
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Acc-Cost-Mem
Optimizing machine learning inference queries for multi-
ple objectives

Master thesis
Mariette Schönfeld

Acc-Cost-Mem
Optimizing machine learning inference queries for

multiple objectives

by

Mariette Schönfeld

Instructors: G. Houben, A. Katsifodimos, R. Hai
Teaching Assistant: Z. Li
Project Duration: February, 2022 - December, 2022
Faculty: Faculty of Electrical engineering, Mathematics, and Computer Sciences, Delft

Preface
This work concludes 7.5 years of being a student at TU Delft (for now). I did not know what to expect
from doing a thesis, but this was certainly not it. First of all the topic was supposed to be in Robotics, but
research takes you in interesting directions. Second, I did not expect to enjoy it so much, but also find
it so hard simultaneously. I had a tough year with every month a new illness to deal with, in addition to
suffering from chronic illness all the while. I’m proud what I have achieved under these circumstances.

This work would not have been possible without the help of others. First of all my supervisors from
TU Delft. Asterios, you have been wonderful from the first time we met, and your sense of humour
and disdain for formalities always managed to make me leave our meetings happier than I came in.
Your enthusiasm for all the directions I wanted to explore really elevated my work. Rihan, I rarely have
met someone with so much rigor and attention to detail, and your feedback always helped me move
forward from whatever slump I was in. Last but certainly not least, my sincere thanks to Ziyu. I’m sure
that supervising a chaotic person like me was difficult at times, but you never once complained about all
the texts I sent about things I didn’t understand. I’m really excited to see how the end of your PhD will
turn out. You three have really changed my views on working in academia, and I hope to be pursuing
a PhD after this project. Being able to call you my supervisors is truly an honor.

Second, my supervisors from Cognizant. Hayo, your experience in working with students of all back-
grounds was really pleasant in the times I was stressed. You always say that you lack the technical
background, but there were so many times where I needed general project-guidance, or tips on work-
ing with busy people, and you truly stepped up. Vijay, thank you for all your calm sobriety during our
weekly meetings. In addition to my supervisors, I also need to thank Chris Molanus from Cognizant.
Your excitement for academia as a non-academic always made me excited to catch up during the bi-
weekly Data Science Guild Meetings, and giving me access to your private cluster really helped me
make some needed last-minute changes to my experiments.

Last, my friends, family, all the wonderful people at Krashna Musika, and my fellow board members
there. It is probably customary to leave it at that, but so many people have pulled me through difficult
times and not naming them personally would be reductive in my opinion. First my roommates: Anouk,
Ilja, and Sanne. I could always count on late-night tea to vent about my difficulties, and going out to
help me let things go. Second, Debora: for months we worked tirelessly on our theses, and I’m so
proud that we are now finally both actual engineers. Julia, you have moved abroad but I can always
be sure of your support. Olmar, you are a good colleague and a better friend. Lastly, my biggest fan
(as far as you can have fans in academics): my mother.

Mariette Schönfeld
Delft, December 2022

i

Summary
Machine learning inference queries are a type of database query for databases where a model pipeline
is needed to evaluate its boolean predicates. Using a model zoo it is possible to select a variety of
models to execute in a sequence rather than using a highly specialized model to answer every query
predicate. Machine learning models can have multiple measurements for gauging performance how-
ever, and the quality of a query plan therefore is not only dependent on the time needed to compute it.
Selecting a query plan of models that balances multiple objectives is not a trivial feat however.
This work builds upon existing methods that utilize MIPs for model selection and ordering for machine
learning inference queries by extending them with multi-objective optimizing capabilities. The oppor-
tunity for adding a third objective, namely memory footprint, to that of accuracy and execution cost is
explored. Several methods are then considered and compared on their suitability, and the final chosen
method, the Archimedean goal method, can generate Pareto optimal query plans that provide gains
over naive, greedy methods. In addition, several methods of cutting down runtime on the original opti-
mizer are explored, leading to a program than can generate higher quality solutions in less time.

ii

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Research contributions . 3
1.2 Thesis structure . 4

2 Problem definition 5
2.1 A (very) short introdution to Machine Learning . 5
2.2 Model zoos . 5
2.3 ML inference queries . 6
2.4 Query plans and optimization . 7
2.5 ML inference query optimization . 8
2.6 Related work . 8

2.6.1 ML inference queries . 8
2.6.2 Mixed integer (linear) programming in query optimization 8
2.6.3 Multi-objective query optimization . 8

2.7 Summary . 9

3 Background 10
3.1 Traditional query optimization . 10

3.1.1 Selections . 11
3.1.2 Projections . 11
3.1.3 Cartesian products . 11
3.1.4 The case for traditional optimization . 11

3.2 (Single-objective) optimization . 11
3.2.1 Integer optimization . 12
3.2.2 Nonlinear/quadratic optimization . 13
3.2.3 Commercial optimizers . 14

3.3 Multi-objective optimization . 14
3.3.1 Important definitions for multi-objective optimization 15

4 The optimizer 18
4.1 Explaining the optimizer . 19

4.1.1 Formulation of model_opt . 20
4.1.2 Formulation of order_opt . 22
4.1.3 Considerations . 26

4.2 Amendments to the optimizers . 26
4.2.1 Amendments to equations . 26

4.3 Towards Multi-objective optimization . 28
4.3.1 Amendments to objective functions . 28
4.3.2 Addition of a third objective . 29
4.3.3 Weight calculation . 29
4.3.4 Greedy solutions . 29
4.3.5 MOO formalization . 31

4.4 Explored MOO methods . 31
4.4.1 The weighted global criterion . 32
4.4.2 The weighted sum method . 33
4.4.3 The lexicographic method . 34
4.4.4 The weighted min-max method . 35

iii

Contents iv

4.4.5 Exponential weighted criterion . 36
4.4.6 Weighted product method . 37
4.4.7 Goal programming method . 38
4.4.8 Bounded objective method . 41
4.4.9 Summary . 42

5 Results 44
5.1 Equation amendments . 44
5.2 Optimizer complexity . 49
5.3 MOO method comparison . 53
5.4 NLP experiments . 59

6 Conclusion 65
6.1 Summary . 65
6.2 Evaluation of research questions . 65
6.3 Considerations and recommendations . 66

6.3.1 Approximation schemes . 66
6.3.2 Heuristics . 66
6.3.3 Memory as an objective . 66

6.4 Epilogue . 68

A Additional results 71

B Query list 76
B.1 8 predicate query list . 76
B.2 Queries with increasing amount of predicates . 76
B.3 4 predicate query list . 79
B.4 NLP query list . 79

C Model zoo 81

1
Introduction

During this process one aspect the author of this thesis found notably difficult about this topic was
the bridge between explaining the topic understandably to anyone, versus the technical parts of it that
make it challenging to solve. The problem sounds fairly easy once explained in layman’s terms, and
through back-and-forth discussion it is revealed that the topic is more complex than initially thought.
Because such a discussion where one party is constantly subverted by the other seems to be the way
to explain this problem, we have therefore decided to practice our creative writing skills and write such
a discussion as our introduction. The goal is that most readers can understand this section, and that
formal definitions follow in the next chapters.

Consider two police officers, one a detective and one a younger constable. They have just heard
that a hit-and-run has been done, and they are tasked with finding the culprit. The witness mentioned
that the culprit was in a yellow Volkswagen Polo, but a number plate was not remembered. As the
priority to find this person is extremely high, there is no time to find a vehicle registry. Luckily the country
they live in has cameras on all roads, and due to the remarkable appearance of the car, they want to
attempt to find the car using real-time monitoring of the roads.

They quickly realize that monitoring all cameras is way too much data at once, and therefore the con-
stable is tasked with finding a solution that filters the data efficiently. After a quick google search he
comes back: ”Detective, I have a great idea to solve our problem! We can use artificial intelligence
to identify cars on the road.” ”Great work constable. How does AI work?” replies the Detective. ”It is
easy, ” says the constable, ”we just plug in the images we take from the live-cameras into a so-called
machine learning model, and the model tells you which car is in the image.” ”Wonderful! Have we
deployed it yet?” ”No, there is a small issue. I couldn’t find a model that classifies both color and car
type. To make a model do that, we need the right data, a lot of time, and expensive hardware. We
have none of that.” ”Ah, but maybe we can find two models to do that for us? Then we can run a model
that recognizes car types, and afterwards an model that classifies yellow objects.” ”What a great idea
detective! I will look for such models.”

A few minutes later the constable returns: ”Good news detective! The method you suggested has
already been researched, it is known as a machine learning inference query, it is like a database
query, but where machine learning models are needed to evaluate the data. The formal query in our
case is

q := yellow ∧ VWPolo

where the wedge operator ∧ signifies ”and” and the vee operator ∨ signifies ”or”. I have found several
models that suit our needs, I have put them in table. The combination of a list of models and such a
table is apparently called a model zoo.

1

2

Model name Cost yellow VW Polo
model 1 10 80%
model 2 30 95%
model 3 20 85%
model 4 40 95%

”For every model I have denoted the accuracy and the amount of milliseconds it takes to run on
a single image, which we also call cost.” ”Great work constable! What do you mean with accuracy
however?” ”Well, the models are not perfect. We expect them to get it wrong in some cases, so model
1 is right about yellow in 80% of cases.” ”Noted, so let’s just use the most accurate two models.” ”I was
afraid you would say that, but models 2 and 4 together take too long to be used in busy traffic. Once the
algorithm has finished, another car has passed undetected.” ”That is not ideal constable. So we would
want to select two models, that have somewhat high accuracy, but where they are still quick enough.
What are our options?” ”I have taken the liberty to draw up a table for our options, with the composite
accuracy and total cost for the models”:

Query plan Accuracy Cost
model 1 & 3 68% 30
model 1 & 4 76% 50
model 2 & 3 81% 50
model 2 & 4 90% 70

”Interesting. The accuracy and cost of these query plans differ quite drastically. The only solution I
think we shouldn’t choose is model 1&4: it has the same cost as when we choose model 2&3, but lower
accuracy.” ”Agreed Detective, but then we are still left with three solutions. How do we choose one?” ”I
suppose we need to first think about whether accuracy or cost is more important, and how much. Then
based on those preferences, I guess we also need to find a method of determining our best candidate”.
The two men take a few minutes to think about methods, and resume their conversation after.

”Shall we calculate the maximum amount of time we have, and then choose the most accurate combi-
nation that is quicker than that time?” ”That is a good idea Detective, but I’m not sure if we can define
such a bound. The cars drive at different speeds on different roads.” ”Good point. Maybe we can first
find the highest accuracy possible, and then see if there are combinations with the same accuracy that
are quicker.” ”Also a good idea, but then we prioritize accuracy over cost disproportionally.” ”Maybe
we can combine our preferences in a way that we can calculate a score for every model, and choose
the highest score?” ”Such a utility score would be great! But then the way we define this utility function
has a lot of bearing on which combination we will find.” ”Exactly detective, there are a lot of possibilities
and there is not a solution that is the ’best’. Balancing accuracy and cost effectively is quite complex
frankly, it’s a good thing that there are only 4 combinations that we have to consider.”

At this precise moment, the officers receive a call: the witness that saw a yellow Volkswagen Polo
actually has amended their statement. Apparently they are blue-yellow colorblind, and have very poor
knowledge of cars. The car could also have been a VW Golf. ”Let’s immediately amend our machine
learning inference query, to reflect that the car could have been blue or yellow, and must be a Polo or
a Golf:

q := (yellow ∨ blue) ∧ (VWPolo ∨ VWGolf)

”Constable, please go look for more models.” ”Already on it detective”. The constable returns with the
new model zoo:

1.1. Research contributions 3

Model name Cost yellow blue VW Polo VW Golf
model 1 10 80%
model 2 30 95%
model 3 20 85%
model 4 40 95%
model 5 10 80%
model 6 25 90% 90%
model 7 20 85%
model 8 35 90% 94%

”I have also managed to find two models that can classify two predicates at once” ”Great idea con-
stable, if we use model 6, we can classify two colors at once and be quicker. But this is getting quite
complicated, how many combinations are possible now?” ”Already 36 detective.” ”Oh god, that is al-
ready a lot more than when we had two predicates. And I just realized, that if we first check for yellow
and blue, which are rare colors for cars, we might not have to check for the car type in most cases, as
we have already excluded the car if they are not of these colors. So the order in which we execute the
models is also important.” ”Aha, so we need to find a selection of models and order to execute them in,
that answers our query but balances accuracy and cost, based on our needs. I will go back to see if
there has been research on balancing accuracy and cost for machine learning inference queries using
model zoos.”

Which is where our story ends, as this has not yet been researched in great detail and is therefore
the topic of this thesis. By accident, the detective and the constable found an open problem in aca-
demic research. They were able to formulate their problem, namely finding cars on the road of a
specific color and type, as a machine learning (ML) inference query. They didn’t have the resources
to train their own model, but luckily stumbled upon a model zoo that contained models for their needs.
They quickly found out that finding a combination of models becomes quite difficult when the amount
of query predicates increases, especially when you want to effectively juggle two objectives at once.
They also realized that multi-objective optimization (MOO) is a ’fuzzy’ problem: the quality of a solution
is defined by the needs of the user. Given the fact that the performance of ML models can be described
in many more ways than accuracy and cost, the real life version of this problem becomes even more
complicated. To summarize, we are looking for a method to find query plans (a selection of models and
an order in which to execute them) that balance multiple objectives (accuracy and cost) for a machine
learning inference query (a database query where a model pipeline is needed for its evaluation) when
a model zoo (a collection of models) is available for our use.

In this work we therefore investigate current methods for finding query plans for ML inference queries
and see if they can be extended to have multi-objective optimization capabilities. For the optimizer
that we found, we implement a collection of methods that juggle objectives, and investigate whether
more objectives can be added to it. Along the way we propose some methods of improving the origi-
nal optimizer for computational complexity and solution quality. Lastly we test the performance of our
optimizer on actual data using real models, and see if it juggles objectives better than naive methods.
The application domain this work has chosen for its practical experiments is that of natural language
processing (NLP). Language is naturally very multi-faceted, and meanings of sentences can change
due to the placement of a comma. This nuance lends itself particularly well for the ml inference query
approach of looking at data. Additionally NLP is known for its models needing expensive resources for
efficient training, and it is much more normalized to use pretrained models [33].

1.1. Research contributions
To summarize, this work will concern itself with optimizing machine learning inference queries for mul-
tiple objectives using model zoos. The main question therefore is:

How do you derive a query plan for a machine learning inference query that balances multi-
ple objectives using model zoos?

1.2. Thesis structure 4

This question can be divided into several sub-questions:

• What is the current standard for deriving machine learning inference query plans?
• How do you define an optimizer for such a query that takes multiple objectives into account?
• Is there opportunity for adding other objectives?
• How does this optimizer perform against naive methods?
• How does this optimizer perform on NLP tasks?

1.2. Thesis structure
This thesis will be following the below structure:

Problem formulation which contains a formal description on the ML inference query problem and the
current state of the art. A small introduction to Machine Learning is given.

Background which will discuss theoretical background on query- and MO optimization.
Optimizer proposal wherein a new optimizer is introduced, including new objectives. The optimizer’s

performance is then compared with its competitors.
Experiments the model is then used to generate query plans for some NLP tasks. The query plans are

then executed on a dataset in order to compare the query optimization approach versus traditional
methods.

2
Problem definition

As mentioned before, we aim to generate efficient query plans for ML inference queries when a model
zoo is available. This chapter will concern itself with formulating some definitions and formalizing the
problem. To summarize very briefly, we discuss theory on the following topics:
Machine learning models which we use in our machine learning inference queries to estimate the

value of predicates.
Model zoos that are databases of ML models, where information of their performance is also stored.
Machine learning inference queries which are database queries that query on databases such as

images. We need a different type of query because we need amachine learningmodel to evaluate
truth of a predicate.

Query plan which is a set of models from the model zoo to answer the query on data. We want to
optimize this query plan to be both accurate and quick.

Lastly we discuss some related work to show where current research is headed on similar topics,
demonstrating that our work is both novel and relevant.

2.1. A (very) short introdution to Machine Learning
A large portion of this work assumes some background on machine learning. However, not enough
knowledge is needed to dedicate a full section to it in the ’Background’ chapter. This chapter might be
somewhat difficult to understand however without a small refresher on the basic terminology.

A machine learning model is an algorithm that learns to make decisions based on data [4]. For this
problem we limit ourselves solely to binary classification problems: a data point either satisfies a certain
predicate or it doesn’t. ML models are ’trained’: they look at a lot of data that is correctly labelled, and
attempt to make a set of rules that allows them to correctly classify previously unseen data. ML models
typically do not have perfect accuracy: they classify some data points incorrectly. Therefore the accu-
racy of a model is an important measurement. There are multiple metrics to represent accuracy, but
they typically model a certain percentage, namely how good the model is at predicting data. The most
general way of doing this is dividing the amount of correctly classified data points by the total amount
of data points.

For this work very little understanding of actual machine learning is needed, other than that a ML
model is a (black box) function that takes as input a data point and classifies a certain predicate as true
or false, with a certain accuracy. For further reading on machine learning the reader is referred to one
of the most exemplary books in the field, ”Pattern recognition and Machine Learning” by Christopher
M. Bishop [4].

2.2. Model zoos
A model zoo is a database where multiple ML models are stored, including meta information such as
their execution cost, or accuracies on certain tasks. Examples of public model zoo include Hugging-

5

2.3. ML inference queries 6

Face [15] and the TensorFlow Hub [29]. The idea is that users can use these models without having to
train, and still achieve good accuracy.

We define a model zoo as R = (M, I, P,A,C): a tuple of a set of models M , a set of classes I
the models in M can inference on, the set of accompanying boolean predicates P , an accuracy matrix
A and a cost matrix C. A model zoo accompanies datapoints Ξ where for 0 ≤ k ≤ |M | − 1 a model
m ∈ M is defined as a function

mp : Ξ → {0, 1}

that classifies the corresponding class i ∈ I using a binary value (e.g. ”does an image ξ ∈ Ξ satisfy
p according to model m?”). M, I, P are unstructured sets, but A ∈ [0, 1]

|M | and C ∈ N|M | are matrices
of size |M | × |P | and |M | × 1. A serves as a lookup table for the accuracy per model on a given
predicate, and C as a lookup table for the execution cost of a model. The execution cost is measured
in milliseconds, which of course varies per hardware setup and therefore serves as more of a relative
measure.

For the purposes of future legibility, we are elucidating the indexing methods further. Consider a
’dummy’ model zoo:

Model name Model index Cost sentiment person object
LR 0 5 0.9 0 0
SVM 1 10 0.95 0 0
DNN1 2 20 0 0.92 0.93
DNN2 3 25 0 0.95 0.97
DNN3 4 15 0 0.98 0
DNN4 5 15 0 0 0.99

Table 2.1: A (dummy) model zoo for determining the mentioning of objects and persons in a text, in addition to the sentiment
regarding them.

This dummy zoo contains six models and three classes, sentiment, person, and object. Sentiment
would be the task of classifying a text as having either positive (1) or negative(0) sentiment, and person
and object as the text containing mention of a person and/or object respectively. In this case,

A =

0.9 0 0
0.95 0 0
0 0.92 0.93
0 0.95 0.97
0 0.98 0
0 0 0.99

 , and C =

5
10
20
30
15
15

 (2.1)

and M = {LR, SVM, DNN1, DNN2, DNN3, DNN4} and P = {sentiment, person, object}. We derive
information from the model zoo similar to array indexing. In general Am,p refers to the accuracy that
model m ∈ M has on predicate p ∈ P , and Cm the projected execution cost. For example, we use
ASVM, sentiment to denote the accuracy of the SVM model on sentiment classification, which in this case
is 95%. When using this model, the expected execution cost CSVM is then 10 milliseconds. The SVM
model has 0% accuracy on classifying person and object, which is shorthand for meaning that the
model is not trained for classifying these predicates, and preferably should not be used to do so.

2.3. ML inference queries
The concept of ML inference queries is somewhat novel, with the first mention in a 2019 paper [19].
This paper defines an ML inference query as ”a SQL query that invokes a model pipeline”. Other works
that tackle the problem agree on this semantic definition [21][23], but do not have consensus on a strict
mathematical definition that is rooted in relational algebra [6]. This work does not claim to have a defi-
nition to solve this problem, but puts forward one that makes sense for this work specifically. For other
definitions the reader is referred to the works of Li et al. [21] and Lu et al. [23].

