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A B S T R A C T   

Hydraulic modeling of a foul sewer system (FSS) enables a better understanding of the behavior of the system 
and its effective management. However, there is generally a lack of sufficient field measurement data for FSS 
model development due to the low number of in-situ sensors for data collection. To this end, this study proposes a 
new method to develop FSS models based on geotagged information and water consumption data from smart 
water meters that are readily available. Within the proposed method, each sewer manhole is firstly associated 
with a particular population whose size is estimated from geotagged data. Subsequently, a two-stage optimi
zation framework is developed to identify daily time-series inflows for each manhole based on physical con
nections between manholes and population as well as sewer sensor observations. Finally, a new uncertainty 
analysis method is developed by mapping the probability distributions of water consumption captured by smart 
meters to the stochastic variations of wastewater discharges. Two real-world FSSs are used to demonstrate the 
effectiveness of the proposed method. Results show that the proposed method can significantly outperform the 
traditional FSS model development approach in accurately simulating the values and uncertainty ranges of FSS 
hydraulic variables (manhole water depths and sewer flows). The proposed method is promising due to the easy 
availability of geotagged information as well as water consumption data from smart water meters in near future.   

1. Introduction 

As a result of population growth and rapid urbanization, spatial 
scales and structural complexities (e.g., the number of pipes, pumps and 
weirs) of many foul sewer systems (FSSs) have substantially increased 
over the past few decades (Rokstad and Ugarelli, 2015). These physical 
changes combined with system ageing result in a number of challenges 
for FSS management or operation (Sweetapple et al., 2018). Typical 
issues include pipe blockages (Montes et al., 2020), manhole overflows 
(Liu et al., 2016), odor problems (Talaiekhozani et al., 2016), illicit in
flows (e.g., toxic discharges from local factories, rainwater infiltration, 
groundwater intrusion (McCall et al. 2016), and sewer exfiltration 
(Lepot et al. 2016; Beheshti and Saegrov 2018)). These issues can either 

directly induce serious contamination to the surrounding water envi
ronments (Lepot et al., 2016; Beheshti and Saegrov, 2018), or cause 
functional failures of wastewater treatment plants and consequently 
result in significant contamination of the receiving water body (McCall 
et al., 2016). Therefore, an efficient and effective management strategy 
for the FSS is vital to the urban environment safety as well as sustainable 
development of the society (Bailey et al., 2019). 

One promising approach to enable effective FSS management is 
through hydraulic modeling (See et al., 2009; Draude et al., 2019). 
Typically, simulations of the FSS hydraulic variables (water depth and 
flows) can be compared with the in-situ observations, thereby identi
fying anomalies when observed water depths differ significantly from 
the simulation results (Ahm et al., 2016; Bailey et al., 2019). However, 
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ensuring the high performance of an FSS hydraulic model is not a trivial 
task. This is because manhole inflow data, i.e., dry weather flows 
(DWFs), is typically unavailable (Breinholt et al., 2013). In addition, the 
true manhole inflow is a result of an inherently stochastic process that 
can be affected by many external conditions (e.g., temperature, user 
behavior, Abdel-Aal et al. 2015) and hence it is difficult to simulate. To 
this end, this study aims to investigate the challenge of accurately 
simulating the FSS hydraulics including the underlying stochastic 
properties. 

Regarding the manhole inflow data, a number of different methods 
have been developed to estimate dry weather flows (DWF) for FSS 
models. These include the domestic appliance usage survey methods 
(Butler et al., 1995; Almeida et al., 1999), various empirical prediction 
models (Carstensen et al., 1998; Bechmann et al., 1999; Langergraber 
et al., 2008; Rodríguez et al., 2013) and the time-series sewer generation 
approaches (Mannina et al., 2009; De Keyser et al., 2010). These studies 
have also recognized that there are sources of variability that cannot be 
represented entirely deterministically and that adding a stochastic 
component to the model is beneficial (Almeida et al., 1999; Rodríguez 
et al., 2013). While these DWF methods have made contributions in 
developing FSS hydraulic models, their practical applications are 
restricted due to large efforts and insufficient data accuracy associated 
with these approaches (Bailey et al., 2019). 

In recent years, a widely used approach is to calibrate the FSS model 
to estimate manhole inflows (i.e., DWFs) based on limited in-sewer 
observations (Korving and Clemens, 2005). Currently, the majority of 
the calibration algorithms aim to identify the inflows for each manhole 
at each particular time of the day, which is kept the same across different 
days (Bailey et al., 2019). Such a calibration approach is referred to as 
static or offline calibration. The approach is based on an engineering 
assumption that inflows at each manhole at a particular time period (say 
6:00 am–6:30 am) are similar across different days (Bailey et al., 2019). 
This, however, neglects the stochastic nature and variability associated 
with these inflows. More importantly, the static calibration results often 
exhibit the so-called “equifinality” problem (Khu et al., 2006). This re
fers to a situation where many manhole inflow combinations produce a 
similar agreement between simulated and observed water levels or 
sewer flows at monitoring locations. As a result, it is very difficult, if not 
impossible, to identify a unique parameter set (i.e., a manhole inflow 
combination) that represents the true underlying temporal and spatial 
distribution of manhole inflows. The “equifinality” issue can signifi
cantly hamper practical application of FSS models due to model per
formance suffering at locations without sensors and also under different 
sewer discharge scenarios (Zhang et al., 2021). 

To address the “equifinality” problem, some domain knowledge can 
be incorporated into the calibration process. For example, the length of 
sewer pipes or the contributing area can be used as prior knowledge for 
manhole inflow calibration (Maurer et al., 2013). This is because, 
typically, a long pipe or a large contributing area often collects a rela
tively large amount of wastewater. While these heuristics can improve 
the quality of the static calibration and partially alleviate the “equifin
ality” problem, the resulting model may not match the real situation in a 
sewer system. For example, some long sewer pipes may be only used to 
transport wastewater collected in upstream regions. In that case, 
manhole inflows are rather low because the house/commercial building 
density around these pipes is rather low. Conversely, some short pipes 
may receive a large amount of wastewater discharged from surrounding 
regions with a high population density. Therefore, the use of pipe length 
or the contributing area as the domain knowledge for FSS calibration 
may not be able to identify the true inflows into the manholes. Another 
heuristic is the use of the pipe diameter size since an increase in pipe 
diameter at a given location may indicate larger local sewer flows. 
However, it is also not ideal as a pipe in the downstream not only collects 
the sewer discharges from its local resident buildings, but also delivers 
sewer flows that are from its upstream pipes. Therefore, there is no 
direct relationship between the pipe size and the amount of the local 

sewer inflows. More recently, Zhang et al. (2021) developed an FSS 
model using a high density of real-time water consumption data, but this 
approach is not ideal for practical application as many water utilities 
have a relatively low number of smart water meters (mainly for large 
water users, e.g., factories, hospitals or schools). 

