 0,95404906
4 0,37185497 | 0,88491734 | 0,28633675 | 0,98553344
5 0,62826617 | 0,81479043 | 0,65590373 | 0,94953513
6 0,56667267 | 0,82710835 | 0,37099454 | 0,9693191
7 0,44594667 | 0,87709947 | 0,33954178 | 0,97868818
8 0,5806534 0,84341946 | 0,51686596 | 0,95404906
9 0,5836333 0,83872124 | 0,40857821 | 0,96206286
10 0,49760781 | 0,83794503 | 0,31155193 | 0,97757336
11 0,75845152 | 0,76608082 | 0,53951427 | 0,90279226
12 0,55136968 | 0,86536783 | 0,43314187 | 0,96588072
13 0,54008835 | 0,85119026 | 0,4129339 0,96727116
14 0,46353612 | 0,88274125 | 0,6212479 0,96642961
15 0,4882453 0,8720537 0,44733368 | 0,9697377

Table 5.8: The 0.975-quantile of the predicted probabilities for each category for the first 15 students in the
data set

These three given tables can be combined to construct the credible intervals. This is done for the rows where
the highest probability does not correspond to the choice, which is only the case for three students in this case.
For each category there is then an interval with a probability of 95% that the true value for this probability lies
in this interval. This is visualized in figure 5.5.
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Figure 5.5: Credible intervals for those students amongst the first 15 students where the category with the
highest probability does not correspond to the actual choice.

Figure 5.5 shows that for each category, the intervals are quite large and thus not very informative as the
true value lies in a larger interval with a probability of 95%. There are some intervals that are smaller than
others, so for these the intervals do say more. When considering student 6 for example, the interval for category
3 is significantly smaller compared to for example category 4. It is hence less likely that category 3 is chosen.
Comparing figure 5.5 to figure 5.1, it is clear that the intervals were smaller and thus predicted the values better
using the UPG package. However, comparing the accuracy from the BRMS package to the UPG package, it follows
that the accuracy of the BRMS model slightly higher as it is equal to 0.4336918.

5.6 BRMS Model using K-fold cross-validation

The BRMS model from the previous section resulted in a higher accuracy compared to the UPG model. Thus, it
is useful to apply K-folds cross validation to this model to verify the accuracy. Here, K-fold cross validation
works in the same way as in section 5.4 and we again consider K = 10.

To apply 10-fold cross validation, for the BRMS package there is a function kfold () in R that takes in a BRMS-
object and applies K-fold cross validation. In this function the number of folds can be specified. This takes
approximately 4 hours in total to run for the 10 different iterations. After running the object returns the ex-
pected log pointwise predictive density, the effective number of parameters and the K-fold information criterion.

Consider the split into the K-folds where r € 1,..., K is a subset which consists of 10% of the data as

K =10 in this case. Then log(p(y:|y—-)) denotes the log predictive density for each observation ¢ € r, where r
is in this case the validation set. This is then defined in the following way

log(p(yily-r)) = log ( / p(yiﬂ)p(ﬂly-r)dyi)

The posterior distribution is determined by a number of samples s € 1,...,.5 and the number of samples S is
taken as 4000 in this package with 3™°. Here, r indicates the subset taken as validation and s is the concerned
simulation. The posterior draws can now be denoted as p(Bly—_,) and summarized over these s draws, the
following expression is obtained for the elpd; (Vehtari, Gelman, and Gabry 2016)

S
elpd; =log < > p(yil ™) i€r
s=1
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To obtain the estimated value, this needs to be summed up such that for each ¢ that corresponds to a subset

r, the expression for the estimate yields
n

elpdygo1qa = Z elpd,
i=1
This is because each observation i is at exactly once in some subset r € 1,..., K. Note that the function
kfold() does not take a factor of + into account when measuring the predictive accuracy (McElreath 2020).
Now, this value of elpd can be interpreted in such a way that when the elpd is higher, or also less negative, the
model performs better and thus has higher accuracy (Nicenboim, Schad, and Vasishth 2023).

Another value that is returned by kfold() is the p_loo, which indicates the effective number of parameters
in the model. As explained in (McElreath 2020), this is a penalty term which is proportional to the variability
present in the posterior distribution. This implies that when this penalty term is small the variance is also small
and the other way around.

Finally, looic is the K-fold information criterion. This is —2 times the elpd and hence the estimate does
not necessarily carry more information. The output that follows from applying the function kfold() is now
summarized in table 5.9.

Estimate \ SE ‘
elpd loo | -369.7 7.5
p_loo 20.8 4.5
looic 739.4 14.9

Table 5.9: Results following from 10-fold cross-validation.

In the table the value the estimate for the elpd seems quite low. This gives some doubt about the predictive
performance of the model. Also, the penalty term for the variance of the posterior is equal to 20.8, which is
again quite high.

5.7 BRMS Model using Leave-One-Out Cross-Validation

To assess how well this model from section 5.6 performs, this K-fold cross validation can be compared to
leave-one-out cross-validation using a function loo() in R. Leave-one-out cross validation is a version of K-fold
cross-validation in which the number of folds is equal to the number of observations. In the data set there are n
observations, so when using leave-one-out cross-validation the model is trained using the whole set while leaving
out exactly one observation which is used for validation. This can then be seen as K-fold cross-validation,
where K = n and thus in this case there are n iterations. This function loo() now gives a similar output as
kfold() and can thus be compared to see which one works better. As the model is trained using more data
points and only one observation is used for validation, we expect that the value for the average elpd is lower
and the variance is high (Refaeilzadeh, Tang, and Liu 2009).

The output from the function 1oo() are similar to the results from section 5.6. There is a small difference
in the definition of the expected log pointwise predictive density (elpd). In the case of K-folds cross validation,
the subsets r € 1,..., K are considered. However, when applying leave-one-out cross-validation, only one
observation is left out and the rest is used for training the model. This implies that every subset r is of size
exactly equal to 1. Incorporating this change into the definition of the log predictive density yields the folowing
expression:

log(p(yily_:)) = log ( / p(yimp(myi)dyi)

Now, this implies that each elpd; becomes

s
— 1 , '
elpd, = log g Zp(yiwl’s) ier
s=1

Finally, to find the estimate, all of these values need to be summed up such that:
o n
elpdy,, = > log(p(yily—:))
i=1
The other components from the output are interpreted in the same way as explained in section 5.6.
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Table 5.10 summarized the results that follow from applying leave-one-out cross-validation to the model
from section 5.5.

