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Abstract
In timber connections, screws have a benefit over dowels or nails, as due to their withdrawal capacity
they can transfer loads both perpendicular and parallel to the screw axis. Screws display their largest
stiffness and load-bearing capacity in the direction parallel to the screw axis. These properties can be
taken advantage of in case timber elements are connected with screws inserted under an angle with
respect to the shear plane. Although a calculation method for the translational stiffness of connections
with inclined screws is currently not included in Eurocode 5, multiple methods are discussed in the liter-
ature. This work focuses on the rotational stiffness of connections with inclined screws, which remains
a considerable knowledge gap to date.

An extensive literature study is carried out, in which methods for the calculation of translational stiffness
of inclined screws as well as methods for the calculation of rotational stiffness of dowel-type fasteners
are studied. Combinations of these methods are used to put forward fourteen calculation methods
for the rotational stiffness of inclined screw connections. Rotational stiffness tests of connections with
inclined screws have been carried out prior to the start of this thesis project. The calculated rota-
tional stiffness values of each of the fourteen methods are compared to the experimentally obtained
values. Two prototypes of a novel truss concept developed at Karlsruhe Institute of Technology, in
which inclined screws are implemented in the chord-diagonal connections, are modelled in Rhinoceros
Grasshopper. The influence of the rotational stiffness of the chord-diagonal connections on the ser-
viceability and ultimate limit state behaviour is studied.

A correction for friction occurring between the timber members as a result of the specific sequence
of the application of the loads in a subset of the rotational stiffness experiments is proposed. After this
correction, the best method shows good similarity with experimental results, yielding a coefficient of
determination of 0.79 for a total of 91 tests. With regard to the truss model, it is concluded that the
rotational stiffness has no influence on the deflections of the truss, however, the moments in the con-
nections increase for higher rotational stiffness values. Individual screws in the connections are found
to receive an additional load of 5-10 % in their main loading direction as a result of the moments in
the connections in the large-scale truss prototype. The model can be used in the preliminary design
of these trusses to quantify moments in the connections and the forces per screw as a result of these
moments.
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1
Introduction

1.1. Research Context
The buildings and construction sector is a big contributor to global energy-related carbon emissions
and is responsible for 37 % of the global carbon dioxide emissions in 2021 [59, p. 1]. These emissions
consist of operational emissions, and emissions associated with the construction and deconstruction
of buildings, also referred to as embodied emissions. Embodied emissions from steel, concrete, and
aluminium make up at least 6 % of the total energy-related carbon dioxide emissions [59, p. 1]. The
utilisation of bio-based materials in the construction industry has the potential to limit the carbon foot-
print of the industry dramatically. While large amounts of carbon dioxide are emitted during steel and
concrete production, wood captures carbon dioxide from the atmosphere in the process of production.
Also, the material properties of timber are beneficial for large-span structures. In relation to the ma-
terial’s density, timber shows high deflection and buckling efficiency, and is very efficient in taking up
compressive, tensile, and bending loads [19].

1.2. Research Problem
A current research project at Karlsruhe Institute of Technology aims to develop a standardized timber
truss concept to span large distances, which is given the name FaNaBu (Fachwerkträger aus Nadel-
und Buchenholz, or trusses made of coniferous wood and beech in English). The current concept of the
project combines the material properties of softwood glued laminated timber and hardwood laminated
veneer lumber (LVL) to optimise high load-bearing capacity and simple assembly for large-span timber
structures. Figure 1.1 shows a prototype of the FaNaBu truss.

Figure 1.1: FaNaBu truss concept with composite upper and lower chords and LVL tensile diagonals connected using inclined
screws [25, p. 63].

1



2 1. Introduction

It is common knowledge that in timber structures, connections are usually a limiting factor for the load-
carrying capacity of the entire structure. Connections of elements often result in geometrical and struc-
tural challenges during the structural design phase of timber structures. Steel connecting agents are
often used to realise these connection details. The complex interplay of stress buildups around fasten-
ers, differences in material properties, multi-axial stress states, and the anisotropic and brittle behaviour
of wood makes for the fact that design codes often do not reflect the full complexity of these connection
details.

For large-span timber structures, the stiffness of the connections has a direct effect on the deformations
in the structure. An often-used upper limit for the vertical deformation at the mid-span of a structure
is 1/250 of the spanned distance [52]. The deformations of structures are addressed in the service-
ability limit state (SLS), which ensures acceptable human comfort, guaranteed functionality, and an
acceptable visual appearance of structures [13, p. 520]. Deformations of a structure can also have
an impact on its load-bearing capacity, addressed in the ultimate limit state (ULS), for instance in case
deformations cause additional stress buildups.

In the FaNaBu concept, inclined screws are used for the connections between the tensile diagonals
and chords. Screws as a connecting agent have a benefit over dowels or nails, as due to their with-
drawal capacity they can transfer loads both perpendicular to the screw axis and parallel to the screw
axis. Screws display their largest stiffness and capacity in the axial direction. This makes a compelling
case for placing screws under an angle in connections in which small deformations and high capacity
are desirable. Additionally, the timber elements are pressed against each other in this geometrical con-
figuration, so that friction effects add to their stiffness and strength. Under such applications, screws
experience a combination of both axial and shear force, depending on the angle of inclination.

To date, research has mainly focussed on the axial properties of connections with inclined screws.
Different methods to calculate stiffness and capacity have been proposed in the literature. There are
cases in which the application of this type of connection is preferred due to the aforementioned benefits
regarding axial stiffness and strength, but the exposure of the connection to bending moments cannot
be ruled out. This is also the case in the application of inclined screws in the FaNaBu truss concept,
as shown in figure 1.2. Deformations of the truss theoretically cause relative rotations Δ𝜙 between the
diagonals and chords. In case the connections are perfect rotational hinges, the connections would
only be loaded axially, but because these connections are presumed to have a certain rotational stiff-
ness 𝑘𝑟, moments develop in the connections according to the simple relation 𝑀 = 𝑘𝑟 ⋅ Δ𝜙. Prediction
of the magnitude of these moments depends on a reliable method to quantify the rotational stiffness
of connections with inclined screws. Such methods exist for connections consisting of perpendicularly
inserted dowel-type fasteners, but the case of inclined screws forms a clear research gap.

Figure 1.2: Representation of the moments that develop in the connections due to relative rotations Δ𝜙 and rotational stiffness
𝑘𝑟 of the chord-diagonal connections in the FaNaBu truss. Source: own image.



1.3. Research objectives 3

1.3. Research objectives
The first research objective of this thesis is to develop a calculation method to accurately assess the
rotational stiffness of timber-to-timber connections utilising inclined screws. A second objective is to
assess the influence of the rotational and translational stiffness of the chord-diagonal connections in
the FaNaBu truss on both its SLS and ULS behaviour and quantify the forces each screw receives as
a result of the moments that develop in the connections. A final objective is to develop concepts for
inclined screw connections other than the chord-diagonal connection in the FaNaBu truss.

1.4. Scope
Althoughmany connection methods exist, this research is focused on timber-to-timber connections with
inclined screws. The research is further limited to the tests that have been conducted prior to the start
of this MSc thesis project with respect to the angle of inclination, screw type, timber species, angles
to the grain and loading conditions. The main focus of the thesis is on the FaNaBu truss concept, but
possible other connection types are briefly discussed.

1.5. Research questions
The main research question this thesis aims to answer is:

How can the rotational stiffness of timber-to-timber connections with inclined screws be quantified?

And the following sub-questions:

• What are current calculation methods for the stiffness and capacity of connections with inclined
screws, and how do these compare?

• What are current calculation methods for the rotational stiffness and moment capacity of connec-
tions with dowel-type fasteners and how do these compare?

• Which parameters are of influence for the rotational stiffness of connections with inclined screws?

• What is the influence of the rotational stiffness of connections on the serviceability and ultimate
limit state behaviour of the trusses in which the connections are applied?

• What could be other possible applications of connections with inclined screws, and is the devel-
oped method for rotational stiffness applicable to these connections?

1.6. Structure of the thesis
The thesis consists of 4 different parts, which are briefly discussed below.

Literature
An extensive literature study is carried out. The literature study aims to first provide background in-
formation of timber trusses and connection properties. Different methods to quantify the stiffness of
inclined screws identified in the literature are discussed and analysed, as well as methods for rota-
tional stiffness and moment capacity of connections with dowel-type fasteners.

Analytical works
In this part, the experimental rotational stiffness tests carried out as part of the FaNaBu research project
are discussed. Methods for the stiffness of individual inclined screws and rotational stiffness are com-
bined in order to collect a number of possible calculation methods for the rotational stiffness of connec-
tions with inclined screws. These methods are compared to the experimental test data in order to find
a method that yields good results.
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Structural modelling
A structural model of the FaNaBu truss is built in a structural analysis software tool, and the influence
of the rotational stiffness of the chord-diagonal connections on the serviceability limit state and ultimate
limit state is analysed.

Connection details
Considerations concerning the connections in the FaNaBu truss are discussed, as well as possibilities
for the use of inclined screws in other connection types.



2
Timber trusses

2.1. Introduction
Timber trusses are an often-used method to span large distances. The connections are of large im-
portance for the load-bearing capacity and serviceability limit state behaviour of timber trusses. In this
chapter, literature on timber trusses, their connections, and the influence of rotational stiffness of their
connections is discussed.

2.2. Connections
Trusses are an efficient way to span large distances with timber as no material is used in places without
considerable stresses [25, p. 1]. Additionally, the members are loaded almost exclusively along their
axis, which is the optimal loading situation for timber [64, p. 14]. Connections usually are a limiting
factor in timber trusses, and therefore often dictate the design of the entire structure. Not rarely this
phenomenon results in oversized truss members, thereby posing economical and technical limits on a
viable use of timber structures [45, p. 105].

(a) Dowel connection with slotted-in steel
plates [19] (b) Glued-in rod connection [17] (c) Nail plate connection [35, fig. 1]

Figure 2.1

The most common types of connections used in timber trusses at present are steel dowels in com-
bination with slotted-in steel plates, glued-in rods, and nail plates [64, p. 12]. Examples of these
connections are shown in figure 2.1. Recent developments of timber truss connections include com-
binations of glued- or screwed-in rods for tension members and enhanced step joints for compression
members by Blass & Meyer [50] and by Blass & Enders-Comberg [12] respectively (see figure 2.2a).
Another innovation in the connections of timber trusses is the use of inclined screws by Egner & Frese
[25] (see figure 2.2b).

5



6 2. Timber trusses

(a) Combination of screwed-in rod and step joint [12, fig. 1-1]
(b) Connection of diagonal and top chord with inclined
screws [25, fig. 4]

Figure 2.2

2.3. Brief history
Large-scale production of timber trusses began in the 19th century, when trusses with parallel chords
made of squared timber sections connected with step joints and split ring dowels were developed
[64, p. 15]. An interesting development in this period is the HOWE truss, which was used in the USA
since 1840, and consisted of crossed timber diagonals that were loaded in compression by prestressed
vertical tension bars, as illustrated in figure 2.3a [64, p. 16]. Figure 2.3b shows the König-Ludwig-
Brücke in Kempten, which is built according to the Howe truss principle.

(a) HOWE truss principle with prestressed vertical tension bars [31] (via
[64, fig. 2.6]])

(b) König-Ludwig-Brücke, Kempten: Truss bridge utilizing
HOWE’s principle, later reinforced with steel and protected
against weather influences. Source: own image.

Figure 2.3

Since 1850 steel bolts have been used for the connections in trusses [32], and later pin-shaped nails
made of oak inserted in tight-fitting pre-drilled holes became more widespread [64, p. 16]. Around
the turn of the century, these wooden nails and pin-shaped connectors were replaced by steel vari-
ants, which came under patents as ”Meltzer-” and ”Ambistifte”. These typically came in the range of
8-12 [mm] and had tensile strengths of 800-900 [MPa] [32]. With the emergence of new connection
types such as dowel connections, split ring dowel connections, and nailed connections in the 1930s
in Europe, the bolted connections fell into oblivion [32]. This preference was not due to the mechan-
ical superiority of nailed connections over bolted connections, but rather an overestimation of nailed
connections in design codes at the time due to too favourable testing conditions [32]. From the 1940s
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until the 1960s, first nailed connections and later glued connections were used more often. Trusses
with parallel chords became increasingly common in more simple structures, which resulted in highly
variable ratios of truss height over truss length [64, p. 17].

2.4. Structural behaviour
The different ratios of truss height over truss length resulted in the realisation that for trusses with
small height compared to their length, the stiffness of the beams and connections had to be taken into
account. This meant that the ideal truss model, described by Culmann (1866) [20] could no longer
be used (i.e. connections are modelled as friction-free hinges without translational slip, chords are
not continuous, and external loads are introduced in the connections so that only normal forces occur
in the truss members). Schilling (2022) [64, p. 17] states that Scheer & Golze (1981) [63] therefore
investigated the design of timber trusses taking into account the continuity of the chords making use
of the finite element method and that their calculations showed only 1-2 % less normal forces and
deflections than the ideal truss model, although considerable bending moments occurred in the chords
in the continuous model (see figure 2.4).

(a) Normal forces, bendingmoments, and displacements of ideal trussmodel
[23, p. 302] (after [63]).

(b) Normal forces, bending moments, and displacements of truss with con-
tinuous chords [23, p. 303] (after [63]).

Figure 2.4: Comparison of normal forces, bending moments, and displacements in different truss models.

Dubas et al. [23, p. 304] describe tests performed by Möhler (1966) [51] that compare the stiffness
of trusses with glued and nailed connections. It was observed that trusses with glued connections
exhibited a 15 % reduction in overall stiffness, while those with nailed connections showed a 25 %
reduction in overall stiffness when compared to the rigid model. The lower stiffnesses lead to larger
deflections, and therefore also to larger bending moments in the continuous chords. The corresponding
truss model including continuous chords and these translational stiffnesses is given in figure 2.5a. It
was concluded by Dubas et al. (1981) [23, p. 304] that also the rotational stiffness of the connections
should be taken into account, leading to the model as given in figure 2.5b. However, it was not possible
to accurately quantify the rotational stiffness values of connections yet. Tests are described by Dubas et
al. [23, p. 305] with trusses with slotted-in steel plates and dowels as connections. It was concluded that
for the load level of serviceability limit state, the assumption of rigid connections was a valid assumption.
Also, Dubas et al. (1981) [23, p. 308] conclude that for trusses with parallel chords, in contrast to
triangular-shaped trusses, the diagonals have a primary function, and therefore the influence of the
connection stiffness on the system’s behaviour is also more pronounced. The slenderness (=truss
height/truss span) of parallel chord trusses also influences the magnitude of section forces: trusses
with smaller slenderness experience more deflection, and therefore larger bending moments in the
chords occur. Also, in case the cross sections of the chords of the truss are larger, the chords have
more bending stiffness and hence, attract more bending moment [23, p. 308].
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(a) Truss model with continuous chords and translation springs
(b) Truss model with continuous chords, translation, and rotation
springs

Figure 2.5: [23, fig. 11.6 & 11.8]

2.5. Bending moments in connections
The phenomenon of additional bending moments in timber trusses as a result of connection stiffness
was first studied by Gehri [32]. In this study, the influence of an external couple on the axial load-
carrying capacity of the connection 𝐹𝑢 was explored by loading specimens eccentrically, as shown in
figure 2.6. The connections consisted of two parallel slotted-in steel plates in combination with steel
dowels. It is suggested that for trusses without direct loading of members, a reduction of the maximum
allowable tensile load of 10 % should be taken into account [32, p. 1342].

Figure 2.6: Influence of external couple on axial load-carrying capacity 𝐹𝑢 [32, Fig. 14]

Similar research was done by Schilling et al. [65]. The authors propose a reduction factor for connec-
tions that are subjected to complex loading of normal force and bending moment. To this end, multiple
tests from the literature were compared, including the tests conducted by Gehri [32], in which truss
members are subjected to load cases of both tensile normal force and bending moment.

(a) Experimental setup type 1 (b) Experimental setup type 2

Figure 2.7: Experimental test setups from the literature used by Schilling [65, p. 11]

The tests used in the analysis either applied an eccentric tensile normal force on a specimen (type 1,
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see figure 2.7a) or combined the tensile normal force with a point load in the center point of the specimen
(type 2, see figure 2.7a). The bending moment values for type 2 were adjusted and expressed in the
normal force acting at a certain eccentricity, so that type 1 and type 2 could be compared. The results
are shown in figure 2.8b. Non-linear regression was applied to the results of all tests, to come to the
proposed reduction factor which is to be calculated according to equation 2.1.

𝑘𝑒 =
𝐹𝑢,𝑒
𝐹𝑢,0

= 1 − 1.56 ( 𝑒
ℎ𝑐𝑜𝑛𝑛

)
1.25

𝑅2 = 0.88 (2.1)

(a) Height of connection
ℎ𝑐𝑜𝑛𝑛 and eccentricity 𝑒 as
adopted by Schilling et al.
[65]

(b) Reduction factor of the load-carrying capacity of eccentrically loaded steel-timber connections, de-
pending on normalized eccentricity [65, fig. 8]

Figure 2.8

It is concluded that rotational stiffness of the connections in timber trusses negatively impacts the
load-bearing capacity of dowel connections with slotted-in steel plates. The studies by Gehri [32] and
Schilling [65] underline the importance of quantification of rotational stiffness and subsequent reduction
of capacity of these connections.



3
Connection properties

3.1. Introduction
Connections with inclined screws are a special type of connection, as the screws are loaded both
in shear and in withdrawal. In this chapter, both the shearing behaviour and axial behaviour of in-
clined screw connections are discussed. Dowels are an often used connecting agent to connect timber
members by transferring shear forces. Dowel-type fasteners are all fasteners that exhibit dowel-type
behaviour and include laterally loaded screws, bolts, nails, and dowels. In the final part of this chapter,
screws loaded in withdrawal are discussed, also referred to as axially loaded screws.

3.2. Dowel type fasteners
Dowel-type fasteners are well reflected in both standards and literature. This section discusses both
the load-bearing capacity and stiffness of dowel-type fasteners.

3.2.1. Load-bearing capacity
The load-bearing capacity of dowel-type connections is governed by three main parameters. These
are the embedment strength of the wood 𝑓ℎ, the strength of the dowel, expressed in the yield moment
of the dowel 𝑀𝑦, and finally the dowel’s capacity for load uptake in tension, also referred to as the
anchorage capacity 𝐹𝑎𝑥 [54, p. 89].

Brittle failure modes and group effects
Connections often need multiple dowel-type fasteners in order to carry their load. The fasteners in con-
nections are often placed close to one another, as otherwise, the dimensions of the connections have
to be enlarged resulting in over-dimensioned, uneconomical structures [54]. On the other hand, if fas-
teners are placed too closely together, the risk of splitting and other brittle failure mechanisms occurring
before timber embedment or dowel yielding increases. The brittle failure mechanisms that may occur
in timber connections with multiple dowel-type fasteners are given in figure 3.1. In order to prevent
brittle failure mechanisms in connections, sufficient screw spacings and end/edge distances must be
applied. These distances are specified in standards, for instance, EN-1995-1-5 [55]. For connections
with inclined screws, EN-1995-1-1 prescribes the minimum screw spacings and end/edge distances as
given in table 3.1 and figure 3.2. Besides these minimum values for spacings and end/edge distances,
EN-1995-1-1 provides verification formulas for connections per failure mechanism.

Ductility of dowel-type connections can be improved by further endeavours to prevent brittle failure
mechanisms. This can be achieved by applying reinforcements of connections with screws as de-
scribed by Betjka [7], or by using engineered wood such as LVL with cross layers as described by
Kobel et al. [45], who found satisfactory results for a cross-layer percentage of 14 % to prevent imma-
ture splitting.

10
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(a) Splitting [54] (b) Row shear [54] (c) Block shear [54] (d) Net tensile failure [53] (e) Plug shear [54]

Figure 3.1: Brittle failure modes in timber joints.

Individual fasteners in a fastener group are typically not loaded equally, even in case the load perfectly
aligns with the geometrical centre of gravity of the individual fasteners [13, p. 342]. Reasons for this
phenomenon are local variations in hole sizes, timber strength, hole misalignment, and unintentional
uneven load transfer between connected timber members [54, p. 104]. In case multiple fasteners in
a row are loaded, typically the first and last fastener experience the highest load and therefore are
most inclined to fail first, as first described by Lantos [47] and Cramer [18], according to information in
the handbook of Swedish Wood [54, p. 104]. Standards typically solve this by specifying an effective
number of fasteners lower than the amount of fasteners present. The effective number of fasteners is
then used to check the capacity of a row of fasteners (see equation 3.1).

𝐹𝑣,𝑅𝑘 = 𝑛𝑒𝑓𝐹𝑣,𝑅𝑘 (3.1)

In which:

• 𝐹𝑣,𝑅𝑘: effective characteristic load carrying capacity of a single row of fasteners parallel to the
grain

• 𝑛𝑒𝑓: effective number of fasteners in line parallel to the grain, depending on fastener spacing,
number of fasteners, fastener diameter, and pre-drilling

[55, p. 56]

Figure 3.2: Minimum edge and end distances for connections with inclined screws [56, p. 48].

Embedment strength
The embedment strength is the stress that can be sustained by the timber around a dowel, and depends
on several parameters:
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Minimum screw
spacing in a plane
parallel to the grain

Minimum screw
spacing

perpendicular to a
plane parallel to the

grain

Minimum end
distance of the centre

of gravity of the
threaded part of the
screw in the member

Minimum edge
distance of the centre

of gravity of the
threaded part of the
screw in the member

𝑎1 𝑎2 𝑎1,𝐶𝐺 𝑎2,𝐶𝐺
7d 5d 10d 4d

Table 3.1: The minimum values for end and edge distances as given in EN-1995-1-1 for connections with inclined screws [55].

• Density of timber: higher densities yield higher embedment strengths.

• Diameter of the fastener: small dowel diameters yield higher embedment strengths.

• Angle between grain and load direction: compression parallel to the grain yields the highest
embedment strengths. Conversely, compression perpendicular to the grain yields the lowest
embedment strengths.

• Friction that occurs between the timber and fastener: dowels with a rougher surface and thus
higher values of friction between timber and dowel yield higher embedment strengths.

• Moisture content of the timber: higher moisture content of the wood leads to lower embedment
strengths.

• Reinforcement perpendicular to the grain, if present: embedment failure is initiated by a crack
propagating along the grain of the wood. Therefore, any reinforcement in this direction yields
higher embedment strengths.

• Pre-drilling of the hole: in case the hole is pre-drilled, the vast majority of the load parallel to the
grain is resisted by compression of the timber fibres parallel to the grain. In case the hole is not
pre-drilled, a relatively larger portion of the load is resisted via compression perpendicular to the
grain, yielding lower embedment strengths (see figure 3.3).

[54, p. 90]

Figure 3.3: Difference in timber structure around a dowel-type fastener between a case with a pre-drilled hole (left) and without
a pre-drilled hole (right). The timber fibres are cut in the first case, while they are bent in the latter [54, p. 90].

Because timber is an orthotropic material, the compressive strength depends on the angle at which
compressive force is applied. This relation was first experimentally determined by Hankinson [34], who
proposed equation 3.2, relating the angle between the line of force 𝛼 to the compressive timber strength
parallel to the grain 𝑓𝑐,0 and perpendicular to the grain 𝑓𝑐,90. The formula is found to be applicable in
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tension as well [54, p. 36]. A formula for the embedment strength based on the Hankinson equation is
adopted in EN 1995-1-1 [55] (see equation 3.6).

𝑓𝑐,𝛼 =
𝑓𝑐,0𝑓𝑐,90

𝑓𝑐,0 sin2(𝛼) + 𝑓𝑐,90 cos2(𝛼)
(3.2)

The embedment strength can be found from an embedment test, and is a property related to the total
system rather than to a material [13, p. 348]. It is usually tested in an embedment test as given in
figure 3.4a and described in further detail in EN383 [28]. The embedment strength is defined as the
maximum stress that is obtained before or at a displacement of 5 [mm], divided by the projected area
of the dowel-type fastener, according to formula 3.3.

𝑓ℎ =
𝐹𝑚𝑎𝑥
𝑑 ⋅ 𝑡 (3.3)

(a) Typical embedment test set-up.
The fastener is rigidly clamped by
the side plates denoted as ”B” [37]

(b) Typical load-embedment characteristic
[37]

(c) Simplified load-embedment characteristic
[37]

Figure 3.4

Tests have been performed by Ehlbeck & Werner [26], in which multiple timber species were subjected
to embedment tests under different angles to the grain. Ehlbeck andWerner [26] proposed equation 3.4
for smooth round fasteners in pre-drilled holes in softwood loaded parallel to the grain. The equation
is adopted in EN-1995-1-1 [55] for bolts and dowels with diameters up to 30 [mm], with the slight
difference that the characteristic values are used for embedment strength and density, as given in
equation 3.5. Embedment strengths for different angles to the grain can be obtained by making use of
equation 3.6 given in EN-1995-1-1, which is based on the equation proposed by Hankinson. A typical
load-embedment characteristic for steel dowels in timber is given in figure 3.4b. For the capacity of
timber connections with dowel-type connections, an ideal rigid-plastic material behaviour is usually
assumed, so that the simplified load-embedment characteristic as given in figure 3.4c can be adopted.
This approximation significantly simplifies the calculation procedure and has little influence on its result
[37].

𝑓ℎ,0 = 0.082 ⋅ (1 − 0.01𝑑) ⋅ 𝜌𝑚𝑒𝑎𝑛 (3.4)

𝑓ℎ,0,𝑘 = 0.082 ⋅ (1 − 0.01𝑑) ⋅ 𝜌𝑘 (3.5)

𝑓ℎ,𝛼,𝑘 =
𝑓ℎ,0,𝑘

𝑘90 sin2(𝛼) + cos2(𝛼)
(3.6)

In which:

• 𝛼: the angle between the grain direction and load vector
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• 𝑘90 = {
1.35 + 0.015𝑑, for softwoods
1.30 + 0.015𝑑, for LVL
0.90 + 0.015𝑑, for hardwoods

• 𝑓ℎ,0,𝑘: embedment strength of the timber parallel to the grain

Yield moment
The strength of the dowel or dowel-type fastener is represented by its yield moment. The procedure
to determine this property is described in EN 409 [29] and consists of a four-point bending test of the
dowel-type fastener. The loading is increased until angle 𝛼 reaches a value of 45∘ for nails and staples,
or (110/d)∘ for screws, dowels, or bolts.

(a) Test set-up to determine the yield moment of
dowel-type fasteners [29] (b) Plastic and elastic bending moment for increasing rotation angle [61, p. 154]

Figure 3.5

One method to determine a first estimate of the yield moment would be to use the plastic bending
moment as derived in equation 3.7. However, there is ambiguity between EN 409 [29] which requires
dowels to reach a certain rotation angle in order to reach their yield moment, and EN 26891 [27] that
states that connections should be tested up to either a deformation of 15 [mm] or ultimate load. It is
stated by Sandhaas [61, p. 152] that thicker dowels therefore do not reach their plastic limit before a
deformation of 15 [mm], while on the contrary thinner dowels will reach full plasticity in the hinge before
a deformation of 15 [mm]. Therefore, equation 3.7 can only be used for high-strength steel dowels and
very high-strength steel dowels, which already show relatively high levels of plasticity for small rotation
angles [61, p. 152]

𝑀𝑝𝑙 =
𝜋𝑟2
2
4𝑟
3𝜋2𝑓𝑦 =

8𝑟3
6 𝑓𝑦 =

1
6𝑑

3𝑓𝑦 (3.7)

The phenomenon described above had also been noted by Blass et al. [8] after a large number of tests
had been performed measuring load and bending angles of dowels [42], [43]. Blass et al. proposed
equation 3.10 as an improvement of the old version of eurocode [30] which used two formulas for
the yield moment, given in equations 3.8 and 3.9. Equation 3.10 was indeed adopted in a slightly
rearranged form in the current version of EN-1995-1-1 [55], given by equation 3.11.

