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Abstract
KeY prover has been used to verify parts of the OpenJDK library and Norwegian election

software, making it one of the most capable tools for formally verifying Java programs.
However, an intuitive explanation of its theoretical foundations, capabilities and limitations
is not available and the tool itself has a steep learning curve. This greatly increases the
amount of effort to understand the tool sufficiently well to evaluate its suitability for ones
needs. Here we implement two case studies to develop an intuition for the working of the
tool in practice, exploring what properties can or cannot be expressed as specifications
and what verifying correctness with KeY means. We find that the learning curve for KeY
is even steeper than expected and conclude that it can be used to verify very complex
functional and even some non-functional properties of sequential Java 7 code, conditioned
on the capabilities of the user.
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1 Introduction
Most would agree that it is good practice to test software before putting it into production.
However, in critical systems, where failure of software can be disastrous, a higher level of cor-
rectness assurance is desired and often required by law. Formal Verification is a method used
to provide such assurances about software by mathematically proving its correctness.

As the size and complexity of code increases, verification tools become essential to (partially)
automate and simplify the process. KeY [1] is one such tool, designed to semi-automatically
prove the correctness of sequential Java code through deductive verification.

Recent works like the verification of Norwegian election software [2] and parts of the Open-
JDK library [3]–[8] demonstrate the capability of KeY Prover, with bugs being found in classes
like LinkedList and OpenJDKs default sorting algorithm that are relied on by applications
running on billions of devices. Other literature on KeY includes extensions to support more
features of Java [9]–[12], tutorials to get members of the formal verification community started
with KeY [13]–[15], and a textbook [1]. While these works push the boundaries of what can
be done with KeY or provide guidance on using it, answers to questions about what verified
correctness means, the kind of guarantees KeY can provide, or the assumptions it depends on
are seemingly considered implicit and left unanswered. Answering these questions is necessary
for anyone that wishes to avoid unpleasant surprises where programs verified to be ‘correct’
behave in unexpected ways.

To make this knowledge easily available and understandable, we examined relevant literature
like the textbook [1] to understand the logical foundations, implemented two case studies – a
sorting algorithm and a key store data structure – and then gave our answers to the questions
based on our experience and reflected on the capabilities and limitations of the KeY Prover.

In doing this, we found that the learning curve was steeper than we expected due to the in-
teractive nature of the prover requiring knowledge and experience to recognize where the prover
gets stuck in attempted proofs and what guidance is required to finish the proofs. Limited doc-
umentation and support exacerbated this problem. While the tool is hard to use for beginners,
its support for interaction makes it capable of verifying complex real-world software that often
cannot be refactored to be made suitable for verification.
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2 Background
This section explains how the KeY prover works in three steps. Section 2.1 explains how
specifications can be provided as annotations in regular Java programs. Section 2.2 motivates
why KeY uses Dynamic Logic for internally representing the input. Finally, Section 2.3 explains
how KeY uses a suitable calculus, Sequent Calculus in its attempts to construct proofs of
‘correctness’.

2.1 What does the KeY Prover take as input?
The KeY prover is designed to formally verify that a program always respects a formal specific-
ation of its expected behaviour. In other words, it takes a formal specification and a program
as input and attempts to prove that the two match. An example of an input to KeY to verify
is given in Listing 1 below. The example is taken from the KeY textbook [1, Chapter 16] .

The listing contains a regular Java class PostInc, which is the program to verify, and some
comments containing Java-like statements which are the specifications. PostInc has two int
fields x and y declared in line 3 and a field rec of type PostInc in line 2. It has only one
method, postInc() in lines 11-13, that updates the fields x and y of rec by setting x to y, and
then incrementing y.

The specifications given in comments are in a modeling language called Java Modeling Lan-
guage (JML), and are required to start with the @ symbol. The comments from line 7-10
are a contract for the method postInc(). Contracts consist of the pre-conditions and post-
conditions that must hold for a method, specified through the ensures and requires keywords,
respectfully. We note that pre-conditions refer to variables in the state before the execution of
the method and post-conditions refer to the state after execution. The \old(...) expressions
in line 9 are used to refer to variables in their state before method execution in post-conditions.
This enables making assertions about change in state. For instance, the expression rec.y ==
\old(rec.y)+1 ensures that rec.y gets incremented by one by calling the method.

The word public on line 7 is an access specifier setting the visibility of the contract from
other classes, and normal_behavior is short for stating that if the pre-condition holds, the
program terminates and does so without raising any exceptions.

The comment on line 5, starting with invariant is called a class invariant, which is an
expression that must hold before and after the execution of all methods.

Listing 1: Example of program with specifications taken as input by KeY.
1 public class PostInc {
2 public PostInc rec;
3 public int x,y;
4

5 //@ public invariant rec.x >= 0 && rec.y>= 0;
6

7 /*@ public normal_behavior
8 @ requires true;
9 @ ensures rec.x == \old(rec.y) && rec.y == \old(rec.y)+1;

10 @*/
11 public void postInc () {
12 rec.x = rec.y++;
13 }
14 }
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2.2 What System of Logic does KeY use?
From the above listing, we see that ‘formal specifications’ for KeY are composed of Java-like
expressions that evaluate to a boolean value. These statements could be expressed as predicates,
i.e. in First Order Logic (FOL). However, composing these statements requires something more
than FOL as it has no constructs for expressing that a predicate should hold before or after the
execution of a program. In other words, it has no notion of state.