] \ Estimate \ SE \

elpd loo | -984.2 15.4
p_loo 641.7 12.9
looic 1968.4 30.9

Table 5.10: Results after applying leave-one-out cross-validation.

As expected the estimate for elpd is significantly lower, so more negative, and thus less accurate and the
variance is higher compared to the variance in table 5.9 for elpd loo. It seems that the elpd is doing twice as
bad compared to the model using K-fold cross validation. The effective number of parameters is quite high as
it is equal to 641.7 and hence so is its’ variance. This is therefore not very accurate. It is clear that the K-fold
method works better in this sense.

5.8 BRMS using different priors

5.8.1 BRMS model using the Cauchy prior

According to, it is common to take a Cauchy prior with center 0 and scale 2.5 as an uninformative prior. An
advantage of the BRMS package is that it allows you to specify a different prior by using the function set_prior().
By specifying the prior for the regression coefficients including the intercept, the model can be fitted again.
The accuracy that follows from this model is 0.4229391 and the run time is approximately 74.533 seconds. This
model thus does worse than the UPG model using the default prior and the BRMS model also does better with
the default prior.

To assess this model leave-one-out cross validation can be applied again using the loo() function as the
running time is low.

’ \ Estimate \ SE ‘

elpd loo | -345.4 9.3
p_loo 11.4 0.7
looic 691.1 18.7

Table 5.11: Results after applying leave-one-out cross-validation applied to BRMS model with Cauchy prior.

From table 5.11 it follows that the elpd is higher than the one where K-fold cross-validation was used in
table 5.9. This means that the result is more accurate and the predictive performance is doing better than the
overall performance after K-fold cross-validation. The penalty for the variance of the posterior distribution is
almost half of the value in table 5.9, so using a different prior improved the model in that aspect too.

5.8.2 BRMS model using the Gaussian prior

To compare the performance of the different packages, the BRMS package can be used with a Gaussian prior
with mean 0 and variance 4 for all regression coefficients including the intercept. The accuracy that follows
from applying this is 0.4301075, which runs in 62.928 seconds. Here, the model performs slightly better than
the UPG model using the same prior. However, the default prior in the BRMS package still does a better job in
predicting accurately. The accuracy using a Gaussian prior is then still better than the prior that follows a
Cauchy distribution.

’ \ Estimate \ SE ‘

elpd loo | -345.9 9.4
p_loo 11.9 0.7
looic 691.8 18.9

Table 5.12: Results after applying leave-one-out cross-validation applied to BRMS model with Gaussian prior.
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The estimate of the elpd is slightly higher than the elpd that result from using a Cauchy prior. However,
the difference is only 0.3 and the standard deviation of the elpd is also quite similar. Since the accuracy of this
model is higher than the one from section 5.8.1, these results that follow from the leave-one-out cross-validation
confirm that this model does slightly better. Hence, using the Gaussian prior as uninformative prior results in
slightly better predictive accuracy compared to the Cauchy prior.
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Chapter 6

Conclusion and discussion

In this chapter,the conclusion that follows from the results will be discussed and the model results will be briefly
summarized. Finally, some limitations of this project and options for future research will be discussed.

6.1 Conclusion

Navigating back to the research questions of the project, the goal is to give a Bayesian interpretation of the
results, where the Bayesian approach depends on a choice of a prior distribution. In the end, several different
models were constructed and compared with respect to their predictive performance. Chapter 5 lists the results
for each of the models used in this project. To draw a conclusion from all the comments made in chapter 5, it is
important to briefly summarize the main point. This is done in table 6.1, where for each model the accuracy is
listed together with the running time. The running time is important as it gives insight on whether the model
is realistic to use. Two different packages, UPG and BRMS, are used. The package BRMS allows the user to specify
different prior distribution, which is why the default prior distribution of this package is compared to the same
package, but with different prior distributions such as the Gaussian distribution and the Cauchy distribution.
The UPG package generates 10.000 posterior samples and the BRMS packages generates 4000 posterior samples.

’ | Accuracy [ Run time ‘

UPG, Uniformly generated data | 0.22 ~ 34.16 sec
UPG, PRIME data 0.4265233 | ~ 36.88 sec
UPG, Training and test 0.4285714 | =~ 31 sec

UPG, K-fold 0.4011677 | ~ 53 sec
BRMS, PRIME data 0.4336918 | ~ 410.121 sec
BRMS, Cauchy prior 0.4229391 | ~ 74.533 sec
BRMS, Gaussian prior 0.4301075 | ~ 62.928 sec

Table 6.1: Summary of the accuracy of each model and the running time.

From table 6.1 it follows that the model that has the best accuracy, as in accurately predicted the outcome,
is the BRMS model applied to all data from PRIME. Considering the running time, however, it seems that this
might not be the optimal solution in the case that the data set is larger as this would increase the running time
further. The high running time for the BRMS package applied to all the PRIME data can be explained by the
fact that the default considers different priors for the regression coefficients and intercept, which takes more
computational effort.

Another model with a good prediction is the BRMS model using a Gaussian prior instead of the default prior.
This Gaussian prior is the same as the default used in the UPG model, but it appears that the BRMS model
yields a higher accuracy. The BRMS model using the Cauchy did have a higher value for the elpd and should
thus give a better prediction. The difference between the elpd’s is still very small and thus it can be concluded
that the Gaussian prior does better than the Cauchy prior taking all aspects of the models into account. The
elpd resulting from the leave-one-out cross validation is also very low for the model with the default prior com-
pared to the elpd resulting from the BRMS model with the Cauchy prior. These results are summarized in table 6.2
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] \ elpd Estimate \ elpd SD ‘

BRMS, K-fold -369.7 7.5
BRMS, loo -984.2 154
BRMS, Cauchy prior loo -345.4 9.3
BRMS, Gaussian prior loo | -345.9 9.4

Table 6.2: Summary of the elpd estimate of each model and the corresponding running time.