2.4. Query plans and optimization 7

Consider a set Ξ of data points of the same type (e.g. a set of images, or an NLP corpus.) Let
R = (M, I, P,A,C) be an accompanying model zoo. We define a machine learning inference query
on the set of predicates as a database query on Ξ that uses relational operators {∨,∧} and evaluates
a predicate p ∈ P , 0 ≤ k ≤ K using a model mp ∈ M on a data point ξ ∈ Ξ. In this work we focus on
conjunctive normal form (CNF) and disjunctive normal form (DNF) queries. A CNF query is a disjunction
of separate conjunctions:

q1 := (p1 ∨ p2 ∨ ... ∨ pk) ∧ (pk+1 ∨ ... ∨ pk+i) ∧ ... ∧ (pn ∨ ... ∨ pn+j) (2.2)

and a DNF query is a conjunction of separate disjunctions:

q2 := (p1 ∧ p2 ∧ ... ∧ pk) ∨ (pk+1 ∧ ... ∧ pk+i) ∨ ... ∨ (pn ∧ ... ∧ pn+j) (2.3)

These queries contain the same set of predicates ({p1, p2, ..., pn+j} but differ in the way that they are
conjoined. For q1 (p1 ∨ p2 ∨ ...∨ pk),...,(pn ∨ ...∨ pn+j) form the predicate groups, while for q2 these are
(p1 ∧ p2 ∧ ...∧ pk),...,(pn ∧ ...∧ pn+j). Predicates can be answered by any model from R (but preferably,
Am,p > 0), and models can be used for evaluating multiple predicates.

In formal query optimization jargon, the models M are known as ”user defined functions” (UDFs) and
they tend to be expensive to execute, and hard to optimize for. Finding a good query plan is therefore
both difficult and important.

2.4. Query plans and optimization
The traditional definition for a query plan is ”a sequence of steps used to access data in a SQL relational
database management system”. In this work we are not working with traditional relational database
management systems, but with model zoos and datasets. The semantic definition still stands however:
based on a query, a query plan is a sequence of steps to complete in order to extract the data points
from the dataset that fit with the query.

Therefore for ML inference queries a query plan consists of a set of models {mα1
,mα2

, ...,mαn+j
}

from R and an order in which they should be executed on data points X ⊂ Ξ. A formal definition for
evaluating an ML inference query using q1 on a data point ξ ∈ Ξ is then:

(mα1,p1(ξ) ∨mα2,p2(ξ) ∨ ... ∨mαk,pk
(ξ))∧ (2.4)

(mαk+1,pk+1
(ξ) ∨ ... ∨mαk+i,pk+i

(ξ)) ∧ ... (2.5)
∧ (mαn,pn(ξ) ∨ ... ∨mαn+j ,pn+j (ξ)) (2.6)

Because the models from M return boolean values it is then possible to discard data points for further
inferencing based on intermediate evaluation. If we consider the query from the introduction:

q := (yellow) ∧ (VWPolo) (2.7)

We can first run an ML model that classifies yellow. All the data points that return 0/false then do not
have to be considered anymore by the model that checks VWPolo. In other words, we only continue
data points down the pipeline for which there is the possibility that the query is true. This means that the
models down the pipeline inference on smaller amounts of data. It should be apparent that the order
of execution of different models can influence the total execution time, depending on how selective a
predicate is.

Typical query optimization concerns itself with finding a good sequence of steps that finds all the data
in a relational data model [6] that fits your query quickly. In this case, the data that is returned is also
dependent on which models are chosen for answering the query: if a model with bad accuracy is cho-
sen in the query plan, perhaps many data points that fit the predicate are removed for further evaluation
because of a false negative (and datapoints that do not actually fit the predicate are kept in). Therefore
total time for filtering the dataset is not the only measure of performance, but also howmany data points
get correctly classified.

2.5. ML inference query optimization 8

2.5. ML inference query optimization
The work presented by Li [21] formulates the ml inference query optimizer as a non-linear mixed inte-
ger program that either maximizes accuracy or minimizes cost while bounding the other objective. The
idea of the research questions for this thesis follows Li’s work very closely, and therefore this work’s
proposed optimizer will be based on Li’s work.

As mentioned before in the introduction, both accuracy and cost (and other possible objectives) are
important to an ML inference query query plan. This makes it a ”multi-objective optimization problem”:
more than one metric needs to be optimized in order to consider a solution as good. In fact, there
are many more metrics to be considered when it comes to evaluating the performance of a machine
learning model. These metrics could therefore also be relevant to ml inference query optimization, as
the metrics of individual models also influence the total performance of the query evaluation.

Therefore we would like an ML inference query optimizer to take both those objectives into account,
but also allow for the addition of other objectives in a simple way.

2.6. Related work
2.6.1. ML inference queries
As this work closely follows Li [21]’s optimizer, the details of this work will be discussed in another
chapter. Other works that investigate ML inference queries include Probabilistic Predicates (PPs) [23]
and Tahoma [2]. PPs attempt to prevent expensive ML models from being run for machine learning
inference queries by starting with cheap binary classifiers. This work is similar to Li’s but not necessarily
competitive: the methods can work together on a query. Tahoma does not necessarily specialize itself
for ML inference queries, but the method proposed also concerns itself with pushing more expensive
models down the pipeline and first executing the simpler ones is similar to what we are trying to achieve.
To the author’s knowledge there isn’t yet work that optimizes ML inference queries using multiple ob-
jectives in a sophisticated way.

Other work that is similar to ML inference queries but a little bit farther removed from our intended
approach is BlazeIt [17] and NoScope [18]. BlazeIt attempt to speed up video processing by utilizing
spatio-temporal information. It treats the video as a database to be queried upon. NoScope is quite
similar in that it utilizes spatio-temporal information for classifying video quickly, but trains a cascade
of models that are specialized for the target on the fly.

2.6.2. Mixed integer (linear) programming in query optimization
As mentioned before, we want to have an optimizer that easily allows for addition of objectives and can
extend toMOOcapabilities. The optimizer proposed by Li [21] is a good starting point, and they describe
a Mixed integer program (MIP). This is not the only case of using MIPs/MILPs for query optimization
however. In 2016 Immanuel Trummer and Christoph Koch wrote a paper that solves the join problem
using an MIP [31]. The results are impressive, and their optimizer handles much larger input than usual
with ease. A similar paper written in 2007 by Stratos Papadomanolakis and Anastassia Ailamaki uses
an ILP to tackle the indexing problem [26]. The result is an optimizer that again scales well with large
input and receives all the benefits of classical programming.

2.6.3. Multi-objective query optimization
Like mentioned previously, multi-objective query optimization lends itself particularly well for ML infer-
ence query optimization because of the amount of metrics that can be used to describe an ML model.
There is however some research into multi-objective query optimization, using objectives such as the
amount of intermediate memory that is needed for the pipeline in addition to execution cost. A 2016 pa-
per by Florian Helff, Le Gruenwald and Laurent d’Orazio uses the weighted sum method for optimizing
mobile-cloud database environments. The work scores query plans using the weighted sum method,
starting off from a lexicographical approach. Another paper by Immanuel Trummer and Christoph Koch
[30] attempts to generate the set of Pareto-optimal query plans.

2.7. Summary 9

2.7. Summary
After formally introducing several definitions, the total problem can now be formally identified. Given a
model zoo R = (M, I, P,A,C) and a machine learning inference query q in either CNF or DNF form,
find a query plan µ ⊆ M that is optimized by taking multiple objectives like accuracy and execution cost
into account. Preferably the optimization method also allows for adding other objectives easily. Before
we continue with the background topics of this work (query optimization and traditional optimization).

3
Background

In the previous chapter we discussed some theoretical frameworks. The goal is to find good query plans
(i.e. selection and ordering of ML models) to extract data that satisfies a machine learning inference
query, when we have a model zoo available (i.e. a collection of models). The difficulty is that the
models perform differently, and that there might be multiple models that can classify the same predicate.
Therefore there are multiple query plans available, that have different execution costs and accuracies.
The model proposed by Li et al. [21] provides a solution to the problem, but does not use the most
sophisticated method to balance accuracy and cost. Therefore we explore in this work which methods
are more appropriate.
The following chapter discusses some background around optimization and query optimization. To
summarize the sections:

Traditional query optimization: finding a query plan is a query optimization problem. In our case
however, traditional query optimization techniques are not adequate, which we demonstrate in
this section. We also discuss why traditional optimization is a better choice for this problem.

Single-objective/traditional optimization: as MOO is a variation on single objective optimization,
we discuss optimization in general.

Multi-objective optimization: after establishing some background on optimization, we can discuss
the theory and terminology on MOO.

3.1. Traditional query optimization
Like mentioned before in section 2.4, finding a good query plan for machine learning inference queries
is a query optimization problem: a certain amount of data that fits a query needs to be selected from a
dataset, and we would like to do this accurately and efficiently. Most research regarding query optimiza-
tion concerns the traditional relational database model [6], where data is represented as a set of tuples.
For ML inference queries, the data is of a different identity: the datasets that ML models typically solve
tasks for are unstructured and contain datatypes that can’t be easily represented as a tuple, and require
ML model inferencing in order to derive the content. Images for example can be represented as a tuple
of pixel values, but individual pixel values do not provide a lot of information on the content of the image.

This is part of the reason why traditional query optimization approaches fail for ML inference queries,
and therefore a more specialized optimizer is needed. In order to further demonstrate this need, we
discuss a few simple query optimization heuristics [8] and why they are not sufficient. The heuristics
we consider are:

1. Do selections as early as possible
2. Do projections as early as possible
3. Avoid Cartesian products

For each of these rules we will briefly discuss why this is not generally applicable to machine learning
inference queries. The point is not to illustrate that no traditional query optimization technique cannot

10

3.2. (Single-objective) optimization 11

be used, but rather that the most basic rules are not applicable and more sophisticated methods are
necessary.

3.1.1. Selections
A selection is a database operation where all data is filtered on a certain rule (e.g. select all female citi-
zens from a population register). The general goal of this rule is to save time by only moving information
down the pipeline of which you are suspecting that it fits your query. The problem with machine learn-
ing inference queries that predicates first need to be evaluated by a machine learning model before a
selection can be applied. The boolean predicate upon which selection is applied (e.g. female = true
in case of the population register) can only be provided upon execution of an ML model, an expensive
operation. Rather than moving down selections, choosing which models are cost-efficient to execute
first is a more important question. This is more an issue of balancing the accuracy and the cost of the
model, also in comparison to the models you are picking for other predicates.

3.1.2. Projections
A projection is a database operation where you discard certain information of data points which you
don’t expect to use for this particular query. For example, in the case of filtering a population register
on citizens that have a certain age and gender, you can discard their social security number as it is not
relevant to this query. This way you are only continuing with strictly necessary information down the
pipeline. For machine learning inference queries, the entire data point needs to be fed into a machine
learning algorithm. In case of an image database, the picture needs to be used for input in its entirety.
Compressing the image is of course possible, but you would have to use algorithms that likely use
lower resolution, and this compression would hold for the entire query evaluation, influencing the rest
of the model ’stack’ as well.

3.1.3. Cartesian products
A Cartesian product is a method of combining two tables. For example in the case of the population
register, if you would want to find the citizens that have a double passport, you could combine the tables
of different countries and check which entries have the same name (practicality of this scenario aside).
This is typically a very expensive operation, and therefore you would want to do this as late as possible.

The datasets used for machine learning are generally more like unstructured sets, rather than a collec-
tion of tables that relate to each other like relational databases. Therefore there is generally no need
to use a Cartesian product (or any type of join).

3.1.4. The case for traditional optimization
To summarize, these basic query optimization techniques either do not work or are irrelevant to this
particular problem. It is possible however to optimize queries in different ways. This problem closely
resembles traditional assignment/selection problems. A selection/assignment problem is an optimiza-
tion problem where a set of variables needs to be matched, or a selection needs to be made. A typical
selection problem is the facility location and assignment problem. In this problem parties need to be
assigned to facilities with minimal cost. But if there are multiple locations where facilities can be opened
(and a facility costs money to open), but the cost of a party being assigned to a facility is also distance-
dependent, how do you select where to place facilities, and which parties do you assign where?

The ML inference query optimization problem can also be translated to a similar problem. You namely
select the right model, select their execution order, and their assignment to predicates. But rather than
minimizing cost we also need to optimize for accuracy. In mathematics, (mixed integer (linear)) pro-
gramming (MIP/MILP) is used oftentimes for selection and assignment problems, and is therefore a
sensible choice for this problem. As there is ample research of multi-objective optimization for MIPs,
extending Li’s model is a sensible choice.

3.2. (Single-objective) optimization
Optimization is the mathematical field of finding a solution in a broad solution space where the utility of
solutions is evaluated using some sort of objective function, referred to as cost. Typically, the idea is

3.2. (Single-objective) optimization 12

to find the solution that has minimum cost in the space. Finding the solution with maximum utility is the
same process, and therefore the term ’cost’ is also used for maximization problems. Depending on the
size and shape of the solution space, finding the optimal solution can be time and resource intensive
if not impossible. A method that concerns itself with finding a somewhat good solution in better time is
called a heuristic.

Linear programming is a branch of optimization where the solution space is a subset of Rn
≥0 that can

be represented by a finite set of linear equations, thereby making a convex polytope. The canonical
form for this time of problem is

max cTx (3.1)
such that Ax ≤ b, (3.2)

x ∈ Rn
≥0 (3.3)

Where c is a vector in Rn that denotes the cost, and A, b ∈ Rn a matrix and vector respectively that
span the solution space. x is oftentimes referred to as the decision variables. In many cases, it can be
more intuitive to represent the solution space as a finite set of linear equations rather than a matrix mul-
tiplication. This canonical form always describes a convex polyhedron, and there are three scenarios
regarding optimality:

infeasibility when one or more inequalities make the solution space empty and no solution exists.
unboundedness when the convex polyhedron is unbounded, and therefore the optimal solution is

unbounded
bounded and feasible when the convex polyhedron is both feasible and bounded (therefore a convex

polytope), there exists a set of optimal solutions that can be described by a finite set of equations.

Even more striking in case of a bounded and feasible polyhedron, the optimal solution can be found on
one or more (when multiple solutions return the same objective value) of the polyhedron’s vertices and
can be represented as a linear combination of these points. This is a very powerful theorem, and forms
the basis of optimization algorithms. In short, as long as you can formulate your optimization problem
as a set of linear equations, finding the solution is as simple as efficiently pivoting over the vertices.

Figure 3.1: A convex polytope spanned by a set of linear equations. Note how the optimal solution is located on a vertex of
this polytope.

3.2.1. Integer optimization
A critical assumption for linear programs (LPs) is the continuity of the solution space. In many opti-
mization problems however, solutions need to be (partially) integral (e.g. in assignment or selection
problems). In this case, the solution space is still a convex polyhedron, but the vertices are oftentimes
not located on integer points. Finding the optimal solution is sadly much more complicated than round-
ing the optimal non-integral solution down, and obtaining the convex hull (set of integral solutions in

3.2. (Single-objective) optimization 13

the convex polytope) is also difficult. In short, the criterion of integrality often adds a lot of difficulty to
optimization problems. In particular, integer programming is NP-hard while linear programming is in P.

Figure 3.2: An ILP. Note that the LP solution is located on a non-integer point. The convex hull is spanned by the red dots.

An interesting corollary is that solving an ILP is equivalent to finding the convex hull of the LP
relaxation and solving this as an LP. Finding the convex hull of a convex polytope however is also not
an easy feat. Generally ILP solving methods use algorithms that use a starting solution, branch out to
alternatives, and prune solutions which cannot improve on the current optimal solution.

3.2.2. Nonlinear/quadratic optimization
Asmentioned before, as long as one can formulate their solution space as a finite set of linear equations
in a continuous space, optimization can be a manageable problem. Sadly, integrality is not our only
enemy. In many applications the solution space can not be described by linear equations, and finding
the optimal solution is not as simple as locating the vertices on a polyhedron or using branch-and-bound.
For this work we only provide background on non-linear polynomial programming. Non-linearities in
the equations spanning the solution space can lead to a non-convex search space. In layman’s terms,
a convex space is a space where you can draw a straight line between any two points in the space,
and the line is contained entirely in the space. A non-convex search space is harder to navigate for
solvers.

Figure 3.3: A simple graph illustrating the differences between a convex and a non-convex space

To quote Tyrrel Rockafeller in Siam review 1993: [28]:

"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but
convexity and nonconvexity."

Without going into details about the theory surrounding convex versus non-convex optimization, a sim-
ple analogy to illustrate why non-convex optimization is more difficult can be used. Imagine a person

3.3. Multi-objective optimization 14

searching for an object in a non-furnished room. If the room is rectangular, the person could theoret-
ically see the entire room from wherever they are standing. If the room has an L-shape, the person
would have to move around to be able to see the entire space. Even more problematic is the fact
that the person does not know where the room ends, unless they walk around the corner. For all they
know the room might be infinitely long around the corner. In other words, the difficulty of searching a
non-convex space is somewhat analogous of not being able to look around corners.

In many cases, product variables can be avoided using linearization methods that utilize knowledge
of the solution space [3]. Therefore, to avoid non-convexity, it is considered good practice to avoid
product variables when possible.

3.2.3. Commercial optimizers
In short, integrality and non-linearities/non-convexity are the enemies of optimization. These types of
optimization problems need potent solving methods, especially when reaching a certain amount of vari-
ables and/or equations. From now on we will not reason about the inner workings of solving algorithms
and how they navigate search spaces, but keep in mind the problems that can lead to a difficult search
to navigate. In other words, we treat the solving algorithm as a black box.

The sophisticated solvers are generally not open source (though some offer academic licenses) and
compete in terms of solving speed and quality of solutions [1].

For this specific work one solver was used, namely Gurobi [12]. Originally presented in 2009, the
solver is regularly updated with new features. The main considerations for using this solver over others
in particular:

1. The solver boasts competitive benchmarks to other solvers [1].
2. Gurobi provides academic licenses with a simple procedure.
3. Gurobi supports non-linear integer optimization since 2020 as of version 9 [14].
4. Gurobi provides extensive customer support with a user forum.
5. Gurobi has a sophisticated Python platform.

This combination of merits was not found in another solver to the author’s knowledge.

3.3. Multi-objective optimization
The goal of this work is to optimize machine learning inference queries. However, like mentioned
before, the issue is with balancing both accuracy and execution cost (and possibly other objectives).
Multi-objective optimization (MOO) is a field within optimization where multiple objectives functions
need to be taken into account. It is a balancing act where optimizing one objective can lead to a direct
increase for another objective, as oftentimes objectives conflict.

MOO is a fuzzy field, meaning that solutions are not always unequivocally better than others. This
is a consequence of the lack of an ordering on Rn, n > 1 (one that does not include a prioritization of
dimensions at least). An ordering means that for every pair of elements in a set, one of them is larger
or equal to ther other. For example, in N, we can say that 7 is larger than 3. In N2 this is more difficult.
Is

(
7
3

)
larger than

(
3
7

)
? Unless you specify that the first dimension is more important than the second,

you will not be able to define an ordering. If you represent the solution of an MOO problem as a vector
of all objective values, then you cannot say that one solution is larger/smaller than another, unless you
specify that one objective is more important the other. Given the fact that in optimization we look for
the solution of either largest or smallest utility, this is a problem.

This principle has two important consequences:

• More sophisticated ideas of optimality need to be established in order to discuss which solutions
are good or bad.

• Possible optimization methods are evaluated on their suitability more by semantic criteria rather
than by numerical improvements on a single benchmark.

3.3. Multi-objective optimization 15

There are a lot of methods to doMOO, and several survey papers have compiled collections of methods
[24][13]. The quality of an MOO method is user-defined and application-dependent however, due to
the problems stated above. In the following section we therefore state some important definitions to
help us distinguish solutions.

3.3.1. Important definitions for multi-objective optimization
Before we discuss these definitions we first introduce the canonical form of MO optimization problems:

min
x

F(x) = [F1(x), F2(x), ..., Fk(x)] (3.4)

such that gj(x) ≤ bj , j = 1, 2, ...,m (3.5)

Where Fk(x) represents the kth objective function. A shrewd mathematician will remark that minimizing
a vector is tricky (and a poorly-defined) business, and they will be correct: the minimization method will
be based upon the chosen MOO method, but that the objectives need to be minimized still needs to be
conveyed in the standard form.

Optimality of solution
Different solutions can be found for the same problem. Some solutions compromise on certain objec-
tives in favour of good performance on others, but other solutions might balance all objectives. A ”best”
solution therefore does not exist (or is semantically dependent on the problem at hand), but it should
go without saying that some solutions are unequivocally worse than others. This leads to the definition
of Pareto Optimality:

Definition 1 Pareto optimality. A point x ∈ X is Pareto optimal iff there does not exist a point x∗ ∈ X
such that Fi(x∗) ≤ Fi(x) ∀ 0 ≤ i ≤ k and Fj(x∗) < Fj(x) for some j.

In more intuitive terms, a solution is Pareto optimal if improving on one objectivemust lead to decreasing
another. The set of Pareto optimal solutions is also known as the Pareto frontier or Pareto boundary.
In some cases it might not be possible to improve on a certain objective at all, irregardless of other
objectives. This is also known as Weak Pareto optimality:

Definition 2 Weak Pareto optimality. A point x ∈ X is weakly Pareto optimal if there does not exist a
solution x∗ such that F(x∗) < F(x).

