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SUMMARY

Freight transportation is a crucial pillar of our economy, yet freight trucks place disproportionally large burdens
on society compared to passenger cars, especially relating to air pollution, traffic safety, congestion, and
pavement wear (Hunt & Stefan, 2007; Quak, 2008; Kim et al., 2014; Sdnchez-Diaz et al., 2015). As both national
and international freight flows continue to grow (Tavasszy, 2008; ITF-OECD, 2015; CBS, 2017a), policies are
developed that stimulate more sustainable and efficient transportation of goods. Simulation models are a
common tool for development and evaluation of these policies (de Bok & Tavasszy, 2018).

Freight modelers increasingly realize the importance of tour formation for accurate prediction of traffic flows
with these simulation models. Tour formation is the construction of a vehicle journey to load and unload
shipments. As multiple shipments can be transported in a tour, simulation models that omit tour formation fail
to recognize that a truck does not need to drive directly from the loading location to the unloading location of a
shipment (Holguin-Veras et al., 2014; Sanchez-Diaz et al., 2015).

Many tour formation models are not shipment-based (e.g. Hunt & Stefan, 2007), lack parameters that are
statistically calibrated on empirical data (e.g. Wisetjindawat et al., 2006), or focus on a narrow segment of
freight transportation (e.g. Nuzzolo et al., 2012). Modeling shipments allows us to consider that shipments
determine the possibilities and constraints for tour formation, statistical calibration provides the empirical
foundation to test hypothesized behavioral effects, and having a large and inclusive scope of freight
transportation allows us to develop a tour formation model that is applicable to a large variety of shipments in
a regional (or national) freight simulation framework.

The objective of this research is to develop a tour formation model that can allocate shipments to tours in a
way that is similar to observed tour formation behavior. For this purpose, we have access to a data set, the
XML microdata, that lists approximately 2.6 million shipments transported over the Dutch roads. This unique
data is collected by the Dutch Central Bureau of Statistics (CBS) and tapped automatically from the transport
management systems of Dutch freight carriers. This data is highly inclusive, it makes no selections regarding
goods types or regions within the Netherlands, although a self-selection of large third-party carriers (i.e.
transporting goods for other parties) can be identified.

Analysis of tour statistics has revealed many insights that help us understand freight tour formation. For short-
distance shipments, more often direct tours (one loading point, one unloading point) are found, indicating a
preference for simple tours when the efficiency gains of grouping shipments are smaller. Tours that load
shipments at a distribution center make more stops. These shipments are likely to be transported to consumers
instead of producers and have smaller sizes (Friedrich et al., 2014), which allows more shipments to be
transported in the same vehicle. Tours that visit a port transshipment node make fewer stops, for its shipments
are more likely to originate from producers and have larger sizes. Due to differences in shipment size,
dispersion of demand, goods type restrictions, and ease of loading/unloading, we observe more stops in tours
transporting agricultural products, foodstuffs and manure, and few stops in tours transporting oils, metals,
construction materials, and chemical products. In addition, cement/concrete shipments are virtually never
transported in tours with multiple stops due to their high time-sensitivity and volumes (Khan & Machemehl,
2017).

To be able to calibrate a tour formation model with the data, we have developed an iterative shipment
allocation algorithm. A tour is grown iteratively through allocation of an additional shipment until the decision
to end the tour is made. After each shipment allocation, the sequence of visiting loading and unloading
locations is reconstructed. This process is repeated until the shipments of all carriers have been allocated to a
tour. Two probabilistic choice steps are present in this algorithm, which we call the End Tour (ET) and the Select
Shipment (SS) choice models. The utility functions of these two choice models are estimated on the data. We
do not assume that the two choice models represent an actual choice, though. They should be seen as



statistical models that allow us to use empirical data to consider behavioral effects in an algorithm that
simplifies the elaborate and complex process of allocating shipments to tours.

The ET choice model is a Binary Logistic Regression. The binary dependent variable can have a value of 0, which
means that the choice is made to allocate an additional shipment to the current tour, and a value of 1, which
means that the current tour is ended and a new one is started. Its utility function is estimated separately for
the first shipment and for later shipments in a tour, because the majority of tours transports only one
shipment. Its explanatory variables are the following: tour duration, capacity utilization, proximity of the
nearest remaining shipment, number of visited stops, location type of visited stops, goods type, and vehicle
type.

The SS choice model is a Multinomial Logit, a model which chooses which shipment to add to a tour, if the
decision to add another shipment to the tour is made. For this purpose, we sample a choice set of six
shipments that a carrier has to transport on a day, based on selection criteria such as correspondence to
vehicle capacity. In the SS choice model, the probability of selecting a shipment increases when the shipment
adds a lower generalized cost to the tour, has more stop locations in common with the tour, and has the same
goods type as the other shipments in the tour.

While our iterative model structure simplifies the complex tour formation process, many objectives and
constraints that influence freight tour formation are considered by the model. For example, carriers wish to
construct efficient tours to minimize transportation costs, but at the same time might prefer to construct tours
with few stops in order to keep the planning simple. Important constraints, such as vehicle capacity, availability
of shipments, and maximum work shifts, are respected. In addition, the model acknowledges the differences in
tour formation for various types of goods, vehicles, and locations. For example, direct tours are constructed for
cement/concrete shipments, while a tour with multiple stops is more likely when goods are loaded at a
distribution center. Several features of freight tour formation are not included, though, due to data availability.
Most importantly, we do not consider empty trips and time window constraints.

To validate the model, we use it to construct tours with the shipments listed in data that we separate from the
data used for estimation. The validation shows that the model can reproduce observed distributions of tour
statistics such as number of stops and tour distance very satisfactorily for a given set of shipments, even for
different location and goods types. Additionally, a sensitivity analysis with varying travel times in the network
shows plausible results. When travel times increase, fewer direct tours are made because of a stronger focus
on travel time savings and fewer tours with a very large number of stops are made because working hour
constraints are violated more quickly with longer travel times.

As highly promising validation results are obtained when we apply the model to the shipments of a different
set of carriers than the carriers that provide data for model estimation, we conclude that the model can be
used to construct tours for other carriers in a shipment-based freight simulation framework. However, several
conditions must be fulfilled. Firstly, the geographical scope of the framework should be road freight
transportation within the Netherlands. Because the Netherlands is a particularly dense and small country, and
freight patterns differ between regions (Zhou et al., 2014), other constraints and parameters might be more
appropriate in other countries. Secondly, the model should be used to construct tours for third-party carriers.
Due to requirements of an XML-interface, our data shows a strong self-selection of third-party carriers with
advanced transport management systems. Thirdly, off-peak travel times should be used in the framework, as
we used these in our estimations. Finally, a vehicle type choice model and a synthesized set of shipments that
are assigned to carriers are needed before tours can be constructed with our model.

The application of our tour formation model in a freight simulation framework provides the most interesting
directions for future research. Relevant research relates to (1) shipment synthesis, (2) carrier assignment, (3)
integration between tour formation and vehicle type choice, and (4) empty trips. To synthesize a realistic set of



shipments between firms or zones, we recommend to analyze the spatial distribution of shipments and the
relationships between shipment attributes. In addition, a good decision rule should be developed that assigns
shipments to carriers. A vehicle type choice model is currently under development for the MASS-GT framework
of the agglomeration of Rotterdam, the Netherlands (de Bok et al., 2018). An appropriate integration of tour
formation and vehicle type choice is a challenging task that requires further research; the vehicle type sets
constraints prior to tour formation but a larger vehicle may be chosen if the vehicle capacity is reached with a
tour. Additionally, a model that predicts empty trips is of large importance. In combination with a traffic
assignment module, it is possible to compare observed and predicted link flows, which would provide solid
insights into the extent to which our tour formation model improves the predictive performance of a freight
simulation framework.

Several priorities are identified to improve the data set of the CBS, although these priorities are relevant for
any new freight data collection effort. Firstly, empty trips constitute a large part of all freight trips (Sanchez-
Diaz et al., 2015), which is why inclusion of these empty trips is of large importance to understand and predict
truck flows. Secondly, we recommend to include consistent variables that measure the volume of shipments
and the volume capacity of trucks, because an interview with a transportation planner and our estimation
results indicate that the volume capacity of the truck is an important constraint for tour formation. Thirdly,
listing intermediate arrival and departure times at stops allows us to understand more aspects of freight tour
formation, such as dwelling times and tour sequences. Fourthly, more carrier characteristics, such as the
vehicle fleet size, can assist in exposing the heterogeneity of carrier behavior. Finally, adapting the XML-
interface to the trucks and planning systems of smaller and own-account carriers would allow us to expose the
behavioral differences of third-party and own-account carriers, and to obtain a more representative data set.
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73 Percentage of predicted direct tours in different scenarios reflecting travel time changes, averaged over two model A runs per
) scenario.

74 Percentage of predicted tours by number of stops, in different scenarios reflecting travel time changes, averaged over two model
' A runs per scenario.

7.5 The distribution of tour distances in different travel time scenarios, averaged over two Model A runs per scenario.

76 Percentage of predicted direct tours in different scenarios reflecting travel time changes, averaged over three model A runs per
) scenario.

77 Percentage of predicted multiple-stop tours that have a certain number of stops, in different scenarios reflecting travel time
: changes, averaged over three model A runs per scenario.

7.8 The distribution of tour distances in different travel time scenarios, averaged over three runs per scenario.

D.1 Frequency distribution of the number of zones by percentage of retail establishments.

D.2 Frequency distribution of the number of zones by number of retail establishments.

ABBREVIATIONS

BGW Basisbestanden Goederenwegvervoer

BLR Binary Logistic Regression

CBS Central Bureau of Statistics of the Netherlands

cC Consideration Choice set (a randomly sampled subset of the Feasible Choice set)
DC Distribution center

ET End Tour (estimated choice model)

FC Feasible Choice set (a subset of the Universal Choice set, shipments that violate specified constraints are removed)
MNL Multinomial Logit

RUM Random Utility Modeling

TSP Traveling Salesman Problem

SS Select Shipment (estimated choice model)

VKT Vehicle Kilometers Traveled

VRP Vehicle Routing Problem

ucC Universal Choice set (all the shipments that a carrier has to transport on a day)
XML Extensive Markup Language
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GLOSSARY

Actor “Individual people, organizations such as firms, or bodies such as nation-states.” (Gilbert, 2008:5).

Agent “Either separate computer programs or, more commonly, distinct parts of a program that are used to
represent social actors.” (Gilbert, 2008:5),

Behavior The observable outcome of a set of choices made an actor.

Behavioral Describing how objectives and constraints lead to the behavior of an actor. l.e. descriptive, but with a focus
on behavior.

Buurt A Dutch administrative zonal unit.

Calibration Tweaking model parameters to optimally reproduce observed data.

Constraint A restriction on what a decision maker can choose from (Hillier & Lieberman, 2001).

Direct tour A tour that visits only one loading and one unloading location.

Descriptive Describing how things are rather than prescribing how things should be.

Empirical Based on observed data.

Estimation Calibration using statistical methods such linear regression and multinomial logistic regression.

Home base The location where a vehicle is returned to after a work shift.

Objective A measure of performance that reflects what is a desirable situation to a decision maker (Hillier & Lieberman,

2001).

Own-account carrier

A firm that transports its own goods using its own vehicle fleet.

Shipment

A physical object with a unique combination of loading location, unloading location, goods type, and tour that
it is allocated to.

Stop

A unique location (buurt) visited in a tour.

Sub tour

A tour with only a subset of its shipments.

Third-party carrier

A firm that transports goods of other parties.

Tour

A sequence of visiting locations to load and unload shipments.

In the XML microdata (and in our model): A sequence of visiting locations to load and unload shipments,
starting at the location where the first shipment was loaded into an empty vehicle, and ending at the location
where the last shipment was unloaded or at the home base.

Trip

A drive between two locations. A tour can consist of multiple trips.
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1. INTRODUCTION

Freight transportation facilitates trade of goods between regions. Therefore, it is crucial for economic
development and provision of regions with the resources they have a shortage of (Sanchez-Diaz et al., 2015).
However, it also carries many negative impacts on society. For example, compared to passenger cars, freight
trucks have a disproportionally large impact on congestion, air pollution, traffic safety, and pavement wear
(Hunt & Stefan, 2007; Quak, 2008; Kim et al., 2014). Furthermore, both the amount and share of freight traffic
on the roads is expected to increase (Tavasszy, 2008). Projections are as high as a quadrupling of international
freight volumes by 2050 (ITF-OECD, 2015). In the Netherlands, the total volume of freight transported
increased with 2.5% in 2016 (CBS, 2017a). Due to its large and ever increasing impacts on society, the public
sector wishes to develop policies that steer freight transportation towards more sustainability and efficiency.

1.1 PROBLEM STATEMENT

Simulation models are an important tool to support the development and evaluation of freight transportation
policies (de Bok & Tavasszy, 2018). Such models aim to represent the complex system that leads to freight
flows. Expected impacts of future scenarios and policy measures can be calculated with these models.

The freight system is highly complex and heterogeneous. It features many different types of goods, vehicles,
actors, and interactions (Alho et al.,, 2017; Khan & Machemehl, 2017). Exclusion of these details causes
simulation models to have a low behavioral foundation. It also makes these models unsuitable for calculation
of impacts of low-level tailor-made policies. Therefore, freight simulation models “are becoming increasingly
disaggregate” (de Bok & Tavasszy, 2018:127).

One of these disaggregate directions that freight modeling has taken, is the field of agent-based modeling. In
agent-based modeling, decisions made by individual actors are represented with agents. Agents can be defined
as “either separate computer programs or, more commonly, distinct parts of a program that are used to
represent social actors” (Gilbert, 2008:5), whereas actors can be “individual people, organizations such as
firms, or bodies such as nation-states” (Gilbert, 2008:5). Agent-based modeling is a technique especially
suitable for understanding and representing systems where decisions and interactions at the individual level
play a key role (Gilbert, 2008), which is the case in freight transportation.

When the focus is on freight transportation by road, one of the key aspects that should be incorporated in an
agent-based simulation model is tour formation. Tour formation is the construction of a set of tours from a set
of shipments. A tour is a sequence of visiting locations, while a shipment is defined in this research as a physical
object with a unique origin (loading location), destination (unloading location), and goods type. Many
researchers have different definitions of a tour; therefore, we leave this definition rather broad in this
introduction.

When a tour contains multiple shipments, the origin and destination of the shipment do not need to match the
origin and destination of the vehicle, as other locations may be visited in the tour too (Holguin-Veras et al.,
2014; Sanchez-Diaz et al., 2015). For this reason, a good tour formation model is expected to lead to more
accurate predictions of vehicle flows (Figure 1.1). Furthermore, different tours lead to different tour distances.
Consequently, tour formation is an important phenomenon that should be considered in prediction of the total
Vehicle Kilometers Traveled (VKT) in a network (Figliozzi, 2007; Khan & Machemehl, 2017).

Tour formation has increasingly gained attention in the scientific literature on freight modeling. Two main
directions can be identified in tour formation modeling: (1) tour construction algorithms that use discrete
choice models (e.g. Hunt & Stefan, 2007; Nuzzolo et al., 2012) and (2) vehicle routing optimization techniques
from the field of operations research (e.g. Boerkamps & van Binsbergen, 1999; You et al., 2016).
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Figure 1.1. A good tour formation model allows us to consider that a truck does not have to drive directly from the origin to the
destination of a shipment.

Very few tour formation models are both shipment-based and calibrated in a statistical way. Shipment-based
models provide a more accurate representation of behavior because many decisions in freight transportation,
including tour formation, are made at the level of shipments (de Bok et al., 2018). Modeling shipments also
allows us to consider the different economic characteristics, constraints, and geographical distribution of goods
types (Holguin-Véras et al.,, 2014) and to analyze the effects of more detailed policies and scenarios
(Boerkamps & van Binsbergen, 1999). Statistical calibration allows us to understand and reproduce observed
tour patterns better, as hypothesized influences on tour formation can be tested empirically. The tour
formation models of Nuzzolo et al. (2012) and Outwater et al. (2013) are shipment-based and statistically
calibrated. However, they model only a small facet of freight transportation: Nuzzolo et al. (2012) only model
the restocking tours of retailers while Outwater et al. (2013) only consider tours that distribute food and
manufactured goods from a warehouse.

To improve the current state of tour formation modeling, we develop and estimate a new tour formation
model using an innovative and enormous data set of observed tours on the Dutch road network: the XML
microdata. This data is collected by the Dutch Central Bureau of Statistics (CBS) and lists approximately 2.6
million shipments with information such as: the tour that the shipment was transported in, gross weight, and
goods type. Innovative data collection methods are used, carriers can install an XML-interface that allows
survey data to be delivered automatically from the carriers’ transport management systems (de Bok et al.,
2018). This data set is not a representative sample of all Dutch freight carriers, though, a self-selection of third-
party carriers (i.e. firms transporting goods for other parties) with advanced planning systems has taken place.
However, from a methodological point of view, this large data set provides a unique and valuable opportunity
to calibrate a behavioral tour formation model.

1.2 RESEARCH OBJECTIVE AND SCOPE

The objective of this research is to develop a tour formation model that can allocate shipments to tours in a
way that is similar to observed tour formation.

Due to data availability, the scope of this research is road freight transportation that takes place within the
Netherlands. For the same reason, no complex logistics chains with multiple legs are included, but only
shipments with one loading and one unloading location. We will focus on the formation of tours out of
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shipments. The generation of shipments between firms and the vehicle type choice are outside of the scope
and assumed to be given.

1.3 RESEARCH QUESTIONS

To reach the objective of this research, the following research question is formulated.
Can we develop a behavioral shipment-based tour formation model that reproduces observed tour patterns?
The following sub questions guide us in answering the main research question.

e  Which objectives, constraints, and other factors influence freight tour formation?

e To what extent is the XML microdata useful for calibration of a freight tour formation model?
e How can we structure the allocation of shipments to tours in such a model?

e Which aspects of freight tour formation can we include in the model?

o How well does the model reproduce observed tour patterns?

The term behavioral is used in the research question to underline that our model describes the process that

leads to behavior, in contrast to normative models that prescribe optimal behavior. Behavior is the observable
outcome of a set of choices made by an actor.

1.4 RESEARCH APPROACH

To answer the research questions, we follow the approach summarized in Figure 1.2.

Literature research Model validation

. Model . .
Data analysis _— development > Model estimation Conclusions

Data collection Sensitivity analysis

Figure 1.2. The research approach.

An extensive literature research is performed with two main objectives: (1) understanding freight tour
formation and (2) discovering gaps in behavioral tour formation models/preventing reinvention of the wheel.
For the first objective, we scan the scientific literature on the actors, objectives, and constraints involved in
freight tour formation. For the second objective, we do the same with respect to freight simulation models that
incorporate tour formation.

Several sources of data are collected for this research. Firstly, we have access to the aforementioned XML
microdata. Secondly, skim matrices with travel times and distances between ‘buurten’ (a Dutch administrative
zone unit), and information about these buurten (Kerncijfers wijken en buurten 2015) are used to enrich the
XML microdata. Finally, qualitative data is collected in the form of an interview with a transportation planner of
Rensa BV, a Dutch wholesaler of heating and ventilation products, in order to further improve our
understanding of tour formation.

Next, statistics about variables such as tour duration and number of stops are obtained to improve our
understanding of freight tour formation. Analyzing the data also assists in discovering its possibilities and
limitations for development of a tour formation model.

Based on our understanding of tour formation and the available data, a model structure is developed that
forms tours out of shipments. Parameters of this model are estimated with the available data. Next, we
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validate this model by applying it to a separate part of the data, and comparing the observed and predicted
tours. In addition, a sensitivity analysis is performed with scenarios with varying travel times between zones.
Finally, conclusions and further recommendations are formulated based on the findings.

Note that the flow diagram in Figure 1.2 does not have to be purely directional, feedback loops can occur. For
example, findings of the data analysis influence the hypotheses tested in the interview (data collection) and the
validation results can guide the choice for model specifications (development and estimation).

1.5 CONTRIBUTION

The contribution of this research can be summarized as follows. We have developed a behavioral tour
formation model that can form tours for a given set of shipments. This model improves on previous studies by
satisfying the following four criteria: (1) shipment-based; (2) statistical calibration on empirical data; (3) no
limitation to specific goods types or (un)loading locations; (4) the number of stops per tour and number of
tours per day is an outcome of shipment allocation decisions. Estimation of model parameters only requires
data that reports: (1) which shipments are part of the same tour and (2) the loading and unloading locations of
these shipments.

1.6 OUTLINE OF THE REPORT

This report has the following structure consisting of eight chapters. In Chapter 2, we give an overview of the
actors, objectives, and constraints in freight tour formation. In Chapter 3, previous freight modeling efforts that
incorporate tour formation are discussed. Chapter 4 explains the structure of the XML microdata and provides
descriptive statistics of tour variables. In Chapter 5, we discuss our developed tour formation model structure
and explain how we can estimate its parameters, which are reported and interpreted in Chapter 6. In Chapter
7, the validation of the model and the sensitivity analysis are reported respectively. Finally, in Chapter 8,
answers to the research questions and recommendations for model improvement, future research, freight
policies, and data collection are formulated.
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2. UNDERSTANDING FREIGHT TOUR FORMATION

In this chapter we use the literature on freight tour formation and the interview with a transportation planner
in order to understand why one tour differs from the other. Firstly, we provide a framework of the actors
involved in urban freight tour formation. Secondly, we discuss which objectives and constraints influence the
tours that are formed. Finally, we discuss the ways in which we can operationalize differences in tours, and
factors that have been found or hypothesized to be able to explain these differences. It should be noted again
that the scope of this research, and also of this chapter, is road transportation.

2.1 ACTORS INVOLVED IN FREIGHT TRANSPORTATION

In order to understand freight tour formation and to be able to accurately model it and evaluate policies aimed
at influencing it, knowing which actors are involved in which decisions is crucial (Taniguchi & Tamagawa, 2005;
Roorda et al., 2010; de Oliveira & de Oliveira, 2017). Observed behavior in freight transportation is rarely the
result of decisions made by a single actor (Abate & Kveiborg, 2010). Instead, emergent behavior occurs due to
complex interactions between heterogeneous actors (Anand et al., 2014). Additionally, these interactions are
heterogeneous (e.g. different types of supply chains, long-term and short-term contracts), and one actor can
take on different roles (Roorda et al., 2010). Due to this complexity and heterogeneity, a one-size-fits-all
framework of actors and their interactions is not achievable. Subsequently, simplifications and assumptions
have to be made, while keeping in mind that situations different from the framework are likely to occur
(Roorda et al., 2010).

To arrive at a framework of actors that influence tour formation, distinguishing the actors and roles they play is
useful. In this case, an actor can be a single firm, whereas a role describes the actions and decisions an actor
takes in a certain setting (de Bok & Tavasszy, 2018). For example, a specific retail shop may take on the role of
receiver for one shipment, whereas this shop is the shipper of another shipment.

Many different categorizations of roles with different wordings have been proposed. Three roles that are often
described in these categorizations are related to the actions an actor takes with respect to a shipment: (1) the
shipper, (2) the receiver, and (3) the carrier (i.e. transporter) of a shipment (Taniguchi & Tamagawa, 2005;
Roorda et al., 2010; Stathapoulos et al., 2012; Anand et al; 2014; Zhou et al., 2014; de Oliveira & de Oliveira,
2017). Roorda et al. (2010) also mention the driver of the truck as another actor (role) that may be able to
influence the tour formation. Two other actor (roles) that are sometimes identified, are city administrators and
residents (e.g. Taniguchi & Tamagawa, 2005; de Oliveira & de Oliveira, 2017). For our purposes, we do not take
these last two into account in our framework. City administrators are implementers of policies and are,
therefore, not explicitly represented in a tour formation model, but are rather represented through manual
implementation of city logistics policies in such a model. Residents experience the negative side effects, and
their interests may be represented by looking at KPIs of the model, such as the total Vehicle Kilometers
Traveled (VKT). In the remainder of this section, we discuss the actions and decisions of each role with respect
to tour formation, to arrive finally at a conceptual diagram of actors/roles involved in urban freight
transportation.

Shippers are firms that distribute goods for others to receive (McCabe et al., 2006). The shipper decides
between performing transportation by itself (in which case it is also the carrier of the shipment, called an own-
account carrier), or outsourcing transportation to a third party (Wisetjindawat et al., 2006; Roorda et al., 2010).
Shipments can be transported by a third-party carrier on a contract-to-contract basis, but also long-term
contracts with third-party carriers may be made (Roorda et al., 2010). Shippers may bundle shipments under
the same contract to reduce transportation costs (Irannezhad & Hickman, 2016). The shipper is also usually the
actor that pays for the transportation and sometimes chooses the mode/vehicle type (McCabe et al., 2006).
Furthermore, shippers may decide to send the shipment directly or to use an intermediate distribution center
(Irannezhad & Hickman, 2016).
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The receivers of the goods are generally considered to make decisions regarding the following: order quantity
and frequency (Anand et al., 2014; Irannezhad & Hickman, 2016), shipper selection (Wisetjindawat et al., 2006;
Anand et al., 2014; Alho et al, 2017), and time windows (Taniguchi & van der Heijden, 2000; Poot et al., 2002;
Quak, 2008; Zhou et al., 2014; de Jong et al., 2016). McCabe et al. (2006) mention that receivers may
sometimes influence the mode choice. Receivers may also specify that they need to be served first or last
during a tour, that certain goods types may not be shipped within the same tour, or only with a special vehicle
(e.g. refrigerated transport) (Poot et al., 2002). Together with the shippers, the receivers constitute the
demand for goods movement between locations. In general, receivers tend to set conditions for the transport
as performed by the carriers (van Duin et al., 2012).

The carrier is the actor that performs and plans the transportation and is, therefore, the most notable actor
that influences the way tours are formed. Shippers and receivers constitute the demand for goods movement,
and may set constraints, but the carrier is the main actor that decides how tours are formed with the given set
of shipments and constraints. The carrier decides which shipments are sent in the same tour, which vehicle and
driver are used for the tour, the stop sequence of a tour, the tour departure time, and sometimes even the
route between the stops (McCabe et al., 2006; Roorda et al., 2010). Another more strategic decision is the
procurement of new vehicles (Alho et al., 2017).

Within a firm that acts as a carrier, the transportation planners make these tour formation decisions. This is
usually done at a tactical level using optimization software (You, 2012). For Rensa BV, this software only serves
as a support to the transportation planners. The transportation planners decide which shipments are allocated
to the same tour, while the software checks for constraints such as time windows and provides the optimal
route with given stop locations.

The drivers of trucks can influence tours at a more operational level. They may decide to change routes, or
even the stop sequence, for example, because of congestion or lunch breaks (McCabe et al., 2006). Their work
shift patterns also influence which tours the carrier can construct (Hunt & Stefan, 2007; Figliozzi, 2007), which
was underlined in the interview. The driver is the actor that actually transports the goods and may also assist
with (un)loading at stop locations (Quak, 2008).