To address this gap in expressiveness, KeY uses Dynamic Logic (DL), which extends FOL
with a construct called modality to express state and talk about programs and assertions in the
same language. Modalities are denoted as either <p> or [p], and mean the final state of p, where
p is a valid program. Modalities are followed by assertions, with the expression <p>q meaning
that the program p ends in a state in which q holds. In other words, q is a post-condition for p.

Thus, the contract for a method M stating that if the pre-condition P holds for the state just
before calling M, then M is required to always terminate in a state in which post-condition Q holds,
can be expressed in DL as P → <M>Q. From this, we can see that formally verifying whether
M adheres to it’s contract or not can be reduced to showing that P → <M>Q is a tautology (a
statement that is always true). KeY takes the approach of deductive verification, i.e. logical
inference, to achieve this.

2.3 How does KeY perform deductive verification?
The following explanation of deductive verification up to the weakest pre-condition computa-
tion example follows a history of deductive verification given by Reiner Hähnle and Marieke
Huisman [16].

Deductive Verification has its roots in Floyd-Hoare logic and Dijkstra’s weakest precondi-
tions. Hoare built on Floyd’s work to introduce the Hoare triple, {P}S{Q}, stating that if a
program S is executed in a state in which P holds, then Q will hold for the state after the termin-
ation of the program, provided it terminates [17], [18]. We can recognise this as a formulation
of the modalities we just saw for dynamic logic, i.e. P → <S>Q, and indeed, the original version
of dynamic logic was introduced by Pratt [19] based on Floyd-Hoare logic.

Floyd and Hoare proposed a set of syntactic proof rules to prove the correctness of an
algorithm. For instance, if we suppose the program S is composed of two statements S1;S2, and
we wish to show that {P}S{Q} holds, then we can apply the proof rule for statement composition
to simplify the task:

{P}S1{R} {R}S2{Q}
{P}S1;S2{Q}

This big-step semantics [20] rule expresses that to prove that if S1;S2 is executed in a state
satisfying precondition P, and if it terminates in a state satisfying Q, it is sufficient to find an
intermediate assertion R, such that R can be established as a post-condition for the first statement
S1, and is a sufficient pre-condition for S2 to establish post-condition Q. What we see here is
that the correctness problem for a complete algorithm S can be broken up into a correctness
problem of its individual instructions S1 and S2.

Dijkstra observed that it is possible to compute the minimal pre-condition that is necessary to
guarantee that a program will establish a given post-condition [21]. This simplifies verification,
because one no longer has to ‘invent’ the intermediate predicate that describes the state between
two statements, but this can be computed. In particular, the weakest precondition wp for a
statement S1;S2 can be computed using the following rule:

wp(S1;S2, Q) = wp(S1, wp(S2, Q))
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More rules exist for other kinds of instructions. These rules can be applied repeatedly by
matching the expression being proven with the expression below the horizontal line of proof
rules, and applying them upwards by substituting the matching part of the expression with the
part of the proof rule above the horizontal line. This process results in a proof tree that grows
upwards, possibly spreading into multiple branches (as for example with the rule of composition
given above), and with the expressions ideally getting progressively simpler until they can be
reduced to true. A proof is complete when all branches can be reduced to true.

The question of what does proving correctness with KeY mean becomes a question of what
can be specified in a contract, because KeY simply ensures that the program being verified
adheres to it’s contract. Answering this requires looking into its expressive capabilities and also
it’s default assumptions, which we do by the means of case studies in Section 4. The question
is finally answered in Section 5.1.

3 Problem Description
We perform two case studies in verifying software with KeY – one on a sorting algorithm and
the other on a key store data structure. Correctness criteria for verification in the two case
studies are presented in Section 3.1 and Section 3.2 respectively.

3.1 Sorting algorithm
A sorting algorithm takes as input a sequence of elements belonging to a totally ordered set and
produces a permutation of the input sequence which respects the total ordering. That is, the
following three properties must hold for the sorting algorithm –

Termination: the algorithm terminates in finite time for any finite input

Permutation: the output is a permutation of the input

Monotonicity: the output elements are in non-decreasing order

3.2 Key Store
A key store is a data structure that maintains an association from a set of keys to a collection of
values. It minimally supports operations like creating or deleting associations and using a key
to get the associated value if a mapping exists. The operations can be specified as –

get(int key): Returns value associated with key, or null if no mapping
for key is found

put(int key, Object value): Ensures that calling get(key) returns value

remove(int key): Ensures that calling get(key) returns null

Some additional constraints placed on the store are -

1. there cannot be two mappings from the same key

2. the store must not be modified in any way other than specified above

3. all methods must terminate in finite time on all inputs without raising an exception.
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4 Case Studies
Our approach to the case studies was to learn the basics of using KeY by following the tutorials
in the textbook [1, Part IV] and then starting with the case studies themselves, as opposed
to first studying the textbook thoroughly and only then starting with the case studies. This
was done considering the fixed time of less than 10 weeks available to complete the study, and
because the case studies themselves appeared to be quite simple. The intention was to quickly
finish the cases, learning whatever is required in the process and then expand the scope of the
project. However, we only managed to completely prove the correctness of a simple key store
and partially prove the correctness of the insertion sort sorting algorithm.