Relative to the studies focused on the static FSS modeling, in
vestigations on the stochastic properties of the manhole inflow data (i.e., 
DWFs) are rare. Some previous studies have assumed a particular dis
tribution function, e.g., Uniform distribution, Gaussian distribution or 
Poisson distribution (Jin and Mukherjee, 2010; Sun et al., 2014) to 
describe the stochastic process of water consumption. However, their 
effectiveness with applications to FSS models has not been demon
strated. More importantly, the parameters of the specified distributions 
(e.g., ± 15% around the expected value) are mainly assumed subjec
tively, and hence may not be realistic. Therefore, there is still a need of 
an effective uncertainty analysis method to describe the underlying 
variation of the expected manhole inflows. 

The objective of this study is to propose a novel FSS modeling 
method that can accurately simulate manhole inflows and their under
lying uncertainty ranges. This goal is achieved with the aid of geotagged 
information and smart water meter data. More specifically, in the pro
posed method, the population information is derived based on the 
geotagged data (e.g., building area and height) taken from public da
tabases. This information is used as prior knowledge to facilitate the 
static calibration of inflows for each manhole. The rationale behind this 
is that the population density can better indicate the inflow magnitudes 
at manholes when compared to the pipe length previously considered. In 
addition, uncertainty ranges associated with manhole inflows are 
derived from the stochastic properties of water consumption data from 
smart water meters. The idea behind this uncertainty analysis approach 
is that: (i) a given number of smart water meters that record water 
consumption in a near real-time manner (say every 30 min, Creaco et al. 
2018) can be used to derive stochastic properties of the water con
sumption, and (ii) stochastic characteristics of manhole inflows can be 
derived from water consumption properties due to the intrinsic rela
tionship between the water consumption and wastewater discharge in 
the same area. 

The main contributions and novelties of this study include (i) the use 
of geotagged information from public databases to estimate the FSS 
manhole inflows, which can greatly improve the simulation accuracy 
and address the problems of “equifinality”, and (ii) the use of water 
consumption data from smart water meters to accurately characterize 
uncertainty associated with manhole inflows. To our best knowledge, 
this is the first work where the geotagged information and water con
sumption data are used to improve the accuracy of FSS hydraulic 
modeling. 

This paper is organized as follows. The proposed methodology is 
described in Section 2, followed by the descriptions of the case studies 
considered in Section 3. Results and discussions are given in Section 4. 
Finally, the conclusion section (Section 5) shows the main findings and 
implications of this paper. 

2. Methodology 

Fig. 1 illustrates the overall framework of the proposed methodol
ogy, which involves three phases of FSS model development as well as 
the demonstration of the method on real-world case studies. Phase 1 
aims to estimate the population size associated with each sewer manhole 
based on geotagged data. In this phase, the geotagged data from public 
databases are used to build physical relationship between each FSS 
manhole and its surrounding buildings, with details given in Section 2.1. 
This is followed by the estimate of population size based on the estab
lished relationship between each manhole in the FSS and the associated 
buildings, as described in Section 2.1. In Phase 2, the daily pattern of the 
inflows (i.e., DWFs) for each manhole is identified using a two stage 
optimization approach applied to the FSS subsystems partitioned by the 
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sewer flow meter locations (Section 2.2). Phase 3 focuses on the un
certainty analysis of manhole inflows (Section 2.3). In this phase, sto
chastic properties of water consumption are derived using data from 
smart water meters deployed in the water distribution system (WDS) 
that is overlapping with the FSS. The stochastic properties of water 
consumption data are then used to quantify the uncertainty ranges for 
sewer manhole inflows (Section 2.3). The utility of the proposed method 
is demonstrated through two real case studies. The performance of the 
proposed method is compared with traditional calibration and uncer
tainty analysis methods in accurately estimating hydraulic variables. 

2.1. Estimate population size for each sewer manhole based on geotagged 
data 

For a manhole receiving residential wastewater, the population data 
associated with this manhole is an important indicator of inflows. 
However, it is usually difficult to obtain accurate population data for a 
particular area or an individual building level due to unknown occu
pancy rates and population mobility. In addition, privacy issues may 
also limit the availability of population mobility data in some areas. To 
this end, the proposed method uses maps taken from publicly available 
databases, such as Google Earth, OpenStreetMaps, Bing Maps (Zheng 
et al., 2018). These map databases often possess comprehensive geo
tagged data as illustrated in Fig. 2(a), which in this study are employed 
to estimate the population size associated with each manhole. 

Typically, the density of residential buildings and the heights of these 
buildings can reflect the population size of an area, as illustrated in Fig. 2 
(a). Accordingly, the population size can represent an important indi
cator of the magnitude of dry-weather wastewater flows, thus providing 
a link between the building information and sewer manhole inflows 
(Sitzenfrei et al., 2010). The specific information of each building in
cludes the building height and width, representing the number of floors 
and the number of households at each floor, respectively. This infor
mation can be obtained from geotagged data within the public data
bases. In addition, the occupancy of the building also needs to be 
accounted for in order to estimate the population size. 

In addition to the residential buildings, the sewers from commercial 
buildings or public buildings (e.g., hospitals or schools) also need to be 
considered when developing the FSS hydraulic models. Typically, sen
sors (e.g., smart water sensors) are deployed to monitor the water con
sumption or discharges for these large water users in a near real-time (as 
illustrated in Fig. 2(a)). Therefore, the manhole inflows associated with 
these buildings can usually be directly acquired from local water utilities 
(Zhang et al., 2021). Prior to the population size estimate, it is necessary 
to build a physical connection between each manhole and the sur
rounding buildings. This physical connection represents that the dis
charges of these buildings are received by this manhole, with details 
given below. 

2.1.1. Build the physical connection between each manhole and its 
surrounding buildings 

In this study, the physical connection between a building (can be a 
residential, commercial or public building) and a manhole is determined 
based on their Euclidean distance. The rationale behind this is that the 
discharges of a building are most likely to flow to its nearest manhole. 
The Euclidean distance between the building and the manhole can be 
estimated using the following equation 

d(r, h) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xh − xr)
2
+ (yh − yr)

2
+ (zh − zr)

2
√

(1)  

where (xr,yr,zr) is the three-dimensional coordinate of the geometric 
center at the base of the building r and (xh,yh,zh) are the coordinates of 
the manhole h. All these coordinates are available in the geotagged data 
of the public map databases. Consequently, for a given building r, its 
associated manhole can be identified by 

h(r) = argmin
h=1,2,...,H

{d(r, h)} (2)  

where h(r) represents the hth manhole assigned to rth building; H is the 
total number of manholes in the FSS model. 