A single actor can employ different roles, even for the same shipment. One example is an own-account carrier,
a shipper that transports goods with its own vehicle fleet (McCabe et al., 2006; Alho et al., 2017). At a more
tactical level, a shipper can decide for each shipment whether it uses its own vehicle fleet for transportation or
outsources to a third party carrier (Alho et al., 2017). An actor that acts as a shipper for one shipment, may also
very likely be the receiver of other shipments. In more complex supply chains, many individual actors may act
as the receiver and shipper of the same shipment. Because of these complex linkages between actors and their
roles, it is important to distinguish the two. More concretely, in an agent-based microsimulation framework, it
is important to assign which agents act as the shipper, carrier, and receiver of a shipment.

The most notable conclusion that arises from this short literature overview of actors that influence tour
formation is that carriers tend to be the ones that construct the tours at a tactical level, although the shippers
and receivers of goods influence the tour formation indirectly by deciding who transports the shipments, which
shipments are sent between which locations, and by specifying constraints such as time windows.
Furthermore, in an agent-based model it is important to distinguish between agents and the roles they fulfill
for each shipment. In Figure 2.1, the findings of this section are graphically summarized in a conceptual
diagram.
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Figure 2.1. The actors/roles involved in freight tour formation and their key decisions and interactions.

2.2 OBJECTIVES AND CONSTRAINTS THAT INFLUENCE TOUR FORMATION

In the previous section, we identified that the transportation planner of a carrier constructs tours while
respecting constraints. In doing so, the carrier has specific objectives in mind. In this section, we provide an
overview of the objectives and constraints in freight tour formation. We first report objectives as found in the
literature, and then relate these to findings from the interview with Harrie Tissen (transportation planner at
Rensa BV) that is reported in Appendix A. Next, we do the same with respect to constraints.

Let us begin by defining what objectives and constraints are. Objectives provide a measure of performance to a
decision maker, and reflect what is a desirable situation to this decision maker (Hillier & Lieberman, 2001). For
objectives, trade-offs are possible, but constraints are characterized by their non-compensatory character
(Martinez et al., 2009). They provide restrictions on what the decision maker can choose from (Hillier &
Lieberman, 2001).

2.2.1 OBJECTIVES OF THE CARRIER

Carriers are (usually) private firms, and their objective can be considered to be simply profit maximization or
cost minimization (You, 2012). However, it is all but straightforward to predict decisions based on profit
maximization. Carriers may have particular strategies, tactics, and knowledge to operationalize profit
maximization. Furthermore, inter-carrier heterogeneity is likely to exist, different carriers may operationalize
profit maximization with different strategies and tactics, and may have different perceptions of costs imposed
by certain decisions. Not all decisions made by carriers have to be driven merely by profit maximization, as
more subjective preferences can also play a role. Therefore, it is important to dig deeper into what may drive
the decisions of carriers.

You et al. (2016) distinguish a set of objectives that represent the strategies employed by carriers of drayage
trucks in the San Pedro Bay Ports (SPBPs) in Southern California, USA. One of these objectives is to maximize
the number of visits to the same stop location in a tour. This can be understood as a particular strategy
employed by these carriers to maximize the profit of each tour.

Furthermore, carriers may minimize the total travel time of their truck operations (You et al., 2016). Longer
travel times for the same set of shipments lead to increased costs related to fuel and driver wages and a
subsequent decrease in profits (Anand et al., 2014). This is a key factor explaining tour formation behavior. In
their model, Wisetjindawat et al. (2006) assumed time minimization to reflect fully the tour formation
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objectives of carriers. Truck access restrictions and congestion increase travel times and, therefore, influence
tour formation decisions (Hunt & Stefan, 2007; Roorda et al., 2010). Instead of the total travel time, the total
travel distance (Poot et al., 2002), or a generalized travel disutility based on both distance and time, can be
used as an objective (Hunt & Stefan, 2007).

The other objectives You et al. (2016) distinguish are the following: (1) minimizing total truck operating hours,
alternatively called the makespan of a day, (2) reducing total emissions, which can be seen as a form of
Corporate Social Responsibility, but also a consequence of policies penalizing these carriers based on
emissions, and (3) reducing early and late deviations from goal arrival times. The latter can be related to
improving predictability of the carrier's own operations and also to improving level of service to keep
customers satisfied (You et al., 2016). In some cases, early and late deviations can be treated as a constraint in
the form of hard time windows, in which delivery or pick-up outside the time window is not allowed. This will
be discussed in the next section.

Other objectives than those identified by You et al. (2016) have been found in the literature. These mostly
relate to the coordination of the different tours of a carrier. Based on years of experience in adjusting their VRP
software to the desires of clients, Poot et al. (2002) identified that carriers wish to generate a ‘visually
attractive’ set of tours. Visual attractiveness is subjective and can, therefore, be operationalized in many ways,
but Poot et al. (2002) mostly relate this to the extent to which tours can be clearly identified on a map. Factors
that Poot et al. (2002) use to represent visual attractiveness include: the number of crossings between and
within tours, the average number of nodes that is closer to the center of gravity of another tour than of its own
tour, the average distance of nodes to the center of gravity of its tour, and the average number of nodes per
tour that is captured in the convex hull of another tour. Visually attractive tours are more tractable for
planners, and seem more intuitively logical and are therefore more easily accepted by drivers (Poot et al.,
2002). Figliozzi (2007) endorses that it is desirable for carriers to have tours that do not cross each other, also
to reduce the total VKT. Furthermore, Hunt & Stefan (2007) speculate that in industries where tours tend to
have a looping shape instead of a zig-zag shape, there may be more time to plan tours in advance, such that
tours can be constructed that look more orderly.

Related to the ease of following and distinguishing the tours, a transportation planner may also wish to reduce
the complexity of the operations. More concretely, if it is not very beneficial to construct tours with many
stops, a preference is sometimes present for simple tours that serve only one customer. Nuzzolo et al. (2012)
found that when many customers are in short reach of the home base, the constructed freight restocking tours
in Rome, ltaly tend to include fewer stops. They hypothesized that this is due to the desire to reduce the
complexity of the tour planning.

Another objective related to coordination of tours is to have a balanced tour set. This means that there is little
deviation in the duration of different tours (Bodin et al., 2003). This leads to cost savings, less overtime hours
for drivers, and a higher sense of equal and fair treatment of drivers (Bodin et al., 2003). It may also reduce the
total truck operating hours of the carrier, one of the objectives identified by You et al. (2016).

FINDINGS FROM INTERVIEW WITH TRANSPORTATION PLANNER

Tissen endorses that, for a transportation planner, the total travel time and distance are key aspects that
reflect the attractiveness of the planning. More generally, the objective is to transport as many goods with the
use of as few resources as possible. Closely related to time and distance, Rensa BV also tries to minimize their
CO, emissions.

Another important objective is to construct a planning with a high probability that all orders are indeed
delivered in the planned tours. If too many customers need to be visited in the nine hour shift of a driver, the
driver may not be able to visit all customers, which leads to extra waiting time for these customers. The desire
to construct a balanced tour set also resonates. Preferably, tours that last a full shift of nine hours are
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constructed in order to reduce problems relating to drivers that need to work more or fewer hours the next
day. The same customer is usually served by the same driver, this driver knows about specific instructions of
the customer and is more familiar with the routes leading to this customer.

Another objective, which has not yet been mentioned, is to construct tours with a high capacity utilization. This
relates to the goal of transporting as many goods with as little resources possible, and can be seen as a
particular strategy employed to minimize transportation costs.

Finally, Tissen does not confirm that there is a preference for tours with few stops at Rensa BV. If this is
possible within a nine hour shift, 30 to 35 stops in a tour are not considered undesirable. This does not mean,
however, that such a preference does not exist for other carriers.

2.2.2 CONSTRAINTS

The demand for freight transportation is derived from the demand for goods (Figliozzi, 2007). The resulting
shipments between shippers and receivers form the basis from which the carriers can start forming tours. The
carrier is constrained in its construction of tours to those shipments that shippers and receivers want to be
transported (Figliozzi et al., 2007).

Incompatibility of goods types (Poot et al., 2002; Alho et al., 2017) and special vehicle requirements for certain
goods types (Beziat et al., n.d.) also constrain how tours can be formed. Some combinations of products may
be forbidden (Poot et al., 2002). This restriction can be imposed by policies, by the receiver, or by simple
common sense. For example, live animals should not be transported simultaneously with filled oil barrels
(Robroeks, 2016). Some shipments require a dedicated vehicle, such as concrete shipments, which cannot be
used to transport other goods types (Beziat et al., n.d.). Specific regulations apply to the transportation of food
products, which restricts their compatibility with other goods types (Beziat et al., n.d.).

Hard time windows are constraints that can greatly reduce the number of customers that can be served in the
same tour (Figliozzi, 2007) and may also impact the stop sequence and departure time (Quak, 2008). Time
windows specify a period of time during which serving a customer is allowed. Such constraints can be imposed
by the municipality but also by the receiver (Quak, 2008). In the Netherlands, approximately half of all
municipalities have areas with time windows for freight (un)loading activities, usually from 7AM-11AM (CBS,
2015a). Time windows may be imposed on different parts of the day and with different time widths (Quak,
2008; de Jong et al., 2016). For municipalities, the reason to impose a time window on an area is usually to
reduce safety risks and other negative impacts such as noise to the shopping public and nearby inhabitants,
while for receivers this may allow for better planning of activities and ensuring that staff is available to receive
the goods (Quak, 2008).

Another constraint in planning tours relates to the available vehicle fleet of the carrier and the capacity of
these vehicles. A carrier simply cannot have more vehicles simultaneously transporting goods than the number
of vehicles it owns. However, at a more long-term planning level, the carrier may choose to buy new vehicles,
although the carrier will try to minimize the size of its vehicle fleet due to accompanying procurement and
depreciation costs (Bodin et al., 2003; Alho et al., 2017). Different types of vehicles exist, with different
permissible carrying capacities (Poot et al., 2002), which can be defined as maximum weight, volume, or both
(Wisetjindawat et al., 2006). The vehicle capacity and the size of the shipments restrict which shipments can be
delivered and/or picked up in the same tour (Poot et al., 2002; Figliozzi, 2007).

A very straightforward constraint is that shipments need to be loaded before they can be unloaded (Robroeks,
2016). A shipment may have a loading and unloading location both found elsewhere than the tour starting
point. In this case the loading location has to be visited before the unloading location is visited, which can
further constrain which tours can be constructed. The type of activity performed at a stop (loading or
unloading) also closely relates to capacity constraints. Not all shipments need to be present in the vehicle at
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the same time. For example, in the same tour a set of shipments may first be delivered and afterwards another
set of shipments may be picked up (Kim et al., 2014). The total volume or weight of the shipments transported
in this tour may exceed capacity, but at no point in time does the set of shipments present in the vehicle
exceed its capacity.

Finally, other often mentioned constraints in tour formation decisions are related to the interests of the
drivers. Most notably, work shift patterns of the drivers dictate which tours can be formed (Bodin et al., 2003;
Wisetjindawat et al., 2006; Hunt & Stefan, 2007; Figliozzi, 2007; Figliozzi et al., 2007). This can be in the form of
a maximum tour duration (Poot et al., 2002; Bodin et al., 2003; Wisetjindawat et al., 2006), a maximum number
of customers/stops per tour (Bodin et al., 2003), or a scheduled time for lunch breaks (Hunt & Stefan, 2007).
The tour duration does not only include time spent traveling on the road but also dwelling time at stops. Given
the maximum work shifts, a longer dwelling time negatively influences the number of customers that can be
served in the same tour, which leads to increased transportation costs (Figliozzi, 2007).

FINDINGS FROM INTERVIEW WITH TRANSPORTATION PLANNER

The three main constraints mentioned in the interview are time windows, volume restrictions, and tour
duration. Volume is much more often the limiting factor than weight, especially so in the case of heating and
ventilation products. The duration of the work shift of the driver is a crucial constraint guiding the tour
formation too, as maximum working hours are defined and regulated by the Dutch government.

For Rensa BV, the daily fluctuation of the number of shipments is high. On days with more shipments, usually
more stops are found per tour, as there is a higher potential to combine nearby shipments. This further
underlines the fact that the available set of shipments is a key constraint in tour formation.

2.2.3 CONCLUDING REMARKS

To conclude this section, there are many different objectives and constraints that can influence which tours are
formed. In Table 2.1 and 2.2 the ones we have found in the literature and in the interview are summarized.
Different carriers may have slightly different objectives, and for different carriers, days, and tours there may be
different constraints guiding the tour formation. In Table 2.1 and 2.2, some similar factors are found both as an
objective and as a constraint. Examples of this include the number of stops in the tour and the vehicle capacity
utilization. For the purpose of structuring this section, we distinguished between objectives and constraints,
but as it shows, the line of demarcation is not always straightforward.

Table 2.1. Objectives in tour formation.

Objectives Operationalization References Interview"
Low travel costs / high profit MIN travel time Poot et al. (2002; \Y

MIN travel distance Wisetjindawat et al. (2006);

MIN generalized travel cost Hunt & Stefan (2007); Roorda

MAX # visits to same node in tour et al. (2010); Anand et al.
(2014); You et al. (2016)

Makespan MIN total operating hours You et al. (2016) 0
Emissions MIN emissions You et al. (2016) Vv
Punctuality MIN early arrival times You et al. (2016) \"

MIN late arrival times
MIN probability of not visiting
planned customer

Visual attractiveness MIN # crossing between tours Poot et al. (2002); Figliozzi 0
MIN # nodes closer to center of (2007); Hunt & Stefan (2007)
gravity of other tour
MIN Distance of stops to center of
gravity

'V = confirmed in the interview
X =refuted in the interview
0 = not mentioned in the interview
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MIN # nodes that is captured in
convex hull of other tour

MAX enclosed angle between stops

(looping shape)

Simple tours MIN # stops per tour Nuzzolo et al. (2012) X
Level of balance MIN deviation tour durations Bodin et al. (2003) \"
Capacity utilization MAX used vehicle volume capacity \
Table 2.2. Constraints in tour formation.
Constraint type Examples / clarification References Interview
Available shipments Only those shipments that Figliozzi (2007); Figliozzi et al. Y
customers wish to be (2007)
transported can form the basis of
a tour
Goods type Compatibility goods Poot et al. (2002); Robroeks 0
Special vehicle requirements (2016); Alho et al. (2017); Beziat
etal. (n.d.)
Time window Municipal time window zone Figliozzi (2007); Quak (2008); de  V
Customer imposed time window Jong et al. (2016)
Vehicle capacity & shipment A vehicle has a maximum Poot et al. (2002); Bodin et al. Vv
size permissible weight & volume, (2003); Figliozzi (2007);
which the shipments together Wisetjindawat et al. (2006);
may not exceed. The carrier is Alho et al. (2017)
also constrained to which
vehicles it has available
Precedence stop locations The loading location of a Robroeks (2016) 0
shipment must be visited before
its unloading location
Driver work hours Maximum tour duration (incl. Poot et al. (2002); Bodin et al. Vv
dwelling) (2003); Wisetjindawat et al.
Maximum travel duration (2006); Hunt & Stefan (2007);
Maximum tour distance Figliozzi (2007); Figliozzi et al.
Maximum number of (2007)
stops/customers

2.3 DIFFERENCES IN TOURS

In the previous section, we identified that tours differ from each other due to different objectives and
constraints acting upon them. Several ways exist to operationalize these differences between tours, which we
discuss in Section 2.3.1. Next, we discuss some of the explanations for these differences, based on the
constraints discussed in the previous section and empirical findings in the literature.

2.3.1 CHARACTERIZING TOURS

A first and often used factor to distinguish different types of tours is the number of different locations visited
during a tour, alternatively called the number of stops or activities per tour (Figliozzi, 2007; Hunt & Stefan,
2007; Pluvinet et al., 2012; You, 2012; Mohammadian et al., 2013; Kuppam et al., 2014; Zhou et al., 2014;
Beziat et al., n.d.). Variations in the definition of a stop are found throughout the literature, most notably
Figliozzi (2007) distinguishes each customer served as a separate stop, whereas Kuppam et al. (2014) aggregate
all customers served in the same zone as a stop. Using raw GPS data, Pluvinet et al. (2012) distinguish each stop
as a location where the vehicle has a speed lower than 3 km/h for more than 150 seconds. Instead of
distinguishing each visited stop location, the total number of shipments transported in a tour can be
distinguished (Mohammadian et al., 2013).

Secondly, not only the number of stop locations may be distinguished, but also the type of activity performed
at these locations. In freight transportation, most importantly we can distinguish loading (or pick-up) and
unloading (or delivery) of goods (Kim et al., 2014; Beziat et al., n.d.). Based on these activities, four types of
tours can be distinguished: (1) distribution tours, (2) collection tours, (3) mixed tours, and (4) direct tours (CBS,
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2017b; Beziat et al., n.d.). In distribution tours, there is one loading location and several unloading locations. In
collection tours, there are several loading locations and one unloading location. Mixed tours have several
different loading and unloading locations, and direct tours have only one loading and one unloading location
(Figure 2.2).
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Figure 2.2. Different types of freight tours based on the activities performed at stop locations.

A third way to characterize tours is to look at their total distance or duration (Figliozzi et al., 2007; Hunt &
Stefan, 2007; Pluvinet et al., 2012; You, 2012; Mohammadian et al., 2013; Zhou et al., 2014; Beziat et al., n.d.).
The tour distance is sometimes aggregated to obtain the Vehicle Kilometers Traveled (VKT) of a whole study
region (Figliozzi, 2007). The VKT serves as a Key Performance Indicator for policy makers as it may be used to
proxy the impact of freight transportation on emissions and congestion for example. Both the distance and
duration can also be disaggregated to trips instead of tours. One can distinguish the average trip distance
(Mohammadian et al., 2013; Zhou et al., 2014), but also differences in distance between the first trip and later
trips in a tour (Figliozzi, 2007, Mohammadian et al., 2013; Beziat et al., n.d.). The tour duration can be
disaggregated to capture the duration of each trip in a tour but also to capture the time that is spent serving
customers at a stop, i.e. the stop duration or dwell time (Hunt & Stefan, 2007, Mohammadian et al., 2013;
Zhou et al., 2014; Beziat et al., n.d.). The duration and distance can also be combined to obtain an average tour
and trip speed (Figliozzi et al., 2007).

Finally, capacity utilization is a term often used to describe the efficiency of freight tours (Abate & Kveiborg,
2010). Many different ways to operationalize capacity utilization have been proposed. The simplest ones only
look at the percentage of empty trips (Zhou et al., 2014). More advanced measures take into account distances
and the volume or weight of the shipments in comparison to the vehicle capacity (Abate & Kveiborg, 2010).
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Table 2.3. Different ways to characterize tours.

Tour characteristic

Operationalization

References

Number of nodes

Number of customers visited
Number of stop zones
Number of shipments

Figliozzi (2007); Hunt & Stefan (2007);
Pluvinet et al. (2012); You (2012);
Mohammadian et al. (2013); Kuppam et al.
(2014); Zhou et al. (2014); Beziat et al.
(n.d.)

Type of activities

Loading/unloading stop
Distribution/collection/mixed/direct tour

CBS (2017b), Beziat et al. (n.d.)

Distance Total tour distance Figliozzi et al. (2007); Hunt & Stefan
Average trip distance (2007); Pluvinet et al. (2012); You (2012);
First vs. later trip distance Mohammadian et al. (2013); Zhou et al.
Total VKT (2014); Beziat et al. (n.d.)

Duration Total tour duration Figliozzi et al. (2007); Hunt & Stefan

Average trip duration
First vs. later trip duration

(2007); Pluvinet et al. (2012); You (2012);
Mohammadian et al. (2013); Zhou et al.

Travel tour duration
Average dwelling time
Total dwelling time

(2014); Beziat et al. (n.d.)

Figliozzi et al. (2007); Abate & Kveiborg
(2010); Zhou et al. (2014)

Capacity utilization Percentage of empty trips
Percentage of empty km
Utilized volume-km / capacity volume-km

Utilized weight-km / capacity weight-km

2.3.2 EXPLAINING TOUR DIFFERENCES

Differences in the number of stops per tour can largely be explained by the number, geographical dispersion,
and compatibility of shipments. Companies with a high turnover and third-party carriers tend to have more
shipments to transport per day and, therefore, more potential to group shipments into a tour and save
transportation costs. For this reason, they have been found to construct tours with more stops on average
(McCabe et al., 2006; Roorda et al., 2010; Nuzzolo et al., 2012; Beziat et al., n.d.). Tours that transport goods
with a higher dispersion of demand and more severe constraints relating to goods compatibility and vehicle
type (e.g. refrigerated transport for fresh foods), tend to have fewer stops as there is less potential to group
shipments into efficient tours (Figliozzi, 2007; Nuzzolo et al., 2012; Zhou et al., 2014, Beziat et al., n.d.).

Zhou et al. (2014) also found that tours in Texas, USA that include a stop at a retail store tend to have fewer
stops. They explain this by tight time windows in the retail sector, which negatively affect the possibility to
combine shipments in one tour, echoing analytical findings of Figliozzi (2007) and Quak (2008). Tours that visit
a distribution center tend to have more stops, as “the vehicle load gets replenished (for outbound delivery) or
emptied (outbound pickup) at the distribution center, which allows the vehicle to go on with more customer
visits” (Khan & Machemehl, 2017:95). In contrast, tours that visit a manufacturing establishment tend to have
fewer stops, with larger shipment sizes and little remaining vehicle capacity for other shipments (Khan &
Machemehl, 2017).

Nuzzolo et al. (2012) found that for restocking tours performed for and by retailers in Rome, Italy, accessibility
to wholesalers decreases the probability of making tours with many stops, which they speculated to be caused
by the desire to reduce complexity of operations. You (2012) found that drayage trucks in Southern California,
USA on average make fewer stops per tour than trucks in Denver, Amsterdam, and Melbourne, which they
explained by the fact that these drayage trucks perform longer (un)loading activities, which in combination
with a maximum tour duration allows for fewer stops per tour. Different factors influence the dwelling time at
a stop, including: truck size (i.e. more time to park), shipment size, if customers help (un)loading, and if both
deliveries and pick-ups are performed (Quak, 2008). As these factors may differ for different types of
customers and goods, Figliozzi et al. (2007) found that these significantly influence stop duration.

The average and distribution of tour/trip distance and duration is heavily dependent on the spatial layout of a
region. Figliozzi et al. (2007) found peaks in the trip distance distribution which they were able to explain by the
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locations of major freight generating zones and facilities relative to each other when analyzing truck tours
made by a freight forwarding company in Sydney, Australia. Working shift patterns explain why You (2012)
mainly found tours from 3-9 hours and Figliozzi et al. (2007) found the median tour duration to be 8 hours and
most tours to have a distance below 300 km. Figliozzi et al. (2007) also mentioned daily variations in demand to
have a large impact on the daily average tour length and duration, underlining yet again that the carrier is
constrained to the available shipments in its construction of tours. Beziat et al. (n.d.) and Figliozzi (2007)
showed that urban freight tours often include a long first trip from the tour starting point, and shorter trips to
later stops in the tour due to concentration of customers in a zone. Together with the objective of travel time
minimization, serving all these customers in one tour makes sense, if the vehicle capacity allows.
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3. STATE OF THE ART IN FREIGHT FORECASTING MODELS

This chapter provides an overview of previous freight forecasting modeling efforts. Section 3.1 presents a
general typology of such freight models, after which we go into further detail discussing those models that
incorporate tour formation in Section 3.2. The scientific gap that we fill with this research is defined in Section
3.3.

3.1 ATYPOLOGY OF FREIGHT FORECASTING MODELS

In this section, different types of freight forecasting models for road transportation are discussed. A clear
typology of such models is given by Abate & Kveiborg (2010) and Kim & Park (2017). They distinguish four types
of freight forecasting models: (1) vehicle-based models, (2) commodity-based models, (3) tour-based models,
and (4) hybrid models. The remainder of this section discusses the philosophy and pros and cons of these four
model types.

Vehicle-based models, alternatively called truck-based models, follow the four-step model developed for
personal transportation and apply that model to freight road transportation. The four steps in this model are
trip generation, trip distribution, vehicle type choice, and network assignment (Federal Highway
Administration, 2007; Kim & Park, 2017). Vehicle-based models are the simplest and require the smallest
amount of data (Kim & Park, 2017), and may be useful to quickly and cheaply assess the needs for
infrastructural expansions. However, they ignore two crucial aspects of freight transportation: trips are often
chained into complex tours (Hunt & Stefan, 2007; Doustmohammadi et al., 2016b) and the demand for freight
transportation is derived from the flow of goods between areas (Boerkamps & van Binsbergen, 1999;
Wisetjindawat et al., 2006).

To deal with the latter, commodity-based models have been proposed. Such models do not directly estimate
vehicle trips, but estimate commodity flows between areas first. The same four steps as in vehicle-based
models are followed, with an additional ‘vehicle conversion’ step in which commodity flows between areas are
converted into vehicle flows based on average payloads per commodity type (Federal Highway Administration,
2007). Commodity productions and attractions per zone may be based on employment, Input-Output (I0)
tables, and labor productivity. Many regional freight transportation forecasting models in the US have applied
this approach (Federal Highway Administration, 2007). The strength of these models, compared to vehicle-
based models, is their explicit consideration that freight transportation is derived from commodity flows
(Wisetjindawat et al., 2006; Doustmohammadi et al., 2016a). However, due the highly simplified vehicle
conversion, these models cannot accurately consider empty trips. Empty trips constitute a significant part of
freight vehicle trips, as the demand is rarely bidirectional (Abate & Kveiborg, 2010). Furthermore, as multiple
shipments are often transported in one tour, the origin and destination of a commodity flow do not need to
match the origin and destination of its vehicle flow (Nuzzolo et al., 2012; Sanchez-Diaz et al., 2015). Therefore,
an explicit consideration of tour formation is desired.

In the Netherlands, a national strategic freight model has been developed (BasGoed), which follows a similar
commodity-based approach as described above. Commodity flows between zones are estimated, after which it
is calculated how many vehicle trips are needed to deliver these commodity flows (Groot & Miete, 2016). This
model implicitly also takes tour formation into account. The module that transforms commodity flows into
vehicle trips (deelrittenmodule) uses a database of observed tours (Basisbestanden Goederenwegvervoer,
shortly discussed in Chapter 4). The trips within these tours are multiplied based on the magnitude of the
commodity flows between zones. Consequently, tours are included in a very implicit and non-behavioral
manner in the BasGoed model. The trips within a tour are not connected and no new tours can be formed. As a
result, no policy sensitivity is present in the model with respect to tour formation.
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Tour-based and hybrid models consider tour formation in a very explicit manner. The difference between these
two models is that the first directly estimates vehicle tours while the latter estimates commodity flows that are
assigned to vehicle tours (Kim & Park, 2017). Hybrid models have the potential to estimate freight vehicle flows
most accurately, as they consider that freight transportation is derived from the flow of goods between regions
and that multiple stops may be visited in the same tour. However, hybrid models usually also require the most
elaborate data collection efforts and complex calculations (Kim & Park, 2017). In the next section we will give
an overview of previous modeling efforts that fall under these last two categories, i.e. models that incorporate
tour formation explicitly.