We initially planned on verifying Selection Sort but found that the tutorial verified it as an
example [14]. Since the example looked very straightforward, we decided to start doing the key
store first and return later to do Insertion Sort. However, we first present the implementation
and specification details for the sorting algorithm case study in Section 4.1 and then the key
store case study in Section 4.2.

4.1 Sorting Algorithm
This section covers the implementation details of the Insertion Sort algorithm in Section 4.1.1
and the specification details in Section 4.1.2. Section 4.1.3 briefly explains how we arrived at the
implementation we used. We also make use of this case study to explain some more constructs
like loop invariants used for writing specifications.

4.1.1 Implementation of Insertion Sort

We implemented a modified version of the insertion sort algorithm, shown in Listing 2. The im-
plementation consists of a class SwapInsertionSort with the sorting method void sort(int[]
a) in lines 2-6 which sorts an int[] array a in-place in non-decreasing order. It does this using
two helper methods: void shift(int[] a, int i) in lines 7-10, which shifts the i’th element
of a to its correct relative position in the sub-array a[0..i], and void swap(int a[], int j,
int j1) in lines 12-16, which swaps the elements of a at indices j and j1.

The algorithm conceptually divides its input array into a sorted initial segment comprising
of the first element a[0] of the array and the remaining unsorted segment. The variable i
introduced in the for loop in line 3 denotes the boundary between the two segments and itself
lies in the unsorted part. With each iteration of the loop, the algorithm shifts the element just
beyond the boundary, at the i’th index, to its correct relative position in the sorted segment
of the array by calling shift in line 4, thus growing the sorted segment (indicated by i being
incremented in line 3) until the entire array is sorted. This implementation of insertion sort
deviates from typical implementations by using swaps to perform the shifting.

Listing 2: Implementation of the Insertion Sort algorithm
1 class SwapInsertionSort {
2 void sort(int[] a) {
3 for (int i = 1; i < a.length; i++) {
4 shift(a, i);
5 }
6 }
7 void shift(int[] a, int i) {
8 for (int j = i-1; j >= 0 && a[j] > a[j+1]; j --) {
9 swap(a, j, j+1);

10 }
11 }
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12 void swap(int[] a, int j, int j1) {
13 int tmp = a[j];
14 a[j] = a[j1];
15 a[j1] = tmp;
16 }
17 }

4.1.2 Specification and Verification of Insertion Sort

Listing 3 presents specifications sufficient for KeY to automatically verify the correctness of
the sort method. The contract for sort, given in lines 1, 2 and 3 express the termination,
permutation and monotonicity properties from the problem description in Section 3.1 respect-
ively. In particular, the permutation property on line 2 makes use of the in-built Algebraic Data
Type (ADT) for sequences, \seq, to represent a in the states before and after the method and
then makes use of an in-built predicate \dl_seqPerm to check whether the two sequences are
permutations of each other. We also note the use of the quantifier ∀ expressed as \forall in
line 3, to introduce a variable int x, and then constrain its value in [0..i-2] inclusive and
state that a[x] <= a[x+1].

The body of sort uses an unbounded loop (i.e. the number of executions is not fixed).
Reasoning about unbounded loops in general is difficult. Most verification approaches make use
of loop invariants to reason about programs containing loops. Loop invariants are conditions
that hold in the program state immediately before entering a loop and after each execution of the
loop body. This means that the invariant will also hold if the loop termination guard becomes
false, making the loop invariant available to use for reasoning after the loop. In the case of
sort, if we combine the loop guard i < a.length with the loop invariant on line 6 stating 0 <=
i <= a.length, we see that the loop can only terminate when i == a.length. If we further
combine this with the invariant on line 8, which states that montonicity is established for the
initial segment a[0..i], we get that the entire array is sorted on termination of the loop. The
invariant on line 7 states that a is only permuted, thus showing that if the loop terminates, then
a is ‘correctly’ sorted. Only two things remain to be shown to prove the correctness of sort –
that the loop invariants specified actually are loop invariants, and that the loop terminates.

For KeY to prove that the loop terminates, it is sufficient for it to prove that the expression
in the decreases clause on line 10 strictly decreases after each iteration, and is bounded from
below. We can see that these are indeed true as the term a.length-i strictly decreases because
i strictly increases, and is bounded from below because a.length is constant and i is bounded
from above.

KeY proves the validity of loop invariants inductively. This involves showing that they hold
before the start of the loop, which can easily be seen in our case, and to show that they hold after
an arbitrary execution of the loop given that they held before it. This means showing that the
loop body, which in this case only contains a call to shift, always preserves the loop invariants.
By default, KeY deals with method calls by first proving that the pre-conditions specified in
its contract hold and then assuming that the post-conditions hold after the method call. It is
straightforward to see that the pre-conditions of shift hold because of the loop invariants being
true before the method call and that its post-conditions on lines 20 and 21 correspond exactly
to the loop invariants on lines 8 and 7. Thus, the prover is able to establish the correctness of
sort.