𝑀𝑦,𝑘 = 0.8𝑓𝑢,𝑘
𝑑3
6 (for round steel bolts , with 𝑓𝑢,𝑘 the char. tensile strength) (3.8)

𝑀𝑦,𝑘 = 180𝑑2.6 for round steel nails with minimum tensile stength of 600 [N/mm2] (3.9)

𝑀𝑦,𝑘 = 0.24𝑓𝑢,𝑘𝑑2.7 (3.10)

𝑀𝑦,𝑅𝑘 = 0.3𝑓𝑢,𝑘𝑑2.6 (3.11)
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Johansen yield theory
The failure behaviour of timber-to-timber connections making use of dowels was first described by
Johansen in 1949 [41]. Johansen studied connections both with single and double shear planes. The
research found that not only the embedment behaviour of the timber was of importance for the capacity,
but also the yield moment of the dowel itself. For this, ideal rigid-plastic material behaviour is assumed
of the timber in embedding. The same holds for the steel of the dowel in bending. Three distinct failure
modes shown in figure 3.6 were proposed by Johansen [41]:

• failure mode 1: failure with no plastic hinges in the dowel

• failure mode 2: failure with one plastic hinge in the dowel

• failure mode 3: failure with two plastic hinges in the dowel

Figure 3.6: Timber-to-timber failure modes with dowel connection, [54, p. 92]

By setting up the moment equilibrium of the dowel, different formulas for the failure modes with single
shear planes can be derived. In case the two timber elements consist of different species, the fraction
of their embedment strengths is expressed utilising the factor 𝛽, which is determined via equation 3.12.

𝛽 = 𝑓ℎ,2,𝑘
𝑓ℎ,1,𝑘

(3.12)

The basic formulae for the resistance based on moment equilibrium are expressed as:

• 𝐹v,Rk = 𝑓ℎ,1,𝑘𝑡1𝑑 for modes a(I) and b(I) in figure 3.6

• 𝐹v,Rk =
𝑓h,1,k𝑑𝑡1
1+𝛽 (√𝛽 + 2𝛽2 (1 + 𝑡2

𝑡1
+ ( 𝑡2𝑡1 )

2
) + 𝛽3 ( 𝑡2𝑡1 )

2
− 𝛽 (1 + 𝑡2

𝑡1
)) for mode c(I) in figure 3.6

• 𝐹v,Rk =
𝑓h,1,k𝑑𝑡1
2+𝛽 (√2𝛽(1 + 𝛽) + 4𝛽(2+𝛽)𝑀y,Rk

𝑓h,1,k𝑑𝑡21
− 𝛽) for modes d(II) and e(II) in figure 3.6

• 𝐹v,Rk = √
2𝛽
1+𝛽√2𝑀y,Rk𝑓h,1,k𝑑 for mode f(III) in figure 3.6
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European Yield Model
The equations given in section 3.2.1 form the basis for the verification method referred to as the Euro-
pean Yield Model (EYM) used in Eurocode 5 [55, p. 58]. These formulas typically consist of four parts,
being:

• Partial safety factor

• Ratio between embedment strengths of the two timber parts

• Johansen part

• Part taking into account the rope effect

Correction factors are used to correct for material factors of the timber, steel, and the 𝑘𝑚𝑜𝑑 factor for
short-term loading. Instead of applying these factors separately before inputting them in the verifica-
tion formula, these different factors are combined into a single factor the verification formula can be
multiplied with. Correction factors only have to be used in failure modes in which the dowels are de-
formed, because in these formulas 𝑀𝑦,𝑅𝑘 and 𝑓ℎ,1,𝑘 are modified by a square root. Originally Johansen
[41] published his paper taking into account only cases in which the two connected timber parts have
equal characteristic embedment strengths 𝑓ℎ,𝑘. The European Yield Model also takes into account the
possibility of timber parts with different embedment strengths, conveniently expressed in the term 𝛽,
the ratio of the two embedment strengths as specified by equation 3.12.

The part of the formula that was analytically derived by Johansen [41] is usually referred to as the
”Johansen part” of the equations of the EYM. A final addition to the equations is the so-called rope
effect. In case the dowel-type fastener is bent or inclined as a result of the shear force between the
timber elements, a considerable amount of resistance can result from the tension that is taken up by
the dowel-type fastener. This tension force can be the result of the surface friction between the dowel-
type fastener and the timber, or of washers or nuts attached to the dowel-type fastener. This effect is
taken into account by means of adding a factor of magnitude 𝐹𝑎𝑥,𝑅𝑘

4 to the shear resistance. This addi-
tion makes the verification method not only suited for dowels, but also for screws, bolts, or nails. The
maximum contribution from the rope effect depends on the kind of fastener that is used. The maximum
contribution from the rope effect as a percentage of the shear capacity is given in table 3.2 for different
types of dowel-type fasteners.

The four distinct parts of the EYM are most clearly seen in the verification equation for failure mode
f(III), which is given in equation 3.13. In this equation the safety factor is written in red, the embedment
ratio in grey, the Johansen part in blue, and the contribution from the rope effect in black. The equations
for the failure modes of the EYM in single shear are given by equation 3.14.

𝐹v,Rk = 1, 15√
2𝛽
1 + 𝛽√2𝑀y,Rk,𝑓h,1,k𝑑 +

𝐹ax,Rk
4 (3.13)

Round nails 15 %
Square and grooved nails 25 %
Other nails 50 %
Screws 100 %
Bolts 25 %
Dowels 0 %

Table 3.2: Maximum contribution from the rope-effect as a percentage of the shear capacity [55]
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𝐹v,Rk =min

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑓h,1,k𝑡1𝑑
𝑓h,2,k𝑡2𝑑
𝑓h,1,k𝑡1𝑑
1+𝛽 [√𝛽 + 2𝛽2 [1 + 𝑡2

𝑡1
+ ( 𝑡2𝑡1 )

2
] + 𝛽3 ( 𝑡2𝑡1 )

2
− 𝛽 (1 + 𝑡2

𝑡1
)] + 𝐹ax,Rk

4

1, 05𝑓h,l,t𝑡1𝑑2+𝛽 [√2𝛽(1 + 𝛽) + 4𝛽(2+𝛽)𝑀y,Rk
𝑓h,1,k𝑑𝑡21

− 𝛽] + 𝐹ax,Rk
4

1, 05𝑓h,1,𝑘𝑡2𝑑1+2𝛽 [√2𝛽2(1 + 𝛽) + 4𝛽(1+2𝛽)𝑀y,Rk
𝑓h,1,k𝑑𝑡22

− 𝛽] + 𝐹ax,Rk
4

1, 15√ 2𝛽
1+𝛽√2𝑀y,Rk,𝑓h,1,k𝑑 +

𝐹ax,Rk
4

(3.14)

3.2.2. Connection stiffness
For the determination of the stiffness of timber connections the testing procedure as given in EN 26891
is most often used in Europe. The loading procedure and corresponding idealized load-deformation
curve are given in figure 3.7. In the test procedure, the applied load is always related to the value of
the estimated maximum load 𝐹𝑒𝑠𝑡 of the connection, which may be determined based on experience,
calculations, or preliminary tests [27]. A reloading cycle is included in the procedure in order to find the
elastic stiffness thereby excluding the influence of initial slip, a term defined as the deformation at load
levels of little or no load [39]. Testing may be stopped in case the ultimate load is reached i.e. failure
has occurred, or in case joint slip has reached a value of 15 [mm] [27]. In timber connections typically
40 % of the ultimate load is regarded as the serviceability limit state (SLS). From the testing procedure,
different stiffness values can be calculated. These stiffnesses are calculated according to equations
3.15, 3.16 and 3.17. The visualizations of these stiffnesses in the load-deformation curve of EN 26891
[27] are illustrated in figure 3.8.

(a) Loading procedure according to EN 26891 [27] (b) Idealised load-deformation curve according to EN 26891 [27]

Figure 3.7

1. Initial stiffness 𝑘𝑖, defined as the secant stiffness at 40 % of the estimated maximum load 𝐹𝑒𝑠𝑡,
making use of the initial deformation 𝜈𝑖:

𝑘𝑖 =
0.4 ⋅ 𝐹𝑒𝑠𝑡
𝜈𝑖

with 𝜈𝑖 = 𝜈04 (3.15)

2. Stiffness 𝑘𝑠, making use of a modified initial deformation 𝜈𝑖,𝑚𝑜𝑑:

𝑘𝑠 =
0.4 ⋅ 𝐹𝑒𝑠𝑡
𝜈𝑖,𝑚𝑜𝑑

with 𝜈𝑖,𝑚𝑜𝑑 =
4
3 ⋅ (𝜈04 − 𝜈01) (3.16)
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3. Elastic stiffness 𝑘𝑒, making use of the elastic deformation 𝜈𝑒:

𝑘𝑒 =
0.4 ⋅ 𝐹𝑒𝑠𝑡
𝜈𝑒

with 𝜈𝑒 =
2
3 ⋅ (𝜈14 + 𝜈24 − 𝜈11 − 𝜈21) (3.17)

Figure 3.8: Stiffness parameters visualised in the load-deformation curve [49, p. 14]

Lateral connection stiffness of connections with dowel-type fasteners is calculated in EN 1995-1-1 [55]
with slip modulus 𝐾𝑠𝑒𝑟, given in equation 3.18.

𝐾𝑠𝑒𝑟 =
𝜌1.5𝑚 𝑑
23 (3.18)

In which:

• 𝜌𝑚: mean density of timber [kg/m3], if two timber elements are connected, 𝜌𝑚 = √𝜌𝑚,1 ⋅ 𝜌𝑚,2

• 𝑑: outer diameter of screw [mm]

The background of this equation is based on the assumption of initial stiffness as given by equation
3.15, i.e. the secant modulus in the region up until 40 % of the maximum load on the load-deformation
curve. The instantaneous deformation around 40 % of the maximum load-carrying capacity has been
estimated from multiple tests and is given by equation 3.19 [39]. The derivation of slip modulus 𝐾𝑠𝑒𝑟 is
given by equation 3.20, and is based on the resistance given by Johansen’s failure mode 3, i.e. with two
plastic hinges, the yield moment from the old Eurocode [30] given by equation 3.9 and the embedment
strength as given by equation 3.5. The penultimate step in the derivation is somewhat vague. It is
stated that for diameters between 2 and 8 [mm], the root may be dropped and the fraction simplified to
one-twentieth [39]. However, it has been stated that this is only the case for a value of d = 15.31 [mm]
[49, p. 110]. It is suggested that based on further research or for the sake of applicability, the fraction
of one twentieth was chosen [49, p. 110]. It is noted that the slip modulus 𝐾𝑠𝑒𝑟 is derived based on
the assumption of embedment strength parallel to the grain. Furthermore, plastic deformation of the
fastener is assumed, owing to the assumption of Johansen’s yield theory.

𝑢𝑖𝑛𝑠𝑡 = 40
𝑑0.8
𝜌𝑘

(3.19)
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𝐾𝑠𝑒𝑟 =
0.4𝑅
𝑢𝑖𝑛𝑠𝑡

𝑢𝑖𝑛𝑠𝑡 = 40
𝑑0.8
𝜌𝑘

𝑅 = √ 2𝛽
1 + 𝛽√2𝑀𝑦𝑓ℎ𝑑

𝛽 = 1
𝑓ℎ,𝑘 = 0.082(1 − 0.01𝑑)𝜌𝑘
𝑀𝑦,𝑘 = 180𝑑2.6

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

⇒ 𝐾𝑠𝑒𝑟 =
0.543
100 √(100 − 𝑑)𝜌

1.5
𝑘 𝑑 ⇒

𝐾𝑠𝑒𝑟 ≈
𝜌1.5𝑘 𝑑
20

𝜌𝑘 =
𝜌𝑚
1.1

} ⇒ 𝐾𝑠𝑒𝑟 =
𝜌1.5𝑚 𝑑
23

(3.20)

3.3. Axially loaded screws
Screws that experience only a tensile load parallel to their axis are defined as axially loaded screws.
To determine the capacity of axially loaded screws, the minimum of the following three failure modes
should be considered:

• withdrawal failure of the threaded part of the screw

• pull-through failure of the screw head

• tensile failure of the screw head

Different equations and values are used for these failure modes, for instance by EN-1995-1-1 or Eu-
ropean technical assessment documents (ETA) that are available for individual screw types. The stiff-
ness of axially loaded screws is not defined in EN-1995-1-1 so equations from specific ETA documents
should be used. An alternative is to use equations from the literature, which is described in more detail
in chapter 4.



4
Inclined screw connections

4.1. Introduction
The stiffness of connections with inclined screws is complex, and a calculation approach is not included
in the current version of EN-1995-1-1 [55]. This section briefly discusses capacity calculation meth-
ods for connections with inclined screws, although the main focus is on the identification of stiffness
calculation methods for connections with inclined screws.

4.2. Geometry
Connections with inclined screws have a more complex geometry than connections consisting of later-
ally loaded dowels or axially loaded screws. The parameters of importance in this thesis are the angle
between the screw axis and shear plane 𝛼𝑠, screw stiffness in the inclination direction of the screw
𝑘𝑆𝐿𝑆, and screw stiffness perpendicular to the inclination direction 𝑘𝑆𝐿𝑆,𝑣. It is assumed that the grain
direction of both timber members 1 and 2 are always parallel to the shear plane in section view. The
angles between the grain direction of the timber and screw axis in top view are defined as 𝜙1 and 𝜙2.
An overview is given in figure 4.1.

The literature that is discussed in this chapter forms an exception to this rule. It is decided to use
the parameters as they are introduced in a specific piece of literature in their descriptions so that no
confusion arises between equations and figures.

Figure 4.1: Definitions of stiffness directions and angles used throughout the thesis. The shaded plane is the shear plane
between timber elements 1 and 2. Source: own image.

20
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4.3. Current Standard: EN-1995-1-1
In the current version of EN-1995-1-1, the load-bearing capacity of screws under a combination of axial
and lateral load is calculated as a combination of the axial and lateral behaviour of the screw, as given
by equation 4.1.

(𝐹𝑎𝑥,𝐸𝑑𝐹𝑎𝑥,𝑅𝑑
)
2
+ (𝐹𝑣,𝐸𝑑𝐹𝑣,𝑅𝑑

)
2
≤ 1 (4.1)

In which:

• 𝐹𝑎𝑥,𝐸𝑑: design axial force per fastener

• 𝐹𝑎𝑥,𝑅𝑑: design value for axial capacity of the fastener

• 𝐹𝑣,𝐸𝑑: design shear force per fastener

• 𝐹𝑣,𝑅𝑑: design value for shear capacity of fastener

The design axial withdrawal capacity 𝐹𝑎𝑥,𝑅𝑑 is calculated from the characteristic value 𝐹𝑎𝑥,𝑅𝑘 making use
of the partial factor for material properties 𝛾𝑀 and modification factor 𝑘𝑚𝑜𝑑 taking into account mois-
ture content and load duration. The characteristic axial withdrawal capacity is given in section 8.7.2
in EN-1995-1-1 [55]. Individual screws should be checked for the withdrawal capacity of the threaded
part, screw head pull-through, and tensile failure of the screw shaft. The characteristic shear strength
per fastener is calculated according to the European yield model, which is given in equation 8.6 in
EN-1995-1-1 [55].

In table 7.1 of EN-1995-1-1 [55], the slip modulus of dowel-type fasteners is given, amongwhich dowels,
screws, nails, and bolts. In the document, only slip moduli of fasteners loaded in shear are provided, so
that values for the specific case of inclined screws subjected to both axial and lateral load remain un-
defined. Therefore, according to EN-1995-1-1, the slip modulus of inclined screws is to be determined
with the same equation as for laterally loaded screws, as given by equation 3.18.

4.4. Bejtka Blass approach
Based on the European Yield Model (EYM), Bejtka and Blass [11] proposed a calculation model to de-
scribe the capacity of joints with inclined screws based on failure mode f(|||) of the EYM. In their model,
Bejtka and Blass define angle 𝛼 as the angle between the screw axis and the plane perpendicular to
the shear plane, so that 𝛼𝑠 = 90∘ − 𝛼 (see figure 4.2b). Betjka and Blass [11] present the results of
experimental tests, in which two timber parts loaded parallel to the grain are connected with screws in
shear tension with angles 𝛼 varying between 45∘ to 90∘, as shown in figure 4.2a.

To gain insight into the role of friction in the connection type, tests were also performed with a piece of
foil in between the timber specimens. As shown in figure 4.3a it was found that maximum values for
load carrying capacity were obtained for an angle of 60∘, yielding values that are approximately 53%
higher than for screws inserted perpendicularly. The connection stiffness was found to increase for
decreasing angles, where connections with screws inserted under 45∘ showed approximately 12 times
higher stiffness values than perpendicularly inserted screws, as given in figure 4.3b. The proposed for-
mula for the load-carrying capacity for connections with inclined screws under shear tension is given by
equation 4.2, adjusting failure mode f(|||) of the EYM for the inclination of the screw 𝛼. The roping effect
is taken into account by making use of the withdrawal parameter 𝑓1 of the screw under its inclination 𝛼.

𝑅 = 𝑓1 ⋅ 𝑑 ⋅ 𝑠𝑚𝑖𝑛 ⋅ tan(𝛼) + √
2 ⋅ 𝛽
1 + 𝛽 ⋅ √2 ⋅ 𝑀𝑦 ⋅ 𝑑 ⋅ 𝑓ℎ,1 ⋅ cos(𝛼) (4.2)

In which:

• 𝑠𝑖: penetration depth of the screw in timber part 𝑖, see figure 4.2b.
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(a) Experimental test setup used in publications of Bejtka and
Blass [10].

(b) Stresses and forces in connection with inclined screws, corre-
sponding to modified failure mode f(|||) of EYM [10, p. 3].

Figure 4.2

(a) Load carrying capacity vs. angle between screw axis and force
direction [11, p. 4].

(b) Connection stiffness vs. angle between screw axis and force
direction [11, p. 7].

Figure 4.3

• 𝑠min =min { 𝑠1𝑠2 }

• 𝑓1: axial withdrawal parameter for screws, as defined in E DIN 1052 [15].

• 𝛼: angle between screw axis and the line perpendicular to the shear plane (so that 𝛼𝑠 = 90∘−𝛼).

A second paper was published by Bejtka and Blass [10], in which they propose modified equations for
all failure modes with a single shear plane of the EYM, as given in equation 4.3. The equations of the
EYM are modified so that the influence of friction, screw insertion angle, and withdrawal capacity of the
individual screws are taken into account.

Betjka and Blass [10] found that the timber opens up as a result of the assumed rigid plastic behaviour
of the screw and the timber, as shown in figure 4.2b and figure 4.4b. Because the screw is in this
case not enclosed by the timber over its full circumference, a reduced withdrawal capacity is proposed.
The total screw displacement along the deformed screw axis Δ𝑡𝑜𝑡 is related to the original inclination
of the screw 𝛼 for a fixed connection deformation 𝛿𝑡𝑜𝑡 of 15 [mm] (as defined by ISO 6891, [27, p.
2]) via a geometric model, given in figure 4.4b. Modified withdrawal tests are performed, in which
screws are given a certain lateral displacement before the withdrawal load is applied, to simulate the
opening-up effect of the timber. Combining the results of these tests and the aforementioned relation
between total screw displacement and inclination angle, modified withdrawal parameters are proposed,
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by taking the average value of 𝑓1,𝑚𝑜𝑑,𝑖,𝑗 over the screw insertion length 𝑠𝑖 (see figure 4.4a). Because
it was found that screws with large diameters (𝑑 > 8 [mm]) do not reach their withdrawal capacity for
small angles between the screw axis and shear plane (𝛼 < 15∘) before a connection displacement 𝛿𝑡𝑜𝑡
of 15 [mm], these configurations have significantly smaller modified withdrawal capacities. In order
to simplify the design procedure, Betjka and Blass [10] propose a value for the modified withdrawal
capacity 𝑓1,𝑚𝑜𝑑,𝑖,𝑗 = 0.7 ⋅ 𝑓1,𝑖, in which 𝑓1,𝑖 is defined as the ultimate withdrawal capacity parameter
obtained from an axial withdrawal test performed on member 𝑖.

(a) Modified withdrawal capacity parameter 𝑓1,𝑚𝑜𝑑,𝑖,3 for modified
failure mode f(|||) of EYM (continuous line) and local withdrawal
capacity parameter 𝑓1,𝑖 over screw insertion length 𝑠𝑖 (dashed line)
[10, p. 6].

(b) Geometric model used to derive analytical relation between
total screw deformation along the axis Δ𝑡𝑜𝑡 and inclination 𝛼 [10,
p. 9].

Figure 4.4

RVM1a,l = Rax, 1al ⋅ sin𝛼 + fh,1 ⋅ d ⋅ s1 ⋅ cos𝛼
RVMla,r = Rax,1ar ⋅ sin𝛼 + fh,2 ⋅ d ⋅ s2 ⋅ cos𝛼
RVM1 b = Rax,1 b ⋅ (𝜇 ⋅ cos𝛼 + sin𝛼)

+ fh,1 ⋅ d ⋅ s1
1 + 𝛽 ⋅ (1 − 𝜇 ⋅ tan𝛼) ⋅ [√𝛽 + 2 ⋅ 𝛽2 ⋅ [1 + s2

s1
+ ( s2

s1
)
2
] + 𝛽3 ⋅ ( s2

s1
)
2
− 𝛽 ⋅ (1 + s2

s1
)]

RVM2a = Rax,2a ⋅ (𝜇 ⋅ cos𝛼 + sin𝛼)

+ (1 − 𝜇 ⋅ tan𝛼) ⋅ fh,1 ⋅ s1 ⋅ d2 + 𝛽 ⋅ [√2 ⋅ 𝛽 ⋅ (1 + 𝛽) +
4 ⋅ 𝛽 ⋅ (2 + 𝛽) ⋅My ⋅ cos2 𝛼

fh,1 ⋅ d ⋅ s12
− 𝛽]

RVM2 b = Rax,2 b ⋅ (𝜇 ⋅ cos𝛼 + sin𝛼)

+ (1 − 𝜇 ⋅ tan𝛼) ⋅ 𝑓ℎ,1 ⋅ 𝑠2 ⋅ 𝑑1 + 2 ⋅ 𝛽 ⋅ [√2 ⋅ 𝛽2 ⋅ (1 + 𝛽) +
4 ⋅ 𝛽 ⋅ (2 ⋅ 𝛽 + 1) ⋅ 𝑀𝑦 ⋅ cos2 𝛼

𝑓ℎ,1 ⋅ 𝑑 ⋅ 𝑠22
− 𝛽]

(4.3)

𝑅 =min

⎧
⎪

⎨
⎪
⎩

𝑅𝑉𝑀1𝑎,𝑙
𝑅𝑉𝑀1𝑎,𝑟
𝑅𝑉𝑀1𝑏
𝑅𝑉𝑀2𝑎
𝑅𝑉𝑀2𝑏
𝑅𝑉𝑀3

⎫
⎪

⎬
⎪
⎭

(4.4)

Rax,j =min {
f1,mod,1,j ⋅ d ⋅

s1
cos𝛼

f1, mod ,2,j ⋅ d ⋅
s2

cos𝛼
} (4.5)

In which:

• 𝑓1,𝑚𝑜𝑑,𝑖,𝑗: modified withdrawal capacity parameter of the screw for timber member 𝑖 and failure
mode 𝑗
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• 𝜇: coefficient of friction between timber members

In a publication that was released a few years later than the ones discussed above, Blass, Bejtka and
Uibel [9, eq. 32] present a method to calculate the connection stiffness of timber-to-timber connections
per screw and per shear plane, as given by equation 4.6.

𝐾𝐺 =
1 + 𝜇 ⋅ tan(𝛼)

1
𝐾𝑎𝑥,1

+ 1
𝐾𝑎𝑥,2

(4.6)

In which:

• 𝐾𝐺: connection stiffness [N/mm]

• 𝛼: angle between screw axis and load [∘], so that 𝛼 = 𝛼𝑠 in case the load is applied parallel to the
grain direction.

• 𝐾𝑎𝑥,𝑖: axial withdrawal stiffness of screw in timber element 𝑖 [N/mm]

• 𝑑: screw diameter [mm]

• 𝑙𝑠: threaded length in timber element 𝑖 [mm]

The validity of this formula seems questionable, as the stiffness 𝐾𝐺 increases for larger values of angle
𝛼, so that connections with inclined screws would be less stiff than connections with perpendicularly
inserted screws. Also, the definition of the tangent does not allow angles 𝛼 of 90∘. The authors have
only performed tests with angles 𝛼 of 45∘, so a possible explanation could be that the definition of 𝛼
should be the angle between the screw axis and line perpendicular to the grain/load [33, P. 580], as is
the case in the earlier work by Bejtka and Blass.

4.5. Kevarinmäki approach
Following the research of Bejtka and Blass [11], Kevarinmäki [44] performed individual screw tests and
connection tests for screws both in shear tension configuration and crossed configuration. Kevarinmäki
defines the angle between the screw axis and shear plane 𝛼, so that 𝛼 is equal to the definition 𝛼𝑠
defined in section 4.2. Only tests under an angle 𝛼𝑠 of 45∘ were performed. In the developed model,
Kevarinmäki [44] only takes friction between the timber elements into account for the calculation of
connection strength, and not for the calculation of connection stiffness. The equations for the stiffness
are given by equations 4.7 - 4.10.

𝐾𝑠 =
1

1
𝑘1
+ 1
𝑘2

(4.7)

𝑘1 = 𝐾1,𝑠𝑒𝑟 ⋅ 𝜋 ⋅ 𝑑 ⋅ 𝑙1 (4.8)

𝑘2 = 𝐾2,𝑠𝑒𝑟 ⋅ 𝜋 ⋅ 𝑑 ⋅ (𝑙2 − 𝑑) (4.9)

𝐾𝑖,𝑠𝑒𝑟 = 𝐾𝑠𝑒𝑟 ⋅ (
8 ⋅ 𝑑
𝑙𝑖
)
0.3

(4.10)

In which:

• 𝐾𝑠: slip modulus for an axially loaded screw [N/mm]

• 𝑘𝑖: slip modulus for an axially loaded screw in timber part i [N/mm]

• 𝑑: outer diameter of the screw [mm]

• 𝑙𝑖: length of the threaded screw part in member 𝑖 [mm]
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• 𝐾𝑠𝑒𝑟: mean withdrawal slip modulus per unit area of the individual screw, under an angle of 45∘
between screw axis-grain direction, and a penetration length 𝑙2 = 8𝑑 [N/mm3]

(Parameter 𝑙𝑖 is referred to as 𝑠𝑖 by Kevarinmäki, definitions are identical)

The stiffness model proposed by Kevarinmäki [44] is intended for both tension screws (screws loaded
in shear tension) and crossed screw joints. A separate expression for the initial slip of the joint is given,
defined by equation 4.11. The red part of the equation should only be added in case of tension (shear
tension) joints and takes into account the instantaneous slip due to possible shrinkage as a result of
drying of the timber members. The size of the gap 𝛿 should be obtained by calculating the shrinkage in
the direction perpendicular to the shear plane. To clarify the contribution of shrinkage to the instanta-
neous slip, figure 4.5 is added. Kevarinmäki [44] states that connections making use of inclined screws
loaded in shear tension should not be used in cases where wood drying could cause a gap 𝛿 larger
than 0.2𝑑.

𝑢𝑖𝑛𝑠𝑡 =
𝐹

𝑛 ⋅ 𝐾𝑠
+ 𝛿
tan(𝛼𝑠)

(4.11)

In which:

• 𝑢𝑖𝑛𝑠𝑡: instantaneous slip due to shrinkage [mm]
• 𝐹: external force [N]
• 𝑛: the total number of individual screws in the connection [-]
• 𝛿: gap width as a result of timber shrinkage [mm]
• 𝛼𝑠: angle between screw and grain/force [∘]

Figure 4.5: Instantanious slip as a result of timber shrinkage, original state (left), and shrunk state (right). Source: own image.

Important to note is that the stiffness calculation proposed by Kevarinmäki [44] is an empirical formula.
The stiffness value for an individual screw is determined by employing experimental tests as defined by
expression 4.12, after which it is converted to a stiffness per unit area according to equation 4.13. This
stiffness value per unit area 𝐾𝑠𝑒𝑟 is then inserted in equation 4.10 and ultimately in the double stiffness
model as given by equation 4.7. No geometrical decomposition for the inclination of the screws is made
for the stiffness equation.

