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Abstract

A procedure is presented for the derivation of an effective small-strain soil stiff-

ness governing the soil-structure interaction of large-diameter monopiles. As a

first step, geophysical measurements are used to estimate the depth-dependent

shear modulus G of the soil stratum. The second step is to use this modulus

and an estimated Poisson’s ratio and density in a 3D model, which captures the

deformation of both the monopile and the soil. As a final step, a new method is

proposed to use the computed 3D response for identification of a depth depen-

dent stiffness of an effective Winkler foundation. This stiffness can be used in

a 1D model, which is more fit for design purposes. The presented procedure is

deemed more appropriate than the often used “p-y curve” method, which was

once calibrated for slender flexible piles and for which the input is based on

the large-strain cone penetration test. The three steps are demonstrated for a

particular design location. It is also shown that the displacements of the 3D

model are smaller and the resulting fundamental natural frequency is higher

than calculated with the p-y method.

Keywords: offshore wind foundations, fundamental natural frequency,

small-strain soil stiffness, in-situ seismic measurement, 3D to 1D modelling

translation
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1. Introduction

The interaction of the large diameter foundations of offshore wind turbines

(OWTs) with the surrounding soil is one of the key research areas in which the

offshore wind industry expects to cut conservatism in design. The most popu-

lar “monopile” (MP) foundation is thought to be over-designed, mainly due to5

a lack of knowledge of both the effective soil stiffness and damping governing

the inclination and bending of MPs that reach up to 10m diameter in current

designs [1].

When the fundamental natural frequencies of installed OWTs are monitored,10

a quite consistent discrepancy is found between this measured frequency and

the design-aimed frequency; up to 20% higher frequencies are measured, with

most turbines within the 5% higher range [1]. This frequency corresponds to

the first bending mode of the support structure (MP + turbine tower). Due to

the symmetry of an MP-based OWT, the structure has in fact 2 closely spaced15

first bending modes, vibrating in perpendicular directions: the fore-aft bending

mode (F-A) and the side-side mode (Si-Si). The frequencies of these modes are

key design parameters, as they need to be placed outside the resonance regimes

of the wind and wave loads and the blade-passing frequencies. The fact that
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the true frequency is often higher than the one designed for is expected to be20

caused by underestimation of the soil stiffness. The over-dimensioning of the

support structure is mainly a waste of steel as often larger diameter foundation

piles are employed to reach the desired fundamental natural frequency. It also

involves a risk that the higher natural frequency enters another resonance re-

gion. For some design locations, however, it might result in a longer life-time,25

as less amplification of the low-frequency wave loading takes place. In any case,

a correct prediction of the fundamental frequency is desirable.

The engineering approach for modelling the stiffness between the soil and the

MP is called the “p-y curve” method, prescribed in the design standards [2].30

In this approach, the pile is modeled as an Euler-Bernoulli beam, laterally sup-

ported by uncoupled discrete non-linear springs. The displacement-dependent

stiffness of these springs is based on semi-empirical relations found for slender,

small-diameter piles in both clay [3] and sand [4]. The initial stiffness of these

springs that corresponds to small strains, has a large effect on the natural fre-35

quency of the OWT as it is this small-strain stiffness that defines the modal

properties of the support structure. Furthermore, the soil response is expected

to be linear for most of the endured vibrational amplitudes during the lifetime
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of the foundation [5]. This initial part of the stiffness ks [N/m2] 1 is often called

the initial subgrade modulus ks,0 or E∗py. In the p-y curve formulation for sand,40

ks is calculated by multiplying k, the modulus of subgrade reaction [N/m3] (first

described by Terzaghi [6]), with depth z. k is only determined with the angle

of internal friction of sand φ. Note that this k is a true soil-structure interac-

tion (SSI) modulus; it was once calibrated on the way slender piles react when

embedded in specific soil types.45

It is widely accepted that different physical mechanisms play a role in the SSI

depending on the geometry of the pile [7], [8], [9] and [10]. The ratio of embed-

ded length L and diameter D (L/D) of the MPs that are currently employed in

the industry, is expected to invoke a fundamentally different soil reaction than50

what the p-y curves were originally calibrated for [11]. For instance, this design

method does not account for large shearing contributions of the pile-tip [12],

in-plane deformation of the pile and soil stiffening due to vertical interaction of

the soil layers. The currently used monopiles are significantly stiffer in bending

than the flexible piles for which the p-y curves are supposed to be used. The p-y55

curve method was developed for defining the stiffness of the Winkler foundation

1The stiffness ks is computed per unit vertical length of the pile, explaining the dimension

[N/m/m].
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model. In this model, the foundation reaction is completely local: the reaction

force is only dependent on the displacement of the pile at the location of that

spring. For a flexible pile, this is not a bad assumption. However, deflections

of rigid, caisson-type piles, evoke more global reactions of the soil. Apart from60

this, it is incorrect to assume that the initial stiffness of the effective springs is

independent of the geometry of the pile. Furthermore, the assumption that this

stiffness would increase linearly with depth for any type of sand, is expected to

be incorrect [13]. Because of these shortcomings and because of its relevance,

the initial stiffness has already been critically studied by several researchers65

[8], [14], [15]. Seemingly contradictory to what is measured in the field, it was

found in these studies that the p-y curve method actually over-predicts the ini-

tial stiffness of the soil for larger depths. If this were generally the case, it would

not explain the higher natural frequencies that are measured. Alternatively, it

might indicate that the shallow depth soil reaction is mostly responsible for the70

higher measured natural frequency. The researchers therefore suggest that a

more realistic variation - taking 3D, global effects into account - of the stiffness

with depth might rather follow a power law form with an exponent smaller than

1 [13]. As the stiffness depends on the soil type, the geometry of the structure,

and the loading type, it remains challenging to find a general solution method75
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for this problem. Depending on the focus of the researchers, and possibly the

applied advanced modelling techniques, different methods are suggested. In

geotechnical design, empirical tuning factors are often used to capture the com-

plex interaction of the soil with different structure types. For instance, in the

OWT-related research, large diameter-effect tuning factors were suggested to80

improve initial stiffness predictions [8], [9] and [10]. Recently however, some of

these suggested p-y relations were said to be incorrect or at least not generally

applicable, and a new method was presented [16].