Listing 3: Specifications for sort and shift methods
1 /*@ normal_behaviour
2 @ ensures \dl_seqPerm (\ dl_array2seq(a), \old(\ dl_array2seq(a)));
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3 @ ensures (\ forall int x; 0 <= x < a.length -1; a[x] <= a[x+1]);
4 @*/
5 void sort(int[] a) {
6 /*@ loop_invariant 1 <= i <= a.length;
7 @ loop_invariant \dl_seqPerm (\ dl_array2seq(a), \old(\ dl_array2seq(a)));
8 @ loop_invariant (\ forall int x; 0 <= x < i-1; a[x] <= a[x+1]);
9 @ assignable a[*];

10 @ decreases a.length - i;
11 @*/
12 for (int i = 1; i < a.length; i++) {
13 shift(a, i);
14 }
15 }
16

17 /*@ normal_behaviour
18 @ requires 1 <= i < a.length;
19 @ requires (\ forall int x; 0 <= x < i-1; a[x] <= a[x+1]);
20 @ ensures \dl_seqPerm (\ dl_array2seq(a), \old(\ dl_array2seq(a)));
21 @ ensures (\ forall int x; 0 <= x < i; a[x] <= a[x+1]);
22 @ assignable a[0..i+1];
23 @*/
24 void shift(int[] a, int i) {...}

While we have proven the ‘correctness’ of sort, this correctness is conditioned on the cor-
rectness of the implementation of shift used. We were, however, unable to automatically verify
the correctness of the implementations of shift and swap. Their complete implementations and
specifications are available in Listing 9 in Appendix A, and a detailed discussion is omitted due
to their similarity to the specification for sort.

4.1.3 Process

We started with a regular implementation of Insertion Sort and broke it into two methods, sort
and shift to make it similar to how Selection Sort was done using sort and max in the book [1].
However, it was unable to verify that the shift method only permuted the array (this was
more complicated than the case of Selection Sort as the permutation property is temporarily
violated in the loop performing the shifting and gets re-established after). So we changed the
implementation to only use swaps to modify the array, like the given examples of Selection Sort
and Quick Sort. However, we could not prove it for this implementation either, so we extracted
swap into a separate method and tried proving that it only permutes an array. This also failed
to complete automatically and requires user guidance. We were also unable to establish the
monotonicity property of shift, but believe we can get the prover to do this automatically if we
spend some more time on this.

4.2 Key-Value store
This sub-section goes over the implementation and specification of a key store for verification
in Section 4.2.1 and Section 4.2.2 respectively. Section 4.2.3 explains how we arrived at the
implementation we verified in the end.

4.2.1 Implementation

We implemented a simple key store allowing for keys of type int, values of type Object, and
performing get, put and remove operations in linear time. The implementation is given in
Listing 4. It omits the bodies of the get and remove methods as they are similar to the put
method.
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The listing contains the class KeyStore with the private fields int[] keys, Object[] values
and int size in lines 2-4 for keeping track of the keys, values and number of entries in the data
structure respectively. It has the methods get, put and remove, which each rely on the helper
method findIndex in lines 6-13 to iterate over the store and find the index at which a specific
key is stored in the data structure, if at all present. The methods then perform their respective
operations on the entry located at the returned index. The implementations of get and remove
along with other methods like enlarge can be found in the appendix in Listing 10.

Listing 4: Implementation of KeyStore
1 public class KeyStore {
2 private int[] keys;
3 private Object [] values;
4 private int size;
5

6 private int findIndex(int key) {
7 for(int i = 0; i < size; i++) {
8 if(keys[i] == key) {
9 return i;

10 }
11 }
12 return -1;
13 }
14 public Object get(int key) {...}
15 public void put(int key , Object value) {
16 int index = findIndex(key);
17 if (index == -1) {
18 keys[size] = key;
19 values[size ++] = value;
20 }
21 else {
22 values[index] = value;
23 }
24 }
25 public void remove(int key) {...}
26 }

4.2.2 Specification

Specifications for data structures often include constraints limiting the states that the structure
can legally be in, in addition to the conditions on the inputs and outputs of methods operating
on the structure. Such constraints on the state of an object, which must be respected once the
execution of any method finishes, are called class invariants. They can be specified using the
keyword invariant, which is shorthand for adding the condition as a pre and post condition to
the contracts of each method of the class. Listing 5 contains the invariants that the key store
operations must maintain. For example, the invariant on line 6 states that keys in the key store
must be unique. The other invariants, such as the lengths of the keys and values arrays being
the same, or the size of the key store not exceeding the lengths of the underlying arrays, are
specific to the implementation.

We note that line 1 of the listing shows the nullable annotation being added to the declar-
ation of values, the invariant on line 2 states that the array values itself cannot be null and
the invariant on line 5 states that the elements of values in use for storing entries in the key
store cannot be null. Put together, their meaning is that only elements of values that are not
in use for storing entries can be null.
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Listing 5: Class invariants for KeyStore
1 private /*@ nullable @*/ Object [] values;
2 /*@ private invariant keys != null && values != null && keys != values;
3 @ private invariant keys.length == values.length;
4 @ private invariant 0 <= size && size <= keys.length;
5 @ private invariant (\ forall int i; 0 <= i && i < size; values[i] != null);
6 @ private invariant (\ forall int x, y; 0 <= x && x < y && y < size;

keys[x] != keys[y]);
7 @ private invariant \typeof(keys) == \type(int []) && \typeof(values) ==

\type(Object []);
8 @*/

Listing 6 shows a model method boolean contains(int key) that is used in the spe-
cifications of most other methods to express the presence or absence of a particular key. The
restrictions placed on model methods are that they are only available for use in specifications,
they must be pure and that their body, if provided, must always terminate. However, they also
significantly increase the expressiveness of JML as model methods can make use of JML expres-
sions in the body, or be made abstract (defining the method signature but not the body) and
instead rely on pre and post conditions to declare their behaviour. Such ‘abstract’ declarations
of methods can be used in specifications because the methods are never run on concrete inputs
and their contracts suffice to reason about them. In our case, we haven’t defined a contract for
contains but instead use it as shorthand for the predicate returned by its body.