𝑘𝑠 =
0.5 ⋅ 𝐹𝑚𝑎𝑥

5
3 ⋅ (𝛿05 − 𝛿02)

(4.12)

𝐾𝑠𝑒𝑟 =
𝑘𝑠

𝜋 ⋅ 𝑑 ⋅ 𝑙𝑒𝑓
(4.13)

In which:
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• 𝛿05 and 𝛿02: measured mean slip values for load values of 0.5𝐹𝑚𝑎𝑥 and 0.2𝐹𝑚𝑎𝑥, respectively
[mm]

• 𝐹𝑚𝑎𝑥: mean value of failure load of tested series [N]

• 𝑙𝑒𝑓: effective penetration length, defined as penetration depth (𝑙𝑝) minus 𝑑 (nominal screw diam-
eter) for 4.5x70, 6x90 and 7.5x152 screws, and 𝑙𝑝 − 2𝑑 for bore bit screws 8x140 [mm]

The calculated stiffness values correspondwell with experimental connection stiffness tests. Tests were
performed both for connections consisting of solid C24-sawn timber specimens and for Kerto-LVL. The
ratio of the experimental slip modulus and calculated slip modulus 𝑘𝑠,𝑡𝑒𝑠𝑡/𝑛 ⋅ 𝐾𝑠 was found to be equal
to 1.01 for solid C24 timber, and 1.21 for Kerto-LVL, in the case of tension screw joints. For the crossed
connections, ratios of 0.96 and 1.01 were found for solid C24 timber and Kerto-LVL, respectively [44,
p. 7]. A typical load-slip relation from the experimental tests is presented in 4.6. Figure 4.7 shows the
experimental test setup.

Figure 4.6: Load-slip behaviour as typically found in the tests performed of joints with inclined screws [44, p. 133].

Figure 4.7: Left: schematic representation of test specimens for crossed configuration (a) and tension configuration (b). Right:
experimental test setup of push-out tests [44, p. 133].

4.6. Tomasi, Crosatta and Piazza approach
Tomasi et al. [67] propose a method to assess the connection stiffness of inclined screw connections,
taking into account friction and slip both perpendicular and parallel to the screw axis. The geometrical
decomposition of the stiffness along the shear plane is given by figure 4.8. Equation 4.14 is proposed
for the stiffness parallel to the shear plane. Tomasi et al. [67] define angle 𝛼 as the angle between the
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screw axis and the plane perpendicular to the shear plane, so that 𝛼𝑠 = 90∘ − 𝛼.

𝐾ser = 𝐾⊥ ⋅ cos(𝛼) ⋅ (cos(𝛼) − 𝜇 ⋅ sin(𝛼)) + 𝐾‖ ⋅ sin(𝛼) ⋅ (sin(𝛼) + 𝜇 ⋅ cos(𝛼)) (4.14)

In which:

• 𝐾𝑠𝑒𝑟: instantaneous slip modulus per screw [N/mm]

• 𝐾⊥ : connector stiffness for lateral loading of the screw [N/mm]

• 𝐾‖: connector stiffness for withdrawal load of the screw [N/mm]

• 𝜇: coefficient of friction between the timber elements [-]

• 𝛼: angle between screw axis and plane perp. to the shear plane (so 𝛼𝑠 = 90∘ − 𝛼) [∘]

• 𝑑: outer screw diameter [mm]

Figure 4.8: Geometrical decomposition of displacement on the shear plane [67, p. 1562].

𝐾‖ =
1

1
𝐾ser ,𝑎𝑥,1

+ 1
𝐾ser ,𝑎𝑥,1

(4.15)

𝐾⊥ = 𝜌1.5𝑚 ⋅ 𝑑 ⋅ 123 see eq. 3.18 [55] (4.16)

𝐾𝑠𝑒𝑟,𝑎𝑥,𝑖 = 30 ⋅ 𝐿𝑒𝑓 ⋅ 𝑑 [22] (4.17)

𝐾‖ = 𝐾𝑠𝑒𝑟,𝑎𝑥,𝑖 (4.18)

Tomasi et al. [67] note that the value for 𝐾⊥ can be taken equal to the Eurocode 5 stiffness equation,
as given by equation 4.16. The value for perpendicular stiffness 𝐾‖ is more complex, and the axial
withdrawal stiffness 𝐾𝑠𝑒𝑟,𝑎𝑥 must be considered, as given by equation 4.15. This relation takes the
withdrawal stiffnesses of the screw in both timber specimens and assumes the threaded parts of the
screw are pulled out of the two specimens at the same instance, a phenomenon Tomasi et al. [67]
refer to as ”double stiffness model”. Tomasi et al. [22] state that in case the screw is only pulled out of
one of the two timber parts, equation 4.18, referred to as the ”single stiffness model” should be used,
instead of equation 4.15. Since the value for 𝐾𝑠𝑒𝑟,𝑎𝑥,𝑖 is not given by design standards, Tomasi et al.
[67] propose it is determined by means of experimental tests. However, in case screws come with a
homologation certificate in which axial stiffness is given, the formulations stated therein can be used.
In their study, Tomasi et al. [67] use equation 4.17 from the general homologation certificate from the
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German Institute for Building Technology [22]. Tomasi et al. [67] reason that in the case of crossed
screw configurations, the friction part is not effective anymore, because the timber specimens are not
compressed. Therefore, in case crossed screw configurations are used, equation 4.19 is proposed
instead of equation 4.14.

𝐾ser = 𝐾⊥ ⋅ cos(𝛼)2 + 𝐾‖ ⋅ sin(𝛼)2 (4.19)

(a) Comparison between mean experimental results and calcu-
lated stiffness values for screws loaded in shear tension under dif-
ferent inclination angles [67, p. 1569].

(b) Comparison between mean experimental results and calcu-
lated stiffness values for crossed screws under different inclination
angles [67, p. 1570].

Figure 4.9

The experimental tests that were conducted to verify the calculation methods consisted of 64 push-out
tests in total. The test setup is schematically shown in figure 4.10. Screws were loaded under shear
compression, shear tension, and crossed configurations under angles 𝛼 of 0∘, 15∘, 30∘ and 45∘. Tomasi
et al. [67] note that the so-called double stiffness model given by equation 4.15 is not in all cases the
best approximation of the test results. After opening the test specimens after collapse, it was found
that the heads of the screws had in some cases penetrated the timber by up to 4 cm, while the screw
tips remained at their original position. Figure 4.9a shows that the single stiffness model resembles
the experimental test results more closely for screws loaded in shear tension than the double stiffness
model.

Figure 4.10: Connection details and test setup used by Tomasi et al. [67, p. 1565].
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It was found that for the configurations subjected to shear compression (figure 4.10a), stiffness values
show approximately the same values for angles of 45∘, 30∘, 15∘ and 0∘, and thus the Eurocode 5
equation for stiffness (see equation 4.16) can be used. For screws loaded in shear tension and for
crossed configurations (figures 4.10b and 4.10c), equations 4.14 respectively 4.19 should be used
according to Tomasi et al. [67]. For screws loaded in shear tension and crossed configurations, stiffness
values were found to increase with larger values of 𝛼. The largest stiffness value of all tests was found
for the crossed configuration under an angle of 45∘, as given in figure 4.9b.

4.7. Jockwer, Steiger and Frangi approach
Instead of only examining one loading direction, Jockwer et al. [38] present a calculation method for
both loading parallel and perpendicular to the shear plane, as shown in figure 4.11. The stiffness for
the load case in which the timber parts are loaded perpendicular to the shear plane (pulling) is given in
equation 4.20. Jockwer et al. [38] define 𝛾 as the angle between the screw axis and the grain direction.
As the grain direction is parallel to the shear plane in the described tests, 𝛾 is equal to 𝛼𝑠.

Figure 4.11: Experimental tests performed by Jockwer et al. [38]: pulling test (a), and shearing test (b) [38, p. 5].

1
𝐾90

= 1
𝐾𝑣,𝑝𝑢𝑙𝑙𝑖𝑛𝑔

+ 1
𝐾𝑎𝑥,𝑝𝑢𝑙𝑙𝑖𝑛𝑔

(4.20)

𝐾𝑣,𝑝𝑢𝑙𝑙𝑖𝑛𝑔 =
3 ⋅ 𝐸𝑠𝑡𝑒𝑒𝑙 ⋅ 𝜋 ⋅ 𝑑41

64 ⋅ 𝑥31
(4.21)

𝑥1 =
𝑓ℎ ⋅ 𝑑𝑒𝑓

2 ⋅ tan(𝛾) ⋅ 𝑓𝑣,𝑟𝑜𝑙𝑙
(4.22)

In which:

• 𝐾90: stiffness for load case perpendicular to the grain [N/mm]

• 𝐾𝑣,𝑝𝑢𝑙𝑙𝑖𝑛𝑔: screw stiffness perpendicular to the screw axis [N/mm], see equation 4.21

• 𝐾𝑎𝑥,𝑝𝑢𝑙𝑙𝑖𝑛𝑔: screw stiffness in direction parallel to the screw axis [N/mm]

• 𝐸𝑠𝑡𝑒𝑒𝑙: Youngs modulus of steel grade of the screw [N/mm2]

• 𝑑1: inner diameter of the screw [mm]

• 𝑥1: length of the screw along which reduced embedment capacity is available [mm], see equation
4.22

• 𝑓ℎ: embedment strength of the timber [N/mm2]

• 𝑓𝑣,𝑟𝑜𝑙𝑙: rolling shear strength [N/mm2]



30 4. Inclined screw connections

• 𝛾: angle between screws axis and grain direction (=𝛼𝑠) [∘]

For the analytical derivation of the pulling case, two assumptions are made. First, it is assumed that for
a certain length 𝑥1 along the screw axis, the timber thickness and therefore the embedment capacity is
severely reduced (see figure 4.12a). Therefore, the embedment strength 𝑓ℎ is simply omitted for this
part. The second assumption is that the screw’s stiffness against the load perpendicular to the screw
axis (𝐹𝑣) is equal to that of a cantilever beam, resulting in equation 4.21.

(a) Stresses working on screw for joint loaded perpendicular to the
shear plane (pulling) [38, p. 3].

(b) Stresses working on the screw for joint loaded parallel to
the shear plane (shearing) [38, p. 8].

Figure 4.12

For the stiffness in the shearing load case, Jockwer et al. [38] use the equations as suggested by
Tomasi et al. [67] using the double stiffness proposal. The equation is modified for the different angle
definitions. Another difference is that another formula for the axial stiffness 𝐾𝑎𝑥,𝑠ℎ𝑒𝑎𝑟 is used, as given
in equation 4.23. The reason for this probably lies in the fact that between the publication of Tomasi
et al. [67] and Jockwer et al. [38], the formula from the Deutsches Institut für Bautechnik [21] was
updated. The expression Jockwer et al. [38] use for axial stiffness in the shearing case 𝐾𝑎𝑥,𝑠ℎ𝑒𝑎𝑟 is
different from the expression 𝐾𝑎𝑥,𝑝𝑢𝑙𝑙𝑖𝑛𝑔 Jockwer et al. [38] propose for the pulling case.

𝐾𝑎𝑥,𝑠ℎ𝑒𝑎𝑟 = 25 ⋅ 𝑙𝑒𝑓 ∗ 𝑑 [21] (4.23)

𝐾𝑎𝑥,𝑝𝑢𝑙𝑙 = 40 ⋅ 𝑙𝑒𝑓 ∗ 𝑑 (4.24)

4.8. Girhammar, Jacquier and Kälsner approach
In their design model, Girhammar et al. [33] introduce a method to calculate the stiffness of connec-
tions with inclined screws allowing for different properties of the two timber elements, in contrast to the
previously introduced models. Another important difference is that the model proposed by Girhammar
et al. [33] assumes a rotation of the screw in the timber elements as a result of the applied load, and
therefore triangular embedment stress distributions are used instead of rectangular, as shown in figure
4.13. Finally, the model takes into account the possibility of an angle between the grain direction and
the shear plane when observed in cross-section. Girhammar et al. [33] define angle 𝛼 as the angle
between the screw axis and the plane perpendicular to the shear plane, so that 𝛼𝑠 = 90∘ − 𝛼.

Analytical derivations lead to the expression given in equation 4.25. In case the connected timber ele-
ments have the same properties, so that (𝛽ℎ = 1; 𝛽𝑎𝑥 = 1; 𝑙2/𝑙1 = 𝑙𝑡ℎ𝑟,2/𝑙𝑡ℎ𝑟,1 = 1; 𝑥1 = 2𝑠1/3; 𝑥2/𝑥1 =
1) are satisfied, the equation simplifies to equation 4.26. The equation consists of a sum of two parts,
where the first part takes into account the effect of the shearing behaviour of the screw. The second
part concerns the withdrawal behaviour of the screw.



4.8. Girhammar, Jacquier and Kälsner approach 31

Figure 4.13: Forces and bending moments in the model proposed by Girhammar et al., [33, p. 581].

𝑘 = 1
2𝐾ℎ,|𝜃1−𝛼|,1𝑑ℎ𝑙1

2 − 𝑠1/𝑥1
1 + 𝑥2/𝑥1

cos(𝛼)(cos(𝛼) − 𝜇 sin(𝛼))+

𝐾𝑎𝑥,|𝜃1−𝛼|,𝑒𝑓𝑓,1𝜋𝑑𝑎𝑥𝑙𝑡ℎ𝑟,1
1

1 + (1/𝛽𝑎𝑥)(𝑙𝑡ℎ𝑟,1/𝑙𝑡ℎ𝑟,2)
sin(𝛼)(sin(𝛼) + 𝜇 cos(𝛼)) (4.25)

𝑘𝑖𝑑𝑒𝑛𝑡 =
1
8𝐾ℎ,|𝜃1−𝛼|,1𝑑ℎ𝑙1(cos(𝛼) − 𝜇 sin(𝛼)) +

1
2𝐾𝑎𝑥,|𝜃1−𝛼|,𝑒𝑓𝑓,1𝜋𝑑𝑎𝑥𝑙𝑡ℎ𝑟,1 sin(𝛼)(sin(𝛼) + 𝜇 cos(𝛼))

(4.26)
In which:

• 𝑘: connection stiffness [N/mm]

• 𝑘𝑖𝑑𝑒𝑛𝑡: connection stiffness for identical conditions for the timber members [N/mm]

• 𝐾ℎ,|𝜃𝑖−𝛼|,𝑖: embedment stiffness per unit area of timber element 𝑖 [N/mm3], see equation 4.30

• 𝑑ℎ: embedment diameter of screw [mm]

• 𝑙𝑖: length of screw in timber element 𝑖 [mm]

• 𝑠𝑖: length of screw in timber element 𝑖 perp. to shear plane [mm]; 𝑠𝑖 = 𝑙𝑖 cos(𝛼)

• 𝑥𝑖: perp. distance from the shear plane to the rotation point of the screw in timber element 𝑖 [mm],
see equation 4.27

• 𝛼: angle between screw axis and line perpendicular to shear plane [∘]

• 𝜇: coefficient of friction between timber members [-]

• 𝐾𝑎𝑥,|𝜃𝑖−𝛼|,𝑒𝑓𝑓,𝑖: effective axial withdrawal stiffness of screw in element 𝑖 per unit area [N/mm3]

• 𝑑𝑎𝑥: withdrawal diameter of screw [mm]
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• 𝑙𝑡ℎ𝑟,𝑖: length of threaded part of screw 𝑖 [mm]

• 𝛽𝑎𝑥: ratio of effective axial withdrawal stiffnesses of the screw in the two elements [-], see equation
4.28

• 𝛽ℎ: ratio of embedment stiffnesses of the screw in the two elements [-], see equation 4.29

𝑥1
𝑙1
= (4 + 3𝑙2/𝑙1) + 𝛽ℎ(𝑙2/𝑙1)3

6(1 + 𝑙2/𝑙1)
cos(𝛼) (4.27a)

𝑥2
𝑙1
= 1 + 𝛽ℎ(𝑙2/𝑙1)2(3 + 4𝑙2/𝑙1)

6𝛽ℎ(𝑙2/𝑙1)(1 + 𝑙2/𝑙1
cos(𝛼) (4.27b)

𝛽𝑎𝑥 =
𝐾𝑎𝑥,|𝜃2−𝛼|,𝑒𝑓𝑓,2
𝐾𝑎𝑥,|𝜃1−𝛼|,𝑒𝑓𝑓,1

(4.28)

𝛽ℎ =
𝐾ℎ,|𝜃2−𝛼|,2
𝐾ℎ,|𝜃1−𝛼|,1

=
𝑘ℎ,|𝜃2−𝛼|,2
𝑘ℎ,|𝜃1−𝛼|,1

(4.29)

𝐾ℎ,|𝜃𝑖−𝛼|,𝑖 =
𝐾ℎ,0∘ ,𝑖𝐾ℎ,90∘ ,𝑖

𝐾ℎ,0∘ ,𝑖 sin2(|𝜃𝑖 − 𝛼|) + 𝐾ℎ,90∘ ,𝑖 cos2(|𝜃𝑖 − 𝛼|)
(Hankinson) (4.30)

In which:

• 𝐾ℎ,0∘ ,𝑖: embedment strength of timber element 𝑖 when 𝛼 = 0∘ and 𝜃𝑖 = 0∘

• 𝐾ℎ,90∘ ,𝑖: embedment strength of timber element 𝑖 when 𝛼 = 0∘ and 𝜃𝑖 = 90∘

For the axial withdrawal stiffness, effective values are proposed by Girhammar et al. [33]. This is done
to compensate for the previously mentioned difference in withdrawal behaviour between screws loaded
in standard withdrawal and screws loaded simultaneously in the axial and lateral direction by Bejtka
and Blass [10]. Girhammar et al. [33] suggest these values can be found experimentally. The method
includes two extensions of the model, which are the flexibility and extensibility of the screw. These
effects are taken into account by making use of a beam on elastic foundation model and an extensible
rod in elastic foundation model, given by equations 4.31 and 4.32, respectively.

𝐾𝐸𝑞ℎ,|𝜃𝑖−𝛼|,𝑖 = 𝐾ℎ,|𝜃𝑖−𝛼|
2 sinh2(𝜆𝑙𝑖) − sin2(𝜆𝑙𝑖)

𝜆𝑙𝑖(sinh(𝜆𝑙𝑖) cosh(𝜆𝑙𝑖) − sin(𝜆𝑙𝑖) cos(𝜆𝑙𝑖))

≈ 𝐾ℎ,|𝜃𝑖−𝛼|
2
𝜆𝑙𝑖

for 𝜆𝑙𝑖 ≤ 2.5
(4.31)

In which:

• 𝜆𝑙𝑖 = 2
4√𝐾𝐸𝑞ℎ,|𝜃𝑖−𝛼|,𝑖𝑑ℎ

𝜋𝐸𝑠
𝑙𝑖
𝑑ℎ

[−]

• 𝐸𝑠: the modulus of elasticity of steel [N/mm2]

𝐾𝐸𝑞𝑎𝑥,|𝜃𝑖−𝛼|,𝑒𝑓𝑓,𝑖 = 𝐾𝑎𝑥,|𝜃−𝛼|,𝑒𝑓𝑓,𝑖
𝑡𝑎𝑛ℎ(𝜔𝑙𝑖)

𝜔𝑙𝑖
(4.32)

In which:

• 𝜔𝑙𝑖 = 2√
𝐾𝑎𝑥,|𝜃−𝛼|,𝑒𝑓𝑓,𝑖𝑑𝑎𝑥

𝐸𝑠
𝑙𝑡ℎ𝑟,𝑖
𝑑𝑎𝑥

[−]

• 𝐸𝑠: the modulus of elasticity of steel [N/mm2]
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Girhammar et al. [33] state that their model is capable of predicting the connection stiffness in the
serviceability limit state and that its validity is limited to the point at which a plastic hinge forms in the
screw. The connection slip at which this happens is given by equation 4.33.

𝛿𝑦 ≤ (
𝑓𝑎𝑥,1
𝑁𝑦

+ 𝑚𝑠,1,𝑚𝑎𝑥𝑀𝑦
)
−1

(4.33)

In which:

• 𝑓𝑎𝑥,1: axial force in screw in timber element 1 divided by joint slip 𝛿 [N], see equation 4.34

• 𝑚𝑠,1,𝑚𝑎𝑥: max. screw moment in timber element 1 divided by joint slip 𝛿 [Nmm], see equation
4.35

• 𝑁𝑦: plastic normal force capacity of screw [N]

• 𝑀𝑦: plastic moment capacity of screw [Nmm]

𝑓𝑎𝑥,1 = 𝐾𝑎𝑥,|𝜃1−𝛼|,𝑒𝑓𝑓,1𝜋𝑑𝑎𝑥𝑙𝑡ℎ𝑟,1
sin(𝛼)

1 + (1/𝛽𝑎𝑥)(𝑙𝑡ℎ𝑟,2/𝑙𝑡ℎ𝑟,1)
(4.34)

𝑚𝑠,1,𝑚𝑎𝑥 =
2
3𝐾ℎ,|𝜃1−𝛼|,1𝑑ℎ𝑙

2
1 cos(𝛼) ⋅

𝑠1
𝑥1
(1 − 𝑥1/𝑠1)3
1 + 𝑥2/𝑥1

(4.35)

No experimental tests were performed by Girhammar et al. [33], but the model was compared to the
tests conducted by Tomasi et al. [67]. The result found by Tomasi et al. [67] that the single stiffness
model corresponded with their results better than the double stiffness model was confirmed by the
model of Girhammar et al. [33], who found good correspondence between the test results and their
model (see figure 4.14) using a value for 𝛽𝑎𝑥 of 2 to (partially) take into account the single stiffness
model. The reason given for this phenomenon by Girhammar et al. [33] is that the head part is pen-
etrated twice by the screw, which could damage the timber around the screw in this part and cause a
lower local stiffness.

Figure 4.14: Experimental results found by Tomasi et al. [67] compared to theoretical stiffness values for various inclination
angles 𝛼. Grain direction is parallel to the load, i.e. 𝜃1,2 = 90∘, [33, p. 586].

However, the authors state: ”If we assume, as did Tomasi et al. [67], that the withdrawal stiffness in
the head part of the screw is reduced to 50% of that of the tip part, then the 𝛽𝑎𝑥-value changes from
𝛽𝑎𝑥 = 1 to 𝛽𝑎𝑥 = 2” [33, p. 587]. This statement is ambiguous because in case Tomasi et al. [67]
assumed a stiffness value of the head part of the screw that amounts to 50% of the tip part, this would
yield 𝐾// =

2
3𝑘ℎ𝑒𝑎𝑑 instead of 𝐾// = 𝑘ℎ𝑒𝑎𝑑 which is proposed by Girhammar et al. [67]. Rather, the
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single stiffness model proposed by Tomasi et al. [67] should be understood as 𝑘𝑡𝑖𝑝 >> 𝑘ℎ𝑒𝑎𝑑. This
derivation is given in equation 4.36.

𝑘ℎ𝑒𝑎𝑑 = 0.5 ⋅ 𝑘𝑡𝑖𝑝
⇒ 𝑘𝑡𝑖𝑝 = 2 ⋅ 𝑘ℎ𝑒𝑎𝑑

(4.36a)

𝐾// =
1

1
𝑘𝑡𝑖𝑝

+ 1
𝑘ℎ𝑒𝑎𝑑

= 1
1

2⋅𝑘ℎ𝑒𝑎𝑑
+ 1
𝑘ℎ𝑒𝑎𝑑

= 2
3𝑘ℎ𝑒𝑎𝑑 ≠ 𝑘ℎ𝑒𝑎𝑑 (4.36b)

4.9. Blass Steige approach
The method proposed by Blass & Steige [14] consists of an analytical expression for the stiffness of
fully threaded inclined screw connections, given by equation 4.37. The expression takes into account
the influence of friction, but versions of the expression omitting the friction component are also found
in the literature (for example Egner & Frese [24]). The expression for the axial screw stiffness 𝑘𝑎𝑥,𝑖 is
obtained via non-linear regression of test results. Blass & Steige define angle 𝛼 as the angle between
the screw axis and the grain direction of the timber so that in case the grain direction is parallel to the
shear plane, 𝛼𝑠 is equal to 𝛼.

𝑘 = cos2(𝛼) ⋅ (1 + 𝜇 ⋅ tan(𝛼))
1

𝑘𝑎𝑥,1
+ 1
𝑘𝑎𝑥,2

(4.37)

𝑘𝑎𝑥,𝑖 = 0.48 ⋅ 𝑑0.4 ⋅ 𝑙0.4𝑒𝑓,𝑖 ⋅ 𝜌0.3𝑚 (4.38)
In which:

• 𝑘: connection stiffness [kN/mm]
• 𝛼: Angle between screw axis and grain direction in timber elements [∘]

• 𝜇: coefficient of friction in grain direction [-]
• 𝑘𝑎𝑥,𝑖: withdrawal stiffness of screw in timber member 𝑖 [kN/mm]
• 𝑑: outer screw diameter [mm]

• 𝑙𝑒𝑓,𝑖: effective length of screw in timber member 𝑖 [𝑚𝑚]
• 𝜌𝑚,𝑖: mean timber density of timber element 𝑖 [kg/m3]

Three types of tests have been performed in the study, i.e. parallel shear tests, diagonal shear tests,
and screw withdrawal tests. The parallel and diagonal shear tests have been performed for both
crossed and shear tension geometries. In the parallel tests, additional horizontal supports had to be
introduced to guarantee moment equilibrium. To minimize friction generated by the reaction force of
these supports, Teflon elements were applied at the interface between the test specimens and support
of the test setup [14, p. 16] (see figure 4.15a). A horizontal reaction force results from the horizontal
supports, resulting in additional friction between the timber elements. This force was taken into account
in the calculation of the total force [14, p. 16].

For the diagonal shear tests, additional supports were not necessary, as the line of force intersected
the centre of gravity of the test specimens, see figure 4.15b. However, in these tests, the influence of
the compression forces under a slight angle 𝛽 had to be taken into account, including the extra friction
generated by the perpendicular force component [14, p. 24]. Stiffness results had to be corrected for
these effects. Finally, in order to assess the withdrawal stiffness of individual screws in formula 4.37
directly, withdrawal tests were performed under different angles to the grain [14, p. 25].

In order to find the value for axial stiffness 𝑘𝑎𝑥 needed in equation 4.37, the axial stiffness was back-
calculated from the crossed screw and shear tension experiments. Non-linear regression was per-
formed on the results for 𝑘𝑎𝑥 of all 290 tests, taking into account the following parameters [14, p. 69]:
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(a) Parallel shear test setup both for crossed screws and
shear tension screws. White rectangles in the top right are
the Teflon elements [14, p. 17].

(b) Diagonal shear test setup both for crossed screws and shear tension
screws [14, p. 23].

Figure 4.15

• Embedment length 𝑙𝑒𝑓𝑓
• Outer thread diameter 𝑑

• Screw inclination angle 𝛼

• Timber moisture content

• Pre-drilling

It was found that the value for axial stiffness 𝑘𝑎𝑥 to be used in equation 4.37 could best be determined
from the shear tests with crossed screw geometries [14, p. 82], resulting in equation 4.38.

4.10. De Santis & Fragiacomo approach
An inclined beam on elastic foundation model is proposed by De Santis & Fragiacomo [62], as given
in figure 4.16. De Santis & Fragiacomo [62] first describe an analytical model, in which equation 4.39
is used to find the theoretical stiffness of the joint. Making use of 12 boundary and interface conditions
an analytical solution for the stiffness can be found. Since the main objective of the study was to
find simplified equations, interpolation equations are proposed, given by equation 4.40a and 4.40b.
It should be noted that De Santis & Fragiacomo [62] do not include the influence of friction in their
calculation approach. Also, there is no distinction made for the threaded length of the screw, so that
only the penetration length of the screw is used. De Santis & Fragiacomo [62] define angle 𝜃 as the
angle between the screw axis and the plane perpendicular to the shear plane, so that 𝛼𝑠 = 90∘ − 𝜃.

𝑘𝑠𝑒𝑟,𝐴𝑛 =
𝐸 ⋅ 𝐴 ⋅ 𝑢′1(𝑙1) ⋅ sin(𝜃)

𝛿 + 𝐸 ⋅ 𝐼 ⋅ 𝑣
⁗
1 (𝑙1) ⋅ cos(𝜃)
𝛿 (4.39)

𝑘𝑠𝑒𝑟,𝑖𝑛𝑡 = 𝑑𝑑 ⋅ (𝜌𝑎𝑎1 ⋅ 𝑙𝑏𝑏1 + 𝜌𝑎𝑎2 ⋅ 𝑙𝑏𝑏2 ) ⋅ 𝜙𝑐𝑐 𝜃 < 30∘ (4.40a)

𝑘𝑠𝑒𝑟,𝑖𝑛𝑡 =
𝑑𝑑 ⋅ 𝜙𝑐𝑐
1

𝜌𝑎𝑎1 ⋅𝑙𝑏𝑏1
+ 1
𝜌𝑎𝑎2 𝑙𝑏𝑏2

𝜃 ≥ 30∘ (4.40b)

In which:

• 𝑘𝑠𝑒𝑟,𝑖𝑛𝑡: connection stiffness [N/mm]
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Figure 4.16: Inclined beam on elastic foundation model as proposed by De Santis & Fragiacomo (left) and original and deformed
geometry of the screw (right) [62, p. 3].