It can be concluded that the model applied to the generated data does the worst, which is not a surprise.
The data is generated based on a uniform distribution and the prior is Gaussian. This results in a less good
estimate for the posterior and thus the final predictions are not as accurate.

Constructing credible intervals can give an insight on how close the predictions were and whether there was
some overlap between intervals. In the case that there was indeed overlap, it can be argued that the model was
close to predicting correctly and not totally far off. However, in some cases the credible intervals are too large.
As a result the intervals don’t really provide more information and are no longer that useful. This is the case
for the BRMS package applied to the whole data set. The credible intervals have a lot of overlap and are very
widely spread over the interval (0,1), so there is not much information given here as this can be interpreted that
the actual value is in this large interval with probability 0.95.

6.2 Future research and limitations

This project considers several different prior distributions to compare in terms of predictive performance. How-
ever, this project considers only uninformative and weakly informative priors. It could be useful to consider
informative priors for future research. This could be done using the posterior distribution as defined in this
project as the prior to fit on new data. This could give a better fit to the data and could result in higher
accuracy of the results as the accuracy in this project still lies below 0.5. To further investigate the impact of
the prior distribution on the accuracy it could be interesting to consider the uninformative prior called Jeffreys
prior as this is a well-known uninformative prior.
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Appendix A

Results, additional plots

A.1 UPG applied to PRIME data

Figure A.1 depicts the estimates of the posterior distribution as follows from applying the UPG model to all
PRIME data. Together with the estimates also a credible interval is shown for each of the categories and for
each of the predictors. The legend only indicates categories 2, 3 and 4 since category 1 was chosen as the
baseline category. This implies that the posterior is set to 0 for category 1.
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Figure A.1: Posterior estimates for the UPG Model applied to PRIME data.

A.2 UPG Model using Train-Test Split method

Again, such a plot with posterior estimates is constructed for the parameters found from fitting on the training
set. The interpretation is the same as in section A.1. Comparing the estimates in figure A.2 to the estimates
from figure A.1, it follows that the posterior estimates are very similar.
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Figure A.2: Posterior estimates for the UPG Model using Train-Test Split method

A.3 UPG Model using K-fold cross-validation

For K-fold cross-validation, the posterior estimates of the best prediction can be compared to the other posterior
estimates. This plot again is interpreted in the same way as in appendix A.1 and A.2.
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Figure A.3: Posterior estimates for the UPG Model using K-fold cross-validation.

From comparing figure A.3 to figures A.1 and A.2 it can be noted that here there are some slight differences
in their estimates and credible intervals. This is interesting as this model has a higher accuracy compared to
the other two models. The following differences can be noted:
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1. The posterior estimate corresponding to the predictor prior math grade seems to be slightly closer to 0
for category 2 and category 3 is less negative.

2. For the predictor SE mean the corresponding posterior estimate of category 3 is closer to 0.

3. The posterior estimate for grade goal is negative instead of positive for category 2.

A.4 BRMS model using different priors
A.4.1 BRMS model using the Cauchy prior

Using the BRMS package with the Cauchy prior similarly as in section 5.5 the credible intervals can be constructed.
In the same way, the first 15 students are considered. The credible intervals for the students that have a 0 in
the column "Correctly predicted’ are constructed in figure A.4.
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Figure A.4

These students appear to be the same as in section 5.2. Comparing these two it seems like the credible
intervals are similar and there are very slight differences that are barely visible. Hence, these credible interval
approximately carry the same information.

A.4.2 BRMS model using the Gaussian prior

Now, again credible intervals can be constructed. These are given in figure A.5.
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Probabilities with their credible intervals for each category
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Here, the students are again the same as in sections 5.2 and A.4.1 and the intervals are also similar.
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Appendix B

Code for preprocessing and application to
PRIME data

H###H###HPACKAGES #######H#
library("readxl")
library ("xlsx")

library ("UPG")

library ("ggplot2")
library ("PerformanceAnalytics")
library ("MASS")

library ("geometry")
library ("openxlsx")
library("data.table")
library("caret")
library ("patchwork")

####### PREPROCESSING ########
full_data <- read_x1sx("C:\\Users\\mahii\\OneDrive\\Documenten\\BEP\\data_BEP.xlsx", 1)
full_data <-data.frame(full_data)

. #Removing the variables that are non-numerical and only keeping the variables of interest

df <- full_datal[c(16, 45:49, 51:59, 61:63)]
grade_goal = round((df$grade_aim + df$grade_expected + df$grade_lowest_satisfied)/3, 2)
df <- cbind(df, grade_goal)

#Data cleaning

#Remove the rows with grade_goal == 0
df [is.na(df)] <- 0

colSums (df==0)

df <- df[df$grade_goal!=0, ]

#Checking the number of 0 in the dataframe
colSums (df == 0)
dim(df)

#grade_goal, self_efficacy, prior_math_grade and the response variables
predictors = c(1, 7, 19)
outcome_vars = c(8:15)

#Data set used is called data_bayes

Y = df [,outcome_vars]

intercept <- rep(l, nrow(df)) #vector of omnes
data_bayes <- cbind(intercept, df[, predictors])
data_bayes <- data.matrix(data_bayes)

#Question chosen for this model: ’why_quiz’
g_no = 4
cat_no <- max(Y[,q_no])

; m = as.character (cat_no)

###HF##HHEATMAP ######HH#
heatmap_data <- as.data.frame(sapply(df[, c(1:7, 16:19)]1, as.numeric))
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2 cors <- round(cor (heatmap_data, method = "pearson" ), 2)
3 cors

. heatmap(cors, Rowv = NA, Colv = NA, margins = c(12, 12))
55 melt_data <- melt(cors)

56 ggp <- ggplot(melt_data, aes (X1, X2)) +

57 ggtitle ("Heat map of correlations") +

58 geom_tile (aes(fill = value)) +

59 theme (axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
60 plot.title = element_text(hjust = 0.5)) +

61 scale_fill_gradient2(low = "white", high = "darkblue")