Using Eqs. (1) and (2), the physical connections between the build
ings and the manholes are established as shown in Fig. 2(b). For a real 
FSS, a single manhole is very likely to physically connect multiple 
buildings, especially when the buildings are small in size, as shown in 
Fig. 2(b). In a real FSS, there also might exist multiple manholes that 
potentially drain wastewater from a single building, which is often the 
case for large buildings. For this case, it is necessary to identify the 

Fig. 1. The overall framework of the proposed method.  
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proportion division of total discharges from a building across different 
surrounding sewer manholes, which is often difficult. For the sake of 
simplicity, only one manhole is assigned to a building in this study even 
though the fact is that multiple manholes are jointly used to deliver 
discharges of this building. It is acknowledged that such an assumption 
may lead to possible unrealistic hydraulic behavior in the local region of 
the FSS, but its influence on the hydraulic results of the entire FSS is 
negligible (Zhang et al. 2021). 

2.1.1. Estimate population size of each residential building based on 
geotagged data 

While it is ideal to have detailed population information for each 
building to enable FSS modeling, gaining such data is challenging and 
also time-consuming. Therefore, two assumptions are made in this study 
to estimate the population size of each residential building, as shown 
below.  

(i) Assumption 1: The population size is linearly correlated with the 
volume of the residential building. This assumption is practically 
reasonable as a residential building with a relatively large area 
and height is often associated with a large population size.  

(ii) Assumption 2: All the residential buildings are fully occupied. It is 
believed that such an assumption is again practically reasonable 
as the manhole inflows are estimated based on the fraction of the 
population associated with each manhole, rather than the exact 
population number. Given that the occupation rate of each resi
dential building should be statistically similar in a local region, 
this assumption should not significantly affect the final results. 

Conditioned on the two assumptions stated above, the following 
equation can be used to estimate the population size associated with 
each manhole, 

P(h) = Ar

∑Rh

r=1
η×Vr(h) (3)  

where P(h(r)) is the estimated population size associated with manhole 
h; Vr(h) (m3) is the building volume associated with manhole h, which 
can be computed based on geotagged data from public map databases as 
shown in Fig. 3; Rh is the total number of buildings that has physically 
connected to manhole h; η is the average number of living persons (np) 
per building volume (np/m3); Ar is the occupation rate of each resi
dential building, which is 100% in this study as stated in Assumption 2. 
Fig. 3 illustrates the proposed method for estimating the population size 
for each manhole associated with the residential buildings. 

To enable the computation of Eq. (3), it is necessary to estimate the 
value of η, which can be different at different cities. In this study, a 
simple survey can be conducted to enable the determination of η. More 
specifically, within the area of the FSS, the model practitioners can 
investigate a few housing estates in the city to acquire the total number 
of population of a particular set of residential buildings, thereby esti
mating the value of η. In many countries, such as China, the average 
number of persons per building volume can be easily acquired from the 
local government. In this study, a constant value of η is determined and 
used in the entire FSS model based on the total building capacity and 
total population data from the local government. 

Note that Eq. (3) is only used for residential buildings. For the 

Fig. 2. The conceptual figure of the proposed method to build physical connections between buildings and manholes.  
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commercial/public buildings, their corresponding manhole inflows are 
estimated from water consumption data recorded by the smart water 
meters (Bailey et al., 2019) as shown below, 

DSj(t) = TFj(t) × WSj(t) (4)  

where DSj(t) is the discharges of the jth commercial/public buildings at 
time t; WSj(t) is the water consumption data of the jth commercial/ 
public buildings provided by smart water meters at time t; TFj(t) is the 
transfer factor between water consumption and discharges at time t, 
which is caused by the inevitable loss during the transporting process 
within the facilities of the users (Behzadian and Kapelan, 2015). 

2.2. Identify daily inflow pattern for each manhole 

2.2.1. Partitioning the FSS into different subsystems based on sewer flow 
meters 

This study aims to develop an accurate offline model (i.e., static 
model), where each manhole has only one inflow value at each time 
across different days. This is because, despite their variations at a certain 
degree caused by many external factors such as temporary population 
mobility, the total discharges from each building with many users are 
statistically similar at each time over different days (Bailey et al., 2019). 

Typically, a FSS is often large in spatial scale, resulting in challenges 
for the calibration of model parameters, such as manhole inflows. To this 
end, this study proposes a two-sage optimization approach, aimed to 
reducing the calibration complexity. As part of the proposed two-sage 
optimization approach, the entire FSS is partitioned into different sub
systems based on the available sewer flow meter sensors. The rationale 
behind such a partitioning approach is that a FSS often possesses a tree- 
like structure and hence observations of each sewer sensor primarily 
represent the hydraulic properties of the upstream part of the sensor 
location. In this study, each subsystem is assumed to have an identical 
time-series pattern of manhole inflows as the properties of the water 
users (user types and habits of water usages) in a local region is likely to 
be the same. Such an engineering heuristic has been widely used in 
urban water supply and drainage research area (Zhang et al., 2018; 
Bailey et al., 2019). It is noted that only flow meter sensors are 
considered for FSS partitioning in this study. This is done because (i) the 
residential users within each local region/subsystem (the outlet is 
typically monitored by a sewer flow meter) are highly likely to have a 
similar discharge pattern, (ii) the water depth data is overall less sen
sitive compared to the flow data as a result of inflow changes due to that 
the diameter size of a sewer is often relatively large, and (ii) the 

consideration of the water depth sensor may result in a significantly 
increased number of decision variables. For instance, if a 30 min time 
resolution is used (Zhang et al., 2021), 48 decision variables have to be 
optimized in order to identify the flow patterns in each subsystem. For a 
realistic FSS, if the number of water depth sensors is 30 (this number is 
often significantly larger than that of the sewer flow meters), the total 
number of decision variables can be up to 1440. This can bring large 
challenges for model calibration.” 

By using this partitioning method, the entire system can be divided 
into N subsystems, where N is the total number of sewer flow meters in 
the FSS. Fig. 4 illustrates the results of the proposed partitioning 
method. As shown in this figure, a total of three sewer flow meter sensors 
are available and hence three subsystems are identified (shaded regions 
in Fig. 4). Flow observations in Sensor A represent the manhole inflow 
properties at its upstream FSS. Similarly flow data in Sensor B and C can 
be used to calibrate the manhole inflows within its corresponding sub
system. In this study, the hydraulic interactions between different sub
systems are handled by a hydraulic software called Storm Water 
Management Model (SWMM, Gironas et al., 2010). 

2.2.2. Calibrate time-series pattern of total inflows for each subsystem 
(stage-one optimization) 

As previously stated, the time-series pattern of flows associated all 
residential manholes in each subsystem is considered to be identical in 
this study. This is done to reduce the number of variables to be cali
brated. Note that such an assumption has been widely used for nodal 
demand calibration in water distribution systems, which has achieved 
great success within practical applications (Zhang et al., 2018). 