3.2 INCORPORATING TOUR FORMATION

3.2.1 AGGREGATE: TOUR-BASED ENTROPY MAXIMIZATION
Aggregate freight modeling approaches, in contrast to disaggregate approaches, do not explicitly model
decisions at the individual level. Therefore, these models require less computation time and data for
estimation which makes them more tractable and usable for large study areas (Wang, 2008; Wang & Holguin-
Veras, 2009; You, 2012). To the best of the author’s knowledge, the only aggregate approach that considers
tour formation is the tour-based entropy maximization as developed by Wang & Holguin-Veras (2009).

Entropy maximization seeks the most likely meso state, i.e. a configuration of micro states that complies with
constraints acting at the macro level. In standard estimation of Origin Destination (OD) matrices, a micro state
is a trip between an origin zone and a destination zone, the meso state is a trip distribution matrix, and the
macro state can consist of zonal trip productions and attractions, a travel impedance matrix, and a total travel
impedance in the network. Given no further information, entropy maximization assumes that each micro state
is equally probable to occur. In that case, the most likely meso state is the one that can be configured in the
most possible ways, while complying with macro level constraints (Ortuzar & Willumsen, 2011; You, 2012).

In tour-based entropy maximization, the micro state is not a trip but a tour (here: a node sequence departing
from and returning to the same node), and the meso state is a matrix with the number of vehicles that follow
each tour (Wang & Holguin-Veras, 2009). Again, it is assumed that each micro state is equally probable to
occur. The objective of the tour-based entropy maximization, is to find the most likely set of tour flows that
complies with trip productions and attractions and a total travel impedance in the network. In trip-based
entropy maximization, the enumeration of all possible micro states is feasible. However, if the micro state is a
tour, the number of possible micro states is astronomically large for relatively small network sizes (Wang &
Holguin-Veras, 2009). Therefore, Wang & Holguin-Veras (2009) use a heuristic algorithm developed by Wang
(2008) to enumerate a large set of tours that are consistent with observed trip chaining behavior. This heuristic
uses discrete choice models to represent the decision of the next stop location and tour termination. In Section
3.2.2, this heuristic is treated in further detail.

Instead of a heuristic to generate tours, You (2012) obtained a large set of observed tours, using GPS data of
clean drayage trucks in the San Pedro Bay Ports (SPBPs) in Southern California, USA. You (2012) extended the
tour-based entropy maximization to include tours with a different sequence of the same set of visited stops
and tours that visit a certain node multiple times. Their extended model showed promising results in replicating
observed tour flows and distributions of travel time, tour transaction time and tour time. Sanchez-Diaz et al.
(2015) extended the tour-based entropy maximization to include a time of day component and used traffic
counts as additional macro constraint.

Tour-based entropy maximization is presented as computationally more efficient and less data hungry than
disaggregate agent-based modeling approaches (You, 2012). However, these models still require a large and
representative set of tours between zones as input. A calibrated tour formation model or a large set of
observed tours can be used, but both require large data collection and preparation efforts. While tour
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formation is considered in these models, there is no formation of tours from a set of shipments, the objective
of this research.

3.2.2 DISAGGREGATE APPROACHES

Disaggregate approaches explicitly model individual components of freight operations, such as an individual
vehicle or shipment (Wang, 2008). In general, two types of approaches to model freight tour formation at a
disaggregate level can be distinguished: (1) approaches that use mathematical optimization in a behavioral way
and (2) approaches that use the Random Utility Modeling (RUM) framework to model discrete choices. The
literature on the Household Activity Pattern Problem (HAPP) in personal transportation also provides
techniques that are useful for modeling freight tour formation but do not fall clearly into one of the two
mentioned approaches. In the remainder of this section, we discuss previous disaggregate tour modeling
efforts that can be categorized as optimization, RUM, and HAPP approaches respectively.

OPTIMIZATION AND HEURISTICS TO DESCRIBE TOUR FORMATION

To represent tour formation, optimization techniques from the field of operations research can be used. While
these models were developed to prescribe the optimal solution to a decision maker with a set of objectives and
constraints, they may also be used in a descriptive context. In fact, in freight transportation a lot of decisions
are made with optimization software, which is why it intuitively makes sense to use such optimization
techniques to describe behavior in freight forecasting models (You, 2012).

A specific instance of an optimization technique that is relevant to modeling tour formation is the Vehicle
Routing Problem (VRP). The goal of the VRP is to allocate shipments optimally to a set of vehicles that depart
from and return to a home depot (Solomon, 1987). Numerous variations have been proposed to the VRP, each
with slightly different objectives or constraints. Because VRPs are NP-hard problems, they cannot be solved
numerically in a feasible amount of time and thus require heuristic methods to approximate the optimal
solution in a more efficient way. A large body of literature is dedicated to developing efficient heuristics for
these problems (Taniguchi & van der Heijden, 2000; Poot et al., 2002). The goal of this section, however, is to
show how these methods have been used in disaggregate freight forecasting models. Therefore, we do not go
into further detail describing these different variations and heuristics for the VRP.

Taniguchi & van der Heijden (2000) developed a simulation framework for goods movement between nodes in
a hypothetical road network. Ten freight carriers are placed randomly on the network and have a random set
of customers to be served with a specified time window for pick-up or delivery. VRPs with Time Windows
(VRPTW) are used to construct routes that serve all the customers of the carrier optimally. The routes are
assigned to the network, together with passenger traffic, after which congested travel times are fed back into
the VRP decision engine to construct new routes. While some of the model assumptions are based on
observations, such as the time window width, this model should mostly be seen as a general city logistics
evaluation model and a demonstration of how optimization methods can be used in a descriptive context.

Anand et al. (2014) provide another example of such a model for a hypothetical network to evaluate city
logistics measures. Their focus is rather on the behavior of and interaction between different agents. Shop
agents, for example, choose a shipper to buy from based on distance and optimize their order quantity and
frequency. Carriers calculate the transportation costs required to deliver their orders, based on a VRP, and add
a profit margin to place a bid on the market. Similarly, Irannezhad & Hickman (2016) propose a multi agent
framework, with the extension that receivers set time windows, shippers bundle shipments into one contract
based on transportation cost savings, and carriers have a perception of travel times between stops based on
congestion in previous periods, which they use as input for a VRPTW. Polimeni et al. (2010) applied a VRP with
soft time windows (VRPSTW) when modeling the restocking tours made by retailers on own-account (i.e.
performing their own transportation), time windows are included in the VRP formulation as penalties for late
and early arrivals outside the time window rather than as a hard constraint.
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The models of Taniguchi & van der Heijden (2000), Anand et al. (2014), Irannezhad & Hickman (2016), and
Polimeni et al. (2010) are generic frameworks. Consequently, these models have limited use to support
decision making on policies for a specific city. Others have developed disaggregate freight models that
incorporate tour formation for specific regions or cities. For example, Boerkamps & van Binsbergen (1999)
developed a goods simulation model for Groningen, the Netherlands, and Alho et al. (2017) used the city of
Singapore for their agent-based freight modeling framework. Boerkamps & van Binsbergen (1999) allocate
synthesized goods flows to vehicle tours with a vehicle loading algorithm. Parameters of this algorithm include
constraints such as the vehicle capacity, maximum loading factor, and maximum number of stops per tour,
which are specified based on the activity type of the origin zone of the goods flow. Tours are only modeled for
the food retail and book sector.

In the framework of Alho et al. (2017), shipments are sent and received by a synthetic firm population. They
discuss two sub models of their simulation framework, a strategic model and a tactical model. The strategic
model focuses on decisions relating to resource acquisition (e.g. commaodities, vehicles), whereas the tactical
modeling focuses on the allocation of these resources (e.g. tour formation, allocation of drivers and vehicles).
Tours are constructed for a set of shipments with a heuristic algorithm, rather than a pure VRP optimization.
Firstly, shippers maximize the amount of shipments allocated to their own vehicle fleet, if they own one.
Secondly, remaining shipments are pooled together with those of other shippers and are outsourced to
carriers. These carriers construct tours as follows: (1) a randomly chosen shipment is allocated to a vehicle, (2)
other shipments are added based on proximity of origin and destination and compatibility until vehicle capacity
or a maximum amount of deliveries per tour is reached, (3) a ‘closest-node-next’ heuristic is used to sequence
the stops. If this tour exceeds a maximum total tour time, shipments are dropped. Afterwards the stop
sequence is optimized with a Traveling Salesman Problem (TSP) based on either time or distance, depending on
the priorities of the carrier.

Wisetjindawat & Sano (2003) and Wisetjindawat et al. (2006) developed an agent-based microsimulation
framework for the metropolitan region of Tokyo, Japan. To construct tours out of shipments between synthetic
firms, a VRP that minimizes total travel time and is constrained by the carrying capacity of a truck and
maximum working hours of a driver is used. Donnelly et al. (2010) developed a model for the state of Oregon,
USA, in which allocation of shipments to a tour takes place by partitioning them into their general direction,
and the stop sequence is generated with a TSP that minimizes travel time.

All mentioned models in this section so far only make assumptions about parameters related to tour formation;
these models do not include estimated coefficients. Consequently, the empirical and behavioral foundation is
limited. Wisetjindawat et al. (2006) assumed travel time minimization as the objective and a maximum working
hour limit as a constraint. Boerkamps & van Binsbergen (1999) and Alho et al. (2017) used observed statistics to
substantiate assumptions, relating to the maximum number of stops per tour, as one example.

Instead of merely making assumptions about objectives and constraints, You et al. (2016) used inverse
optimization to calibrate weights for different objectives of a VRP in a case study of clean drayage trucks in the
San Pedro Bay Ports (SPBPs) in Southern California, USA. The following six objectives were assumed to
represent trip chaining behavior of these truck operators: (1) maximize the number of visits to the same node
in a tour, (2) minimize total travel time, (3) total emissions, (4) total truck operating hours, (5) early arrival
times and (6) late arrival times. Because neither time windows nor goal arrival times could be directly obtained
from GPS truck diary data, goal arrival times were made endogenous to the objective function, such that they
could be estimated simultaneously with early and late arrival penalties, as proposed by Chow & Recker (2012)
for the inverse HAPP.

In inverse optimization, the objective is to make a given solution optimal by minimally perturbing prior
estimates of parameters. If the problem is a Linear Programming (LP) or 0-1 Integer Programming problem, its
inverse problem can be formulated with a similar mathematical structure by making use of the complementary
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slackness conditions to prove optimality (Ahuja & Orlin, 2001). For Mixed Integer Linear Programming (MILP)
problems, such as VRPs and HAPPs, another formulation and a cutting plane algorithm are proposed by Wang
(2009). To infer findings from multiple observations, Chow & Recker (2012) propose a Method of Successive
Averages (MSA) algorithm, which, although computationally burdensome, is proven to converge. Furthermore,
to measure the goodness-of-fit, Chow & Recker (2012) obtain the ratio between the squared error of estimated
ODs and arrival times against observed ODs and arrival times with the calibrated model, against the squared
error with the model with prior information. The calibrated objective weights can be used in a VRP in an agent-
based microsimulation framework to construct tours out of a set of synthetic shipments (You et al., 2016).

RANDOM UTILITY MODELING

Instead of using optimization techniques from the field of operations research, some disaggregate freight
forecasting models use the ‘incremental tour growth’ approach, first presented by Hunt & Stefan (2007).
Conditional probabilities of selecting a location as the next stop and terminating the tour (i.e. returning to
depot) are calculated, after which Monte Carlo simulation is used to pick one choice, which leads to an
iteratively grown tour. Probabilities are calculated by estimating logit functions based on observed truck tour
data.

Hunt & Stefan (2007) pioneered this approach for their tour-based microsimulation framework of commercial
vehicle movements in the city of Calgary, Canada. Their model directly estimates vehicle tours and can,
therefore, be classified as a tour-based model rather than a hybrid model; it does not explicitly consider the
flow of goods between regions. To develop the model, truck trip diary data of only own-account commercial
vehicle movements were used. Hunt & Stefan (2007) distinguish three types of movements: external-internal
movements (with one trip end outside the study area), fleet-allocator movements (vehicles that need to cover
an area or set of links, e.g. newspaper deliveries), and tour-based movements (tours comprised of a small set of
individual shipments or services). The incremental tour growth is implemented for the third type of
movements. The overall framework consists of the following steps that are iterated until the tour termination
decision is made: (1) tour generation, (2) vehicle and tour purpose, (3) tour start, (4) next stop purpose, (5) next
stop location, (6) stop duration.

To estimate the number of tours generated per zone, Hunt & Stefan (2007) used an exponential regression
equation to estimate the number of tours per employee and establishment category, which was multiplied
with the number of employees per establishment category in a zone. A logit model was estimated to determine
the time period in which the tour starts, based on accessibility to employment and land use. In the next step,
the tour purpose (goods, service, other) and vehicle type (light, medium, heavy) are chosen simultaneously
with a logit model, with land use of the zone and company type generating the tour as independent variables.
The exact tour start time is chosen with a Monte Carlo simulation on the observed distribution of tour start
times in each time period. The next stop purpose has four choice options: goods, service, other, return-to-
establishment, and is estimated separately for tours generated by different segments (company type and tour
purpose). The choice depends on tour memory variables (e.g. number of goods stops already made in the
tour), accessibility of the current location, and the generalized travel (dis)utility of a trip from the current
location to the depot. For the next stop location, the choice set for estimation is constructed by the observed
next zone and 80 unselected alternative zones randomly identified with stratified sampling based on zone
characteristics. Influencing variables include accessibility, land use, travel (dis)utility, and the enclosed angle
between the previous stop, the current stop and the (potential) next stop. The stop duration is obtained with a
Monte Carlo draw from observed distributions. Finally, parameters were slightly changed to reproduce
aggregate statistics relating to zonal tour productions and to the number of stops per tour in different
segments.

Wang (2008) and You (2012) mentioned that in the incremental tour growth approach, next stop location and
tour termination decisions are being made while performing the tour. This is, of course, a weak assumption,
given the tendency of freight operators to make decisions at a more tactical planning level in an optimized way
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(You, 2012). However, this approach may rather be seen as a calibrated greedy algorithm to construct tours,
rather than a representation of decisions made during tours. Hunt & Stefan (2007) realized this and mentioned
that parameters reflect the general structure of tours, rather than decisions being made in the moment. An
example Hunt & Stefan (2007) mentioned is that a driver does not decide to go back to the depot because the
distance to it from the current location is short, but that tours in general are often constructed to include a
stop on the way back to the depot.

Wang (2008) developed a similar yet simpler tour growth approach than Hunt & Stefan (2007). Wang (2008)
used this tour growth model as input for a tour-based entropy maximization (as discussed in Section 3.2.1) and
for a hybrid microsimulation framework. The two choices in this framework are tour termination and next stop
destination, which are represented with an MNL model. The two choice functions were calibrated with a data
set of commercial vehicle tours in Denver, CO, USA for the entropy maximization and with a synthetic data set
of tours for the hybrid microsimulation framework. For the next stop destination choice, stratified sampling
based on distance to the current stop location is used to construct choice sets. The maximum number of stops
in a tour is set at 20. In the hybrid microsimulation framework, the tour growth model is used to construct
tours that satisfy an OD matrix of flows of a generic commodity in a test network of 84 nodes. For this purpose,
the vehicle picks up an average payload of cargo on each OD it visits that has a commodity flow still to be
transported, and the vehicle drives empty if no commodity flow is left to be transported for the OD the vehicle
travels. The amount of cargo still left to be picked up and delivered at each stop, positively influence the
probability of choosing this stop as the next destination. While this model makes heavy assumptions (e.g. one
generic commodity type, shipments are always delivered at the next stop of a tour), it does show the
possibilities of using the tour growth approach to construct tours that satisfy a given commodity OD matrix.

Some other tour-based models used the incremental tour growth approach in a more similar fashion to Hunt &
Stefan (2007). Ferguson et al. (2012) investigated the transferability of the framework of Hunt & Stefan (2007)
to the region of Toronto, Canada, by following the same six steps but with some newly estimated parameters
based on local data. Comparison of estimated and observed traffic counts yielded promising results, but with
an overestimation of medium size vehicle flows in the late morning and early afternoon. Kim et al. (2014) and
Kim & Park (2017) developed a similar model for the Seoul metropolitan area in South Korea, and compared it
with a traditional trip-based four stage modeling approach. The tour-based model performed marginally better
in replicating the observed OD flows, trip length distribution, and average trip length. However, Kim & Park
(2017) did not specify whether they separated estimation and validation data, nor does the quantitative
comparison provide information about the models’ abilities to predict future impacts.

Kuppam et al. (2014) extended the tour growth framework for their tour-based model of Phoenix, AZ, USA to
include tours that do not end at their starting locations (i.e. paths). They also use GPS truck data instead of
truck trip diary data. Furthermore, their model consists of a different set of choices than the model of Hunt &
Stefan (2007): (1) tour generation, (2) stop frequency, (3) tour completion, (4) stop purpose, (5) stop location,
and (6) time of day. Step 2 is an MNL model that determines the number of stops in the tour, based on
accessibility and land use of the origin zone, constrained to eleven stops as very few tours had been observed
containing more stops. Step 3 is Binomial Logit (BL) model that determines whether the tour ends at its starting
location or not. Only eight percent of observed tours started and ended at the same location. The stop purpose
(industry type) of each stop is chosen sequentially with an MNL, after which the location of each stop is chosen
based on the travel time to its previous stop and depot and accessibility to employment. The time of day choice
is estimated for each stop in the tour with an MNL model, the alternatives are the 24 hours of the day. A
separate choice model is estimated for the first stop and subsequent stops, as for the latter the influence or
earlier stops needs to be incorporated. The model replicates observed statistics quite well, yet it is not
specified whether the same data is used for calibration and for estimation. Doustmohammadi et al. (2016b)
developed a similar model for Birmingham, AL, USA and showed that their tour-based model performs well in
replicating observed traffic count data.
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Ruan et al. (2012), Zhou et al. (2014), and Khan & Machemehl (2017) used the Random Utility Modeling
framework to model the choice for the number of trips in a tour based on commercial vehicle survey data from
Texas, USA. Ruan et al. (2012) and Khan & Machemehl (2017) also included the daily tour chaining strategy of a
vehicle in the choice, which can be a single or multiple tours on a day. Ruan et al. (2012) estimated a mixed
logit, nested logit, and multinomial logit model, while Khan & Machemehl (2017) adopted a discrete-
continuous extreme value modeling approach. Ruan et al. (2012) found that direct tours (one stop) are more
likely to be made for shipments sent over a longer distance and for construction materials, while tours with
more stops are made more often for tours to/from distribution centers and transporting food, health, and
beauty products. In the model of Khan & Machemehl (2017) tours that include intermediate stops made at
retail centers are also more likely to have more stops. While these models provide a deeper understanding of
factors influencing the number of stops and tour chaining strategy, they cannot directly handle transformation
of shipments into tours.

For this purpose, Outwater et al. (2013) developed a tour formation framework for Chicago, IL, USA, around a
similar Multinomial Logit (MNL) choice model that assigns to each shipment the tour pattern (one tour, two
tours, or three tours per day) and number of stops of the tour it will be part of. The same data as Ruan et al.
(2012) is used for estimation. A hierarchical clustering is used to group nearby shipments with the same tour
pattern and number of stops, and a greedy ‘closest-node-next’ algorithm constructs the tour sequence. Only
tours with one loading point, an identified warehouse, are modeled. These tours can visit multiple stops for
unloading.

Nuzzolo et al. (2012) developed a tour formation model for Rome, Italy, in order to convert a shipment OD
matrix into a vehicle OD matrix. For this purpose, they estimate an MNL model to represent the choice for trip
chain order (1, 2, 3, 3+ stops in the tour), and for next stop location. The trip chain order model shows that
tours constructed by third-party carriers and for foodstuffs are more likely to include multiple stops. A higher
accessibility to retailers in the depot zone leads to fewer stops in the tour, which Nuzzolo et al. (2012) explain
by the desire to reduce the complexity of operations. The choice set of the next stop location model includes all
zones less than 25 km away from the current stop, as very few observed trips are longer. Separate models were
estimated for direct tours and multiple-stop tours, and for the first stop and later stops in a tour. Significant
variables include tour memory variables, and the retailer and wholesaler accessibility in the destination zone.
Choice models are estimated based on only 500 interviews with truck drivers and the scope is limited to
restocking tours performed for and by retailers. The model was not validated on observed statistics.

OTHER APPROACHES FROM THE HOUSEHOLD ACTIVITY PATTERN PROBLEM LITERATURE

The literature on activity-based modeling of personal transportation also provides techniques that may be used
in freight tour formation. More specifically, the HAPP, is a MILP that is very similar to the VRP. The HAPP is used
to represent the household interaction that leads to the allocation of time and vehicles to travel and activities,
taking into account spatio-temporal constraints (Chow & Recker, 2012). The calibration of parameters of its
objective function remains a challenge. Recker et al. (2008) mention five reasons for this: (1) the set of
alternatives is infinitely large, (2) the solution vector includes both integer and continuous variables, (3)
alternative household patterns are mutually exclusive, but parts of the solution vector may not be, (4) the
components of the utility function cannot be directly interpreted as relative utility weights, and (5) closed-form
probabilities can often not be achieved due to the complex constraint space. Previously in this section, we
discussed inverse optimization, which has been used by Chow & Recker (2012) to calibrate the HAPP, and later
by You et al. (2016) for the VRPTW. In this section, we discuss two other approaches that have been used to
estimate parameters of the HAPP, and may similarly be used to estimate parameters of a VRP.

Firstly, Recker et al. (2008) used a genetic algorithm to work iteratively towards a set of parameters of the
HAPP objective function with a minimal difference between its predicted household pattern and the observed
household pattern. The general philosophy of this approach is as follows: (1) a population of strings with
different objective function parameters is created; (2) the fitness is evaluated by comparing the predicted
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pattern with the observed pattern; (3) strings with a higher fitness receive a higher probability of reproduction;
(4) reproduction takes place by crossover of existing strings and mutation; (5) this process is iterated until a set
convergence criterion is reached. Recker et al. (2012) demonstrate their approach both for estimation of
parameters of an individual household and of a sample of 65 households. Two weaknesses in this approach are
the lack of statistically sound measures of goodness-of-fit and the computationally cumbersome estimation,
similar to the inverse optimization technique of Chow & Recker (2012) and You et al. (2016).

Xu et al. (2017) provided an alternative approach for HAPP estimation. Instead of genetic algorithms or inverse
optimization, they make use of the RUM framework. Statistically sound measures are available to judge the
model fit and inclusion of parameters (Xu et al., 2017). Similarly to what Adler & Ben-Akiva (1979) did in the
earliest stages of activity-based modeling, household patterns of other households are sampled to construct a
discrete choice set, from which utility weights can be obtained using maximum likelihood estimation. Xu et al.
(2017) further formalized this procedure in the following three step: (1) choice set generation, (2) choice set
individualization, and (3) parameter estimation. The choice set generation is improved by Xu et al. (2017) by
sampling those household patterns that maximize the information gain of the choice set. In choice set
individualization, goal-programming is used to adjust alternative household patterns that do not comply with
constraints of an individual household. Another improvement is that a Path-size Logit (PL) model is estimated,
instead of an MNL. This means that a correction term is added to each alternative that accounts for overlap
with other alternatives.

3.3 THE SCIENTIFIC GAP

Clearly, in the last ten to fifteen years, freight modelers have increasingly realized the importance of
incorporating tour formation. While this is a positive development for the forecasting potential of these
models, challenges and gaps in the proposed approaches still remain. In this section, we define the gap that our
research fills.

Tour-based entropy maximization is an interesting concept that is able to connect microscopic tour formation
models with aggregate regional freight forecasting models. However, these models answer the question
regarding how to connect microscopic tours with traffic counts and a macroscopic model but do not provide
answers regarding the behavioral formation of tours out of shipments, the objective of this research.

The disaggregate models that we have discussed in this chapter come closer to answering this question, yet
many models do not consider commodity flows explicitly. The driver behind freight transportation, trade of
goods between firms/regions, is not modeled explicitly (Wisetjindawat et al., 2006). As a consequence, the
different economic characteristics, constraints (Holguin-Veras et al., 2014), and geographical distribution of
these commodity types cannot be considered. For example, Hunt & Stefan (2007) directly estimate the number
of tours originating in each zone and You et al. (2016) work with a set of nodes instead of goods that need to
be visited on a day, which obstructs the consideration of vehicle capacity constraints.

Preferably we do not merely model commodity flows as kilograms between regions but represent distinct
shipments explicitly. Many decisions in freight transportation are made at the shipment level (de Bok et al.,
2018). Consequently, modeling shipments allows a more accurate representation of these decisions. In
addition, shipment-based models allow for analysis of far more specific policies and scenarios, such as: new
distribution centers, changes in delivery frequencies and shipment sizes, and increased cooperation of shippers
and carriers (Boerkamps & van Binsbergen, 1999). While Wang (2008) assigns commodity flows to vehicle
tours, no set of shipments is modeled.

In behavioral freight tour formation modeling we aim to reproduce observed tour formation behavior. Ideally,
parameters of a statistical model are calibrated on empirical data. Here we define calibration as tweaking
model parameters to reproduce empirical data. A statistical model provides inferential statistics about the
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population and accounts for correlations between predictors. Calibration of a statistical model provides a
strong behavioral foundation and validity.

As the required data for disaggregate agent-based models is often hard to obtain (de Bok & Tavasszy, 2018)
and tour formation cannot be narrowed down to a single choice, few studies calibrate their tour formation
model on empirical data in a statistical way. VRPs (e.g. Wisetjindawat et al., 2006; Anand et al., 2014) or
heuristic algorithms (e.g. Boerkamps & van Binsbergen, 1999; Alho et al., 2017) without calibrated parameters
are often used instead. You et al. (2016) calibrate a VRP with a mathematical optimization approach, which
does not only lack inferential statistics and controlling between parameters but is also computationally too
heavy for application in a regional forecasting model.

Nuzzolo et al. (2012) and Outwater et al. (2013) developed the only tour formation models we found that are
shipment-based and statistically calibrated. Nuzzolo et al. (2012) limit their scope to restocking tours made for
and by retailers in Rome, ltaly, while Outwater et al. (2013) only model tours that distribute food and
manufactured goods from a warehouse or distribution center in Chicago, IL, USA.

A methodological weakness can be identified in these two similar tour formation models too. For each
shipment of a carrier, Nuzzolo et al. (2012) and Outwater et al. (2013) choose the number of stops of the tour
that this shipment will be part of. The number of stops per tour and the daily number of tours are determined
before the choice is made which shipments are transported in the same tour, while in reality the number of
stops and tours are outcomes of the process of allocating shipments to tours. As a consequence, important
operational factors that actually impact the number of stops in a tour are not or very implicitly included. For
example, in the model of Nuzzolo et al. (2012) the number of stops is not constrained explicitly by the vehicle
capacity and not chosen in coordination with other shipments. In this model, the number of stops does not
depend on whether a carrier has other shipments that can be transported in the same tour with little
additional time. A model where the number of stops is an outcome instead of a decision made before the tour
formation process is desired.