Listing 6: Definition of the model method contains
1 /*@ model public boolean contains(int key) {
2 @ return (\ exists int i; 0 <= i && i < size; keys[i] == key);
3 @ }
4 @*/

The specification for put in Listing 7 below is actually composed of two contracts, separated
by the keyword also on line 6. The first contract is for the case when the store does not contain
a mapping for key, and ensures that calling get(key) just after put returns value, the variable
size is incremented and that all other entries are unmodified. The method also expects size to
be strictly less than keys.length, indicating that there is space in the store for another entry.
This is a design decision which puts the responsibility of ensuring sufficient space in the data
structure on the client. We note that because the method get is pure (without side effects), we
are able to use it in the specification.

The second contract is quite comparable to the first, only being for the complementary case
of a mapping for key already being present in the key store. It ensures that the old value
associated to key is replaced with the new one, calling get with key returns value, and size
and other entries are not changed.

Listing 7: Specification of the put method
1 /*@ public normal_behaviour
2 @ requires !contains(key) && size < keys.length;
3 @ ensures get(key) == value && size == \old(size) + 1;
4 @ ensures (\ forall int x; 0 <= x < size - 1; keys[x] == \old(keys[x]) &&

values[x] == \old(values[x]));
5 @ assignable keys[*], values [*], size;
6 @ also
7 @ public normal_behaviour
8 @ requires contains(key);
9 @ ensures get(key) == value && size == \old(size);

10 @ ensures (\ forall int x; 0 <= x < size; keys[x] == \old(keys[x]) && (key
== keys[x] || values[x] == \old(values[x])));
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11 @ assignable values [*];
12 @*/
13 public void put(int key , Object value) {
14 int index = findIndex(key);
15 if (index == -1) {
16 keys[size] = key;
17 values[size ++] = value;
18 }
19 else {
20 values[index] = value;
21 }
22 }

Since the put method makes use of findIndex, its correctness depends on the implementa-
tion of findIndex also adhering to its specification, given in Listing 8. The contract in lines 1-4
simply states that the method returns -1 if the key store has no entry for the parameter key and
returns its index otherwise. The pure annotation bars side effects and the loop invariant in the
method body states that the key being searched for is not present in the sub-array keys[0..i].
This is the case because the method would have already returned otherwise. This is sufficient
for the prover to be able to show that the method returns -1 if the loop continues till the loop
guard becomes false rather than exiting early, and the code itself is enough to verify the other
case of exiting early.

Listing 8: Specification of the findIndex method
1 /*@ public normal_behaviour
2 @ ensures contains(key) ==> 0 <= \result < size && keys[\ result] == key;
3 @ ensures !contains(key) ==> \result == -1;
4 @*/
5 private int /*@ pure @*/ findIndex(int key) {
6 /*@ loop_invariant 0 <= i && i <= size
7 @ && (\ forall int x; 0 <= x && x < i; keys[x] != key);
8 @ assignable \nothing;
9 @ decreases size - i;

10 @*/
11 for(int i = 0; i < size; i++) {
12 if(keys[i] == key) {
13 return i;
14 }
15 }
16 return -1;
17 }

The specifications of get, remove and other methods are omitted as they are comparable
to what we have discussed for put in this section. They can still be found in the appendix in
Listing 10.

4.2.3 Process

We started with trying to verify a hash map that used separate chaining for handling collisions.
We tried guiding the prover where it got stuck and read the textbook to understand new things
encountered but could not make much progress. After a few weeks, we took the advice of our
peers and switched to verifying a simple key store consisting of a single array of type Entry
storing key-value pairs and performing the three main operations by doing linear scans. None
of its methods could be verified automatically. The incomplete proof trees led us to believe
that the problem might be in how we were handling Objects. We referred to a study on
verifying OpenJDK’s IdentityHashMap [4] and immediately found that they used == for testing
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equality rather than equals. By changing this, the pure methods get and contains were now
automatically verifiable, but put and remove were not.

We noticed later that the paper also compared the performance of KeY in verifying imple-
mentations of hash maps that differed in how they handled collisions (separate chaining or linear
probing) and the types of keys and values supported (int-int, int-Object, Key-Object using ==
for equality and Key-Object using equals for equality, where Key is a class with an immut-
able field for storing an Integer key), and reported that the prover was unable to automatically
verify the correctness of put and remove in the implementations using non-primitive keys. We
also noted that they used separate arrays for keys and values rather than a class like Entry.
Adapting our implementation did not result in improvements and the prover still got stuck at
similar stages of the proof.