• 𝜙: outer diameter of the screw [mm]

• 𝜌𝑖: mean density of timber element 𝑖 [kg/m3]

• 𝑙𝑖: the penetration length of the screw in timber element 𝑖 [mm], see figure 4.16

• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑: interpolation coefficients, given in table 4.18

• 𝜃: Angle between screw axis and plane perp. to shear plane [∘]

The proposed interpolation equations were tested for different random combinations of parameters,
with densities 𝜌𝑚 in the range of 400 - 750 [kg/m3] and screw lengths 𝑙𝑖 in the range of 50-200 [mm]
for equation 4.40a, and 60-150 [mm] for equation 4.40b. Screw diameters 𝜙 were in the range of 6-18
[mm]. The percentage differences between the exact analytical and interpolated solutions are given by
the box plots in figure 4.17.

Figure 4.17: Maximum, 95th percentiles, median, 5th per-
centiles, and minimum values of percentage differences
between analytical and interpolated solutions [62, p. 6].

𝜃(∘) aa bb cc dd
0 1.04 0.056 1.11 0.18
15 1.04 0.056 1.11 0.18
30 1.07 0.51 0.76 0.31
45 1.07 0.68 0.65 0.29
60 1.09 0.77 0.58 0.23
75 1.14 0.86 0.47 0.095

Figure 4.18: The interpolation coefficients needed for
equations 4.40. For 𝜃 = 15∘ the same values as for
𝜃 = 0∘ were used [62, p. 6].

No new experiments were performed by De Santis & Fragiacomo [62], but experimental test results
carried out in earlier studies from other authors were used to compare experimental and predicted
stiffness values of different calculation methods. The methods that are compared are the analytical
method (see equation 4.39), the proposed formulas (see equation 4.40), Eurocode 5: EN-1995-1-1
draft (2021), Eurocode 5: EN-1995-1-1 (2004), Girhammar et al. [33] and Tomasi et al. [67]. The
results of the predicted stiffness values and the experimental stiffness values are given in figures 4.19a
and 4.19b. The coefficients of determination found for the methods are given in table 4.1. De Santis &
Fragiacomo mention the omission of friction in the proposed formulas as a possible cause for its slight
underestimation of the test results.
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(a) (b)

Figure 4.19: Predicted and experimental stiffness values according to different calculation methods [62].

Model Proposed Analytic Proposed Formula EC 5 draft (2021) EC 5 (2004) Girhammar et al. Tomasi et al.
𝑟2 0.62 0.28 0.28 -3.03 0.79 -0.29

Table 4.1: Coefficients of determination of analysed methods [62].

De Santis & Fragiacomo have subjected the models to sensitivity analyses in which the screw diameter,
the ratio between tip and head stiffness, and the ratio between the densities of the timber elements were
altered. De Santis & Fragiacomo conclude that the reliability of the proposed analytical model given
in equation 4.39 is comparable to the model proposed by Girhammar et al. [33], but both models are
not suitable for inclusion in design codes due to their complexity. The proposed interpolated equations
given in equation 4.40 are found to be more accurate than both the approach given in prEN-1995-1-1
(see section 4.12) and the method proposed by Tomasi et al. [67]. Finally, the proposed model does
not require withdrawal tests and accurately predicts the joint stiffness in case external screw diameter,
material densities, insertion angle, and screw length are known.

4.11. Comparison of methods by Kullander and Sandström
Kullander and Sandström [46] wrote a master’s thesis under the supervision of Robert Jockwer in 2023.
In this thesis, an inclined beam on foundation model was built in the FE software package ABAQUS
to find the stiffness and capacity of inclined screw connections. This model was then calibrated mak-
ing use of the test results of Jockwer et al. [38]. The calculation methods for connection stiffness as
proposed by Tomasi et al. [67], Jockwer et al. [38] and second generation of EN-1995-1-1 [53] were
compared. It was concluded that the method proposed by Tomasi et al. [67] in combination with the
equation for lateral stiffness given by the new generation of EN-1995-1-1 [53] (see equation 4.42) gave
the best results compared to the FE model and the test results by Jockwer et al. [38]. An important re-
mark for this result is that the double stiffness model was used, which can be found by back-calculating
the results that are presented in the thesis.

4.12. Eurocode 5: EN-1995-1-1 draft (2023)
In contrast to EN-1995-1-1 [55], the pre-norm version of Eurocode 5, prEN1995-1-1 [53] gives a method
for the stiffness calculation specifically for inclined screws. Equation 4.41 is proposed for connections
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(a) Schematic overview of the model [46, p. 46]. (b) Schematic overview of the model as built in ABAQUS [46, p. 48].

Figure 4.20: Beam-on-foundation model as presented by Kullander and Sandström [46].

with inclined screws loaded in shear tension. In case the connection consists of multiple screws, the
stiffness values of individual screws may be summed. Angle 𝜖 is defined as the angle between the
screw axis and the grain direction so that 𝛼𝑠 is equal to 𝜖 in case the grain direction is parallel to the
shear plane.

𝐾𝑆𝐿𝑆 = 𝐾𝑆𝐿𝑆,𝑣 sin(𝜖)(sin(𝜖) − 𝜇 cos(𝜖)) +
1
2𝐾𝑆𝐿𝑆,𝑎𝑥 cos(𝜖)(cos(𝜖) + 𝜇 sin(𝜖)) (4.41)

𝐾𝑆𝐿𝑆,𝑣 =
𝜌1.5𝑚 𝑑
23 (4.42)

𝐾𝑆𝐿𝑆,𝑎𝑥 = 160 (
𝜌𝑚𝑒𝑎𝑛
420 )

0.85
𝑑0.9𝑙0.6𝑤 (4.43)

In which:

• 𝐾𝑆𝐿𝑆: mean slip modulus per shear plane per fastener [N/mm]

• 𝐾𝑆𝐿𝑆,𝑣: mean slip modulus per shear plane per fastener in lateral direction [N/mm]

• 𝐾𝑆𝐿𝑆,𝑎𝑥: mean slip modulus per fastener per connected member in axial direction [N/mm]

• 𝜖: angle between screw axis and grain direction, see figure 4.21a

• 𝜇: coefficient of friction between timber members [-]

• 𝑑 outer thread diameter of the screw [mm]

• 𝑙𝑤,𝑖: withdrawal length of screw in timber member 𝑖 [mm]

The method proposed is unclear concerning the mean slip modulus in axial direction 𝐾𝑆𝐿𝑆,𝑎𝑥 in case
two timber elements are connected with different properties (for example different withdrawal length
𝑙𝑤 or mean densities). It is assumed that the equation consists of the method proposed by Tomasi,
making use of a double stiffness model and assuming 𝐾𝑆𝐿𝑆,𝑎𝑥 is always equal for both timber elements,
as shown in equation 4.44.

𝐾𝑆𝐿𝑆,𝑎𝑥 =
1

1
𝐾𝑆𝐿𝑆,𝑎𝑥,1

+ 1
𝐾𝑆𝐿𝑆,𝑎𝑥,2

𝐾𝑆𝐿𝑆,𝑎𝑥,1 = 𝐾𝑆𝐿𝑆,𝑎𝑥,2
} ⇒ 𝐾𝑆𝐿𝑆,𝑎𝑥 =

1
2𝐾𝑆𝐿𝑆,𝑎𝑥,1 =

1
2𝐾𝑆𝐿𝑆,𝑎𝑥,2 (4.44)
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(a) Connection with inclined screws, definition of 𝜖 [53, p. 190].

(b) Withdrawal length 𝑙𝑤,𝑖 in member 𝑖, point
length 𝑙𝑝 and head length 𝑙ℎ𝑒𝑎𝑑 in case of partially
threaded screw [53, p. 163].

Figure 4.21

4.13. Conclusion
Of the methods discussed in this chapter, some are not suited for further analysis. The method pro-
posed by Kevarinmäki [44] for instance relies on the value 𝐹𝑚𝑎𝑥, which is defined as the mean failure
load of the connections tested. Because of its dependence on this experimentally determined param-
eter, the Kevarinmäki model [44] is discarded. The method proposed by Girhammar et al. [33] is
discarded as well. It preferably relies on experimentally determined values for axial and embedment
stiffness. Also, the method does not propose a value to be used for the parameter 𝛽𝑎𝑥, and finally, the
model is considered computationally too exhaustive.

Themethods proposed by Tomasi et al. [67], Jockwer et al. [38] and themethod described in prEN1995-
1-1 [53] are considered very similar, although different formulas for embedment and axial stiffness are
proposed. The method given by prEN-1995-1-1 is not suitable for connections of two timber elements
with different properties. The methods given by Tomasi et al. [67] and Jockwer et al. [38] use with-
drawal stiffnesses suitable only for screws that are covered by the homologation certificates given by
the Deutsches Institut für Bautechnik (see [22] and [21] respectively). It is decided to use the method
proposed by Tomasi et al. [67] in combination with the axial stiffness formula 4.43 of prEN-1995-1-1
[53] and the axial stiffness formula postulated by Blass and Steige [14] as given by equation 4.38. Both
the single and double stiffness model are selected for further analysis. Finally, the Blass and Steige [14]
method as described by equation 4.37 is used for further analysis. In literature, this method is encoun-
tered both without a friction term taken into account and with a friction term taken into account. Both
methods are used for further analysis, labeled ”Blass Steige” and ”Blass Steige friction”, respectively.
An overview of the methods selected for further analysis is given in table 4.2.

Method ID Method name

1 Blass Steige
2 Blass Steige friction
3 Tomasi et al. (EC) single stiffness model
4 Tomasi et al. (Blass Steige) single stiffness model
5 Tomasi et al. (EC) double stiffness model
6 Tomasi et al. (Blass Steige) double stiffness model
7 De Santis Fragiacomo

Table 4.2: Stiffness calculation methods for inclined screws selected for further analysis.



5
Moment capacity and rotational stiffness

of dowel type groups

5.1. Introduction
Currently, no calculation approach is given for the rotational stiffness nor the moment capacity of dowel-
type group connections in codes or standards [40, p. 3]. However, analytical methods for both have
been developed and are presented in the literature, incorporating stiffness and capacity values given
in EN-1995-1-1 [55]. This chapter first discusses the capacity calculation, and then several methods
for rotational stiffness are discussed.

5.2. Connection capacity
Moment-resisting beam-column connections are often used in hall structures and are of vital importance
for their overall structural behaviour and capacity [40, p. 2]. They are often seen in three hinged frames,
in which case they often consist of two column elements and a single beam element, and are connected
employing steel dowels. To verify whether these connections have sufficient capacity, the following
must be checked:

• The capacity of the individual dowels, which can be done based on the European Yield Model
(see section 3.2.1). For the embedding strength, the angle between the vector resultant of the
force each dowel exerts on the timber elements and the grain direction of these elements must
be taken into account.

• The capacity of the reduced cross sections of the connected timber elements for bendingmoment,
normal force, and shear force that occur at the location of the connection.

• The capacity of the reduced cross-section for increased shear force. The value of the shear force
at the location of the connection will be significantly larger due to the individual contributions of
the dowels. The reduced cross-section must be checked for this increased shear force.

[68, p. 73]

Multiple connection geometries are possible. In literature [60], [36], [68], connections consisting of a
single circle of dowels, a double circle of dowels and rectangular patterns are discussed.

5.2.1. Individual dowel capacity
The load-bearing capacity of beam-column connections was described by Heimeshoff in 1977 [36].
The assumption is made that an individual dowel experiences load both from the moment contribution
and from the normal and shear force acting on the connection. The individual force as a result of the
moment exerted on each dowel is given in equation 5.2, and the contributions of normal force and
shear force on column and beam are given in equations 5.1a to 5.1d. The contributions of normal and
shear force are combined by Heimeshoff to the term |𝐷𝑁𝑄| and calculated according to equation 5.3.

40



5.2. Connection capacity 41

(a) Internal shear and normal forces
in beam-column connection of three-
hinged frame [36, p. 2].

(b) Connection detail consisting of a
double circle of dowels [36, p. 3].

(c) Connection detail consisting of a rectangular
pattern of dowels [60, p. 6].

Figure 5.1

|𝐷𝑁𝑅| =
|𝑁𝑅|
𝑛𝑡𝑜𝑡

(dowel normal force on beam) (5.1a)

|𝐷𝑁𝑆| =
|𝑁𝑆|
𝑛𝑡𝑜𝑡

(dowel normal force on column) (5.1b)

|𝐷𝑄𝑅| =
|𝑄𝑅|
𝑛𝑡𝑜𝑡

(dowel shear force on beam) (5.1c)

|𝐷𝑄𝑆| =
|𝑄𝑆|
𝑛𝑡𝑜𝑡

(dowel shear force on column) (5.1d)

|𝐷𝑀| = |𝑀|
𝑟1

𝑛1𝑟21 + 𝑛2𝑟22
(dowel force as result of moment M) (5.2)

|𝐷𝑁𝑄| = √𝐷2𝑁𝑅 + 𝐷2𝑄𝑅 = √𝐷2𝑁𝑆 + 𝐷2𝑄𝑆 (dowel force as result of shear and normal force) (5.3)

In which:

• 𝑁𝑅: normal force in beam

• 𝑁𝑆: normal force in column

• 𝑄𝑅: shear force in beam

• 𝑄𝑆: shear force in column

• 𝑟𝑖 distance dowel 𝑖 to the centre of the dowel circle(s)

• 𝑛𝑖 number of dowels in dowel circle 𝑖

The largest vector resultant of 𝐷𝑀 and 𝐷𝑁𝑄 occurs for the dowel for which the direction of both compo-
nents align, e.g. the bottom right dowel in figure 5.2. This is not necessarily the most critical dowel, as
the maximum allowable embedment strength of the timber is a function of the angle between the grain
and the load as described by equation 3.2. Figure 5.3 shows the maximum allowable load exerted
by the dowels on the timber as a dashed line. It is clear that this value, denoted in this case by ”zul
D” is largest for dowels that load the timber parallel to the grain and smallest for dowels that load the
timber perpendicular to the grain. Heimeshoff [36] states that the dowel that applies the largest load
perpendicular to the grain is calculated according to equation 5.4. It is stated by Heimeshoff [36] that in
case |𝐷𝑁𝑅| and |𝐷𝑁𝑆| are both smaller than approximately 20% of |𝐷𝑀| (which is stated to be the case
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Figure 5.2: Load exerted by the dowels on the column (a) and on the beam (b) as result of moment contribution 𝐷𝑀 and
shear/normal force contribution 𝐷𝑁𝑄.

for frame corners), the dowel that loads the timber perpendicular to the grain in either column or beam
indeed is the critical dowel concerning the timber embedment capacity.

̃𝐷𝑅 = 𝐷𝑄𝑅 +√𝐷2𝑀 − 𝐷2𝑁𝑅 ≈ 𝐷𝑄𝑅 + 𝐷𝑀 (5.4a)

𝐷̃𝑆 = 𝐷𝑄𝑆 +√𝐷2𝑀 − 𝐷2𝑁𝑆 ≈ 𝐷𝑄𝑆 + 𝐷𝑀 (5.4b)

(a) Load components acting on a single dowel and maximum al-
lowable load on timber (dashed line) for beam element [36, p. 3].

(b) Load components acting on a single dowel and maximum al-
lowable load on timber (dashed line) for column element [36, p. 3].

Figure 5.3

Racher [60] describes a method that is also suited for rectangular or trapezoidal dowel patterns, for
which the force on an individual dowel as a result of the moment is described by equation 5.5. Racher
[60] proposes equation 5.6, for the individual dowel force as a result of normal force, shear force, and
force as a result of moment. The capacity should be checked under an angle to the grain 𝛼1, given
by equation 5.7. For rectangular or trapezoidal geometries, an additional check for the furthest dowel
should be performed according to equation 5.8 [60], with an angle to the grain given by 𝛼2 (see equation
5.9).
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𝐹𝑀 = |𝑀|
√𝑎2 + 𝑏2
𝜇𝑥𝑒2𝑥 + 𝜇𝑦𝑒2𝑦

(for rectangular geometries, [60]) (5.5)

With:

• 𝜇𝑥 = 4 ⋅ 𝑚𝑦 ∑
𝑚𝑥
𝑖=1(𝑖 − 0.5)2

• 𝜇𝑦 = 4 ⋅ 𝑚𝑥 ∑
𝑚𝑦
𝑗=1(𝑗 − 0.5)2

• 𝑚𝑥 = 𝑚𝑜𝑑 [
𝑛𝑥+1
2 ] with 𝑛𝑥 the number of screws in hor. row, see fig. 5.1c

• 𝑚𝑦 = 𝑚𝑜𝑑 [
𝑛𝑦+1
2 ] with 𝑛𝑦 the number of screws in vert. row, see fig. 5.1c

𝐹1,𝑑 = √(𝐹𝑀 + 𝐹𝑉)2 + 𝐹2𝑁 (5.6)

𝛼1 = tan−1 [𝐹𝑀 + 𝐹𝑉𝐹𝑁
] (see figure 5.4) (5.7)

𝐹2,𝑑 = √(𝐹𝑉 +
𝑎

√𝑎2 + 𝑏2
𝐹𝑀)

2
+ (𝐹𝑉 +

𝑎
√𝑎2 + 𝑏2

𝐹𝑀)
2

(5.8)

𝛼2 = tan−1 [ 𝑎𝐹𝑀 + √𝑎
2 + 𝑏2𝐹𝑉

𝑏𝐹𝑀 + √𝑎2 + 𝑏2𝐹𝑁
] (5.9)

In which:

• 𝐹𝑀: dowel force as a result of moment, see equation 5.2 or 5.5

• 𝐹𝑉: dowel force as a result of shear force

• 𝐹𝑁: dowel force as a result of normal force

• 𝑎, 𝑏: half width and half height of rectangular dowel connection, see 5.1c

The geometrical differences between the approaches of Heimeshoff [36] and Racher [60] for circular
patterns are shown in figure 5.4. Next to timber embedment failure, a dowel can form one or several
plastic hinges, and should therefore also be checked according to the European Yield Model, in this
case for double shear plane connections. For testing a complete connection, at least the capacity of
the most heavily loaded dowel (the dowel at which alignment of |𝐷𝑀| and |𝐷𝑁𝑄| occurs and thus has the
largest risk of forming a plastic hinge) and the two most heavily loaded dowels located at or near the
centre lines of both connected members (highest risk of timber embedment failure i.e. splitting) must
be checked according to the European Yield Model [68, p. 77].

5.2.2. Capacity of reduced cross section
The capacity check for the reduced cross-section is assumed to be trivial and is not discussed in this
thesis. A calculation example can be found in literature, for instance [68, p.71].
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Figure 5.4: Critical load according to Heimeshoff [36] and Racher [60]. Source: own image.

5.2.3. Shear force
The shear force at the centre lines of both connected elements is critical, as extra shear force is in-
troduced by the summation of the perpendicular decomposition of the moment contributions of the
individual dowels. Both the individual shear force transferred by the dowels and the decomposition of
the moment should be taken into account, as given in equation 5.10. This value can then be checked
according to the standard check for shear force given in EN-1995-1-1 [55].

𝐹𝑉,𝑑 = 𝑉𝑀 −
𝑉𝑢,𝑑
2 (5.10)

In which:

• 𝑉𝑢,𝑑: Shear force on the column.

• 𝑉𝑀: Shear force contribution from moment, given as:

𝑉𝑀 =
⎧⎪
⎨⎪⎩

𝑀
𝜋⋅𝑟 , for dowel patterns consisting of a single circle
𝑀
𝜋 ⋅

𝑛1𝑟1+𝑛2𝑟2
𝑛1𝑟21+𝑛2𝑟22

, for dowel patterns consisting of a double circle

𝑀 ⋅ 2𝜇𝑦𝑒𝑥
𝜇𝑥𝑒2𝑥+𝜇𝑦𝑒2𝑦

∑𝜇𝑦𝑖=1 (𝑖 −
1
2) , for rectangular dowel patterns

In which:

• 𝑒𝑥: horizontal distance between dowels, see figure 5.1c

• 𝑒𝑦: vertical distance between dowels, see figure 5.1c

[60, p. 8]

5.3. Rotational stiffness
The rotational stiffness can be calculated based on a spring model and is given by equation 5.11. This
equation is valid in the serviceability limit state (SLS). The analytical derivation is given in equation
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Figure 5.5: Geometrical definitions of individual dowels according to Racher [60].

5.13, based on the parameters given in figure 5.5, with 𝐹𝑀,𝑖 the force as a result of the moment per
dowel, 𝜔 the connection rotation, 𝑟𝑖 the distance between the dowel 𝑖 and the centre of rotation and 𝛼𝑖
the angle between the grain direction and 𝑟𝑖.

𝑘𝑟 = 𝐾𝑠𝑒𝑟
𝑛

∑
𝑖=1
𝑟2𝑖 = 𝐾𝑠𝑒𝑟(𝑛1𝑟21 + 𝑛2𝑟22 ) (for circular patterns, in this case two rings) (5.11)

= 𝐾𝑠𝑒𝑟(𝜇𝑥𝑒2𝑥 + 𝜇𝑦𝑒2𝑦) (for rectangular or trapezoidal patterns) (5.12)

𝑑𝑠𝑖 =
𝐹𝑀,𝑖
𝐾𝛼𝑖

𝜔 = 𝑑𝑠𝑖
𝑟𝑖
= 𝐹𝑀,𝑖
𝐾𝛼𝑖𝑟𝑖

𝑀 =
𝑛

∑
𝑖=1
𝐹𝑀,𝑖𝑟𝑖

⎫
⎪
⎪

⎬
⎪
⎪
⎭

⇒ 𝑘𝑟 =
𝑀
𝜔 =

𝑛
∑
𝑖=1
𝐹𝑀,𝑖𝑟𝑖
𝐹𝑀,𝑖
𝐾𝛼𝑖𝑟𝑖

=
𝑛

∑
𝑖=1
𝐾𝛼,𝑖𝑟2𝑖 (5.13)

Equation 5.13 depends on the parameter 𝐾𝛼,𝑖, which is defined as the stiffness of dowel at position 𝑖,
as a function of the angle 𝛼𝑖 between the grain direction and the moment arm of screw 𝑖, indicating a
dependence of the stiffness of a dowel type fastener on the direction of the load application. Equation
5.13 for the rotational stiffness can be split in the stiffness parallel to the grain 𝑘𝑆𝐿𝑆 and perpendicular
to the grain 𝑘𝑆𝐿𝑆,𝑣. The proof that equations 5.14 and 5.15 are indeed equal is given below.

𝑘𝑟 =
𝑛

∑
𝑖=1
𝑘𝑖𝑟2𝑖 =

𝑛

∑
𝑖=1
𝑘𝑆𝐿𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑥2𝑖 + 𝑦2𝑖 ) (5.14)

𝑘𝑟 =
𝑛

∑
𝑖=1
𝑘𝑆𝐿𝑆𝑦2𝑖 + 𝑘𝑆𝐿𝑆,𝑣𝑥2𝑖 (5.15)

𝑐𝑜𝑠(𝛼) = 𝑦𝑖
√𝑥2𝑖 + 𝑦2𝑖

, 𝑠𝑖𝑛(𝛼) = 𝑥𝑖
√𝑥2𝑖 + 𝑦2𝑖

(5.16)

𝑢1 = 𝑐𝑜𝑠(𝛼)𝑢𝑡𝑜𝑡 , 𝑢2 = 𝑠𝑖𝑛(𝛼)𝑢𝑡𝑜𝑡 (5.17)
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𝐹1 = 𝑘𝑆𝐿𝑆𝑢1 = 𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)𝑢𝑡𝑜𝑡 , 𝐹2 = 𝑘𝑆𝐿𝑆,𝑣𝑢2 = 𝑘𝑆𝐿𝑆,𝑣𝑠𝑖𝑛(𝛼)𝑢𝑡𝑜𝑡 (5.18)

𝐹1,𝑑𝑒𝑐𝑜𝑚𝑝 = 𝑘𝑆𝐿𝑆𝑢1 = 𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)2𝑢𝑡𝑜𝑡 , 𝐹2,𝑑𝑒𝑐𝑜𝑚𝑝 = 𝑘𝑆𝐿𝑆𝑢2 = 𝑘𝑆𝐿𝑆𝑠𝑖𝑛(𝛼)2𝑢𝑡𝑜𝑡 (5.19)

𝑘𝑆𝐿𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
𝐹1,𝑑𝑒𝑐𝑜𝑚𝑝 + 𝐹2,𝑑𝑒𝑐𝑜𝑚𝑝

𝑢𝑡𝑜𝑡

= 𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)2𝑢𝑡𝑜𝑡 + 𝑘𝑆𝐿𝑆,𝑣𝑠𝑖𝑛(𝛼)2𝑢𝑡𝑜𝑡
𝑢𝑡𝑜𝑡

= 𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)2 + 𝑘𝑆𝐿𝑆,𝑣𝑠𝑖𝑛(𝛼)2

(5.20)

𝑘𝑟 =
𝑛

∑
𝑖=1
𝑘𝑆𝐿𝑆,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑥2𝑖 + 𝑦2𝑖 )

=
𝑛

∑
𝑖=1
(𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)2 + 𝑘𝑆𝐿𝑆,𝑣𝑠𝑖𝑛(𝛼)2) (𝑥2𝑖 + 𝑦2𝑖 )

=
𝑛

∑
𝑖=1
(𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)2𝑥2𝑖 + 𝑘𝑆𝐿𝑆𝑐𝑜𝑠(𝛼)2𝑦2𝑖 + 𝑘𝑆𝐿𝑆,𝑣𝑠𝑖𝑛(𝛼)2𝑥2𝑖 + 𝑘𝑆𝐿𝑆,𝑣𝑠𝑖𝑛(𝛼)2𝑦2𝑖 )

=
𝑛

∑
𝑖=1

⎡
⎢
⎢
⎢
⎣

𝑘𝑆𝐿𝑆
⎛
⎜

⎝

⎛

⎝

𝑦𝑖
√𝑥2𝑖 + 𝑦2𝑖

⎞

⎠

2

𝑥2𝑖 +⎛

⎝

𝑦𝑖
√𝑥2𝑖 + 𝑦2𝑖

⎞

⎠

2

𝑦2𝑖
⎞
⎟

⎠

+ 𝑘𝑆𝐿𝑆,𝑣
⎛
⎜

⎝

⎛

⎝

𝑥𝑖
√𝑥2𝑖 + 𝑦2𝑖

⎞

⎠

2

𝑥2𝑖 +⎛

⎝

𝑥𝑖
√𝑥2𝑖 + 𝑦2𝑖

⎞

⎠

2

𝑦2𝑖
⎞
⎟

⎠

⎤
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=
𝑛

∑
𝑖=1
𝑘𝑆𝐿𝑆𝑦2𝑖 + 𝑘𝑆𝐿𝑆,𝑣𝑥2𝑖

(5.21)

5.3.1. Screw forces
Making use of the derivation given in equations 5.14 to 5.21, it is possible to calculate the theoretical
forces parallel and perpendicular to the inclination direction of the screw in case the relative rotation
of two connected timber elements is known. Figure 5.7 shows the chord-diagonal connection of the
FaNaBu truss. The relative rotation between the diagonal and the chord is drawn in white.

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑖 = 𝐹1 = 𝑘𝑆𝐿𝑆 ⋅ cos(𝜃𝑖) ⋅ 𝑢𝑡𝑜𝑡,𝑖
𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑖 = 𝐹2 = 𝑘𝑆𝐿𝑆,𝑣 ⋅ sin(𝜃𝑖) ⋅ 𝑢𝑡𝑜𝑡,𝑖

𝑢𝑡𝑜𝑡 = 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑 ⋅ 𝑟𝑖
} ⇒

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑖 = 𝑘𝑆𝐿𝑆 ⋅ cos(𝜃𝑖) ⋅ 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑 ⋅ 𝑟𝑖
𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑖 = 𝑘𝑆𝐿𝑆,𝑣 ⋅ sin(𝜃𝑖) ⋅ 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑 ⋅ 𝑟𝑖

(5.22)

In which:

• 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑖: force parallel to the inclination direction of screw 𝑖

• 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑖: force perpendicular to the inclination direction of screw 𝑖

• 𝑟𝑖: distance between screw 𝑖 and centre of rotation

• 𝜃𝑖: angle between line 𝑟𝑖 and the line perpendicular to the inclination direction of the screw

• 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑: relative rotation between the timber elements

• 𝑢𝑡𝑜𝑡,𝑖: displacement of screw 𝑖 as a result of 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑
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Figure 5.6: Schematic representation of screw subject to rotation around centre of rotation, with stiffness parallel to grain 𝑘𝑆𝐿𝑆
and stiffness perpendicular to grain 𝑘𝑆𝐿𝑆,𝑣. Source: own image.