62 g8gPp

65 #Scatterplots for the pairs that have a higher correlation than expected
66 pl <- ggplot(heatmap_data, aes(x = SE_mean, y = grade_expected)) +

67 geom_point (position = "jitter")

68 p2 <- ggplot(heatmap_data, aes(x = grade_expected, y = prior_math_grade)) +
69 geom_point (position = "jitter")

70 p3 <- ggplot(heatmap_data, aes(x = grade_expected, y = SE4)) +

71 geom_point (position = "jitter")

72 p4 <- ggplot(heatmap_data, aes(x = grade_goal, y = prior_math_grade)) +

73 geom_point (position = "jitter")

75 plot_all_high <- (pl + p2) / (p3 + p4) +
76 plot_annotation(title = ’Scatterplots of variables with high correlation’) &
theme (plot.title = element_text(hjust = 0.5))

70 plot_all_high

82 #Scatterplots for the pairs that have a low correlation

g3 pll <- ggplot (heatmap_data, aes(x = grade_lowest_satisfied, y = SE5)) +
84 geom_point (position = "jitter")

&5 p22 <- ggplot(heatmap_data, aes(x = grade_aim, y = SE2)) +

86 geom_point (position = "jitter")

87 p33 <- ggplot(heatmap_data, aes(x = prior_math_grade, y = SEb)) +

88 geom_point (position = "jitter")

g0 p44 <- ggplot(heatmap_data, aes(x = grade_lowest_satisfied, y = SE2)) +
90 geom_point (position = "jitter")

92 plot_all_low <- (pl1l + p22) / (p33 + p44) +

93 plot_annotation(title = ’>Scatterplots of variables with low correlation’) &
94 theme (plot.title = element_text(hjust = 0.5))

95

o6 plot_all_low
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Appendix C

Code for the UPG package

###H###HPACKAGES #######H#
library("readxl")
library ("xlsx")

library ("UPG")

library ("ggplot2")
library ("PerformanceAnalytics")
library ("MASS")

library ("geometry")
library ("openxlsx")
library ("data.table")
library("caret")
library ("patchwork")

####### PREPROCESSING ########

full_data <- read_x1sx("C:\\Users\\mahii\\OneDrive\\Documenten\\BEP\\data_BEP.xlsx", 1)
full _data <-data.frame(full_data)

#Removing the variables that are non-numerical and only keeping the variables of interest

df <- full_datal[c(16, 45:49, 51:59, 61:63)]
grade_goal = round((df$grade_aim + df$grade_expected + df$grade_lowest_satisfied)/3, 2)
df <- cbind(df, grade_goal)

#Data cleaning

#Remove the rows with grade_goal == 0
df [is.na(df)] <- 0

colSums (df==0)

df <- df[df$grade_goal!=0, ]

#Checking the number of O in the dataframe
colSums (df == 0)
dim(df)

#grade_goal, self_efficacy, prior_math_grade and the response variables
predictors = c(1, 7, 19)
outcome_vars = c(8:15)

#Data set used is called data_bayes

Y = df [,outcome_vars]

intercept <- rep(l, nrow(df)) #vector of ones
data_bayes <- cbind(intercept, df[, predictors])
data_bayes <- data.matrix(data_bayes)

#Question chosen for this model: ’why_quiz’
q_no = 4
cat_no <- max(Y[,q_nol)

; m = as.character(cat_no)

HA#HHAHHEATMAP ########

heatmap_data <- as.data.frame(sapply(df[, c(1:7, 16:19)]1, as.numeric))
cors <- round(cor (heatmap_data, method = "pearson" ), 2)

cors

heatmap (cors, Rowv = NA, Colv = NA, margins = c(12, 12))
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114

116

melt_data <- melt (cors)
ggp <- ggplot(melt_data, aes(X1l, X2)) +
ggtitle ("Heat map of correlations") +
geom_tile(aes(£fill = value)) +
theme (axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
plot.title = element_text(hjust = 0.5)) +
scale_fill_gradient2(low = "white", high = "darkblue")

ggp

#Scatterplots for the pairs that have a higher correlation than expected
pl <- ggplot(heatmap_data, aes(x = SE_mean, y = grade_expected)) +

geom_point (position = "jitter")

p2 <- ggplot(heatmap_data, aes(x = grade_expected, y = prior_math_grade)) +
geom_point (position = "jitter")

p3 <- ggplot(heatmap_data, aes(x = grade_expected, y = SE4)) +
geom_point (position = "jitter")

p4 <- ggplot(heatmap_data, aes(x = grade_goal, y = prior_math_grade)) +
geom_point (position = "jitter")

plot_all_high <- (pl + p2) / (p3 + pd) +
plot_annotation(title = ’Scatterplots of variables with high correlation’) &
theme (plot.title = element_text(hjust = 0.5))

plot_all_high

#Scatterplots for the pairs that have a low correlation

pll <- ggplot(heatmap_data, aes(x = grade_lowest_satisfied, y = SE5)) +
geom_point (position = "jitter")

p22 <- ggplot(heatmap_data, aes(x = grade_aim, y = SE2)) +

geom_point (position = "jitter")
p33 <- ggplot(heatmap_data, aes(x = prior_math_grade, y = SE5)) +
geom_point (position = "jitter")

p44 <- ggplot(heatmap_data, aes(x = grade_lowest_satisfied, y = SE2)) +
geom_point (position = "jitter")

plot_all_low <- (pll + p22) / (p33 + p44) +
plot_annotation(title = ’Scatterplots of variables with low correlation’) &

theme (plot.title = element_text(hjust = 0.5))

plot_all_low

#######GENERATE OWN UNIFORM DATA########

n=300
X_1 <- runif(n, min = 1, max = 10) #prior_math_grade
2 X_2 <- runif(n, min = 1, max =5) #SE_mean