Another notable difference between our implementation and theirs was that they relied on
a findIndex method, which makes sense for a hash map, to perform all three operations,
and also used it in their specifications, whereas we used the contains method and loops for the
implementations, and more importantly used \exists to talk about the index at which the entry
to be operated on is located in the specifications. Replacing the quantifier with findIndex in the
specifications resulted in all operations being proven by KeY automatically. By also changing
contains to a model method, we arrive at the implementation we just described in the previous
sub-sections.

5 Discussion
We had set out to write this paper with the goals of providing an intuitive understanding of
the working of KeY, and explaining what it means to prove something to be correct using it.
Section 2 and Section 4 have been written with the first goal in mind. Section 5.1 discusses the
meaning of correctness and explains the kind of guarantees KeY provides and the assumptions
it relies on to do so. Section 5.2 talks about how the principle of Design by Contract makes
programs easier to verify, Section 5.3 is on the complementary nature of testing and formal
verification and Section 5.4 discusses the intended approach for using KeY and how we used
it in the case studies. Finally, Section 5.5 summarizes the capabilities and limitations of using
KeY in practice.

5.1 Meaning of Correctness, Guarantees and Assumptions
It should be quite evident at this point that the prover only verifies that the implementation
adheres to the provided specification, meaning that the criteria for correctness have to be defined
by the programmer. There are, however, several assumptions made by KeY that impact the
meaning of correctness. For example, KeY assumes that Objects are not allowed to be null
by default and need an explicit nullable annotation. Both the case studies rely on this, as
the sorting algorithm does not perform null checks on the array passed as input, and the get
method of the key store returns null to indicate the absence of a key without having to address
the case where a key is actually mapped to null. Other assumptions are for instance the
integer semantics used (overflow checking), allowing exceptions to be thrown and caught, and
assumptions about the memory model.

Since correctness depends on the specifications, the kind of guarantees KeY can provide are
whatever can be expressed in specifications. JML can be used to express arbitrarily complex
functional properties for sequential Java 7 code, but it has also been used to express non-
functional properties like information flow and resource usage with the help of constructs for
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defining memory locations accessible in code, and ghost variables to for instance count the
number of calls made to a method.

5.2 Verifiable Code
Doing the case studies has made it clear to us that just like there is a notion of testable code,
there is also verifiable code. We gave an example in Section 4.2.3 where we talked about how
using the method findIndex in our specifications instead of using \exists quantifiers simplified
our specifications significantly and allowed the prover to start proving all methods of the key
store automatically. This clearly highlighted how some specifications are a lot more amenable
to verification than others, despite being equivalent in meaning. Another example of this was
seen in how we split the implementation of Insertion Sort into three methods, allowing us to
prove a part of the algorithm and focus our efforts on the remaining unproven parts. In general,
deductive verifiers benefit from modularized programs following the principles of Design by
Contract. The reason for this is that verifying smaller methods is a lot more computationally
feasible, and because the contracts are used instead of the bodies of called methods, which
can provide valuable information to guide provers in their search for proofs for larger pieces of
software relying on other methods.

5.3 Automated Formal Verification vs Testing
Our experience verifying a very simple hash method revealed that automated formal verification
cannot play the role of testing. The hash method int hash(int key) was implemented to
simply return key % a.length where a was the bucket array, and we wished to ensure that the
value returned by the method always lies between 0 and a.length. However, we were simply
unable to prove this. After many hours, we thought to actually test the method and found that
m % n returns a negative number in Java if m is negative and n is positive.

To prove the correctness of a program, it (and its specification) must be correct in the first
place. Quicker approaches with better feedback like testing should be used to gain confidence
in a program before attempting to prove its correctness. Other studies using KeY have also
reported on using this approach [4]. We also note that several of the papers attempting to
verify software ended up finding bugs in them [5], [6], [8].

5.4 The Design of KeY and how we used it
KeY was designed with the verification of complex real-world Java programs in mind, in a time
when computation power was much more limited. Even today, automated provers are limited
by computation power required due to an explosion in the proof search space with increasing
complexity of programs. As a result, KeY is more like an interactive proof assistant but with
support for automating a lot of the tedious work in proofs. Combining the intuition of the
user and the automation of the prover have allowed it verify or find bugs in complex pieces of
software.

The intended approach for using KeY is to run the automated prover, and if it gets stuck,
inspect the attempted proof and either guide the prover to finish the proof or adjust the imple-
mentation and specification and try again. We attempted to follow this approach for the first
few weeks of the study but made limited progress. This was due to a combination of lack of
experience to be able to quickly identify relevant information from the attempted proof and a
lack of knowledge on what the right rules to guide the prover might be or what the implications
of some of the information presented in the interface are.
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In the later half of the study, we reduced the time spent trying to finish proofs interactively
and instead took on a trial and error approach. We tried to quickly identify which clauses might
be problematic by looking at the branching of the proof tree and the highlighted parts of the
specification also shown in the interface, and then adjust the implementation or specification.
This was done taking inspiration from a peer doing a similar study with Dafny, which gave
feedback by simply highlighting which conditions could not be proven. This approach allowed
us to arrive at automatically verifiable code more often, but is a sub-optimal way of using KeY.