Figure 5.7: Schematic representation of truss connection subject to rotation 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑, with resulting screw forces perp. and
par. to incl. direction of the screw 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝 and 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟, respectively. Source: own image.
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5.3.2. Eurocode 5: EN-1995-1-1 draft (2023)
In the pre-norm prEN-1995-1-1 [53] a method is proposed to calculate the lateral slip modulus for
a dowel-type fastener 𝐾𝑠𝑒𝑟 as a function of the grain direction. According to this method, the slip
modulus for fasteners loaded perpendicular to the grain should be reduced by 50 %, while the slip
modulus remains unchanged for fasteners loaded parallel to the grain. For intermediate values, linear
interpolation is proposed. See equation 5.23 for a mathematical representation.

𝐾𝑠𝑒𝑟 =
180 − 𝜓
180 ⋅ 𝜌

1.5
𝑚 𝑑
23 [53, sect. 11.3.7.2 (3)] (5.23)

In which:

• 𝜓: angle between the lateral loading direction of a dowel type fastener and grain direction [∘]

• 𝜌𝑚: mean density [kg/m3]

• 𝑑: outer diameter of the fastener [mm]

5.3.3. Noguchi & Komatsu
It is stated by Noguchi & Komatsu [57] that the method for rotational stiffness derived in equation 5.11
does not take into account shear deformation. Noguchi & Komatsu [57] argue that shear deformation
should be taken into account in the case of non-circular bolt patterns. Based on Castigliano’s first
theorem, Noguchi and Komatsu [57] propose equation 5.24.

𝑘𝑟 =
4

𝑛
∑
𝑖=1

𝑥2𝑖
𝐾𝑠𝑖

(
𝑛
∑
𝑖=1

𝑥2𝑖 )
2 +

𝑛
∑
𝑖=1

𝑦2𝑖
𝐾𝑠𝑖

(
𝑛
∑
𝑖=1

𝑦2𝑖 )
2

(5.24)

In which:

• 𝑘𝑟: rotational stiffness of connection

• 𝐾𝑠𝑖: lateral stiffness of dowel 𝑖

• 𝑥𝑖 distance in x-direction of dowel 𝑖 to centre of rotation

• 𝑦𝑖 distance in y-direction of dowel 𝑖 to centre of rotation

In their derivation, Noguchi & Komatsu [57] present two different methods of modelling the connection.
It is assumed that the connection can be modeled as a joint layer, as given in figure 5.8a. This joint
layer is loaded in torsion. The earlier presented calculation method for rotational stiffness presented
in section 5.3 assumes that the static torsion in the joint layer is transmitted according to pattern 5.8b
(Coulomb’s law), i.e. the stress distribution is proportional to the distance to the rotational centre [57].
Saint-Venant’s theorem is adopted by Noguchi & Komatsu [57], however, the stresses in the x and y
direction are assumed to be constant for constant x and y distances from the rotational center. The
shear force distribution as given in figure 5.8c is finally proposed. This energy-based method provides
an interesting alternative to the aforementioned method, which is based on the assumption that each
individual dowel resembles a linear spring. Noguchi & Komatsu [57] state that the proposed method
yields the same results as the spring method in the case of symmetrical bolt arrangements. For asym-
metrical arrangements, [57] state that the linear spring method overestimates the rotational stiffness,
and it was found by Noguchi & Komatsu [57] that the proposed method more closely resembles the
results of their experimental tests.

The method proposed by Noguchi and Komatsu [57] in the form of equation 5.24 yields a division
by zero in case of linear screw patterns, i.e. either ∑𝑛𝑖=1 𝑥2𝑖 = 0 or ∑𝑛𝑖=1 𝑦2𝑖 = 0.. Equation 5.24 was
plotted for ranges of sums of squared distances ∑𝑛𝑖=1 𝑥2𝑖 and ∑

𝑛
𝑖=1 𝑦2𝑖 in figure 5.9. Details of the plot

are given in appendix D. Because a value of zero for either ∑𝑛𝑖=1 𝑥2𝑖 or ∑
𝑛
𝑖=1 𝑦2𝑖 yields a division by zero,

a value of 0.001 is used instead as the lower bound. It is concluded that the method yields rotational
stiffness values of nearly zero in the case of linear fastener patterns.
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(a) Connection model with interlayer [57, p. 392].
(b) Shear profiles according to Coulomb’s law and Saint-
Venant’s Theorem [57, p. 393].

(c) Shear profile ac-
cording to proposed
theory [57, p. 393].

Figure 5.8

Figure 5.9: Rotational stiffness as a function of the sum of squared x distances and y distances, both for the conventional spring
method and the method proposed by Noguchi & Komatsu. Details of the plot are given in appendix D. Source: own image.

5.3.4. Centre of rotation displacement
The aforementioned methods to determine the rotational stiffness both depend on the distance be-
tween each individual fastener and the geometrical centre of the connection. The implicit assumption
is made that the geometrical centre is equal to the centre of rotation and that this centre point remains
at the same location during the rotation.

Literature is ambiguous about whether and when this phenomenon occurs. A T-joint composed of
a circularly arranged dowel pattern, loaded by both shear force and bending moment was studied by
Bouchaïr et al. [16]. Tests with a finite element model and experiments were performed, and it was
found that the centre of rotation remained at the same location under the loading conditions. Bader
et al. [3] performed experimental tests of symmetrical dowel geometries loaded under pure bending
moment, and it was found that the geometrical centre of the connection was also the rotational centre
of the connection, i.e. no shift was found. In contrast to the aforementioned studies, higher individual
dowel loads on one side of connections consisting of square geometries loaded by a bending moment
and shear force were reported by Basterrechea-Arévaloa et al. [5], indicating a shift of the centre of
rotation [5, p. 11].

It is assumed that in case all fasteners have the same individual stiffness, and no additional kinematic
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boundary conditions are introduced, no displacement in centre of rotation occurs. For these cases,
therefore, the geometric centre of connections is assumed to be equal to the centre of rotation.

5.4. Conclusion
An analytical method to calculate the moment capacity of connections consisting of dowel-type connec-
tions is given in the literature, in which the individual dowel, the capacity of the reduced cross-section,
and the increased shear force as a result of the moment should be checked. Regarding methods to
quantify the rotational stiffness of connections with dowel-type fasteners, three distinct methods are
identified:

• The spring model, given in equation 5.13, where the same lateral slip modulus 𝐾𝑠𝑒𝑟 as given in
equation 3.18 is used for each dowel-type fastener.

• The spring model, where the individual lateral slip modulus 𝐾𝑠𝑒𝑟 of each dowel-type fastener is
calculated as a function of the angle between the grain direction and loading direction as proposed
in prEN-1995-1-1 [53, p. 188] and described in section 5.3.2. According to the analytical proof
given in equations 5.14 to 5.21, it is possible to separate the lateral stiffness 𝑘𝑆𝐿𝑆,𝑣 (taken as
0.5 ⋅ 𝐾𝑠𝑒𝑟) and stiffness parallel to the inclination direction 𝑘𝑆𝐿𝑆, so that no interpolation for each
individual screw is needed.

• The method proposed by Noguchi and Komatsu [57] as described by equation 5.24.

The two methods based on the spring model are considered viable methods for further analysis. As
stated, themethod proposed by Noguchi and Komatsu [57] yields unrealistically low values for rotational
stiffness in the case of linear screw patterns. Therefore, themethod is discarded and not used for further
analysis. The original method based on the spring model is referred to as ”EC”, and the spring model
method using the prEN-1995-1-1 reduction for stiffness under an angle to the grain is referred to as
”0.5 EC”.



6
Timber-to-timber friction

6.1. Introduction
In most of the described methods to assess the capacity and stiffness of individual inclined screw
connections described in chapter 4, friction has already been taken into account. Besides the influence
of friction on the individual screws, visual inspection after experiments conducted by Egner & Frese [24]
suggested the hypothesis that friction also plays a role in the rotational behaviour of connections with
inclined screws. Although further research is needed, it is expected that the influence of friction on the
rotational stiffness of connections with inclined screws depends on the surface area, the coefficient of
friction, tension stress, and the number of screws in the connection [25, p. 61].

6.2. Parameters influencing friction
An extensive literature study on timber-to-timber and timber-to-steel friction was carried out by Aurand
and Blass [1]. Friction is typically given as the coefficient of friction (COF) 𝜇, defined as the ratio of
the friction force and the normal force. A special case is the static coefficient of friction, defined as the
maximum friction force that is present before relative displacement between two specimens occurs.
The influence of the following parameters on the coefficient of friction was studied by Aurand and Blass
[1]:

• Contact pressure

• Sliding speed

• Timber density

• Moisture content

• Surface roughness

• Grain direction

The literature that was analysed by Aurand and Blass [1] reports contact pressures ranging between
0.0001 - 1 [N/mm2] for timber-to-timber friction. The relation between contact pressure and coefficient
of friction is given in figure 6.1a. The logarithmic trend line is plotted, where first an increase of the
coefficient of friction for larger values of contact pressure is identified, while later horizontal convergence
is observed [1, p. 3]. The relation with sliding speed is given in figure 6.1b. Data from the literature
studied by Aurand and Blass [1] reports sliding speeds in a range of 1 - 3300 [mm/min] for timber-to-
timber friction. A similar relation as for contact pressure was found by Aurand and Blass [1, p. 5], with
again increasing coefficients of friction for higher sliding speeds and later horizontal convergence. The
relation between timber density and coefficient of friction is given in figure 6.1c. Aurand and Blass [1]
report that no correlation was found between the density of the timber specimens and the coefficient
of friction. The coefficient of friction was found to increase significantly as the moisture content of the
specimens surpasses a value of 20 % [1, p. 5]. This effect was found for softwood, hardwood, and
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engineered wood alike. Surface roughness is divided into three categories, being treated, planed, and
rough-cut. Treated wood is further specified with the example of formwork panels. Surface roughness
was found to have the largest influence on the coefficient of friction [1, p. 6]. Grain differentiation is
divided into three categories by Aurand and Blass [1], namely parallel, perpendicular, and end grain.
Parallel grain direction is defined by Aurand and Blass [1] as the case in which the grain directions of the
two test specimens are oriented parallel to each other and to the line of exerted force. Perpendicular
grain direction is defined as the case in which one of the two specimens is rotated 90 [∘], and in the end
grain orientation, both specimens are tested with the end grain facing toward each other [1, p. 6]. It was
found that the grain direction is of negligible influence on the coefficient of friction, an exception being
the end grain orientation. Aurand and Blass [1, p. 6] state that slightly higher values for the coefficient
of friction are found for this case than for the parallel and perpendicular orientations.

(a) COF vs. contact pressure (b) COF vs. sliding speed

(c) COF vs. timber density (d) COF vs. moisture content

(e) COF for different types of surface roughness (f) COF for different grain directions

Figure 6.1: Parameters influencing the COF for timber-to-timber [1]

The main purpose of the study by Aurand and Blass [1] was to investigate different surface treatments
for dovetail joist connectors, making use of inclined screws and densified veneer wood (DVW) as an
alternative to steel, as shown on the right-hand side of figure 6.2. Fire safety is of utmost importance
for connections in timber structures, and DVW could be an interesting material as it has beneficial
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fire safety properties and a lower thermal conductivity than steel, conducting less heat to the timber
elements [2]. To this end, multiple tests to find capacity and stiffness were carried out with different
surface treatments of the DVW and screws inclined under 45∘ as shown on the left-hand side in figure
6.2. Among others, milled pyramid patterns of different depths were tested. It was found that deeper
pyramid patterns yielded the highest load-bearing capacity as a result of higher friction, but also lower
stiffness values. A possible explanation given by Aurand and Blass [1, p. 14] for this phenomenon
is that flatter surfaces immediately experience full contact, whereas rougher surfaces first need some
initial slip for interlocking to occur.

Figure 6.2: Dovetail connector as tested by Aurand and Blass [1]

6.3. Friction beech LVL and coniferous wood
As a part of the FaNaBu project, friction tests were carried out using the materials to be used in the
FaNaBu truss; beech LVL and coniferous wood. Different surface milling treatments were tested for the
beech LVL, while the coniferous specimens were left untreated [25, p. 18]. It is stated that because the
beech LVL has a higher density and surface hardness, the milled surfaces of the beech LVL should be
pressed into the coniferous wood so that interlocking occurs [25, p. 17]. The specimens were subjected
to a contact pressure of 2.5 [N/mm2]. For the specimens with untreated surfaces, an average value for
the coefficient of friction was determined as 0.39 over ten tests [25, p. 20].

6.4. Conclusion
Surface roughness is concluded to have a high influence on the coefficient of friction. The coefficient
of friction increases strongly after the moisture content surpasses a value of 20 %. A mean value for
the coefficient of friction between beech LVL and coniferous wood in the context of the FaNaBu project
was determined as 0.39.



7
Experimental investigations

7.1. Introduction
In order to test the rotational stiffness of connections with inclined screws, a test setup has been built,
which is described in this chapter. Two series of tests have been carried out, with several differences
between test series 1 and series 2. Test series 1 was originally described in the work of Eva Baldauf
[4], and test series 2 in the work of Ronja Loreck [48]. Performing the tests was not part of this master’s
thesis, and therefore the information in this chapter is taken from the work of Eva Baldauf [4] and Ronja
Loreck [48].

7.2. Test setup
The test setup is almost identical for both series and is given in figure 7.1. The only difference is the
length of the lever arm, which is described later in this section. The test setup is designed to indepen-
dently exert a normal (pulling) force and a rotation with therefrom resulting shear forces and bending
moments, respectively, on a test specimen. The test specimen itself consists of an octagonal spruce
glulam chord section which is attached to two beech laminated veneer lumber (LVL) side members.
The octagonal chord section is placed inside a steel inner shell that fits inside an outer shell, with roller
bearings at the interface of the two shells to enable them to rotate freely relative to one another. The
rotational centre of the connection is therefore prescribed by the centre of both shells. The octago-
nal chord section is clamped between a V-shaped fork and the inner shell using threaded rods. The
V-shaped fork in turn is connected to a lever arm which is controlled with a vertical cylinder, while the
outer shell is rigidly connected to the base of the test setup. The distance between the centre of rotation
and the vertical cylinder is 955 [mm] in test series 1 [4, p. 39], and 1000 [mm] in test series 2 [48, p.
30]. The side members of the test specimen are connected to a horizontal cylinder employing dowels.
Via this horizontal cylinder, the side members can be subjected to a pulling force, while a rotation of
these side members is prevented by a horizontal slider bearing. By exerting a vertical force on the lever
arm with the vertical cylinder, a relative rotation between the chord section and both side members is
established.

7.3. Test specimens
The exact testing procedure was slightly different for both test series. Therefore, they are described
separately in the following sections.

7.3.1. Test series 1
In test series 1, the specimens consist of an octagonal chord section and two side members, which
are connected with either two or four screws per shear plane. As each test specimen consists of two
shear planes, the total amount of screws per test specimen amounts to either four or eight. The screws
are inserted under an angle of 45 [∘] between the screw axis and the shear plane, and parallel to the
longitudinal direction of the side members. The side members are arranged with their grain directions
in the longitudinal direction so that the angle between the screw axis and the grain direction in the side
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(a) Test setup with test specimen: the side members are
loaded in tension, rotation is established by activating the
lever [24, p. 974].

(b) Schematic representation of the test setup: the test specimen is shown
in brown [4, p. 26].

Figure 7.1

members is 45 [∘] [4, p. 26]. The chord section is arranged with the grain direction under an angle of 45
[∘] with respect to the side members and thus also with respect to the direction of the pulling cylinder,
as given in figure 7.6a. As a consequence, the angle between the screw axis and chord grain direction
is 60 [∘] [4, p. 26].

The chord section consists of spruce glued laminated timber (glulam), cut out of a spruce glulam beam
of strength class GL24h. The side members consist of beech LVL of the type BauBuche Typ S pro-
duced by Pollmeier Massivholz GmbH & Co.KG. The side members were cut and pre-drilled by the
firm Holzbau Bruno Kaiser GmbH with the help of a CNC-controlled carpentry machine [4, p. 22]. Two
types of side members were produced (type A and type B, to be attached on either side of the chord
section), each one with eight screw holes. The arrangement of the screw holes was chosen in such a
fashion that the screws of both shear planes do not meet inside the glulam chord section. The geom-
etry of the test specimens of type 1 is given in figure 7.2. The screws used for the connections are of
the type ASSY plus full-thread screws 8x240 mm manufactured by Adolf Würth GmbH & Co. KG [4,
p. 23]. According to the corresponding assessment document ETA-11/0190 [6], these screws should
be pre-drilled with 6 [mm], which has been adopted in the tests. This pre-drilling was performed in two
steps. First, a milling cutter with a diameter of 20 [mm] created an inclined edge under 45 [∘] so that
the pre-drilling could be carried out on a perpendicular surface. After this, the holes with a diameter of
6 [mm] were drilled in the middle of the bevel [4, p. 23].

The exact dimensions of the parts of the specimens were measured after manufacturing of the in-
dividual timber parts [4, p. 24]. In combination with the weight of the parts, the density was calculated,
and finally, the modulus of elasticity was decided based on vibration tests. The average density of the
nine chord sections was 446 [kg/m3], with moisture contents between 11.5 and 12 [%] [4, p. 24]. For
the eighteen side members, an average density of 812 [kg/m3] was calculated, which is slightly higher
than the value of 800 [kg/m3] given by the manufacturer [4, p. 24]. The moduli of elasticity of the side
members were found to lie between 16689 [N/mm2] and 18609 [N/mm2] [4, p. 24]. The average value
is calculated as 17511 [N/mm2] and is again slightly higher than the value of 16800 [N/mm2] given by
the manufacturer [4, p.24]. Due to the milling, the penetration length of the screws in the side members
was reduced. To take this into account, the distances between the flat surfaces and the beginning of
the screw holes were measured, as well as the distances between the screw exit point at the underside
of the side members and the edges of the side members, and deviations of the planned dimensions
were registered [4, p. 24]. The composition of the specimens was done based on measured density.
Side members with roughly equivalent densities were assigned to the same chord section, to create
test specimens that are as homogeneous as possible [4, p. 28].

7.3.2. Test series 2
In test series 2, the test specimens are built slightly differently. The octagonal chord section has the
same dimensions as in test series 1, but the grain direction of the chord section is equal to that of the
side members, as shown in figure 7.6a [48, p. 27]. This means that the grain direction of both the
side members and the chord section is parallel to the longitudinal direction of the side members and
thus also parallel to the pulling force exerted by the horizontal cylinder in the test setup. The chord
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Figure 7.2: Test specimens of test series 1 [4, p. 23].

(a) Positions of the screw test series 1: the screw positions on either side are different
so that the screws do not make contact inside the chord section [4, p. 29].

(b) Screw positions test series 1: the tails
attached to the points indicate the part of the
screw inside the timber [25, p. 54].

Figure 7.3

section and side members are connected with either two, four, or eight screws per shear plane [48, p.
32], which means a total of either four, eight, or sixteen screws per test specimen (as there are always
two shear planes on either side of each test specimen). These screws are inserted under an angle of
either 45 or 90 [∘] between the screw axis and the shear plane [48, p. 28]. For this reason, each side
member is pre-drilled with two screw patterns, both for 45 [∘] and for 90 [∘]. Inter screw distances are
equal for both patterns. Test series 2 also features two additional screw positions compared to test
series 1, namely position 9 and 10 [48, p. 32]. Also, test series 2 features some tests in which the
friction in the shear planes is minimised. This is done by attaching sheets of polypropylene to the side
and chord sections with adhesive tape and drilling oil. This combination was found to yield a coefficient
of friction of 0.06 [48, p. 24]. Finally, because of practical reasons, the length of the side members
is slightly longer (1250 [mm], [48, p. 27]) than in test series 1 (1240 [mm], [4, p. 22]), although this
should not have any influence on the test results. Details of the specimens of test series 2 are given
in figure 7.4. To generate specimens that are as homogeneous as possible, the two side members of
each specimen are produced from the same LVL plate [48, p. 30].

The parts of the specimens consist of the same materials as in test series 1. In contrast to series
1 where only one type of screw type was featured, Loreck [48, p. 27] reports that for test series 2 the
following 5 distinct screw types are used:

• ASSY plus fully threaded 4 CSMP 8x240 mm

• ASSY plus fully threaded 4 CSMP 8x200 mm

• ASSY plus fully threaded 4 CSMP 12x240 mm
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• ASSY plus fully threaded 4 CSMP 12x200 mm

• ASSY plus partially threaded 4 CSMP 8x250 mm (170 mm)

The screws with a length of 240 [mm] are used for the 45-degree inclinations, and the screws with a
length of 200 [mm] are used for the 90-degree inclinations [48, p. 28]. All screws are manufactured by
Adolf Würth GmbH & Co. KG, and as in test series 1, pre-drilling is done as prescribed in the applicable
ETA-11/0190 document [6]. This means the screws with a diameter of 8 [mm] are pre-drilled with holes
of 6 [mm] diameter, and the screws with 12 [mm] diameter are pre-drilled with 8 [mm] holes [48, p.
28]. In contrast to test series 1, no inclined edge is milled before the pre-drilling is performed. The
penetration length of each screw is checked by measuring the distances that the screws stick out of
the side members after insertion [48, p. 30]. The screws of length 240 [mm] and diameter of 8 [mm]
stick out 2 [cm]. Screws of length 240 [mm] and diameter 12 [mm] stick out 3 [cm]. Screws with length
200 [mm] and diameter 8 [mm] stick out 1 [cm], and screws with length 200 [mm] and diameter 12 [mm]
stick out 1.5 [cm] [48, p. 27].

The density of the parts is determined in the same way as in test series 1. The average density of
the 25 chord sections amounts to 449 [kg/m3], with a 5 %-quantile of 415 [kg/m3], which is higher
than the characteristic density of GL24h of 380 [kg/m3] [48, p. 29]. The density of the beech LVL
side members amounts to 819 [kg/m3], which is slightly higher than the value of 800 [kg/m3] given by
manufacturer Pollmeier Massivholz GmbH & CO. KG [48, p. 29].

Figure 7.4: Side members of specimens for test series 2: Blue: pre-drilled holes for screws inserted under 90 [∘], red: pre-drilled
holes for screws inserted under 45 [∘], green: pre-drilled holes for connection to horizontal cylinder [48, p. 28].

Figure 7.5: Positions of the screw in test series 2: positions are chosen so that screws do not touch inside chord section [48, p.
33].
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(a) Dimensions of spruce glulam chord section: grain di-
rection is specified per test series. Adapted from [48, p.
27]. (b) Inner -and outer shell with roller bearings at the interface [48, p. 25].

Figure 7.6

7.4. Testing procedure
The exact testing procedure was slightly different for both test series. Therefore, they are described
separately below.

7.4.1. Test series 1
In test series 1, the screw combinations as given in table 7.1 were tested. These combinations are
chosen so that the polar moments of inertia are equal for pairs of screw combinations. Combination
1+8 corresponds to combination 3+6, 2+7 corresponds to 4+5, and 1+2+7+8 corresponds to 3+4+5+6
[4, p. 28]. The application of the load as a result of the rotation on each screw is different among
these combination pairs. Combinations 3+6, 4+5, and 3+4+5+6 are loaded in the direction parallel to
the inclination direction as a result of the rotation. Combinations 1+8, 2+7, and 1+2+7+8 are loaded
laterally by the force resulting from the rotation.

Figure 7.7: Rotation and horizontal force application in test series 1.

The testing procedure is initiated with the load-controlled horizontal cylinder applying a load of either
35 [kN] or 70 [kN]. The force of 35 [kN] is applied in case the connection consists of 4 screws, and 70
[kN] is applied in case the connection consists of 8 screws [4, p. 30]. This horizontal force resembles
a service load and amounts to 40 % of the load-bearing capacity of the inclined screws [4, p. 30]. The
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Configuration 1

Screw combination Sum of squared distances [mm2] d [mm]
thread

𝛼𝑠 [∘]
frict.Type 1 Type 2 Total

1 + 8 23976 23976 47952 8
full

45
yes

3 + 6 31752 16200 47952 8
full

45
yes

2 + 7 3240 3240 6480 8
full

45
yes

4 + 5 648 5832 6480 8
full

45
yes

1 + 2 + 7 + 8 27216 27216 54432 8
full

45
yes

3 + 4 + 5 + 6 32400 22032 54432 8
full

45
yes

Table 7.1: Details of test series 1, adapted from [4, table 4-1].

load is kept constant during the testing procedure. The second step is the application of the vertical
load on the lever arm so that a bending moment and consequently a rotation of the connection are
initiated [4, p. 30]. The vertical cylinder is displacement-controlled with a displacement of 20 [mm/min]
[25, p. 52]. With the length of the lever arm of 955 [mm] this corresponds to an angular velocity of 1.2
[∘ / min]. The load is phased out at rotations between 3∘ and 5∘ [4, p. 30].

7.4.2. Test series 2
The screw combinations that are tested in series 2 are given in table 7.2. The testing procedure is
initiated with a load of 2 [kN] of the horizontal cylinder, irrespective of the test specimen [48, p. 36].
The vertical cylinder exerts a load of 0.1 [kNm] on the lever arm, which amounts to a moment of 0.1
[kNm] with a lever arm length of 100 [cm] [48, p. 36]. After this pre-loading phase, the load exerted
by the load-controlled horizontal cylinder is increased up to a value of 35 [kN] in a period of 2 minutes.
This amounts to (35 - 2) [kN] / 2 [min] = 16.5 [kN/min]. After these 2 minutes, the horizontal load is kept
constant until the end of the testing procedure. Simultaneously, the displacement-controlled cylinder
increases the rotation with 0.1 [∘ / min], until a rotation of 0.8∘ is reached [48, p. 36]. After this point, the
rotational speed is increased to 1 [∘ / min] [48, p. 36]. The vertical load is phased out after a rotation of
approximately 5∘ is reached [48, p. 36].

Figure 7.8: Rotation and horizontal force application in test series 2.
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Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5 Configuration 6

Screw
combination

Sum of sqrd. dsts. [mm2] d [mm]
thread

𝛼𝑠 [∘]
frict.

d [mm]
thread

𝛼𝑠 [∘]
frict.

d [mm]
thread

𝛼𝑠 [∘]
frict.

d [mm]
thread

𝛼𝑠 [∘]
frict.

d [mm]
thread

𝛼𝑠 [∘]
frict.

d [mm]
thread

𝛼𝑠 [∘]
frict.Type 1 Type 2 Total

1 + 8 23976 23976 47952 8
full

45
yes

12
full

45
yes

8
full

45
no

8
full

90
yes

12
full

90
yes

3 + 6 31752 16200 47952 8
full

45
yes

12
full

45
yes

8
full

45
no

8
full

90
yes

12
full

90
yes

9 + 10 23963 23963 47926 8
full

45
yes

2 + 7 3240 3240 6480 8
full

45
yes

12
full

45
yes

8
full

45
no

8
full

90
yes

12
full

90
yes

4 + 5 648 5832 6480 8
full

45
yes

12
full

45
yes

8
full

45
no

8
full

90
yes

12
full

90
yes

1 + 2 + 7 + 8 27216 27216 54432 8
full

45
yes

8
full

90
yes

3 + 4 + 5 + 6 32400 22032 54432 8
full

45
yes

8
part.

45
yes

8
full

90
yes

1 + 2 + 3 +4
+5+6+7+8 59616 49248 108864 8

full
45
yes

8
full

90
yes

Table 7.2: Details of test series 2, adapted from [48, table 3-2].

7.5. Measuring technique and data processing
The relative deformations between the chord section and the side members of each test are measured
by making use of the Q400 optical measuring system from LIMESS. Before performing the tests, the
outer surfaces of the connection were painted white with black paint droplets so that a speckle pattern
was created. Two cameras are aimed at the surface of the test setup at each side to capture the
images. The images are analysed in the software programme ISTRA4D. The exact calculation method
for the rotation is slightly different for both test series and therefore described separately below.

7.5.1. Test series 1
In test series 1 a pulling force is exerted first, after which the rotation is initiated. Since the pulling force
could, in theory, cause an accidental rotation, the below-described method is proposed to determine
the rotation as a result of the intentional rotation only by Baldauf [4]. Two points are defined; point 𝑃𝐿𝑉𝐿
is located in the centre of rotation on the LVL side member, and point 𝑃𝐺𝐿 is a point on the glulam chord
section. The subscript 0 is used for the point in time after the pulling force and before the initiation of
the imposed rotation, while the subscript 𝑡 is used for a point in time after which the imposed rotation
has been initiated. Using these definitions, the angle as a result of the pulling force Δ𝛼0 and the angle
as a result of the imposed rotation Δ𝛼𝑡 are calculated.