When we look at Table 3.1, we see that none of the identified tour formation models satisfy all requirements
we described so far in this section: (1) shipment-based, (2) statistically calibrated, and (3) the number of stops
is an outcome of the tour formation process instead of a decision made in advance. Our study fills this gap.

The data that we use covers all road freight transportation in the Netherlands and further distinguishes our
study from others. Firstly, we do not limit our tour formation model to restocking tours of retailers (Nuzzolo et
al.,, 2012) or tours that distribute goods from a warehouse (Outwater et al., 2013). Secondly, most tour
formation models only model and/or use data about urban trips, while we also model trips between cities.
Thirdly, our study is highly inclusive with respect to goods types. Boerkamps & van Binsbergen (1999) only
model shipments related to books and food retail, while Outwater et al. (2013) developed their model for food
and manufactured products. Finally, few tour formation models are developed in Europe and only two are
identified in the Netherlands, which both do not have calibrated parameters. Because strong regional
differences exist in commercial vehicle patterns, a model developed for one region (or country) is not
applicable to the other (Zhou et al., 2014). For example, in the Netherlands cities tend to be much more dense
but also closer to each other than in the USA, which is why tours might be able to visit multiple cities more
often in the Netherlands.

To summarize, no tour formation model was found to satisfy the following three criteria:

e Shipment-based

e  Statistical calibration of parameters

e The number of stops per tour and the number of tours per day is an outcome of the process of
allocating shipments to tours
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In addition, many studies:

e Make selections on the types of locations or establishments where goods are loaded or unloaded
e Make selections on goods types

e Do not model inter-urban tours

e Do not develop their model for the Dutch context
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Table 3.1. Summary of literature review on behavioral freight models that include tour formation.

Reference Tour model Study region Geographic  Commodity  Shipment- Commodity types Carrier types Calibrated tour Statistical tour Number of stops is
type al scope -based based (receiver/sender model model outcome of tour
types) formation
Adler & Ben-Akiva RUM Washington DC, - - - - - Y Y Y
(1979) USA
Boerkamps & van Algorithm Groningen, Urban Y Y Food retail, bookstores All N N Y
Binsbergen (1999) the Netherlands
Taniguchi & van VRP hypothetical - Y Y All All N N Y
der Heijden (2000) network
Wisetjindawat et VRP Tokyo, Urban Y Y All All N N Y
al. (2006) Japan
Hunt & Stefan RUM Calgary, Urban N N All Own-account Y Y Y
(2007) Canada
Recker et al. HAPP (VRP) Washington & - - - - - Y N Y
(2008) Oregon,
USA
Wang (2008) RUM Denver, CO, - Y N All All Y Y Y
USA (generic commodity type)
& hypothetical
network
Wang & Holguin- Entropy Denver, CO, Urban N N All All Y N -
Veras (2009) maximization USA
Donnelly et al. Algorithm & Oregon, Urban and Y Y All All N N Y
(2010) optimization USA inter-urban
Polimeni et al. VRP Palermo, Urban Y Y All All N N Y
(2010) Italy (to/from
retailers)
Chow & Recker VRP Orange County, CA, Urban - - - - Y N Y
(2012) USA
Ferguson et al. RUM Toronto & Urban N N All All Y Y Y
(2012) Hamilton,
Canada
Nuzzolo et al. RUM Rome, Urban Y Y All All Y Y N
(2012) Italy (to/from
retailers)
Ruan et al. (2012) RUM Texas, Urban N N All All Y Y N
USA
You (2012) Entropy Southern California, Urban N N All Third-party Y N -
maximization USA (to/from port)
Outwater et al. RUM Chicago, IL, Urban Y Y Food products, All Y Y N
(2013) USA manufactured products (from
warehouse/DC)
Kuppam et al. RUM Phoenix, AZ, Urban N N All All Y Y N
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(2014) USA
Kim et al. (2014) RUM Seoul, Urban All Third-party
Kim & Park (2017) South Korea couriers
Anand et al. (2014) VRP hypothetical Urban All Third-party
network (to/from
retailers)
Zhou et al. (2014) RUM Texas, Urban All All
USA
Sanchez-Diaz et al. Entropy Denver, CO, Urban All All
(2015) maximization USA
Irannezhad & VRP Brisbane, Urban All Third-party
Hickman (2016) Australia
You et al. (2016) VRP Southern California, Urban All Third-party
USA (to/from port)
Doustmohammadi RUM Birmingham, AL, Urban All All
et al. (2016b) incremental USA
Alho et al. (2017) Algorithm & Singapore Urban All All
optimization
Khan & RUM Texas, Urban All All
Machemehl (2017) USA
Xu et al. (2017) RUM + California, - - -
HAPP (VRP) USA
BasGoed (see Multiplication The Netherlands Urban and All All
Groot & Miete, of observed inter-urban
2016; Significance, trips
2018)
This research RUM The Netherlands Urban and All Third-party
inter-urban
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4. DATA

For this research, we have access to the XML microdata that is collected by the Central Bureau of Statistics of
the Netherlands (CBS). The objective of this chapter is twofold: (1) understand this data and its usefulness for
estimation of a tour formation model, (2) empirically explore other factors that can explain differences in tour
formation. For this purpose, in Section 4.1 we discuss the general structure and variables in this data set. In
Section 4.2 we discuss another source of data, skim matrices that provide distances and travel times between
zones in the Netherlands. In Section 4.3 we go into further detail explaining relevant variables for tour
formation and report descriptive statistics, after which we conclude with the implications of the findings of this
chapter for model estimation in Section 4.4. We begin by providing background information about the data set.

CBS collects this XML microdata as one of the sources for their ‘Basisbestanden Goederenwegvervoer’ (BGW).
This is a set of three files (at the level of tours, trips, and shipments) that CBS collects for Rijkswaterstaat, the
executive body of the Dutch Ministry of Infrastructure and the Environment, who uses this data to develop
models to evaluate new policies on the subject of freight road transportation (CBS, 2017b). CBS collects similar
data sets for freight transportation by rail and over inland waterways.

The population for the BGW is the complete commercial vehicle fleet of the Netherlands and foreign trucks
driving on the Dutch roads. CBS draws a sample from these vehicles based on 74 strata, including operator
type, carrying capacity, vehicle age, vehicle type, and the vehicle fleet of its owner (Robroeks, 2016; CBS,
2017b). Companies are obligated to fill in the survey for all shipments transported by the sampled vehicle for a
specified week and CBS calls companies when they have forgotten to comply (Robroeks, 2016). The chance that
a vehicle is drawn for the sample in a year is approximately 1:3 (Robroeks, 2016).

CBS allows companies to fill out the survey in three different ways: internet, XML, and paper (Robroeks, 2016;
CBS, 2017b). In this research, the XML data is made available, and we will only go into further detail explaining
this data. The XML data is directly tapped from the planning software of a carrier. Companies can implement
such XML collection extensions themselves, but CBS always has to perform a quality control before data can be
provided in XML format (CBS, 2008). Approximately 80% of the XML data originates from real-time systems,
and 20% from Transport Management Systems (TMS) (Robroeks, 2016). In most cases, these systems require
the driver to interact with it in order to fill in the survey in a partially automated way (Robroeks, 2016). CBS
specifies to those companies that have decided to install XML data collection tools into their software and
trucks what the definitions are of terms such as ‘tour’ and ‘shipment’. CBS realizes, however, that some
companies have their own definitions, which can sometimes lead to inconsistent data. Furthermore, some
companies provide data of all trucks for requested weeks, while some only provide those vehicles that CBS has
requested, but it is not known which companies do so.

4.1 STRUCTURE OF THE DATA

The XML data that is available for this study consists of approximately 2.6 million records, stored in csv-format.
The data has a relational structure, with three layers of information: (1) truck-weeks, (2) tours, and (3)
shipments, each with its own IDs and variables (Robroeks, 2016). Two one-to-many relationships can be
distinguished: one truck-week can consist of multiple tours, and one tour can consist of multiple shipments
(Robroeks, 2016). The data is organized in such a way that each record is a shipment. For this reason, if a tour
contains multiple shipments, information at the tour level is repeated for each shipment. In Table 4.1, this
structure is shown with a pseudo data example.

At each level, multiple variables are present that relate to the object that this level represents (i.e. information
about a shipment, a tour, or a vehicle-week). Figure 4.1 summarizes which information is reported in the data
at each level. In the next section, we go into further detail explaining how the variables that are relevant for
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tour formation are measured, what their underlying assumptions are, and how their values are distributed in

the sample. Most tour variables have been obtained with transformations using the variables in this data.

Table 4.1. Pseudo data. The structure of the data with three different layers (differently shaded text) and several accompanying variables

is shown.
Tour ID Departure town Departure time Shipment ID Loading location  Shipment
distance

30100 Amsterdam 1-1-15 8:15:00 80430 Amsterdam 50

30105 Rotterdam 6-1-15 10:30:00 80431 Zwolle 13

30105 Rotterdam 6-1-15 10:30:00 80432 Rotterdam 54

30105 Rotterdam 6-1-15 10:30:00 80433 Gouda 28

30107 Utrecht 1-1-15 6:00:00 80434 Utrecht 260

3

=0o™0

opgaveld (Truck-week)

Year & week

Serial tour number
Describes the orderin which tours of a vehicle-
week are listed in the data

In BGW sample [yes/no]

Carrier ID
Distance [km]
Driven from arigin to destination of tour
Ownership type
Owned, hired, leased, or not owned anymore DateS& time
tart
Fuel consumption [L per 100 km] : End
A Origin & destination
Home base Country
Country ZIP
2P Town
Town Latlong
Latl
st Operator type
Carrying capacity [kg] Hired carrier or own-account
Capacity utilization
Vehicle type %m2

% m3

Border crossing
Country
Latlon

Source images

Truck: lcon made by Freepik from www.flaticon.com

Tour: Icon made by Freepik from wwuw.flaticon.com

Shipment: lcon made by Gregor Cresnar from www.flaticon.com

Figure 4.1. The available data at each layer of information.

4.2 SKIM MATRICES

zendingld (Shipment)

Serial shipment number
Describes the order in which shipments of a tour are
listed in the data

Distance [km]
Driven from loading to unloading point

Gross weight [kg]

Shape
Fluid, solid bulk, sea containers, other containers,
pallets, hanging goods, goods in ropes, mobile units
with own power, or other mobile units.

v

Loading and unloading location
Country
ZIP
Town
Latlong

Loading and unloading location type
Production, consumption/processing, retail, seaport,
inner port, rall terminal, airport,
distribution/wholesale, or home base.

Goods type
Description
NSTR
NST2007
Hazardous [yes/no]

Invoice value [€]

Volume [L or m3]

Besides the XML microdata, we also have access to skim matrices in this research. These skim matrices provide

a travel impedance (travel time and distance) between all combinations of zones in the Netherlands. Zones are

at the level of ‘buurten’, an administrative unit with a level of aggregation in between 4-character and 6-

character ZIP codes in the Netherlands. The Netherlands consists of approximately 12,000 buurten. Separate

skim matrices are available for the AM peak, PM peak, and the remainder of the day.
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Road link impedances are used to find the shortest path between each combination of zones. These road link
impedances originate from a traffic assignment in the calibrated NRM-West (Nederlands Regionaal Model), the
Dutch transportation model, with most detail in the western region.

Information about these buurten are made publicly available by the CBS (Kerncijfers wijken en buurten 2015).
These zonal characteristics relating to land use and degree of urbanization are used to enrich the XML
microdata.

4.3 ANALYSIS AND DISCUSSION OF VARIABLES

In this section, we discuss some of the relevant variables in the XML data set for this research and other
variables that have been added to this data. The definitions and distributions of some of these variables are
discussed. Variables at the level of shipments and tours are discussed respectively.

When analyzing this data, we have selected only the records that are part of tours which include the following:

e Allloading and unloading locations can be obtained in the form of a buurt zone
e The goods type of all shipments is filled in (NSTR 1-digit classification)

e The gross weight of all shipments is filled in and non-zero

e The carrying capacity of the vehicle is filled in and non-zero

This leaves approximately 600,000 records of the roughly 2,600,000 records in total. These filters are applied
because these variables need to be known in order to obtain the explanatory variables of the tour formation
model and to be able to arrive at a consistent definition of a shipment in the data set (see Section 4.3.1).

The buurt zones of the loading and unloading location of each shipment can only be obtained for correctly
filled out Dutch 4-character or 6-character ZIP codes. For this reason, the filtered data set only includes tours
that do not cross the border.

Of all tours in the filtered data set, 54.1% were made in 2014, while the rest were made in 2013 or 2015. All
records in the filtered data set were filled out in XML format. Since this requires advanced transportation
planning systems, a self-selection of more advanced carriers has taken place. For this reason, almost all tours in
the data are reported by third-party carriers.

4.3.1 SHIPMENT ATTRIBUTES
The CBS guideline for distinguishing shipments requires the combination of loading location, unloading
location, and goods type of the shipment to be unique in the tour. Companies are not consistent in this
definition in their planning systems, however. Some provide far more detailed descriptions of the goods than
others. For this reason, we sometimes see tours with dozens of shipments between the same loading and
unloading location. Table 4.2 provides a pseudo data example to show this.

Additionally, only direct shipments are reported in the data (i.e. one loading and unloading location per
shipment). We do not know whether the shipment was part of a complex logistics chain with multiple
intermediate storage/transshipment locations.

To arrive at a more consistent data set regarding the definition of a shipment, shipments in the same tour with
the same loading location, unloading location and goods type (which we operationalize with the NSTR 1-digit
classification) are aggregated into one shipment. The gross weight of these aggregated shipments is the sum of
the gross weights of each individual shipment that is aggregated. Consistency in this shipment definition is
important when analyzing data statistics, especially when parameters of a tour formation model are estimated
on it.
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Table 4.2. Pseudo data. Some companies distinguish many similar shipments in a tour. In this example, five shipments are distinguished
between the same locations, all with fruits/vegetables.

Tour ID Shipment ID Loading location Unloading location Goods type
4610 40101 Amsterdam Rotterdam Apples
4610 40102 Amsterdam Rotterdam Pears
4610 40103 Amsterdam Rotterdam Peaches
4610 40104 Amsterdam Rotterdam Pineapples
4610 40105 Amsterdam Rotterdam Tomatoes
4610 40106 Amsterdam Utrecht Tomatoes
4610 40107 Amsterdam Gouda Tomatoes

SERIAL SHIPMENT NUMBER

Each shipment has a serial shipment number, which denotes the order in which the carrier has listed the
shipments in a tour. While CBS does not provide a guideline about what carriers should fill in for this variable, it
appears that carriers usually fill this in the order that shipments were loaded, since the first listed shipment is
usually loaded at the tour starting location.

LOADING AND UNLOADING LOCATION
The loading location and unloading location of each shipment can be filled in with the following levels of detail:

e Country

e Town

e ZIP code (4-digit or 6-digit)
e Coordinates

For this research, we have decided to use the ZIP code variables. These are filled out much more often than
coordinates. These can also rather easily be converted to buurten, which provide a workable skim matrix to
obtain tour characteristics to estimate parameters of the tour formation model.

GOODS TYPE

The goods type of a shipment is filled out with the NSTR classification, NST2007 classification, and with a
textual description. The NSTR code is used in this research, for it is filled out much more often than the
NST2007, and the textual description provides too much detail to make general statements about goods types
of shipments. At the 1-digit level, the following NSTR categories can be distinguished:

: Agricultural products and livestock

: Other foodstuffs and fodder

: Solid mineral fuels

: Petroleum and petroleum products
: Ores, metal waste, and iron pyrites

: Raw minerals and construction material
: Manure/fertilizers

0
1
2
3
4
e 5:lron, steel, and non-ferrous metals (incl. semi-finished products)
6
7
8: Chemical products
9

: Vehicles, machines, and other goods

The distribution of the goods type of shipments is shown in Figure 4.2.
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Figure 4.2. Goods type distribution of shipments (NSTR 1-digit).

A large part of the data consists of shipments of NSTR category 8. Further analyses showed that a striking
portion of the shipments in this category (approximately 180,000 shipments) are concrete. Many shipments of
goods type NSTR 9 are found in the data as well, although this may be mostly due to the fact that it includes
other goods as a remainder category.

4.3.2 TOURATTRIBUTES
CBS defines a tour as any journey made by a vehicle, which starts at the location where the first shipment was
loaded into the vehicle, and which ends at the location where the last shipment was unloaded from the vehicle
or when the vehicle returns to its home base.

For each tour, we know which shipments it contains. Geographically, we know the tour starting location, the
tour end location, and the loading and unloading location of each shipment in the tour. We do not know,
however, what the order of visiting the loading and unloading locations of a tour is. In Figure 4.3 it is graphically
shown how a tour is represented in the data.

The definition of a tour in the data set has the following two consequences: (1) empty trips are not included
(Figure 4.4), and (2) we cannot state with certainty whether an empty trip starts at the home base or at the end
location of the previous tour (Figure 4.5). Empty trips are not in the data, since the tour does not start until the
first shipment is loaded into the vehicle, and it ends when the last shipment is unloaded. Before 2010, CBS
asked for these empty trips in their surveys but has stopped doing so to reduce the time and effort it takes for
respondents to fill in the survey (CBS, 2017b). Since a tour ends when the last shipment is unloaded, its driver
may very well have directly driven to the starting location of the next reported tour after it, instead of driving
back to the home base, which makes obtaining objective information on these empty trips unfeasible (CBS,
2017b).
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Figure 4.5. We do not know for certain whether an empty trip started at the home base of a vehicle (left) or whether the vehicle was
driven from the end location of the previous tour to the starting location of the current tour (right).

Based on the distance of the home base to the tour starting location, it is possible to make assumptions about
whether an empty start trip originates from the home base or from the end location of the previous tour. If the
distance to the home base is much further away, then it more likely that the empty start trip originates from
the end location of the previous tour. This is what CBS does to generate empty trips when XML data is
transformed for the BGW data set (CBS, 2017b). However, in the filtered data set, a home base location ZIP is

filled out for only 15% of the tours.
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NUMBER OF SHIPMENTS

Since the objective of this research is to develop a tour formation model that allocates shipments to tours, it is
highly valuable to know how many shipments are usually allocated to tours in reality. In the data, we see that
the vast majority (91.5%) of the tours include only one shipment (Figure 4.6). Apparently, there is a strong
tendency to complete the tour after the first shipment. Several constraints and preferences can explain this
tendency. It may be due to the desire to reduce the complexity of operations (Nuzzolo et al., 2012) but the
vehicle capacity may also already have been reached with one shipment. The definition of a tour in the data set
impacts this distribution. If a vehicle transports multiple shipments on a day in such a sequence that it turns
empty in between each shipment, all these shipments are listed as separate tours. Remarkably, tours that
transport concrete virtually never include more than one shipment. Concrete is a highly time-sensitive product,
it is usually transported in large volumes, and cannot be combined with other goods types; therefore, a
strategy of combining shipments in a tour is usually not feasible for concrete (Khan & Machemehl, 2017).

Another important piece of information illustrated by Figure 4.6, is the fact that very rarely are tours with more
than fifteen shipments observed.
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Figure 4.6. Distribution of the number of shipments per tour.

NUMBER OF STOP LOCATIONS

The number of stop locations has been obtained by counting the number of unique loading and unloading
locations (at buurtcode level) in each tour. In contrast to a shipment, a stop location is a single unique location,
while a shipment contains both a loading and an unloading location (Figure 4.7). Interestingly, the number of
stop locations shows a distribution highly similar to that of the number of shipments (Figure 4.8). A shipment
can add zero, one, or two new stop locations to a tour. On average a shipment adds approximately one stop to
a tour.

Again, we see that only very rarely tours with more than fifteen stop locations occur. Such tours become too
complex, last too long, and leave no more remaining capacity for more shipments. Concrete shipments,
however, are only transported in tours with one or two stops.
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20,1% of the tours visit only one unique location. In that case, either the loading and unloading location of a
shipments are located so close to each other that they fall under the same buurtcode, or an error has been
made in filling in loading and unloading locations.

Load € 3 shipments
Load B & \\‘ Unload
;
"~ Unload
loalR ([Premes—eem e * A B

Figure 4.7. The difference between a stop location and a shipment, exemplified with a tour structure.

Most previous studies observed more stops per tour. For example, Figliozzi et al. (2007) found an average of
6.8 stops per tour in their analysis of tours made by a freight forwarding company in Sydney, Australia, and
mentioned that previous studies in Amsterdam, Calgary, and Denver had similar findings. The different tour
definition in the XML microdata and the large portion of concrete shipments may explain this difference.

In Section 2.3.2, we discussed the literature that suggests that third-party carriers are more likely to construct
tours with many stops, as they have more shipments to combine. However, the transportation planner of
Rensa BV, an own-account carrier, more often constructs tours with a number of stops (30-35) that we only
rarely observe in the XML data set, which consists of virtually only third-party carriers. Perhaps we need to
readjust this hypothesis from the literature, at least to address the situation in the Netherlands. For an own-
account carrier like Rensa BV, the vehicle fleet size is a determining constraint in tour formation. They aim to fill
their vehicles with as many shipments as possible. For large third-party carriers the vehicle fleet size may not
be as constraining, which can explain why they do not appear to construct tours with this many
shipments/stops and, therefore, why relatively few stops are made in the XML data set.
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Figure 4.8. Distribution of the number of stop locations per tour.
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In Figure 4.9, we see that the number of shipments and number of stops in a tour are very closely related, with
both on average having nearly the same value in a tour. From this we can conclude that a shipment does not
usually add two stops to a tour but more often only one. Shipments that have a location that is already part of
the tour are more likely to be added to it.
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Figure 4.9. The mean and median number of shipments set out against the number of stops.

TOUR TYPE

The tour type, as explained in Section 2.3.1, provides information about the structure of tours. Since the vast
majority of tours includes only one shipment (and therefore two stops), most tours can be identified as a direct
tour. Of those tours that include more than two stops, most are mixed tours. Still, a notable portion of multiple
stop tours are in the form of a collection or a distribution tour. Collection and distribution tours are less
complex than mixed tours and are, therefore, easier to understand and plan. If there is only one loading
location, a tendency to keep this the only loading location in the tour can be identified.

Tour type
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25673 \ /_

M Direct
B Mixed
Collection

Distribution

Figure 4.10. The distribution of tour types.
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DURATION

For this data analysis, the tour duration is obtained using the start and end time (and date) of the tour,
including both the time spent traveling on the road and time spent servicing customers. It should be noted that
the tour start and end time are not very reliable variables. For this reason, we see quite a few tours that last
exactly 24 hours and a filter has been applied removing tours that last less than five minutes. More short tours
are to be found than in the studies of Figliozzi et al. (2007) and You (2012), which may in part be explained by
the fact that a tour ends when it turns empty. These short tours also reflect the tendency to prefer less
complex tours. Interestingly, quite a few tours last longer than the maximum allowed daily driving time of 9-10
hours (Figure 4.11). Some tours may include a night of sleep or a switch of driver.
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Figure 4.11. Tour duration distribution.
DISTANCE

The tour distance, a variable already present in the raw XML microdata, follows a somewhat similar
exponential distribution to the tour duration. Tours much longer than 600 km are very rare (<1%). Besides the
influences of constraints and preferences, the fact that only tours that stay in the Netherlands are selected can
explain this. Many more short tours (< 100 km) are found than in Sydney, Australia by Figliozzi et al. (2007).
Perhaps the difference in density of the built environment explains this, but most likely it is the definition of the
term tour in the data, tours do not include empty trips and end when the vehicle turns empty.
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Figure 4.12. Tour distance distribution.
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MAXIMUM DISTANCE WITHIN TOUR

Tours can contain many stop locations, but often we see that these locations are not very far apart. A clear
preference to group shipments with geographical proximity can be identified, which is logical as carriers prefer
to construct efficient tours. Due to the selection of tours that stay within the borders of the Netherlands, only
rarely distances over 250 km are found between locations in a tour.
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Figure 4.13. Distribution of the maximum distance between locations in a tour.

CAPACITY UTILIZATION

From the data we have obtained a crude and straightforward measure of capacity utilization. The total gross
weight of all shipments in a tour is divided by the carrying capacity of the truck. Quite often this capacity
utilization is very low, which can be due to other constraints that are present, such as the volume capacity and
the availability of shipments to transport on day. Many tours do transport a full truckload (close to 100%).
Unfortunately the data for the volume of the shipments is not usable for this research, as it is filled out poorly

and inconsistently. The fact that the capacity utilization often exceeds 100% has the following possible
explanations:

e Not all shipments are present in the truck at the same time. After some shipments are unloaded,
another location is visited where a shipment is loaded.

e The carrying capacity of the vehicle is not filled out correctly or does not include the carrying capacity
of a second carriage.

e The carrier is breaking the law.
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COMBINING DIFFERENT GOODS TYPES

Carriers showcase a tendency to group shipments of the same goods type in the same tour. As can be seen in
Figure 4.15, a large majority of multiple-stop tours only transports shipments of the same NSTR goods type.
This can be due to restricted goods combinations, discussed in Section 2.3.2. Some carriers may also mainly
transport shipments of the same goods type in general. Still, 6.8% of multiple-stop tours does combine
different goods types.

Number of different NSTRs in tour

1844 17? 27

ml
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4+

Figure 4.15. The share of tours transporting a certain number of different NSTR goods types (1-digit
level). Only tours with more than two stops are included.

VEHICLE TYPE
Different types of vehicles are used by the carriers. Based on the variables in the data, the four vehicles types in
Figure 4.16 can be distinguished. Other/special vehicles are usually vans, but these are only rarely observed.

Vehicle type

2134

B Truck

160049 M Truck+trailer

Tractor+trailer

Other/special

%o

Figure 4.16. The share of vehicle types.

LOCATION TYPE
Tours can visit different location types. Different zones have been assigned a certain land use. Port
transshipment nodes and distribution center zones are distinguished based on the number of employees of
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firms performing port or distribution activities (using SBI business information data), and the number of stops
made in these zones in the XML microdata. Urban zones and retail zones are identified using the CBS zonal data
(Kerncijfers wijken en buurten 2015). Urban zones are zones that CBS identifies as very strongly (>2500
addresses per km?) or strongly urbanized (1500-2500 km®) (CBS, 2015b). Retail zones have a number of
business and food service establishments higher than 100 and a share higher than 40% (see Appendix D for
further substantiation).