X_3 <- runif(n, min =1, max =10) #grade_goal

intcpt <- rep(l, n)

gen_data <- cbind(intcpt, X_1, X_2, X_3)

y_gen <- sample(l:cat_no,n, TRUE) #why_quiz, there are 4 categories

gen.mnl = UPG(y = y_gen, X = gen_data, model = "mnl", baseline = "1", draws=10000, burnin
=2000, A0=4, B0O=4 )

summary (gen.mnl)

plot (gen.mnl)

predict (gen.mnl)

coef (gen.mnl)$ ‘Posterior Mean®

H######UPG PACKAGE ########

#Question why_quiz

pred <- UPG(y=Y[, g_nol], X=data_bayes, model=’mnl’, baseline="1", draws=10000, burnin=2000,
=4, BO=4)

summary (pred)

posterior <- pred$posterior$beta

#Find the predictions and calculate the accuracy
predict (pred)

correct <- rep(0, nrow(predict(pred)$Q2.5))

low <- predict(pred)$Q2.5

low <- cbind(lowl[, cat_mnol], low[,1:(cat_no-1)1)
high <- predict(pred)$Q97.5
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126 high <- cbind(high[,cat_no], high[, 1:(cat_no-1)])
127 mean <- predict(pred)$‘Posterior mean*
128 mean <- cbind(mean[,cat_nol], mean[,1:(cat_no-1)], Y[,q_nol, correct)

130 summary (pred)
131 plot (pred)
132 for (i in 1:nrow(mean)){

133 loc <- mean[i,cat_no+1]

134 if (max(mean[i,l:cat_nol) == mean[i, loc]l){
135 mean[i,ncol (mean)] <- 1

136 }

137 }

138 accuracy <- sum(mean[,ncol(mean)])/(nrow(mean))
130 accuracy

142 #Plot posterior estimates
143 plot (pred)

145 #######CREDIBLE INTERVAL PLOT########

146 #Consider the first 15 students and reformat to get data frame cred_full

1147 cred_ints <- as.data.frame(mean[1:15, 1)

115 cred_ints$correct <- cred_ints[, cat_no+2]

119 cred_ints <- cred_ints[cred_ints$correct '= 1 ,]

150 cred_mean <- data.frame(x = unlist(as.data.frame(t(cred_ints[,1:cat_mnol))))

152 indices <- as.integer (rownames (cred_ints))

153 cred_high <- data.frame(x = unlist(as.data.frame(t(high[indices, 1))))
154 cred_low <- data.frame(x = unlist(as.data.frame(t(low[indices, 1))))
155 cred_high

157 indices_long <- rep(indices, each = cat_no)
158 cats <- as.character(rep(l:cat_no, times = nrow(cred_ints)))

160 cred_full <- data.frame(student = indices_long, Probability = cred_mean$x,
161 upper = cred_high$x, lower = cred_low$x, Category = cats)

163 #Using the reformatted data frame the credible interval plot can be found
164 ggplot (data = cred_full, aes(x = Probability, y = as.factor(student))) +

165 geom_errorbarh (aes (xmin = lower, xmax = upper, color = Category), height = 0.3) +

166 ggtitle ("Probabilities with their credible intervals for each category") +

167 theme (plot.title = element_text(hjust = 0.5)) +

168 geom_pointrange (aes(x = Probability, xmin = lower, xmax = upper, color = Category), size =
0.3) +

169 scale_y_discrete (name = "Student")

172 ####### TRAINING AND TEST SET#H####HH#H##

173 #Generate random numbers for the split into training and test set
74 set.seed (1)

175 samplee <- sample (1:nrow(df), 28)

76 samplee

177 X_training <- data_bayes[-samplee, 1]

7s X_test <- data_bayes[samplee, ]

170 Y_training <- Y[-samplee,q_nol

120 Y_test <- Y[samplee, g_no]

182 #Train the model using the training set
183 train.mnl <- UPG(y = Y_training, X = X_training, baseline = "1",
184 model = "mnl", AO = 4, BO =4, draws= 10000, burnin = 2000)

186 #Save the regression coefficients

157 betas <- coef (train.mnl)$‘Posterior Mean

155 betas <- cbind(betas[,cat_nol], betas[,1:(cat_no-1)1)
180 b_x <- X_test %*J, betas

191 #Save posterior estimates for the 0.025 and 0.975-quantiles
192 beta_high <- cbind(coef(train.mnl)$‘Q97.5¢[,cat_no], coef(train.mnl)$‘Q97.5‘[, (1l:cat_no-1)1])
195 beta_high <- X_test %*% beta_high

195 beta_low <- cbind(coef (train.mnl)$‘Q2.5°[,cat_nol, coef(train.mnl)$‘Q2.5°[, 1:(cat_no-1)1])

1906 beta_low <- X_test %*) beta_low
197
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#Calculate the probabilities for the test set using estimated posterior

pi = matrix (0, nrow = nrow(X_test), ncol = cat_no)
pi_high = matrix (0, nrow = nrow(X_test), ncol = cat_no)
pi_low = matrix(0, nrow = nrow(X_test), ncol = cat_no)

for (i in 1:nrow(X_test)){ #i is de student
for (j in 2:cat_no){ #j is de categorie
pili, jl <- exp(b_x[i,jl) /(1+sum(exp(b_x[i, 2:cat_nol)))
pi_high[i,j] <- exp(beta_highl[i,jl)/(1+sum(exp(beta_high[i,2:cat_nol)))
pi_lowl[i,j] <- exp(beta_lowl[i,jl)/(1+sum(exp(beta_low[i,2:cat_nol)))
}
pili, 1] <- 1-sum(pili,])
pi_high[i, 1] <- 1-sum(pi_high[i, 1)
pi_low[i, 1] <- 1-sum(pi_low[i, 1)
}
zeroes <- rep(0, nrow(pi))
pi_res <- cbind(pi, Y_test, zeroes)

#Calculate accuracy of the predicted test set
for (i in 1:nrow(pi_res)){

y = as.numeric(pi_res[i,cat_no+1])

if (max(pi_res[i, 1l:cat_mol]) == pi_res[i,y]){
pi_res[i, cat_no+2] <- 1

}

}
accuracy_tt <- sum(pi_res[,cat_no+2])/nrow(pi_res)
accuracy_tt

#Plot posterior estimates
plot (train.mnl)