Δ𝛼0 = 𝑡𝑎𝑛−1 (
𝑦𝐺𝐿,0 − 𝑦𝐿𝑉𝐿,0
𝑥𝐺𝐿,0 − 𝑥𝐿𝑉𝐿,0

) (7.1)

Δ𝛼𝑡 = 𝑡𝑎𝑛−1 (
𝑦𝐺𝐿,𝑡 − 𝑦𝐿𝑉𝐿,0
𝑥𝐺𝐿,𝑡 − 𝑥𝐿𝑉𝐿,0

) (7.2)

Δ𝛼 = |Δ𝛼0 − Δ𝛼𝑡| (7.3)

In which:

• 𝑥𝐺𝐿 and 𝑦𝐺𝐿: coordinates of point 𝑃𝐺𝐿 on the glulam chord section

• 𝑥𝐿𝑉𝐿 and 𝑦𝐿𝑉𝐿: coordinates of point 𝑃𝐿𝑉𝐿 on the LVL side member

It is important to note that the angle as a result of the pulling force can be either positive or negative.
To take this into account, the absolute value is taken in equation 7.3. To illustrate, figure 7.9a shows
both cases for positive and negative initial rotations. Because Δ𝛼 is registered on each side of each
test specimen, the average of both sides is taken to calculate the rotation of each specimen.
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(a) Determination of relative rotation Δ𝛼 between side member
and chord section of test series 1 [4, p. 38].

(b) Displacement of one of the test specimens in x-direction (left)
and y-direction (right). Edited from [4, p. 36].

Figure 7.9

Finally, Baldauf [4, p. 38] proposes two values for the experimental rotational stiffness, which are given
by equations 7.4 and 7.5 and based on EN 26891 [27].

𝐾𝑟,𝑠 =
0.4𝑀𝑚𝑎𝑥 − 0.1𝑀𝑚𝑎𝑥

𝛼0.4 − 𝛼0.1
180∘
𝜋 (7.4)

𝐾𝑟,𝑖 =
0.4𝑀𝑚𝑎𝑥
𝛼0.4

180∘
𝜋 (7.5)

In which:

• 𝐾𝑟,𝑠: modified experimental rotational stiffness (between 10%and 40%ofmaxmoment) [kNm/rad]

• 𝐾𝑟,𝑖 initial experimental rotational stiffness (between 0 % and 40 % of max moment) [kNm/rad]

• 𝑀𝑚𝑎𝑥: maximum moment [kNm]

• 𝛼0,4 rotation at 0.4 ⋅ 𝑀𝑚𝑎𝑥[∘]

• 𝛼0,1 rotation at 0.1 ⋅ 𝑀𝑚𝑎𝑥[∘]

7.5.2. Test series 2
The calculation method for the relative rotation of the two timber elements is slightly different for test
series 2 because the pulling force and rotation are executed simultaneously. In test series 2, the
calculation of Δ𝛼𝑡 is therefore slightly altered, as given in equation 7.6 and figure 7.6. The rest of the
calculation remains the same as for test series 1.

Δ𝛼𝑡 = 𝑡𝑎𝑛−1 (
𝑦𝐺𝐿,𝑡 − 𝑦𝐿𝑉𝐿,𝑡
𝑥𝐺𝐿,𝑡 − 𝑥𝐿𝑉𝐿,𝑡

) (7.6)

7.5.3. Test results
The results of the tests from series 1 are given in figure 7.11. In test series 1 a very stiff initial behaviour
is observed in the moment-rotation plots. After this initial phase, the stiffness gradually decreases. A
higher value for the maximum observed moment is found for connections in which the rotation causes
loading in the inclination direction of the screws. Test series 2 in contrast shows very distinctive linear
behaviour. After the first linear phase between rotations of 0∘ until 0.3 - 0.6∘, a dent is observed, and
a second linear phase with lower stiffness starts. Figure 7.12 only shows the results of configuration 1
from table 7.2 and the same screw configurations as in test series 1, so that an objective comparison
is given between test series 1 and 2.
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Figure 7.10: Determination of relative rotation Δ𝛼 between side member and chord section for test series 2 [48, p. 44].

Figure 7.11: Moment vs. rotation plots from test series 1.
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Figure 7.12: Moment vs. rotation plots from test series 2, configuration 1 (see table 7.2).



8
Calculation model

8.1. Introduction
In this section, a calculation model is proposed for the calculation of the rotational stiffness of timber-
to-timber connections with inclined screws. To this end, the calculated stiffness values of different
calculation methods are compared to the results of the rotational stiffness tests. After applying a cor-
rection for test series 1, good results are found and the best method is selected.

8.2. Testing of methods
The methods selected for further analysis in section 4.13 are used to calculate the theoretical rota-
tional stiffness values of the tested specimens. For the stiffness values in the lateral direction, the ”EC
method” is used, as well as the ”0.5 EC method”, in which the stiffness for dowel-type fasteners is
multiplied with a factor of 0.5 as the screw is loaded perpendicular to the grain. This makes a total of
fourteen methods, which are listed in table 8.1.

In test series 1, the grain direction of the chord section makes an angle 𝜖 of 45∘ with the side mem-
bers (see figure 7.6a), so that 𝜙1 = 0∘ and 𝜙2 = 45∘. The lateral stiffness 𝑘𝑆𝐿𝑆,𝑣 in the chord section
should therefore be calculated as 0.75 ⋅ 𝜌1.5𝑚𝑒𝑎𝑛 ⋅ 𝑑/23 according to the linear interpolation rule stated in
prEN-1995-1-1 [53, p. 188]. Because prEN-1995-1-1 does not state a method to take this grain angle
dependency into account in case two timber elements in the same connection have different load-to-
grain angles and because the influence is assumed to be small, 0.5 ⋅ 𝜌𝑚𝑒𝑎𝑛 ⋅ 𝑑/23 is used.

The coefficients of determination of the calculated stiffness values of each of the 14 methods are given
in table 8.1 (columns ”Test series 1 initial” and ”Test series 2”). Good results are found for test series
2, especially for methods 7,8 and 14. For test series 1, results are rather poor, where most coefficients
of determination are found to be negative. For test series 1, all results are included (n=25), and for test
series 2 all test results with a screw axis-shear plane angle 𝛼𝑠 of 45∘ are used (n=66), corresponding
to configuration 1 to 4 in table 7.2. The tests with angles 𝛼𝑠 of 90∘ are excluded from the analysis
because the calculated stiffness values of methods 1,2,8 and 9 include the term cos(𝛼𝑠) and therefore
can not be calculated for 𝛼𝑠 = 90∘. Additionally, the tests with 𝛼𝑠 = 90∘ do not qualify as inclined
screws. The plotted values of the calculated stiffness values versus the experimental values 𝐾𝑟,𝑠 are
given in appendix A. The Python code used to calculate the rotational stiffness values for each method
and compare them to the test data is given in appendix E.

8.3. Pre-load theory
The moment-rotation plots of test series 1 show distinctly different behaviour than those of series 2
(see figure 7.11 and 7.12). The moment-rotation plots of series 1 start very steeply, and a considerable
moment is present before significant rotation occurs. The calculated stiffness values for test series 1
do not accurately predict the experimental stiffness values, as shown in table 8.1 (column ”Test series
1 initial”). The hypothesis is formulated that a threshold value of the moment is needed before any

64
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r2 (n=25) r2 (n=25) r2 (n=66) r2 (n=91)

Method ID Stiffness calculation
axial direction 𝑘𝑆𝐿𝑆

Lateral stiffness
calculation 𝑘𝑆𝐿𝑆,𝑣 Test series 1

intitial
Test series 1
pre-load theory Test series 2 Overall

0.5 EC EC

1 Blass Steige x -0.923 0.675 0.800 0.766
2 Blass Steige friction x -0.436 0.730 0.791 0.774
3 Tomasi et al. (EC) single stiffness model x -0.600 0.764 0.757 0.759
4 Tomasi et al. (Blass Steige) single stiffness model x -0.072 -1.421 -2.287 -2.048
5 Tomasi et al. (EC) double stiffness model x -1.272 0.455 0.669 0.610
6 Tomasi et al. (Blass Steige) double stiffness model x -0.308 0.641 0.665 0.658
7 Santis Fragiacomo x -0.943 0.664 0.818 0.776
8 Blass Steige x -0.716 0.664 0.822 0.779
9 Blass Steige friction x -0.233 0.710 0.771 0.754
10 Tomasi et al. (EC) single stiffness model x -0.395 0.747 0.737 0.740
11 Tomasi et al. (Blass Steige) single stiffness model x 0.122 -1.464 -2.441 -2.171
12 Tomasi et al. (EC) double stiffness model x -1.063 0.449 0.713 0.640
13 Tomasi et al. (Blass Steige) double stiffness model x -0.106 0.618 0.629 0.626
14 Santis Fragiacomo x -0.736 0.653 0.838 0.787

Table 8.1: Coefficients of determination for different calculation methods for the rotational stiffness.

rotation can occur in test series 1. This threshold value is believed to result from friction between the
timber members at the shear plane, as a result of the pulling force that is present before the rotation is
initiated, as shown in figure 8.1a). To quantify this moment, equation 8.1 is proposed.

𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑛

∑
𝑖=1
√(𝑥2𝑖 + 𝑦2𝑖 ) ⋅

𝐹𝑝𝑟𝑒,𝑡𝑜𝑡
𝑛 ⋅ 𝑡𝑎𝑛(𝛼𝑠) ⋅ 𝜇 (8.1)

The pre-load 𝐹𝑝𝑟𝑒,𝑡𝑜𝑡 is divided by the number of screws present in the connection. The pre-load per
screw is converted to the force perpendicular to the shear plane by taking the tangent of the angle 𝛼𝑠,
and this force is multiplied by the coefficient of friction 𝜇. Finally, this friction force is multiplied with
the moment arm to arrive at the contribution of the individual screw to the total moment resulting from
pre-load friction. For the experimental tests, a value for the coefficient of friction of 0.39 is used, as
described in section 6.3.

(a) Frictional force due to normal force between the timber ele-
ments. Source: own image.

(b) 𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value shown in moment-rotation plots of test series
1 and 2 for screw geometry 3+6. Source: own image.

Figure 8.1

Figure 8.1b shows the test data for screw geometry 3+6 both for test series 1 and test series 2. The
value for 𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is also given. The stiffness values for both test series are almost equal after
the horizontal line indicating 𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is surpassed. To take the pre-load effect into account, the
theoretical values for 𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 calculated with equation 8.1 are subtracted from the experimental
moment values of test series 1. In other words, the moment-rotation curves for test series 1 are all
lowered with the value of𝑀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 applicable to the connection geometry. After this step, the modified
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experimental rotational stiffness 𝐾𝑟,𝑠 is calculated according to equation 7.4. The results obtained with
these new experimental values for the rotational stiffness are given in table 8.1 under ”Test series 1
pre-load theory”. The coefficients of determination found using this method are significantly better than
the initial values. The predicted stiffness values according to the 14 methods are plotted against the
corrected experimental stiffness values in appendix A (last set of plots).

8.4. Spring model
To understand what happens in screw configurations that are exposed to an additional axial load as a
result of the imposed rotation (configurations 3+6, 4+5, 3+4+5+6), they are compared to a model. The
stiffness values of the screws loaded in the direction of inclination are modelled as linear elastic springs
with stiffness 𝑘. The model therefore assumes that the springs have the same stiffness 𝑘 both when
initially elongated and when relaxed after initial elongation. Figure 8.2 schematically shows this model
for a connection with two screws (combinations 3+6 and 4+5), both for test series 1 and test series 2.
As mentioned before, in test series 1 the pulling force is exerted before the rotation is applied, and in
series 2 both actions are applied simultaneously to the specimens.

Figure 8.2: Model for connection geometries that experience additional load in inclination direction as a result of rotation, for
both test series 1 and test series 2. Step 1: situation before any load is applied. Step 2+3: pulling force is applied and rotation
is initiated. All screws are still in net tension (the rotational region where theoretically the rotational stiffness is calculated in the
tests). Step 4: rotation is prolonged and the bottom screw experiences net compression. As soon as the screw experiences
net compression, theoretically, the stiffness of that screw should be calculated according to the method for dowel-type fasteners
loaded in shear, given by equation 3.18. Source: own image.

In the tests, the combined actions of pulling force and rotation (and corresponding moment M) cause
a net pushing force in the bottom screw in case the force component as a result of the moment be-
comes larger than the force component as a result of the pulling force. In the model of figure 8.2 this
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happens when 1
2𝐹 > 𝐹𝑚𝑜𝑚 (see step 4 in figure 8.2). As described by Tomasi et al. [22], the stiffness

of inclined screws when loaded in compression should be calculated according to the standard EN-
1995-1-1 equation for laterally loaded dowel type fasteners, as given by equation 3.18. This means
that the stiffness of the inclined screw changes at the transition from net tension to net compression.
The pulling force exerted with the horizontal cylinder in the tests is present to guarantee that all the
screws are subjected to a net pulling force at the beginning of the testing procedure, where the rota-
tional stiffness is calculated. The test is prolonged and the imposed rotation is increased so that after
a certain amount of time (and corresponding rotation angle) the bottom screw experiences a pushing
force.

Important to mention is the fact that in the tests, the centre of rotation is fixed. This is usually not
the case in a connection, where the centre of rotation will always shift towards the stiffest spring. The
stiffness of an inclined screw connection is likely higher in the case of relaxation after initial elongation
than in the case of initial elongation, as given in figure 8.3a. Therefore, the model of test series 1 would
theoretically change to figure 8.3b during the rotation phase, with a higher stiffness 𝑘𝑟𝑒𝑙𝑎𝑥 during the
rotation for the bottom screw.

(a) Higher stiffness of a single inclined screw connection for relax-
ation after initial deformation 𝑘𝑟𝑒𝑙𝑎𝑥.

(b) Spring model for connection geometries in which individual
screws are subjected to an additional load in inclination direction
as a result of the implied rotation, in the case of higher relaxation
stiffness and therefrom resulting downward shift in the centre of
rotation.

Figure 8.3: Source: own image.

Little is known about the stiffness of inclined screws during the relaxation phase. As this stiffness is
not known, it is assumed that the stiffness is approximately equal for the case of initial elongation and
the case of relaxation after initial elongation so that the model in figure 8.2 is assumed to be valid and
used from now on.

8.5. Screws under compression
Under the assumption of linear elastic stiffness of the screw both under initial elongation and relaxation
after initial elongation, it has been proven by Baldauf [4, p. 47] that each screw in combination 3+6
for test series 1 stays in tension until a rotation of 0.4∘, so that indeed the stiffness of the connection
according to equation 7.4 is calculated in the ”tension only” range in which all screws experience a net
tensile force. It is assumed that this is the case for the other connection geometries in test series 1
as well. For test series 2, it was checked whether the bottom screw is in tension in the first part of the
test, as was planned. For screw geometries 3+6, 4+5 and 3+4+5+6 this check is performed. Making
use of the experimental test data, the theoretical contribution from the moment and the pulling force
per screw are summed to this end, as described in more detail in appendix C. In this procedure, V11
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(3+6), V8 (4+5) and V28 (3+4+5+6) were checked, as their values for 𝐾𝑟,𝑠 lie closest to the average 𝐾𝑟,𝑠
values of the tests for their geometry. Results are given in figure 8.4. In geometries (3+6) and (4+5),
a small compression force is found for small rotations (up to appr. 0.3∘), after which the compression
force increases significantly. In geometry (3+4+5+6) the compression force is larger, probably because
the pulling force per screw is much lower, and so the compression force as a result of the rotation is
not compensated enough. Therefore, according to this information, it would not be justified to use the
stiffness for an inclined screw connection under tensile force, and instead the EN-1995-1-1 formula
should be used, as given by equation 3.18.

Figure 8.4: Net force in the bottom screw vs. rotation in tests V11, V8 and V28. Tension positive, compression negative. Source:
own image.

It would be very complicated to use different formulas per screw after a positive check for compression.
Also, it is not valid to simply use the EN-1995-1-1 stiffness given by equation 3.18 for the bottom screw
in case it is found to be under net compressive force. In case the bottom screw experiences a net
compressive force, one part of the force as a result of the moment is a function of the screw stiffness
under tension, and the other part is a function of the stiffness under compression. This is shown in
figure 8.5 of screw configuration 3+6, where the forces 𝐹𝑁3 and 𝐹𝑁6 are the screw forces as a result of
the normal force 𝑁, and the forces 𝐹𝑀3 and 𝐹𝑀6 are the forces as a result of the exerted moment 𝑀.
For the bottom screw (screw 6), 𝐹𝑀6,𝑐 = 𝐹𝑀6−𝐹𝑁6 is the net force exerted on the screw. This net force
is a compressive force so that the EN-1995-1-1 stiffness should be used. However, simply using the
EN-1995-1-1 stiffness for screw 6 in the equation for rotational stiffness is not correct, as it assumes
that for the entire force 𝐹𝑀6 the stiffness under net compressive force can be used, which is not the case
(the part 𝐹𝑀6,𝑡 is a function of the stiffness for inclined screw under tension, as are 𝐹𝑁3, 𝐹𝑀3 and 𝐹𝑁6).
Equation 8.2 gives the proof that the moments are indeed not equal, using the screw displacement as
a result of rotation 𝑢𝑟𝑜𝑡 and the screw displacement as a result of the pulling force 𝑢𝑝𝑢𝑙𝑙, as given in
figure 8.2 (specifically, step 4 of test series 2 in figure 8.3). The forces used in equation 8.2 are given
in figure 8.5. Because of these complexities and because it is assumed that the influence of the effect
is small, the assumption is made that all screws stay under tension during the tests.

𝑀𝑡𝑜𝑡 = (𝐹𝑁3 + 𝐹𝑀3) ⋅ 𝑟 + 𝐹𝑀6,𝑐 ⋅ 𝑟
= (𝑢𝑝𝑢𝑙𝑙 ⋅ 𝑘𝑆𝐿𝑆 + 𝑢𝑟𝑜𝑡 ⋅ 𝑘𝑆𝐿𝑆) ⋅ 𝑟 + (𝑢𝑟𝑜𝑡 − 𝑢𝑝𝑢𝑙𝑙) ⋅ 𝑘𝐸𝐶 ⋅ 𝑟
≠ 𝑢𝑟𝑜𝑡 ⋅ 𝑘𝑆𝐿𝑆 ⋅ 𝑟 + 𝑢𝑟𝑜𝑡 ⋅ 𝑘𝐸𝐶 ⋅ 𝑟

(8.2)

8.6. Conclusion
It is concluded that the correction of the experimental stiffness values referred to as the pre-load theory
drastically improves the results for the fourteen methods in test series 1. Based on all results after
the correction referred to as pre-load theory, it is concluded that several methods show good results
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Figure 8.5: Forces per screw for geometry 3+6 in test series 2 in case the bottom screw experiences a net compressive force.
The moment is a function of the stiffness of inclined screws 𝑘𝑆𝐿𝑆 and the EN-1995-1-1 stiffness for dowel-type fasteners loaded
in shear, as given by equation 3.18. Adapted from [25, p. 51].

compared to the experimental test data. Methods 1, 2, 3, 7, 8 and 14 all show very good similarity
with the results, with only minimal differences in coefficient of determination. With regards to the lateral
stiffness calculation, no conclusion can be drawn on whether the ”0.5 EC method” or the ”EC method”
is to be preferred. Some methods show better results for the ”0.5 EC method” and others for the ”EC
method”. Method 14 is selected as this method yields the highest coefficient of determination, as given
in the plot in figure 8.6a. The calculation method is given in equations 8.3 to 8.5b. The plot given
in figure 8.6b gives the rotational stiffness values in case 𝐾𝑠𝑒𝑟 (see equation 3.18) is used for both
the stiffness parallel to the inclination direction 𝑘𝑆𝐿𝑆 and the stiffness perpendicular to the inclination
direction 𝑘𝑆𝐿𝑆,𝑣.
With regards to the experimental test programme, it is concluded that in test series 2, a compressive
force is present in the bottom screw for geometries 3+6, 4+5 and 3+4+5+6, so that it is not completely
legitimate to calculate the stiffness of this bottom screw as if it is loaded in tension. As discussed in sec-
tion 8.5, it is not possible to analytically correct the rotational stiffness calculation for this phenomenon.
The influence of this effect is deemed small, but it should be mentioned that the calculated rotational
stiffness values are slightly overestimated by not taking this effect into account.

𝛼𝑠 (∘) ww xx yy zz

15 1.14 0.86 0.47 0.095

30 1.09 0.77 0.58 0.23

45 1.07 0.68 0.65 0.29

60 1.07 0.51 0.76 0.31

75 1.04 0.056 1.11 0.18

90 1.04 0.056 1.11 0.18

Table 8.2: Interpolation factors.

𝑘𝑟 =
𝑛

∑
𝑖=1
𝑘𝑆𝐿𝑆,𝑖 ⋅ 𝑦2𝑖 +

𝑛

∑
𝑖=1
𝑘𝑆𝐿𝑆,𝑣,𝑖 ⋅ 𝑥2𝑖 (8.3)

𝑘𝑆𝐿𝑆,𝑣,𝑖 =
1
23 ⋅ √𝜌1 ⋅ 𝜌2

1.5 ⋅ 𝑑 (8.4)

𝑘𝑆𝐿𝑆,𝑖 = 𝑧𝑧 ⋅ (𝜌𝑤𝑤1 ⋅ 𝑙𝑥𝑥1 + 𝜌𝑤𝑤2 ⋅ 𝑙𝑥𝑥2 ) ⋅ 𝑑0.76 𝛼𝑠 ≥ 60∘ ∗
(8.5a)

𝑘𝑆𝐿𝑆,𝑖 =
𝑧𝑧 ⋅ 𝑑𝑦𝑦

1
𝜌𝑤𝑤1 ⋅𝑙𝑥𝑥1

+ 1
𝜌𝑤𝑤2 𝑙𝑥𝑥2

𝛼𝑠 < 60∘ ∗ (8.5b)
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(a) Rotational stiffness calculated according to method 14: De Santis & Fra-
giacomo (𝑘𝑆𝐿𝑆) and EC (𝑘𝑆𝐿𝑆,𝑣).

(b) Rotational stiffness calculated using 𝐾𝑠𝑒𝑟 both for the calculation of 𝑘𝑆𝐿𝑆
and 𝑘𝑆𝐿𝑆,𝑣.

Figure 8.6: Experimentally found stiffness values vs. calculated stiffness values of all tests (series 1 and 2), after adjusting test
series 1 using the pre-load theory. Method 14 and the calculation utilising 𝐾𝑠𝑒𝑟 given in EN-1995-1-1 are shown. Tests without
friction are indicated with open squares. Legend is given in appendix A. Source: own image.

In which:

• 𝑘𝑟: rotational stiffness of the connection [Nmm/rad]

• 𝑘𝑆𝐿𝑆,𝑣,𝑖: stiffness of inclined screw 𝑖 in lateral direction [N/mm]

• 𝑘𝑆𝐿𝑆,𝑖: stiffness of inclined screw 𝑖 in direction of inclination [N/mm]

• 𝑥𝑖 , 𝑦𝑖: horizontal resp. vertical distance from centre of rotation to screw 𝑖 [mm]

• 𝑑: outer diameter of the screw [mm]

• 𝜌1, 𝜌2: density of timber element 1 resp. 2 [kg/m3]

• 𝑙1, 𝑙2: penetration length of the screw in timber element 1 resp. 2 [mm]

• 𝑤𝑤, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧: interpolation factors, see table 8.2.

* The method is experimentally verified only for 𝛼𝑠 = 45∘



9
Truss model

9.1. Introduction
In chapter 8, a method was presented that accurately describes the experimentally obtained rotational
stiffness values of the connections with inclined screws. This chapter focuses on the application of
these connections in truss structures, making use of prototype versions of the FaNaBu truss concept.
Specifically, this chapter focuses on the influence of the rotational stiffness of the chord-diagonal con-
nections on the serviceability and ultimate limit state behaviour of the FaNaBu truss.

9.2. Grasshopper model
Grasshopper is a visual programming language, used in combination with Rhinoceros. Grasshop-
per allows the use of embedded tools that add more functionalities to the programme. One of these
embedded tools is Karamba3D, which allows users to perform structural analysis using finite element
analysis (FEA). A parametric model of the FaNaBu truss was built in Grasshopper to study the influence
of rotational and translational connection stiffness on different truss geometries.

Figure 9.1: Schematic representation of the Grasshopper model. Source: own image.

A block schematic overview of the model is given in figure 9.1. Relevant parameters for the structural
calculation programme (geometry, cross sections, materials, loads and support conditions) are pro-
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vided to the ”Assemble” and ”Analyze” components of Grasshopper. These components also require
the user to provide stiffness information of the connections. In order to provide this data, an algo-
rithm is programmed within the Grasshopper environment in which connection geometry and individual
screw parameters can be inserted. With this information, the translational and rotational stiffness for
the chord-diagonal connection 𝑗 per shear plane 𝑘𝑠,𝑗 and 𝑘𝑟,𝑗 respectively, are calculated.

The geometry of the FaNaBu truss is relatively simple. In the Grasshopper model, the double di-
agonals on either side of the chord sections are modelled as single cross sections, with a double depth
compared to that of the real structure. The truss is loaded with point loads located on each node of
the top chord, excluding the two outer nodes. The truss is simply supported, with lateral supports at
each node to prevent lateral torsion buckling. The posts and chords are modelled as GL24h which is
available in the material library of Grasshopper. The diagonals are given custom material properties of
GL75 laminated veneer lumber, taken from the Pollmeier declaration of performance [58].

Figure 9.2: Definitions in the truss model, in this case with j=2 distinct chord-diagonal connections. Above: chord-post connection
as a clamped connection. The hinged post case and clamped post case are shown. The stiffness values per shear plane 𝑘𝑠,𝑗
and 𝑘𝑟,𝑗 are multiplied with a factor 2 as double diagonals on either side of the chord are used in the FaNaBu truss.

The truss has two types of connections, which are the chord-diagonal connections and the chord-post
connections. Besides the chord-diagonal connections, the chord-post connections are assumed to
have a significant influence on the structural behaviour of the truss. The chord-post connections re-
main outside of the scope of this research project. In the FaNaBu project, compressive tests of the
vertical chord-post connection showed very high values of stiffness [25, p. 41]. Therefore, their trans-
lational stiffness is assumed to be infinite. For their rotational stiffness, both the case of perfect hinges
and clamped connections are studied, see figure 9.2. As stated, a script was written in the Grasshop-
per model that automatically calculates the translational and rotational stiffness of the chord-diagonal
connections 𝑘𝑠,𝑗 and 𝑘𝑟,𝑗. The screws of the connections are modelled as fully threaded screws so that
the connection is fully defined when screw length, screw diameter, angle of insertion and distances
between the screws are known. The contour of the geometry of the connection is programmed as a
parallelogram with the upper and lower edges always parallel to the chords of the undeformed truss,
and the side edges parallel to the diagonals, as indicated in figure 9.3. In this way, the following pa-
rameters of the connection can be set in the model:

• 𝑛𝑥: number of screws in x direction [-] (see figure 9.3)

• 𝑛𝑧: number of screws in x direction [-] (see figure 9.3)

• 𝑒𝑥: distance between screws in x direction [mm] (see figure 9.3)

• 𝑒𝑧: distance between screws in z direction [mm] (see figure 9.3)

• 𝛼𝑠: angle between screw axis and shear plane [∘]
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• 𝑑: screw outer diameter [mm]

• 𝑙: screw length [mm]

Figure 9.3: Left: connection detail of truss. Centre: model in Rhino with distances. Right: Grasshopper parametric sliders to
adjust the connection.

With the connection fully defined, the values for 𝑘𝑠,𝑗 and 𝑘𝑟,𝑗, are calculated and communicated to the
structural model. The translational stiffness per shear plane 𝑘𝑠,𝑗 is calculated using the method of De
Santis et al. [62], (see equation 8.5b), while the rotational stiffness is calculated using the method found
in chapter 8 (see equation 8.3).

From the calculated model, the displacements 𝑤1 and 𝑤2, moments in the chord-diagonal connections
𝑀𝑡𝑜𝑝 and 𝑀𝑏𝑜𝑡 and corresponding relative rotations 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑𝑠 are extracted. With these rotations,
the theoretical forces parallel and perpendicular to the inclination direction of the screws can be calcu-
lated, according to equation 5.22 derived in section 5.3.1.