In other terms, a point is weakly Pareto optimal if there does not exist a point that improves on every
single objective. All points on the Pareto boundary are weakly Pareto optimal, but not necessarily the
other way around.

In addition to Pareto optimality, there does exist a concept to denote perfect optimality:

Definition 3 Utopia point. A point F◦ is a utopia point iff for every 1 ≤ i ≤ k F ◦
i = min{Fi(x)|x ∈ X}

The utopia point is therefore the point where every objective is minimized regardless of the others.
Generally, the utopia point in unattainable, as objectives tend to conflict. This concept is in line with
the “No free lunch theorem”[11], a paradigm that dictates that optimizing one objective always means
decreasing gains on another. In machine learning this for example means that a higher accuracy leads
to longer training or computation times, lower robustness, or less explainability. The utopia point does
serve use as a comparison point, to give an idea of how far you currently are from perfection.

3.3. Multi-objective optimization 16

Figure 3.4: A visual representation of the Pareto frontier when trying to maximize objective 1 and 2. The red dots represent the
Pareto optimal solutions, forming the Pareto frontier. The grey dots represent non-optimal solutions. The green dot represents

the utopia point: it is not a valid solution to this problem, but is the maximally attainable value for both objectives.

Optimality of methods
Next to optimality of solutions, there are also concepts of optimality for MOO methods. Some methods
namely guarantee some form of Pareto optimality. This comes in two forms:

Definition 4 Optimality of methods.

• (Weak) Pareto sufficiency. A method is (weakly) Pareto sufficient iff it always finds a solution
that is (weakly) Pareto optimal.

• Pareto necessity. A method is Pareto necessary iff any Pareto optimal solution can be found
using the method.

These concepts are similar, but generally methods that guarantee Pareto sufficiency are more common
than Pareto necessary methods.

Preferences
As mentioned before, MOO is a fuzzy field. Many solutions in a space can be Pareto optimal, and
it is upto the user to choose which solution best suits their needs. In order to make a choice, the
user has to indicate preferences. Preferences are rules that specify some type of literal preference of
one objective over another. Typically these preferences are more semantic, and therefore need to be
made concrete. This can be done for example by numerical weights, but also by hierarchical ordering.
Specifying the right preferences and when in the optimization process is important, but, to quote from
the 2004 survey paper by Marler and Arora [24]:

"Misinterpretation of the theoretical and practical meanings of the weights can make the
process of intuitively selecting non-arbitrary weights an inefficient chore."

The paper therefore mentions a few methods for generating weights based on semantic preferences.

Preferences can be articulated at any point in the optimization process. In line with Marler and Arora’s
paper [24], we divide optimization methods into three categories:

Prior articulation of preferences when the user indicates weights and/or an ordering of importance
of objectives before optimization. Methods of this category return a single solution, and a user
has to reformulate preferences and repeat the process when a solution is unsatisfactory.

3.3. Multi-objective optimization 17

Posterior articulation of preferences where the user chooses a solution from a pre-calculated set,
thereby indicating preferences after optimization has occurred. Generally these methods occupy
themselves with approximating the Pareto boundary.

No articulation of preferences where no preference is indicated and a single solution is returned.

Which category is best is again problem-dependent. If the optimization problem is easy to solve,
it might be preferable to iteratively generate over the Pareto optimal solution and choose afterwards,
thereby indicating preferences afterwards. In case of a difficult program, it might be better to indicate
preferences beforehand, so that a solver only has to compute a single solution.

4
The optimizer

In the introduction and related work sections Li’s work [21] was already mentioned several times. In this
paper a non-linear mixed integer program that maximizes accuracy or minimizes cost while bounding
the other objective is proposed. Due to the nature of optimization programming, adding new objectives
is as simple as adding new equations and amending others. This makes the optimizer highly suitable
for extending to multi-objective optimization. In addition to MOO, there are several opportunities in the
optimizer that this work attempts to improve on, which will be discussed in section 4.1.3. This chapter
is divided into several sections:

Explaining the optimizer: where we explain the two MIPs put forward by Li. We discuss a few exam-
ples and places where we can improve on the original.

Amendments to the optimizes: where we discuss the problems identified in the previous section and
propose solutions for them.

Towards Multi-objective optimization: before we can actually implement MOO methods, we need
to do some preprocessing on the optimizer. Additionally we also introduce a third objective.

Explored MOO methods: a list of the MOO methods we implemented for the optimizer, and a brief
explanation how each of them works and processes user input.

The reader is forewarned that the following sections contain a lot of math describing a complicated MIP.
Understanding this math is not necessary to understand the value of our contributions, and therefore
we allow the reader to read an abridged version of this chapter by only reading the text below.

We can summarize the two optimizers proposed by Li [21] as follows:

• model_opt is an optimizer that computes optimal model selection for an ML inference query using
a model zoo. It either optimizes for accuracy while bounding execution cost, or vice versa.

• order_opt is an extension on model_opt that also calculates optimal model order execution on
top of optimal model selection.

Both model_opt and order_opt have room for improvement by amending a few equations in the MIP.
These amendments attempt to

• Increase transparency of the optimizer
• Discard query plans of poor quality pre-emptively, thereby reducing the size of the search space
• Reformulate equations that likely cause long optimization time

Before we can successfully optimize for multiple objectives, we need to do some preprocessing on the
model. These steps include:

• Rescaling the objectives to be in similar range of values (accuracy ranges from 0-1, while execu-
tion cost starts at 1 and is unbounded)

• Adding memory footprint as a third objective to that of accuracy and cost

18

4.1. Explaining the optimizer 19

• Proposing a naive way of doingMOO that can generate query plans quickly, but does not generate
optimal query plans and does not take user preferences into account

Then we can finally implement the list of MOO methods we consider in the results chapter. These
methods are all different in the way they process user input (i.e. preferences), or balance objectives.
Some methods guarantee Pareto optimality, and some don’t.

4.1. Explaining the optimizer
For the purposes of clarity a short explanation of the optimizer will be discussed, but for more detail the
reader is referred to the paper by Li et al. [21]. The paper proposes an optimizer that finds optimal query
plans for machine learning inference queries, when there is a model zoo available. To optimize this
Li proposes 2 optimizers, both Mixed Integer Programs (MIPs) with most of the contraints linear. The
first optimizer, model_opt just provides a selection of models. The second optimizer, order_opt, also
finds an ordering that pushes expensive models down the pipeline in addition to model selection. As
order_opt is a variation of model_opt, we will first discuss the parts of the optimizers that are identical.
Remember the canonical definition of an MIP:

max cTx (4.1)
such that Ax ≤ b, (4.2)

x ∈ Nn
≥0 (4.3)

The idea is that the decision variables x of the program model selection of models for predicates, and
the cost function(s) model the accuracy and execution cost of said selection. The matrixA surmises the
solution space: the query plans that are able to answer our query q. The optimization software (Gurobi)
then searches the solution space for the best query plan according to our objectives (accuracy and cost).
We therefore discuss what these equations look like, and how our objectives are defined.

Figure 4.1: Figure 2 from the original paper by Li et al[21] detailing the workflow of the query optimizer. The inputs include a
query, a model zoo, and dataset metadata. The optimizer then uses an MIP, where the decision variables can be used to

generate a query plan (i.e. model selection and ordering).

Let q be an ML inference query in either CNF or DNF and R a model zoo where the predicates of q
are a subset of P . We attempt to find a query plan for q. The decision variables Xm,p are defined as

Xm,p =

{
1 If model m is used to answer predicate p

0 otherwise
for m ∈ M,p ∈ P (4.4)

for both versions. To enforce that every predicate is answered by one model, a restriction needs to be
placed on Xm,p: ∑

m∈M

Xm,p = 1, p ∈ P (4.5)

4.1. Explaining the optimizer 20

Note how this leaves the possible for one model being selected to answer multiple predicates, but that
a predicate is only answered by a single model. These two equations are already sufficient to ensure
proper model selection. Now we can define the objective functions, which allow Gurobi to find us the
query plan with highest merit.

The execution cost and accuracy are then used as objectives for the model. The combined accuracy
calculation remains the same however for both optimizers. The calculation for accuracy is similar to
the calculation of probabilities of conjoined or disjoined independent random variables. For conjunctive
groups, the accuracy within a predicate group g is calculated as

facc(g) =
∏
p∈Pg

∑
m∈M

Am,pXm,p

and for disjunctive groups:

facc(g) =
∑
p∈Pg

∑
m∈M

Am,pXm,p −
∏

i∈{p1,p2}

∑
m∈M

Am,iXm,i

+
∏

j ∈{p1,p2,p3}

∑
m∈M

Am,jXm,j − . . .+ (−1)|P |−1
∏
p∈P

∑
m∈M

Am,pXm,p

The total accuracy is then calculated with the same formula, but using the conjunctive accuracy when
the groups are disjunctive, and vice versa. So for DNF queries, where the groups are joined disjunc-
tively, the total accuracy is then calculated as

facc(q) =
∑
q∈q

facc(g)−
∏

i∈{g1,g2}

facc(i)

+
∏

j ∈{g1,g2,g3}

facc(j)− . . .+ (−1)|P |−1
∏
g∈q

facc(g)

and for CNF queries, when the groups are conjunctively joined:

facc(q) =
∏
g∈q

facc(g)

This calculation does assume independence of predicates, and it has not been researched yet in what
capacity this influences the true accuracy on data.

4.1.1. Formulation of model_opt
With the equations above we have defined all necessary constraints for model selection. The only
thing left is to define our second objective, execution cost fcost. The cost calculation for model_opt is
dependent only on if a model is used or not. An ’indicating’ variable Bm is therefore needed in order to
specify whether a model m is used at all:

Bm =

{
1 if

∑
p∈P Xm,p ≥ 1

0 otherwise
for m ∈ M (4.6)

Note how this constraint is non-linear, while linear constraints are preferred for programming. This
issue will be handled in section 4.2. The cost calculation for the total query is then defined as:

fcost(q) =
∑
m∈M

CmBm (4.7)

Li then adds an objective function by either minimizing cost under a lower bound on accuracy, or max-
imizes accuracy with an upper bound on cost. In short, model_opt can be summarized as

max facc(q)

such that
∑
m∈M

Xm,p = 1,

fcost(q) ≤ c

4.1. Explaining the optimizer 21

As the accuracy-maximizing-cost-bounding (AMCB) problem, and

min fcost(q)

such that
∑
m∈M

Xm,p = 1,

facc(q) ≥ a

as the cost-minimizing-accuracy-bounding problem (CMAB) (with a and c user-defined bounds).

Examples
For clarity we give two examples to illustrate the workings of model_opt. For this example we will work
with the same dummy model zoo from chapter 1 (table 2.1):

Model name Model index Cost sentiment person object
LR 0 5 0.9 0 0
SVM 1 10 0.95 0 0
DNN1 2 20 0 0.92 0.93
DNN2 3 25 0 0.95 0.97
DNN3 4 15 0 0.98 0
DNN4 5 15 0 0 0.99

Table 4.1: A (dummy) model zoo for determining the mentioning of objects and persons in a text, in addition to the sentiment
regarding them.

For these examples we do not focus on how to solve the MIP: the intention is to demonstrate how
the scores of the query plan are calculated based on a model selection. Therefore we reason about
the solution ’greedily’ and show how the query plan accuracy and cost are subsequently calculated.

Example 1 We use a query in DNF form:

q1 := (person) ∨ (sentiment ∧ object) (4.8)

We want to find an optimal model selection for this query. For now we optimize for accuracy, and don’t
set an upper bound on cost. We can reason about the solution without solving the MIP: we just select
the models greedily based on their accuracy. We see that for person DNN3 is the best model to select.
For sentiment this is SVM, and for object this is DNN4. Therefore we have

XDNN3,person = XSVM,sentiment = XDNN4,object = 1 (4.9)

And the rest of Xm,p = 0. Therefore BDNN3 = BSVM = BDNN4 = 1, and BLR = BDNN1 = BDNN2 =
0. This means that

fcost(q1) = 5 ·BLR+10 ·BSVM +20 ·BDNN1+25 ·BDNN2+15 ·BDNN3+15 ·BDNN4 = 5+15+15 = 35
(4.10)

For the accuracy we first calculate the accuracy of the individual predicate groups (person) and (sentiment∧
object). For group g1 = (person) the group accuracy is justAg1 = ADNN3,person = 0.98. For the second
group g2 = (sentiment ∧ object) the accuracy is the product Ag2 = ASVM,sentiment · ADNN4,object =
0.95·0.99 = 0.9405. The calculation of the total accuracy of the query is then dependent on the individual
group accuracy:

facc(q1) = Ag1 +Ag2 −Ag1 ·Ag2 = 0.98 + 0.9405− 0.98 · 0.9405 = 0.99881 (4.11)

Example 2 For the second example we consider a CNF query:

q2 = (person) ∧ (sentiment ∨ object) (4.12)

and optimize over cost. Note how if we do not bound accuracy, the optimizer will just choose the LR
model to answer every predicate, thereby achieving 0% accuracy. Therefore we add a lower bound on
accuracy:

facc(q2) ≥ 0.9 (4.13)

4.1. Explaining the optimizer 22

Which would allow the optimizer to choose the cheapest models with non-zero accuracy for every
predicate. Therefore

XLR,sentiment = XDNN1,person = XDNN1,object = 1 (4.14)

and every other Xm,p = 0. We calculate the accuracy again by first calculating the accuracy of the
individual groups. Ag1 = ADNN1,person = 0.92 andAg2 = ALR,sentiment+ADNN1,object−ALR,sentiment ·
ADNN1,object = 0.9 + 0.93− 0.9 · 0.93 = 0.993 and for the total query accuracy

facc(q2) = Ag1 ·Ag2 = 0.92 · 0.993 = 0.91356 ≥ 0.9 (4.15)

For cost we see that BLR = BDNN1 = 1 and BSVM = BDNN2 = BDNN3 = BDNN4 = 0 and therefore

fcost(q2) = CLR + CDNN1 = 5 + 20 = 25 (4.16)

4.1.2. Formulation of order_opt
As mentioned before, order_opt is an extension upon model_opt that in addition to model selection also
calculates model ordering by taking selectivity into account. Selectivity represents a measure of ’rarity’
of predicates: the lower the predicate selectivity SP

p , the rarer the predicate1. In this work we assume
that

∑
p∈P SP

p = 1. In practice the selectivity of predicates can be approximated by calculating the
(normalized) occurrence of a class in a dataset. The selectivity of predicates provides the opportunity
for taking ordering into account, where the cheaper models are executed early for predicates we expect
unlikely to yield positive results. In the introduction we mentioned looking for yellow Volkswagen Polos
on the road. Yellow is a rare color for a car (i.e. high selectivity, low SP

p value), and therefore if we filter
images first on the predicate yellow, we might have to only use the ”Polo” model on a handful of images.
This query plan would therefore likely be quicker than running the two models the other way around, as
the true execution time of a model increases with the amount of data that needs to be inferenced on.

To achieve this concept the cost function fcost(q) needs to be reformulated, in order to make the ex-
ecution cost variable depending on the selectivity of the predicate it is answering. For the ordering a
second set of decision variables Op,j is introduced:

Op,j =

{
1 If predicate p is answered in timestep j

0 otherwise
for p ∈ P, j ∈ J (4.17)

With J representing the set of timesteps, which is a range from 0 to |P | − 1. Similar to Xm,p, we need
to enforce that every predicate is answered within one timestep∑

p∈P

Op,j = 1, j ∈ J (4.18)

But we also need to also ensure that per timestep only one predicate is answered:∑
j∈J

Op,j = 1, p ∈ P (4.19)

For computing a cost function using the selectivity of individual predicates, several variables are needed.
To start, a binary variable that keeps track whether all predicates in a group have been answered (and
therefore the group can be evaluated with certainty):

Gg,j =

{
1 If all predicates in group g have been answered as of timestep j

0 otherwise
for g ∈ Q, j ∈ J

(4.20)
1Generally we speak of high selectivity when the S-value is low, as the S-value models the amount of data that matches our

predicate. A highly selective predicate means that a small amount of data matches the predicate, and therefore the predicate
has a low S-value.

4.1. Explaining the optimizer 23

With the set Q representing the groups of query q. Gg,j is then constrained as follows:

Gg,j ≥ 1− |Pg|+
∑
p∈Pg

∑
0≤k≤j−1

Op,k, g ∈ q, j ∈ J (4.21)

Gg,j ≤
∑

0≤k≤j−1

Op,k, p ∈ Pg, g ∈ q, j ∈ J (4.22)

Additionally, a variable Wg,j to quantify the amount of data that has been processed after answering
every predicate in a group is needed:

Wg,j = 1−Gg,jS
G
g , g ∈ q, j ∈ J (4.23)

In this case SG
g
2 represents the selectivity in groups, which is dependent on the selectivity of predicates

within that group. For disjunctive groups, the selectivity is the probability that every predicate returns
true:

SG
g =

∏
p∈Pg

SP
p , g ∈ q (4.24)

And for conjunctive groups, it is the probability that every query predicate returns false:

SG
g =

∏
g∈Pg

(1− SP
p), g ∈ q (4.25)

In order to represent selectivity per timestep, we also need to have a measure of selectivity per group
per timestep. This is done using continuous variables Hg,j , which represents the percentage of data
being computed at step j when all predicates in group g have been answered. Hg,j is defined as

Hg,j =

j−1∏
i=0

(1−
∑
p∈Pg

Op,i(1− SP
p)), ∀g ∈ q, ∀j ∈ J (4.26)

In the paper by Li [21] an ancillary variable is introduced for Hg,j that models the effect when a group
has been fully answered. Because this ancillary variable greatly increases computation time we pre-
ferred working with slightly less optimal query plans.

The total selectivity per timestep is then computed as

SJ
j =

∏
g∈G

Wg,jHg,j , j ∈ J (4.27)

Before the final cost can be calculated, the cost per timestep and model Rm,j needs to be defined:

Rm,j = SJ
j

∑
p∈P

Xm,pOp,jCm,p, m ∈ M, j ∈ J (4.28)

And then the final total cost:
fcost(q) =

∑
m∈M

max
j∈J

Rm,j (4.29)

As models should only be executed once if they answer multiple predicates. Similar to model_opt, Li
adds a lower bound on accuracy while minimizing cost, or an upper bound on cost while optimizing

2The selectivity of a predicate SP
p is a predefined constant dependent on our dataset, and the selectivity of a group SG

g is a
query-dependent constant, while the selectivity of a timestep SJ

j is variable and dependent on model assignment and ordering.
Therefore we use the superscript to indicate which type of selectivity S represents, and the subscript to indicate which member
of the set it is.

4.1. Explaining the optimizer 24

accuracy. This makes the final program look like:

max facc(q)

such that
∑
m∈M

Xm,p = 1,∑
p∈P

Op,j = 1

∑
j∈J

Op,j = 1

fcost(q) ≤ c

For the order_opt version of AMCB and

min fcost(q)

such that
∑
m∈M

Xm,p = 1,∑
p∈P

Op,j = 1

∑
j∈J

Op,j = 1

facc(q) ≥ a

for the order_opt version of CMAB.

Examples
Similar for model_opt in section 4.1.1.1, we give an example of the involved calculations for order_opt.
Again we use the same dummy model zoo:

Model name Model index Cost sentiment person object
LR 0 5 0.9 0 0
SVM 1 10 0.95 0 0
DNN1 2 20 0 0.92 0.93
DNN2 3 25 0 0.95 0.97
DNN3 4 15 0 0.98 0
DNN4 5 15 0 0 0.99

Table 4.2: A (dummy) model zoo for determining the mentioning of objects and persons in a text, in addition to the sentiment
regarding them.

From the ’data’ that the models have trained on, we derive the following selectivities: SP
sentiment =

0.4, SP
person = 0.5, SP

object = 0.1. We consider the same query as before:

q := (person) ∧ (sentiment ∨ object) (4.30)

and optimize for cost. To once again ensure that our accuracy is somewhat acceptable, we impose a
lower bound:

facc(q) ≥ 0.9 (4.31)

Again we find that for optimal model assignment

XLR,sentiment = XDNN1,person = XDNN1,object = 1 (4.32)

and for all other Xm,p = 0. In practice we have to consider only two orderings: first execute LR,
and then DNN1, or the other way around. Because the group selectivity is query-dependent and not
assignment-dependent we show this calculation first. Because q is in CNF form, the groups are dis-
junctive. Therefore the group selectivity is the product of the probability of all predicates returning false.
Therefore SG

g1 = SP
person = 0.5 and SG

g2 = SP
sentiment · SP

object = 0.4 · 0.1 = 0.04.