A substantial share of the tours visits a location where logistical activities (port transshipment or distribution)
are performed. This may be related to the fact that we mainly have large third-party logistical service providers
in the data set. Most tours do not visit an urban zone, even though 26.3% of the Dutch zones has been
identified as one. Apparently city distribution is not a very prevalent type of freight activity in the data set. Still,
quite a few tours visit a zone with a lot of retail activities. A carrier that is hired by a supermarket establishment
located in a town center to transport restocking orders from its central warehouse would be one such example.
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Figure 4.17. Distribution of tours visiting location types.

DEPARTURE TIME

The distribution of the departure time of tours shows peaks from 4AM-5AM and from 9AM-2PM (Figure 4.18).
Both are periods outside the morning and afternoon peak of rush hour traffic. Hunt & Stefan (2007) found
similar statistics. Clearly, carriers prefer to evade congestion. Quite a few tours still start during rush hour
because carriers prefer to use their trucks all throughout the day and some carriers do not have enough trucks
to perform all tours outside the peaks (de Jong et al., 2016).
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Figure 4.18. Tour departure time distribution.
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4.3.3 FURTHER ANALYSES ON NUMBER OF STOPS
Different numbers of stops are observed for different types of tours. In this section, we discuss how this differs
for different goods types, vehicle types, location types, and distances.

For different goods types we observe varying percentages of direct tours, i.e. tours with only 1-2 stops. In
Figure 4.19, the NSTR goods type of the tour is calculated as the NSTR goods type of which the most weight is
transported in the tour. This allows us to deal with tours that transport multiple goods types. NSTR goods types
2 to 5 are merged into one category, for they have a very low number of observations and they are all related
to oils and metals. Tours transporting oils and metals (NSTR 2 to 5), construction materials (NSTR 6), or
chemical products (NSTR 8) are much more often a direct tour than others. Tours transporting agricultural
products and livestock (NSTR 0) or other foodstuffs and fodder (NSTR 1) often visit multiple stops.

These differences in number of stops between goods types can be explained in many ways: weight or volume
differences, stricter restrictions on goods type combinations, ease of loading/unloading, and dispersion of
demand. For example, a shipment of construction materials (NSTR 6) that is transported to a building site is
intuitively more likely to have a high volume than a shipment of soda cans (NSTR 1) that are transported to a
restaurant. Therefore, a vehicle transporting the latter is more likely to have remaining space available for
other shipments. Chemical products (NSTR 8) might be more restricted in their combination with other goods if
they are highly flammable. Construction materials such as long piles (NSTR 6) may take more time and effort to
load than potatoes from a farmer (NSTR 0). Finally, restaurants ordering foodstuffs (NSTR 1) can be highly
concentrated (Beziat et al., n.d.), whereas factories producing steel (NSTR 2 to 5) may be highly dispersed. In
the first case, it is easier to combine shipments of different customers in an efficient way.
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Figure 4.19. Percentage of direct tours (i.e. 1-2 stops) for different goods categories. Concrete
shipments are excluded as we already know these are only transported in direct tours.

Multiple-stop tours are observed most often when a truck is used, less often with tractor + trailers, and only
rarely with truck + trailers and other/special vehicles. Differences between these vehicle types can be related
to capacity and the ease of loading/unloading. Other/special vehicles are mostly vans, which have a very low
capacity, and therefore little room for the combination of shipments of many customers. A truck + trailer is less
practical for unloading of goods for different customers than a simple truck, as the trailer needs to be
uncoupled to unload the shipments in the first compartment. A tractor + trailer is more practical than a truck in

52



this regard. Finally, different types of carriers may own different vehicle types. Carriers that mainly use tractor
+ trailers may have different planning strategies and leading constraints than carriers that mainly use trucks.

100.0% 96.44% 97.29%

90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%

0.0%

Percentage of direct tours

Truck Truck+trailer Tractor+trailer Other/special

Vehicle type

Figure 4.20. Percentage of direct tours (i.e. 1-2 stops) for tours using different vehicle types.
Concrete shipments are excluded.

The large majority of tours that visit port transshipment zones are direct tours; combination of shipments of
different customers is rarely observed here. In Figure 4.21, we can see that tours that do not visit port
transshipment zones much more often have multiple stop locations. No clear difference is apparent between
tours that load or unload goods at a port.
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Figure 4.21. Percentage of tours with a certain number of stops that visit a port transshipment
zone for loading/unloading or not. Concrete shipments are excluded.

For tours that visit distribution center zones the effect is quite the opposite. When goods are loaded at a
distribution center in the tour, the tour is more likely to have multiple stops. When goods are unloaded at a
distribution center in the tour, the tour is less likely to have multiple stops than when goods are not (Figure
4.22).
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Figure 4.22. Percentage of tours with a certain number of stops that visit a distribution center zone
for loading/unloading or not. Concrete shipments are excluded.

Tours that visit a port transshipment zone are more likely to transport shipments as part of a long-distance
international logistics chain. The tour transports the shipment while it is on its way from a producer to perhaps
a wholesaler or distribution center, in which case large shipment sizes are observed, often not smaller than a
container (Friedrich et al., 2014). With such high volumes and weights, it is often not possible to combine
shipments of different customers in one vehicle.

Tours that load goods at a distribution center most likely transport shipments to places of consumption, such
as retail outlets, in which case smaller shipment sizes are observed (Friedrich et al., 2014). There are more
possibilities to fit multiple shipments in a vehicle. Khan & Machemehl (2017) similarly found that tours visiting
a distribution center tend to have more stops and reasoned that this may be due to the operations inside these
centers: “the vehicle load gets replenished (for outbound delivery) or emptied (for outbound pickup) at the
distribution center, which allows the vehicle to go on with more customer visits” (Khan & Machemehl,
2017:95). The distribution centers are also likely to have a large consolidation potential: they may have more
shipments to transport on a day, which also have loading points (or unloading points) in common more often.
Larger vehicles are sometimes observed at distribution centers too (van Duin et al., 2012). Tours that unload
goods at a distribution center actually tend to have fewer stops. These tours might transport shipments more
often that are part of the marketing channel related to the point of production instead of consumption.

In Figure 4.23 these different marketing channels and shipment sizes are depicted in a highly simplified
manner. The real world shows highly diverse marketing channels. A shipment may, for example, skip the port
transshipment step, and producing facilities can also receive shipments.

Large Port Large Small
shipments shipments Distribution shipments
Producer | — — — — > transshipment |————— > T e ——— > Consumer
node center

Figure 4.23. A simplified representation of marketing channels and according shipment sizes. Based on the concept of a large
and small shipments network of Friedrich et al. (2014).
Tours that visit urban zones tend to include more stops (Figure 4.24). The demand is much more concentrated
in urban areas; therefore, many customers may be visited in the same tour within a relatively short time.
Especially if the vehicle has to be driven from some distant location into the city, it is efficient to visit multiple
customers instead of making multiple direct tours each entering and leaving the city. These highly urbanized
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regions are also more likely to be places of consumption and part of the small shipments network (Friedrich et
al., 2014).
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Figure 4.24. Percentage of tours with a certain number of stops and that visit an urban zone or not.
Concrete shipments are excluded.

Retail shops are places of consumption and, therefore, more likely to receive small shipments (Friedrich et al.,
2014). Consequently, tours visiting retail zones on average include more stops in the data. This in contrast with
the findings in Texas, USA of Zhou et al. (2014), where more direct tours were observed when retail zones are
visited due to time windows. Perhaps, because the Netherlands is a denser country, carriers can combine visits
to retailers more often despite these time windows.

100.00%
90.00%
80.00%
70.00%
60.00% -
50.00% -
40.00% -
30.00% -
20.00% -
10.00% - . .

0.00% - , ,

M Retail zone in tour

No retail zone in tour

1-2 stops 3-5 stops 6-10 stops >10 stops

Number of stops

Figure 4.25. Percentage of tours with a certain number of stops and that visit a retail zone or not.
Concrete shipments are excluded.

When we look at the mean and median tour distance set out against the number of stops per tour (Figure
4.25), we see that tours with more stops travel a longer distance. It is intuitively logical that an additional stop
in a tour requires additional distance. However, the median distance is strikingly lower for tours with 1-2 stops.
This further substantiates the idea of constructing simple (i.e. direct) tours for shipments that are located
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nearby (Nuzzolo et al.,, 2012). For these short-distance shipments, the efficiency gains of adding another
shipment are also lower. If a shipment by itself already requires a rather long tour, carriers prefer to add more
shipments to this tour, since the tour already lasts long anyway. Especially if other shipments can be added to
this long tour with little additional distance, a cost minimizing VRP will combine these shipments into one tour,
as making multiple long tours for all these shipments would be very inefficient.

Tours with more than ten stops do not clearly tend to have higher distance than those with six to ten stops.
Probably once the tour is about 300-400 km long, usually no more shipments are added to the tour unless they
require very little additional distance. Possibly the working hour constraint of 9-10 hours is reached with these

long tours.
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Figure 4.26. The mean and median distance of tours with a certain number of stops.

4.4 CONCLUDING REMARKS

The XML microdata has its peculiarities that impact the distributions of variables and constrain what can be
done with it for model development and estimation.

The conditions that start and end a tour in the data, lead to the exclusion of empty trips, and cuts up vehicle
journeys that turn empty into multiple tours. For this reason, very few tours are observed with more than one
shipment or more than two stop locations in comparison to previous studies (e.g. Figliozzi et al., 2007; Beziat et
al,, n.d.). In addition, the tour distance distribution shows a high peak for short distances for this reason.

The XML microdata imposes limitations on the model structure and parameters that can be estimated, most
notably the following:

e  Constructed tours should start at the loading location of the first loaded shipment, as empty trips from
the home base are not included and the location of the home base of the vehicle is very poorly filled
in.

e No time windows, estimation of goal arrival times like You et al. (2016), or dwelling times can be
included, as only the start and end time of the full tour are known.

e Only direct shipments can be modeled, since the data does not provide information about the
complete logistics chain a shipment goes through.
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e The sequence of visiting loading and unloading locations is not known, we only know which shipments
are part of the same tour. This complicates a VRP calibration approach, as we would need to make
assumptions to obtain an observed tour sequence to calibrate a model that chooses a tour sequence.
We do not observe the output of a VRP in sufficient detail. Not knowing these realized trips within
tours also makes an incremental trip chaining approach like Hunt & Stefan (2007) problematic. Instead
of a model that adds trips to tours, we can construct a model that adds shipments to tours.

e The definition of a tour might lead to a model that constructs many tours with one shipment allocated
to it, and causes the specification of empty trips to be problematic and require crude assumptions.

e The data set is most likely not representative for all freight carriers in the Netherlands, since the XML
tool causes a self-selection of third-party carriers with more advanced planning software.
Conservatism is required when formulating statements about freight transportation in the
Netherlands in general.

However, we do know all the shipments that were transported in a tour and the loading and unloading
locations of all shipments are known for quite a substantial portion of the tours. This leaves room for
calibration of a tour formation model through specification of choice situations in an algorithm that allocates
shipments to tours. Combined with the enormous number of observed tours compared to other data sets, this
is a unique data set that has definite value for calibration of a tour formation model.

Enrichment of the data with other variables can also provide a lot of useful insights that help us further
understand tour formation, most notably:

e  Tours visiting port transshipment zones have fewer stops, while tours visiting distribution centers have
more stops. Different shipments size, number of available (similar) shipments, and the logistic
operations inside distribution centers can explain this.

e In urban areas and retail zones, more stops are made, as demand is more concentrated and entering
and leaving a city can be very time consuming.

e  Fewer stops are observed for tours transporting oils and metals, construction materials, and chemical
products. This is due to restricted goods combinations, dispersion of demand, volume, and of ease of
loading/unloading.

e Tours with more than fifteen shipments or stop locations are only very rarely observed.

e  Tour locations are usually quite close to each other, and rarely more than 250 km apart.

e If a tour already covers a long distance, there is a stronger tendency to allocate more shipments to it,
as this is far more efficient than constructing multiple tours. For short-distance shipments, the
efficiency gains of tours are smaller and a desire to construct simple tours can be identified.

e A substantial portion of tours transports much less weight than its vehicle capacity, other preferences
and constraints (e.g. volume) can thus be leading too.
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5. METHODOLOGY

In this chapter, we explain and substantiate the structure of our developed tour formation model.

5.1 GENERAL STRUCTURE OF THE TOUR FORMATION MODEL

The tour formation model allocates shipments to tours. A shipment is defined in this research as a physical
object with a unique combination of loading location, unloading location, goods type (NSTR 1-digit
classification), and tour that it is allocated to. A tour is defined as a sequence of visiting locations to load and
unload shipments. To remain consistent with the dataset, we define that a tour starts when a shipment is
loaded into an empty vehicle, and ends when the last shipment is unloaded causing the vehicle to turn empty.

The tour formation model consists of two sub models, an ‘End Tour’ (ET) sub model, and a ‘Select Shipment’
(SS) sub model. A tour is grown iteratively by allocating one additional shipment to it in each iteration, until the
tour is ended with the ET sub model, in which case we start constructing the next tour. If the ET model does
not end the tour, a shipment is chosen with the SS model and added to the tour.

This model structure is similar to that of Hunt & Stefan (2007), but the key difference is that shipments instead
of stop locations are added iteratively to tours (see Figure 4.7 for the difference between a shipment and a
stop location). In addition, in our model the sequence of visiting locations is chosen with a separate algorithm
instead of being dependent on the iteration in which a location was added to the tour.

In the ET model, the dependent variable is binary, with the categories: ‘0O = continue adding shipments to tour’
and ‘1 = end tour’. A Binary Logistic Regression (BLR) is estimated to explain this binary variable. The SS model
has multiple shipment alternatives, each with alternative specific attributes. A Multinomial Logit (MNL) is
estimated to explain the selection of a shipment alternative. Additionally, constraints are specified that end a
tour regardless of the ET model and limit which shipments can be chosen in the SS model.

0

Add another shipment
to the tour

End Tour (ET)

End the tour

Select Shipment (SS)

Add shipment A Add shipment B Add shipment C

Figure 5.1. The alternatives of the two sub models.

The ‘choices’ modeled in the ET and SS models are not assumed to be choices that transportation planners
necessarily make. Instead, we intend to represent tour formation behavior with the full model structure. Tour
formation behavior is the result of a set of complex unobserved choices for which transportation planners
might use different planning methods and/or software. Consequently, development of a model structure that
represents explicitly each choice made in the tour formation process is an unrealistic goal.

The ET and SS models should be seen as a statistical model, instead of a choice model that represents an actual
choice context. This allows us to represent behavior in a tour formation algorithm. In order to represent the
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behavior accurately, though, it is important that we can find meaningful variables that can explain the
dependent variable in these statistical models. These effects are meaningful if they are explicable based on the
objectives and constraints that lead to behavior. For example, in the ET model preferences for tours with few
stops can be considered through a higher or lower probability of ending the tour, while in the SS model the
desire to save transportation costs can be considered through a higher probability of selecting a shipment with
little additional time to the tour.

The required input for application of the developed model in a freight microsimulation framework is a
synthesized set of shipments, a skim matrix, and a vehicle type choice model. The output is a set of tours
containing these synthesized shipments.

5.2 DETAILED MODEL STEPS

This section describes the steps in the tour formation model in further detail. In Figure 5.2, a flow diagram
shows this detailed model formulation.
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Figure 5.2. Conceptual diagram of the tour formation model.
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The model thus loops through all shipments that a carrier has to transport on a day (the universal set), and
exhaustively forms tours with these shipments. Next, it loops through all days and carriers, such that all
shipments are allocated to a tour. We have decided to define this universal set because some limitation is
necessary with respect to which shipments can end up in the same tour. It is not reasonable to assume that
carriers can also select shipments from other carriers, and a carrier is not be able to combine two shipments
that need to be received several months apart. A day is chosen as the time unit because the interview showed
that (for at least some carriers) the day that a shipment needs to be transported is set in stone. Practically, this
is also advantageous, since considering many hundreds of shipments as the next shipment might lead to
unpractical running times.

Two parts to the model can be distinguished: the End Tour part (from the top to and including the End Tour
block) and the Select Shipment part (below the End Tour block). In the next two sections we elaborate on the
steps in these two model parts as shown in Figure 5.2.

5.2.1 END TOUR SUB MODEL

Before the decision to end the tour is made, several steps need to be taken.

NEW TOUR

Firstly, we need to pick a first shipment from which we start growing the tour. This is done at random, there is
no clear reason to assume that a certain shipment is more likely to be chosen for a new tour, since all
shipments need to be allocated to a tour anyway, and the (still empty) tour has no characteristics yet to base
this choice on.

TOUR SEQUENCE ALGORITHM

After each shipment that is allocated to a tour, the tour sequence is constructed with all shipments in the tour
so far. The tour sequence is the order of visiting the loading and unloading locations of all shipments in the
tour. It is required in order to obtain features of the tour so far (i.e. with all shipments allocated up to this
iteration), such as the tour duration and number of stop locations, which are explanatory variables for the ET
choice model. We emphasize that the tour sequence algorithm is not the SS model. The SS model chooses
which shipment is added to a tour. After the shipment is added, the tour sequence algorithm is used to pick a
sequence of visiting the loading and unloading locations of all shipments in the tour.

Two different tour sequence algorithms have been developed. Both tour sequence algorithms use a nearest
neighbor search. The first algorithm first visits all loading locations and then all unloading locations, while the
second algorithm visits alternately loading and unloading locations. The second algorithm was developed in
addition to the first algorithm, for it was observed that a substantial share of observed tours in the data have a
set of loading and unloading locations for which such a sequence of alternately loading and unloading would be
much more logical (Table 5.1). Each time the tour sequence is constructed in Figure 5.2 (both in the ET and SS
part), both algorithms are used and the sequence with the shortest duration is selected.

Table 5.1. An example of a tour structure in the data for which a loading-unloading-loading-unloading sequence would be more logical.
The first algorithm may generate a sequence of A-B-C-D-D-C-B-E, while the second algorithm would simply visit A-B-C-D-E.

Shipment Loading location Unloading location
1 A B
2 B C
3 C D
4 D E

The nearest neighbor search is a simplistic greedy tour construction algorithm that iteratively chooses the
unvisited location that is nearest to the most recently visited location (Kizilates & Nuriyeva, 2013; Hougardy &
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Wilke, 2015). The advantage of the nearest neighbor search is that it requires little computation time and is
easy to implement, while showing good results in practice (Kizilates & Nuriyeva, 2013). However, it does
sometimes miss visually obvious shorter tours, and in general performs worse than more complex and heavy
algorithms (AlSalibi et al., 2013). Since the tour sequence needs to be constructed after each shipment
allocation step (and with each considered shipment alternative in the SS sub model), and tours can have more
than ten stops, the low computation time of the nearest neighbor search is of large importance, making it more
attractive than more complex algorithms and enumeration of all possible sequences. Furthermore, our
variation of the nearest neighbor algorithm is able to take into account precedence constraints, since all
loading locations are visited before unloading locations.

In the first tour sequence algorithm, we first need to know the loading and unloading locations of all shipments
in the tour. The tour starts at the loading location of the shipment that we selected as the first shipment of the
tour (see section ‘new tour’ above). The algorithm then removes this loading location from an imaginary list of
‘loading locations to be visited’. The next inserted loading location is the one that is still to be visited and can
be reached within the smallest amount of time (based on the obtained skim matrix discussed in Chapter 4).
This process is iterated until all loading locations are visited. Next, the unloading locations are visited, for which
the same nearest neighbor search based on travel time is used. This first tour sequence algorithm is
summarized with a flow diagram in Figure 5.3. A resulting tour sequence with this algorithm could look like
Figure 5.4.
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unloading locations of all Ltl = Jjth location visited in tour t
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) locations? ) with shortest travel .
- ) o time from Lt
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shortest travel time _— Any unvisited ) . Loadlng location
from Ly < unloading =
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N
Truck trip
Go tonext stepin
tour formation
model (Figure 5.2)
Figure 5.3. A flow diagram representing the first tour sequence algorithm. Figure 5.4. A hypothetical example of a tour sequence

constructed with the first tour sequence algorithm.

CBS uses a similar algorithm to prepare the raw XML microdata into trip data for their BGW dataset. Similarly,
first all loading locations are visited and then all unloading locations are visited (CBS, 2017b). However, they
sort shipments based on shipment distance, the reported distance driven by the vehicle from loading until
unloading. This may lead to logical tour sequences when observed XML data is transformed, but such an
algorithm cannot be applied in a simulation model, as the shipment distance is one of the resulting outputs of a
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tour and is not known in advance when a tour needs to be constructed from scratch. Therefore, we have
chosen to use a nearest neighbor search instead to order loading and unloading locations.

In the second tour sequence algorithm the tour also starts at the loading location of the first allocated
shipment. However, the next visited location in the tour is the unloading location of this first shipment. Next,
we keep track of all shipments whose loading location has not been visited yet and pick the shipment whose
loading location can be reached within the smallest amount of time from the current tour location. The loading
and unloading location of this shipment are the two locations that are visited next. If there are multiple
shipments with the same travel time to its loading location, we simply pick the one that was allocated first. This
process is repeated until all loading locations are visited.

In this second algorithm, we assume that at each visited loading location all shipments at this loading location
are loaded. However, only the unloading location of first allocated shipment is visited after loading here.
Therefore, it can occur that the unloading location of the other shipments picked up at this loading location
have not yet been visited. When this occurs, these unvisited unloading locations are visited after all shipments
have been loaded. This is done with the same nearest neighbor search as in the first algorithm. This way we
ensure that the loading and unloading locations of all shipments in the tour are visited. This second tour
sequence algorithm is summarized with a flow diagram in Figure 5.5. Figure 5.6 shows a hypothetical example
of a tour constructed with this algorithm.
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Figure 5.6. A hypothetical example of a tour sequence constructed with the second tour sequence algorithm. We visit
alternately loading and unloading locations, and visit remaining unloading locations afterwards.

TOUR CHARACTERISTICS
After the tour sequence is constructed, characteristics of the tour so far are obtained. These tour
characteristics provide the required input for the ET choice model and determine whether it is feasible to add
more shipments to the tour. In Chapter 6, we will discuss which variables are used in the ET choice model and
interpret their meaning.

TOUR CONSTRAINTS

Tour formation is not considered in the following cases: (1) no non-allocated shipments are to be found with a
‘proximity’ lower than 100 km to the tour; (2) the tour transports a concrete shipment; (3) the capacity
utilization is above 100%; (4) the tour lasts longer than nine hours. These constraints improve the behavioral
foundation of the model and allow us to skip unnecessary calculations to model the ET and SS choices.

To connect the ET model with the SS model, we calculate a measure which we call ‘proximity’. For each non-
allocated shipment of this carrier (+ day), we calculate proximity as the sum of the distance of its loading and
its unloading location to the nearest point in the tour so far (Figure 5.7). Besides as a constraint, proximity is
also included as an explanatory variable in the ET choice model. Inclusion of this constraint allows us to
incorporate that it might not be reasonable to continue adding more shipments if all remaining shipments are
located relatively far away from the tour locations. Of course, if no shipments are left to be transported to
begin with, no shipments are within a distance radius of 100 km either. Therefore, this constraint also ends the
tour when no shipments are available anymore regardless of their proximity. In 88.3% of the ET choice
observations there is a shipment within this distance radius of 100 km (based on Table E.1 in Appendix E). In
Chapter 6 we also test the model with a more lenient constraint of 150 km to see if this improves the predictive
performance.
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Figure 5.7. Proximity measure. If the current tour consists of shipments A and B, then the ‘proximity’ of shipment C is the sum of
the distance of the two dashed arrows.
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In Section 4.3.2 (number of shipments) we observed that and explained why multiple-shipment/multiple-stop
tours are virtually never made with concrete shipments. For this reason, a tour is automatically ended when a
concrete shipment is selected.

Capacity utilization is operationalized in the same way as in the data analysis in Figure 4.14. It is the total
transported weight divided by the carrying capacity of the vehicle. It is also included as an explanatory variable
in the ET choice model. Inclusion as a constraint allows us to consider that a vehicle simply cannot (or is not
legally allowed to) transport more weight than its carrying capacity. Otherwise a high capacity utilization would
only increase the probability of ending the tour. Note that we can still construct tours with more than 100% of
the capacity used when a heavy shipment is added to a tour with 95% of capacity used. To keep this effect
limited, capacity utilization is also included as a constraint in the SS sub model (Section 5.2.2).

Finally, the tour is ended when it lasts more than nine hours (excluding dwelling time at stops). In the
Netherlands, working and break hours of truck drivers are regulated. Most notably, a truck driver is only
allowed to drive for ten hours per day twice a week and for nine hours per day during the rest of the week
(Inspectie Leefomgeving en Transport, 2018). Our constraint is already on the mild side, as the calculated tour
duration does not include empty trips to and from the home base. Tour duration is also included as an
explanatory variable in the ET choice model but inclusion as a constraint improves the behavioral foundation of
the model. If we do not end the tour after nine hours, it is merely the probability of ending the tour that
increases with a high tour duration, so we would still potentially construct tours that last unreasonably long
due to other parameters explaining the choice.

MODELING THE END TOUR CHOICE

If tour constraints have not been violated, the characteristics of the tour as constructed so far are used to
calculate the systematic utility and the probability of ending the tour. The systematic utility of ending the tour
(Ugr) is calculated with equation 5.1, where B; is the estimated parameter for explanatory variable x;, and n is
the number of explanatory variables in the estimated ET models in Chapter 6.

n Eq. 5.1
Ugr = Constant + Z Bi * x;

=1

To obtain the total utility, a random error component is added to the systematic utility. This error component is
added because the researcher cannot observe the total utility. Some explanatory variables and taste
differences may not be observable to the researcher and measurement errors may be made (Ben-Akiva &
Lerman, 1985). If we assume that this error component is logistically distributed, we can calculate the
probability that the tour is ended with equation 5.2 (Ben-Akiva & Lerman, 1985).

eVET Eq. 5.2

Tgr = —————
T 1+ eUsr

A choice is selected based on these probabilities with a Monte Carlo simulation. If the tour is ended, its
shipments are labeled as ‘allocated’; they cannot be allocated to other tours anymore. If the tour is not ended,
a shipment is chosen to add to the tour, the SS procedure starts.

5.2.2 SELECT SHIPMENT SUB MODEL

The key aspect of the SS sub model is choice set formation. We need to form a choice set that consists of
multiple shipments that may or may not be added to the tour. We define a universal, feasible, and
consideration choice set (UC, FC, and CC), which we explain respectively in this section.
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UNIVERSAL CHOICE SET

It is useful to distinguish first a universal choice set (UC) that consists of all alternatives present in the model
(de Bok, 2007). As defined in the previous section, the universal set consists of all shipments that a carrier has
reported for a day. These are all shipment alternatives that may be selected as the next shipment. Note that
carriers do not have to report all transported shipments, but only those transported with requested vehicles. It
is likely that the UC usually does not consist of every shipment that a carrier transported on a day.