Apart from modelling aspects, the methods used for soil characterization in the85

wind industry can also be improved. The most applied soil measurements in

the OWT industry are geotechnical tests like the cone penetration tests (CPT)

and laboratory testing of borehole samples. It is clear that these techniques are

soil-disturbing, large-strain measurements, and one may question whether they

allow to assess the small-strain behaviour of the soil.90

Clearly, we need to find the characteristics dictating the response of the founda-

tion. Therefore, as in [17], an approach including geophysical (seismic) measure-

ments is suggested in this paper. While the CPT measures local resistance and

friction along the shaft, a recorded wave in the soil carries information about95
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the soil characteristics on the wave-length scale (in the order of several meters),

yielding more global effective parameters for a certain location. By measuring

the wave velocities in-situ, all local properties (like oedometric stiffening and

saturation effects) are incorporated. This can be considered as an advantage

over most laboratory tests in which these in-situ characteristics are partially lost.100

Focusing on initial stiffness modelling, this paper suggests an approach in which

a 3D model is used to calibrate the initial part of the p-y curves. The model in-

corporates 3D soil effects and shell deformations of the pile. The novelty of the

approach lies in using in-situ seismic measurements to extract the small-strain105

shear modulus (described in Section 2) and - instead of using the continuum pa-

rameters in a general empirical relation for the 1D stiffness as is done in [18] and

in [19] - the continuum parameters are used to define a 3D model to compute

pile deflection shapes for a certain loading (Section 3). Subsequently, a general

translation method is suggested for finding the 1D effective stiffness (i.e., the110

initial branch of the p-y curve) from the numerically computed 3D response

(Section 4). As many parameters influence the true SSI, we suggest using the

presented translation method at the start of each design effort, rather than find-

ing one empirical tuneable relation. In this translation, we constrain ourselves
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by only considering lateral springs, and we exclude other elements such as ro-115

tational springs, as was done in [20]. However, when considering these large

foundations, introducing rotational springs in the 1D model can be justified.

Rotational springs can physically be understood to represent the distributed

bending moment that is induced by the vertical shearing forces on the pile wall

that, due to the rigid behavior have a more uniform direction and due to the120

large diameter, work at a greater lever arm. Nevertheless, in order to serve

the current wind design practice, a 1D effective model with only translational

springs will be presented in this paper.

2. Soil characterization

An extensive in-situ soil measurement campaign was carried out by a geotech-125

nical service company for the design of a near-shore wind farm. Besides the

standard geotechnical measurements (CPT and lab tests on borehole samples),

seismic cone penetration tests (SCPTs) were also performed at some locations.

In this section, we describe a method for analyzing this data. In this charac-

terization, we assume that small vibrations of the soil can be described by the130

classical elastic continuum with frequency-independent parameters.

We analyzed seismic data of a location close to one of the design locations.
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The SCPT reached a depth of 25m at this location, measuring each meter with

a dual-phone cone with an interval distance of 0.5m. A hydraulic shear-wave135

hammer placed on the seabed was used as excitation device. Stacking responses

over multiple hits for each depth rendered clear shear-wave patterns. The seis-

mogram of the recorded time traces is shown in Figure 1.
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Figure 1: Seismogram showing the time traces of the particle velocities in horizontal direction

(in-line with the shear-wave hammer) measured at each geophone. The picked arrival times

are indicated at each time trace with black dots.

We will now firstly discuss how the arrival time of the measured waves was

defined (Section 2.1), as this choice influences the magnitude of the shear-wave140
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velocity that will subsequently be determined. In Section 2.2, a simple model is

used to invert the seismic data in order to find the shear-wave velocities based

on the identified interval times of Section 2.1. In Section 2.3 all other parame-

ters are listed that are needed to describe the soil continuum. Then 3 different

stiffness profiles are defined in Section 2.4, as some parameters have some vari-145

ability depending on choices made in the interpretation. Finally, Section 2.5

compares the determined shear modulus profile with an often used empirical

relation between shear modulus and CPT output.

2.1. Wave arrival timing

To determine the shear-wave velocity, we need to know the path length of the150

wavefront, and define its arrival time at the measuring sensor, the geophone.

Different definitions of this “arrival time” exist. We defined the moment of

appearance of the maximum particle velocity of the soil as the arrival time of

the wavefront, as this allows for automated picking. The picked arrival times

are indicated with black dots in Figure 1. Nevertheless, these “picks” have to155

be visually checked, as the waveform needs to be consistent. Especially in the

first few meters, the waveform tends to change significantly in the course of

propagation due to near-field (near to source) effects. Hence, for the first 4

traces belonging to the first 2m below the seabed, different peaks were picked
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manually, to give consistent interval times.160

The difference in arrival time between two adjacent receivers - the interval time

- can be obtained by subtracting the arrival time of the upper geophone from

that of the lower geophone. The interval time between the geophones can also

be obtained by cross correlation, which is a more objective technique. The in-165

terval times found by both picking and cross correlation are displayed in Figure

2. We observe that cross correlation gives more smooth results, especially for

depths between 7 to 13m. As the near-field effects within the first 2m seem to

make the use of cross correlation less reliable, a time-frequency analysis was used

to pick the maximum energy peak, as shown in Figure 3. The time-frequency170

analysis was done using the S-transform [21]. The S-transform showed that the

region of maximum energy in the spectrum of the recording at 2m depth was

shifted in frequency content with regards to those at 0.5m, 1m and 1.5m depth.

Altogether, the wave arrival for the first 2 meters remains uncertain, but more

consistent results are found for larger depths. A smoother profile is expected to175

be more realistic, as we expect the soil to be smoothly inhomogeneous. As we

will show in Section 2.4, the variability in the interval times for these shallow

layers do have a significant effect on the stiffness estimation of the upper half
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of the stratum. In the next section, the corresponding shear-wave velocities of

these interval-time profiles will be computed, and a choice will be made as to180

which profile is deemed to be most realistic.
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Figure 2: Interval times between adjacent geophones. The interval times can be defined as

the difference in picked arrival times (black “◦”), or determined with cross correlation (grey

“∗”). A combination can also be chosen (black “•”); cross correlation was used for all interval

times except for the first layer, where the S-transform technique was used, and the second

layer, which was manually picked (see Section 2.2).
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Figure 3: Time response of the geophone placed at 1m depth (upper panel), and the corre-

sponding time-frequency diagram (lower panel). The maximum energy is indicated with a

white dot.

2.2. Shear-wave velocity inversion

To find the shear-wave velocities, a minimization problem was set up. Assuming

the soil to be horizontally stratified with a layer thickness of 1m around a geo-

phone pair of one stacked recording, the successive layer shear-wave velocities185

can be computed by minimizing an objective function for the observed arrival

times. The method incorporates the effect of wave refraction through Snell’s

law, which has to be taken into account because of the horizontal offset between

the source and the receivers. Especially for shallower layers, this effect cannot
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be ignored.190

The geometry of the minimization problem is shown in Figure 4, in which an

example is given for layer number n = 3. The equations of the optimization

problem are given by

Horizontal distance 

L = 3m 

t21 

t22 

c2  
(known from  
previous run) 

layer 3 

Δxb1 Δxb2 

Δxa1 Δxa3 

t11 

t12 

Shear wave 
hammer 

Δxb3 

Δxa2 

Δs = sb3 - sa3 

 

 

t31 

Δz1 

Δzb,3 

Δz2 

Δza,3 

c1  
(known from  
previous run) 

c3 

t32 

Figure 4: Schematic view of the minimization problem that was used to find the shear-wave

velocity, cn. An example is given for layer number n = 3. Through Snell’s law, 4n + 1

geometric relations can be formulated to find an optimized solution for the 4n+ 1 variables.