The formulation of the stage-one optimization problem is as follows, 

Min : F(Q)

=
∑Te

t=Tw

(
∑M

i=1

[
g
(
wo

i (t)
)
− g
(
ws

i (t)
)]2

+
∑N

j=1

[
g
(

f o
j (t)

)
− g
(

f s
j (t)
)]2
)

(5)  

Q =

⎡

⎢
⎢
⎣

q1(Δt), q1(2Δt), ..., q1(T)
q2(Δt), q2(2Δt), ..., q2(T)
.................................

qN(Δt), qN(2Δt), ..., qN(T)

⎤

⎥
⎥
⎦ (6)  

MIh(ta) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qj(ta) × P(h)
∑Hj

h=1
P(h)

, h ∈ Hj, if h is associated with residential buildings

∑h(r)

j=1
DSj(ta), if h is associated with commercial

/

public buildings

(7)  

Fm(MI(ta)) = [Ws(ta); fs(ta)]

=
[
ws

1(ta),ws
2(ta), ...,ws

M(ta); f s
1 (ta), f s

2 (ta), ..., f s
N(ta)

]
(8)  

where Q is the decision variable matrix, representing the total inflow of 
each subsystem at each time step, which is defined as qj(ta) in Eq. (6); j 
= 1,2,…,N is the jth subsystem, where N is the total number of sub
systems (i.e., total number of sewer flow meters); ta=Δt, 2Δt, ...,T with T 
representing 24 h as the daily time-series inflow pattern is considered in 
this study; Te is the time period with observations used for FSS cali
bration with a model time resolution of Δt; Tw is the warming-up time 
period for model setting up (Guo et al., 2020); M is the total number of 
water depth sensors at the manholes; wo

i (t) and fo
j (t) are observed water 

depth at manhole i and observed flow rate at sewer pipe j at time t, 
respectively; ws

i (t) and f s
j (t) are simulated water depth at manhole i and 

simulated flow rate at sewer pipe j at time t, respectively; g() is a linear 
function used to convert water depths and pipe flow rates into the same 

Fig. 3. Illustration of the population size estimate for each manhole.  
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scale, thereby enabling both terms in the right side of Eq. (5) are 
approximately equivalent in terms of the objective function value. In 
this study, g(x) = x− xmin

xmax − xmin 
is used, where xmin and xmax is the minimum 

and maximum value of the variable x being considered, respectively. 
MI(ta) in Eq. (8) is the manhole inflow vector at time ta and the MI(ta)
value is determined by Eq. (7); Ws(ta)== [ws

1(ta),ws
2(ta), ...,ws

M(ta)] and 
fs(ta)== [f s

1(ta), f s
2(ta), ..., f s

N(ta)] are the vector of the water depth and 
flow predictions at all sensor locations at time ta, respectively. 

The aim of the stage-one optimization is to identify Q through 
minimizing F(Q) (Eq. (5)). As shown in Eq. (6), for a FSS with N sub
systems and with Δt time resolution (Δt can be half of an hour), the total 
number of the decision variables (daily dry-weather inflows at man
holes) in the matrix of Q is N T

Δt (T = 24 h), which is calibrated using the 
stage-one optimization in this study. As shown in Eq. (7), for the 
manhole h that is physically connected to residential buildings, if it 
belongs to the subsystem j (h ∈ Hj), its manhole inflows at time ta are 
estimated by the total inflow qj(ta) times by the fraction of the popula
tion size of manhole h (P(h)) relative to the all manholes (Hj) in this 
subsystem (n), i.e., 

∑Hj
h=1P(h). If the manhole h is physically connected to 

commercial or public buildings, its manhole inflows at time ta are esti
mated by the total discharges of these buildings, with h(r) representing 
the total number of commercial or public buildings associated with 
manhole h (Eq. (7)). DSj(ta) is defined in Eq. (4). For the case that a 
manhole receives discharges from both residential and commercial/ 
public buildings, its inflows are the sum of the two terms in the right side 
of Eq. (7). 

After each manhole has been assigned an inflow estimate at time ta 
using Eq. (7), a hydraulic simulation model (SWMM is used in this study) 
is used to solve Eq. (8), thereby generating predictions at all sensor lo
cations. These predictions are then compared with the observations as 
shown in Eq. (5). In this study, an evolutionary algorithm (EA) com
bined with the FSS hydraulic software SWMM Zhang et al., 2021) is used 
to solve Eqs. (5)–((8). 

2.2.3. Determine the daily time-series inflow pattern for each manhole 
(stage-two optimization) 

The stage-one optimization has identified the total inflow time-series 
pattern for each subsystem, where daily time-series inflows of each 
manhole within the subsystem are proportionally assigned based on its 
estimated population size. Given that the population size estimate at 
each manhole may deviate from the true value to a certain extent due to 
the two assumptions stated in Section 2.1.2, the stage-two optimization 
is conducted to further improve manhole inflow estimates based on the 
results of the stage-one optimization. The formation of the stage-two 
optimization problem is as follow, 

Min : F(K)

=
∑Te

t=Tw

(
∑M

i=1

[
g
(
wo

i (t)
)
− g
(
ws

i (t)
)]2

+
∑N

j=1

[
g
(

f o
j (t)

)
− g
(

f s
j (t)
)]2
)

(9)  

MIh(ta) = kh ×
qn(ta) × P(h)
∑Hn

h=1P(h)
, h is associated with residential buildings (10)  

Fm(MI(ta)) = [Ws(ta); fs(ta)] (11)  

kh ∈ [kmin, kmax] (12)  

where K = [k1, k2, ...kH]
T with kh representing the inflow adjusting co

efficient for manhole h (only for the residential users). This indicates 
that Stage-two optimization aims to identify kh for each manhole based 
on the given time-series inflow qn(ta) determined by Stage-one optimi
zation as shown in Eq. (10). Therefore, the total number of decision 
variables in Stage-two optimization is the number of manholes that are 
physically connected to residential buildings. Eq. (11) is used to simu
late values of the hydraulic variables to enable the objective function 
computation Eq. (9)) based on the MIh(ta) that is defined in Eq. (8). kmin 

and kmax are the minimum and maximum adjustment coefficients, 
respectively. As the same for the stage-one optimization, an EA with the 
SWMM software are jointly used to minimize the objective function 
defined in the stage-two optimization stage (Eqs. (9)–((12)). 

Fig. 4. The identified subsystems for a FSS with three sewer flow meters.  
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The main merit of the proposed two-stage optimization is that the 
optimization complexity is significantly reduced. This is because the 
number of decision variables considered at each stage is substantially 
lower than the traditional approach where all manhole inflows are 
directly considered. For example, for a FSS with four flow meters (i.e. 
four subsystems) and 100 manholes with a time step of 30 min, the 
number of decision variables considered at the stage-one and stage-two 
optimizations are 4 × 48 = 192 and 100 (100 different k values), 
respectively in the proposed method. The total number of decision 
variables considered in the traditional optimization approach for this 
case is also 292. Using the proposed two-stage optimization method, the 
number of decision variables at stage-one and stage-two are 192 and 
100, respectively. Consequently, the complexity of the proposed opti
mization method can be significantly lower than the traditional opti
mization approach with 292 variables simultaneously considered. 