FEASIBLE CHOICE SET

Since this UC may consist of many shipments that are not feasible or reasonable to add to the tour, it is
appropriate to construct a feasible choice set (FC) from the UC. The following constraints lead to the formation
of a feasible choice set:

e The shipment has not been allocated to another tour yet

e The shipment is not a concrete shipment

e The shipment has a proximity below 100 km

e The shipment does not bring the capacity utilization of the tour that it is added to above 110%

It is simply not possible to allocate the same shipment to two different vehicles. Furthermore, we already
identified that concrete shipments are virtually never combined with other shipments in a tour. This ‘concrete’
constraint in the SS part leads to consistency between the ET and SS constraints.

The same proximity measure as discussed in the previous section (Figure 5.7) is calculated for each shipment in
the UC, and those above 100 km are excluded. This proximity measure is calculated to proxy the ‘additional
cost’ of each shipment. We did not calculate the actual additional cost, as this requires the construction of the
tour sequence with and without the alternative shipment, which would be a very heavy calculation considering
that the UC can consist of dozens to hundreds of shipments (Table 5.2).

Table 5.2. Frequency table of day + carrier observations by number of shipments.

Number of shipments per day + carrier Frequency
1 1907
2 1640
3 1080
4 832
5-10 1864
10-15 733
15-20 442
20-25 390
25-30 218
30-35 189
35-40 179
40-45 167
45-50 134
50-100 713
100-150 218
150-200 56
200-250 36
250-300 54
300-350 48
350-400 28
400-450 9
>=500 36
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The last constraint ensures that tours do not transport far more weight than allowed or possible. This
constraint is set higher than 100%, as in Figure 4.14 we observed that for varying reasons tours with a capacity
utilization that is a little over 100% are observed quite frequently. In combination with the capacity utilization
constraint in the ET sub model of 100% (Section 5.2.1), we can still construct tours with a capacity utilization
above 100%. For example, if a tour with a capacity utilization of 99% is not ended, then it is still possible to add
a shipment that brings the capacity utilization to 105%.

If all shipments in UC violate one or more constraints, then the FC is an empty set and the tour is ended.

CONSIDERATION CHOICE SET
After the FC has been obtained, a consideration choice set (CC) is constructed. The CC consists of a randomly
sampled subset of the FC. Each shipment in the FC has an equal probability of being sampled for the CC. It has
been shown that consistent parameter estimates of the MNL are obtained with small well-sampled choice sets
(Bovy, 2009; Prato, 2009). Doing so allows us to calculate more advanced explanatory variables within a
reasonable amount of time.

MODELING THE SELECT SHIPMENT CHOICE

Once the CC has been constructed and explanatory variables of the alternative shipments have been obtained,
the choice for one of these shipments can be modeled. For this purpose, the systematic utility (U;) and the
probability (1)) of each alternative j is calculated. The systematic utility of an alternative is calculated in an MNL
in the same way as in a BLR, see equation 5.1 in Section 5.2.1. When we assume that the error component that
is added to the systematic utility of each alternative has a Gumbel distribution with mean zero and is
independently and identically distributed over observations, then the probability of choosing an alternative
shipment j can be calculated with equation 5.3, where m is the number of alternative shipments in the
consideration choice set (Ben-Akiva & Lerman, 1985).

Eq. 5.3
eli

m
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Again, with a Monte Carlo simulation, one of the alternative shipments is chosen based on these probabilities.

5.3  MODEL ESTIMATION STEPS

To estimate the parameters of the ET and SS sub models, the XML microdata is used. For this purpose, we need
to obtain choice data from the raw XML microdata. In other words, the data needs to be transformed from ‘a
list of tours containing shipments’ to ‘a list of observed ET choices and SS choices with explanatory variables’. In
the remainder of this section, we explain the process of obtaining choice data.

5.2.1 ESTIMATION OF THE END TOUR SUB MODEL

The ET sub model is used to predict the probability of ending a tour, which is the probability that a shipment is
the last to be allocated to a tour. For this reason, we need to know for each shipment in the data whether it
was the last shipment allocated to this tour or not. This is the dependent variable of the ET choice model.

The order of allocating shipments to a tour is a theoretical construct that is not directly observed from the
data. However, we do know all the shipments that are part of a tour. Consequently, we know that no more
shipments have been allocated to a tour, other than its listed shipments. The ‘ET decision’ is therefore 1 for
each complete tour (i.e. a tour including all its listed shipments). For any sub tour (i.e. a tour with a subset of its

66



listed shipments), we therefore also know that its ‘ET decision’ is 0. Each tour thus provides one observed

|
™ __ “ET=0’ observations®.

‘ET=1’ observation, and Y."=1 T
Listing all these possible sub tours would lead to an explosion of ‘ET=0" observations. For a tour with seven
shipments, 126 possible sub tours can be found. Instead, we propose to use the order in which shipments are
listed in the data to generate the ‘ET=0" observations. In the XML microdata, a variable called
‘zendingvolgnummer’ is present, which gives each shipment in a tour a number based on its order of listing in
the data. For each shipment, we construct the tour sequence with all shipments listed in this tour up to this
current shipment. Doing so allows us to calculate a sub tour’s characteristics, which serve as explanatory
variables for the observed ‘ET=0" decision. This process provides (n-1) ‘ET=0" observations per tour, a far more
practical solution than listing all possible sub tours.

In Table 5.3, it is shown what this generated choice data for the ET sub model could look like. For example, the
tour with Tour ID=12 contains four shipments and has three ‘ET=0" observations. Explanatory variables are
calculated for the (sub) tour that consists of all shipments listed up to the current one. If variable A is the tour
duration, then its third row will contain the duration of the sub tour with shipments with Tour ID=12 and
Zendingvolgnummer=1:3.

To remain consistent between the model as we will apply it (Figure 5.2) and the way we estimate its
parameters, observations where the (sub) tour violates the constraints mentioned in Section 5.2.1 (i.e.
concrete, proximity, capacity, duration) are excluded from model estimation.

Table 5.3. Pseudo choice data for estimation of the ET sub model.

Tour ID Zendingvolgnummer Choice ET Variable A Variable B Variable C
12 1 0
12 2 0
12 3 0
12 4 1
13 1 0
13 2 0
13 3 1

5.3.2 ESTIMATION OF THE SELECT SHIPMENT SUB MODEL
To estimate the SS choice model, we need a choice set that consists of an observed added shipment and one or
multiple shipments that were not added to the tour.

Each tour provides n-1 sub tours, as discussed in the previous section. For each sub tour, we take the next
listed shipment as the observed added shipment, since we know with certainty that this shipment was part of
the same tour. We could take any shipment listed below this shipment as an observed added shipment, as long
as they are still part of the same tour. However, similar to what we described for the ET choice data generation,
this would lead to an unnecessarily large number of observations. In addition, the process of choice data
generation would be less consistent and structured.

An observed choice, as well as unchosen alternatives, is needed. To maximize the consistency between the tour
formation model as we will apply it (in Figure 5.2) and the way we estimate it on the observed data, we sample
several shipments from the UC (i.e. shipments transported by the same carrier on the same day). In doing so,
we only sample shipments that are not part of the observed tour. Shipments that violate the constraints listed
in Section 5.2.2 (concrete, proximity, capacity) do not end up in the generated SS choice sets. Full consistency
between application and estimation cannot be reached. In model application we run out of shipments to

% n = number of shipments listed in this tour, r = number of elements of sub group (from 1 to n-1)
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sample from as we allocate them to different tours, while in choice data generation for estimation the only
allocated shipments we cannot sample from are those part of the current observed tour.

In Table 5.4, a pseudo example of SS choice data is shown. In this example, two unchosen alternatives are
sampled. Note how the choice is always 0, as this is how the observed next shipment is coded here. For the last
shipment in the tour, there is no observed choice, as no other shipments were allocated to the tour after this
one.

Table 5.4. Pseudo choice data for estimation of the SS sub model.

Tour ID Zendingvolgnummer Choice SS Variable A Variable A Variable A Variable B Variable B Variable B
(0: observed (1: sampled (2: sampled (0: observed (1: sampled (2: sampled
shipment) shipment 1) shipment 2) shipment) shipment 1) shipment 2)

12

12

(=3 =] =]

12

12

13
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13
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6 ESTIMATION RESULTS

In this chapter, the parameter estimates of the choice models are reported and interpreted. Section 6.1 to
Section 6.3 discuss the ET first shipment, ET later shipments, and SS model respectively. In Section 6.4, we
investigate the changes in results when a subset of carriers is used for estimation.

As noted in Figure 4.6, a very large portion of tours is ended already after the first shipment. Different effects
may explain the probability of ending the tour after first shipment, which is why the ET model is estimated
separately for the first shipment and for later shipments.

The data used to estimate the choice models is kept separate from the data for validation. For the choice
models in Section 6.1 to Section 6.3, fifty percent of the day + carrier combinations are selected at random with
an equal probability. Similar statistics are found regarding number of stops, vehicle type, and goods types in
the validation and estimation data set (Appendix I). While we have an enormous number of observed
shipments, the number of carriers in the data is quite limited and these carriers do not form a representative
sample of the population of firms performing freight transportation in the Netherlands, as identified in Chapter
4. For this reason, we have chosen to divide the data based on day + carrier combinations and not on carriers.
With such a small and unrepresentative group of carriers, it was deemed more important to improve the model
that we estimate by maximizing the number and diversity of carriers whose tours are used for it, than to test
how well a model estimated for a subset of carriers is able to reproduce tours of other carriers in the data.

However, after these models are estimated we do also test how parameters change when only a subset of
carriers is selected for estimation. This allows us to test the robustness of the estimates and use these
estimates in the validation study in order to formulate more solid statements regarding the external validity of
the model.

6.1 ESTIMATES END TOUR FIRST SHIPMENT

The explanatory variables of the ET sub model can be divided into three categories: instrumental variables,
location variables, and vehicle/goods type variables. Table 6.1 shows the process of adding instrumental
variables while Table 6.2 shows the successive process of adding location/vehicle/goods type variables.
Instrumental variables were added first, these reflect the actual decision-making process of a transportation
planner and are most intuitive. Variables are added consecutively to the model and removed when the p-value
is larger than 0.05, when multicollinearity issues arise, or when interpretation is difficult. For non-categorical
variables we test non-linear effects with the square and the square root of the variable. A non-linear
specification is chosen if it leads to a higher pseudo-R* and when the non-linearity is clearly interpretable.

The most right column in Table 6.2 shows the final model. All parameters have a Tolerance much larger than
0.10 and a VIF far below 10 (Appendix B). Consequently, we can conclude that multicollinearity is no issue in
the ET first shipment model.

In the remainder of this section we discuss the variables included in the final model, the variables that were
tested but excluded from the final model, and the estimates with different model specifications.

INSTRUMENTAL VARIABLES

Tour duration is calculated with the two tour sequence algorithms mentioned in Section 5.2.1. Due to data
availability, tour duration does not include dwelling time at stops. In the ET first shipment model we take the
square root of tour duration. It shows a negative parameter sign, which can be interpreted as follows: after the
first shipment, the probability of ending the tour is higher when the tour has a lower duration. This is in line
with Figure 4.25, where we saw that tours with two stops have a particularly low distance on average. We
reasoned that for short-distance shipments the desire to plan simple tours plays a large role (Nuzzolo et al.,
2012) and efficiency gains of grouping shipments are smaller. Because we take the square root of tour
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duration, the effect is stronger for lower durations. Shipments that require a very long tour, whether this is two
hours or four hours, are more or less considered equally as distant shipments for which a direct tour is not
preferred.

This effect is in contrast with the findings of the interview with the transportation planner, whose practice is to
add more shipments to a tour that lasts very shortly after the first stop. Different carriers may experience
different constraints in tour formation. If the vehicle fleet size and a tour duration of nine hours are the most
determining constraints for a carrier, then it may be more logical to add more shipments to tours that last
shortly. Perhaps for the large third-party carriers in the XML microdata the vebhicle fleet size is a constraint that
plays a role in tour formation less often.

The squared capacity utilization shows a positive parameter. As a larger share of the vehicle capacity (in
kilograms) is used, the probability of ending the tour is higher. Intuitively this makes a lot of sense. It is also in
line with the findings of the interview, where we identified that the vehicle capacity is not necessarily only a
constraint. Maximizing the capacity utilization can also be considered a strategy for the transportation planner
to minimize transportation costs. Since capacity utilization could only be obtained with respect to weight and
the interview underlined the importance of volume as a constraining factor, many of the location and
vehicle/goods type variables are likely to reflect differences in volume. The square root implies that not until
we nearly reach the capacity, the probability of ending the tour becomes much higher, because sparsely filled
vehicles are very inefficient.

LOCATION VARIABLES

Two types of location variables are included in the final model: logistical zones and urban zones. Two types of
logistical zones are distinguished: port transshipment nodes and distribution centers. Implicitly we assume that
when a zone that is identified as a ‘distribution center zone’ is visited, the sending or receiving firm is indeed a
distribution center. In Section 4.3.2 we discussed how these zonal variables were obtained. Because a tour can
consist of multiple locations, we distinguish tours that visit any zone of a certain type and tours that do not.

When a tour visits a port transshipment node (any port), the probability of ending the tour is higher than when
it does not visit a port transshipment node. In contrast, when a tour visits a distribution center (any loading DC;
any unloading DC), the probability of ending the tour is lower. This effect is stronger when goods are loaded
than when they are unloaded at a distribution center. As discussed in Section 4.3.3, these differences can be
attributed to shipment sizes and vehicle capacities in different marketing channels (volume, as we control for
weight capacity utilization), the number of available (similar) shipments at these locations, and the operations
inside distribution centers.

Tours that visit an urban zone are more likely to add more shipments (any urban zone). The tour may require
the driver to enter the city from some distant rural location. Entering a city by road can be a very time- and
energy-consuming task, which is why carriers may prefer to deliver/pick-up other shipments in the city too.
Other studies also mention that tours in urban areas tend to visit multiple stops (Hunt & Stefan, 2007; Khan &
Machemehl, 2017). Due to a high density of commercial activity, it is likely that multiple shipments in this city
can be picked up efficiently in one tour.

VEHICLE/GOODS VARIABLES
The same vehicle types as shown in Figure 4.16 are used as a categorical variable in the model.

e  0:Truck

e  1:Truck + trailer

e 2:Tractor + trailer

e  3:Other/special (e.g. van)
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Because the integration with a vehicle type choice model is outside of the scope of this research, we simply
assume that the vehicle type used for the tour is the vehicle type reported in the data for the first allocated
shipment. Shipments that were actually transported with another vehicle type can still be added to the tour.

The estimated parameters are consistent with the percentage of direct tours for these vehicle types in Figure
4.16, and can be related to the ease of loading/unloading and volume capacity of these vehicles. Compared to
the reference category (2: tractor + trailer and 3: special/other), tours driven with a truck + trailer (1) have
quite a substantially higher probability of being ended after the first shipment. Truck + trailers are less practical
for multiple-stop tours as the trailer must be uncoupled to unload goods from the truck.

Substantial differences in parameters are found for different goods types, which can be explained by their
varying volumes, dispersion of demand, ease of loading/unloading, and rigidity of goods combination
restrictions. We calculate the goods type of the tour as the NSTR code (1-digit) with the highest transported
weight in the tour. In the first shipment model, the tour only includes one shipment, so it is simply the NSTR
code of that shipment. Because of the low number of observations and similar goods types (fuels/oils and
metals), NSTR 2 to 5 are grouped into one category. The reference category is NSTR 9 (other). Consistent with
the percentage of direct tours we observed for different goods types in Figure 4.19, tours transporting
agricultural products & livestock (0) and foodstuffs and fodder (1) have a lower probability of being ended after
the first shipment, while tours transporting other products, especially construction materials (6), are more
likely to be ended after the first shipment. The parameter for manure (7) is positive, in contrast with Figure
4.19, which may be due to the low number of observations and controlling for other variables such as vehicle

type.

EXCLUDED VARIABLES
Tables 6.1 and 6.2 show the process of adding and removing variables to arrive at the final model. In this
section, we briefly discuss some of the variables that were not included.

Both tour duration and tour distance were tested as linear and non-linear (square root and squared) variables.
Tour duration was chosen, for we expect this to reflect better the tour length that drivers and planners actually
experience. Two locations may feel equally far away when they can be reached within the same amount of
time, even if one is located further away in terms of distance. The square root of tour duration also leads to a
higher pseudo-RZ.

The proximity of the nearest shipment, as explained in Section 5.2.1, was also tested. While it improves the
model fit, it was excluded because of multicollinearity issues (Appendix B). In Table 6.1, we can see that the
parameter for tour duration changes with a factor three to four when proximity is included. It is still included as
a constraint that can end the tour, though.

Several variables reflecting the logistical nodes were tested. First both (port and distribution center) were
added with an operationalization that does not consider loading or unloading locations separately (any port;
any DC), and then with an operationalization that does consider both locations separately (any loading port,
any unloading port, any loading DC, any unloading DC). Next, we also tested variables (cat: any port; cat: any
DC) that distinguish four categories: (0) no port, (1) only loading port, (2) only unloading port, and (3) loading
and unloading port. This was done to test if category 3 leads to substantially different effects compared to
adding up any loading and any unloading and a better model fit. The categorical variables do not improve the
model fit a lot, have higher standard errors, and category 3 does not show substantially different effects. For
ports, we chose any port, as only small differences in the parameters for any loading port and any unloading
port are observed, which can also not be clearly explained. For distribution centers, we chose any loading DC
and any unloading DC, for the effects differ more and can be explained well.
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We also tested if tours that visit retail zones have a significantly lower or higher probability of being ended. In
advance, a negative parameter sign was expected, as we observed more stops for tours visiting retail zones in
Figure 4.25. As the parameter is not significant at the 0.05 level when vehicle type is added to the model, it was
not included in the final model.

Finally, a variable that distinguishes whether the tours transports palletized goods was tested. From the
interview we found out that goods of different customers can easily be stacked onto the same pallet, even in
the order of delivery. For this reason, tours with more shipments/stops were expected. Because the ‘unknown’
category (-1) is so highly different from the ‘other’ (0) category, the variable is not considered to be sufficiently
reliable and meaningful. Furthermore, the parameter shows an effect in contrast to the explanation above.

DIFFERENT MODEL SPECIFICATIONS

The ET first shipment model was estimated with different model specifications (Table 6.3) to check the
robustness of the estimates of the final model and to be able to use different model specifications in the
validation in Chapter 7. We vary in the tour sequence algorithm that is used and the constraints that are
applied (concrete, vehicle capacity, tour duration, proximity). In Table 6.4, model specifications A to G are
listed.

The estimated parameters are quite robust with varying model specifications. Other than for the NSTR 7
parameter, no sign changes are found and most betas do not change a lot. Most importantly, the capacity
utilization parameter increases when it is constrained to 100% (C to D), as there are fewer outliers to bias the
effects. Furthermore, the NSTR 8 parameter decreases when concrete shipments are removed (A to B), as
concrete shipments fall under this category and are virtually only found in tours with one shipment. The model
fit is the highest when concrete shipments are included. This is misleading, though, as inclusion of concrete
shipments increases the explanatory power of the ET choice model but not of the whole tour formation model
in which we incorporate constraints that can also end the tour.
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Table 6.1. Process of adding instrumental variables to the ET first shipment model with specification F (see Table 6.4). Cells below the bold line show the beta and standard error.

Estimates with a p-value higher

than 0.05 are grey.
RZNage\kerke 0.026 0.044 0.011 0.020 0.037 0.007 0.178 0.170 0.196 0.250
2L 69775 68955 70482 70082 69294 70663 62331 62724 61409 58520
Percentage correct 82.0 82.0 824 82.0 82.0 82.0 82.2 825 82.0 82.4
N 75255 75255 75255 75255 75255 75255 75255 75255 75255 75255
Constant 1.906 2.253 1.676 1.828 2.134 1.642 1.536 0.950 1.793 2.545
(0.015) (0.021) (0.012) (0.015) (0.019) (0.012) (0.022) (0.026) (0.021) (0.029)
. -0.990
Tour duration [h] (0.028)
JTour duration -1.347 -1.629 -1.578 -1.658 -6.146
our duration (0.028) (0.031) (0.032) (0.031) (0.096)
.2 -0.627
Tour duration (0.027)
. -0.009
Tour distance [km] (0.000)
— -0.124
VTour distance (0.003)
) 2 -0.000
Tour distance (0.000)
. . 3.328
Weight/capacity (0.048)
- - 3.153
\/ Weight/capacity (0.044)
) . 5.221 5.848
(Weight/capacity) (0.081) (0.085)
Proximity nearest shipment [km] ((C)J%gi)

Table 6.2. Process of adding other variables to the ET first shipment model with specification F (see Table 6.4). Cells below the bold line show the beta and standard error. Estimates with a p-value higher than 0.05

R 0.328 0.324 0.330 0.330 0.334 0.334 0.346 0.411 0.442 0.442
Nagelkerke
Il 50379 54399 54035 54049 53841 53834 53123 49197 47313 47315
Percentage correct 81.8 82.2 81.9 81.9 82.0 82.0 82.9 83.7 84.8 84.8
N 75255 75255 75255 75255 75255 75255 75255 75255 75255 75255
1.535 1.525 1.589 1.602 1.633 1.629 1.125 1.660 1.685 1.684
Constant (0.024) (0.025) (0.026) (0.025) (0.026) (0.026) (0.037) (0.027) (0.029) (0.029)
-1.702 -1.623 -1.801 -1.793 1771 1.777 -1.847 -1.946 -1.693 -1.698
/Tour duration [h] (0.033) (0.033) (0.036) (0.033) (0.034) (0.034) (0.035) (0.036) (0.037) (0.037)
4.900 4.862 4.905 4.910 4.900 4.912 5.332 6.097 5.465 5.471
(Weight/capacity)’ (0.082) (0.082) (0.083) (0.083) (0.083) (0.083) (0.088) (0.093) (0.102) (0.102)
2.184 2.141 2.136 2.143 2.275 1.714 1.585 1.588
any port (0.035) (0.035) (0.035) (0.035) (0.036) (0.036) (0.037) (0.037)
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-0.359

any DC (0.022)
1.568
any loading port (0.043)
1.415
any unloading port (0.045)
-0.378 -0.400 -0.384 -0.384 -0.353 -0.513 -0.576 -0.578
any loading DC (0.023) (0.023) (0.023) (0.023) (0.023) (0.025) (0.026) (0.026)
-0.128 -0.158 -0.149 -0.155 -0.130 -0.317 -0.473 -0.475
any unloading DC (0.024) (0.023) (0.023) (0.023) (0.024) (0.025) (0.026) (0.026)
cat: any port [0]
2.084
(1] (0.058)
2.037
2] (0.064)
2.259
[3] (0.056)
cat: any DC [0]
-0.345
[1] (0.030)
-0.098
2] (0.032)
-0.570
[3] (0.030)
-0.512 -0.510 -0.447 -0.599 -0.462 -0.461
any urban zone (0.035) (0.035) (0.036) (0.038) (0.038) (0.038)
0.212 0.137 0.128
any retail zone (0.045) (0.046) (0.048)
any pallets [0]
0.416
[-1] (0.030)
0.913
[1] (0.035)
vehicle type [0]
-1.174 -1.295 -1.295
[1] (0.037) (0.039) (0.039)
2.159 1.847 1.850
2] (0.047) (0.049) (0.049)
3]
-0.739 -0.736
NSTR tour [0] (0.047) (0.047)
-0.659 -0.659
[1] (0.032) (0.032)
1.497 1.495
[2-5] (0.337) (0.337)
1.462 1.452
[6] (0.058) (0.058)
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71
(8]
5]

0.710
(0.253)
0.582
(0.045)

0.713
(0.253)
0.583
(0.045)
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Table 6.3. Estimation results of ET (first shipment) model with different model specifications.

Specification A B C D E F G
RZN ek 0.477 0.335 0.335 0.424 0.424 0.442 0.439
agelkerke
oW 68704.864a 70949,509a 70949,509a 61362,447a 61362,447a 47315,066a 55185,542a
Percentage correct 92.3 85.6 85.6 85.2 85.8 84.8 85.3
N 194691 109207 109207 102654 102654 75255 90000
1.509 1.442 1.442 1.281 1.281 1.684 1.473
Constant (0.024) (0.024) (0.024) (0.025) (0.025) (0.029) (0.027)
-0.750 -0.561 -0.561 -0.772 -0.772 -1.698 -1.112
+/ Tour duration [h] (0.024) (0.023) (0.023) (0.025) (0.025) (0.037) (0.030)
0.894 0.896 0.896 6.185 6.185 5.471 6.022
{Weight/capacity)2 (0.032) (0.030) (0.030) (0.095) (0.095) (0.102) (0.098)
1.765 1.766 1.766 1.509 1.509 1.588 1.484
any port (0.033) (0.033) (0.033) (0.034) (0.034) (0.037) (0.035)
-0.339 -0.397 -0.397 -0.452 -0.452 -0.578 -0.517
any loading DC (0.021) (0.021) (0.021) (0.022) (0.022) (0.026) (0.024)
-0.442 -0.314 -0.314 -0.362 -0.362 -0.475 -0.450
any unloading DC (0.021) (0.021) (0.021) (0.023) (0.023) (0.026) (0.024)
-0.264 -0.428 -0.428 -0.580 -0.580 -0.461 -0.605
any urban zone (0.031) (0.033) (0.033) (0.035) (0.035) (0.038) (0.036)
vehicle type [0] ) ) - - - : -
-0.452 -1.060 -1.060 -1.350 -1.350 -1.295 -1.370
1] (0.033) (0.031) (0.031) (0.036) (0.036) (0.039) (0.037)
1.447 1.432 1.432 1.943 1.943 1.850 1.980
2] (0.041) (0.041) (0.041) (0.044) (0.044) (0.049) (0.045)
3] ) ) - ) ) ) )
-0.357 -0.346 -0.346 -0.556 -0.556 -0.736 -0.881
NSTR tour [0] (0.037) (0.036) (0.036) (0.040) (0.040) (0.047) (0.044)
-0.685 -0.714 -0.714 -0.834 -0.834 -0.659 -0.808
[1] (0.025) (0.025) (0.025) (0.027) (0.027) (0.032) (0.029)
2.143 2.225 2.225 1.428 1.428 1.495 1.298
[2-5] (0.276) (0.276) (0276) (0.297) (0.297) (0.337) (0.324)
2.302 2.213 2.213 1.678 1.678 1.452 1.472
[6] (0.046) (0.046) (0.046) (0.048) (0.048) (0.058) (0.051)
-0.120 0.090 0.090 -0.408 -0.408 0.713 .
[7] (0.159) (0.159) (0.159) (0.193) (0.193) (0.253)
3.251 1.250 1.250 0.508 0.508 0.583 0.530
[8] (0.042) (0.036) (0.036) (0.040) (0.040) (0.045) (0.042)
9] - ) ) ) ) ) )
Table 6.4. Description of tested model specifications for the ET model.
Specification Tour sequence Concrete excluded ‘Weight/capacity > 1 ‘Tour duration > 9h’ ‘Proximity > X’
algorithm excluded excluded excluded
A 1 No No No No
B 1 Yes No No No
C 1&2 Yes No No No
D 1&2 Yes Yes No No
E 1&2 Yes Yes Yes No
F 1&2 Yes Yes Yes Yes (X=100)
G 1&2 Yes Yes Yes Yes (X=150)

6.2 ESTIMATES END TOUR LATER SHIPMENTS

The estimation process for ET later shipments choice model is reported in Table 6.5 (instrumental variables)
and Table 6.6 (other variables) in a similar fashion as for the ET first shipments choice model. Most of the
parameters of the ET first shipment choice model are present in this final model with similar betas. In this
section, we discuss the parameters that differ most notably from the first model.