The variables are explained in the text.
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∆xai
sai ci

=
∆xa(i+1)

sa(i+1) ci+1
,

∆xbi
sbi ci

=
∆xb(i+1)

sb(i+1) ci+1
, i = 1..n− 1,

(1)

sai =

√
(∆xai)

2
+ (∆zi)

2
,

sbi =

√
(∆xbi)

2
+ (∆zi)

2
,

san =

√
(∆xan)

2
+ (∆zan)

2
,

sbn =

√
(∆xbn)

2
+ (∆zbn)

2
,

(2)

n∑
j=1

∆xaj = L,

n∑
j=1

∆xbj = L,

cn =
sbn − san

tn2 − tn1 −
∑n−1
i=1

sbi−sai

ci

. (3)

Here san is the wave path belonging to the upper ray, and sbn to the lower ray195

in target layer n. ∆xan,bn are the horizontal components of the wave path, and

∆zn the vertical component. tn1 and tn2 are the arrival times at respectively the

upper and lower geophone in the last (target) layer n. In these equations, i is

the index for the layers above the target layer for which the shear-wave velocity

is inverted. The amount of variables and equations to be solved equals 4n+1;200

15



sai, sbi, ∆xai, ∆xbi (4n) and cn (1). As the shear-wave velocities in the layers

are sequentially solved, c1 and c2 are assumed known in the example of Figure 4.

Matlab’s gradient-based “fmincon” function was used for setting up this non-

linear optimization, and within this function, the “Sequantial Quadratic Pro-205

gramming” (SQP) algorithm appeared most appropriate for this problem. Be-

ing a medium-scale algorithm, it stores full (dense) matrices, remaining stable

for deeper layers. The amount of equations and variables in this problem is

small enough for sufficient computational speed. Furthermore, the algorithm

was found to be insensitive of the initial guess. The shear-wave velocity was210

constraint in between 1 and 1000 m/s. Confidence in finding the global mini-

mum can be reached by visual inspection of the objective function for the first

layers.

The found shear-wave velocities are depicted in Figure 5. As discussed in Sec-215

tion 2.1, different choices can be made in defining the interval times, and these

choices influence the computed shear-wave velocity profile. Computing the pro-

file using cross correlation only, renders the solid grey profile with “+” markers.

This profile is included to assess the effect of neglecting any near-field effects

and relying on “automatic” processing. The solid black line with “◦” markers in220
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Figure 5 is the profile linked to choosing a combination of using the S-transform

for the first layer, “peak picking” for the second layer and cross correlation for

the rest of the layers; it is named “Combination 1” and is the resulting profile

from the “Combination” profile in Figure 2. The only difference between the

black and grey profiles is thus the adopted interval time for the first 2 meters.225

We can see that this difference has a relatively large influence on the first 15m of

the profile. As discussed, the definition of interval time can be uncertain. The

black profile (combination) seems more realistic, but the “true” profile probably

lies somewhere between the black and grey profiles. Therefore, these “black”

and “grey” profiles will be used for further analyses in this paper.230

As extra information, the grey dotted “∗” line is also plotted. This profile

shows the effect of also choosing a peak-picked interval timing for the first layer,

which, as can be seen, clearly has a minor effect. As a reference, the profile

computed by the geotechnical service company that performed the SCPTs is235

given by the grey dotted “•” line. This profile was computed assuming straight

rays from source to geophone (so ignoring the wave refraction), and without

taking the wave velocities of previously calculated shallower layers into account.
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Next to the velocity profile in Figure 5, the laboratory soil classification is240

given, which is based on borehole samples taken at the same location. It can

be seen that the weaker soil layers between approximately 15m and 23m depth

are quite well reflected in the estimated velocities. The velocity jumps within

this region can be caused by the thin stiffer layers within the softer layers (as

depicted in the laboratory classification). As further comparison with geotech-245

nical measurements, also the cone-tip resistance qc and sleeve friction fs of a

CPT measurement at the same location are plotted together with the shear-

wave velocity profile of Combination 1 in Figure 6. In this figure, we can see

that in general the agreement in stiffness indication is quite reasonable; the

CPT parameters also indicate the presence of a weaker layer between 15m and250

23m depth. Within this weaker layer, a thin stiffer layer is present (at around

18m depth) which is reflected in both CPT output and the shear-wave velocity

profile. Finally, a stiffer sand layer is present beyond 23m, at which depth the

shear-wave velocity also increases.
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Figure 5: Derived shear-wave velocity profiles. The solid black “◦” profile (Combination 1) is

deemed most realistic; it is based on a combination of techniques to compute the interval time

(see Figure 2) using cross-correlation for all layers, except the S-transform for the first layer

and peak-picking for the second (because of near-field effects). The dotted grey “∗” profile

(Combination 2) shows the effect of also taking a peak-picked interval time for the first layer.

The solid grey “+” profile is based on using only cross-correlation. The dotted grey “•” profile

was obtained by the geotechnical service company, using the “straight-ray” assumption.
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Figure 6: The derived shear-wave velocity profile of Combination 1 of Figure 5 in comparison

to CPT output profiles measured at the same location. Note that the sleeve friction pressure

fs is multiplied by 40 in order to share the same value along the horizontal axis as the cone-tip

resistance qc.

2.3. Soil parameterisation255

The in-situ saturated soil densities ρ and the internal angle of friction φ used

and presented in this paper, are the design values for the near-shore wind farm.

The values were determined by the geotechnical service company. For the in-

situ density the relation of Robertson [22] was used. This relation is based on

the cone tip and frictional resistance measured by the SCPT:

ρ/ρw = 0.27log(Rf ) + 0.36log(qt/pa) + 1.236 (4)

In this equation, qt is the corrected cone resistance, Rf is the friction ratio

between the sleeve friction and the corrected cone resistance, ρw is the mass

20



density of water and pa is the atmospheric pressure. This in-situ soil density is

used in this paper as input to the 3D elastic continuum model (Section 3).

260

The internal angle of friction φ was determined according to the relation between

the initial modulus of subgrade reaction k, the relative density and internal an-

gle of friction for different sand types, as depicted in the standards [2]. The

obtained values were verified with triaxial tests. In this paper, the internal

angle of friction serves merely as a reference for the stiffness of the soil. The265

in-situ density and the internal angle of friction profiles are shown in Figure 7.

The relatively high values for the density and internal angle of friction in this

figure indicate that this is quite a stiff soil profile.
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Figure 7: Profiles of in-situ density, ρ (left panel), and angle of internal friction for sand, φ

(right panel). For peat and clay layers, φ is set to 0.