2.3. Identify uncertainty ranges for manhole inflows 

The proposed two-stage optimization method provides the averaged 
or expected daily time-series dry-weather inflow pattern for each 
manhole. These simulations may neglect the potential variability asso
ciated with these inflows. To address this issue, an uncertainty analysis 
approach is proposed in this study. The proposed uncertainty analysis 
method for manhole inflows is based on the stochastic properties of 
water consumption data that are taken from smart water meters. The 
rationale for this analysis is based on the existing physical connection 
between water supply and the wastewater discharges for each residen
tial building (Bailey et al., 2019). 

Fig. 5 illustrates the physical relationship between water consump
tion and wastewater discharge within a specific building. Generally, a 
large proportion of clean water (delivered by the water distribution 
system) at time t (WS(t) in Eq. (4)) is discharged into the sewer system 
(DS(t)) after a short time delay Δt (water travelling time period within 
the building). The transfer factor between water supply and discharges is 
TF (Eq. (4)) as shown in Fig. 5(a), which is caused by various losses 
during the consumption process. Despite the deviation between water 
supply and wastewater discharge at time t, it is reasonable to map the 
demand time series and discharge pattern using similar trends (Fig. 5b). 
In other words, the expected manhole inflows are expected to have a 
similar time pattern as water consumption data, with the former slightly 
decreased by a factor of TF compared to latter after Δt, as illustrated in 

Fig. 5b. Consequently, both the water supply and its corresponding 
discharges should have a similar stochastic distribution (Fig. 5b), and 
thus the uncertainty ranges of the manhole inflows can be mapped from 
the water consumption data analysis based on records from smart water 
meters. It is noted that this study does not consider the infiltration/ 
exfiltration within the sewer pipes, in order to focus the main method
ology of this proposed method. However, it is straightforward to add an 
infiltration/exfiltration estimate within the calibration process of the 
proposed method. 

2.3.1. Determine stochastic properties of water consumption data 
In this study, the stochastic properties of water supply flows are 

determined based on real-time data collected by available smart water 
meters installed for residential buildings. More specifically, the 
following steps are used to quantify the stochastic properties of water 
consumption data. 

Step 1: Determine the daily average time-series water consumption data. 
For each building or water user with a smart water meter, their real- 
time water consumption data are collected often with an half an hour 
time resolution. This is followed by the computation of the averaged 
water consumption at each time of the day based on records over 
many different days. Consequently, the daily average/expected time- 
series water supply data with a particular time-resolution can be 
determined for each smart water meter. 
Step 2: Compute the coefficient of variation for each time a day. For each 
time a day, all the records from smart water meter divides their 
corresponding average values, thereby producing the coefficient of 
variation (CV, Zhang et al., 2018). Using this approach, a large 
number of CV values (some are greater than 1 and some are smaller 
than 1) is generated for each time of the day based on each smart 
water meter. 
Step 3: Establish a sampling pool for each time t at the day. For each time 
t of the day, all CV values over different smart water meters are 
collected to form a sampling pool (Ψ(t)). In other words, if the time 
resolution is 30 min, a total of 48 sampling pools are generated using 
the proposed method. The CV values in different Ψ(t) can be signif
icantly different, representing various stochastic properties at 
different time periods at a day. This is a novel aspect of the proposed 
uncertainty analysis method as it can capture the underlying varia
tion of the manhole inflows at different time periods. 

Fig. 5. Uncertainty mapping between water consumption and wastewater discharge of a single residential building.  
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These established sampling pools based on water consumption data 
(Ψ(t)) represent the stochastic properties of the water supply data at 
each time of the day, which will be used to for uncertainty analysis for 
the manhole inflows. 

2.3.2. Quantify sewer uncertainty range based on stochastic properties of 
water consumption data 

Typically, the causes of hydraulic variability within sewer systems 
can be divided into two types: random and systematic factors. The 
random factor mainly includes the temporal population mobility as well 
as the natural variability of water used by persons (e.g., different shower 
time over different days). The systematic factor mainly includes the 
sudden temperature changes that can affect the water use habits (e.g., 
shower time or frequency) of many persons in the residential buildings, 
as well as the holiday time-period where many people leave the city. It is 
noted that many countries such as China, the population density of some 
cities can be significantly varied during the holiday time-period due to 
the economic structure properties (i.e., many people work in a city but 
may live in another city). Therefore, the number of people is consistently 
reduced or increased for each building during the holiday time-period 
(this is a systematic factor), but the population mobility in working 
time-period is a random factor as it can increase for some residential 
buildings but decrease for some others. 

In recognizing the two different types of causes that affect the sewer 
variability, this study proposes a new uncertainty analysis method to 
account for both types of causes, as shown in the following, 

CVh(t) = Rand(Ψ(t))
MIu

h(t) = CVh(t) × MIh(t)
(13)  

where CVh(t) is the coefficient of the variation for manhole h at time t, 

which is randomly selected from the established sampling pools (Ψ(t)) 
based on water consumption data (Ψ(t)); Rand() is a function for random 
sampling. MIu

h(t) is the updated inflows for the manhole h (h = 1,2,…,H) 
that is physically connected to residential buildings at time t; MIh(t) is 
the manhole inflows at time t determined by the proposed two-stage 
optimization method (See Section 2.2). 

In addition to Eq. (13) that considers the random factor of the 
manhole inflows, Eqs. (14) and (15) are used to account for the sys
tematical factor, 

MIu
h (t) = CVL

h (t) × MIh(t),CVL
h ∈ Ψ

(
t
)

(14)  

MIu
h (t) = CVS

h (t) × MIh(t),CVS
h ∈ Ψ

(
t
)

(15)  

where CVL
h(t) and CVS

h(t) are the coefficients of the variation for manhole 
h at time t. More specifically, CVL

h(t) is greater than 1, and hence it is 
randomly selected from the values that are greater than 1 in Ψ(t). 
Conversely, CVS

h(t) is smaller than 1, and hence it is randomly selected 
from the values that are smaller than 1 in Ψ(t). 

Fig. 6 illustrates the proposed uncertainty analysis method for a FSS 
with seven manholes Fig. 6b) at a particular t, where Fig. 6a and c 
represent the sampling results using Eqs. (13) and ((15). As shown in 
Fig. 6(a), for the seven CV values generated using Eq. (13), some values 
are greater than 1 and the others are smaller than 1; but all CV values are 
smaller than 1 for those produced by Eq. (15). 

2.4. Demonstrate the utility of the proposed method 

2.4.1. Traditional calibration and uncertainty analysis methods 
To demonstrate the effectiveness of the proposed method in this 

study, its performance is compared to the traditional calibration 

Fig. 6. Variability of sewer inflows due to random (Eq. (13)) and systematic (Eq. (15)) factors.  
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methodology on real-world case studies. The traditional calibration 
method often takes runoff contributing area or/and sewer pipe lengths 
as prior information to enable the manhole inflow allocation (Chu et al., 
2021). While various heuristics can be used as prior knowledge for FSS 
hydraulic modeling, i.e., based on pipe length or on contributing areas, 
they have similar implications for simulation results. In this particular 
case (the two case studies considered), the pipe-length heuristics pro
cedure is considered as the traditional approach due to it simple 
implementation (Zhang et al., 2018). It is highlighted that the only 
difference between the proposed method and the traditional approach in 
this study is that the former considers the population sizes associated 
with each manhole as the prior information, but the latter considers the 
pipe length as the initial knowledge. In other words, the proposed 
two-stage optimization is also used in the traditional approach. The 
proposed uncertainty analysis method is also compared to the tradi
tional uncertainty analysis approach that uses assumed specified dis
tributions overall all manholes across different time periods at the day 
(Jin and Mukherjee, 2010; Sun et al., 2014). 