4.1. Explaining the optimizer 25

Example 3 If we execute LR first, we derive the ordering Osentiment,0 = Oobject,1 = Operson,2 = 1
and the rest of Op,j = 0. Note how we can choose to first evaluate object or person, but due the
lower selectivity SP

object and object and sentiment being in the same group the optimizer will prioritize
evaluating object first. First we calculate Gg,j :

Gg1,0 ≥ 1− |Pg1 |+
∑

p∈Pg1

∑
0≤k≤−1

Op,k = 1− 1 + 0 = 0 (4.33)

Which is in line with our expectations that during the first timestep no predicates have yet been evalu-
ated. In fact, as person does not get evaluated until the last step, Gg1,0 = Gg1,1 = Gg1,2 = 0. Similar
for group 2, Gg2,0. In the second timestep sentiment has been evaluated, but not the entire group g2 is
yet evaluated and we see that Gg2,1 = 0. After the first timestep, the entire group has been answered
however and therefore we see

Gg2,2 ≥ 1−|Pg1 |+
∑

p∈Pg2

∑
0≤k≤1

Op,k = 1−1+Osentiment,0+Osentiment,1+Oobject,0+Oobject,1 = 1 (4.34)

and with the upper bound(s):

Gg2,2 ≤
∑

0≤k≤1

Op,k = Osentiment,0 +Osentiment,1 = 1 (4.35)

Gg2,2 ≤
∑

0≤k≤1

Op,k = Oobject,0 +Oobject,1 = 1 (4.36)

Because Gg,j = 0 for nearly all group-timestep combinations, we see that Wg,j = 1 for nearly every
combination except Wg2, 2:

Wg2,2 = 1−Gg2,2 · SG
g2 = 1− 1 · 0.04 = 0.96 (4.37)

ForHg,j we need somemore involved calculations. Note however the semantic meaning ofHg,j , which
is the selectivity of groups per timestep. Because we cannot evaluate g1 until the second timestep, we
therefore know Hg1,0 = Hg1,1 = Hg1,2 = 1. We also know Hg2,0 = 1, but

Hg2,1 = Hg2,0 ·(1−
∑

p∈Pg2

Op,0(1−SP
p)) = 1·(1−(Osentiment,0 ·(1−0.4)−(Oobject,0 ·(1−0.1) = 0.4 (4.38)

And therefore

Hg2,2 = Hg2,1·(1−
∑

p∈Pg2

Op,1(1−SP
p)) = 0.4·(1−(Osentiment,1·(1−0.4)−(Oobject,1·(1−0.1) = 0.04 (4.39)

Finally we therefore derive that if

SJ
j =

#groups∏
g=0

Wg,jHg,j (4.40)

then SJ
0 = 1, SJ

1 = 0.4, SJ
2 = 0.0384. Now we can calculate Rm,j . Note how Rm,j = 0 for all models

except LR and DNN1.

RLR,0 = SJ
0 ·

∑
p∈P

XLR,pOp,0CLR,p = 1 · 1 · 5 + 0 · 0 · ∞+ 0 · 0 · ∞ = 5 (4.41)

And similarly we derive RDNN1,1 = SJ
1 ·XDNN1,object ·Oobject,1 · CDNN1,object = 0.4 · 1 · 1 · 20 = 5 and

RDNN1,2 = 0.768 and therefore we finally derive

fcost(q) =
∑
m∈M

max
0≤j≤|P |−1

Rm,j = RLR,0 +RDNN1,1 = 5 + 5 = 10 (4.42)

4.2. Amendments to the optimizers 26

4.1.3. Considerations
This thesis’ main contributions is to extend Li’s model with MOO capabilities. However, there are also
some other places that the optimizer has room for improvement in terms of computational complexity.
As MOO is a more complex optimization problem, it is good practice to therefore attempt to decrease
computation time if we see opportunities to do so.

Convexity of the search space
In the background chapter we explained the issues with having product variables in a program. The
program proposed by Li contains a lot of product variables in the objective functions (facc and fcost).
There are however several methods for linearizing products of variables, depending on the types of
variables [3]. This could leave room for improvements in terms of speeding up the optimization process.

Transparency of the model
The definition of Bm is not linear like mentioned previously in section 4.1.1. In the original version of
model_opt this is dealt with by using the big-M method [7]:{∑

p∈P Xm,p ≤ 1− ε+ (u− 1 + ε) ·Bm∑
p∈P Xm,p ≥ Bm + l · (1−Bm)

(4.43)

When
∑

p∈P Xm,p ∈ [l, u] for every m ∈ M . This version was used in a previous (unpublished) version
of model_opt, but amended before first publication as part of our co-authorship.

This method is not ideal. First of all several constants need to be chosen. Second it also removes
some of the transparency from the model: an optimization model only solves the model of the problem,
not necessarily the problem itself. A model that uses constraints which are easy to understand (and of
course model the same concept) should have preference therefore, so possible solutions can be easily
checked for appropriateness.

Size of the search space
Next to transparency and non-convexity the size of the search space can also pose problems while
optimizing. The size of the search space can be defined as the amount of possible solutions. Many
of the solutions are not as ideal as we would like them to be. As mentioned in the example in section
4.1.1.1, it is possible to select a model that has zero accuracy for a predicate. This is somewhat
combated by adding a lower bound on accuracy, and in order_opt Cm,p is also chosen as infinite for
model-predicate combinations of zero accuracy. The lower bound is difficult to tune, especially due
to the penalty of a poorly-chosen model for a single predicate becoming smaller as the total amount
of predicates in a query increases. Additionally, Implementation-wise, infinity is implemented as a
very large number for Gurobi and therefore the solver needs to navigate many solutions it should be
discarding. Constraints that would help the solver discard these solutions a priori would be preferable
therefore, as this would decrease the size of the search space.

4.2. Amendments to the optimizers
Like mentioned in the previous section, there is room for improvement other than multi-objective opti-
mization. This will therefore be discussed in a separate section.

4.2.1. Amendments to equations
Linearization of Bm

Equation 4.43 can be explained semantically as follows: Bm should be non-zero if and only if at least
one Xm,p is non-zero for the same m. To ensure that there are two equations needed. The first one
ensures that Bm is non-zero when there is at least one Xm,p that is non-zero:

Xm,p ≤ Bm, ∀m ∈ M,p ∈ P (4.44)

This ensures that when a predicate is assigned to a model, Xm,p ’pushes Bm upwards’. For the pur-
poses of tidiness we also need to enforce that Bm can only be non-zero when there is at least one
Xm,p that is non-zero. This constraint is arguably unnecessary because of the nature of this being a

4.2. Amendments to the optimizers 27

minimization problem (and therefore the optimizer would want no unneeded costs to be made), but can
be included anyway to decrease the size of the search space:

Bm ≤
∑
p∈P

Xm,p, ∀m ∈ M (4.45)

This equation ensures that in the case of no Xm,p being non-zero for a certain m, Bm cannot become
non-zero as well. In case there is more than one predicate p for which Xm,p is 1, the upper bound is
’dominated’ by Bm ≤ 1, which is implied by it being a binary variable.

The performance of this equation will be explored in the results section, but the point of this amendment
is not necessarily to be quicker, but to be more transparent.

Appropriate solutions
Like mentioned before in section 4.1.1.1, the model does not have a constraint that only models which
are compatible with a predicate are used (e.g. a model designed for digit recognition should not be
used for object detection) and minimizing cost would lead to the overall cheapest model being selected
for every predicate (and in turn leading to 0% accuracy). In order_opt this is combated by extending
Cm to Cm,p, where Cm,p is Cm when Am,p > 0, and infinite elsewhere. While this is an option, it is
not ideal. Therefore a constraint enforcing that predicates are only answered by models which have
non-zero accuracy on that specific class could decrease the size of the search space. In short, we
want the following to hold:

Am,p = 0 ⇒ Xm,p = 0 ∀m ∈ M,p ∈ P (4.46)

But since Am,p are given constants, we need to formulate this as a constraint on Xm,p. Luckily due to
Am,p being a given constant, we can use non-linear functions like the ceiling function on it in order to
achieve the desired result:

Xm,p ≤ ⌈Am,p⌉ ∀m ∈ M,p ∈ P (4.47)

In this case, when Am,p = 0, the ceiling function will make sure that Xm,p = 0. If Am,p > 0, Xm,p ≤ 1
will hold which is already implied by Xm,p being a binary variable, and the upper bound will be void.

Linearizing product variables
One critical aspect of (MI)LPs is the usage of only linear equations to describe the solution space. Prod-
ucts of variables are not ideal, and it is not until the release of Gurobi 9 [14] that this particular solver
was able to deal with non-linear equations by adding support for non-convex search spaces. The solver
documentation digresses however that approximation methods are used, and non-linear equations are
significantly more resource-intensive than linear equations. Luckily, using mathematics and properties
of the model it is often possible to linearize products when binary variables are involved. This is the
case for equations 4.26 and 4.28. The methods for linearizing products of two binary variables or one
binary and one continuous variable are explained in more detail in a survey by Ashgari et al [3].

For linearizing 4.26, it should be noted that this equation can be written recursively 3:

Hg,j =

j−1∏
i=0

(1−
∑
p∈Pg

Op,i(1−Sp)) ↔ Hg,j = Hg,j−1 ·(1−
∑
p∈Pg

Op,j−1(1−Sp)), ∀g ∈ q, 1 ≤ j ≤ |P | (4.48)

Now a variable Qg,p,j can be introduced that takes the value of Hg,jOp,j :

Qg,p,j ≤ M ·Op,j ∀g ∈ q, p ∈ Pg, 1 ≤ j ≤ |P | (4.49)
Qg,p,j ≥ Hg,j − (1−Op,j)M ∀g ∈ q, p ∈ Pg, 1 ≤ j ≤ |P | (4.50)

0 ≤Qg,p,j ≤ Hg,j ∀g ∈ q, p ∈ Pg, 1 ≤ j ≤ |P | (4.51)

and the following equation can be used henceforth:

Hg,j = Hg,j−1 −
∑
p∈Pg

Qg,p,j−1(1− Sp) (4.52)

3This alternative formulation is not mentioned in the original paper by Li, but used in her implementation [20])

4.3. Towards Multi-objective optimization 28

Equation 4.28 can also be linearized in a similar fashion as 4.26 by introducing a variable Ym,p,j that
takes on the value of Xm,pOp,jSj . It is possible to first linearize Xm,pOp,j and then use the same
procedure as for equation 4.49, but it is also possible to linearize directly:

Ym,p,j ≤ M ·Xm,p ∀m ∈ M,p ∈ P, 0 ≤ j ≤ |P | (4.53)
Ym,p,j ≤ M ·Op,j ∀m ∈ M,p ∈ P, 0 ≤ j ≤ |P | (4.54)
Ym,p,j ≥ Sj − (2−Xm,p −Op,j)M ∀m ∈ M,p ∈ P, 0 ≤ j ≤ |P | (4.55)

0 ≤Ym,p,j ≤ Sj ∀m ∈ M,p ∈ P, 0 ≤ j ≤ |P | (4.56)

This new variable can now be substituted into 4.28:

Rm,j =
∑
p∈P

Ym,p,jCm,p (4.57)

It should be noted that the calculations for accuracy and total selectivity also include a lot of product
variables. In case of the calculation for accuracy, the amount of extra variables that need to be in-
troduced for linearizing so many binary variables is considerable. For the selectivity, linearization of
products of continuous variables is needed, which can only be approximated. The gain by linearizing
the equations above is already considerable enough to conclude this subsection. The results of adding
these equations will be discussed in the final section of this chapter.

4.3. Towards Multi-objective optimization
We have discussed the original optimizers and some improvements that were made upon them. The
following two sections will discuss the bulk of this work’s contributions, namely the addition of MOO.
Some preprocessing has to be done however, and it is fitting to discuss this in its own section.

4.3.1. Amendments to objective functions
For the canonical form for MOO problems (see equation 3.4) all objectives are functions that need
to be minimized. This is not ideal for both model_opt and order_opt, which aim to minimize cost but
maximize accuracy. This can be easily mitigated however by introducing a new variable aptly named
’accuracy loss’:

facc_loss(q) = 1− facc(q) (4.58)
It should go without saying that minimizing facc_loss is equivalent to maximizing facc. A more difficult
issue however is the difference in units that the objectives have. Accuracy indicates a percentage, and
might not be uniformly distributed over [0, 1]. Cost can range in completely different ways. This means
that an optimizer can favour one objective, because optimizing for one will lead to greater improvements
over the other. It is therefore appropriate to both scale and normalize objectives. For this the following
formula is used, as mentioned in the survey paper by Marler and Arora [24]:

F trans
i =

Fi(x)− F ◦
i

Fmax
i − F ◦

i

(4.59)

Where Fmax refers to the maximum value that the objective takes, and F◦ the utopia point. This method,
also called ”true normalization”, ensures that all possible values for the objectives are scaled between
0 and 1 in reference to the utopia point and the worst case value while conserving the underlying
distribution. For fcost the normalized version then is:

f trans
cost =

fcost − f◦
cost

fmax
cost − f◦

cost

(4.60)

But for accuracy we need to be slightly smarter. Note how we can calculate the utopia and max point
greedily (see section 4.3.4). These give us values for facc and fcost. Because we need to normalize
facc_loss, we need to transform equation 4.59 somewhat:

f trans
acc_loss =

facc_loss − (1− f◦
acc)

(1− fmin
acc)− (1− f◦

acc)
=

facc_loss − 1 + f◦
acc

f◦
acc − fmin

acc

(4.61)

Note how the normalized utopia point is now located at zero. For readability purposes we will now
continue under the assumption that optimization is done over normalized objectives, and will not be
stated outright everytime.

4.3. Towards Multi-objective optimization 29

4.3.2. Addition of a third objective
Having both accuracy and cost as objectives is already sufficient to treat this problem as an MOO prob-
lem. One advantage of using MIP for this query optimization problem is that adding new objectives
is simple once you find the right equations to add to the program. To demonstrate this we consider a
third objective that could be of interest to optimize for, namely that of memory (more specific, storage
footprint).

Before we add it to the optimizer, we first need to formalize it as part of the model zoo. Let D ∈ N|M |

a vector denoting the amount of bytes needed to store model m ∈ M . We add it to the model zoo as
R = (M, I, P,A,C,D), and now the dummy model zoo could look something likes this:

Model name Model index Cost Memory sentiment person object
LR 0 5 500 0.9 0 0
SVM 1 10 600 0.95 0 0
DNN1 2 20 1200 0 0.92 0.93
DNN2 3 25 1300 0 0.95 0.97
DNN3 4 15 1000 0 0.98 0
DNN4 5 15 1100 0 0 0.99

Table 4.3: A (dummy) model zoo for determining the mentioning of objects and persons in a text, in addition to the sentiment
regarding them.

Note that calculating the total memory footprint of the used models is quite simple. We use the
indicator variable Bm and derive:

fmem(q) =
∑
m∈M

BmDm (4.62)

This objective is the same for both model_opt and order_opt.

4.3.3. Weight calculation
Like mentioned in section 3.3.1.3, many MOO methods use weights in order to indicate user prefer-
ences. However, ”choosing numerical weights based on semantic preferences can be a tedious chore”
[24]. Therefore there are methods on calculating weights based on semantic preferences. As this work
is not about establishing which is the best choice of numerical weights for ML inference queries, we
use one of those methods in order to calculate weights for all weighted methods. For this work we are
going with a combination of a ranking method and a categorization method [34]. To calculate these
weights, order the objectives in categories based on their importance. If cni denotes the number of the
category ci, with the most important categories last, the weights of the objectives in ci are calculated
as follows:

wl =
i∑

j j · #cj
, l ∈ ci (4.63)

Example 4 let a, b, c, d objectives ordered as a ∈ c1, b, c ∈ c2, and d ∈ c3. The total sum is then
calculated as 1 · 1 + 2 · 2 + 1 · 3 = 8 and then wa = 1

8 , wb = wc =
2
8 and wd = 3

8

Unless specified otherwise this method is used to calculate weights for weighted methods.

4.3.4. Greedy solutions
Asmentioned before we transform the objectives to be t́ruly normalized.́ Calculating Fmax and F◦ luckily
is easy in our case: we can use a greedy strategy to calculate them. In the paper by Li [21] a greedy
optimizer is mentioned as comparison to model_opt and order_opt. As the original paper attempted to
look at the problem as a version of Knapsack, a more sophisticated greedy method was necessary. In
this work we use a simpler version that does not need to heed a bound. The greedy algorithm is used
to calculate F ◦ for accuracy as follows:

Xm,p =

{
1 if max(A) = Am,p

0 elsewhere
,m ∈ M, p ∈ P (4.64)

4.3. Towards Multi-objective optimization 30

and similarly for cost:

Xm,p =

{
1 if Cm = min{C(n) where An,p > 0}
0 elsewhere

,m ∈ M, p ∈ P (4.65)

to make sure that only models are used for their intended purpose. The calculation for memory is the
exact same but noted as D rather than C.

The calculation for Fmax is then similar. For cost and memory:

Xm,p =

{
1 if Cm = max{C(n) where An,p > 0}
0 elsewhere

,m ∈ M, p ∈ P (4.66)

Xm,p =

{
1 if Am,p = min{An,p where An,p > 0}
0 elsewhere

,m ∈ M, p ∈ P (4.67)

As calculating all greedy solutions is needed for the MO optimizer they will not be used for baseline
comparison.4

Greedy-MOO
The greedy method that Li proposes is used as baseline comparison for her work. For our work, we
propose a similar greedy method that balances objectives. We use a utility function U(m, p) for a
predicate-model combination as

U : M × P → [0, 3] , U(m, p) =
1−Am,p

1−min{An,p|n ∈ M}
+

Cm

maxC
+

Dm

maxD
(4.68)

The actual model selection is then quite similar to the other greedy methods:

Xm,p =

{
1 if U(m, p) = min{U(n, p)|n ∈ M where An,p > 0}
0 elsewhere

,m ∈ M, p ∈ P (4.69)

In short, this method selects the model for each predicate that has the highest utility. We do not model
greedy model ordering. This method ignores the fact that choosing a model with slightly less utility for
a predicate might be more advantageous if it can also be used for answering other predicates. In fact,
we can prove that greedy-MOO does not guarantee Pareto optimality by providing a counterexample:
Example 5 Consider the dummy model zoo with some small amendments:

Model name Model index Cost Memory sentiment person object
LR 0 5 500 0.9 0 0
SVM 1 10 900 0.95 0 0
DNN1 2 20 1200 0 0.92 0.93
DNN2 3 25 1300 0 0.96 0.98
DNN3 4 15 1000 0 0.98 0
DNN4 5 15 1100 0 0 0.99

We generate the following ’utility’ table using the definition of our utility function (equation 4.68). We
ignore model-predicate combinations where Am,p = 0.

Model name sentiment person object
LR 1.58
SVM 1.59
DNN1 2.72 2.92
DNN2 2.5 2.29
DNN3 1.25
DNN4 1.59

4Authorial note: I realized very late that this greedy algorithm is incorrect. For normalization purposes the actual MIP is solved
for the utopia point, and the greedy solution is used for the worst case solution. There was no time for me to fix this in a better
way.

4.4. Explored MOO methods 31

Consider the query sentiment ∨ (person ∧ object). The greedy algorithm selects LR to answer
sentiment, DNN3 to answer person and DNN4 to answer object, thereby achieving 0.99702 in accuracy,
35 in cost, and 2600 for memory. However, when we select SVM to answer sentiment and DNN2 to
answer both person and object, we achieve 0.99704 for accuracy, 35 for cost, and 2200 for memory.
We can find a solution that improves on accuracy and memory while keeping the cost the same. In
short, the solution found by greedy-MOO is not a Pareto-optimal solution. We therefore conclude that
greedy-MOO does not guarantee Pareto optimality.

4.3.5. MOO formalization
Before we move on to the methods that were considered for our optimizer, we end this section by
stating the proper MOO formalization of the problem in canonical form. If facc_loss, fcost and fmem for
our objective functions, then MO_model_opt (multi-objective model_opt) can be formulated as follows:

min [facc_loss(q), fcost(q), fmem(q)]

such that
∑
m∈M

Xm,p = 1

and for MO_order_opt we retrieve a similar formulation:

min [facc_loss(q), fcost(q), fmem(q)]

such that
∑
m∈M

Xm,p = 1,∑
p∈P

Op,j = 1

∑
j∈J

Op,j = 1

4.4. Explored MOO methods
Now that all definitions, problem statements, background has been established we finally come to one
of the main research questions of this work: which MOO method is the best for this model? To answer
this question, we consider several methods from the survey paper by Marler and Arora [24] and imple-
ment them for our solver. These methods vary in many different ways, which is why we consider so
many of them. For more details, further reading, and possible variations the reader is referred to the
survey paper [24]. Only methods with prior articulation of preferences are considered due to their ease
in implementation and the computational resources available.