The estimation of the effective Poisson’s ratio ν is a challenging task, as it is

dependent on the type of soil, but for instance also on the occurring strain [23],

the degree of water saturation and the loading frequency. In civil engineering

practice, the Poisson’s ratio is often taken as 0.3 for sand and 0.45 for cohesive

material [24]. The small-strain Poisson’s ratio can also be estimated from identi-

fied pressure-wave and shear-wave velocities. Measurement data acquired with

a different cone at the same location, indicated much higher Poisson’s ratios

for this (saturated) sand [25]. In this data, we could extract both the pressure

and the shear-wave velocities. With the ratio of these velocities and the in-situ

porosity estimated from lab tests, the Poisson’s ratio can be approximated us-

ing an effective two-phase model for wave propagation in a three-phase medium

where the pore fluid contains minor gas bubbles (low-frequency limit [26], [27]).
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In this theory, the Poisson’s ratio is calculated by

ν =
3Kb − 2G

2(3Kb +G)
(5)

in which the bulk modulus Kb is calculated based on an effective fluid bulk

modulus Kf,eff as

Kb = H − 4

3
G− Kf,eff

Φ
(6)

Here H is the Gasmann modulus as extracted from the pressure-wave veloc-

ity, and Φ is the porosity of the soil, in which the grains are assumed to be

incompressible [26]. Then the degree of water and gas saturation (sf and sg

respectively) are incorporated in Kf,eff as

1

Kf,eff
=

sf
Kf

+
sg
Kg

(7)

in which sf = 1− sg.

270

Similarly high Poisson’s ratios for marine sediments were also observed by

Hamilton [28], [29]. The higher apparent Poisson’s ratio is related to the

drainage capacity of the sand. Reference [30] addresses the relation between

the drainage capacity of the soil, the permeability of the soil and the frequency

of oscillation of the structure. The question whether the soil behaves drained275

or undrained during the vibrations of the installed MP does not belong to the

scope of this paper; however, the higher Poisson’s ratio can be considered for

soil stiffness calculations. We will investigate 3 options, namely the Poisson’s

ratios of the “engineering practice”, the profile found with the effective two-
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phase medium theory, and an intermediate one (i.e., the average of these two).280

These 3 profiles are shown in Figure 8.

2.4. Stiffness range

Since we now have estimates of the shear-wave velocity, the density and the

Poisson’s ratio, we can calculate the Young’s modulus E and shear modulus G

of the soil profile. This can be done with the following relation:

c =

√
E

2(1 + ν)ρ
=

√
G

ρ
, (8)

in which c is the shear-wave velocity. Due to the uncertainty in both Poisson’s

ratio and the interval time definition, we investigate the impact of these uncer-

tainties by defining 3 “stiffness” cases. For the first - lowest stiffness - case, the285

solid black line profile in Figure 5 is used, in combination with the “engineering

practice” Poisson’s ratio. Then, for case 2, the same shear-wave velocity profile

is chosen as in case 1 (black line), but combined with the intermediate Poisson’s

ratio. This higher Poisson’s ratio causes case 2 to be stiffer than case 1. Then,

the Young’s modulus of case 3 is calculated by combining the solid grey veloc-290

ity profile in Figure 5 (based on cross correlation only) and the Poisson’s ratio

determined with the effective two-phase medium theory. Case 3 is therefore an

upper stiffness case. An overview of the cases is given in Table 1.
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CASE 1 CASE 2 CASE 3

dT method Combination Combination Pure cross

correlation

Poisson’s Engineering Average Effective

ratio practice medium

Table 1: Overview of the considered soil stiffness profiles. The “Combination” is the profile

for which the interval time (dT) for the first layer was determined with the S-transform, the

second by peak-picking, and the rest by cross correlation (Figure 2). The Poisson’s ratio

profiles of the three cases can be found in Figure 8.

The Young’s moduli profiles corresponding to the 3 cases are shown in Figure

9. In calculating these Young’s moduli, the same density profile was used for295

all cases (shown in the left panel of Figure 7). We can see that the Young’s

modulus of case 1 is almost equal to that of case 2, as this difference is only

caused by the different values of Poisson’s ratio. In Section 3.2, we will see the

associated difference in terms of pile deflections.
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Figure 8: Profiles of the different Poisson’s ratios for the 3 stiffness cases.
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Figure 9: Profiles of the Young’s moduli for the 3 stiffness cases.

2.5. Reference values300

Empirical relations between shear modulus (in geotechnics often referred to as

Gmax or G0) and CPT-output parameters are widely available. The weakness

in such relations is that they aim to link local large-strain output of a CPT-

cone with the larger scale small-strain characteristics of the soil needed for our

analyses. Perhaps for that reason, these relations are often concluded to be

site-specific, and coefficients in the relations are then tuned to provide a good

match. Nevertheless, we check the applicability of such a relation for the data

at hand. We compare the outcome with the shear modulus profile of case 2. An

often used relation for sand developed by Seed and Idriss [31] is

G = 220K2,max(σ′m)α. (9)
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In this equation, the coefficient K2,max is a function of the relative density Dr or

void ratio e, α is a coefficient for the stress (depth) dependency of G and has a

value of 0.5 according to the developers, and σ′m is the mean effective confining

pressure. This pressure is related to the vertical and horizontal effective stress

by σ′m = (σ′v + 2σ′h)/3 = σ′v(1 + 2K ′0)/3. In this equation, K0 is the coefficient305

of effective earth stress at rest: K0 ≈ 1 − sin(φ), with φ the internal angle of

friction. Paoletti et al. [32] also emphasized the site-specific character of this

relation of Seed and Idriss (Equation (9)), and found α to be equal to 0.63 for

offshore sands in the Adriatic Sea. Figure 10 compares the empirical relation

(for α equal to 0.50: grey dotted line) and the shear moduli of case 2: black310

solid line.
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Figure 10: Comparison of identified shear modulus related to case 2 (black solid line) and

reference empirical relation according to Equation (9) [31], with α = 0.50 (grey dotted line).

Similar relations as equation (9) are available specifically for clay; however,

because of the limited presence of clay at this site, they have not been included

in Figure 10. We observe that the empirical relation predicts a higher shear

modulus for the first shallow layers. This is most likely caused by the relatively315

high internal angle of friction of these layers. The profile of case 2 is conservative

in this respect, because a high stiffness in these shallow layers will turn out to

have a large influence on the pile deflections and the natural frequency. The

empirical values are quite sensitive to the α parameter. Using an α equal to
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0.63 as suggested by Paoletti et al. [32], would yield a factor 3 to 4 higher shear320

moduli for the deepest two-thirds of the layers. This confirms that designers

must be cautious when using such empirical relations.

3. Modeling of pile deflections

To capture the true interaction mechanisms between pile and soil, a pile must

be modeled as embedded in a 3D continuum. Only in such a model we can325

describe the soil reaction with the real material properties as identified in the

previous section. This direct approach has a clear advantage over direct use of

semi-empirical 1D models.