2.4.2. Comparison with the traditional calibration method 
In this study, four statistical metrics are used to evaluate the per

formance of the proposed method for calibrating FSS hydraulic models, 
including the relative error (RE) or absolute percentage error (APE), the 
coefficient of determination (R2), the Nash-Sutcliffe model efficiency 
(NSE), and the Kling-Gupta Efficiency (KGE). Note that these assessment 
matrices have been widely used for hydraulic model evaluation in the 
field of water system analysis (Guo et al., 2020). These equations are 
defined as follows.  

(1) Relative error (RE) and absolute percentage error (APE): 

RE =
Ŷ i − Yi

Yi
× 100%,APE =

⃒
⃒
⃒
⃒
⃒
⃒

Ŷ i − Yi

Yi

⃒
⃒
⃒
⃒
⃒
⃒
× 100% (16)   

where Yi is the ith observation and Ŷ i is its corresponding simulated 
value. APE is the absolute value of RE.  

(1) Coefficient of determination (R2): 

R2 =

(
∑n

i=1

(
Yi − Ỹ

)(
Yi − Y

))2

∑n

i=1

(
Yi − Ỹ

)2∑n

i=1

(
Yi − Y

)2 (17)   

where Y and Ỹ are the mean values of observed and simulated data, and 
n is the total number of data points.  

(1) Nash-Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970): 

NSE = 1 −

∑n

i=1

(
Yi − Ŷ i

)2

∑n

i=1

(
Yi − Y

)2 (18)    

(2) Kling-Gupta efficiency (KGE) (Knoben et al., 2019): 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
σsim

σobs
− 1
)2

+

(
μsim

μobs
− 1
)2

√

(19)   

where r is the Pearson product-moment correlation coefficient; σsim and 
σobs are the standard deviation of simulations and observations; μsim and 
μobs are the mean values of simulations and observations. A lower value 
of RE or APE represents a better model performance. In contrast, a large 
value of R2, NSE or KGE) indicates that the simulations can match ob
servations better, with the value of 1 representing the best model 
performance. 

2.4.3. Performance in addressing the “equifinality” issue and comparison 
with the traditional uncertainty analysis approach 

In this study, the proposed method is compared to the traditional 
method in addressing the “equifinality” issue, i.e., the simulation per
formance of hydraulic variables at locations without sensors. Specif
ically, for the FSS locations without sensors but with available water 
smart meters, the water consumption data are used to indirectly assess 
the accuracy of the simulated sewer discharges. To assess the perfor
mance of the proposed uncertainty analysis approach, its results as well 
as the uncertainty ranges determined by the traditional uncertainty 
analysis method are compared with observations collected by the 
installed water depth sensors and sensor flow meters in the FSS. 

3. Case studies 

3.1. Case study description 

The proposed method is demonstrated on two real-world FSSs in 
China, namely the Benk network (BKN) and the Xiuzhou network (XZN). 
These two FSS with significantly different scales can also be used to 
explore how the proposed method performs when dealing with the 
increased system complexity. The BKN case study has 64 manholes, 64 
sewer pipes (9.4 km length) and one outlet, and the XZN case study has 
1,214 manholes, 1,214 sewer pipes (86 km pipe length) and one outlet 
as shown in Fig. 7. The average pipe slopes of the BKN and XZN case 
studies are 0.65% and 0.27%, respectively. As shown in Fig. 7, one sewer 
flow meter and three water level sensors have been installed in the BKN. 
For the XZN case study, three flow meters and eight water level sensors 
have been deployed in the system. All sensors in these two systems 
collect real-time data with a 30 min time resolution. While two FSS case 
studies are designed to solely deliver wastewater discharges, runoff in 
the rainy days may inevitably affect the hydraulics of the sewer pipes 
through infiltration. Therefore, observations for a period of consecutive 
31 days without rainfall events are used for FSS model development and 
uncertainty analysis, in order to minimize the impacts of the infiltration. 

For the BKN and XZN case studies, 16 and 152 residential users have 
smart water meters, respectively (red circles in Fig. 7), where these 
water consumption data with an 30-min time resolution are used for 
uncertainty analysis and model performance demonstration. In addition 
to these residential users with water smart meters, all commercial/ 
public buildings also have water smart meters (red squares in Fig. 7) and 
these data facilitate the model development and calibration. The records 
of the water smart meters at the same time period with the sewer sensors 
(a period of consecutive 31 days) are considered in this study. 

3.2. Parameterization of the proposed method 

In this study, SWMM5.1 Gironas et al., 2010) has been used to 
simulate the hydraulic behavior of these two FSSs. The model simula
tions are implemented with a time resolution of 30 min, matching the 
time resolution of the measurement data. For the entire simulation 
period of 31 days (i.e., the data collection period), the first three days 
(Tw = 3 days in Eqs. (5) and ((9)) are regarded as the warming-up time 
for model set up, to ensure appropriate initial conditions for FSS simu
lation. The observations between the 4 and 17th day are used for model 
calibration, and the remaining observed data are utilized to validate the 
model simulation performance on unseen data. 
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For each case study, the water consumption data from smart meters 
are used to derive the stochastic properties of the water use with method 
described in Section 2.3.1. This leads to an establishment of the total 
sampling pool Ψ(t) for each time t a day, with various CV values included 
for inflow uncertainty analysis for residential users. Each stage of the 
proposed two-stage optimization Eqs. (5)–((12)) is optimized using the 
Borg evolutionary algorithm (Hadka and Reed, 2013). This optimization 
algorithm is chosen as it has been demonstrated to efficient in 
addressing complex problems in the area of urban water resources and 
engineering optimization (Zheng et al., 2016). For both case studies, the 
initial population size is set as 500, and the maximum number of 
allowable solution evaluations is 1,00,000 based on a preliminary al
gorithm parameter calibration. The other Borg parameters use the 
default values as presented in Hadka and Reed (2013). 

For the BKN and XZN case studies, the population size per building 
volume η defined in Eq. (3) is 0.96 and 0.97 np/(100m3), respectively, as 
provided by the local government. For each commercial/public build
ing, the transfer factor TFj(t) between water consumption and dis
charges (see Eq. (4)) is assumed constant over different time at a day, 
where TFj(t) = 0.8 is used in this study Zhang et al., 2021). kmin = 0.85 
and kmax = 1.15 are used in Eq. (12) (Zhang et al., 2018), representing 
the inflow updating range in the stage-two optimization. To enable the 
uncertainty analysis for the manhole inflows (only for residential users), 
Eq. (13) is used to generate the random samples from the Ψ(t). This is 
followed by the use of Eqs. (14) and ((15) to produce samples with CV 
values greater than 1 and smaller than 1, respectively. More specifically, 
for each time t of the day, 20,000 samples are randomly taken from the 
Ψ(t) using Eqs. (13), (14) and (15), respectively for the BKN case study. 