#######CREDIBLE INTERVAL PLOT, TRAINING TEST########

#Consider the first 15 students and reformat to get data frame cred_full_tt
cred_ints_tt <- as.data.frame(pi_res[1:15, 1)

cred_ints_tt$correct <- cred_ints_tt[, cat_no+2]

cred_ints_tt <- cred_ints_tt[cred_ints_tt$correct != 1 ,]

cred_mean_tt <- data.frame(x = unlist(as.data.frame(t(cred_ints_tt[,l:cat_nol))))

indices <- as.integer (rownames (cred_ints_tt))

cred_high_tt <- data.frame(x = unlist(as.data.frame(t(pi_high([indices, 1))))
cred_low_tt <- data.frame(x = unlist(as.data.frame(t(pi_low[indices, ]))))
#cred_high_tt

indices_long_tt <- rep(indices, each = cat_no)
cats_tt <- as.character(rep(l:cat_no, times = nrow(cred_ints_tt)))

cred_full_tt <- data.frame(student = indices_long_tt, Probability = cred_mean_tt$x,
upper = cred_high_tt$x, lower = cred_low_tt$x, Category = cats_tt)

#Using the reformatted data frame the credible interval plot can be found

ggplot (data = cred_full_tt, aes(x = Probability, y = as.factor(student))) +
geom_errorbarh(aes (xmin = lower, xmax = upper, color = Category), height = 0.3) +
ggtitle ("Probabilities with their credible intervals for each category") +
theme (plot.title = element_text(hjust = 0.5)) +

geom_pointrange (aes(x = Probability, xmin = lower, xmax = upper, color = Category), size =
0.3) +
scale_y_discrete (name = "Student")

#######K FOLD CROSS VALIDATION#####H###
#Fix number of folds

number _of _folds <- 10

quality <- rep(0, number_of_folds)
val_data <- cbind(Y[,q_no], data_bayes)

#Split the data in 10 equal sets
folds <- createFolds(Y[,q_nol, k = number_of_folds, list = TRUE)

#For each fold calculate the posterior estimates and validate using the test set
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for (foldnr in 1:number_of_folds){
training.Y <- val_datal-folds[[foldnrll, 1]
training.X <- val_datal[-folds[[foldnr]], 2:(l+cat_no)]
test.X <- val_datal[folds[[foldnr]], 2:(l+cat_no)]
test.Y <- val_datal[folds[[foldnr]], 1]
highest_pi <- rep(0, nrow(test.X))

pi <- matrix (0, ncol = cat_no, nrow = nrow(test.X))
trainmod.mnl <- UPG(y = training.Y, X = training.X,
baseline = "1", model = "mnl", AO =4, BO =4)

result_betas <- cbind(coef (trainmod.mnl)$‘Posterior Mean‘[,cat_nol],
coef (trainmod.mnl)$ ‘Posterior Mean ‘[,1:(cat_no-1)1])

beta_x <- test.X %*J), result_betas
for (student in 1:nrow(test.X)){

denominator <- sum(exp(beta_x[student,]))

for (category in 2:cat_mno) {

pilstudent, category]l <- exp(beta_x[student, categoryl])/denominator

T

pilstudent, 1] <- 1 - sum(pilstudent, 1)

pi <- as.data.frame(pi)

#The maximal probability is saved in highest_pil[student]
highest _pilstudent] <- as.numeric(substring(colnames(pi) [max.col(pil[student,], ties.method
= "first")1,2))

#This is then compared to the actual choice
if (highest_pil[student] == test.Y[student]){
#Quality tracks the accurately predicted number of students
quality[foldnr] = quality[foldnr] + 1
}
}
#Finally divide this by the number of students in the test set to get the accuracy for the
given fold
quality[foldnr] <- quality[foldnr]/nrow(test.X)

#Save the best model
if (quality[foldnr] >= max(quality)){
best_pred = pi
result <- trainmod.mnl
}
}

quality
best _pred
mean (quality)

#Plot posterior estimates of the model with highest accuracy
plot (result)

#######WRITING TO EXCEL FILE########
#Save some results in an excel file

data_excel <- list(’all_data_mean’ = mean, ’all_data_low’ = low,
’all_data_high’ = high, ’training_test’ = pi_res, ’quality_kfolds’ =
quality, "highest_pi" = best_pred)
openxlsx::write.xlsx(data_excel, file = "Results_pi.xlsx")
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Appendix D

Code for the BRMS package

###H###HPACKAGES #######H#
library("readxl")
library ("xlsx")

library ("UPG")

library ("ggplot2")
library ("PerformanceAnalytics")
library ("MASS")

library ("geometry")
library ("openxlsx")
library("data.table")
library("rstan")
library ("brms")
library("caret")
library ("fGarch")
library("timeSeries")
library("loo")

library ("future")

####### PREPROCESSING##H##H####
full_data <- read_x1sx("C:\\Users\\mahii\\OneDrive\\Documenten\\BEP\\data_BEP.xlsx",
full_data <-data.frame(full_data)

#Removing the variables that are non-numerical and only keeping the variables of interest

df <- full_datalc(16, 45:49, 51:59, 61:63)]
grade_goal = round((df$grade_aim + df$grade_expected + df$grade_lowest_satisfied)/3,
df <- cbind(df, grade_goal)

#Data cleaning

#Remove the rows with grade_goal == 0
df [is.na(df)] <- 0

colSums (df ==0)

df <- df [df$grade_goal!=0, ]

#Checking the number of O in the dataframe
colSums (df == 0)
dim (df)

#grade_goal, self_efficacy, prior_math_grade and the response variables
predictors = c(1, 7, 19)
outcome_vars = c(8:15)

#Data set used is called data_bayes

Y = df [,outcome_vars]

intercept <- rep(l, nrow(df)) #vector of ones
data_bayes <- cbind(intercept, df[, predictors])
data_bayes <- data.matrix(data_bayes)

#Question chosen for this model: ’why_quiz’

q_no = 4
cat_no <- max(Y[,q_nol)
m = as.character (cat_no)
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90