In previous chapters we mainly discussed theoretical concepts around MOO. To give some intuition
on the difference between methods, we will also provide figures to demonstrate the difference.

4.4. Explored MOO methods 32

Figure 4.2: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost.

In the above figure we plotted the (approximated) solution space and marked the solutions that
were found by several MOO methods. Every dot represents the accuracy and cost of a query plan
found for our query. Notice how the methods find different solutions in the solution space. The solution
found is dependent on the preference profile we chose (i.e. how the two objectives relate to each other
in importance), but methods that use the exact same preference profile still manage to find different
solutions. Note especially how some methods, like the goal method, do not find Pareto optimal solu-
tions: we can go more to the right and find a more accurate plan with the same cost, or go down and
find a query plan with the same accuracy and lower cost (but in this example we purposefully chose
bad goals to demonstrate this). In the following section we will discuss all of these methods and how
they work. Additionally we will provide an example of what the MIP looks like for model_opt using this
method, and a figure plotting the solutions over several preference profiles. In these figures memory
is neglected, due to the legibility of 2D figures.

For the examples we use a hierarchy of accuracy⇒cost⇒memory and weights of 1
2 for accuracy, 1

3 for
cost, and 1

6 for memory.

4.4.1. The weighted global criterion
The weighted global criterion is a method that adds all objectives to one single objective function U
using weights. U is defined as

U =

k∑
i=1

wiFi(x)p (4.70)

Where p is some chosen constant and the weights wi indicate preference. While the weights indicate
preference between objectives, increasing p can also lead to bigger differences between objectives.
This method is Pareto sufficient and Pareto necessity has not yet been disproven. The weighted global
criterion method uses, like several other methods, a utility function U to indicate the value of a solution.

Example 6 For the weighted global criterion with p = 3 the program for model_opt would look like

min 1

2
facc_loss(q)

3 +
1

3
fcost(q)

3 +
1

6
fmem(q)3

such that
∑
m∈M

Xm,p = 1

4.4. Explored MOO methods 33

Figure 4.3: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the weighted global criterion, varying over preference profiles. Solutions that fall on the same point are

marked with a triangle.

In the above figure we see that the difference between drastically different weights becomes rather
small: this is due to the p value, that ’scales’ these relative differences. Even with very different weights,
the green and blue dot fall on the same solution due to their different p values. This would not work
the same way if the objectives were not normalized. Because the objective values now range from 0
to 1 (we optimize over normalized objectives, but our visualizations are over the original values), the
p-exponent causes the utility to decrease. If the objectives were larger than one, the exponent would
blow the utility up.

In other words, for normalized objectives, a larger p value leads to all possible solutions (by varying over
weights) are close together, thereby navigating a small part of the Pareto frontier. For non-normalized
objectives that are larger than 1, a large p value leads to the solutions being spread out over the Pareto
boundary.

4.4.2. The weighted sum method
The weighted sum is a variation of the weighted global criterion where p = 1, thereby making it a linear
function. It is therefore a popular method when linear constraints and objectives are desired, and only
the weights have to be tuned. Just like the weighted global criterion the method is Pareto sufficient.

Example 7 For the weighted sum the program for model_opt would look like

min 1

2
facc_loss(q) +

1

3
fcost(q) +

1

6
fmem(q)

such that
∑
m∈M

Xm,p = 1

4.4. Explored MOO methods 34

Figure 4.4: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the weighted sum, varying over preference profiles.

In the figure above we see the effect of lowering the p value: the different weights cause the chosen
solutions to be spread out over the Pareto boundary, in comparison to the weighted global criterion.

4.4.3. The lexicographic method
The lexicographic method is a method that uses hierarchy for indication of preferences. An ordering of
the objectives is given, and every iteration the problem is solved for that objective. After every iteration,
the objective value is given to that objective as an upper bound, and the next objective is optimized.
This method ensures a solution that is Pareto optimal, but is not suitable when a compromising solution
is desired. It also means that the optimizer needs to be run several times, which can lead to longer
computation times.

Example 8 For the lexicographical method the model_opt optimizer needs to be run three times. Using
the hierarchy stated above, we first solve

min facc_loss(q)

such that
∑
m∈M

Xm,p = 1

if a is the optimal value for accuracy loss (i.e. the objective value) we then solve for cost, adding a
bound:

min fcost(q)

such that
∑
m∈M

Xm,p = 1

facc_loss(q) ≤ a

4.4. Explored MOO methods 35

And if we again obtain c for this program’s objective value, we lastly solve

min fmem(q)

such that
∑
m∈M

Xm,p = 1

facc_loss(q) ≤ a

fcost(q) ≤ c

Figure 4.5: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the lexicographic method, varying over preference profiles.

For this problem there are only 2 possible preference profiles: accuracy being the most important
objective, or cost. Notice how this results in two solutions that are on near opposite ends on the Pareto
boundary. We do therefore see with the blue point that the solution is Pareto optimal: there is a dot to
the left with equal cost, but lower accuracy.

4.4.4. The weighted min-max method
In the weighted min-max method (also known as the weighted Tchebycheff method) introduces an
ancillary variable λ that serves as an upper bound for every objective:

wi(Fi(x)− F ◦
i) ≤ λ, i = 1, ..., k (4.71)

after which λ is minimized. The advantage of this method is that is one of the few simpler methods that
is necessary for Pareto optimality. The drawback it that it only ensures weak Pareto optimality.

4.4. Explored MOO methods 36

Example 9 If we use the weighted min-max method for model_opt, we obtain the following program:

min λ

such that
∑
m∈M

Xm,p = 1,

1

2
(facc_loss(q)− facc_loss(q)

◦) ≤ λ

1

3
(fcost(q)− fcost(q)

◦) ≤ λ

1

6
(fmem(q)− fmem(q)◦) ≤ λ

Figure 4.6: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the weighted min-max method, varying over preference profiles.

Notice how we find the exact same solutions as for the weighted sum method (figure 4.4). In this
case however, we are not ensured that for other queries only Pareto optimal solutions are found.

4.4.5. Exponential weighted criterion
The exponential weighted criterion is another method in which all objectives are combined into a utility
function U :

U =

k∑
i=1

(epwi − 1)epFi(x) (4.72)

This method is both sufficient and necessary for Pareto optimality, but not ideal due to the risk of
numerical overflow in the exponent.

Example 10 For the exponential weighted criterion the program if p = 3 for model_opt would look like

min (e
3
2 − 1)e3·facc_loss(q) + (e

3
3 − 1)e3·fcost(q) + (e

3
6 − 1)e3·fmem(q)

such that
∑
m∈M

Xm,p = 1

4.4. Explored MOO methods 37

Figure 4.7: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the exponential weighted criterion, varying over preference profiles.

Notice how the exponential weighted criterion finds only the same solution three times, over widely
varying preference profile. We do digress that for this figure we had to enable a certain approximation
method (infeasibility relaxation) that reduces the quality of solutions, meaning that the found solutions
might actually be infeasible but feasible in the approximation. For the actual experiments this approxi-
mation method was not used, but for the purpose of visualization it was used for this example.

4.4.6. Weighted product method
Similar to the previous, the weighted product method also combines all objectives into a single function
U :

U =

k∏
i=1

Fi(x)wi (4.73)

Similar to the exponential weighted criterion, this method can be computationally expensive.

Example 11 We formulate the program for model_opt using the weighted product method. For this
method we have to translate the weights to integers, for which we have taken the relative inverse
weight (w′

i =
wi

min(w)) and so:

min facc_loss(q)
3 · fcost(q)2 · fmem(q)1

such that
∑
m∈M

Xm,p = 1

4.4. Explored MOO methods 38

Figure 4.8: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the weighted product, varying over preference profiles.

For the weighted product method we encountered the same problems as for the exponential weighted
criterion.

4.4.7. Goal programming method
Goal programming methods minimize the distance of the solution to some predefined goal b. This can
be done in multiple ways, but the method used in this work is the following:

min
k∑

i=1

(d+i + d−i) (4.74)

such that Fj(x) + d+j − d−j = bj , j = 1, ..., k, (4.75)
d+j , d

−
j ≥ 0, j = 1, ..., k, (4.76)

d+j · d−j = 0, j = 1, ..., k (4.77)

This method does not guarantee any kind of Pareto optimality, but can have great potential based on a
well-chosen goal. An obvious choice for example would be to choose the utopia point as the goal, as
long as it can be calculated easily. Setting a Pareto optimal point or the Utopia point as the goal also
guarantees Pareto optimality[25]. It should be noted that setting the Utopia point leads to a method
that is functionally identical to the weighted sum method (with equal weights).

Example 12 If we take goals of 0 for accuracy loss, 0.1 for cost, and 0.2 for memory (these goals are

4.4. Explored MOO methods 39

normalized), we obtain the following program for model_opt using the goal method:

min
3∑

i=1

(d+i + d−i)

such that
∑
m∈M

Xm,p = 1

facc_loss(q) + d+1 − d−1 = 0

fcost(q) + d+2 − d−2 = 0.1

fmem(q) + d+3 − d−3 = 0.2

d+j , d
−
j ≥ 0, j = 1, ..., 3

d+j · d−j = 0, j = 1, ..., 3

Figure 4.9: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various solutions
are plotted using the goal method, varying over preference profiles.

Notice how a good choice of a goal leads to a Pareto optimal solution, in case of the blue and red dot.
The green dot is however not Pareto-optimal.
The goal method is popular due to its usability and therefore we will also be considering several varia-
tions on it.

The first variation on the goal method we are considering is the Archimedean goal programmingmethod
[5], which is also known as the weighted goal programming method [25]:

min
k∑

i=1

wi(d
+
i + d−i) (4.78)

such that Fj(x) + d+j − d−j = bj , j = 1, ..., k, (4.79)
d+j , d

−
j ≥ 0, j = 1, ..., k, (4.80)

d+j · d−j = 0, j = 1, ..., k (4.81)

4.4. Explored MOO methods 40

This allows the user to indicate preferences both by goals and weights. When the utopia point is set,
this method is functionally identical to the weighted summethod. Just like the regular goal programming
method, the method guarantees Pareto optimality when a Pareto optimal goal is set.

Example 13 By taking the same goals, we obtain the following program for model_opt using the
Archimedean goal method:

min1
2
(d+1 + d−1) +

1

3
(d+2 + d−2) +

1

6
(d+3 + d−3)

such that
∑
m∈M

Xm,p = 1

facc_loss(q) + d+1 − d−1 = 0

fcost(q) + d+2 − d−2 = 0.1

fmem(q) + d+3 − d−3 = 0.2

d+j , d
−
j ≥ 0, j = 1, ..., 3

d+j · d−j = 0, j = 1, ..., 3

Figure 4.10: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various
solutions are plotted using the Archimedean goal method, varying over preference profiles.

Notice how by varying over the weights we can actually find very different points than the regular goal
method.

The other variation we consider is a combination of the weighted min-max method and the goal
method, also known as the goal attainment method [9]:

min
x∈X,λ

λ (4.82)

such that Fi(x)− wiλ ≤ bi i = 1, 2, ..., k (4.83)

When the utopia point is set as the goal this method is functionally identical to the weighted min-max
method, and therefore does not guarantee Pareto optimality when setting a clever goal, unlike the other
discussed goal programming methods.

4.4. Explored MOO methods 41

Example 14 Using the same goals we obtain the following program for model_opt using goal attain-
ment method:

min λ

such that
∑
m∈M

Xm,p = 1

facc_loss −
1

2
λ ≤ 0

fcost −
1

3
λ ≤ 0.1

fmem − 1

6
λ ≤ 0.2

Figure 4.11: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various
solutions are plotted using the goal attainment method, varying over preference profiles.

Again we see that by using a variation of the goal method we can find different solutions.

4.4.8. Bounded objective method
The bounded objective method is the method used in the paper by Li [21]. In this method, one single
objective is chosen as the objective function, with all other objective functions receiving upper and lower
bounds. It is easy to use, but like the goal method, it does not guarantee any kind of optimality and
is even more vulnerable to poorly chosen parameters. For example, a well chosen goal can lead to
Pareto optimality, but poorly chosen bounds can lead to infeasibility or no kind of Pareto optimality.

Example 15 Because we set accuracy as the most important objective, we optimize this objective and
impose bounds on the other objectives. If we set 0 as the lower bound of both objectives, and 0.1 as
the upper bound for cost and 0.2 for memory (bounds are normalized) we obtain the following program

4.4. Explored MOO methods 42

for model_opt:

minfacc_loss(q)

such that
∑
m∈M

Xm,p = 1

0 ≤ fcost ≤ 0.1

0 ≤ fmem ≤ 0.2

Figure 4.12: The (approximated) solution space of a certain query, plotted as accuracy versus execution cost. Various
solutions are plotted using the bounded objective method, varying over preference profiles.

In this figure we have purposefully set bad bounds to demonstrate the difficulty with this method.
In case of the pink versus the green solution, they have equal accuracy. Our optimizer would not to
distinguish them however when optimizing for accuracy, as the optimizer only cares for optimizing one
objective (in this case accuracy). As long as the cost of both solutions falls within the bound set on
cost, the optimizer would not choose green over pink, even though green is an objectively better query
plan.

4.4.9. Summary
In the previous section we have introduced many MOO-methods. Because these methods both differ
and have similarities, we arrange them in some structured tables. First we can group methods by their
way of dealing with preferences:

4.4. Explored MOO methods 43

Preference method
Method Weights p-exponent Hierarchy Goal Bounds
Weighted global criterion x x
Weighted sum x
Lexicographic x
Weighted min-max x
Exponential weighted criterion x x
Weighted product x
Standard goal programming x
Archimedean goal programming x x
Goal attainment programming x x
Bounded objective x
Greedy MOO

From the examples in the previous section we can already conclude that some ways of indicating
preferences are not ideal. Because we are working normalized objectives, the p-exponent tends to
shrink differences among objectives, rather than enlarge them. Using a hierarchy is also not ideal, as
there are only 2 options for indicating preferences when using 2 objectives (6 when using 3 objectives),
and these preferences do not allow for good compromise solutions (solutions that try to balance ob-
jectives, rather than greatly favour one). A goal is a good way of indicating preferences, but some
knowledge of the solution space is needed in order to achieve good solutions (or just setting the utopia
point as the goal, with which you are usually emulating other methods). Bounds are in general a good
way of indicating preferences for our problem, but the bounded objective method does not guarantee
Pareto optimality which is far from ideal.

Next we consider some other characteristics typically encountered in the aforementionedMOO-methods:

Method Linear method Utility function Utopia point Pareto optimality
Weighted global criterion Possible x No Yes
Weighted sum x x No Yes
Lexicographic x No Yes
Weighted min-max x Yes Weak
Exponential weighted criterion x No Yes
Weighted product x No Yes
Standard goal programming x Possible Goal-dependent
Archimedean goal programming x Possible Goal-dependent
Goal attainment programming x Possible Weak, goal-dependent
Bounded objective x No No
Greedy MOO x x No No

In general we would prefer a linear method, as both model_opt and order_opt can get quite compu-
tationally expensive when considering queries of a large amount of predicates. Utility functions are a
great way of processing preferences, But there aren’t many methods that are also linear. Some meth-
ods make use of the utopia point, or give the option to (such as the goal methods). As the utopia point
is the closest we have to perfect optimality, it can serve as a good reference point. Most important is
the Pareto optimality column. Luckily most methods offer some kind of Pareto optimality, with only the
bounded objective method and greedy MOO being unable to do so.

5
Results

In the following chapter we demonstrate the performance of the amendments to model_opt and or-
der_opt in section 4.2, the performance of the MO optimizer proposed in section 4.3.5 using the meth-
ods from section 4.4. Finally we also investigate the performance of the MO optimizer on real-life
datasets using real models.

The questions we would like to answer by conducting these experiments are therefore:

1. Do the amendments proposed in section 4.2 affect the optimizers’ runtime, and are all amend-
ments beneficial?

2. Do these amendments improve on the actual computational complexity of the optimizer?
3. Which MOO method is the best choice for model_opt and order_opt?
4. How do the MO-optimizer-generated query plans perform on real-life data using real models in

comparison to naive methods?

Because the first three questions can be answered without actually running the query plans on real data,
we made the choice to run these experiments on a synthetic model zoo. This model zoo can be found
on Li’s github page [20] and is based on the COCO [22] dataset. The models in the accuracy and cost
tables do not actually exist, and therefore the inferencing capabilities can be quite unrealistically varied
(i.e. models can classify a small number of widely unrelated classes, with greatly varying accuracy).
This makes it a more interesting space for the optimizer to navigate. The selectivity however is based
on the actual dataset.

5.1. Equation amendments
First we consider the performance of the equation amendments proposed in section 4.2. To do this we
perform a thorough ablation study to investigate the impact of the amendment on the runtime of the
optimizer.

For model_opt we tested the following ablations:

1. No amendments
2. New linearization of Bm (equation 4.44 and 4.45)
3. Upper bound on accuracy (equation 4.47)
4. Upper bound on accuracy and new linearization of Bm

and for order_opt we tested:

1. No amendments
2. Linearization of Rm,j (Equation 4.57)
3. Upper bound on accuracy (Equation 4.47)
4. Linearization of Hg,j (Equation 4.52)

44

5.1. Equation amendments 45

5. Upper bound on accuracy and linearization of Hg,j

6. Linearization of Hg,j and linearization of Rm,j

7. Upper bound on accuracy and linearization of Rm,j

8. Upper bound on accuracy and linearization of Hg,j and linearization of Rm,j

To test this we randomly generated 10 queries of 8 predicates. Because we are trying to see the differ-
ence between ablations, it is not necessary to run the optimizer on a large amount of queries. The full
list of queries can be found in the appendix. Every query was optimized for respectively accuracy and
cost over every single ablation for model_opt and order_opt.

Li’s optimizer needs a lower bound on accuracy or upper bound on cost when optimizing, as men-
tioned before (otherwise the results are not very interesting). This bound is chosen halfway between
the optimal and worst value of that objective. This bound does influence the computation time, but
testing several bounds was out of scope for this work. For the impact of bound setting the reader is
referred to Li’s original paper [21].

To get a good estimate of the actual runtime, we ran every experiment 10 times. Computation time
was measured by Gurobi’s own runtime attribute, which gave a more consistent measurement than us-
ing Python’s time modules. In addition to runtime ’work’ was also considered, which is one of Gurobi’s
internal measurement of optimization effort, and is consistent between runs that have successfully
finished optimization (work is however not a perfect predictor of optimization time). From the Gurobi
documentation1, one work unit corresponds very roughly to one second on a single thread. As opti-
mization time can be very long for some queries, we marked a 30 minute cutoff as ’dnf’ (did not finish).
This is certainly not preferable, but limited hardware was available for the experiments on the optimizer
and concessions had to be made.

Next to computational performance, we also looked at a ’bug report’. For some queries the optimizer
could not find a solution, even though the greedy solution was available. This appeared to be an issue
with the optimizer software, as parameter tuning or setting a starting solution mitigated the issue, but
did not prevent it in every case. Therefore the Gurobi optimizer output status is also considered, which
returns a 2 when optimization has occurred successfully, a 3 if the model is deemed infeasible (which
is our ’bug’, as we know that the greedy solution must exist), and a 9 if the optimization timeout was
reached. Luckily output code 3 is rare, and was not encountered in most of our experiments. For more
output codes the reader is referred to the Gurobi documentation2. In case of an infeasibility error, the
greedy approach for accuracy was used as a starting solution, but the solver did not always manage to
move to a different solution, and even the starting solution did not guarantee that the infeasibility would
be resolved. In case of a timeout, the optimizer chooses the current solution of the solver and runtime
is truncated to 30 minutes.

The hardware used for the experiments in this section is a Windows environment with 16 GB RAM,
an Intel 8th generation i7 processor with 4 cores and no GPU. The TU Delft cluster was available to
the author but Gurobi could not be installed on it, therefore they had to resort to personal hardware for
query plan generation.

To compare the results, we are viewing them averaged over all queries. While it is more enlighten-
ing to look at individual queries, the figures are hard to read and demonstrate our conclusions in a less
coherent way. The figures without averaging can be found in the appendix.

1https://www.gurobi.com/documentation/10.0/refman/work.html
2https://www.gurobi.com/documentation/9.5/refman/optimization_status_codes.html

https://www.gurobi.com/documentation/10.0/refman/work.html
https://www.gurobi.com/documentation/9.5/refman/optimization_status_codes.html

5.1. Equation amendments 46

(a) Computation time in ms (b)Work

Figure 5.1: Results for model_opt for several queries over all ablations, optimized over both objectives

We see that the barplots have a fairly small standard deviation (indicated by the yellow error bar).
Like the axes, the error bars also scale logarithmically, so for the leftmost bars there is a larger standard
deviation than appears in comparison to the rightmost ablations.