Fig. 7. The layouts of two FSS case studies and the information of the smart water meters (P1 and F1-F3 represents sewer flow meters in the two case studies, 
respectively, S1-S3 and D1-D8 represents manhole water level sensors in the two case studies, respectively, R1-R4 represent four typical manholes without sensors 
which will be used in Fig. 11). 
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For the XZN case study, 50,000 samples are randomly taken from the 
Ψ(t) using the same approach. For the traditional uncertainty analysis 
approach, a constant of value with vch(t) = 0.85 or 1.15 is randomly 
selected for each manhole (Zhang et al., 2018) based on the expected 
inflow values identified by the proposed two-stage optimization 
method. 

4. Results and discussion 

The proposed method is applied to the two FSS case studies, with 
identified physical connections between sewer manholes and residential 
buildings illustrated in Fig. 8(a), which is a small region of the XZN case 
study. The density distributions of the estimated population sizes for the 
two case studies are shown in Fig. 8(b) based on the geotagged data from 
public databases using the proposed method in Section 2.1. Given that 
one and three flow meters are installed in the BKN and XZN, respec
tively, one and three corresponding subsystems are identified for these 
two case studies based on the approach described in Section 2.1.1. This 
is followed by the application of the proposed two-stage optimization 
method, with results presented below. 

4.1. Performance comparison of the hydraulic simulations at FSS 
locations with sensors 

Fig. 9 compares the performance of the proposed method and 
traditional model in simulating hydraulic variables at FSS locations with 
sensors for both case studies. It is noted that simulation results at typical 
FSS sensor locations with seven days within the validation time period 
(from 18th day and 24th day) are presented in Fig. 9 to enable the clear 
presentation. Fig. 10 is the results of one day (18th day) taken from 
Fig. 9, in order to further clearly show the differences between the 
proposed and traditional methods. 

As shown in Figs. 9 and 10, both the proposed and traditional 
methods are able to capture the overall trends of the manhole water 
depth and pipe flow observations at P1 and S1 of the BKN case study (see 
Fig. 7(a)), as well as F1 and D1 in the XZN case study (see Fig. 7(b)). For 
the BKN case study, the average APE values for the simulated flows of 
the proposed and traditional methods are 8.78% and 9.67%, respec
tively (Fig. 9(b)), and these two values are 3.57% and 3.63%, respec
tively for the water depth simulations at S1 (Fig. 9(d)). For the XZN case 

study, the average APE value is 6.29% for the flow simulations at F1 
from the proposed method, and this value is 6.46% from the traditional 
approach. In terms of the water depth simulations at D1, the mean APE 
values of the proposed and traditional methods are 4.50% and 7.60%, 
respectively. This implies that both the proposed and traditional ap
proaches can overall accurately simulate hydraulic variables at P1, S1, 
F1 and D1 sensor locations (Fig. 7), but the former performs consistently 
slightly better than the latter. 

It can be seen from Fig. 9 that while the mean APE value is consis
tently below 10% for the manhole water depth and pipe flow variables, 
its maximum value can be up to about 30% for the both the proposed 
and traditional methods. We also observe that the majority of the large 
APE values occur at the time periods with relatively low manhole water 
depths or pipe flows. Therefore, it can be deduced that the large APEs 
can be related to the low values of the denominator in Eqs. (16). 

Tables 1 and 2 present the values of performance metrics for simu
lations at FSS locations with sensors for both case studies. It can be seen 
from these two tables that the proposed method shows an overall similar 
performance for the small BKN case study, but a slightly better perfor
mance for the large XZN case study relative to the traditional method. 
This can be proven by that the mean NSE and KGE values across all FSS 
sensor locations of the proposed method are 0.90 and 0.93, which are all 
larger than those from the traditional approach (0.81 and 0.88). More 
specifically, the NSE values of the traditional approach at D1-D5 in the 
XZN are consistently lower than 0.75, which are significantly lower than 
those from the proposed method (consistently larger than 0.85). Results 
in Tables 1 and 2 can demonstrate that the proposed method is able to 
exhibit a better performance than the traditional approach in accurately 
simulating hydraulic variables for relatively large FSSs. This is because 
the manhole inflow combinations for a larger FSS can be larger relative 
to a small FSS, resulting in a more complex calibration process. For such 
cases, the use of the population size as the domain knowledge as did in 
the paper exhibits a more prominent performance compared to the 
traditional approach. 

As previously stated, given that the static simulation is considered in 
this study (i.e., the water depth or flow time-series pattern is identical 
over different days), the simulations (expected simulations of hydraulic 
variables) are unable to capture the variations of the hydraulic variables 
over different days as shown in Fig. 9. To mitigate this, an uncertainty 
range is often combined with the static simulation results, in order to 

Fig. 8. Results of the physical connections and estimate population sizes of the manholes for the two case studies.  
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provide abnormal warning, with results presented in Section 4.3. 4.2. Performance of the proposed method in addressing the “equifinality” 
issue 

It is noted that Section 4.1 focuses on the performance analysis at the 

Fig. 9. Results of observations versus simulations and the absolute percentage error (APE, %) values at the typical FSS sensor locations (P1, S1, F1 and D1 are shown 
in Fig. 7). 
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FSS locations with sensors where observations are available. This section 
aims to compare the performance of the proposed and traditional 
methods in accurately simulating the sewer variables at FSS locations 
without sensor observations, i.e., the ability in addressing the “equi
finality” issue. To attain this goal, water consumption data are compared 
with the inflow simulations of the manholes (without sewer observa
tions) that are physically connected the residential buildings with 
installed water smart meters. 

Fig. 11 shows water consumption data versus sewer inflow simula
tions at four FSS manholes (shown in Fig. 7) without sensors. It can be 
seen from this figure that the simulation results of the traditional model 
at R1, R3 and R4 (blue lines in Fig. 11) are consistently substantially 
larger than the water consumption data. For the results at R2, the 
manhole inflows are always significantly lower than their corresponding 
water consumption data (Fig. 11(b)), implying that a rather low pro
portion of water consumption is discharged. Both cases above do not 
actually conform to the real engineering practice where the wastewater 
discharges of the residential buildings are often slightly lower than their 
corresponding water supply amount (TF in Eq. (4) is between 0.80 and 
1.0 as stated in Zhang et al. 2021). Conversely, the manhole inflow 

simulations of the proposed method in this study (red lines in Fig. 11) 
are overall slightly lower than their corresponding water consumption 
data. This indicates a good performance in accurately simulating the 
sewer hydraulic variables at FSS locations without sensors (R1, R2, R3 
and R4). 