#######BRMS DATA PREP########

##Restart R and then run install.packages(c("StanHeaders","rstan"),type="source")
packages from the source
y_m = matrix (0, nrow = nrow(data_bayes), ncol = cat_no)

for (i in 1:nrow(data_bayes)){
ind <- as.numeric(Y[i,q_nol)
y_m[i, ind] <- 1

}

val_data <- data.frame(intercept = data_bayes[,1], x1 = data_bayes[,2],
x2 = data_bayes[,3], x3 = data_bayes[, 4])

val_data$size <- with(val_data, rowSums(y_m[,1:cat_no]))

val_data$y <- with(val_data, cbind(y_m[,1:cat_nol))

#######BRMS MODEL WITH DEFAULT PRIOR########
#Train the model
model.brm <- brm(formula = y | trials(size) ~ intercept + x1 + x2 + x3,

to reinstall

data = val_data, family = multinomial(), iter = 2000, cores = 4, chains = 4)

#Find predicted probabilities
brm.fit <- fitted(model.brm)
brm.fit

prior_summary (model.brm)
correct <- rep(0, length(brm.fit[,1,1]))

#Save predictions including the 0.025 and 0.975-quantiles for the plot
pred_default <- cbind(brm.fit[,1,1:cat_nol, Y[,q_nol], correct) #mean
pred_default_low <- brm.fit[,3, 1:cat_mno]

pred_default_high <- brm.fit[,4,1:cat_no]

#Calculate the accuracy
for (i in 1:nrow(pred_default)){
loc <- pred_default[i,cat_no+1]
if (max(pred_default[i,l:cat_no]) == pred_default[i, loc]){
pred_default[i,cat_no+2] <- 1
}
}
accuracy_default <- sum(pred_default[,(cat_no+2)])/(nrow(pred_default))
accuracy_default

##u########### CREDIBLE INTERVALS PLOT######H#H######

#Consider the first 15 students and reformat to get data frame cred_full
cred <- as.data.frame(pred_default([1:15, 1)

cred$correct <- cred[, cat_no+2]

#Save the ones that are not correctly predicted
cred <- cred[cred$correct !'= 1 ,]

cred_mean <- data.frame(x = unlist(as.data.frame(t(cred[,1:cat_nol]))))

indices <- as.integer (rownames (cred))

cred_high <- data.frame(x = unlist(as.data.frame(t(pred_default_high[indices, ]1))))

cred_low <- data.frame(x = unlist(as.data.frame(t(pred_default_low[indices, 1))))
cred_high
indices_long <- rep(indices, each = cat_mno)
cats <- as.character(rep(l:cat_no, times = nrow(cred)))
cred_full <- data.frame(student = indices_long, Probability = cred_mean$x,
upper = cred_high$x, lower = cred_low$x, Category = cats)

#Using the reformatted data frame the credible interval plot can be found
ggplot (data = cred_full, aes(x = Probability, y = as.factor(student))) +

geom_errorbarh (aes (xmin = lower, xmax = upper, color = Category), height = 0.3) +

ggtitle ("Probabilities with their credible intervals for each category") +

theme (plot.title = element_text(hjust = 0.5)) +

geom_pointrange (aes(x = Probability, xmin = lower, xmax = upper, color = Category), size =
0.3) +

scale_y_discrete(name = "Student")
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195

196

###H#####H#####K FOLDS CROSS VALIDATION USING KFOLD () ##########4##

#K folds cross validation using paralellization

plan(multicore, workers = 4)

kfold_res <- kfold(model.brm, K = 10, save_fits = TRUE, chains = 4, cores = 4)
kfold_res

######H####### LEAVE ONE OUT CROSS VALIDATION########H#H####
#leave one out cross validation which is K-fold cross-validation with K=n
loo(model.brm)

HARAAAAA##### CAUCHY PRIORHHHHHHHHAAAAAS

cauchy_prior <- c(prior("cauchy(0, 2.5)", class = "b"), prior("cauchy(0,2.5)", class = "
Intercept"))
cauchy.mod <- brm(formula = y | trials(size) ~ intercept + x1 + x2 + x3,
family = multinomial(), iter = 2000, data = val_data, prior = cauchy_prior,
chains = 4, cores = 4)

#Find predicted probabilities
cauchy.fit <- fitted(cauchy.mod)
correct <- rep(0, length(cauchy.fit[,1,1]))

pred_cauchy <- cbind(cauchy.fit[,1,1:cat_no], Y[,q_nol], correct)

for (i in 1:nrow(pred_cauchy)){
loc <- pred_cauchy[i,cat_no+1]
if (max(pred_cauchy([i,l:cat_no]) == pred_cauchy[i, loc]){
pred_cauchy[i,(cat_no+2)] <- 1
}
}
accuracy_cauchy <- sum(pred_cauchyl[,cat_no+2])/(nrow(pred_cauchy))
accuracy_cauchy
accuracy_default

#leave one out cross validation cauchy model
loo (cauchy.mod)

#H#####H####### CREDIBLE INTERVALS PLOT CAUCHY #########H####

#Consider the first 15 students and reformat to get data frame cred_full_c
credc <- as.data.frame(pred_cauchy[1:15, 1)

credc$correct <- credc[, cat_no+2]

#Save the ones that are not correctly predicted
credc <- credc[credc$correct '= 1 ,]
credc_mean <- data.frame(x = unlist(as.data.frame(t(credc[,1:cat_nol))))

#Save predictions of the 0.025 and 0.975-quantiles for the plot

predc_default_high <- cauchy.fit[, 4, 1l:cat_mno]

predc_default _low <- cauchy.fit[, 3, 1:cat_no]

indices_c <- as.integer (rownames (credc))

credc_high <- data.frame(x = unlist(as.data.frame(t(predc_default_high[indices_c, 1)))
credc_low <- data.frame(x = unlist(as.data.frame(t(predc_default_low[indices_c, 1))))
credc_high

indices_long_c <- rep(indices_c, each = cat_mno)
cats_c <- as.character(rep(l:cat_no, times = nrow(credc)))
cred_full_c <- data.frame(student = indices_long_c, Probability = credc_mean$x,
upper = credc_high$x, lower = credc_low$x, Category = cats_c)