Overall we see that when optimizing over cost, both the linearization of Bm and the upper bound on
accuracy offer improvement, having nearly a third of the original computation time. When optimizing
over accuracy, we see that mainly the upper bound on accuracy offers great improvements. The time-
out results have been kept in however (explaining why the average for some of the ablations is so
large), meaning that is hard to estimate how large the actual improvement is. All these results are also
corroborated by figure 5.1b, which shows the ’work’.

For good measure we check the error report:

Figure 5.2: Bug report for the different ablations over model_opt

5.1. Equation amendments 47

We see that the ablations without amendments and the one with only the linearization of Bm have
a few timeouts, about 10% of the results. Again the bug report reaffirms that the upper bound on ac-
curacy has great improvement on runtime. As the main goal of the alternative linearization of Bm was
transparency over computational speed, we conclude that both amendments benefit model_opt.

Next we look at the results for order_opt. From the paper by Li [21] we already know that order_opt is
significantly more computationally expensive than model_opt. Many of the results had timeouts, and
it is difficult to meaningfully represent the results therefore. Removing the timeouts results in skewed
graphs. therefore we decided to keep these results in, with the runtime of truncated results kept at the
cut-off of 30 minutes. The graphs therefore might not entirely accurately represent the true optimization
times, but the merit of the amendments is still evident.

First we consider the bug report:

Figure 5.3: Bug report for the different ablations over order_opt

We see a large number of timeouts for every ablation, but there are ablations with fewer timeouts.
Interesting is that we see that the first-to-last ablation has no timeouts, which includes all amendments
except the linearization of Hg,j . Next we compare the runtime and work:

5.1. Equation amendments 48

(a) Computation time in ms

(b)Work

Figure 5.4: Results for order_opt for several queries over all ablations, optimized over both objectives

Similar to model_opt, we see that the upper bound on accuracy poses great improvements, though
mainly when optimizing for accuracy. We see small but steady improvements with the linearization
of Rm,j , with all ablations that contain this amendment scoring better than the ones without. For the
linearization of Hg,j we see however that it does not lead to improvement, in fact it only increases
the runtime. We therefore conclude that it is not a beneficial amendment, and move forward with the
linearization of Rm,j and the upper bound on accuracy for order_opt.

5.2. Optimizer complexity 49

5.2. Optimizer complexity
In addition to showing all the amendments improved the optimizer, the complexity of the optimizer with
regards to the amount of predicates in a query is also worthy to investigate. The complexity of the
original optimizer has already been investigated by Li in the original paper [21]. For this section we are
interested in the complexity of the original optimizers versus the versions we propose.

We run the model (optimizing for either accuracy or cost) on a total of 70 queries, varying over the
number of predicates. The total list of queries can be found in the appendix. Only two ablations are
now considered, the original versions of the optimizers and the versions with all equations amended.
After 30 minutes, the output is truncated. This gives somewhat unideal results, but generally we would
not be interested anyway in an optimizer that needs that long to compute a solution. For the original
versions a bound halfway between the optimal and worst value was chosen. Because we wanted to
prioritize the amount of queries over the ’true’ runtime of individual queries, we only ran a single trial
over every experiment.

First we consider the ’bug report’. Due to working with larger amounts of predicates, a large amount of
queries did not finish (dnf).

5.2. Optimizer complexity 50

(a) Model_opt

(b) Order_opt

Figure 5.5: Bug report for running the optimizers over queries of a varying amount of predicates.

We see that for model_opt the new version slightly outperforms the original version in terms of time-
outs. For order_opt we see a much bigger difference however, with many more queries successfully
reaching a solution within half an hour. It is worth mentioning that the results posted in the original
paper boast a much lower computation time than achievable in this test setup, with only a few seconds
for order_opt for a high amount of predicates. The reason for this discrepancy has not been found.

Next we consider the results for model_opt.

5.2. Optimizer complexity 51

(a) Computation time (in ms)

(b)Work

Figure 5.6: Results for the different versions of model_opt

Again we use work as support for the claims we make about computation time. For these results
we removed the queries that timed out. This explains why we see inconsistent results: for the old
version fewer experiments successfully reached optimal solution within half an hour. The ones that
did could be considered to be ’easier’ queries, and our new version managed to find a result within
less time generally. However, for some of the harder queries the new version also reached a solution,
thereby increasing the average. Therefore it is quite hard to make relevant claims about the amount of
reduction in computational complexity the new version gives over the old version. This is also because
we removed the 24-predicate results, as too many reached a time-out in order to make meaningful
conclusions.

5.2. Optimizer complexity 52

We therefore tentatively conclude that for small amounts of predicates our new version outperforms
the old version for both accuracy and cost. For larger amount of predicates the differences between
both version become very pronounced for cost, but not very much so for accuracy. For order_opt we
retrieve similar findings:

(a) Computation time (in ms)

(b)Work

Figure 5.7: Results for the different versions of order_opt

All in all we see a reduction in the overall complexity for the optimizer. Drawing meaningful conclu-
sions about the amount of improvement the new version provides over the old version is still difficult to
quantify however.

5.3. MOO method comparison 53

5.3. MOO method comparison
Now that the computational gains of our optimizers have been shown, it is time to investigate the
different MOO methods on the optimizer. For this we test a set of 4-predicate queries, as this allows to
run more trials within the same amount of time. The query list can be found in the appendix.
For every query we test 6 different preference types:

• accuracy→cost→memory
• accuracy→memory→cost
• cost→accuracy→memory
• cost→memory→accuracy
• memory→accuracy→cost
• memory→cost→accuracy

on every MOO method. This hierarchy allows us to calculate weights using the method specified in
section 4.3.3 No preference types using objectives with equal importance were considered. For
goal methods we used 0 for the most important objective, 0.1 for the second, and 0.2 for the third.
This does not necessarily guarantee Pareto optimality, but we wanted to make sure that we were not
emulating other methods by setting the utopia point as the goal (see section 4.4.7 for elucidation). For
the bounded objective method we used 0 as the lower bound for every objective, 0.25 as the upper
bound for the second most important objective, and 0.5 for the least (the most important objective is
used to optimize on and does not require bounds). For the methods that use a p-exponent, we set
p = 3. For every experiment we again record the computation time, work, and optimizer output status.
The runtime cutoff is 30 minutes. The total amount of trials we run for every experiment is 10.
First we consider the ’bug reports’:

5.3. MOO method comparison 54

(a) Bug report for model_opt

(b) Bug report for order_opt

Figure 5.8: Bug reports for model_opt and order_opt over several queries for several MOO methods

5.3. MOO method comparison 55

It is clear that the methods relying on many product variables (exponential weighted criterion and
weighted product) are performing not as desired, with most experiments returning infeasibility errors.
While a valid solution exists, the amount of product variables likely makes the problem to difficult to
solve for Gurobi. The lexicographic method and the weighted global criterion also suffer from timeouts.
If we then consider the computation time and work for model_opt (excluding results with error codes):

Figure 5.9: Computation time in ms

5.3. MOO method comparison 56

Figure 5.10: Work

We see that most methods are performing somewhat in the range of 0-6000 ms. As the goal of this
section is to not only compare MOOmethods among each other, but also choose a ’winner’ to continue
further experiments with, we exclude several methods from our detailed analysis (either due to outliers
in computation time or optimization errors):

• Weighted global criterion
• Exponential weighted criterion
• Weighted product
• Lexicographic method

After discarding these methods, we can look at the results in more detail:

5.3. MOO method comparison 57

Figure 5.11: Computation time in ms

5.3. MOO method comparison 58

Figure 5.12: Work

The 8 methods left are now compared in more detail on runtime but also on suitability. The main
criteria we consider are

• Pareto sufficiency/necessity
• Ability to process preferences
• Optimization time

Archimedean goal method
The Archimedean goal method performs badly in comparison to the other methods in terms of com-
putation time. The possibilities of user input are quite versatile however: the combination of setting a
goal with weights allows the user to specify preferences in a more extensive way than other methods.
Especially the corollary that a Pareto-optimal goal point will lead to a Pareto optimal solution is a pow-
erful aspect. For less experiences user setting the utopia point as the goal point is a good compromise,
even though this method thereby emulates the weighted sum method.

Bounded objective method
The bounded objective method performs very well in terms of computation time, almost competing with
the greedy method for model_opt. One issue however remains the lack of Pareto optimality, and the
risks with infeasibility. It is up to the user to choose bounds that lead to a solution, and there might
be some trial and error involved. Especially when more objectives are involved, simply calculating the
greedy solution is not sufficient.

5.4. NLP experiments 59

Goal attainment method
The Goal attainment method performs fairly well in terms of computation time. One issue remains with
the lack of guarantee of Pareto optimality. Weak Pareto sufficiency is still good, but with the other
methods that can guarantee (strong) Pareto optimality with the same possibilities of user input the
method is not a great contender.

Goal method
The goal method performs worst in terms of computation time. It is sufficient for Pareto optimality as
long as the utopia point is set as the goal. There is however no further opportunity for indication of
preferences.

Greedy method
The greedy method performs, like expected, best of all methods in terms of computational speed. The
method does not allow for any indication of preference however. It would be possible to include weights,
but more sophisticated methods of calculating solutions exist.

Weighted min-max
The weighted min-max method performs well in terms of computation time, with some outliers. The
average computation time is fairly low and the standard deviation is small. The biggest problem is
however with the lack of Pareto sufficiency, which it cannot guarantee.

Weighted sum
The weighted sum performs well in terms of average computation time. There are a few outliers, but not
a lot. It is a powerful method, as it is Pareto sufficient and uses weights as indicators of preference. How-
ever, when conventional weight determination methods are insufficient, conveying preference through
numerical values is difficult.

Final choice of method
After considering 10 methods, it is possible to make a choice of what is the best method to proceed
with for the optimizer. We evaluated all methods on their robustness (i.e. whether every run returned
valid results), computation time, Pareto sufficiency, and the possibility for the user to customize. The
Archimedean goal method returns valid results across all runs, has acceptable computation time, can
guarantee Pareto optimality, but also allows for intuitive customization using both weights and goals. It
is therefore the best choice for this application. The second choice would be the weighted sum method,
but the Archimedean goal method emulates the weighted sum method anyway when the utopia point
is set as the goal.

5.4. NLP experiments
Like mentioned in the introduction, this work also concerns itself with practical applications of the query
optimizer. We have demonstrated the capabilities of our optimizer in a synthetic setting (only using
model zoo metadata), but we have not yet investigated the performance of our query plans on actual
data. While Li’s original paper [21] already proved the merit of using her optimizer over naive method,
we are curious whether our MOO-oriented query plans also balance objectives than naive methods (i.e.
greedy MOO). For the application domain of this work, we look at the field of NLP. This is due to the
natural nuances of language that are less prominent in object detection. For example, the meaning of
a sentence can drastically change depending on word ordering, the sentiment with which it is said, and
other subtleties. In short, the possibility of adding a second predicate to a simple boolean predicate,
thereby making it a more complex query (e.g. ”toxic and ”negative sentiment” versus solely ”toxic”).
Even though we do not rewrite popular NLP tasks to CNF or DNF queries, we have illustrated our mo-
tivations to explore NLP more extensively than covered in the original work by Li [21].

We therefore generate a small NLP model zoo of 2 tasks with several predicates. The reason why
we generate the model zoo ourselves is because most widely available models classify all predicates
within a task. Therefore, to make for an interesting optimization problem, a lot of tasks need to be
considered. It can be quite a lot of effort to compile such a zoo, and therefore we opted for choosing
to train our own models and compare with our own baselines.

5.4. NLP experiments 60

The tasks we are considering are

1. Toxicity classification
2. Sentiment analysis

For toxicity classification we use the jigsaw toxic comment classification dataset [16]. This dataset con-
tains a training dataset of about 150000Wikipedia comments, that are labelled as ”toxic”, ”severe_toxic”,
”threat”, ”identity_hate”, ”obscene”, and ”insult”. These labels are not exclusive, making it possible to
formulate queries on just this dataset. The Kaggle competition also gives a (partially) labeled test set,
with about 15000 labeled items.

For sentiment analysis we derive ground truth on the Jigsaw dataset using the model with highest
accuracy on huggingface3. We treat the sentiment analysis as a classification problem, where a senti-
ment is either ”negative”, ”neutral”, or ”positive.

On this dataset two types of models are trained:

• Logistic regression
• Long-short term memory neural network (LSTM)

The models are taken from the Kaggle code page4, and reformulated them to classify sentiment anal-
ysis or toxicity classification, with some variations in hyperparameters for the LSTM networks. For
implementation details, we refer to the supplementary GitHub5. After training the models on 60% of
the training data, the rest of the data is used as a testing set. Both accuracy and f1-scores are tracked
to allow for optimization over different accuracy metrics, but we optimize over f1-score, as there is
greater variance in this value. The full model zoo can be found in the appendix.

We generate a number of queries and generate query plans, which we execute on the test set. This is
not ideal, as the scores in the model zoo have also been derived using this testset. However, we are
not trying to show the performance of the model, but the efficacy of our query plans. We consider a
total of 40 queries, varying over 2,4,6 and 8 predicates. The query list can be found in the appendix.
For every query we generate a query plan using order_opt with the Archimedean goal method, with the
utopia point as the goal. We use equal weights for all objectives, in order to emulate the preference
pattern of greedy MOO. Obviously the power of our method is that we can process user preferences,
but in this experiment we are trying to show that our MOO method outperforms naive methods. There-
fore we also generate a query plan using greedy MOO as a comparison baseline. Greedy MOO uses
the default ordering of predicates for execution, with the model selection defined in section 4.3.4.1.

While the query plans were generated using the hardware setup mentioned in section 5.1, for run-
ning the query plans on actual data we used one of the TU Delft clusters. The cluster boasts 256 GB
RAM, a 24 core CPU, and an Nvidia A40. The model zoo was also generated with these specifications.

For the evaluation of results, it is important to keep a few things in mind. Broadly speaking, results
in academic research should show that your method is improving on a certain metric of the current
state of the art. In machine learning this could mean that your model has higher accuracy, or that it
achieves similar accuracy as other methods in a shorter amount of time. However, MOO is a fuzzy field:
we cannot irrefutably say that one solution is better than the other, as this is preference dependent. If
we were to order results as one being better than the other, we would have to define a utility function
or something similar (and many MOO methods already use a utility function to optimize anyway). The
only way we could confidently say that our optimizer is better than greedy MOO, would be if our opti-
mizer consistently gives a better value for every objective. This would be analogous to saying that our
optimizer generates Pareto optimal solutions (as long as a Pareto optimal goal is set) and greedy MOO
does not, which we already both know to be true from literature[25] and our proof (section 5.

3https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment?text=I+like+you.+I+love+you
4Logistic regression: https://www.kaggle.com/code/tunguz/logistic-regression-with-words-and-char-n-grams

LSTM: https://www.kaggle.com/code/sbongo/for-beginners-tackling-toxic-using-keras
5https://github.com/marietteschonfeld/MILQO

https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment?text=I+like+you.+I+love+you
https://www.kaggle.com/code/tunguz/logistic-regression-with-words-and-char-n-grams
https://www.kaggle.com/code/sbongo/for-beginners-tackling-toxic-using-keras
https://github.com/marietteschonfeld/MILQO

5.4. NLP experiments 61

Keeping this in mind, we consider the results. For these figures we visualize both the average of
the obtained objectives (so what was measured, not predicted by our optimizers) and the actual values
in bar charts:.

Figure 5.13: Average f1-score using the MO order_opt query plan versus the greedy method

We see that the MO order_opt optimizer gives slightly higher accuracy than the greedy method. If
we look at individual query results:

Figure 5.14: f1-score of all queries using the MO order_opt query plan versus the greedy method

5.4. NLP experiments 62

We can see that there are a handful of queries with zero f1-score, but that for most queries our
optimizer finds a query plan with higher f1-score. Next we consider the total evaluation time:

Figure 5.15: Average of computational cost of all queries using the MO order_opt query plan versus the greedy method

We see that for computation time that the greedy algorithm performs slightly better for the smaller
amounts of predicates. However, when the amount of predicates increases, the MO order_opt query
plan outperforms the greedy method. This is confirmed by the individual results:

5.4. NLP experiments 63

Figure 5.16: Computation time of all queries using the MO order_opt query plan versus the greedy method

Finally we look at the results for memory footprint:

Figure 5.17: Average of memory footprint of all query plans using the MOO query plan versus the greedy method

5.4. NLP experiments 64

For the memory footprint we see consistent improvements of MOO over the greedy method. This
is confirmed by the individual results:

Figure 5.18: Memory of all queries using the MO order_opt query plan versus the greedy method

We therefore tentatively conclude that MO order_opt generates better query plans, as it manages
to generate query plans with comparable/slightly better f1-score, less cost as the number of predicates
increases, and lower memory footprint. It is worth mentioning that our model zoo is not of great quality:
it contains only two types of models, and the execution time of the LSTM models is about 10 times
that of the LR models. Therefore, the greedy query plans greatly prioritize the LR models, while our
optimizer prefers to balance memory footprint and accuracy by choosing the LSTM models, which can
classify a larger amount of predicates with slightly higher accuracy. In a more balanced model zoo the
benefit of our optimizer might be more apparent.

6
Conclusion

6.1. Summary
We have proposed an optimizer that can generate query plans for ML inference query plans which
are optimized for multiple objectives. Out optimizer improves on the computational complexity of the
original optimizer while generating higher-quality solutions, though the percentual gains remain difficult
to determine.

We have added memory as an objective to the optimizer, and compared several MOO-methods on
their suitability for the optimizer. The chosen method allows for user customization in two ways, while
generating Pareto-optimal solutions.

The resulting optimizer manages to find higher-quality query plans than naive methods for real NLP
data, thereby showing its capabilities in juggling objectives.

6.2. Evaluation of research questions
We discuss the initial research questions and whether we have found a satisfying answer for them.

What is the current standard for deriving machine learning inference query plans?
The current standard for finding ML inference query plans using model zoos can be found in a paper
by Li et al [21]. This paper proposes two MIP optimizers, an optimal-selection optimizer and an order-
optimal optimizer.

How do you define an optimizer for such a query that takes multiple objectives into account?
Due to Li using MIP optimizers, there are many MOO methods that can be implemented, by simply
amending the goal function. We have compared multiple methods and have chosen the Archimedean
goal method, as it allows for customization using both numerical weights and goal setting. The method
has sufficiently competitive runtime in comparison to other methods, but can guarantee Pareto optimal-
ity if the goal is beyond the Paretio frontier.

Is there room for adding other objectives?
Due to original optimizer being an MIP, adding a new objective is simple once the equations of mod-
elling the problem are derived. We therefore added the memory footprint of the models in the query
plan as an objective.

How does this optimizer perform against the current state of the art?
Due to the lack of comparable algorithms, we propose a naive greedy method that simulates MOO to
compare our optimizer to. Our optimizer finds query plans that are emanating the same preference
profile while improving objective values, especially for larger amounts of predicates.

How does this optimizer perform on NLP tasks?

65

6.3. Considerations and recommendations 66

The optimizer can find query plans for common NLP tasks in a reasonable amount of time, efficiently
juggling objectives. The generated query plans manage to find the data that matches the query with
higher accuracy and lower computation time than naive methods.

6.3. Considerations and recommendations
6.3.1. Approximation schemes
One of the prominent problems with our proposed optimizer remains the issue of runtime, especially
for queries for larger amounts of predicates. In an exploratory phase, we tested summing accuracies
of predicates, rather than multiplying them. This seemed to greatly reduce runtime, in line with our
expectations of product variables negatively impacting runtime. The documentation of Gurobi specifies
approximation schemes being used for non-convex problems, but the inner workings of this remain
unknown. However, the approximation schemes that Gurobi uses might be too sophisticated for our
needs. Using a simpler approximation scheme might reduce runtime. In addition to runtime, there are
also other reasons why we might prefer a simpler method. One big aspect of MOO is Pareto optimality.
However, when two solutions have extremely similar accuracy (like 0.98712 and 0.98713) both could
be considered to be Pareto optimal. For our case, we might only be interested in 4 decimal points.
Therefore we would like our optimizer to mark these two solutions as having equal accuracy. Doing so
would reduce the size of the Pareto frontier, discarding a lot of solutions we would consider to be of
equal quality.

6.3.2. Heuristics
One other opportunity to reducing runtime could be that of using heuristics over exact solving meth-
ods. A heuristic is a method that prioritizes finding a sufficiently good solution within reasonable time
over finding the exact optimal solution. Heuristics lend themselves especially well to MIPs, and many
methods use neighbor-based search (also known as local search) strategies, such as Tabu search [10]
or simulated annealing [32]. Because these methods make the impact of product variables void, they
could be of use to our optimizer.

6.3.3. Memory as an objective
In section 4.3.2 we added the memory or storage footprint of models as a third objective. This objective
is not necessarily the most interesting to optimize for however. Storage space is relatively cheap in
comparison to other computational resources, especially for the scale we are needing it. There are
however two other ways we can utilize memory:

1. The amount of intermediate data that needs to be worked with
2. The cost of unloading a large model

For this work there wasn’t enough time to investigate this matter in more detail. Therefore we add our
conjectures to this chapter for further research.