The final ET later shipments model is found in the most right column in Table 6.6. The Tolerance and VIF
statistics indicate that there are no multicollinearity issues in the ET later shipments model (Appendix B).
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EXPLANATORY VARIABLES

In contrast to the ET first shipment choice model, tour duration has a linear effect and a positive parameter.
When a tour lasts longer with multiple shipments, the probability that it is ended is higher. When the tour
consists of two or more shipments, the desire to construct a simple tour is not as present anymore and other
effects play a role. Tours that last longer are more expensive due to labor and fuel costs (Anand et al., 2014). As
the tour lasts longer, the chance of violating working hour constraints due to unexpected delays also increases.
For this reason, carriers prefer to construct tours that do not last close to the maximum work shift duration.

Proximity is included in the ET later shipments model, it does not lead to multicollinearity issues. The positive
parameter can be interpreted as follows: when the nearest shipment is located further away from the tour, the
probability of ending the tour is higher, because there are no remaining possibilities to extend this tour
efficiently.

A variable not present in the first model is the number of stops, for it is always one or two for a tour with one
shipment. In the later shipments model this is not the case, however. Besides categorical variables, we tested
the square, the square root, the natural logarithm, and a linear parameter of number of stops. The natural
logarithm was chosen because it leads to a high pseudo-RZ. The negative parameter indicates that the
probability of ending the tour is lower when more stops are visited. As the tour has more stops, adding more
shipments is not as unattractive anymore because the tour is more complex already. This effect is stronger for
tours with few stops. A tour with fifteen stops and a tour with sixteen stops may not be considered as
dissimilar as a tour with four stops and a tour with five stops.

The effects for the location variables are similar, but not as strong as in the first shipment model. As the tour
visits more stops, there is a higher chance that any of the stops is located in one of the identified location types
and effects may be less pronounced. Visiting a port transshipment node still increases the probability of ending
the tour and visiting a distribution center to load goods or visiting an urban zone still decreases the probability
of ending the tour. However, visiting a distribution center to unload goods now increases the probability of
ending the tour, which is more in line with what we discussed in Section 4.3.3, i.e. goods unloaded at a
distribution center are more likely to be large-volume shipments coming from producers.

Compared to tractor + trailers (2), the probability to end the tour is lower with trucks (0) and truck + trailers (1).
While truck + trailers (1) are more likely to be used for direct tours, these vehicles tend to be used for tours
that visit many stops when no direct tour is made.

Due to the low number of observations, NSTR categories 2-5 are included in the reference category in the later
shipments model with NSTR 9. Quite a few effects for goods types are different than in the first shipment
model. This might relate mostly to the NSTR 9 category. This category has a relatively large percentage of direct
tours, but when a multiple-stop tour is constructed, it is more likely to have many shipments/stops.
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Table 6.5. Process of adding instrumental variables to the ET later shipments model with specification F.

RzNagE\kgrke 0.028 0.026 0.020 0.041 0.038 0.032 0.099 0.108 0.082 0.132 0.119 0.128 0.178 0.170 0.161 0.168 0.149 0.173
-2 LL 46516 46572 46758 46131 46227 464067 44349 44076 44902 43316 43742 43437 41834 42080 42390 42170 42781 41983
Percentage correct 77.4 77.2 77.4 77.5 77.6 77.5 78.0 78.0 78.0 78.5 78.6 78.3 78.2 78.2 78.5 78.4 78.6 78.5
N 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622 44622
Constant -1.730 -2.175 -1.430 -1.806 -2.293 -1.478 -2.466 -3.126 -2.093 -2.805 -2.855 -2.671 -1.890 -1.811 -2.185 -0.882 -2.727 -1.390
(0.021)  (0.036)  (0.014)  (0.020)  (0.035)  (0.014)  (0.028)  (0.039)  (0.024)  (0.031)  (0.033)  (0.030)  (0.042)  (0.042)  (0.037) (0.066)  (0.032)  (0.049)
Tour duration [h] 0.267 0.228 0.231 0.230 0.188 0.201 0.193 0.426 0.342 0.426 0.458 0.348 0.472
(0.009) (0.010) (0.010) (0.009) (0.010) (0.010) (0.010) (0.013) (0.011) (0.013) (0.013) (0.012) (0.013)
Tour duration 0.729
our duration (0.026)
) 0.039
Tour duration (0.002)
. 0.004
Tour distance [km] (0.000)
— 0.091
VTour distance (0.003)
. 2 0.000

Tour distance (0.000)

Weight/capacit 1.924 2.057 1.971 2.075 2.237 2.124 2.097 2.144 2.039 2.192
ght/capacity (0.042) (0.043)  (0.043)  (0.043)  (0.045)  (0.044)  (0.044)  (0.044)  (0.043)  (0.044)
Weight/ p 2.421

\/ Weight/capacity (0.052)
. o2 1.721

(Weight/capacity) (0.043)

Proximity nearest 0.015 0.012 0.014 0.011 0.011 0.013 0.011

shipment [km] (0.000) (0.001)  (0.000)  (0.001)  (0.001)  (0.000)  (0.001)

/ Proximit; 0.108
y (0.004)
L2 0.000
Proximity’ (0.000)
Number of stops [1-2] -
-1.092
B (0.043)
-1.455
[4] (0.047)
-1.618
51 (0.052)
-1.849
[6-10] (0.052)
-2.564
[>10] (0.093)
Number of stops [1-2] -
-1.305
[3-6] (0.040)
-1.878
el (0.055)
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-0.211

Number of stops (0.007)
Number ofs).‘ops2 (—880111)
In(Number of stops) (_3332%
Table 6.6. Process of adding other variables to the ET later shipments model with specification F.
RzNage|ke,kE 0.190 0.197 0.197 0.190 0.190 0.190 0.232 0.291 0.292
-2LL 41435 41202 41201 41426 41426 41417 39996 37920 37894
Percentage correct 78.7 79.4 79.4 78.6 78.6 78.8 79.4 82.1 81.8
N 44622 44622 44622 44622 44622 44622 44618 44618 44618
Constant -1.396 (0.050) -1.457 (0.050) -1.463 (0.050) -1.403 (0.050) -1.403 (0.050) -1.416 (0.050) -1.401 (0.052) -2.568 (0.063) -2.526 (0.062)
Tour duration [h] 0.474 (0.013) 0.479 (0.013) 0.481 (0.013) 0.468 (0.013) 0.468 (0.013) 0.471 (0.013) 0.386 (0.014) 0.388 (0.014) 0.386 (0.014)

Weight/capacity

2.300 (0.046)

2.366 (0.047)

2.369 (0.047)

2.300 (0.046)

2.300 (0.046)

2.301 (0.046)

2.604 (0.048)

3.255 (0.056)

3.286 (0.057)

Proximity nearest shipment [km]

0.011 (0.001)

0.012 (0.001)

0.012 (0.001)

0.011 (0.001)

0.011 (0.001)

0.011 (0.001)

0.011 (0.001)

0.009 (0.001)

0.009 (0.001)

In(Number of stops) -1.249 (0.038) -1.238 (0.038) -1.243 (0.038) -1.223 (0.039) -1.223 (0.039) -1.213 (0.039) -0.995 (0.040) -0.910 (0.043) -0.911 (0.042)
any port 0.818 (0.040) 0.814 (0.040) 0.814 (0.040) 0.808 (0.040) 0.706 (0.041) 0.526 (0.047) 0.526 (0.047)
any DC -0.338 (0.050) -0.331(0.028) -0.331(0.028) -0.317 (0.029) -0.445 (0.030) -0.023 (0.033)
any loading port 1.180 (0.061)

any unloading port

-0.103 (0.062)

any loading DC

-0.294 (0.033)

-0.191 (0.036)

any unloading DC

-0.090 (0.033)

0.094 (0.036)

cat: any port [0]
1]
2]
3]

1.203 (0.077)
-0.078 (0.084)

1.066 (0.055)

cat: any DC [0]

1]

-0.261 (0.046)
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2
3]

-0.051 (0.050)

-0.382 (0.030)

any urban zone

-0.089 (0.031)

-0.089 (0.031)

-0.093 (0.031) -0.128 (0.031)

-0.148 (0.032)

-0.145 (0.032)

any retail zone

-0.100 (0.034) -0.068 (0.035)

-0.043 (0.036)

vehicle type [0]
1]
2]
3]

-1.789 (0.057)

-0.285 (0.079)

-1.956 (0.060)
-0.942 (0.088)

-1.968 (0.061)
-0.954 (0.088)

NSTR tour [0]
1]
[2-5]

(6]

71
(8]
5]

2.256 (0.058)
0.882 (0.035)
0.570 (0.080)

-0.937 (0.325)
1.542 (0.063)

2.226 (0.059)
0.871 (0.035)
0.556 (0.081)

-1.105 (0.327)
1.517 (0.063)
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DIFFERENT MODEL SPECIFICATIONS

The later shipments ET choice model was also tested with the model specifications described in Table 6.4.
Again, most parameters are rather robust and incorporating a vehicle capacity constraint (C to D) increases the
value of the capacity utilization parameter.

In contrast to the first shipment model, exclusion of concrete shipments has little impact (from A to B), as tours
transporting a concrete shipment very rarely have more than one shipment. Furthermore, the second tour
sequence algorithm now improves model fit substantially (from B to C). In the first shipment model the second
tour sequence algorithm does not improve the model fit, as those tours always have only one loading and one
unloading location, and both algorithms construct the same tour that goes from the loading to the unloading
location. Usage of the second tour sequence algorithm also increases the value of the tour duration parameter.
We have shorter tour durations on average when both tour sequences are constructed since we always pick
the shortest of the two tour sequences.

Table 6.7. Estimation results of the ET later shipments model with different model specifications.

Specification A B C D E F G
RzNage|ke,ke 0.186 0.186 0.200 0.291 0.298 0.292 0.293
-2 LL 62022 62008 61363 41203 40846 37894 39933
Percentage correct 75.1 75.1 75.4 81.5 815 81.8 81.6
N 59869 59863 59863 47244 47115 44618 46336
-1.536 -1.538 -1.548 -2.472 -2.492 -2.526 -2.547
Constant (0.045) (0.045) (0.044) (0.059) (0.059) (0.062) (0.060)
0.237 0.237 0.382 0.250 0.356 0.386 0.364
Tour duration [h] (0.008) (0.008) (0.010) (0.012) (0.014) (0.014) (0.014)
0.880 0.880 0.851 3.313 3.290 3.286 3.285
Weight/capacity (0.017) (0.017) (0.017) (0.055) (0.055) (0.057) (0.055)
0.007 0.007 0.005 0.008 0.007 0.009 0.008
Proximity nearest shipment [km] (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000)
-0.592 -0.592 -0.702 -0.752 -0.847 -0.911 -0.841
Ln(# stops) (0.031) (0.031) (0.030) (0.039) (0.040) (0.042) (0.041)
0.420 0.423 0.453 0.487 0.522 0.526 0.545
any port (0.037) (0.037) (0.038) (0.045) (0.045) (0.047) (0.046)
-0.007 -0.008 -0.011 -0.190 -0.191 -0.191 -0.179
any loading DC (0.028) (0.028) (0.028) (0.034) (0.034) (0.036) (0.035)
0.305 0.307 0.275 0.107 0.093 0.094 0.078
any unloading DC (0.028) (0.028) (0.029) (0.034) (0.034) (0.036) (0.035)
0.021 0.021 0.044 -0.218 -0.184 -0.145 -0.175
any urban zone (0.024) (0.024) (0.024) (0.031) (0.031) (0.032) (0.032)
-1.279 -1.280 -1.188 -2.001 -1.981 -1.968 -1.968
vehicle type [0] (0.033) (0.033) (0.033) (0.057) (0.058) (0.061) (0.058)
-0.556 -0.562 -0.507 -1.016 -0.980 -0.954 -1.003
[1] (0.058) (0.058) (0.058) (0.084) (0.084) (0.088) (0.086)
12] - - - - - - -
£l - - - - - - -
1.641 1.642 1.692 2.121 2.178 2.226 2.203
NSTR tour [0] (0.049) (0.049) (0.049) (0.055) (0.055) (0.059) (0.056)
0.069 0.069 0.080 0.895 0.873 0.871 0.873
1] (0.025) (0.025) (0.025) (0.033) (0.033) (0.035) (0.033)
[2-5] - - - - - - -
0.478 0.479 0.524 0.536 0.525 0.556 0.538
6] (0.060) (0.060) (0.061) (0.077) (0.077) (0.081) (0.078)
-2.240 -2.242 -2.157 -2.166 -2.115 -1.105 -1.702
7] (0.215) (0.215) (0.215) (0.226) (0.226) (0.327) (0.289)
0.994 0.986 0.971 1.418 1.397 1.517 1.468
18] (0.051) (0.051) (0.051) (0.061) (0.061) (0.063) (0.060)
5] - - - - - - -
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6.3 ESTIMATES SELECT SHIPMENT

EXPLANATORY VARIABLES
In the final SS model, in Table 6.8 on the right, three variables are present. All three variables can be considered
instrumental, they reflect the actual decision-making process of the transportation planner.

First, let us consider the additional generalized cost. Its negative parameter implies that a shipment in the
consideration choice set has a lower probability of being selected as the next shipment if it adds more
generalized cost to the tour. This reflects the desire of carriers to minimize costs by constructing efficient tours.
Generalized cost is a weighted sum of the additional travel time and distance, where the weights reflect the
costs that carriers make for each driven hour and kilometer. These weights are obtained from an estimation
report for the Dutch freight model BasGoed (Significance, 2018) and are based on, for example, fuel and labor
costs. The costs per hour are €45.12, while the costs per kilometer are €0.45. To calculate the additional time
and distance of a shipment alternative, the tour sequence is constructed with and without the shipment
alternative, and the duration and distance of these two tours are obtained with the skim matrices discussed in
Section 4.2.

The second explanatory variable is the additional number of stops. This variable can take on values zero, one,
or two, depending on how many locations an alternative shipment has in common with the constructed tour so
far. Controlled for the additional generalized cost, a shipment that requires the tour to visit two additional
locations has a lower probability of being added to the tour than a shipment that requires only one or no
additional stop location. A shipment that adds more stops to the tour adds more complexity to the tour and
might require more additional time for loading/unloading and leaving/entering the premises of customers.

As we observed in Figure 4.15 that multiple-stop tours usually contain only goods of the same NSTR category, a
third variable was tested that reflects whether the alternative shipment has the same NSTR goods type as that
of the tour as constructed so far (i.e. NSTR with maximum total weight in the tour). This variable shows a
strongly positive parameter and improves the pseudo-R2 of the model with only additional generalized cost and
additional number of stops (from 0.151 to 0.187). Restricted goods combinations are the key explanation for
this effect.

EXCLUDED VARIABLES
Additional time and distance are not included in the final model, as additional generalized cost reflects both
variables in one variable.

The additional number of stops was also tested as a categorical variable for non-linear effects. It was expected
that two additional stops have a disproportionally higher disutility than one additional stop, for we observe a
substantial share of distribution and collection tours (where all shipments have one location in common)
(Figure 4.10). This is indeed the case; however, one additional stop has a positive utility compared to no
additional stop with such a categorical variable. As this is a very counterintuitive and inexplicable effect, we
decided to follow the simple linear variable.
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Table 6.8. Estimation process of SS sub model with SS model specification | (see Table 6.10).

R’ Wcadden 0.075 0.062 0.070 0.151 0.214 0.187
LL -71910 -72936 -72353 -65060 -61008 -63256
N 43409 43409 43409 43409 43409 43409
additional time [h] -1.254 (0.013)
additional distance [km] -0.012 (0.000)
additional generalized cost [€] -0.014 (0.000) -0.005 (0.000) -0.007 (0.000) -0.005 (0.000)

additional number of stops

-1.089 (0.010)

-1.039 (0.010)

cat: additional # stops [1]

cat: additional # stops [2]

0.114 (0.016)

-2.248 (0.023)

Same NSTR 2.313(0.038)
Table 6.9. Estimation results of the SS sub model with different model specifications.
Specification A B C D E G H | J K L
R%\icradden 0.543 0.454 0.422 0.429 0.189 0.277 0.251 0.187 0.169 0.277 0.249
LL -18440 -54204 -57312 -49486 -63109 -59403 -73614 -63256 -73929 -59413 -73834
N 58184 55376 55376 48396 43409 45851 41001 43409 37112 45851 41001
additional generalized cost [€] -0.014 (0.000)  -0.015(0.000)  -0.016 (0.000)  -0.015(0.000)  -0.005(0.000)  -0.005(0.000) -0.010(0.000)  -0.009 (0.000) -0.005(0.000) -0.005(0.010) -0.009 (0.000)  -0.010 (0.000)

additional number of stops -0.932 (0.017)

-0.912(0.011)  -1.023(0.011)

-1.180 (0.012)  -1.043 (0.010)

-1.187 (0.010)

-1.150 (0.011)

-1.189 (0.010)

-1.039 (0.010)  -1.088 (0.010)

-1.160 (0.011)

-1.176 (0.010)

Same NSTR
1.540 (0.046)

2.047 (0.037)  2.095 (0.038)

2.109 (0.040)  2.332(0.038)

2.759 (0.042)

2.235 (0.038)

2.657 (0.041)

2.313(0.038)  2.712(0.042)

2.218 (0.038)

2.627 (0.041)
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Table 6.10. Description of tested model specifications for the SS model.

Specification Choice set size Tour sequence ‘Weight/capacity > ‘Proximity > X’ Concrete excluded
algorithm 1.1’ excluded excluded
A 2 1 No No No
B 6 1 No No No
C 6 1&2 No No No
D 6 1&2 Yes No No
E 6 1&2 Yes Yes (X=100) No
F 11 1&2 Yes Yes (X=100) No
G 6 1&2 Yes Yes (X=150) No
H 11 1&2 Yes Yes (X=150) No
| 6 1&2 Yes Yes (X=100) Yes
J 11 1&2 Yes Yes (X=100) Yes
K 6 1&2 Yes Yes (X=150) Yes
L 11 1&2 Yes Yes (X=150) Yes

DIFFERENT MODEL SPECIFICATIONS
To test the robustness of the estimated model and use different specification in the validation, we estimated
the model with different specifications (Table 6.9). In Table 6.10 these specifications of the SS model are listed.

We find a lower pseudo-R> when the choice set is larger (we tested choice sets with one, five, and ten
unchosen sampled alternatives) and when proximity constraints are included. This is the case because we
construct a better choice set with more reasonably considered alternatives. Therefore, the model has more
difficulty predicting the observed choice in this sampled choice set. The formation of good choice sets and
prediction of the right choice in this choice set are both important aspects for the general predictive power of
the whole model. Consequently, a lower pseudo—R2 does not necessarily imply a worse model, and we will test
this in the validation chapter.

Inclusion of proximity constraints (D to E) and making these constraints more strict (G to E) also makes the
additional generalized cost parameter less negative, as the choice set contains alternatives with a lower
generalized cost on average.

The estimated parameters are quite robust with different model specifications. Due to randomness in the
process of choice set formation for the SS choice model, we also estimated the parameters with different runs,
which indicate a high robustness (Appendix C).

6.4 ESTIMATION WITH A SUBSET OF CARRIERS

The estimations results reported up to this point are based on data including fifty percent of the day + carriers.
Although different days are used for estimation and validation, data of all carriers is present in both the
estimation and validation data. When we select only fifty percent of the carriers for the estimation data
instead, the results in Table 6.11 to Table 6.13 are obtained. None of the parameters in the three models
change sign, except for any unloading DC in the ET later shipments models, although it is still less negative than
the parameter for any loading DC. While some parameters do change substantially, overall we can conclude
that the direction and magnitude of the effects are similar for different carriers. Consequently, our
interpretation of these effects can be generalized towards the population of the data sample: carriers with
advanced transport planning software. In Section 7.1.3, we will use these estimates to investigate the external
validity of our model.
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Table 6.11. Estimations results of the ET first shipment
model for a subset of carriers. ET specification F is used
(see Table 6.4).

50% of 50 % of
Estimation sample day + carriers carriers
R Nogelkerke 0.442 0.570
-2 LL 47315 55866
Percentage correct 84.8 87.8
N 75255 99273
1.684 1.681
Constant (0.029) (0.024)
-1.698 -2.403
4/ Tour duration [h] (0.037) (0.034)
5.471 5.258
(Weight/capacity)’ (0.102) (0.088)
1.588 2.354
any port (0.037) (0.037)
-0.578 -0.942
any loading DC (0.026) (0.025)
-0.475 -0.765
any unloading DC (0.026) (0.025)
-0.461 -0.499
any urban zone (0.038) (0.037)
-1.295 -1.684
vehicle type [0] (0.039) (0.039)
1.850 2.508
1] (0.049) (0.047)
2] - -
3] - -
-0.736 -0.271
NSTR tour [0] (0.047) (0.037)
-0.659 -0.672
[1] (0.032) (0.037)
1.495 1.121
[2-5] (0.337) (0.311)
1.452 2.253
[6] (0.058) (0.048)
0.713 0.878
[7] (0.253) (0.237)
0.583 1.821
8] (0.045) (0.053)
9] - -

Table 6.12. Estimations results of the ET later shipments
model for a subset of carriers. ET specification F is used

(see Table 6.4).

50% of 50 % of
Estimation sample day + carriers carriers
R Nagelkerke 0.292 0.186
-2LL 37894 62022
Percentage correct 81.8 75.1
N 44618 59869
-2.526 -2.516
Constant (0.062) (0.054)
0.386 0.449
Tour duration [h] (0.014) (0.012)
3.286 3.122
Weight/capacity (0.057) (0.048)
0.009 0.008
Proximity [km] (0.001) (0.000)
-0.911 -0.828
Ln(# stops) (0.042) (0.036)
0.526 0.450
any port (0.047) (0.040)
-0.191 -0.281
any loading DC (0.036) (0.031)
0.094 -0.150
any unloading DC (0.036) (0.031)
-0.145 -0.036
any urban zone (0.032) (0.027)
-1.968 -2.354
vehicle type [0] (0.061) (0.059)
-0.954 -0.845
[1] (0.088) (0.085)
2] - -
3] - -
2.226 2.182
NSTR tour [0] (0.059) (0.045)
0.871 0.546
[1] (0.035) (0.031)
[2-5] - -
0.556 0.396
[6] (0.081) (0.068)
-1.105 -0.888
71 (0.327) (0.244)
1.517 1.168
18] (0.063) (0.062)
9] - -

Table 6.13. Estimations results of the SS model for a subset of carriers. SS specification | is used (see Table 6.10).

50% of 50 % of
Estimation sample day + carriers carriers
RMcradden 0.187 0.156
LL -63256 -101620
N 43409 67181
-0.006 (0.000)

Additional generalized cost [€]

-0.005 (0.000)

Additional number of stops

-1.039 (0.010)

-0.918 (0.008)

Same NSTR

2.313 (0.038)

2.176 (0.031)
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7 VALIDATION AND SENSITIVITY ANALYSIS

7.1  VALIDATION

The objective of this validation study is to inspect how well our developed tour formation model is able to
reproduce how the carriers in the data construct their tours from a given set of shipments. It is not sufficient to
merely estimate the ET and SS choice models and report a pseudo-RZ and percentage of correctly predicted
choices. These two choice models are part of a larger framework: the tour formation model depicted in the
flow diagram in Figure 5.2. Parts of this tour formation model, other than the choice models, influence which
tours are formed and impact the validity of the model. When we estimate the choice models, we have a list of
observed tours that we can loop through, while when we apply the whole tour formation model, we
incrementally add another shipment to the tour and previously modeled decisions influence the next choice
situation. Another example of an aspect of the model that is not tested sufficiently in estimation is the choice
set formation in the SS model, as discussed above.

In this section, we validate the developed tour formation model. We do so by applying the model to a separate
part of the XML data, which we denote as the validation data set. In other words, we construct tours with the
shipments in the validation data set. These predicted tours are then compared to the observed tours as they
are reported in the validation data set. Note that predicted tours are constructed with the same set of reported
shipments as the observed tours. In a freight simulation framework that includes our tour formation model, the
accuracy of traffic flow predictions is greatly influenced by our ability to generate a realistic set of shipments,
which is not tested in this validation.

To compare the observed and our predicted tours, we measure the level of similarity between the observed
and predicted frequency distribution of tour distance and number of stops. Both a quantitative comparison
with coincidence ratios and a qualitative/visual comparison with histograms is made. Tour distance and
number of stops are two key statistics that characterize different types of tours, as we identified in Section
2.3.1. The number of stops is the key tour characteristic that we try to explain in this research, while tour
distances influence relevant factors for policymakers, such as emissions and congestion. Tour distance is used
instead of tour duration for validation, as we noted in Chapter 4 that the observed tour duration, which also
includes dwelling time at stops, is a rather unreliable variable in the XML data.

To compare two unpaired distributions (i.e. predicted and observed tours), a Chi square test could be used.
However, a Chi square test assumes a normal distribution and cell counts below five are not allowed (Levine,
2010). Both restrictions are violated in the observed and predicted number of stops and distance, due to their
highly skewed distributions (see also Figure 4.8 and Figure 4.12). For this reason, the coincidence ratio is a good
alternative to compare two distributions. In freight modelling the coincidence ratio is often used to compare
observed and predicted zonal trip distance distributions (Federal Highway Administration, 2007).

The coincidence ratio is calculated by dividing the observed and predicted distribution into bins of constant
step size. For each bin, the cumulative percentages of both distributions are calculated. The coincidence is the
sum over all bins of the minimum of the two cumulative percentages per bin, while the total is the sum over all
bins of the maximum of the two. The coincidence ratio is then obtained through division of the coincidence by
the total. It ranges from 0% to 100%, where a higher percentage indicates a higher similarity between the two
distributions (Federal Highway Administration, 2007; Levine, 2010). In validation of freight trip distance
distributions, a value higher than 80% is usually considered good (National Cooperative Highway Research
Program, 2008), although others consider a value above 90% good (Federal Highway Administration, 2007).

The validation is performed with three different models, denoted A to C. In these models we only vary the
proximity constraint and choice set size, for these are more methodological than the other specifications and,
therefore, difficult to specify intuitively in a satisfactory way (Table 7.1). The other constraints mentioned in
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Table 6.4 and Table 6.10 are included in all three models (i.e. capacity utilization, concrete, tour duration), and
both tour sequence algorithms are used. For each model, results are averaged over three runs because these
models include random components. Results for each separate run are reported in Appendix G.