3.1. Model description

A linear elastic FE model was developed using ANSYS software, meshing the pile330

with shell elements, and the soil with solid elements. The pile has a diameter of

5m, embedded length of 32m and a wall thickness of 60mm. The soil stratum was

given a vertical dimension of 50m, and a radius of 40 times the pile radius (i.e.,

100m). A pile element size and soil element size of 0.25m was used close to the

pile, and a combination of free and mapped meshing was applied. These model335

dimensions and mesh were verified to have converged; using smaller element sizes

or increasing the size of the soil domain had negligible effect. Taking advantage
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of the symmetry of the problem, only half of the circular pile and soil domain was

modeled in order to decrease the computational effort. The soil elements within

and outside the pile are attached to the pile elements; i.e. no slip is allowed340

between the pile and the soil. To simulate a shape of the pile that corresponds

to the expected shape of the loaded MP, an overturning moment of 90Nm and

horizontal force of 1N were applied at mudline by extending the pile with a 90m

tower above mudline, at the top of which a horizontal force of 1N was applied.

This moment-force ratio was retrieved from the design loads calculated for this345

wind farm, and it was found that this load eccentricity applies for most wind

speeds. The wave and wind loading for this wind farm are expected to have

the same direction. Obviously, the magnitude of this loading (90Nm/1N) is not

representative, however, since we use a linear elastic model, the magnitude of the

loading does not matter (as opposed to the moment-shear force ratio). The soil350

was assumed to consist of horizontally homogeneous, 1m thick, elastic layers

and each layer was assigned the material properties derived for the different

cases as described in Section 2. Because of the limited depth reached by the

SCPT, the deepest 7m along the pile until the lower boundary of the model

(from 25 to 50m depth) was assumed to be one homogeneous layer with the355

same properties as the layer above it (24 to 25m). Geotechnical data indicates

that a quite uniform sand layer is indeed present at this depth. However, the
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assumption of constant Young’s modulus can be considered conservative, as it

could be higher due to a larger effective overburden pressure.

3.2. Deflection shapes360

Figure 11 displays the computed 3D pile deflection shapes for the three cases

specified in Table 1. These lines represent the horizontal displacement (x-

direction in Figure 12) of the nodes of the shell which are, in the undeformed

situation, located on the plane (y-z plane, Figure 12) perpendicular to the plane

of the applied loading (x-z plane, Figure 12). Figure 11 also includes the deflec-365

tion shape of a 1D beam on Winkler foundation, of which the stiffness equals the

initial stiffness of the p-y curves that were determined according to the design

code [2], and subsequently used in the design model.
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Figure 11: Comparison of pile displacements. The grey dashed line is the displacement of

stiffness case 1, which is very similar to case 2 (black solid line). The black dashed line is

stiffness case 3 (highest stiffness), and the grey solid line is the deflection computed using the

p-y method.

It can be observed that the p-y curve approach seems to be conservative (i.e.

yielding the largest displacements) in estimating the displacements when com-370

pared to all 3 stiffness cases which were calculated with the 3D FE model. In

addition, more bending is present in the region between 10m and 25m depth in

the pile deflection calculated with the p-y curve approach as opposed to the 3D

FE results. The deflection at mudline of case 2 is 17% smaller than that pre-

dicted by the p-y curve method. Two factors may be responsible for this. First,375
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the input for the FE model was derived from seismic measurements, which are

more appropriate for determining the small-strain shear modulus. Second, the

FE model incorporates 3D phenomena for soil resistance to the large diameter

piles. These phenomena can, for instance, include a large base shear at the pile

tip [20] or pressure redistribution in the soil due to the Poisson’s effect. Fur-380

ther, as expected, we see that there is little difference in the deflection shapes

of cases 1 and 2. However, it is still interesting to see the influence of the es-

timated Poisson’s ratio on the deflection shape, as this is the only parameter

that varies between these cases (obviously, due to equation (8), the associated

Young’s modulus also changes slightly; see Figure 9). The higher Poisson’s ratio385

for case 2 with respect to case 1 (see Figure 8) yields a 3.5% smaller deflection

at mudline. As both cases have Poisson’s ratio profiles that are still well below

the incompressibility limit of 0.5, their relative difference does not yield a very

large difference in stiffness. Nevertheless, we conclude that the shear modulus

has the dominant influence on the deflection. More extensive sensitivity studies390

of the elastic parameters of soil on the response of the MP can also be found

in [33] and [34]. As case 2 is based on the soil profiles which are deemed most

realistic (see Sections 2.2 to 2.4), we will only consider this case in the remainder

of this paper.
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4. Effective 1D model395

Currently, time-domain simulations of 10 min duration are used to assess the

different load cases for the design lifetime of an OWT. The number of these

simulations can reach up to 10,000 per design location and iteration. Given the

fact that an average design effort for a wind farm comprises 2-3 locations with

3 iterations each, it is clear that the models should be computationally efficient.400

Now, in order to use the results of the more advanced 3D models, we need to

tune the simpler engineering models used for design purposes. For the simpler

model we choose the often preferred model of the engineering community: the

beam on Winkler foundation. Such a distributed foundation model yields di-

rect representation of the soil reaction, and the coupling between the lateral405

and rotational degrees of freedom at the mudline are automatically incorpo-

rated. Furthermore, the Winkler based substructure is extendable to include

non-linear reaction mechanisms. In [17] we showed that, in trying to translate

the 3D response to a 1D stiffness, simply dividing local forces by the collocated

displacements leads to physically meaningless negative stiffness and singularities410

at certain locations. In order to avoid dealing with such not physical anoma-

lies, we need to find a way to identify a positive definite 1D stiffness profile

that yields nearly the same pile displacement as predicted by the 3D model. A
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1D effective stiffness profile (i.e., ks(z) or ks,0(z) in the p-y curve method) is

a soil-structure interaction functional parameter, capturing the geometry, the415

shape and material properties of both the pile and the soil. That explains why a

one-to-one relation of the stiffness of a continuum (Young’s and shear modulus)

and a 1D Winkler foundation cannot be found.

4.1. Translation method

To find the 1D effective (p-y curve initial) stiffness, ks(z), we propose to opti-420

mize this stiffness profile in the engineering model to match both the deflection

u(z) and rotation ψ(z) shapes obtained from the more advanced model. Note

that we constrain ourselves by only assuming translational springs in the model,

as this is often done in design practice. However, as 3D effects can be quite com-

plex, it might, for instance, be reasonable to also introduce rotational springs425

in the 1D model.

The translation is accomplished by considering integrals of the equilibrium

equation of a beam resting on a Winkler foundation, with u(z) and ψ(z) as

the “known” 3D response and with ks(z) as the unknown stiffness of the dis-430

tributed springs. First, the 3D nodal solutions need to be translated into a 1D

target solution (line). As previously mentioned, for the horizontal displacement
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line u(z), the horizontal displacement is taken of the nodes of the shell which

are, in the undeformed situation, located on the plane (y-z plane in Figure 12)

perpendicular to the plane of the applied loading (x-z plane, Figure 12). For435

the 1D-target rotational shape ψ(z), the difference in vertical displacements of

the two nodes on the loading plane (x-z plane in Figure 12) were divided by

the diameter of the pile. Such numerically computed profiles are not necessarily

smooth enough for triple or double differentiation. Especially at the bound-

aries of the pile this can be an issue. To maintain a smooth shape also for the440

higher derivatives, the numerical values were fitted by polynomial functions.