Size of intermediate data
The idea of using intermediate data storage as an objective for query optimization is not novel. In
fact, one of the papers mentioned in the related work section, namely that of Immanuel Trummer and
Christoph Koch [30], also utilizes this concept. With intermediate memory we mean the amount of
data that is moved down the ’tree’. As we want to filter data that does not fit the query we can just
not inference the data which we already know will never fit the query. For example, when looking for
yellow Volkswagen Polos, if a quarter of the pictures have a yellow object after running the first model,
we can discard 75% of the data, and our intermediate storage after the first step is only 25% of what
we started with. We only have to run the ’Polo’ model on the remaining 25% of data.

For this objective almost all of the building blocks have already been defined. The amount of data
that is used per step is already encapsulated within SJ

j . If we define the total amount of bytes of data
we would like to model inference one as ∆, we can then calculate the total memory as

fmem(q) =
∑
m∈M

BmDm +
∑
j∈J

SJ
j ∆ (6.1)

6.3. Considerations and recommendations 67

One issue which prevented us from investigating this matter properly was the mismatch between mem-
ory/storage footprint and internal memory. The storage footprint of a model is quite easy to calculate:
the amount of bytes that a file takes on disk is a builtin-function in Python. The internal memory of an
object is a lot more complicated to calculate, and is heavily dependent on the programming language
in which it is used. To figure out a way to unify storage footprint, a model’s internal memory usage and
intermediate data size proved to be a problem more complicated than initially thought. Investigating
this could be an interesting research alley, especially for edge (i.e. mobile) applications.

Cost of unloading a model
We already mentioned the relatively small issue of memory footprint. Moving a model from non-volatile
disk space to RAM in order to model inference is an expensive operation however [27]. From the
aforementioned book, we want to highlight the staggering difference between accessing time of mag-
netic disk (HDD) versus RAM memory: about 400000 times as long. The difference between flash
semiconductor memory (SSD) and RAM is less big (about 100 times in good circumstances), but still
considerable. In short, we want to avoid loading a model to RAM unless it has a lot of merit. Especially
for users working with HDD memory, the time penalty for model loading versus model execution could
be much more interesting to optimize for. There are two methods to go about this.

Relative cost
The accuracy of the original cost model of Li’s model has not been investigated in detail. If our cost
model was perfect, we would not need to do a lot of work, as we can just add the loading time of a
model to the execution time and let the optimizer find the solution with smallest cost. If we do not have
a very accurate predictor of cost, we can also ’lead’ the optimizer to solutions that we pre-emptively
know to be of merit. Therefore we can think about the relative cost of unloading a model. If we are
going to have to load an expensive model, we should at least run it on as much data as possible. This
is correlated with selectivity, but is not necessarily data-dependent. Therefore we can formulate an
objective that is not order-dependent.

First we define the amount of milliseconds needed to transfer a single byte from disk to RAM as δ.
It would be entirely possible to estimate this time per model like we do with execution cost, but that
would not give the user the opportunity to fill in a value for δ that is dependent on their hardware setup,
which is exactly what we would like to enable them to do.
The cost of unloading a model m ∈ M is then equal to

δDm

We want to make this time relative to the amount of data we hope to be inferencing on using this model.
This is correlated with the predicate selectivity SP

p , but somewhat inversely. For execution cost, we
want to avoid running expensive models on large amounts of data. In this case we wish to only use
expensive models if we are expecting to have to evaluate a large amount of data. Therefore we use

1− SP
p

and sum this over all predicates that model m wants to answer:∑
p∈P

(1− SP
p)Xm,p

And then the relative cost of unloading a model m is

δDm

∑
p∈P

(1− SP
p)Xm,p

If we now add this to the original cost functions we derive for model_opt:

fcost(q) =
∑
m∈M

BmCm + (
∑
p∈P

(1− SP
p)Xm,p)δDm

 (6.2)

6.4. Epilogue 68

and for order_opt we get

fcost(q) =
∑
m∈M

max
j∈J

Rm,j + δDm

∑
p∈P

(1− SP
p)Xm,p

 (6.3)

This amended cost model might move the optimizer to solutions that have a lower total model unloading
time, in case when the user’s δ value is particularly high in comparison to the model execution time.

A new cost model
Like mentioned before, the ideas above do not have to be used when we have an accurate cost model
for execution time. In that case we could just add the model unloading time to the execution cost, and
the optimizer will naturally find the solution with the best total execution time. But evaluating how ac-
curate our cost model is would not be the easiest task however. Questions that need to be answered
include (but are not limited to):

• How accurate is the projected execution cost on actual data?
• Which factors contribute to large inaccuracies (such as number of predicates, group size, data
size, etc)?

• How do we fix these issues?

In short, there are many more issues to be investigated around this model.

6.4. Epilogue
”Wow detective, that turned out to be a much more complex problem than I initially thought.” ”Indeed
constable, it is a shame that it took us almost 10 months, but I guess we were quite thorough in our
research.” ”I suppose our findings are not that relevant anymore for the hit-and-run case.” ”No, but we
found answers that are relevant for all problems of this form. I hope that we, or some other person,
can use our methodology for good.” ”I’m a little bit sad that we are done though. It was only starting
to get interesting. Shall we have a crack at the implementation of Tabu search?” ”Grab your computer
constable, we have work to do”.

Bibliography
[1] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of optimization solvers,” Journal

of Statistics and Management Systems, vol. 20, no. 4, pp. 623–635, 2017.
[2] M. R. Anderson, M. Cafarella, G. Ros, and T. F. Wenisch, “Physical representation-based predi-

cate optimization for a visual analytics database,” arXiv e-prints, arXiv–1806, 2018.
[3] M. Asghari, A. M. Fathollahi-Fard, S. Mirzapour Al-e-hashem, andM. A. Dulebenets, “Transforma-

tion and linearization techniques in optimization: A state-of-the-art survey,” Mathematics, vol. 10,
no. 2, p. 283, 2022.

[4] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, 4. Springer, 2006,
vol. 4.

[5] A. Charnes and W. W. Cooper, “Goal programming and multiple objective optimizations: Part 1,”
European journal of operational research, vol. 1, no. 1, pp. 39–54, 1977.

[6] E. F. Codd, “A relational model of data for large shared data banks,” in Software pioneers,
Springer, 2002, pp. 263–294.

[7] G. B. Dantzig, “Programming in a linear structure,” in Bulletin of the American Mathematical So-
ciety, AMER MATHEMATICAL SOC 201 CHARLES ST, PROVIDENCE, RI 02940-2213, vol. 54,
1948, pp. 1074–1074.

[8] R. Elmasri, S. B. Navathe, R. Elmasri, and S. Navathe, Fundamentals of Database Systems</Title.
Springer, 2000.

[9] F. Gembicki and Y. Haimes, “Approach to performance and sensitivity multiobjective optimization:
The goal attainment method,” IEEE Transactions on Automatic control, vol. 20, no. 6, pp. 769–
771, 1975.

[10] F. Glover, “Tabu search: A tutorial,” Interfaces, vol. 20, no. 4, pp. 74–94, 1990.
[11] D. Gómez and A. Rojas, “An empirical overview of the no free lunch theorem and its effect on real-

world machine learning classification,” Neural computation, vol. 28, no. 1, pp. 216–228, 2016.
[12] Z. Gu, E. Rothberg, and R. Bixby, Gurobi optimizer, https://gurobi.com/, Online. Accessed

on August 17th, 2022, 2009.
[13] N. Gunantara, “A review of multi-objective optimization: Methods and its applications,” Cogent

Engineering, vol. 5, no. 1, p. 1 502 242, 2018.
[14] Gurobi, Gurobi 9.0 delivers improved performance and major new features, https : / / www .

gurobi . com / news / gurobi - 9 - 0 - delivers - improved - performance - and - major - new -
features/#:~:text=Gurobi%209.0%20delivers%20breakthrough%20new, programming%
20(MIQP)%20problem%20types., Online. Accessed on August 17th, 2022, 2020.

[15] HuggingFace, Huggingface, https://huggingface.co/, Online. Accessed August 16th 2022.
[16] G. Jigsaw, Jigsaw toxic comment classification challenge, https://www.kaggle.com/c/jigsaw-

toxic - comment - classification - challenge, Online. Last accessed on October 3rd, 2022,
2017.

[17] D. Kang, P. Bailis, and M. Zaharia, “Blazeit: Optimizing declarative aggregation and limit queries
for neural network-based video analytics,” arXiv preprint arXiv:1805.01046, 2018.

[18] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope: Optimizing neural network
queries over video at scale,” arXiv preprint arXiv:1703.02529, 2017.

[19] K. Karanasos, M. Interlandi, D. Xin, et al., “Extending relational query processing with ml infer-
ence,” arXiv preprint arXiv:1911.00231, 2019.

[20] Z. Li, Optimizing-ml-query, https://github.com/zLizy/Optimizing-ML-Query, 2022.

69

https://gurobi.com/
https://www.gurobi.com/news/gurobi-9-0-delivers-improved-performance-and-major-new-features/#:~:text=Gurobi%209.0%20delivers%20breakthrough%20new,programming%20(MIQP)%20problem%20types.
https://www.gurobi.com/news/gurobi-9-0-delivers-improved-performance-and-major-new-features/#:~:text=Gurobi%209.0%20delivers%20breakthrough%20new,programming%20(MIQP)%20problem%20types.
https://www.gurobi.com/news/gurobi-9-0-delivers-improved-performance-and-major-new-features/#:~:text=Gurobi%209.0%20delivers%20breakthrough%20new,programming%20(MIQP)%20problem%20types.
https://www.gurobi.com/news/gurobi-9-0-delivers-improved-performance-and-major-new-features/#:~:text=Gurobi%209.0%20delivers%20breakthrough%20new,programming%20(MIQP)%20problem%20types.
https://huggingface.co/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://github.com/zLizy/Optimizing-ML-Query

Bibliography 70

[21] Z. Li, M. Schönfeld, W. Sun, et al., “Optimizing inference queries with model repositories,” Not
yet published, 2022.

[22] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in context,” in European
conference on computer vision, Springer, 2014, pp. 740–755.

[23] Y. Lu, A. Chowdhery, S. Kandula, and S. Chaudhuri, “Accelerating machine learning inference
with probabilistic predicates,” in Proceedings of the 2018 International Conference on Manage-
ment of Data, 2018, pp. 1493–1508.

[24] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,”
Structural and multidisciplinary optimization, vol. 26, no. 6, pp. 369–395, 2004.

[25] K. Miettinen, Nonlinear multiobjective optimization. Springer Science & Business Media, 2012,
vol. 12.

[26] S. Papadomanolakis and A. Ailamaki, “An integer linear programming approach to database
design,” in 2007 IEEE 23rd International Conference on Data EngineeringWorkshop, IEEE, 2007,
pp. 442–449.

[27] D. A. Patterson and J. L. Hennessy, Computer organization and design ARM edition: the hard-
ware software interface. Morgan kaufmann, 2016, p. 378.

[28] R. T. Rockafellar, “Lagrange multipliers and optimality,” SIAM review, vol. 35, no. 2, pp. 183–238,
1993.

[29] TensorFlow, Tensorflow hub, https://www.tensorflow.org/hub, Online. Accessed August
16th 2022.

[30] I. Trummer and C. Koch, “Multi-objective parametric query optimization,” The VLDB Journal,
vol. 26, no. 1, pp. 107–124, 2017.

[31] ——, “Solving the join ordering problem via mixed integer linear programming,” in Proceedings
of the 2017 ACM International Conference on Management of Data, 2017, pp. 1025–1040.

[32] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing: Theory and
applications, Springer, 1987, pp. 7–15.

[33] D. Xu, I. E. Yen, J. Zhao, and Z. Xiao, “Rethinking network pruning–under the pre-train and fine-
tune paradigm,” arXiv preprint arXiv:2104.08682, 2021.

[34] K. P. Yoon and C.-L. Hwang, Multiple attribute decision making: an introduction. Sage publica-
tions, 1995.

https://www.tensorflow.org/hub

A
Additional results

Like mentioned in section 5.1, looking at results of individual queries is more enlightening than the
average. Therefore we include these figures here.

71

72

Figure A.1: Computation time for model_opt over several queries

73

Figure A.2: Work for model_opt over several queries

74

Figure A.3: Computation time for model_opt over several queries

75

Figure A.4: Work for model_opt over several queries

B
Query list

B.1. 8 predicate query list
The following queries were used for the experiments in section 5.1:

1. (bottle ∨ keyboard) ∧ (zebra) ∧ (umbrella ∨ motorcycle) ∧ (airplane ∨ pizza ∨ stop_sign)
2. (pizza ∨ skateboard) ∧ (frisbee) ∧ (toothbrush ∨ hot_dog) ∧ (dining_table) ∧ (fork) ∧

(sports_ball)
3. (scissors ∨ truck) ∧ (frisbee ∨ skis ∨ mouse) ∧ (teddy_bear ∨ remote) ∧ (bus)

4. (stop_sign ∨ chair ∨ boat) ∧ (carrot ∨ skateboard) ∧ (bear) ∧ (pizza) ∧ (toothbrush)

5. (bench ∨ scissors) ∧ (bed ∨ dog) ∧ (pizza) ∧ (sheep ∨ dining_table ∨ tv)

6. (bottle ∧ keyboard) ∨ (zebra) ∨ (umbrella ∧ motorcycle) ∨ (airplane ∧ pizza ∧ stop_sign)
7. (pizza ∧ skateboard) ∨ (frisbee) ∨ (toothbrush ∧ hot_dog) ∨ (dining_table) ∨ (fork) ∨

(sports_ball)
8. (scissors ∧ truck) ∨ (frisbee ∧ skis ∧ mouse) ∨ (teddy_bear ∧ remote) ∨ (bus)

9. (stop_sign ∧ chair ∧ boat) ∨ (carrot ∧ skateboard) ∨ (bear) ∨ (pizza) ∨ (toothbrush)

10. (bench ∧ scissors) ∨ (bed ∧ dog) ∨ (pizza) ∨ (sheep ∧ dining_table ∧ tv)

B.2. Queries with increasing amount of predicates
The following queries were used for the experiments in section 5.2:

1. (laptop) ∧ (surfboard)

2. (toaster) ∧ (zebra)

3. (microwave ∨ fork)

4. (cell_phone) ∧ (book)

5. (bus ∨ spoon)

6. (elephant ∨ surfboard ∨ cat) ∧ (apple)

7. (microwave ∨ dining_table ∨ teddy_bear) ∧ (fire_hydrant)
8. (cup ∨ apple) ∧ (horse ∨ banana)

9. (elephant ∨ person ∨ skis) ∧ (parking_meter)

10. (baseball_glove) ∧ (fire_hydrant ∨ tv ∨ surfboard)

11. (donut ∨ clock ∨ bench) ∧ (boat ∨ surfboard) ∧ (laptop ∨ skis) ∧ (scissors)

12. (teddy_bear ∨ frisbee) ∧ (giraffe ∨ cow ∨ handbag) ∧ (broccoli ∨ apple ∨ parking_meter)

13. (motorcycle) ∧ (bowl ∨ sink ∨ oven) ∧ (train ∨ traffic_light) ∧ (cell_phone ∨ toothbrush)

14. (car ∨ hot_dog ∨ pizza) ∧ (airplane) ∧ (surfboard ∨ chair) ∧ (cow ∨ teddy_bear)
15. (truck ∨ sports_ball ∨ toaster) ∧ (skateboard ∨ teddy_bear) ∧ (bus ∨ laptop ∨ cat)

16. (refrigerator ∨ scissors) ∧ (kite ∨ spoon ∨ frisbee) ∧ (tv) ∧ (baseball_bat) ∧ (traffic_light ∨
keyboard ∨ mouse) ∧ (baseball_glove ∨ person)

76

B.2. Queries with increasing amount of predicates 77

17. (vase) ∧ (book) ∧ (scissors ∨ frisbee ∨ bed) ∧ (handbag ∨ orange) ∧ (sink ∨ donut) ∧
(oven ∨ dining_table ∨ surfboard)

18. (wine_glass) ∧ (baseball_glove ∨ kite ∨ bus) ∧ (bowl ∨ skateboard ∨ zebra) ∧ (parking_meter ∨
horse ∨ book) ∧ (train ∨ surfboard)

19. (banana) ∧ (donut) ∧ (baseball_glove) ∧ (vase ∨ remote) ∧ (couch) ∧ (bench ∨ boat) ∧
(traffic_light ∨ giraffe) ∧ (umbrella ∨ bowl)

20. (donut ∨ suitcase ∨ motorcycle) ∧ (cup ∨ car ∨ orange) ∧ (spoon) ∧ (sink) ∧ (horse) ∧
(sandwich ∨ cell_phone) ∧ (couch)

21. (remote ∨ sports_ball) ∧ (skis ∨ kite ∨ vase) ∧ (sheep ∨ cat ∨ bench) ∧ (toothbrush) ∧
(umbrella ∨ bottle ∨ suitcase) ∧ (truck ∨ snowboard) ∧ (toilet) ∧ (bed)

22. (boat ∨ chair ∨ laptop) ∧ (sports_ball ∨ spoon ∨ kite) ∧ (apple ∨ frisbee) ∧ (baseball_glove ∨
cow ∨ bowl) ∧ (zebra ∨ dog ∨ truck) ∧ (bench) ∧ (skis)

23. (fire_hydrant ∨ dog ∨ zebra) ∧ (skateboard ∨ microwave ∨ book) ∧ (toilet) ∧ (motorcycle) ∧
(banana ∨ vase) ∧ (orange ∨ knife) ∧ (cat ∨ bottle) ∧ (wine_glass ∨ cup)

24. (spoon ∨ cup ∨ cow) ∧ (fire_hydrant) ∧ (teddy_bear) ∧ (giraffe) ∧ (donut ∨ dog) ∧
(airplane) ∧ (surfboard ∨ chair) ∧ (skis ∨ laptop ∨ bear) ∧ (sports_ball ∨ bicycle)

25. (bird) ∧ (broccoli) ∧ (bowl) ∧ (sheep) ∧ (couch ∨ elephant ∨ scissors) ∧ (snowboard ∨
motorcycle) ∧ (person ∨ dining_table) ∧ (surfboard ∨ baseball_glove) ∧ (teddy_bear) ∧
(mouse ∨ knife)

26. (suitcase ∨ knife) ∧ (vase ∨ car) ∧ (laptop ∨ giraffe) ∧ (cell_phone ∨ donut) ∧ (airplane ∨
remote ∨ dining_table) ∧ (apple) ∧ (spoon ∨ boat) ∧ (tv ∨ sandwich ∨ carrot) ∧ (stop_sign ∨
orange) ∧ (bed)

27. (scissors ∨ kite ∨ stop_sign) ∧ (oven ∨ cell_phone ∨ wine_glass) ∧ (donut ∨ clock) ∧
(zebra ∨ carrot ∨ skis) ∧ (teddy_bear ∨ sports_ball ∨ frisbee) ∧ (snowboard ∨ train) ∧
(toothbrush ∨ laptop ∨ umbrella) ∧ (apple)

28. (laptop) ∧ (frisbee ∨ sink) ∧ (pizza ∨ banana ∨ teddy_bear) ∧ (refrigerator ∨ toaster ∨
bench) ∧ (boat) ∧ (mouse ∨ tennis_racket ∨ traffic_light) ∧ (sports_ball ∨ knife) ∧
(motorcycle) ∧ (bus) ∧ (baseball_glove ∨ skateboard ∨ giraffe)

29. (sandwich) ∧ (wine_glass ∨ sink ∨ person) ∧ (skateboard ∨ suitcase) ∧ (dining_table) ∧
(toaster ∨ car) ∧ (clock ∨ toothbrush) ∧ (oven ∨ carrot) ∧ (skis ∨ fork) ∧ (bed) ∧ (horse ∨
sports_ball) ∧ (pizza ∨ bear)

30. (frisbee) ∧ (couch ∨ donut) ∧ (fork ∨ microwave) ∧ (tennis_racket) ∧ (oven ∨ backpack) ∧
(toaster ∨ bear) ∧ (train) ∧ (orange ∨ spoon ∨ bench) ∧ (dining_table) ∧ (bed) ∧ (tv ∨
motorcycle ∨ horse) ∧ (handbag)

31. (stop_sign) ∧ (person ∨ bear) ∧ (chair) ∧ (orange) ∧ (sink ∨ cow) ∧ (skateboard ∨ toilet) ∧
(bowl ∨ frisbee ∨ skis) ∧ (spoon ∨ fork) ∧ (kite) ∧ (bench ∨ truck) ∧ (bird) ∧ (donut ∨
laptop) ∧ (tv) ∧ (umbrella ∨ refrigerator ∨ toothbrush)