5.5 Capabilities and Limitations of KeY
The biggest strength of KeY is also its biggest drawback. It is very capable of verifying complex
software but is itself quite complex with a steep learning curve in order to achieve this. Another
study by non-expert users of KeY attempting to verify parts of the OpenJDK’s API identifies
problems like a requirement of expertise in the underlying proof theory, challenges in identifying
whether a proof cannot be closed because of a mistake in the specification or in the imple-
mentation and the large impact of the choice of the prover configuration on the performance
of the prover [7], matching our experience. We also observed that most of the studies verifying
complex software with KeY include the developers of KeY as co-authors, and the usage of the
tool appears to be limited to a handful of people. As a result, availability of documentation and
support is also limited. A question we asked on StackOverflow about proving the swap method
for sorting is still unanswered after several weeks1.

For writing and verifying new software, other tools might be more easy to use. For instance,
Ada/SPARK is used in industry for writing verified software and is quite mature. A list of
deductive verification tools can be seen in Table 1. However, there are no comparable tools to
KeY for deductive verification of Java software, especially software that cannot be refactored to
be made easier to verify. Other tools do exist for other kinds of formal verification of Java and
are mentioned in Section 7 on related work.

6 Responsible Research
There are two main ethical aspects to this study – reproducibility and societal impact, covered
in Section 6.1 and Section 6.2.

6.1 Reproducibility
All code presented in this paper is available in a public GitHub repository2 under an MIT
license. The repository provides a full provenance of how the code came to its present state,
and the code from attempts at verifying different implementations in the case studies that failed
have also been left in the repository. It also provides instructions for replicating the proofs. Key
decisions made in performing the case studies are documented in the sub-sections on process in
Section 4. The version of KeY used is 2.12.3. No plugins for KeY were used. No datasets were
used or produced in the course of this study.

1StackOverflow post: https://stackoverflow.com/questions/79656775/key-prover-failing-to-verify-that-
swapping-two-elements-of-an-array-results-in-a

2link: https://github.com/Tejas-Kochar/key-verifier/
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6.2 Societal Impact
Formal verification has significant impact on society due to its use in critical systems for provid-
ing correctness guarantees. KeY itself has been used to verify the correctness of real-world
software like that used for tallying results in Norwegian elections or parts of the OpenJDK
library which are depended upon by applications running on billions of devices. However, these
were done by researchers to demonstrate the capabilities of the tool. The usage of KeY otherwise
appears to be quite limited due to a variety of reasons which significantly reduces its societal
impact in practice compared to some other formal verification tools that are used for critical
systems in industry. This paper aims to make it easier to understand the tool and highlight
its limitations and capabilities, thus making the tool more accessible and reducing the risk of
incorrect usage.

7 Related Work
This study is one of five such studies, each aiming to understand an automated program veri-
fication tool. The over-arching goal is to get a sense of the kind of correctness guarantees the
tools give and the kind of technologies they use to prove correctness. Other work has been done
in similar directions. Hähnle and Huisman give an overview of the field of deductive verifica-
tion, including a very nice summary of the underlying theory and an account on the evolution of
tools [16]. Boerman et. al perform a case study on the syntactic and semantic differences in how
KeY and OpenJML treat JML specifications with a goal of gaining insights for interoperability
of tools on the same specifications [22]. Software Verification competitions are held annually to
compare different verification tools and exchange new techniques and advancements [23].

A non-exhaustive list of actively maintained deductive verification tools is given in Table 1 in
Appendix B. All the tools in the list are capable of static verification. Some tools like VerCors,
VeriFast and SPARK/Ada can check for memory safety. We also note that Boogie, Viper and
Why3 are used as backends for a large number of other tools. Hähnle and Huisman discuss a
subset of the tools in the list in greater detail [16] but miss more recent tools based on Viper
and tools like Stainless and Cameleer that verify more niche languages (Scala, OCaml).

Some other notable tools relevant for Java include the likes of Infer and TLA+. Infer
performs fully automated deductive verification based on separation logic to verify the memory
safety of C programs [24]. It has been extended to automatically check for a wide range of bugs
in languages like Java, C, C++ by static analysis and is a part of Meta’s CI pipeline3. TLA+,
on the other hand, is a language for formally specifying distributed algorithms which can then
be checked by model checkers [25]. Amazon has used it to specify and check their designs for
industrial distributed systems like DynamoDB implemented in Java [26].

Several case studies have been done with KeY. Kroening and Păsăreanu describe its usage
to find a bug and verify a fixed implementation of an implementation of TimSort, used as the
standard sorting algorithm in OpenJDK [5]. Knüppel et. al share their perspective of verify-
ing parts of OpenJDK’s API as non-expert users of KeY [7]. Hiep et. al verified OpenJDK’s
LinkedList data structure and the bugs found in the attempt [6]. Finkbeiner and Kovács at-
tempted to verify and found bugs in an implementation of the in-place super scalar sample sort
algorithm [3], and similarly Herber and Wijs found bugs in OpenJDKs BitSet class [8].

3Website:https://fbinfer.com/docs/about-Infer
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8 Conclusions and Future Work
KeY is a powerful tool but has a very small user base and a steep learning curve. Verifying the
correctness of a program with it means proving that the program adheres to its specifications. Its
specifications can be used to express functional and even some non-functional properties using
the expressive Java Modeling Language (JML). However, one is required to have an know the
assumptions of JML and KeY which can often blindside new users. It is hard to get feedback on
where problems are from failed attempts of proofs as they require inspecting the proof tree and
the current state of the proof. This is a significant disadvantage compared to approaches like
testing that provide easy-to-understand feedback fast, as a result of which we only see formal
verification complementing testing.