A piece-wise fit was applied, subsequently averaging overlapping parts of the

fits of these pieces and refitting a single polynomial through the different piece-

wise-averaged fits. For the deflections, the shape was split up in 3 parts, with

2 smaller parts focussing on the tip region of the pile. The same split was ap-445

plied for the rotational shape, however, it was found that an extra split near the

mudline (yielding a fourth part focussing on the top of the pile) gave a better

overall fit.

We use the Timoshenko beam theory as the basis for the analysis. It was450

found that the shearing contributions to the rotations, which is included in this

theory (as opposed to the Euler-Bernoulli theory), had to be included in order
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to better match the 3D response of this relatively rigid, large diameter pile.

The equilibrium equations of a Timoshenko beam, representative for a monopile455

without external distributed forcing read:

GAκ(d
2u(z)
dz2 −

dψ(z)
dz )− ks(z)u = 0, (10)

GAκ(du(z)dz − ψ(z)) + EI d
2ψ(z)
dz2 = 0, (11)

where E and G are respectively the Young’s and shear modulus of steel, I

the second moment of area of the cross section of the pile, A the area of the

cross section of the pile and κ the cross section-dependent Timoshenko shearing

coefficient. For the shape of the cylindrical cross section of the pile, we used

a value of κ = 0.5. For the purpose of this paper, it is more convenient to

rewrite these equilibrium equations into a single equation. This can be done by

differentiating equation (11) yielding

GAκ(
d2u(z)

dz2
− dψ(z)

dz
) + EI

d3ψ(z)

dz3
= 0, (12)

and differentiating equation (10) twice to obtain

d3ψ(z)

dz3
= − 1

GAκ

d2(ks(z)u(z))

dz2
+
d4u(z)

dz4
. (13)

Replacing the first term in equation (12) by ks(z)u in accordance with equation

(10), and substituting equation (13) into the second term of equation (12) yields

a single equilibrium equation:

EI
d4u(z)

dz4
+ ks(z)u−

EI

GAκ

d2(ks(z)u(z))

dz2
= 0, (14)

which is similar to the Euler-Bernoulli equilibrium relation, but it includes a

third term to account for the shearing effect.
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The boundary conditions for the case that we consider are

GAκ
(du
dz

∣∣∣
z=0
− ψ(0)

)
= −F, (15)

EI
dψ

dz

∣∣∣
z=0

= m, (16)

GAκ
(du
dz

∣∣∣
z=L
− ψ(L)

)
= 0, (17)

EI
dψ

dz

∣∣∣
z=L

= 0, (18)

in which F and m are the equivalent lateral force and overturning moment as

applied in the 3D model. Note that this, in the case of simulating only half of

the symmetric problem in the 3D model, implies that a factor of 2 has to be

applied to the loading in the 1D model. The assumed boundary conditions as460

stated in equations (15) to (18) for a “free-free” 1D beam can be checked to

hold for the 3D solution. When doing so, we find that indeed - due to 3D effects

- these force and moment equilibria do not entirely apply for the 3D responses

at these locations. Therefore, we could argue that this requires the introduction

of discrete lateral and rotational springs at the tip as well as at the top of the465

pile, in order to - in the 1D model - reach force and moment equilibria at the

boundaries. However, in the example case of this paper we will not apply any

discrete springs at the boundaries, as an effective distributed stiffness can be

found that can adequately capture the 3D response without the application of

extra discrete springs. The sign convention of the 1D model is given in Figure470

12.
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Figure 12: Graphical representation of the 1D beam model and the used sign convention.

In order to find the effective 1D stiffness ks(z), we assume a certain continuous

parameterized function. We are only interested in physically realistic solutions,

we do not allow negative stiffness in the resulting stiffness profile. We found

that looking for a solution for ks(z) in the form of a fourth order polynomial

suffices to capture the 3D effects. So, we assume

ks(z) = p0 + p1z + p2z
2 + p3z

3 + p4z
4, (19)

which has 5 unknown constants. To find these 5 constants, we also formulate 5

equations, which are integrals of the force equilibrium equation (14).

For the first integral, we want the global force balance to hold over the full
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length of the pile. Taking the integral of the equilibrium equation gives:

EI
d3u

dz3

∣∣∣∣z
(2)
f

z
(1)
f

+

∫ z
(2)
f

z
(1)
f

ks(z)u(z)dz

− EI

GAκ

(dks(z)
dz

u(z) + ks(z)
du(z)

dz

)∣∣∣∣z
(2)
f

z
(1)
f

= 0, (20)

in which z
(1)
f and z

(2)
f are the integration boundaries (“f”: force; “(1)”/“(2)”:

lower/upper integration bound). As we want a force balance over the entire

pile, for integral 1 z
(1)
f = 0 and z

(2)
f = L. We also want to match the global

overturning moment. This can be achieved by multiplying equation (14) by z

and again integrating over the beam length. Doing so, yields integral 2:

zEI
d3u

dz3

∣∣∣∣z(2)m

z
(1)
m

− EI d
2u

dz2

∣∣∣∣z(2)m

z
(1)
m

+

∫ z(2)m

z
(1)
m

zks(z)u(z)dz

− EI

GAκ

(
z
(dks(z)

dz
u(z) + ks(z)

du(z)

dz

)
− ks(z)u(z)

)∣∣∣∣z(2)m

z
(1)
m

= 0. (21)

For the global moment equilibrium integral 2, z
(1)
m = 0 and z

(2)
m = L (subscript

“m” stands for moment).

We now have 2 equations, so 3 more equations are needed to solve uniquely475

for the 5 unknowns. To establish these, we take the same integrals, but we

now focus on equilibria of parts of the beam; a local force equilibrium and 2

local moment equilibria. As we do not yet know which parts of the beam we

should focus on to get the best solution (match), we leave the integration limits

unknown. We find the solution by sweeping the upper and lower limits of the480

integrals in steps ∆L and checking which combination gives the optimal ks(z).