32. (bottle ∨ knife ∨ tennis_racket) ∧ (mouse ∨ baseball_bat) ∧ (toilet) ∧ (couch) ∧ (oven) ∧
(skis) ∧ (cat) ∧ (refrigerator ∨ horse) ∧ (cell_phone ∨ clock ∨ cup) ∧ (skateboard ∨
backpack ∨ handbag) ∧ (cake) ∧ (snowboard) ∧ (stop_sign ∨ bus ∨ laptop) ∧ (bicycle)

33. (sink ∨ fork) ∧ (suitcase ∨ toaster ∨ scissors) ∧ (train) ∧ (snowboard ∨ potted_plant) ∧
(teddy_bear) ∧ (toilet) ∧ (wine_glass ∨ parking_meter ∨ vase) ∧ (apple ∨ carrot) ∧ (handbag ∨
sports_ball ∨ toothbrush) ∧ (sandwich ∨ surfboard) ∧ (bed) ∧ (person ∨ baseball_bat) ∧ (cup)

34. (mouse) ∧ (vase ∨ carrot) ∧ (bear ∨ tennis_racket ∨ skis) ∧ (clock ∨ spoon ∨ oven) ∧
(banana ∨ scissors) ∧ (sheep ∨ potted_plant) ∧ (pizza ∨ bicycle) ∧ (surfboard ∨ broccoli) ∧
(wine_glass ∨ baseball_bat) ∧ (tie ∨ cat) ∧ (teddy_bear ∨ sports_ball ∨ bottle)

35. (truck ∨ baseball_bat) ∧ (cat ∨ cup) ∧ (stop_sign ∨ parking_meter ∨ surfboard) ∧ (remote ∨
laptop ∨ elephant) ∧ (tie ∨ bench ∨ car) ∧ (sink) ∧ (backpack ∨ bowl ∨ couch) ∧ (dog) ∧
(traffic_light ∨ motorcycle) ∧ (sports_ball ∨ toilet) ∧ (sheep ∨ bottle)

36. (laptop) ∨ (surfboard)

37. (toaster) ∨ (zebra)

38. (microwave ∧ fork)

39. (cell_phone) ∨ (book)

B.2. Queries with increasing amount of predicates 78

40. (bus ∧ spoon)

41. (elephant ∧ surfboard ∧ cat) ∨ (apple)

42. (microwave ∧ dining_table ∧ teddy_bear) ∨ (fire_hydrant)
43. (cup ∧ apple) ∨ (horse ∧ banana)

44. (elephant ∧ person ∧ skis) ∨ (parking_meter)

45. (baseball_glove) ∨ (fire_hydrant ∧ tv ∧ surfboard)

46. (donut ∧ clock ∧ bench) ∨ (boat ∧ surfboard) ∨ (laptop ∧ skis) ∨ (scissors)

47. (teddy_bear ∧ frisbee) ∨ (giraffe ∧ cow ∧ handbag) ∨ (broccoli ∧ apple ∧ parking_meter)

48. (motorcycle) ∨ (bowl ∧ sink ∧ oven) ∨ (train ∧ traffic_light) ∨ (cell_phone ∧ toothbrush)

49. (car ∧ hot_dog ∧ pizza) ∨ (airplane) ∨ (surfboard ∧ chair) ∨ (cow ∧ teddy_bear)
50. (truck ∧ sports_ball ∧ toaster) ∨ (skateboard ∧ teddy_bear) ∨ (bus ∧ laptop ∧ cat)

51. (refrigerator ∧ scissors) ∨ (kite ∧ spoon ∧ frisbee) ∨ (tv) ∨ (baseball_bat) ∨ (traffic_light ∧
keyboard ∧ mouse) ∨ (baseball_glove ∧ person)

52. (vase) ∨ (book) ∨ (scissors ∧ frisbee ∧ bed) ∨ (handbag ∧ orange) ∨ (sink ∧ donut) ∨
(oven ∧ dining_table ∧ surfboard)

53. (wine_glass) ∨ (baseball_glove ∧ kite ∧ bus) ∨ (bowl ∧ skateboard ∧ zebra) ∨ (parking_meter ∧
horse ∧ book) ∨ (train ∧ surfboard)

54. (banana) ∨ (donut) ∨ (baseball_glove) ∨ (vase ∧ remote) ∨ (couch) ∨ (bench ∧ boat) ∨
(traffic_light ∧ giraffe) ∨ (umbrella ∧ bowl)

55. (donut ∧ suitcase ∧ motorcycle) ∨ (cup ∧ car ∧ orange) ∨ (spoon) ∨ (sink) ∨ (horse) ∨
(sandwich ∧ cell_phone) ∨ (couch)

56. (remote ∧ sports_ball) ∨ (skis ∧ kite ∧ vase) ∨ (sheep ∧ cat ∧ bench) ∨ (toothbrush) ∨
(umbrella ∧ bottle ∧ suitcase) ∨ (truck ∧ snowboard) ∨ (toilet) ∨ (bed)

57. (boat ∧ chair ∧ laptop) ∨ (sports_ball ∧ spoon ∧ kite) ∨ (apple ∧ frisbee) ∨ (baseball_glove ∧
cow ∧ bowl) ∨ (zebra ∧ dog ∧ truck) ∨ (bench) ∨ (skis)

58. (fire_hydrant ∧ dog ∧ zebra) ∨ (skateboard ∧ microwave ∧ book) ∨ (toilet) ∨ (motorcycle) ∨
(banana ∧ vase) ∨ (orange ∧ knife) ∨ (cat ∧ bottle) ∨ (wine_glass ∧ cup)

59. (spoon ∧ cup ∧ cow) ∨ (fire_hydrant) ∨ (teddy_bear) ∨ (giraffe) ∨ (donut ∧ dog) ∨
(airplane) ∨ (surfboard ∧ chair) ∨ (skis ∧ laptop ∧ bear) ∨ (sports_ball ∧ bicycle)

60. (bird) ∨ (broccoli) ∨ (bowl) ∨ (sheep) ∨ (couch ∧ elephant ∧ scissors) ∨ (snowboard ∧
motorcycle) ∨ (person ∧ dining_table) ∨ (surfboard ∧ baseball_glove) ∨ (teddy_bear) ∨
(mouse ∧ knife)

61. (suitcase ∧ knife) ∨ (vase ∧ car) ∨ (laptop ∧ giraffe) ∨ (cell_phone ∧ donut) ∨ (airplane ∧
remote ∧ dining_table) ∨ (apple) ∨ (spoon ∧ boat) ∨ (tv ∧ sandwich ∧ carrot) ∨ (stop_sign ∧
orange) ∨ (bed)

62. (scissors ∧ kite ∧ stop_sign) ∨ (oven ∧ cell_phone ∧ wine_glass) ∨ (donut ∧ clock) ∨
(zebra ∧ carrot ∧ skis) ∨ (teddy_bear ∧ sports_ball ∧ frisbee) ∨ (snowboard ∧ train) ∨
(toothbrush ∧ laptop ∧ umbrella) ∨ (apple)

63. (laptop) ∨ (frisbee ∧ sink) ∨ (pizza ∧ banana ∧ teddy_bear) ∨ (refrigerator ∧ toaster ∧
bench) ∨ (boat) ∨ (mouse ∧ tennis_racket ∧ traffic_light) ∨ (sports_ball ∧ knife) ∨
(motorcycle) ∨ (bus) ∨ (baseball_glove ∧ skateboard ∧ giraffe)

64. (sandwich) ∨ (wine_glass ∧ sink ∧ person) ∨ (skateboard ∧ suitcase) ∨ (dining_table) ∨
(toaster ∧ car) ∨ (clock ∧ toothbrush) ∨ (oven ∧ carrot) ∨ (skis ∧ fork) ∨ (bed) ∨ (horse ∧
sports_ball) ∨ (pizza ∧ bear)

65. (frisbee) ∨ (couch ∧ donut) ∨ (fork ∧ microwave) ∨ (tennis_racket) ∨ (oven ∧ backpack) ∨
(toaster ∧ bear) ∨ (train) ∨ (orange ∧ spoon ∧ bench) ∨ (dining_table) ∨ (bed) ∨ (tv ∧
motorcycle ∧ horse) ∨ (handbag)

66. (stop_sign) ∨ (person ∧ bear) ∨ (chair) ∨ (orange) ∨ (sink ∧ cow) ∨ (skateboard ∧ toilet) ∨
(bowl ∧ frisbee ∧ skis) ∨ (spoon ∧ fork) ∨ (kite) ∨ (bench ∧ truck) ∨ (bird) ∨ (donut ∧
laptop) ∨ (tv) ∨ (umbrella ∧ refrigerator ∧ toothbrush)

67. (bottle ∧ knife ∧ tennis_racket) ∨ (mouse ∧ baseball_bat) ∨ (toilet) ∨ (couch) ∨ (oven) ∨
(skis) ∨ (cat) ∨ (refrigerator ∧ horse) ∨ (cell_phone ∧ clock ∧ cup) ∨ (skateboard ∧
backpack ∧ handbag) ∨ (cake) ∨ (snowboard) ∨ (stop_sign ∧ bus ∧ laptop) ∨ (bicycle)

B.3. 4 predicate query list 79

68. (sink ∧ fork) ∨ (suitcase ∧ toaster ∧ scissors) ∨ (train) ∨ (snowboard ∧ potted_plant) ∨
(teddy_bear) ∨ (toilet) ∨ (wine_glass ∧ parking_meter ∧ vase) ∨ (apple ∧ carrot) ∨ (handbag ∧
sports_ball ∧ toothbrush) ∨ (sandwich ∧ surfboard) ∨ (bed) ∨ (person ∧ baseball_bat) ∨ (cup)

69. (mouse) ∨ (vase ∧ carrot) ∨ (bear ∧ tennis_racket ∧ skis) ∨ (clock ∧ spoon ∧ oven) ∨
(banana ∧ scissors) ∨ (sheep ∧ potted_plant) ∨ (pizza ∧ bicycle) ∨ (surfboard ∧ broccoli) ∨
(wine_glass ∧ baseball_bat) ∨ (tie ∧ cat) ∨ (teddy_bear ∧ sports_ball ∧ bottle)

70. (truck ∧ baseball_bat) ∨ (cat ∧ cup) ∨ (stop_sign ∧ parking_meter ∧ surfboard) ∨ (remote ∧
laptop ∧ elephant) ∨ (tie ∧ bench ∧ car) ∨ (sink) ∨ (backpack ∧ bowl ∧ couch) ∨ (dog) ∨
(traffic_light ∧ motorcycle) ∨ (sports_ball ∧ toilet) ∨ (sheep ∧ bottle)

B.3. 4 predicate query list
The following queries were used for the experiments in section 5.3:

1. (zebra ∨ handbag) ∧ (parking_meter) ∧ (skis)

2. (sheep) ∧ (fork) ∧ (couch ∨ horse)

3. (skateboard ∨ dog ∨ baseball_glove) ∧ (skis)

4. (couch ∨ skis) ∧ (fork ∨ apple)

5. (spoon ∨ toilet) ∧ (skateboard ∨ backpack)

6. (zebra ∧ handbag) ∨ (parking_meter) ∨ (skis)

7. (sheep) ∨ (fork) ∨ (couch ∧ horse)

8. (skateboard ∧ dog ∧ baseball_glove) ∨ (skis)

9. (couch ∧ skis) ∨ (fork ∧ apple)

10. (spoon ∧ toilet) ∨ (skateboard ∧ backpack)

B.4. NLP query list
The following queries were used for the practical experiments in section 5.4:

1. (positive ∨ obscene)

2. (positive ∧ obscene)

3. (threat ∨ negative)

4. (threat ∧ negative)

5. (insult) ∧ (severe_toxic)
6. (insult) ∨ (severe_toxic)
7. (obscene) ∧ (toxic)

8. (obscene) ∨ (toxic)

9. (neutral ∨ toxic)

10. (neutral ∧ toxic)

11. (obscene) ∧ (toxic) ∧ (neutral) ∧ (identity_hate)
12. (obscene) ∨ (toxic) ∨ (neutral) ∨ (identity_hate)
13. (threat ∨ severe_toxic ∨ neutral) ∧ (obscene)

14. (threat ∧ severe_toxic ∧ neutral) ∨ (obscene)

15. (negative) ∧ (identity_hate ∨ toxic ∨ insult)

16. (negative) ∨ (identity_hate ∧ toxic ∧ insult)

17. (negative) ∧ (insult ∨ toxic) ∧ (threat)

18. (negative) ∨ (insult ∧ toxic) ∨ (threat)

19. (negative ∨ threat) ∧ (insult) ∧ (neutral)

20. (negative ∧ threat) ∨ (insult) ∨ (neutral)

21. (obscene) ∧ (positive ∨ negative) ∧ (severe_toxic ∨ toxic ∨ identity_hate)
22. (obscene) ∨ (positive ∧ negative) ∨ (severe_toxic ∧ toxic ∧ identity_hate)
23. (obscene ∨ positive) ∧ (severe_toxic ∨ negative ∨ toxic) ∧ (identity_hate)

B.4. NLP query list 80

24. (obscene ∧ positive) ∨ (severe_toxic ∧ negative ∧ toxic) ∨ (identity_hate)
25. (identity_hate ∨ negative ∨ threat) ∧ (obscene ∨ toxic) ∧ (positive)

26. (identity_hate ∧ negative ∧ threat) ∨ (obscene ∧ toxic) ∨ (positive)

27. (positive) ∧ (insult) ∧ (neutral ∨ obscene) ∧ (identity_hate) ∧ (toxic)

28. (positive) ∨ (insult) ∨ (neutral ∧ obscene) ∨ (identity_hate) ∨ (toxic)

29. (negative ∨ neutral) ∧ (insult ∨ threat) ∧ (positive ∨ obscene)

30. (negative ∧ neutral) ∨ (insult ∧ threat) ∨ (positive ∧ obscene)

31. (toxic ∨ negative) ∧ (insult ∨ neutral) ∧ (threat) ∧ (identity_hate) ∧ (positive ∨ severe_toxic)
32. (toxic ∧ negative) ∨ (insult ∧ neutral) ∨ (threat) ∨ (identity_hate) ∨ (positive ∧ severe_toxic)
33. (negative ∨ severe_toxic) ∧ (insult ∨ neutral) ∧ (toxic ∨ identity_hate ∨ threat) ∧ (positive)

34. (negative ∧ severe_toxic) ∨ (insult ∧ neutral) ∨ (toxic ∧ identity_hate ∧ threat) ∨ (positive)

35. (insult ∨ obscene ∨ negative) ∧ (neutral ∨ threat) ∧ (identity_hate) ∧ (severe_toxic ∨ toxic)

36. (insult ∧ obscene ∧ negative) ∨ (neutral ∧ threat) ∨ (identity_hate) ∨ (severe_toxic ∧ toxic)

37. (toxic ∨ insult ∨ neutral) ∧ (obscene) ∧ (severe_toxic) ∧ (negative ∨ identity_hate) ∧ (threat)

38. (toxic ∧ insult ∧ neutral) ∨ (obscene) ∨ (severe_toxic) ∨ (negative ∧ identity_hate) ∨ (threat)

39. (toxic) ∧ (threat ∨ obscene) ∧ (neutral ∨ positive) ∧ (severe_toxic ∨ insult ∨ negative)

40. (toxic) ∨ (threat ∧ obscene) ∨ (neutral ∧ positive) ∨ (severe_toxic ∧ insult ∧ negative)

C
Model zoo

From the datasets we derive the following (normalized) selectivity:

class selectivity
toxic 0.078605
severe_toxic 0.008201
obscene 0.043455
threat 0.002459
insult 0.040482
identity_hate 0.00719
negative 0.337772
neutral 0.38271
positive 0.099126

81

82

model_index cost memory toxic severe_toxic obscene threat insult identity_hate negative neutral positive
0 3 32652732 0.7573 0 0 0 0 0 0 0 0
1 3 32652732 0 0.35294 0 0 0 0 0 0 0
2 3 32652732 0 0 0.78745 0 0 0 0 0 0
3 3 32652732 0 0 0 0.34981 0 0 0 0 0
4 3 32652732 0 0 0 0 0.67763 0 0 0 0
5 3 32652732 0 0 0 0 0 0.3302 0 0 0
6 3 32652732 0 0 0 0 0 0 0.76241 0 0
7 3 32652732 0 0 0 0 0 0 0 0.75445 0
8 3 32652732 0 0 0 0 0 0 0 0 0.66288
9 47 38690347 0.75565 0.43806 0 0 0 0 0 0 0
10 46 38684015 0.75856 0 0.80251 0 0 0 0 0 0
11 47 38653451 0.75693 0 0 0.41846 0 0 0 0 0
12 49 38612867 0.76726 0 0 0 0.71142 0 0 0 0
13 46 38674619 0.75853 0 0 0 0 0.41657 0 0 0
14 47 38714790 0 0.38141 0.79279 0 0 0 0 0 0
15 51 38612526 0 0.394 0 0.34921 0 0 0 0 0
16 46 38654995 0 0.41857 0 0 0.69 0 0 0 0
17 47 38716411 0 0.40037 0 0 0 0.38402 0 0 0
18 50 38695603 0 0 0.79659 0.35556 0 0 0 0 0
19 47 38702214 0 0 0.79902 0 0.68206 0 0 0 0
20 50 38650434 0 0 0.78265 0 0 0.41083 0 0 0
21 48 38662665 0 0 0 0.42697 0.69664 0 0 0 0
22 50 38671389 0 0 0 0.44375 0 0.41215 0 0 0
23 47 38672973 0 0 0 0 0.68766 0.39629 0 0 0
24 50 38690347 0 0 0 0 0 0 0.78389 0.76423 0
25 49 38684015 0 0 0 0 0 0 0.79365 0 0.70293
26 50 38653451 0 0 0 0 0 0 0 0.76328 0.69452
27 48 38751127 0.76368 0.43082 0.65052 0.04865 0 0 0 0 0
28 47 38744534 0.76815 0.36308 0.65711 0 0.33874 0 0 0 0
29 48 38712254 0.75717 0.44573 0.65375 0 0 0.14271 0 0 0
30 48 38669186 0.7575 0.3979 0 0 0.32899 0 0 0 0
31 47 38734706 0.76511 0.42321 0 0.00423 0 0.15576 0 0 0
32 48 38776854 0.76285 0.4142 0 0 0.64338 0.1194 0 0 0
33 49 38668674 0.76757 0 0.80797 0.0065 0.68539 0 0 0 0
34 48 38713882 0.7604 0 0.81562 0 0 0.12591 0 0 0
35 48 38778646 0.76663 0 0.81252 0 0.62061 0.08577 0 0 0
36 50 38756722 0.7665 0 0 0 0.59642 0.19015 0 0 0
37 48 38763261 0 0.42445 0.79895 0.0383 0.65672 0 0 0 0
38 50 38708481 0 0.38246 0.78438 0.02989 0 0.11623 0 0 0
39 50 38721645 0 0.39925 0.80225 0 0.31808 0.09723 0 0 0
40 50 38730717 0 0.33367 0 0.2314 0.30503 0.18085 0 0 0
41 48 38732553 0 0 0.79434 0.09434 0.65038 0.12431 0 0 0

Table C.1: The model zoo generated for the NLP tasks

	Preface
	Summary
	Introduction
	Research contributions
	Thesis structure

	Problem definition
	A (very) short introdution to Machine Learning
	Model zoos
	ML inference queries
	Query plans and optimization
	ML inference query optimization
	Related work
	ML inference queries
	Mixed integer (linear) programming in query optimization
	Multi-objective query optimization

	Summary

	Background
	Traditional query optimization
	Selections
	Projections
	Cartesian products
	The case for traditional optimization

	(Single-objective) optimization
	Integer optimization
	Nonlinear/quadratic optimization
	Commercial optimizers

	Multi-objective optimization
	Important definitions for multi-objective optimization

	The optimizer
	Explaining the optimizer
	Formulation of model_opt
	Formulation of order_opt
	Considerations

	Amendments to the optimizers
	Amendments to equations

	Towards Multi-objective optimization
	Amendments to objective functions
	Addition of a third objective
	Weight calculation
	Greedy solutions
	MOO formalization

	Explored MOO methods
	The weighted global criterion
	The weighted sum method
	The lexicographic method
	The weighted min-max method
	Exponential weighted criterion
	Weighted product method
	Goal programming method
	Bounded objective method
	Summary

	Results
	Equation amendments
	Optimizer complexity
	MOO method comparison
	NLP experiments

	Conclusion
	Summary
	Evaluation of research questions
	Considerations and recommendations
	Approximation schemes
	Heuristics
	Memory as an objective

	Epilogue

	Additional results
	Query list
	8 predicate query list
	Queries with increasing amount of predicates
	4 predicate query list
	NLP query list

	Model zoo