9.3. Small-scale prototype
A small-scale prototype of a FaNaBu truss was both tested in the laboratory and analysed in the finite
element programme ANSYS by Steige & Frese [66]. In this study, the influence of the rotational stiffness
between diagonals and chords is not taken into account, so only a translational stiffness was effective.
Partially threaded screws were used. The dimensions of the small-scale prototype are given in figure
9.4 and in the table shown in figure 9.5.

Figure 9.4: Small-scale truss model as built in Grasshopper, dimen-
sions in [mm].

Material Cross section

Upper/lower chords GL24h 240x140 [mm]
Posts GL24h 240x140 [mm]

Diagonals LVL GL75 2x140x40 [mm]

Figure 9.5: Dimensions small truss prototype.

To mitigate the effect of compression forces perpendicular to the grain in the chords, beech LVL plates
are applied in the contact area between the posts and the chords in the prototype truss [66]. The truss is
loaded in four-point bending as shown in figure 9.4 with two point loads of each 100 [kN] in magnitude.
This load is equal to a service load of approximately 40 % of the load-bearing capacity of the truss [66,
p. 288]. The deformation of the lower chord (𝑤1) and the relative deformation of the posts (𝑤2) were
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measured in the experiment, and a sensitivity analysis was carried out in the ANSYS model, in which
the translational stiffness was increased from 10 to 190 [kN/mm] per shear plane, see figure 9.7b. The
definitions of displacements 𝑤1 and 𝑤2 are illustrated in figure 9.6.

Figure 9.6: Deformations of the lower chord (𝑤1) and relative deformation of the centres of the posts (𝑤2).

(a) Sensitivity analysis in the Grasshopper model with 𝑘𝑟=0. The
hinged post case is shown. (b) Sensitivity analysis in ANSYS, with 𝑘𝑟=0 [66, p. 289]

Figure 9.7

9.3.1. Serviceability limit state
The truss was built in the Grasshopper model (see figure 9.4), and the same sensitivity analysis has
been carried out as described by Steige & Frese [66], which is given in figure 9.7a. The displacements
𝑤1 and 𝑤2 show relatively good similarity, however, the Grasshopper model shows larger deformations
for small values for 𝑘𝑠 and smaller deformations for large values of 𝑘𝑠 compared to the ANSYS model
presented by Steige & Frese. Reasons for this could include the fact that the ANSYS model models
the connections between the chords and posts more realistically. This includes:

• The posts in the ANSYSmodel connect to the bottom surface of the top chord and the top surface
of the bottom chord. This is a difference from the Grasshopper model, in which the connections
between elements are always modelled as a single node so that displacements in the chords
as a result of compression perpendicular to the grain are not taken into account. This modelling
inaccuracy also means that in the Grasshopper model, the posts are slightly longer than in the
ANSYS model (amounting to 240 [mm]), so they experience slightly larger axial deformation.

• In the ANSYS model the LVL plates between chords and posts are modelled, whereas in the
Grasshopper model, they are omitted. These LVL plates, loaded perpendicular to the grain, have
an influence on the relative displacements between the top and bottom chord that is not taken
into account in the Grasshopper model.

• In the ANSYS model, the moduli of elasticity in the longitudinal direction of the chords, posts and
diagonals were obtained from dynamic measurements [66, p. 288], whereas in the Grasshopper
model, tabulated values are used.
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• In the ANSYSmodel, the chord sections in which screws are present were assigned higher moduli
of elasticity [66, p. 288], whereas in the Grasshopper model, the chords are assigned equal
moduli of elasticity at each location.

Despite the slightly different values for the deformations that were obtained from the Grasshopper sen-
sitivity analysis, it is concluded that the Grasshopper model gives realistic results for the deformations
𝑤1 and 𝑤2. The model is therefore used to conduct a sensitivity analysis in which the influence of the
rotational stiffness 𝑘𝑟 on the displacement 𝑤1 is studied, see figure 9.8. The translational stiffness 𝑘𝑠
was calculated based on 6 fully threaded 8x240 [mm] screws, yielding a value of 𝑘𝑠 = 70455 [kN/m].
Different multiplications of this value were considered. It was found that for all cases, the influence of
rotational stiffness on the deformation is negligible. This was found both for the case of clamped and
hinged connections, where the clamped case yields slightly smaller deflection values.

(a) Hinged post. (b) Clamped post.

Figure 9.8: Sensitivity analysis small-scale truss for the serviceability limit state. 𝑘𝑠 = 70455[𝑘𝑁/𝑚], hinged post case and
clamped post case are shown. The vertical dotted line indicates the calculated rotational stiffness of the connection (see table
9.1).

9.3.2. Ultimate limit state
In the small truss experiment, Frese & Steige [66] used partially threaded screws for the connections.
However, the experimental testing programme described in chapter 7 consists almost exclusively of
fully threaded screws and the calculation model described in chapter 8 therefore is also based on fully
threaded screws. For this reason, fully threaded screws are assumed in the Grasshopper model for the
connections between the diagonals and chords. The type of screw that is selected for the connections
is the ASSY plus fully threaded 4 CSMP 8x240 mm. It is stated by Frese & Steige that a force of 100
[kN] per node is equal to approximately 40 % of the load-bearing capacity [66, p.288]. Although this
truss is constructed with partially threaded screws, and thus also the load-bearing capacity is calcu-
lated based on partially threaded screws, it is assumed that 250 [kN] can be used as an estimate for
the load-bearing capacity for an identical truss with fully threaded screws.

The values for distances 𝑒𝑥 and 𝑒𝑧 are taken equal to the minimum distances between inclined screws
given in EN-1995-1-1, see table 3.1. These depend on the screw diameter, so that for a screw with
diameter of 8 [mm] inserted under 45 ∘, 𝑒𝑥 = √2⋅𝑎1 = √2⋅7⋅8 ≈ 80[𝑚𝑚] and 𝑒𝑧 = 𝑎2 = 5⋅8 = 40[𝑚𝑚].
In reality, the screws on either side of the chord sections must be inserted at a different place, so that
crossing screws do not touch inside the chords. This has been simplified in the Grasshopper model so
that the connections are modelled identically on either side of the chords. The results relevant to the
ultimate limit state case from the structural model are given in table 9.1.

A sensitivity analysis for the ultimate limit state case is performed, in which the influence of the rota-
tional stiffness per shear plane 𝑘𝑟 on the moment values in the chord-diagonal connections are studied,
both at the top and bottom chord. The analysis is given in figure 9.9. For this analysis, both the case of
a hinged chord-post connection and a clamped chord-post connection are included. It is found that the
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𝑛𝑧 𝑛𝑥

𝑘𝑠
[kN/m]

(per shear
plane)

𝑘𝑟
[kNm/rad]
(per shear
plane)

𝑀𝑡𝑜𝑝
[kNm]

(per shear
plane)

𝑀𝑏𝑜𝑡
[kNm]

(per shear
plane)

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑚𝑎𝑥
[kN]

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑚𝑎𝑥
[kN]

6 2 70455.3 164.1 0.65 0.05 0.93 1.92

Table 9.1: Calculated stiffnesses 𝑘𝑠 and 𝑘𝑟, Moments and maximum forces per screw from the Grasshopper model for the
small-scale prototype.

connection at the top chord experiences a larger moment than the connection at the bottom chord, both
in the hinged post case and in the clamped post case. The reason for this is that the relative rotation
between the chord and diagonal becomes larger moving away from the midspan of the truss. Since
the truss has falling diagonals, the top connection of each diagonal is positioned further away from the
midspan. Furthermore, it is found that the moment values are larger in the hinged post case, as no
moment can be taken up by the posts in this case. An exception to this last statement is observed in
the bottom chord for very low rotational stiffness values. A reason for this odd behaviour could be that
in the small-scale prototype, the members are subjected to relatively high values of bending moment
and shear force due to the large ratio of truss height and truss span, causing some odd behaviour.

Figure 9.9: Sensitivity analysis small-scale truss for the ultimate limit state, with 𝑘𝑠 = 70455 [kN/m]. The vertical dotted line
indicates the calculated rotational stiffness of the connection (see table 9.1.

The screw force perpendicular to the inclination direction of the screw 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑚𝑎𝑥 causes a compres-
sion force perpendicular to the grain in the diagonal. Using equations 8.3.1 and 8.3.2 in EN-1995-1-1
[55, p. 80], the characteristic embedment strength of the LVL perpendicular to the grain 𝑓ℎ,90,𝑘 and
the embedment strength of the GL24h 𝑓ℎ,45,𝑘 can be calculated. It is concluded that the diagonals and
chords have enough capacity against compression perpendicular to the grain, as given in appendix F.

From the calculated unity check for compression perpendicular to the grain in the diagonals, it is con-
cluded that compression perpendicular to the grain has a negligible influence. The maximum force
parallel to the direction of inclination of the screw as a result of the moment in the connections is found
to be equal to 0.93 [kN]. As this force works in the same direction as the tension force on the screw as
a result of the tension force in the diagonal, the capacity of the screw group is lower than in case no
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moments in the connection are considered.

9.4. Large-scale prototype
A large-scale prototype has also been tested in the laboratory, as described by Egner & Frese [25,
p. 63]. The dimensions and material properties of this truss are more complicated compared to the
small truss. Firstly, the upper and lower chords consist of a composite cross-section of GL24h and LVL
[25]. The reasons to apply composite chord cross sections are larger capacity for compression, tension
and especially bending moment. Also, the capacity of the chords for compression perpendicular to the
grain is increased in this way, which is especially relevant for the connections between the posts and
chords [25]. Secondly, the posts in the centre have a smaller cross-section than the posts nearer to
the supports, as is also the case for the diagonals. The number of screws that are used per chord-
diagonal connection also decreases towards the centre of the truss, as the normal force per diagonal
decreases towards the midspan. Finally, the two posts on the outer sides of the truss directly connect
to the supports, so that compression perpendicular to the grain as a result of the support reaction in
the chords is prevented at this point. Figure 9.10 shows the geometry of the FaNaBu truss.

Figure 9.10: Geometry of the large FaNaBu truss prototype [25, p. 64].

A more simplified version of the large truss that was tested experimentally is modelled in Grasshopper,
see figure 9.11. The upper and lower chords are modelled as homogeneous cross-sections of GL24h.
The posts are all given equal dimensions, as well as the diagonals. Finally, the outer posts are not
modelled connecting directly to the supports, and instead, the chords are therefore continuous beams
in the Grasshopper model. An overview of the dimensions used for the model is given in table 9.2.

Figure 9.11: Dimensions and loading for the large truss prototype as built in Grasshopper.

The deformations in the large-scale prototype as built and tested by Egner and Frese [25, p. 69] were
compared with the deformations found in the model. The connection geometries (see table 9.4) as built
in the prototype were used in the Grasshopper model for this analysis. The results are given in table
9.3.
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Material Cross section

Upper/lower chords GL24h 320x160 [mm]
Posts GL24h 160x160 [mm]

Diagonals LVL GL75 2x125x80 [mm]

Table 9.2: Dimensions large truss prototype as modelled
in Grasshopper.

Total load
[kN]

Load per node
[kN]

𝑤1 tests
[mm]

𝑤1 GH model
[mm]

472 59.0 52.3 41.4
189 23.6 22.1 17.0

Table 9.3: Deflections at midspan found in tests of the
large-scale truss and deflections found with the Grasshop-
per model

9.4.1. Serviceability limit state
The experimentally tested truss has a characteristic load capacity of 472 [kN] [25, p. 69]. This load
is distributed over the 8 connections between the posts and upper chord so that a load of 59 [kN] per
connection is present in the ultimate limit state. A service load is taken as 40 % of this load (23.6
[kN]). With this load in place, a sensitivity analysis is performed in the Grasshopper model, in which the
deflection at the midspan of the bottom chord is measured with a rotational stiffness 𝑘𝑟 = 0 in place at
each connection. The results are given in figure 9.12b. Only 𝑤1 is plotted, as it was found that the two
values are very similar and their lines would overlap in the figure.

(a) Deformation of the lower chord (𝑤1) in the large truss.
(b) Sensitivity analysis in Grasshopper of large truss, 𝑘𝑟=0,
hinged post case.

Figure 9.12

The influence of the rotational stiffness on the deformation behaviour was also studied, as shown in the
sensitivity analysis given in figure 9.13. In this analysis, each chord-diagonal connection in the truss
is modelled with equal stiffness properties. The connection geometry of connection 1, which is the
connection closest to the supports, is taken as the base case (see table 9.4 for the calculated values
of 𝑘𝑠 and 𝑘𝑟). Different multiplications of the translational stiffness 𝑘𝑠 of connection 1 are analysed.
As was the case for the small-scale prototype, rotational stiffness 𝑘𝑟 has a negligible influence on the
deformation 𝑤1 of the structure both in the clamped post case and in the hinged post case.

9.4.2. Ultimate limit state
The amount of screws used per connection in the experimentally tested FaNaBu truss decreases to-
wards the midspan. The screws used are fully threaded screws with a length of 280 [mm] and a
diameter of 8 [mm]. The distances between the screws were not taken from EN-1995-1-1, but from
ETA-11/0190 [6]. The minimum screw spacing parallel to the grain 𝑎1 in this document is given as 5 ⋅𝑑,
so that 𝑒𝑧 = 5 ⋅ √2 ⋅ 𝑑 = 57[𝑚𝑚] is used in the Grasshopper model. Because adjacent screw pairs
should not touch each other inside the chord, the minimum edge distance 𝑎2,𝐶𝐺 of 3 ⋅ 𝑑 was used on
one side of the chord in the construction of the FaNaBu truss. In this way, enough space is left for
the screws on the adjacent side of the chord to fit between these screw locations. In the Grasshopper
model, it is assumed that the connections have identical geometries on either side of the chord so that
𝑒𝑥 = 125 − 3 ⋅ 8 − 3 ⋅ 8 = 77[𝑚𝑚] is used in the Grasshopper model.

Again a sensitivity analysis is carried out for the ultimate limit state case, as given in figure 9.14. The
analysis is carried out with equal rotational and translational stiffness properties in each chord-diagonal
connection. The translational stiffness of all chord-diagonal connections is kept constant and is calcu-
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(a) Hinged post. (b) Clamped post.

Figure 9.13: Sensitivity analysis large-scale truss for the serviceability limit state. 𝑘𝑠 = 140946[𝑘𝑁/𝑚], hinged post case and
clamped post case are shown. The vertical dotted line indicates the calculated rotational stiffness of the connection (see table
9.4).

lated according to the geometry of connection 1 (nearest to the supports). For reference, the vertical
dotted line indicates the calculated rotational stiffness of connection 1. As was the case for the small
truss, the moment is found to be larger at the top chord than at the bottom chord. Again the case in
which the posts are hinged yields higher moment values in the connection than the clamped case.

Figure 9.14: Sensitivity analysis large-scale truss for the ultimate limit state for connection 1 (nearest to the supports), with 𝑘𝑠 =
140946 [kN/m]. The vertical dotted line indicates the calculated rotational stiffness of the connection (see table 9.4).

The amount of screws per shear plane in the FaNaBu truss is 2x5, 2x4, 2x2 and 2x1, as seen from the
supports towards the midspan. Using the Grasshopper model, again the moments in the connections
and forces on the screws are calculated, as given in table 9.4. The check for compression perpendic-
ular to the grain is performed in appendix F.

It is concluded that for the large truss, compression perpendicular to the grain in the diagonal has
negligible influence, with a unity check of 0.05 for the most heavily loaded screw. As a result of the
moment in the connection, individual screws receive an additional load in the direction of the tensile
force in the diagonal. The maximum additional tensile force per screw 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑚𝑎𝑥 is given in table
9.4. The tensile force per diagonal is divided by the number of screws and given in table 9.5. It was
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Connection 𝑛𝑧 𝑛𝑥

𝑘𝑠
[kN/m]

(per shear
plane)

𝑘𝑟
[kNm/rad]
(per shear
plane)

𝑀𝑡𝑜𝑝
[kNm]

(per shear
plane)

𝑀𝑏𝑜𝑡
[kNm]

(per shear
plane)

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑚𝑎𝑥
[kN]

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑚𝑎𝑥
[kN]

1 5 2 140946.0 596.3 0.88 0.80 0.8 1.09
2 4 2 112756.8 382.4 0.74 0.56 1.04 1.16
3 2 2 56378.4 128.1 0.32 0.15 1.33 0.80
4 1 2 28189.2 56.2 0.16 0.04 1.48 0.51

Table 9.4: Calculated stiffnesses 𝑘𝑠 and 𝑘𝑟, Moments and maximum forces per screw from the Grasshopper model for the
large-scale prototype.

Connection 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑚𝑎𝑥 [kN]
𝐹𝑑𝑖𝑎𝑔
𝑛𝑠𝑐𝑟𝑒𝑤𝑠

[kN] mult. factor [-]

1 0.801 16.2 1.05
2 1.04 15.8 1.07
3 1.33 19.2 1.07
4 1.48 15.0 1.10

Table 9.5: Multiplication factor of the force per screw in the inclination direction as a result of the moment in the connections

found that the connections receive an additional load as a result of the moment of 5 to 10 % of the
individual screw force as a result of the tensile force in the diagonal. Higher percentages were found
for connections towards the midspan. Although the moments in these connections are lower, fewer
screws per connection are applied as the tensile force in the diagonals decreases towards mid-span.

9.5. Screw forces as a result of moment in the connections
The forces per screw are calculated according to the equations derived in section 5.3.1. These equa-
tions are repeated below, given by equations 9.1.

𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑖 = 𝑘𝑆𝐿𝑆 ⋅ cos(𝜃𝑖) ⋅ 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑 ⋅ 𝑟𝑖
𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑖 = 𝑘𝑆𝐿𝑆,𝑣 ⋅ sin(𝜃𝑖) ⋅ 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑 ⋅ 𝑟𝑖

(9.1)

In which:

• 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟,𝑖: force parallel to the inclination direction of screw 𝑖

• 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑖: force perpendicular to the inclination direction of screw 𝑖

• 𝑟𝑖: distance between screw 𝑖 and centre of rotation

• 𝜃𝑖: angle between line 𝑟𝑖 and the line perpendicular to the inclination direction of the screw

• 𝜙𝑑𝑖𝑎𝑔−𝑐ℎ𝑜𝑟𝑑: relative rotation between the timber elements

According to the derivation, the forces per screw increase linearly with increasing distances from the
centre of rotation. The forces are given in figure 9.15. The individual screws receive a load in the
inclination direction as a result of the tensile force that is present in the diagonal, indicated by the black
arrows in figure 9.15a. The derived equations describe the load perpendicular to the inclination direction
𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝 and parallel to the inclination direction 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟, indicated in yellow and blue, respectively,
in figure 9.15b. The loads as a result of both the tensile force and the moment in the connection
are summed, so that the screws on the left side of the connections receive an additional load in the
inclination direction as a result of the moment in the connection. The forces on the screws on the right
side of the connection become smaller in magnitude, as the forces work in opposite directions.



9.6. Conclusion 81

(a) Forces per screw as a result of the tensile force in the diagonal.
(b) Forces per screw parallel and perpendicular to the inclination
direction of the screw as a result of the moment in the connection.

Figure 9.15

9.6. Conclusion
A parametric model of the FaNaBu truss is built in Rhinoceros Grasshopper. Using this model, the
influence of the rotational stiffness of the chord-diagonal connections on the midspan deflection and
the connection moments in two prototypes of the truss was analysed. It is concluded that the rotational
stiffness does not influence the deflection at midspan. For larger values of rotational stiffness, the
moments in the connections increase, reaching a horizontal tangent for very large values of rotational
stiffness. The forces per screw are analysed, and it is found that individual screws in the large-scale
FaNaBu prototype experience a 5 to 10 % increase in load in the main loading direction as a result of
the connection moments. The developed Grasshopper model can be used in the preliminary design
of FaNaBu truss girders to quantify the additional connection moments and screw forces as a result of
rotational connection stiffness.
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Connection details

10.1. Diagonal-chord connection in trusses
In the FaNaBu truss, the connections between the chords and diagonals are constructed with inclined
screws. This results in a complex geometry, in which detailing is important. The screws on either side of
the connection should cross one another inside the chord section. In case the screws would not cross,
a net pulling force would develop in the chord. This is a force perpendicular to the grain, which could
result in the splitting of the timber in the chord section. Theminimum overlap of the screws is specified in
prEN-1995-1-1 [53] and amounts to 4 ⋅𝑑. Direct contact of the screws inside the chord should however
be prevented, as this can damage the screw thread, and drastically reduces the withdrawal capacity of
the screws in the chord section.

Figure 10.1: Chord-diagonal connection in the FaNaBu truss.

To prevent brittle failure mechanisms, the minimum end and edge distances must be respected, as well
as minimum spacings between screws. These minimum distances do put certain restrictions on the
minimum sizes of the chords and diagonals, see equations 10.1 and 10.2 which specify the minimum
height of the chord and minimum width of the diagonal, respectively.

ℎ𝑐ℎ𝑜𝑟𝑑,𝑚𝑖𝑛 = {
sin(𝜖) ⋅ ((𝑛𝑧 − 1) ⋅

𝑎1
sin(𝛼) + 𝑙2 ⋅ cos(𝛼) + 𝑎1,𝐶𝐺 −

1
2 ⋅ 𝑙2 ⋅ cos(𝛼)) 𝑖𝑓 𝑎1,𝐶𝐺 >

1
2 ⋅ 𝑙2 ⋅ cos(𝛼)

sin(𝜖) ⋅ ((𝑛𝑧 − 1) ⋅
𝑎1

sin(𝛼) + 𝑙2 ⋅ cos(𝛼)) 𝑖𝑓 𝑎1,𝐶𝐺 ≤
1
2 ⋅ 𝑙2 ⋅ cos(𝛼)

(10.1)

𝑤𝑑𝑖𝑎𝑔,𝑚𝑖𝑛 = (𝑛𝑥,𝑡𝑜𝑡 − 1) ⋅ 𝑎2 + 2 ⋅ 𝑎2,𝐶𝐺 (10.2)
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In which:

• ℎ𝑐ℎ𝑜𝑟𝑑,𝑚𝑖𝑛: minimum height of the chord section [mm]

• 𝑤𝑑𝑖𝑎𝑔,𝑚𝑖𝑛: minimum height of the diagonal [mm]

• 𝑎1: minimum spacing in plane parallel to the longitudinal direction of the diagonal [mm]

• 𝜖: Angle between chord section and diagonal [∘]

• 𝑛𝑧: number of screws in a row in a plane parallel to the longitudinal direction of diagonal [-]

• 𝛼: angle of insertion of individual screw [∘]

• 𝑙2: insertion length in chord section of individual screw [mm]

• 𝑎1,𝐶𝐺: minimum end distance of the centre of gravity of the threaded part of the screw in the chord
section [mm]

• 𝑛𝑥,𝑡𝑜𝑡: number of screw rows in a plane perpendicular to the longitudinal direction of the diagonal,
for the total connection (screws from either side of the chord section) [-]

Because of the geometrical restrictions formulated by equations 10.1 and 10.2, it is recommended to
shape the entire connection as a parallelogram as shown in figure 10.1, because this minimises both
the height of the chord and width of the diagonal. In case a wider connection is chosen, the minimum
width of the diagonals increases, whereas a higher connection increases the minimum height of the
chords. As found in chapter 9, screws that experience a high lateral load as a result of a moment in
connections do not pose a problem in the ultimate limit state, as unity checks for stress perpendicular
to the grain remain small. However, screws that experience high loads in the inclination direction as
a result of a moment in connections impose an additional load as a result of the moment in the same
direction as the normal force in the diagonal. Therefore, individual screws experience a larger force in
this direction. Based on this phenomenon, it is advisable to use long, narrow connections (so that 𝑛𝑧 is
larger than 𝑛𝑦) to minimise the magnitude of 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟. To guarantee that moments in the connections
are kept to a minimum, it is recommended to use the minimum spacings given by EN-1995-1-1, or of
the European Technical Assessment document of the specific product, if applicable.

The top chord of the truss experiences a compression force, while the bottom chord on the contrary
is loaded in tension. The diagonals that are loaded in tension introduce the compressive and tensile
forces in the top and bottom chords, respectively. To maximise the normal force capacity of the chords
both in tension and compression, it is important that the normal forces are introduced without eccentric-
ities so that bending moments in the chords are prevented as much as possible and normal loads are
introduced as close to the centre of the cross-sections as possible. Therefore, the z-coordinate of the
geometric centre of the connections on either side of the chords should coincide with the z-coordinate
of the central axis of the chords.

For the screws that are applied in the connection, either fully-threaded or partially-threaded screws
can be used. The partially threaded screws, of which the threaded length corresponds with the an-
chorage length in the chords, should be combined with angled washers. The partially threaded screws
find their application in combination with diagonals with a smaller thickness, as the limited threaded
length in the diagonal would fail to provide sufficient withdrawal capacity. In case the diagonal has a
larger thickness, fully threaded screws can be used as the threaded length in the diagonals can reach
a higher withdrawal capacity [25, p. 49].

10.2. Chord connection
Due to restrictions on manufacturing and transport, long elements are often composed of multiple el-
ements in large-span timber structures. This forces engineers to design robust connections for this
purpose. Examples include beams or the chords of long-span trusses. In the first case, large values
of bending moment are to be expected. In an ideal truss structure, only normal forces are found in the
chords, although moderate values of bending moment are to be expected. Inclined screws could be
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used to connect the two chord members in a truss with the help of two side members, as shown in
figure 10.2.

Although the magnitudes of bending moments in truss chords are generally limited, it is desirable to
have large rotational stiffness in the connections to guarantee the continuity of the chords. The rota-
tional stiffness tests have shown that the greatest rotational stiffness is found for geometries in which
the screws are loaded parallel to their inclination direction with a large distance to the centre of rotation
(geometries 3+6 and 3+4+5+6). Therefore, it is recommended to connect the side members and the
chords with horizontal rows of screws, with a large vertical distance separating these rows.

Figure 10.2: Chord connection under tensile force and bending moment as seen in cross-section (top) and from the side (bottom).

Figure 10.3: Chord connection under compressive force and bending moment as seen in cross-section (top) and from the side
(bottom).

In such connection types, the inclination direction of the screw should be the same as the axial load
direction of the connection (either tensile or compressive force). In the tensile connection, a tensile force
and bending moment can cause a displacement of the centre of rotation, in case the chord sections
make contact. The screws are then still loaded in the correct direction. In the compressive connection,
a combination of compressive force and bending moment would result in the screws being loaded in
the opposite direction in case the chord sections make contact and the bending moment contribution
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per screw is larger than the contribution of compressive force. Therefore, the connection type seems
less suitable for compressive connections in which large values of bending moment are expected.

10.3. Beam-column joint
Finally, a possible application of axially loaded screws in a connection under both normal force and
bending moment is a beam-column connection. Beam-column joints are often used to connect the
columns and beams in hall structures, where the connection is subjected to high values of bending
moment. Inclined screws could be used for these kind of structures. A concept is proposed as given in
figure 10.4, where the beam and column are in direct contact with one another to transfer shear force
in the beam to the column, where it is taken up as normal force. The beam and column are connected
with two side members, one on either side of the connection. The side members are loaded in tension
and are connected to the beam and column with inclined screws. The moment is taken up by a couple,
existing of the compressive normal force between column and beam, and the tensile force taken up by
one pair of side members. Shear dowels are used to transfer any possible shear forces in the joint.
A point worth mentioning is that in this proposed connection, the beam is loaded perpendicular to the
grain. Especially in case a large bending moment is applied to the connection, the compressive force
could concentrate on a small area in the joint because the centre of rotation shifts. It should be checked
whether the beam has enough capacity for compression perpendicular to the grain for this combination
of bending moment and normal force from the column.

Figure 10.4: Proposed beam-column joint utilising inclined screws.

It should be noted that in this connection type, the bending moment is taken up by the screws only
being loaded in their inclination direction. This is done because large values of bending moment are
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expected in these kind of connections, and thus the screws should be loaded in the direction in which
they have the largest load-bearing capacity. The calculation method for rotational stiffness proposed
in chapter 8 is therefore not applicable to these connections.



11
Conclusion and discussion

This section answers the main research question that was formulated in the introduction of the thesis.
Also, the sub-questions are answered. The section ends with a discussion of the results.

11.1. Conclusion
11.1.1. Main research question
The main research question of the thesis is formulated as follows:

How can the rotational stiffness of timber-to-timber connections with inclined screws be quantified?