41



The local “force” integral focuses on the upper part of the pile (by sweeping the

integration limits z
(1)
f,t and z

(2)
f,t (“f,t”: force, top) from 0 to L − ∆L). As for

the “moment” integrals, one focuses on the upper and the other one focuses on

the lower part of the pile (from L to 0 + ∆L). So, the third integral is given by485

equation (20), however, with integration limits that are swept starting from the

top:

z
(1)
f,t = 0 .. ∆L .. (L− 2∆L),

z
(2)
f,t = z

(1)
f,t + ∆L .. ∆L .. L−∆L. (22)

Similarly, the fourth integral, given by equation (21), focuses on the equilibrium

of moments at the top of the pile by sweeping the integration limits:

z
(1)
m,t = 0 .. ∆L .. (L− 2∆L),

z
(2)
m,t = z

(1)
m,t + ∆L .. ∆L .. L−∆L. (23)

Finally, the fifth integral, also given by equation (21), focuses on the equilibrium490

of moments at the bottom of the pile by sweeping the integration limits:

z
(2)
m,b = L .. −∆L .. 2∆L,

z
(1)
m,b = z

(2)
m,b −∆L .. −∆L .. ∆L. (24)

So, in total 6 integration limits (3 local integrals with 2 integration limits each)

are swept with steps of ∆L. Note that a linear system of equations is solved for

each combination of the integration bounds, giving a unique solution for ks(z).
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Of these solutions, only the positive definite stiffness profiles are considered for495

calculating the corresponding deflection and rotation shapes using the 1D Tim-

oshenko model.

Subsequently, we judge the quality of the solutions and select the optimal one.

Depending on the end-goal of the analysis, the definition of the optimum might500

differ. For instance, a full match in bending moment for all depths with respect

to the 3D model might be preferred instead of exactly matching the displace-

ment and rotation at mudline. In this paper, we assess the quality of the solution

based on a the fit for the deflection u, the slope du
dz (or u′), the rotation ψ and

curvature ψ′ of the 1D model with respect to those of the 3D model for all505

depths. Obviously, such a misfit function can be tailored to the purpose of the

user. We define the “cost” of the fit as

Cu,u′,ψ,ψ′ =

∑i=L
i=0

∣∣u1D,i − u3D,i∣∣
4
∑i=L
i=0

∣∣u3D,i∣∣ +

∑i=L
i=0

∣∣du1D

dz |i −
du3D

dz |i
∣∣

4
∑i=L
i=0

∣∣du3D

dz |i
∣∣ +

∑i=L
i=0

∣∣ψ1D,i − ψ3D,i

∣∣
4
∑i=L
i=0

∣∣ψ3D,i

∣∣ +

∑i=L
i=0

∣∣dψ1D

dz |i −
dψ3D

dz |i
∣∣

4
∑i=L
i=0

∣∣dψ3D

dz |i
∣∣ . (25)

4.2. Translation Results

For case 2, we obtained satisfactory results by sweeping the 6 integration bounds

with steps of ∆L = 2.13m. Figure 13 shows the resulting 1D effective initial510

stiffness ks(z), which now incorporates 3D effects and true small-strain reaction

properties. As a reference, the initial stiffness as determined with the p-y curve
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method is also shown in the same figure. The resulting deflection, slope, rotation

and curvature profiles and the fits with the corresponding 3D responses are given

in Figures 14 and 15, respectively. In Figure 13, we see that a somewhat larger515

stiffness ks(z) is mobilized at the upper two-third part of the pile. The weaker

soil layer between 13m and 20m depth is - due to a combination of relatively

constant shear-wave velocity and 3D effects - not as dominantly present in the

effective stiffness as in the p-y stiffness. We also note that at mudline ks(z) is

not zero. The higher stiffness in the shallow region can reflect the phenomenon520

that was already mentioned in Sections 1 and 3: an underestimation of the

shallow-depth stiffness. The stiffness of the upper layers of the soil profile has

a dominant influence on the natural frequency of the structure. As a reference,

the previously shown Young’s profile of stiffness case 2 is plotted alongside the

effective stiffness profile in Figure 13. We can see that the 3D and 1D stiffness525

profiles share some shape characteristics. However, we note that the 1D profile

also captures the interaction with the structure, and thus should not necessarily

follow the 3D continuum stiffness profile.
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Figure 13: The effective ks(z) of stiffness case 2, found for a pile loaded with an overturning

moment/horizontal force ratio of 90m at mudline (black solid line). This initial stiffness

incorporates 3D modelling effects, and in-situ seismic small strain characterization of the soil.

As a reference, the p-y curve initial stiffness is given by the grey dashed line. Also the Young’s

profile for stiffness case 2 which was input for the 3D model, is plotted as a reference (grey

dashed-dotted line).
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Figure 14: Deflection u (left panel) and slope u′ (right panel) of a 1D Timoshenko beam with

the found effective stiffness ks given in Figure 13 caused by an overturning moment of 180Nm

and 2N horizontal force at mudline (grey solid lines). The match with the 3D responses

(black solid lines) is good. As a reference: the grey dashed lines are the deflection and slope

of a Timoshenko beam with the initial stiffness derived from the p-y curve method (as also

depicted in Figure 13).
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Figure 15: The rotations ψ (left panel) and curvature ψ′ (right panel) associated with the

deflection and slope profiles given in Figure 14: the 1D effective solutions (grey solid lines),

the responses of the 3D model (black solid lines) and the responses derived with the p-y curve

method (grey dashed line).

In Figure 14 we see, as in Figure 11, a stiffer response in the small-strain 3D

model (and the 1D effective fits) compared to the p-y curve method. Also, the530

location of the maximum bending moment (reflected by the curvature ψ′ plot

in the right panel of Figure 15) as determined with the p-y curve method is

located a couple of meters below that of the 3D model. This disparity is caused

by the difference in shallow-layer stiffness between the methods (indicated also

in Figure 13). The maximum bending moment of the 3D model is located just535
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below the mudline.

The values of the cost of the fits Cu,u′,ψ,ψ′ and its separate components Cu,

Cu′ , Cψ and Cψ′ of case 2 are given in Table 2. To check the general applica-

bility of this best solution (the effective ks(z)) for other load cases, four other540

loading cases were simulated in the 3D model: a variation of around 10% in the

effective lever arm of the loading for which the effective ks(z) was inverted, a

ratio in the overturning moment m and horizontal force F of 100 and 80. In

addition, two more radical differences were evaluated; an effective lever arm of

45 (50% of the original target-shape loading), and a moment-only case. The545

quality of the fits of the 1D model using the 1D stiffness profile as presented in

Figure 13 with the 3D response of the other load cases was found to be equally

satisfactory. As can be seen in Table 2, the cost values for these other load

cases are comparable with the costs of the fit of the loading case for which the

stiffness was identified.550
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Cu,u′,ψ,ψ′ Cu Cu′ Cψ Cψ′

Case 2

m/F=90m 0.0454 0.0269 0.0057 0.0057 0.0072

(target)

m/F=100m 0.0445 0.0260 0.0056 0.0057 0.0071

m/F=80m 0.0466 0.0280 0.0057 0.0056 0.0072

m/F=45m 0.0538 0.0348 0.0061 0.0055 0.0075

m=1 Nm, F=0 N 0.0351 0.0165 0.0058 0.0060 0.0068

Table 2: Values of equation (25) for the best solution (the effective stiffness ks(z) which yields

the lowest value for Cu+u′+ψ+ψ′ ) for stiffness case 2. This effective stiffness profile was tested

to be compatible for 4 other load cases. The costs of the fits of the 1D response with the 3D

response for these load cases are also included in this table.