To further evaluate the overall performance of the proposed model in 
addressing the “equifinality” issue, the values of TF for all manholes 
(only for residential users) with available water consumption data are 
presented in Fig. 12. More specifically, for each of the two methods (the 
proposed and traditional methods), a TF value is computed for each 
manhole with available water consumption data at each time step (30 
min) at the validation time period. The probability density distributions 
of these TF values from the proposed and traditional methods are plotted 
in Fig. 12 to enable the comparison. It is seen from this figure the ma
jority of the TF values of the proposed method are around the value of 
1.0, which is practically reasonable. However, many TF values from the 
traditional method are either significantly lower than 1 or substantially 
larger than 1. This implies that the proposed method can match better 
the real conditions than the traditional method at manholes without 
sensors. This means that the proposed method can better address the 
“equifinality” issue. 

4.3. Performance with respect to uncertainty analysis 

As previously stated, uncertainty analysis is essential to the static FSS 
model as it can assist modellers in identifying the potential impact of the 
stochastic nature of sewer formation and flow processes. The density 
distributions of the CV values over different smart water meters in the 
sampling pool (Ψ(t)) (see Section 2.3.1 for details) are presented in 
Fig. 13, where each line represents the density distribution of a partic
ular time t at a day with 30 min resolution. As shown in this figure, while 
the stochastic property of the water consumption data is overall similar 
over different time at a day, small to moderate variations are still 
observed. Therefore, it can be derived that the use of the constant a CV 
value over different time periods at a day as did in the traditional 
method is not reasonable. This also highlights the novel aspect of the 
proposed uncertainty analysis method as it can capture the underlying 
variation of the manhole inflows at different time periods at a day. 

As stated in Section 2.3.2, the sampling methods described in Eqs. 
(13)–(15) are used to estimate the uncertainty range of the sewer sim
ulations based on the Ψ(t), where the hydraulic simulations based on 
these samples are used to determine the uncertainty ranges (i.e., the 
maximum and minimum values) as well as the expected values (the 
mean value). Fig. 14 shows the uncertainty ranges and expected values 
based on the samples taken from the Ψ(t) for the FSS sensor locations 
with observations within the validation time period. The red and blue 
dotted lines represent the results from the proposed and traditional 

Fig. 10. Observations versus simulations at a typical day (18th day) of two sensor locations (S1 and F1 are shown in Fig. 7).  

Table 1 
Metric values of simulations at validation time period for the BKN case study.  

Monitoring locations The traditional method The proposed method 
R2 NSE KGE R2 NSE KGE 

S1 0.92 0.92 0.96 0.93 0.92 0.95 
S2 0.91 0.89 0.90 0.92 0.90 0.91 
S3 0.88 0.87 0.80 0.90 0.87 0.78 
P1 0.91 0.91 0.92 0.92 0.91 0.94 
Mean 0.91 0.89 0.89 0.92 0.90 0.89  

Table 2 
Metric values of simulations at validation time period for the XZN case study.  

Monitoring locations The traditional method The proposed method 
R2 NSE KGE R2 NSE KGE 

D1 0.91 0.73 0.85 0.90 0.90 0.93 
D2 0.92 0.70 0.82 0.92 0.89 0.89 
D3 0.90 0.74 0.88 0.89 0.88 0.94 
D4 0.93 0.73 0.82 0.93 0.92 0.91 
D5 0.90 0.68 0.81 0.89 0.89 0.91 
D6 0.91 0.82 0.88 0.90 0.89 0.92 
D7 0.90 0.86 0.86 0.90 0.90 0.90 
D8 0.88 0.86 0.93 0.86 0.85 0.92 
F1 0.94 0.94 0.96 0.93 0.92 0.95 
F2 0.96 0.96 0.95 0.96 0.96 0.96 
F3 0.94 0.94 0.95 0.93 0.93 0.96 
Mean 0.92 0.81 0.88 0.91 0.90 0.93  
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(CVh(t) = 0.85or1.15) uncertainty analysis method, respectively. As 
shown in this figure, the observations of the sewer hydraulic variables 
can be significantly varied at the same time periods but different days 
(grey lines in Fig. 14). 

It can be observed from Fig. 14 that the proposed uncertainty anal
ysis method is able to capture well the underlying variations of the 
observations at different FSS sensor locations. However, this is not the 
case for the traditional uncertainty analysis approach, as many of the 

observations are outside of the predicted ranges. To further visualize the 
performance of these two methods, Fig. 15 shows the uncertainty 
analysis results on the 24th day within the validation time period. As 
shown in this figure, the performance of the proposed uncertainty 
analysis method is appreciably better than the traditional approach in 
simulating the variations of the water depths or pipe flows. However, it 
is observed that few observations are still beyond the ranges identified 
by the proposed uncertainty analysis method (Fig. 15). This can be 

Fig. 11. Water consumption data versus sewer inflow predictions at four FSS manholes (R1-R4 are shown in Fig. 7) without sensors.  

Fig. 12. Probability density distributions of the transfer factor (TF) values between the water consumption data and the corresponding wastewater discharges for 
residential users. 
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caused by a lack of the consideration of infiltration in this study, which 
should be accounted for in a future study. Similar observations can be 
made for other FSS sensor locations. This implies that the proposed 
uncertainty analysis method (based on the water consumption data) is 
significantly better than the traditional approach in representing the 
stochastic properties of the sewer hydraulic variables. 

5. Conclusions 

The present study proposes a new method for effectively calibrating 
the foul sewer system (FSS) model by using geotagged data and water 
consumption data from smart water metering. Based on the results ob
tained from two real case studies, the following conclusions are made: 

(1) The proposed method provides similar or slightly better FSS hy
draulic prediction accuracy at the locations with sensors when 
compared to the traditional approach. However, the proposed 
method produces significantly better prediction results at the FSS 
locations without sensors. This indicates that the proposed 
method can significantly improve the model performance by 
addressing the “equifinality” problem.  

(2) The proposed uncertainty analysis method provides means to 
accurately estimate the variation bounds for water depths and 
flows influenced by different uncertainty factors. Therefore, it has 
the potential to improve the performance of certain practical 
applications (e.g. detection of blockages) when compared to 
traditional uncertainty estimation methods currently used. 

Fig. 13. The density distribution of CV values in each sampling pool (Ψ(t)), with 48 lines included for each case study.  

Fig. 14. Uncertainty ranges for the FSS sensor locations within the validation time period (S1, P1, D1, D4, F1 and F2 are shown in Fig. 7).  
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Having said above, some potential limitations remain to be 
addressed as part of future work of the proposed method, which are 
given as follows: (i) the inability to account for the impacts of the 
infiltration/exfiltration process, which may affect the model accuracy 
especially in an aged FSS or FSS in an area with groundwater; (ii) the 
incapability to deal with combined sewer systems where catchment 
runoff is present too; (iii) reliance on smart water metering data or 
geotagged data which may not be available and (iv) dealing with more 
complex FSSs that contain pumps, weirs and other control structures. 
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