The goal of this paper is to give an intuition of how the tool works and what it is like to
use it in terms of its limitations and capabilities. This naturally abstracts away a lot of details.
Having had an intuition of how the tools work, it is perhaps now even more important to know
which aspects have not been covered. This paper does not touch upon the concepts of Symbolic
Execution, Framing, Algebraic Data Types, Taclets, helper functions, the memory model, the
use of access specifiers, handling of generics and more. A comprehensive treatment of these
can be found in the textbook [1]. Even more importantly, we do not touch upon the several
plugins and tools in the KeY ecosystem, for instance the Symbolic Execution Debugger, test
case generation and Eclipse plugins. KeY is due for a major version upgrade and its latest beta
versions support user defined ADTs, functions, a new in-built ADT for modelling maps, etc. We
expect these features to make it a lot easier for the automated prover to verify things, making
case studies like this much easier.

This study was quite limited in its duration and scope and a lot could be done to expand
on them. Future work could investigate the many tools being built around KeY or explore the
support for newer features like concurrency and floating point operations. We also see a lot of
potential in using formal verification for generating code using LLMs by first defining a formal
specification and then checking the correctness of generated code against it.
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A Code Listings
All code made in this study is available in a public GitHub repository: https://github.com/Tejas-
Kochar/key-verifier/

Listing 9: Complete specifications for shift and swap helper methods for Insertion Sort
1 /*@ normal_behaviour
2 @ requires 1 <= i < a.length;
3 @ requires (\ forall int x; 0 <= x < i-1; a[x] <= a[x+1]);
4 @ ensures \dl_seqPerm (\ dl_array2seq(a), \old(\ dl_array2seq(a)));
5 @ ensures (\ forall int x; 0 <= x < i; a[x] <= a[x+1]);
6 @ assignable a[0..i+1];
7 @*/
8 void shift(int[] a, int i) {
9 /*@

10 @ loop_invariant -1 <= j < i;
11 @ loop_invariant \dl_seqPerm (\ dl_array2seq(a), \old(\ dl_array2seq(a)));
12 @ loop_invariant (\ forall int x; j+1 <= x < i; a[x] <= a[x+1]);
13 @ loop_invariant (\ forall int x; 0 <= x < j; a[x] <= a[x+1]);
14 @ decreases j+1;
15 @ assignable a[0..i+1];
16 @*/
17 for (int j = i-1; j >= 0 && a[j] > a[j+1]; j --) {
18 swap(a, j, j+1);
19 }
20 }
21

22 /*@ normal_behaviour
23 @ requires 0 <= j < a.length && 0 <= j1 < a.length;
24 @ ensures \old(a[j]) == a[j1] && \old(a[j1]) == a[j];
25 @ ensures \dl_seqPerm (\ dl_array2seq(a), \old(\ dl_array2seq(a)));
26 @ assignable a[j], a[j1];
27 @*/
28 void swap(int[] a, int j, int j1) {
29 int tmp = a[j];
30 a[j] = a[j1];
31 a[j1] = tmp;
32 }

Listing 10: Complete implementation and specification of get and remove methods of KeyStore
1 /*@
2 @ public normal_behaviour
3 @ ensures contains(key) ==> \result == values[findIndex(key)];
4 @ ensures !contains(key) ==> \result == null;
5 @ assignable \nothing;
6 */
7 public Object /*@ pure @*/ get(int key) {
8 int index = findIndex(key);
9 if(index == -1) {

10 return null;
11 }
12 else {
13 return values[index ];
14 }
15 }
16

17 /*@
18 @ public normal_behaviour
19 @ requires contains(key);
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20 @ ensures !contains(key);
21 @ ensures size == \old(size) - 1;
22 @ ensures (\ forall int x; 0 <= x < size;
23 @ (keys[x] == \old(keys[x]) && values[x] == \old(values[x]))
24 @ || (keys[x] == \old(keys[size -1]) && values[x] ==

\old(values[size -1])));
25 @
26 @ also
27 @
28 @ public normal_behaviour
29 @ requires !contains(key);
30 @ ensures !contains(key);
31 @ assignable \nothing;
32 @*/
33 public void remove(int key) {
34 int index = findIndex(key);
35 if (index != -1) {
36 size --;
37 keys[index] = keys[size];
38 values[index] = values[size];
39 }
40 }
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B Tables

Table 1: Actively maintained deductive verification tools (Tool), the programming languages
they can verify (Target PL) and tools used internally for verification (Backend)

Tool Target PL Backend

AutoProof Eiffel Boogie
Boogie BoogiePL Z3, other SMT solvers
Cameleer OCaml Why3
Dafny Dafny Boogie
Frama-C C Why3
Gobra Go Viper
KeY Java KeY prover, SMT solvers
Nagini Python Viper
OpenJML Java SMT solvers
Prusti Rust Viper
SPARK/Ada Ada GNATprove, Why3
Stainless Scala Z3, CVC4, CVC5
VCC C Boogie
VerCors Java, C, PVL Viper
VeriFast C, Java Z3, other SMT solvers
Viper Silver Boogie
Why3 WhyML, MicroPython,

micro C, OCaml
SMT Solvers, ATPs
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