From Table 2, we see that the cost of the fit of the displacement over the full

length of the pile is 0.0269. This number can be multiplied by 4 to yield the

percentage difference (see equation (25)): 10.76%. The overall rotations show

a 2.28% difference, and the overall curvature (i.e. the correspondence in bend-

ing moment, see equation (16)) difference is 2.88%. Similar matching efforts555

(although including rotational springs along the pile and at its base) yielded a

difference in static displacement at the top of the pile of 14.0%, and a difference

in rotation at the same location of 8.7% [20]. If we also only consider the top of

the pile, the mismatch in static deflection and rotation at this location is 2.40%

and 0.88% respectively.560
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5. Resulting natural frequencies

Since we now have a 1D effective lateral stiffness, we can employ it in an aeroe-

lastic model, and check the effect of the found stiffness profiles on the natural565

frequency of the entire system (support structure including rotor-nacelle assem-

bly). This is done by performing an eigenfrequency analysis in the BHawC

program, the aeroelastic code used by Siemens Wind Power. Table 3 lists the

resulting frequencies obtained with the soil stiffness identified with the help of

the p-y curve method, and those obtained by using the here presented seismic570

characterization and 3D modelling approach.

Natural ∆ w.r.t.

frequency p-y curve

Mode [Hz] method

p-y curve F-A 0.288 -

Si-Si 0.292 -

Case 2 F-A 0.291 +1.04 %

Si-Si 0.295 +1.03 %

Clamped F-A 0.308 +6.94 %

Si-Si 0.313 +7.19 %

Table 3: Overview of natural frequencies of the fore-aft and side-side vibrational modes (first

bending modes) of the entire OWT system for the different stiffness cases.

From Table 3, we can see that the proposed method results in a 1.04% (case

2) increase in natural frequency for the fore-aft bending mode of the structure.

We have to note that such a relative increase is site-dependent; the impact of

a certain SSI modelling approach on the natural frequency of the structure de-575
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pends on the relative stiffness of the soil profile. To assess this impact, an extra

case is given in Table 3: clamping the foundation at mudline. This case yields

the upper limit influence of the soil stiffness on the natural frequency of this

OWT structure. From this we can conclude that the soil of the selected design

location can be characterized as quite stiff: clamping the foundation increases580

the natural frequency with about 7% with respect to the p-y approach. This is

confirmed by the geotechnical profile, consisting of mostly sand with an internal

angle of friction φ of around 38 degrees (Figures 5 and 7).

As discussed, case 2 is thought to be most realistic, and was therefore used585

in presenting the translation method. Clearly the upper stiffness case 3 or even

the shear-wave velocities supplied by the geotechnical service company (the grey

dotted “•” line in Figure 5), would result in higher natural frequencies as found

for the here presented case 2.

6. Conclusions590

The fundamental natural frequencies of installed OWTs are generally higher

than aimed for in design. This implies a waste of construction steel, which is of-

ten used to stiffen-up the support structure. The first natural frequency needs

to be predicted with quite a high accuracy, as resonance regimes below and
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above this frequency exist that can cause structural fatigue. The discrepancy595

in frequency is expected to be caused by an underestimation of the stiffness oc-

curring in the interaction between soil and the large-diameter rigidly behaving

OWT foundations. In the applied p-y curve design method, the modulus of

subgrade reaction k was calibrated for flexible slender piles. It is this parameter

that defines the initial stiffness, ks, which in turn defines the modal response600

of the support structure. ks is truly a SSI parameter, dependent on the geom-

etry, shape and material properties of both the structure and the soil. Many

studies have proposed other empiric, tunable relations for this parameter, with

the conventional geotechnical parameters as input. These geotechnical param-

eters are measured in-situ using CPTs and borehole samples, which are both605

soil-disturbing, large-strain measurement techniques.

In this paper, we present two innovative steps for improved assessment of the

initial stiffness of soil in contact with large diameter foundations. Firstly, as

we are interested in the modal properties of the OWT, we need to assess the610

dynamic, small-strain soil reaction. This property is best captured by seismic

measurements. The SCPT is a well-established technique measuring both lo-

cal and more global properties of the soil-stratum. A geophysical method was
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used to extract the shear modulus (G) of the soil layers. The estimated shear

modulus G is input for a 3D SSI model, which is used to extract the proper615

small-strain pile responses.

Secondly, we present a translation method to find the initial stiffness ks(z),

being a true SSI interaction parameter. It can be captured with prototype mea-

surements, or, when these are not available, it can be approximated with a 3D620

model in which more realistic deformations of both soil and structure are taken

into account (compared to 1D). Instead of trying to find a general tunable re-

lation, we suggest developing such a 3D model for every design position and

use the presented translation method to extract the 1D-effective initial stiffness.

This Winkler foundation stiffness can then be used in the simpler and fast sim-625

ulation models, to directly compute the occurring stresses in the monopile.

The steps were demonstrated for a design location in a near-shore wind farm, of

which the soil profile can be characterized by mostly stiff dense sand, and a layer

of stiff clay. The optimal 1D effective stiffness profile was defined as yielding630

a balanced fit: scoring well on deflection, slope, rotations and curvature. Ob-

viously, such a misfit function can be tailored to the purpose of the user. The

selected 1D stiffness profile gave a satisfactory good match in pile responses with
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respect to the 3D model, resulting in a small mismatch in deflection u and ro-

tation ψ at the mudline of 2.40% and 0.88% respectively. The overall mismatch635

(for all depths) of the deflections and rotations was 10.76% and 2.88%. The

match in profiles of the slope u′ and curvature ψ′ was also found to be good,

yielding similar values for the mismatch as the overall rotations. The optimal

1D-effective stiffness is a profile with a higher stiffness (as compared to the p-y

approach) for the upper two-thirds of the soil layers. The quality of the fits640

obtained with the here presented method will depend on the soil profile and the

geometry of the pile. For the presented case, a Winkler foundation with only

lateral springs proved sufficient to match the 3D response. However, if the 3D

global effect are not sufficiently captured by lateral springs only, more degrees

of freedom can be added to the 1D model: for instance discrete springs at the645

boundary of the pile, or distributed rotational springs along its shaft.

The soil profile of the demonstrated design location is typical for many North

Sea locations: rather stiff soil conditions with dense sand and a few thin layers

of clay. When clamping the foundation at mudline, it was found that the upper650

limit of increase in the fundamental natural frequency of the complete structure

(including tower and rotor-nacelle assembly) with respect to the initial stiffness
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profile determined with the p-y curve method was only 7%. The here sug-

gested stiffness, incorporating in-situ measured small-strain soil reactions and

3D global SSI effects, results in a 1.04% increase of the fundamental natural655

frequency. Obviously, many other mechanisms and aspects might also cause the

described discrepancy between measured and modeled frequency. In any case,

the method suggested here is believed to be an important step towards a more

realistic assessment of the problem.
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