To answer the main research question, a total of fourteen methods to calculate the rotational stiffness
of connections with inclined screws have been selected for analysis. These methods are compared to
the rotational stiffness data from experimental tests carried out as a part of the FaNaBu project before
the start of this MSc thesis project. The experimental tests consist of two test series. It is found that the
results of test series 2 show good similarity with multiple of the fourteen selected calculation methods,
where method 14 is identified as the best method, resulting in a coefficient of determination of 0.84.
For test series 1, this is not the case, and the calculated stiffness values of all methods show very poor
similarity to test results with a coefficient of determination of only 0.12 for the best-performing method.

The sequence of the load application is found to be different for the two test series. A correction of
the experimental test results for the friction between the timber elements as a result of the specific
sequence of the load application in test series 1 yields a considerable improvement for all but two
calculation methods. After this correction, referred to as the pre-load theory, the calculated stiffness
values of method 14 show the best similarity with the experimental test results, yielding a coefficient of
determination of 0.79 for all results of both test series. This method utilises the method by De Santis
& Fragiacomo for stiffness in inclination direction 𝑘𝑆𝐿𝑆, and the current EN-1995-1-1 equation for the
stiffness of dowel-type fasteners for the lateral stiffness 𝑘𝑆𝐿𝑆,𝑣. It should be noted that these results are
based on tests under an angle 𝛼𝑠 of 45∘ only.

11.1.2. Sub-questions
The sub-questions are answered separately in the following section.

What are current calculation methods for the stiffness and capacity of connections with inclined screws,
and how do these compare?

In the current version of EN-1995-1-1, the load-bearing capacity of inclined screws is checked for
the combination of axial load and shear force. In contrast to the load-bearing capacity, a calculation
approach for the stiffness of inclined screws is not given in EN-1995-1-1. Therefore, an extensive liter-
ature study is carried out to identify different proposed methods to calculate the stiffness. Most of these
methods propose a model in which the screw stiffness in both timber elements is taken into account,
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the so-called double stiffness model. Tomasi et al. [67] propose also a single stiffness model, in which
the stiffness of the screw in only timber member 1 (the member of the head side of the screw) is taken
into account, and the stiffness of the screw in member 2 (the member of the screw tip side) is assumed
to be infinite. The methods proposed by Tomasi et al. [67], Jockwer et al. [38] and prEN-1995-1-1
[53] are found to be very similar. The methods proposed by Kevarinmäki [44] and Girhammar et al.
[33] depend on parameters that are to be experimentally determined, and are therefore not used in the
comparison with the rotational stiffness tests. Seven methods are concluded to be suitable for further
analysis and are used in the methods that are compared to the rotational stiffness tests. These meth-
ods are given in table 4.2.

What are current calculation methods for the rotational stiffness and moment capacity of connections
with dowel-type fasteners and how do these compare?

The moment capacity of connections with dowel-type fasteners depends on the capacity of the indi-
vidual dowels and the capacity of the reduced cross-section of the connected elements. An additional
shear force is introduced as a result of the moment decomposition of the individual dowels.

Three methods are identified to calculate the rotational stiffness of a connection with dowel-type fas-
teners. The first is the linear spring method, which models each fastener as a linear spring and utilises
the displacement method to relate the moment in the connection to the displacements of the individual
fasteners as a result of the relative rotation of the connected timber members. Inclined screws have a
larger stiffness in the direction of their inclination than in the direction perpendicular to their inclination
direction. These stiffness values, denoted as 𝑘𝑆𝐿𝑆 and 𝑘𝑆𝐿𝑆,𝑣, respectively, can be used separately in
the linear spring method, as an analytical derivation performed in the thesis demonstrates. A second
method is identified, using an extension of the lateral stiffness calculation of dowel-type fasteners given
in prEN-1995-1-1 [53]. A third method is found in literature, in which Noguchi & Komatsu [57] present
an alternative to the linear spring method. Further investigations of the method show that it results in
unrealistically low values for rotational stiffness in the case of screw patterns in a single row. The first
two methods are very similar and are based on a spring model. They differ only in their calculation for
𝑘𝑆𝐿𝑆,𝑣. Both are used in the comparison with the rotational stiffness tests.

Which parameters are of influence for the (rotational) stiffness of connections with axially loaded screws?

The method obtained for the rotational stiffness (method 14) takes into account the penetrated length
of the screw in each of the two timber elements (regardless of the threaded length), the outer screw
diameter, the density of the two timber elements and the angle between the screw axis and the shear
plane. The influence of friction is somewhat ambiguous, as the method that shows the best similarity
with the test results does not include a parameter for friction. In the rotational stiffness tests, a total of
twelve tests are performed with a friction-reducing interlayer between the timber elements, that seem
to show lower rotational stiffness values than the average of their connection geometry. This would
suggest that lower values for the coefficient of friction would result in lower rotational stiffness values.

What is the influence of the rotational stiffness of connections on the serviceability and ultimate limit
state behaviour of structures in which the connections are applied?

A softwaremodel of the FaNaBu truss is built in the parametric software packageRhinocerosGrasshop-
per. Two previously experimentally tested versions of the FaNaBu truss are analysed, in which first the
serviceability limit state behaviour is studied. The deformation at midspan shows an exponential de-
crease for increasing translational stiffness 𝑘𝑠. The deformation at midspan approaches a certain value
even for very high stiffness values, which is the result of timber deformation only.

A sensitivity analysis is carried out in which the influence of the rotational stiffness of the connections
on the deflection at midspan is investigated for both trusses. It is found that the rotational stiffness does
not influence the midspan deflection of both versions of the truss. A second analysis is carried out in
which the influence of rotational stiffness of the chord-diagonal connections on the moments in these
connections is investigated. The connection moment shows higher values for increasing rotational stiff-
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ness, and it approaches a horizontal tangent for large values of rotational stiffness. Relatively large
reductions of themoment can be attained for rotational stiffness reductions in the lower stiffness ranges.

The theoretical forces on the individual screws in the connections are determined using an analyti-
cally derived equation, which is incorporated in the Grasshopper model. In this way, the force parallel
and perpendicular to the inclination direction of the screw as a result of the moment in the connections
𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟 and 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝, respectively, are quantified. The magnitude of the perpendicular force is
found to be very small compared to the embedment capacity of the timber. The force parallel to the
inclination direction of the screw 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑎𝑟 works in the same direction as the tensile force in the diag-
onal. For the large truss prototype, the additional load amounts to 5 to 10 % of the load per screw as
a result of the tensile force in the diagonal. The structural model that is developed can be used in the
preliminary design of the FaNaBu truss to quantify the moments in the connections and the forces per
screw.

What would be other possible applications of connections with inclined screws, and is the developed
method for rotational stiffness applicable to these connections?

The inclined screw connection in the FaNaBu truss has a complex geometry, and the connection ge-
ometry governs the size of the chords and diagonals of the truss. Other than in trusses, the connection
type can find an application in connections of multiple chord sections of long-span trusses, as an al-
ternative to dowel connections. The rotational stiffness calculation as proposed in this thesis is valid
under the condition that the chord sections do not make contact as a result of the rotation. In that case,
the location of the centre of rotation would change and the method is not valid anymore. A concept for
a beam-column connection is proposed in which high values of bending moment are to be resisted by
the connection. For high values of bending moment, the connection as applied in the FaNaBu truss is
not suitable since the inclined screws would be loaded in the opposite direction (compression instead
of tension). Therefore, the compressive forces are planned to be taken up by compression of the beam
and column element, and the tensile forces with inclined screws. The proposed method for rotational
stiffness is not valid for this connection concept because of the aforementioned shift of the centre of
rotation.

11.2. Discussion
In the thesis, an extensive literature study was carried out, in which calculation methods for the stiffness
of inclined screws were identified and discussed, as well as rotational stiffness methods for connections
with dowel-type fasteners. These methods were combined to obtain methods for the calculation of the
rotational stiffness of connections with inclined screws. A parametric software model was developed
of the FaNaBu truss, in which these connections are applied. Using this model, the influence of the
rotational stiffness of these connections on the serviceability and ultimate limit state was analysed, as
well as the individual screw forces.

11.2.1. Calculation method for rotational stiffness
It is noted that the experimentally determined rotational stiffness values show a relatively large spread,
for which the exact reason is not known. The complexity of the connection type makes it difficult to fully
simulate the behaviour of the connections in structures, examples include the fixation of the centre of
rotation or the loading sequence and magnitudes of applied rotation and pulling force. Finally, the in-
fluence of long-term loading effects, varying moisture content or cyclic loads are not taken into account
in the tests, and could have a relevant influence on the rotational stiffness values of the connections.

Regarding the rotational stiffness methods, very small differences in coefficient of determination are
found between the EC method and 0.5 EC method, with some methods giving better results for ei-
ther the EC method or the 0.5 EC method. In the plots of all 91 tests, the difference between the EC
method and 0.5 ECmethod is observed for screw geometries 1+2+7+8 (green dots) and 1+8 (red dots),
as in these geometries the screws are loaded in the lateral direction as a result of the rotation. Visual
inspection of the plots for all results suggests a slight overestimation of calculated stiffness for these
geometries in the ECmethod and a better fit for the 0.5 ECmethod. No clear conclusions can be drawn
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as to whether the single stiffness or double stiffness model should be used, as methods incorporating
either one of them yield good results. This also applies to the EC method and the 0.5 EC method.
Methods 1, 2, 3, 7, 8, 9, 10 and 14 all give coefficients of determination larger than 0.7, indicating the
small differences between the calculation methods.

11.2.2. Structural model
The structural modelling is carried out for only two previously built prototypes of the FaNaBu truss.
The validation of the Grasshopper model is performed based on the midspan displacement of exper-
imentally tested prototypes. It is found that the grasshopper model gives valid results. The values of
the moment in the connections and forces per screw are not validated through models or tests. With
regards to the calculation of the forces per screw, it can be argued whether the assumption of an equal
distribution of the moment and forces on the connection over the individual screws is justified, given
the fact that the first and last fasteners in connections subjected to pulling force theoretically take the
highest loads. The trusses are only analysed for the load case of equally distributed point loads facing
downwards.



12
Recommendations

12.1. Recommendations for connection design
With regards to the design of the connections with inclined screws in timber trusses, it is recommended
to design connections that are long and narrow, i.e. a large number of 𝑛𝑧 and a small number of 𝑛𝑥
screws. Because in long connections the screws are almost exclusively loaded in the direction per-
pendicular to the inclination direction as a result of rotation, the rotational stiffness of the connection
is low. A small value for rotational stiffness means that the moments in the connections are kept to a
minimum. Plenty of capacity for screw loads perpendicular to the inclination direction is found for the
analysed FaNaBu prototype trusses, whereas loading in the inclination direction of the screws would
increase screw loads in the main loading direction.

Specifically for the application in trusses, a software model is built in Grasshopper. It is recommended
to design the connections in the truss based on the axial capacity for the first iteration. The truss ge-
ometry including the connections can be inserted in the model. The model automatically calculates
the theoretical forces parallel and perpendicular to the inclination direction of the screw, using the cal-
culated rotational connection stiffness values and the occurring rotations in the connections. In this
second iteration, the capacity of the individual screws should be checked, in which the additional load
as a result of the moments in the connections is taken into account. In case the capacity is not met,
individual screws should be added to the connection or other screws should be used.

Inclined screws are a means of connecting timber elements under tensile loads. It is recommended
to use connections with inclined screws subjected to axial load and bending moment only under the
condition that all the screws remain loaded in tension (i.e. the axial load is large enough to compensate
for the compression load as a result of the moment and thus keep each individual screw under tensile
load). The research discussed in this thesis focuses only on a very specific case, namely a connection
with multiple inclined screws in which all screws are inclined in the same direction. In case connections
are subjected to larger values of bending moment, it is recommended to take up the moment via a
couple generated as a result of compression of the timber elements and tension of inclined screws, as
in the beam-column joint in chapter 10.

12.2. Recommendations for future research
It is recommended to perform the rotational stiffness tests according to the method used in test series
2, in which the connections are subjected to pulling force and rotation simultaneously. However, it is
recommended to increase the tensile load according to the number of screws in the connection, so that
the large compressive force in the bottom screw in geometry (3+4+5+6) is prevented. Also, it could be
interesting to execute the rotation at a slower rate at the beginning of the tests, so that all the screws
in all the tests experience a net pulling force at the beginning of the tests.

It would be interesting to perform tests for connections consisting of larger numbers of screws, in differ-
ent geometries. The hypothesis that longer, narrow connections yield smaller moments in connections
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could be proved in this way. Also, a wider range of timber species could be tested, as well as different
screw sizes and inclination angles. Although technically challenging, future research could focus on
the development of a test setup in which the centre of rotation is not fixed, to investigate whether a
shift occurs. Finally, future research could focus on the influence of time-dependent bahaviour and
influences of the moisture content.

An interesting direction for future research would be to develop a reduction factor for inclined screw
connections that can be used in the ultimate limit state directly. The connection type subjected to the
experimental test programme is suited for transferring axial loads primarily, and the bending moments
are a secondary effect specific to their application in trusses. Considering this relatively narrow appli-
cation of the proposed rotational stiffness calculation method, it would be more logical to focus directly
on an empirically determined reduction factor for the load-bearing capacity of connections under the
combination of axial tensile load and secondary bending moments, similar to the research carried out
by Schilling [65] described in section 2.5.
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A
Method plots

Plots of test series 1, test series 2 and test series 1 after experimental results are adjusted.
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 Double 
stiffness 
model 
(DSM) / 
single 
stiffness 
model 
(SSM) 

Total number of 
tests performed [-] 

Tested 
angles 
screw 
axis-
shear 
plane  
αs [°] 

Setup of tests 

Kevarinmäki DSM 145 total, 40 for 
shear-tension 

45° double shear plane 
compression, 2x2 
screws 
 
 
 
 
 
 

Tomasi et al. DSM / SSM 64 total, 32 for 
shear-tension 

45°,  
60°, 
75°, 
90° 

double shear 
plane 
compression,  
2x2 and 2x4 
screws (double 
row of screws) 
 
 
 
 

Jockwer et al. DSM 57 total, 29 for 
shear-tension 

45°,  
60°, 
90° 

double shear 
plane 
compression, 
2x1 screws 
 
 
 
 
 

Blass & Steige DSM 85 for shear-
tension 

45° single shear 
plane 
compression, 
1x2 screws, 
perpendicular  
and diagonal 
set-up 
 
 

 



C
Compression screws

To calculate the net force in the bottom screw for screw combinations 3+6 and 4+5, the contributions
from the pulling normal force and moment as a result of the rotation are summed (see equation C.1).
The total normal force applied on the test specimen 𝑁 is divided by 4, as there are two shear planes
with two screws each. The moment contribution 𝐹𝑀 is calculated by dividing the total moment applied to
the test specimen 𝑀 by four times the moment arm 𝑟. The moment arm 𝑟 is calculated as the average
of the planned distance in y-direction from the screw to the rotation center of both shear planes.

𝐹𝑠𝑐𝑟𝑒𝑤 =
𝑁
4 − 𝐹𝑀 (C.1)

In which:

• 𝑁: Total normal force applied to the test specimen [𝑘𝑁]

• 𝐹𝑀: force contribution from moment 𝑀 [𝑘𝑁𝑚]. 𝐹𝑀 =
𝑀
4⋅𝑟

• 𝑟 = 126+90
2 = 108 [𝑚𝑚] (see figure 7.5 for distances)

• 𝑟 = 54+18
2 = 36 [𝑚𝑚] (see figure 7.5 for distances)

The net force in the bottom screw for screw combination 3+4+5+6 is calculated in a similar way, as
given by equation C.2. In this case, the total normal force 𝑁 is divided by 8 as there are two shear
planes with 4 screws each. The derivation of the contribution from the moment is given in equations
C.3 and C.4.

𝐹𝑠𝑐𝑟𝑒𝑤 =
𝑁
8 − 𝐹𝑀6 (C.2)

In which:

• 𝑁: Total normal force applied to the test specimen [𝑘𝑁]

• 𝐹𝑀6: force contribution from moment 𝑀 [𝑘𝑁𝑚]. 𝐹𝑀6 =
𝑀

4⋅(𝑟1+
𝑟2
𝑟1
⋅𝑟2)

(see equations C.3 and C.4)

• 𝑟1 =
126+90

2 = 108 [𝑚𝑚] (see figure 7.5 for distances)

• 𝑟2 =
54+18
2 = 36 [𝑚𝑚] (see figure 7.5 for distances)

𝑀 = (𝐹𝑀3 ⋅ 𝑟1 + 𝐹𝑀4 ⋅ 𝑟2 + 𝐹𝑀5 ⋅ 𝑟2 + 𝐹𝑀6 ⋅ 𝑟1) ⋅ 2
𝐹𝑀3 = 𝐹𝑀6
𝐹𝑀4 = 𝐹𝑀5

} ⇒ 𝑀 = 4 ⋅ (𝐹𝑀6 ⋅ 𝑟1 + 𝐹𝑀5 ⋅ 𝑟2) (C.3)
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𝑀 = 4 ⋅ (𝐹𝑀6 ⋅ 𝑟1 + 𝐹𝑀5 ⋅ 𝑟2)

𝐹𝑀5 =
𝑟2
𝑟1
⋅ 𝐹𝑀6

} ⇒ 𝑀 = 4 ⋅ (𝐹𝑀6 ⋅ 𝑟1 + 𝐹𝑀6 ⋅
𝑟2
𝑟1
⋅ 𝑟2 ⇒ 𝐹𝑀6 =

𝑀
4 ⋅ (𝑟1 +

𝑟2
𝑟1
⋅ 𝑟2)

(C.4)



D
Python code plot Noguchi & Komatsu
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E
Python code methods
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F
Embedment capacity truss prototypes

The embedment capacity for the force perpendicular to the inclination direction 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝 (see figure
F.1) is checked both for the LVL and the GL24h according to EN-1995-1-1 [55] equations 8.31 and 8.32.
The embedment capacities of the chord and diagonal can be used to check all failure modes of the
EYM, due to time constraints only embedment capacity is checked here. Assumptions: 𝑘𝑚𝑜𝑑 = 0.9,
𝛾𝑀 = 1.3.

Figure F.1: Screw loaded by force perpendicular to
the inclination direction 𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝 (in yellow).

𝑓ℎ,0,𝑘 = 0.082 ⋅ (1 − 0.01 ⋅ 𝑑) ⋅ 𝜌𝑘 (F.1)

𝑓ℎ,𝛼,𝑘 =
𝑓ℎ,0,𝑘

𝑘90 ⋅ sin2(𝛼) + cos2(𝛼)
(F.2)

𝑈𝐶 =
𝜎𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑚𝑎𝑥

𝑓ℎ,𝛼,𝑘
=
(𝐹𝑠𝑐𝑟𝑒𝑤,𝑝𝑒𝑟𝑝,𝑚𝑎𝑥𝑙𝑖⋅𝑑

)

(𝑓ℎ,𝛼,𝑘⋅𝑘𝑚𝑜𝑑𝛾𝑀
)

(F.3)

In which:

• 𝑓ℎ,0,𝑘: characteristic embedment strength parallel to grain direction [N/mm2]

• 𝑓ℎ,𝛼,𝑘: characteristic embedment strength under an angle 𝛼 to grain direction [N/mm2]

• 𝑑: screw diameter [mm]

• 𝑙𝑖: length of screw in timber element 𝑖

• 𝜌𝑘: characteristic timber density [kg/m3]

• 𝑘90 = {
1.35 + 0.015 ⋅ 𝑑 for coniferous wood (such as spruce GL24h)
1.3 + 0.015 ⋅ 𝑑 LVL

• 𝛼: angle between load and grain direction = {90
∘ for the LVL diagonal

45∘ for the GL24h chord
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small prototype

ρk [kg/m3] k90 [-] angle to grain α [°]

LVL 730 1.42 90
GL24h 385 1.47 45

d [mm] 8 kmod 0.9
l [mm] 240 γM 1.3
 l1 [mm] 56.57
l2 [mm] 223.43
Fscrew,perp,max [N] 1920

LVL GL24h

f_h,0,k  [N/mm2] 55.07 f_h,0,k  [N/mm2] 29.04

f_h,90,k  [N/mm2] 38.78 f_h,45,k  [N/mm2] 23.52

f_h,90,d  [N/mm2] 26.85 f_h,45,d  [N/mm2] 16.28
UC  [-] 0.16 UC  [-] 0.07

large prototype

ρk [kg/m3] k90 [-] angle to grain α [°]

LVL 730 1.42 90
GL24h 385 1.47 45

d [mm] 8 kmod 0.9
l [mm] 280 γM 1.3
 l1 [mm] 113.14
l2 [mm] 166.86
Fscrew,perp,max [N] 1160

LVL GL24h

f_h,0,k  [N/mm2] 55.07 f_h,0,k  [N/mm2] 29.04
f_h,90,k  [N/mm2] 38.78 f_h,45,k  [N/mm2] 23.52

f_h,90,d  [N/mm2] 26.85 f_h,45,d  [N/mm2] 16.28
UC  [-] 0.05 UC  [-] 0.05



G
Rotational stiffness values tests

The experimental values from the rotational stiffness tests are given in the table below. The tests with
angle 𝛼𝑠 of 90 [∘] are not used in the thesis, but are given for completeness. The table also gives the
stiffness values after the correction according to the pre-load theory, and the calculated stiffness values
according to method fourteen.
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Test 
Nr. 

αs Screw type Initial 
experimental 
rotational 
stiffness Kr,i

Modified 
experiment
al rotational 
stiffness 
Kr,s

 Kr,s       
after pre-
load 
theory

Calculated 
rotational 
stiffness 
method 14

[°] 1 2 3 4 5 6 7 8 9 10 [kNm/rad] [kNm/rad] [kNm/rad] [kNm/rad]

1 45° VGS 8x240 x x 683 602 93 252
2 45° VGS 8x240 x x
3 45° VGS 8x240 x x x x 725 617 410 602
4 45° VGS 8x240 x x 497 404 86 252
5 45° VGS 8x240 x x 368 276 83 43
6 45° VGS 8x240 x x x x 836 706 465 600
7 45° VGS 8x240 x x 1411 1137 561 525
8 45° VGS 8x240 x x 678 528 163 69
9 45° VGS 8x240 x x x x 1136 865 263 297

10 45° VGS 8x240 x x 333 291 17 245
11 45° VGS 8x240 x x 265 201 62 40
12 45° VGS 8x240 x x x x 1591 1282 823 585
13 45° VGS 8x240 x x 1554 1254 670 510
14 45° VGS 8x240 x x 376 293 134 66
15 45° VGS 8x240 x x x x 852 681 286 283
16 45° VGS 8x240 x x 624 499 102 259
17 45° VGS 8x240 x x 410 308 142 42
18 45° VGS 8x240 x x x x 2069 1699 829 592
19 45° VGS 8x240 x x 1921 1498 897 532
20 45° VGS 8x240 x x 480 528 203 65
21 45° VGS 8x240 x x x x 1074 880 320 295
22 45° VGS 8x240 x x 1835 1480 799 527
23 45° VGS 8x240 x x 1034 817 282 68
24 45° VGS 8x240 x x x x 1501 1254 342 292
25 45° VGS 8x240 x x
26 45° VGS 8x240 x x 640 482 145 41
27 45° VGS 8x240 x x x x 1717 1413 900 608

V1 45° VGS 8x240 x x 902 823 550
V2 45° VGS 8x240 x x 291 227 75
V3 45° VGS 8x240 x x 140 177 246
V4 45° VGS 8x240 x x 92 75 42
V5 45° VGS 8x240 x x 366 300 274
V6 45° VGS 8x240 x x 138 127 45
V7 45° VGS 8x240 x x 1086 842 594
V8 45° VGS 8x240 x x 197 163 80

Screw geometry

Test series 1

Test series 2



V9 45° VGS 8x240 x x 183 167 263
V10 45° VGS 8x240 x x 145 153 43
V11 45° VGS 8x240 x x 799 799 577
V12 45° VGS 8x240 x x 70 234 78
V13 45° VGS 8x240 x x 256 235 257
V14 45° VGS 8x240 x x 86 77 43
V15 45° VGS 8x240 x x 640 611 566
V16 45° VGS 8x240 x x 112 110 77
V17 45° VGS 8x240 x x 217 199 254
V18 45° VGS 8x240 x x 45 35 42
V19 45° VGS 8x240 x x 743 670 563
V20 45° VGS 8x240 x x 109 119 76
V21 45° VGS 8x240 x x x x 164 166 290
V22 45° VGS 8x240 x x x x 824 759 629
V23 45° VGS 8x240 x x x x 310 264 312
V24 45° VGS 8x240 x x x x 860 782 662
V25 45° VGS 8x240 x x x x 143 140 304
V26 45° VGS 8x240 x x x x 671 672 652
V27 45° VGS 8x240 x x x x 200 181 308
V28 45° VGS 8x240 x x x x 782 735 657
V29 45° VGS 8x240 x x x x 282 256 289
V30 45° VGS 8x240 x x x x 761 742 628
V31 45° VGS 8x240 x x x x x x x x
V32 45° VGS 8x240 x x x x x x x x 903 746 958
V33 45° VGS 8x240 x x x x x x x x 1571 1226 922
V34 45° VGS 12x240 x x 650 516 394
V35 45° VGS 12x240 x x 80 77 62
V36 45° VGS 12x240 x x 696 862 738
V37 45° VGS 12x240 x x
V38 45° VGS 12x240 x x 294 442 364
V39 45° VGS 12x240 x x 118 106 58
V40 45° VGS 12x240 x x 796 819 698
V41 45° VGS 12x240 x x 125 111 95
V42 45° VGS 12x240 x x 343 281 365
V43 45° VGS 12x240 x x 99 95 58
V44 45° VGS 12x240 x x 979 831 700
V45 45° VGS 12x240 x x 163 138 95
V46 45° VGS 12x240 x x 198 192 378
V47 45° VGS 12x240 x x 105 99 59
V48 45° VGS 12x240 x x 938 856 716
V49 45° VGS 12x240 x x 225 197 97

V50* 45° VGS 8x240 x x 130 105 261
V51* 45° VGS 8x240 x x 44 50 43
V52* 45° VGS 8x240 x x 488 461 572
V53* 45° VGS 8x240 x x 89 94 78
V54* 45° VGS 8x240 x x 129 128 269
V55* 45° VGS 8x240 x x 41 53 44
V56* 45° VGS 8x240 x x 418 515 581



V57* 45° VGS 8x240 x x 68 88 80
V58* 45° VGS 8x240 x x 124 121 240
V59* 45° VGS 8x240 x x 39 34 40
V60* 45° VGS 8x240 x x 527 523 539
V61* 45° VGS 8x240 x x 106 99 73
V62 45° TGS 8x250 x x x x 572 438 688
V63 45° VGS 8x240 x x 374 418 411
V64 45° TGS 8x250 x x x x
V65 45° VGS 8x240 x x 280 281 410
V66 45° TGS 8x250 x x x x 705 555 684
V67 45° VGS 8x240 x x 432 439 404
V68 45° TGS 8x250 x x x x 650 519 674
V69 45° VGS 8x240 x x 404 420 403
V70 90° VGS 12x200 x x 34 26
V71 90° VGS 12x200 x x 9 7
V72 90° VGS 12x200 x x
V73 90° VGS 12x200 x x
V74 90° VGS 12x200 x x 68 54
V75 90° VGS 12x200 x x
V76 90° VGS 12x200 x x 55 52
V77 90° VGS 12x200 x x 1 11
V78 90° VGS 12x200 x x 41 54
V79 90° VGS 12x200 x x
V80 90° VGS 12x200 x x 13
V81 90° VGS 12x200 x x
V82 90° VGS 8x200 x x x x x x x x 221 181
V83 90° VGS 8x200 x x x x x x x x 224 183
V84 90° VGS 8x200 x x x x x x x x 226 190
V85 90° VGS 8x200 x x x x 89 80
V86 90° VGS 8x200 x x x x 66
V87 90° VGS 8x200 x x x x 18 14
V88 90° VGS 8x200 x x x x
V89 90° VGS 8x200 x x x x 78 58
V90 90° VGS 8x200 x x x x 138 134
V91 90° VGS 8x200 x x
V92 90° VGS 8x200 x x 4 10
V93 90° VGS 8x200 x x 7
V94 90° VGS 8x200 x x 13 32
V95 90° VGS 8x200 x x 5
V96 90° VGS 8x200 x x 3
V97 90° VGS 8x200 x x 10 9
V98 90° VGS 8x200 x x 11 9
V99 90° VGS 8x200 x x 9 31

V100 90° VGS 8x200 x x
V101 90° VGS 8x200 x x 34 41
V102 90° VGS 8x200 x x 10 12

* Test performed with friction-reducing interlayer
Rotational stiffness value could not be calculated from the test
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