#Using the reformatted data frame the credible interval plot can be found
ggplot (data = cred_full_c, aes(x = Probability, y = as.factor(student))) +

geom_errorbarh (aes (xmin = lower, xmax = upper, color = Category), height = 0.3) +
ggtitle ("Probabilities with their credible intervals for each category") +

theme (plot.title = element_text(hjust = 0.5)) +

geom_pointrange (aes(x = Probability, xmin = lower, xmax = upper, color = Category),

0.3) +
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197 scale_y_discrete(name = "Student")

202 HH#H#H##HFH##FAFRGAUSSIAN PRIORH#H#HH#HH#HH#H#HHHHHHEH

203 normal _prior <- c(prior("normal(0,4)", class = "b"), prior("normal(0,4)", class = "Intercept")
)

204 mod.norm <- brm(formula = y | trials(size) ~ intercept + x1 + x2 + x3,

205 family = multinomial(), iter = 2000, data = val_data, prior = normal_prior,

206 chains = 4, cores = 4)

208 #Find predicted probabilities
200 normal.fit <- fitted(mod.norm)

211 correct <- rep(0, length(nmormal.fit[,1,1]))
212 pred_normal <- cbind(normal.fit[,1,1], normal.fit[,1,2], normal.fit[,1,3], normal.fit[,1,4], Y
[,4], correct)

214 #Calculate the accuracy
215 for (i in 1:nrow(pred_normal)){

216 loc <- pred_normal[i,cat_no+1]

217 if (max(pred_normal[i,l:cat_nol]) == pred_normall[i, locl){
218 pred_normal [i,cat_no+2] <- 1

219 ¥

220 }

221 accuracy_normal <- sum(pred_normall[,cat_no+2])/(nrow(pred_normal))
222 accuracy_normal
223 accuracy_cauchy
224 accuracy_default

226 #leave one out cross validation gaussian model
227 loo(mod.norm)

230 H#H###H#H##H##A#A###CREDIBLE INTERVALS PLOT GAUSSIAN######H#H#H#H#H#H#H

231 #Consider the first 15 students and reformat to get data frame cred_full_g
232 credg <- as.data.frame(pred_normal[1:15, ])

233 credg$correct <- credgl, cat_no+2]

235 #Save the ones that are not correctly predicted
236 credg <- credglcredg$correct != 1 ,]
237 credg_mean <- data.frame(x = unlist(as.data.frame(t(credgl,1:cat_nol))))

239 #Save predictions of the 0.025 and 0.975-quantiles for the plot

210 predg_default_high <- normal.fit[, 4, 1l:cat_no]

241 predg_default_low <- normal.fit[, 3, 1l:cat_mno]

242 indices_g <- as.integer (rownames (credg))

243 credg_high <- data.frame(x = unlist(as.data.frame(t(predg_default_high([indices_g, 1))))
244 credg_low <- data.frame(x = unlist(as.data.frame(t(predg_default_low[indices_g, 1))))
245 credg_high

247 indices_long_g <- rep(indices_g, each = cat_no)

248 cats_g <- as.character(rep(l:cat_no, times = nrow(credg)))

249

250 cred_full_g <- data.frame(student = indices_long_g, Probability = credg_mean$x,

251 upper = credg_high$x, lower = credg_low$x, Category = cats_g)

253 #Using the reformatted data frame the credible interval plot can be found
254 ggplot(data = cred_full_g, aes(x = Probability, y = as.factor(student))) +

255 geom_errorbarh (aes (xmin = lower, xmax = upper, color = Category), height = 0.3) +

256 ggtitle ("Probabilities with their credible intervals for each category") +

257 theme (plot.title = element_text(hjust = 0.5)) +

258 geom_pointrange (aes(x = Probability, xmin = lower, xmax = upper, color = Category), size =
0.3) +

259 scale_y_discrete (name = "Student")

260

261

262

263

2064 H#H#H##H#WRITING TO EXCEL FILE########

265 #Save some results in an excel file

266 data_excel <- list("default_mean" = pred_default, "default_low" = pred_default_low,
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"default_high" = pred_default_high)
openxlsx::write.xlsx(data_excel, file = "Results_brms.xlsx")

HAHHHA######Plotting used priorsHH#H#HHHHHHHHY

x_axis <- seq(-8, 8, length = 200)

plot(x_axis, dnorm(x_axis, mean = 0, sd = 2), type = "1", col = "black", ylim = c(0, 0.4),
main = "Different priors", xlab = "x", ylab = "Probability density")

lines(x_axis, dcauchy(x_axis, location = 0, scale = 2.5), col = "blue")

lines (x_axis, dt(x_axis, df= 3), col = "red")

legend ("topright", c("Normal", "Cauchy", "Student t, df=3"), col = c("black", "blue", "red"),
1ty = c(1, 1, 1))

59



	Introduction
	PRIME
	Overview of this project

	Background information
	Logistic Regression
	Multinomial Logistic Regression
	Bayesian statistics
	Choice of the prior
	Default prior of the UPG package
	Default prior of the BRMS package
	Cauchy prior
	Normal prior


	PRIME data analysis
	PRIME data
	Preprocessing
	Analysis of the data

	Model definition
	Multinomial Logistic Regression Model
	Markov Chain Monte Carlo method
	MLR using the UPG package
	Gibbs sampling

	MLR using the BRMS package
	Hamiltonian Monte Carlo sampling


	Results
	UPG model applied to uniformly generated data
	UPG model applied to PRIME data
	UPG model using Train-Test Split method
	Train-Test Split method
	Train-Test split method applied to the UPG model

	UPG Model using K-fold cross-validation
	BRMS model applied to PRIME data
	BRMS Model using K-fold cross-validation
	BRMS Model using Leave-One-Out Cross-Validation
	BRMS using different priors
	BRMS model using the Cauchy prior
	BRMS model using the Gaussian prior


	Conclusion and discussion
	Conclusion
	Future research and limitations

	Results, additional plots
	UPG applied to PRIME data
	UPG Model using Train-Test Split method
	UPG Model using K-fold cross-validation
	BRMS model using different priors
	BRMS model using the Cauchy prior
	BRMS model using the Gaussian prior


	Code for preprocessing and application to PRIME data
	Code for the UPG package
	Code for the BRMS package