In Section 7.1.1 and Section 7.1.2, the number of stops and tour distance are validated respectively using
Models A to C estimated on fifty percent of the day + carriers. In Section 7.1.3, this validation is performed
using Model A estimated on fifty percent of the carriers, in order to formulate statements about the
applicability of the model to other carriers than those that provide data for estimation.

Table 7.1 Specifications of the three models tested in the validation.

Model Proximity constraint (ET and SS) Choice set size SS
A Yes (100 km) 6
B Yes (100 km) 11
C Yes (150 km) 11

7.1.1 NUMBER OF STOPS

In Table 7.2, we see that our tour formation model is able to replicate the distribution of number of stops very
well, as the coincidence ratio is above 90% with each of the three models. The differences between the three
models are negligible. Table 7.3 shows that the coincidence ratio is also satisfactory when we analyze specific
types of tours, i.e. tours visiting a distribution center or not and tours transporting certain goods types,

although somewhat less so for goods types NSTR1 and NSTR7.

Table 7.2. Coincidence ratios between the observed and predicted number of stops for the three different models, averaged over three runs per

model.
Model Coincidence ratio
Number of stops
A 98.81%
B 98.98%
C 98.57%

Table 7.3. Coincidence ratios between the observed and predicted number of stops for the three different models, averaged over three runs per
model. Calculated separately for tours visiting a distribution center and transporting different goods types.

Model Coincidence ratio
Number of stops
anyDC=0 anyDC=1 NSTRO NSTR1 NSTR2-5 NSTR6 NSTR?7 NSTR8 NSTR9
A 99.06% 96.56% 92.66% 69.57% 95.58% 96.44% 77.94% 99.53% 92.50%
B 98.95% 97.01% 93.74% 68.84% 95.23% 96.56% 78.40% 99.55% 93.05%
C 98.79% 97.26% 91.50% 70.56% 95.46% 98.00% 80.59% 99.47% 95.35%

Table 7.4 shows the percentage of direct tours (tours with 1-2 stops) and Figure 7.1 shows the percentage of
multiple-stop tours with a specific number of stops for the observed data and predicted data with the three
models. As tours with more than one shipment usually visit more than two stops, we can say that the ET first
shipment is validated in Table 7.4 and the ET later shipments model is validated in Figure 7.1.

Table 7.4 shows that our tour formation model is able to replicate the observed percentage of direct tours very
satisfactorily. In Figure 7.1, we see that the predicted multiple-stop tours follow the observed distribution of
number of stops well too. However, an overestimation of the percentage of tours with 3-4 stops occurs, while
an underestimation of the percentage of tours with 6-7 stops can be observed. This might be caused by the fact
that the ET later shipments model is used for all ET decisions of tours with more than one shipment. A separate
model for each consecutive shipment could improve this. In addition, more tours with 15+ stops are predicted
than observed, which may be due to the probabilistic and iterative nature of this model, allowing the process

of adding shipments to linger on too long.
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Based on the coincidence ratios and visual comparison we can state that the model performance is very robust
with respect to the two model parameters that are varied in models A to C: the choice set size and the

proximity constraint.

Table 7.4. Observed and predicted percentage of direct tours, averaged over three runs per model.

Percentage of direct tours

Observed Predicted A Predicted B Predicted C
92.50% 92.51% 92.56% 93.01%
2.50%
2.00% =
2
=
2 o
s 1.50%
EP OObserved
T 1.00% - Predicted A
(8]
E B Predicted B
0.50% - M Predicted C
0.00% -

3 4 5 6 7 8 9 10 11 12 13 14 15or
more

Number of stops

Figure 7.1. Observed and predicted percentage of tours by number of stops, averaged over three runs per model.

The developed tour formation model is able to reproduce differences between tours that visit a distribution
center (anyDC=1) and tours that do not (anyDC=0). In Table 7.5, we see that the model predicts correctly that
tours tend to be direct less often when a distribution center is visited. The difference between the observed
and predicted percentage of tours is very small for both anyDC=0 and anyDC=1.

Table 7.5. Observed and predicted percentage of tours by number of stops, averaged over three runs per model. Data divided into tours that
do not visit a distribution center (left) and tours that do (right).

Number of anyDC=0 anyDC=1
stops
Observed Predicted A Predicted B Predicted C Observed Predicted A Predicted B Predicted C
1-2 96.94% 97.39% 97.45% 97.54% 86.97% 86.44% 86.47% 87.42%
3-5 2.54% 2.17% 2.11% 2.02% 7.29% 8.91% 8.58% 7.89%
6-10 0.42% 0.40% 0.38% 0.39% 0.27% 3.96% 4.20% 3.94%
>10 0.10% 0.04% 0.05% 0.05% 0.98% 0.69% 0.75% 0.75%

Most general tendencies of tours transporting different types of goods are reproduced by our model, as seen in
Table 7.6 and Table 7.7. Tours transporting fuels/oils/metals (2-5), constructions materials (6), and chemical
products (8) visit rarely more than two stops, and a larger share of tours with more than five stops is found for

foodstuffs (1) than for agricultural products (0).
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Some notable differences between observed and predicted tours can be identified. The predicted percentage
of direct tours is too high for foodstuffs (1). Other variables such as vehicle type and location type may impact
the distribution within this goods category and our model can combine shipments of different goods types in
tours, although rather simplistically, which can also lead to differences between observed and predicted tours
for different goods types. The fact that the share of predicted tours with more than 10 stops for manure (7) is
too low can be attributed to the relatively low number of tours transporting manure (about 200 tours per run).

Table 7.6. Observed and predicted percentage of tours by number of stops, averaged over three runs per model. Data divided into tours
transporting different goods types (NSTRO to NSTR6).

Numb ¢ NSTRO NSTR1 NSTR2-5 NSTR6
u:;os: © Agricultural products and livestock Other foodstuffs and fodder Fuels, oils, and metals Construction materials
Observed Predicted A Observed Predicted A Observed Predicted A Observed Predicted A
1-2 72.51% 75.24% 64.80% 82.30% 97.89% 96.16% 97.49% 95.81%
3-5 26.01% 22.88% 23.87% 11.78% 1.32% 3.23% 2.05% 2.60%
6-10 1.46% 1.87% 9.48% 4.47% 0.79% 0.61% 0.33% 1.34%
>10 0.02% 0.01% 1.84% 1.45% 0.00% 0.00% 0.13% 0.25%

Table 7.7. Observed and predicted percentage of tours by number of stops, averaged over three runs per model. Data divided into tours
transporting different goods types (NSTRO to NSTR6).

NSTR7 NSTR8 NSTR9
Number of stops Manure Chemical products Vehicles, machines, and other goods
Observed Predicted A Observed Predicted A Observed Predicted A
1-2 77.88% 80.29% 99.31% 99.45% 84.14% 82.02%
3-5 4.15% 7.50% 0.61% 0.47% 8.20% 12.01%
6-10 4.15% 9.31% 0.08% 0.07% 6.78% 5.30%
>10 13.82% 2.90% 0.01% 0.02% 0.89% 0.66%

7.1.2 TOUR DISTANCE
The developed tour formation model also reproduces the observed distribution of tour distance in a very

satisfactory manner, with coincidence ratios approaching 90% (Table 7.8).

Table 7.8. Coincidence ratios between the observed and predicted tour distances for the three different models, averaged over three runs per

model.
Coincidence ratio
Model Tour distance
A 89.30%
B 89.36%
C 89.54%

In Figure 7.2, we see that the general curve of tour distances is reproduced well. The most notable difference is
that too many short-distance tours (<100 km) are predicted. This is very likely due to differences in the way
observed tour distances are reported in the data and the way we calculate the predicted tour distances. Firstly,
the observed tour distances can include kilometers driven for stops to lunch and get gas, while the predicted
tour distances do not. Secondly, observed tour distances might be longer due to detours as a consequence of
AM and PM peak congestion and truck road restrictions, while our predicted tour distances are based on
shortest paths using off-peak skim matrices. Thirdly, many of the observed ‘single-stop’ tours in the observed
data (i.e. one loading location, same unloading location) have a tour distance of several tens to hundreds of
kilometers, while our skim matrix (naturally) assumes a very low tour distance for an intrazonal trip. Taking this
into account, the similarity between the observed and predicted tour distance distribution in Figure 7.2 is very

satisfactory.
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Figure 7.2. Observed and predicted percentage of tours by tour distance, averaged over three runs per model.

As a consequence of the three differences described above, the predicted total Vehicle Kilometers Traveled
(VKT) is substantially lower than the observed VKT, also when we exclude single-stop tours and excessively long
tours (21000 km) from the comparison (Table 7.9 and Table 7.10). Model C predicts the highest total VKT. Its
more lenient proximity constraint allows for the addition of more distant shipments, leading to slightly longer
tours. Due to the consistent overestimation of the share of short-distance tours of all models, the coincidence
ratio of model C is slightly higher (Table 7.8). Model B predicts a lower total VKT than Model A. A larger choice
set size increases the probability that a shipment with very little additional time is included in the choice set,
which leads to shorter tours on average.

Table 7.9. The total Vehicle Kilometers Traveled of the observed tours in the validation data set.

Observed total VKT

All tours Only tours with > 1 stop and < 1000 km

13,709,344 km 11,321,899 km

Table 7.10. The total Vehicle Kilometers Traveled of the predicted tours in the validation data set, averaged over three runs per model.

Predicted total VKT
Model All tours Only tours with > 1 stop and < 1000 km
Absolute Predicted/observed Absolute Predicted/observed
A 9,863,052 71.94% 9,854,677 87.04%
B 9,851,791 71.86% 9,843,364 86.94%
C 9,902,783 72.23% 9,894,038 87.39%
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7.1.3 VALIDITY FOR OTHER CARRIERS

The shipments of fifty percent of the carriers, instead of day + carriers, were used to estimate the ET and SS
models in Section 6.4. Here we report the results of the application of these estimated models on the
shipments of the other fifty percent of the carriers.

In Table 7.11 and 7.12 the coincidence ratios of Model A estimated on a subset of days are compared with the
coincidence ratios of Model A estimated on a subset of carriers. We see that in the second case, the model has
more difficulty reproducing the observed distribution of the number of stops and tour distance, coincidence
ratios are lower. Less diverse information (i.e. set of carriers) is available for estimation, and the estimation and
validation data set consist of more dissimilar carriers and shipments (see Appendix I). Tables 7.13 and 7.14 also
show larger differences between observed and predicted percentages of tours by number of stops and distance
than we found in Section 7.1.1 and Section 7.1.2.

While the predictive performance is not as good when we use a model estimated on a subset of carriers to
construct tours with shipments of other carriers, the results are still highly satisfactory. Coincidence ratios
exceed 80% (Tables 7.11 and 7.12) and the observed and predicted distribution of number of stops and tour
distance are very similar. Consequently, we conclude that our estimated model is applicable to model tour
formation for other carriers, although these carriers should be similar to those that are in the XML microdata,
i.e. Dutch third-party carriers with advanced planning systems.

Table 7.11. Coincidence ratios between the observed and predicted number of stops and tour distance, averaged over two models runs.
Comparison between validation with data divided by day + carriers and by carriers.

Coincidence ratio

Number of stops Tour distance
50% of day + carriers for estimation 50% of carriers for estimation 50% of carrier + days for estimation 50% of carriers for estimation
98.81% 96.92% 89.30% 84.19%

Table 7.12. Coincidence ratios between the observed and predicted number of stops for different location and goods types, averaged over two
models runs. Comparison between validation with data divided by day + carriers and by carriers.

Coincidence ratio
Data used for
. X Number of stops
estimation
anyDC=0 anyDC=1 NSTRO NSTR1 NSTR2-5 NSTR6 NSTR7 NSTR8 NSTR9
50% of day + carriers 99.06% 96.56% 92.66% 69.57% 95.58% 96.44% 77.94% 99.53% 92.50%
50% of carriers 98.61% 90.36% 95.83% 85.05% 94.39% 94.88% 88.99% 96.25% 90.82%

Table 7.13. Observed and predicted percentage of tours by number of stops, averaged over two model runs.
Estimation and validation data divided by carrier.

Percentage of tours
Number of stops 50% of carriers for estimation, 50% of carriers for validation
Observed Predicted

1to 2 (direct) 90.76% 89.22%
3 3.28% 3.49%

4 2.25% 2.76%

5 1.43% 1.51%

6 0.81% 0.92%

7 0.51% 0.54%

8 0.28% 0.38%

9 0.25% 0.23%

10 0.17% 0.18%

11 0.13% 0.14%

12 0.05% 0.12%

13 0.03% 0.08%

14 0.02% 0.07%

>15 0.04% 0.36%
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Table 7.14. Observed and predicted percentage of tours by tour distance, averaged over two model runs.
Estimation and validation data divided by carrier.

Percentage of tours
Tour distance 50% of carriers for estimation, 50% of carriers for validation
Observed Predicted

<50km 49.50% 58.09%
50-100km 19.75% 16.53%
100-150km 12.59% 11.41%
150-200km 7.75% 7.22%
200-250km 3.79% 2.93%
250-300km 2.12% 1.44%
300-350km 1.50% 0.84%
350-400km 1.15% 0.55%
400-450km 0.70% 0.33%
450-500km 0.38% 0.21%
500-550km 0.25% 0.16%
550-600km 0.13% 0.11%
600-650km 0.10% 0.07%
650-700km 0.05% 0.05%
700-750km 0.04% 0.03%
750-800km 0.02% 0.02%
800-850km 0.02% 0.01%
850-900km 0.01% 0.00%
900-950km 0.03% 0.00%
950-1000km 0.02% 0.00%
>1000km 0.10% 0.00%

7.2 SENSITIVITY ANALYSIS

In this section, we report a sensitivity analysis, in order to further understand and validate the developed tour
formation model.

We define simple scenarios with varying travel times in the network. Travel time is an aspect that is present in
many parts of the developed tour formation model. Travel time is an explanatory variable in all three choice
models: tour duration is found in both ET choice models and additional generalized cost is found in the SS
choice model. Furthermore, travel time is considered both a constraint and an explanatory variable. It is highly
plausible that travel time changes will occur in reality. Understanding the sensitivity to varying travel times can

provide useful information for policymakers.

Four scenarios are defined: (1) +50% travel times, (2) +10% travel times, (3), -10% travel times, and (4) -50%
travel times. Scenarios are implemented through multiplication of all cells in the travel time skim matrix, while
the null scenario uses the original skim matrix. In reality, certain links are more likely to experience changes in
travel time than others, caused by complex phenomena such as latent demand. As this sensitivity analysis is
only a small part of this research, the defined scenarios are kept simplistic, which allows reactions of the model
to be understood more easily. Note that changes in goods flows and vehicle type choices are also likely to
occur, but these are outside of the scope of this research, we isolate the effects on tour formation.

Model A (proximity constraint of 100 km; choice set of six shipments) is used in this scenario analysis because it
requires the shortest running time of the three models and only marginal differences in predictive performance
between the three models were found. The estimates based on fifty percent of day + carriers are used, for
these estimates showed better validation results than the estimates based on fifty percent of carriers in Section
7.1.3. Because of random components, the results in this section are averaged over two model runs. In
Appendix H, the results of the sensitivity analysis are reported for both runs.

7.2.1 NUMBER OF STOPS

When travel times in the network increase (scenario +50% and +10%), we see a lower percentage of direct
tours (Figure 7.3) and thus a higher percentage of multiple-stop tours. Those tours that do visit multiple stop
locations, though, tend to have fewer stops in this scenario (Figure 7.4). Fewer direct tours are made because it
takes a longer time to deliver a shipment in such a direct tour. Travel time savings through construction of
multiple-stop tours are larger; therefore, a strategy of direct tour construction to reduce the complexity of the
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planning is adopted less often. This effect is captured by the negative tour duration parameter in the ET first
choice model.

Multiple-stop tours tend to have fewer stops in this scenario, because a tour with the same set of shipments
has a longer duration. As the tour gets longer, there is a higher probability that the driver cannot deliver all
shipments within the constrained working day of nine to ten hours. As a consequence, carriers start
constructing tours with fewer stops. This effect is captured by the positive tour duration parameter in the ET
later shipments model and the tour duration constraint of nine hours. As travel times increase, shipments that
are located nearby are chosen more often in the SS choice model due to the additional generalized cost
variable and proximity constraint. This provides a small counterforce that limits the described decrease of
number of stops. The sensitivity with regard to the number of stops appears to be linear for larger travel time
changes. Compared to the 10% scenarios, the effects of the 50% scenarios appear approximately five times
stronger in Figure 7.3 and Figure 7.4.
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Figure 7.3. Percentage of predicted direct tours in different scenarios reflecting travel time changes, averaged over two model A runs per
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7.2.2 TOUR DISTANCE
The distribution of tour distances shows a less pronounced sensitivity than the distribution of number of stops.

For this reason, we do not only show the distribution in a bar chart (Figure 7.5) but also in table format (Table
7.15).

Two main effects are at play: (1) tours with more or fewer stops are made, (2) shipments with more or less
additional distance are chosen. As a tour includes more stops, more trips are made, leading to higher tour
distances. As shipments with a higher additional distance are chosen, trips within a tour are longer, also leading
to higher tour distances. These two effects are intertwined, as picking shipments with a lower additional
distance also allows the carrier to make tours with more stops while respecting working hour constraints. As a
consequence, positive and negative impacts can be cancelled out.

In Figure 7.3 and Figure 7.4, we observed that in the +50% scenario more tours with an intermediate number of
stops (3-5) are made, while direct tours and tours with many stops are made less often. As tours with more
stops tend to have a higher distance, we also observe that in this scenario the number of tours in the
intermediate distance range (100-400 km) increases, while fewer very short (<50 km), short (50-100 km), long
(400-700 km), and very long (2700 km) tours are observed. Because shipments with a lower additional distance
are chosen on average too, the effect is rather limited for such an extreme scenario (Figure 7.5).

In the -50% scenario, we see more tours that are less than 150 km long, fewer tours in the distance range 150-
700km, and more very long tours (2700 km). Very long tours are observed more often because more shipments
can be grouped in a tour shorter than nine hours. A complex interaction of the following effects might explain
the fluctuation of number of tours for different distance ranges: (1) more direct tours are made, (2) more tours
with more than five stops are made, (3) shipments with a higher additional distance are chosen on average.
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Figure 7.5. The distribution of tour distances in different travel time scenarios, averaged over two Model A runs per scenario.
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Table 7.15. The distribution of tour distances in different travel time scenarios, averaged over two runs per scenario.

Tour distance +50% Null -50%

<50km 72.30% 72.43% 72.50% 72.51% 72.59%
50-100km 9.81% 10.02% 10.07% 10.17% 10.51%
100-150km 7.66% 7.67% 7.63% 7.68% 7.71%
150-200km 4.46% 4.38% 4.35% 4.32% 4.29%
200-250km 2.67% 2.52% 2.57% 2.47% 2.36%
250-300km 1.17% 1.08% 1.06% 1.03% 0.90%
300-350km 0.75% 0.68% 0.65% 0.64% 0.54%
350-400km 0.47% 0.43% 0.41% 0.40% 0.35%
400-450km 0.28% 0.29% 0.27% 0.25% 0.22%
450-500km 0.19% 0.17% 0.17% 0.18% 0.15%
500-550km 0.12% 0.12% 0.12% 0.11% 0.10%
550-600km 0.07% 0.07% 0.08% 0.08% 0.07%
600-650km 0.03% 0.05% 0.06% 0.06% 0.06%
650-700km 0.01% 0.03% 0.04% 0.03% 0.04%
700-750km 0.00% 0.02% 0.02% 0.03% 0.03%
750-800km 0.00% 0.01% 0.01% 0.01% 0.02%
800-850km 0.00% 0.00% 0.01% 0.01% 0.02%
850-900km 0.00% 0.00% 0.00% 0.01% 0.01%
900-950km 0.00% 0.00% 0.00% 0.00% 0.01%
950-1000km 0.00% 0.00% 0.00% 0.00% 0.01%

>1000km 0.00% 0.00% 0.00% 0.00% 0.01%

A crucial footnote to this analysis is that empty trips are not included. As a consequence, our model cannot
capture sufficiently that construction of multiple-stop tours rather than direct tours might actually reduce the
VKT required to transport the same set of shipments. Consolidation of shipments of different customers
reduces the required number of tours (Figliozzi, 2007) and number of empty trips (Roorda et al., 2010). A direct
tour can require an empty trip to and from the home base to deliver just one shipment, while a multiple-stop
tour requires the same number of empty (home base) trips to deliver (possibly far) more shipments. Due to this
omission of empty trips, we see that while in the scenarios with lower travel times the share of direct tours
increases quite substantially (Figure 7.3), the total VKT actually decreases compared to the null scenario (Table
7.16). As no clear relationship can be defined between the number of empty trips and the total VKT (Figliozzi,
2007), it is difficult to formulate sound statements about the total VKT in this research and inclusion of empty

trips is an absolute priority for future research.

Table 7.16. The total Vehicle Kilometers Traveled of the predicted tours in the different travel time scenarios, averaged over three runs
per scenario.

Predicted total VKT
Scenario All tours Only tours with > 1 stop and < 1000 km
Absolute Compared with null Absolute Compared with null
+50% 9,908,791 +0.46% 9,900,561 +0.47%
9,890,156 +0.27% 9,881,751 +0.27%
9,862,867 -0.00% 9,851,255 -0.03%
-50% 9,836,560 -0.27% 9,795,526 -0.60%

In general, the developed tour formation model shows very plausible effects when travel times in the network
increase and decrease. The effects can be explained very well, especially with respect to the number of stops.
This further underlines the validity of the model.
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8 CONCLUSIONS AND RECOMMENDATIONS

The main research question and sub questions read as follows:
Can we develop a behavioral shipment-based tour formation model that reproduces observed tour patterns?

Which objectives, constraints, and other factors influence freight tour formation?

To what extent is the XML microdata useful for calibration of a freight tour formation model?
How can we structure the allocation of shipments to tours in such a model?

Which aspects of freight tour formation can we include in the model?

How well does the model reproduce observed tour patterns?

ukhwnN e

In this final chapter, we answer these research questions, after which we give recommendations for further
improvement of the model, future research, policymakers, and data collection.

8.1 CONCLUSIONS

SUB QUESTION 1

Objectives in freight tour formation reflect those of the carrier, for this is the actor that allocates shipments to
tours. Constraints can be imposed by senders and receivers, by the carrier, by regulations, and by simple
common sense.

As carriers are usually private companies, the most obvious objective is profit maximization. Different
strategies can be employed for profit maximization and carriers can have more subjective preferences;
consequently, different types of objectives exist. The following types of objectives have been identified: (1)
minimization of travel time/distance/cost, (2) minimization of the makespan, the total daily operating hours,
(3) minimization of emissions, (4) maximization of punctuality, (5) maximization of the visual attractiveness and
tractability of the constructed tour set, (6) minimization of the complexity of tour planning, (7) maximization of
the level of balance of the durations of constructed tours, and (8) maximization of the utilized vehicle capacity.

Constraints can impact tour formation strongly, they limit which tours a carrier can construct. The following
types of tour formation constraints have been identified, (1) the availability of shipments with which to
construct tours (2) goods type compatibility, (3) time windows, (4) vehicle capacity, (5) precedence of loading
and unloading locations, and (6) driver working hours.

Other variables that explain differences in observed tours can be divided into three categories: location,
vehicle, and goods type. Through analysis of the number of visited stops, the following differences between
tours visiting certain location types have been identified:

e  Tours that visit a port transshipment node are more likely to be direct, regardless of whether goods
are loaded or unloaded here. These tours are more likely to transport shipments originating from a
producer. These shipments tend to have larger sizes, which leaves little room in a vehicle for other
shipments (Friedrich et al., 2014).

e Tours that visit a distribution center to load goods have more stops. These shipments are likely to be
transported to consumers instead of producers; therefore, they tend to be smaller in terms of volume
and weight (Friedrich et al., 2014). Distribution centers also have large set of available shipments with
similar loading points, and organize their vehicle loading and unloading activities such that more
customers can be visited in the same tour (Khan & Machemehl, 2017). In addition, larger vehicles are
used on average at distribution centers (van Duin et al., 2012).

e Tours that visit a distribution center to unload goods have fewer stops. These shipments are more
likely to originate from producers and have greater shipment sizes (Friedrich et al., 2014).
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e Tours that visit an urban zone or retail zone have more stops. Potential customers are more
concentrated, which stimulates the grouping of shipments of these customers in an efficient tour,
especially since entering and leaving a city can be very time consuming.

Differences in tours by vehicle type can be related to capacity and ease of (un)loading. Tractor + trailers and
trucks are used more often for tours with multiple stops than truck + trailers and vans. Loading/unloading of
shipments of different customers is less practical with truck + trailers, since these always consist of two or
more compartments where the last needs to be uncoupled to access goods in the first. Vans have a much lower
vehicle capacity. When shipment sizes stay constant, much fewer shipments can be transported with a van in
one tour.

Differences between goods types can relate to: shipment size, rigidity of goods type combination restrictions,
ease of (un)loading, and dispersion of demand. A goods type clearly distinguishable from the rest is
cement/concrete. Tours with more than one shipment are virtually never observed for cement/concrete due to
large shipment sizes and a high time-sensitivity (Khan & Machemehl, 2017). Furthermore, tours transporting
oils, fuels, construction materials, and chemical products make few stops, while tours transporting agricultural
products, foodstuffs, manure and other products make more stops.

SUB QUESTION 2

The XML microdata has been a very useful source of data to calibrate a tour formation model in this research.
Firstly, it provides a lot of insight into variables explaining tour differences. Secondly, since we know which
shipments are part of each tour and loading and unloading locations of these shipments are reported,
calibration of choice steps in an algorithm that allocates shipments to tours is possible. However, several
peculiarities and definitions influence what information can be extracted from this data, for example:

e A reported tour is not started until goods are loaded into the vehicle, and the tour is ended when the
vehicle turns empty or returns to the home base. Therefore, empty trips are not included in the data
and a strikingly large portion of tours with only one shipment is found.

e The tour starting and end time are known, but the arrival and departure times at intermediate tour
stops are not present. As a consequence, realized tour sequences and dwelling times are unknown.

e Shipment size is only available in a usable format with respect to weight, therefore, the volume
utilization rate of the vehicle cannot be deduced satisfactorily.

e Asimplementation of the XML-interface requires carriers to have an advanced transport management
system, a self-selection of large third-party carriers has taken place. The data is not representative for
all Dutch freight carriers.

Enrichment of the XML microdata with other data sources is crucial to overcome some of these data
peculiarities and to obtain meaningful tour statistics for estimation of a tour formation model. For example, a
skim matrix of travel times and distances between zones is needed to construct tour sequences and to
calculate additional costs of adding shipments.

SUB QUESTION 3

To be able to calibrate a tour formation model on the XML microdata, we structure the model as an algorithm
that iteratively allocates an additional shipment to a tour until it is ended. This process is continued until all
shipments that a carrier has to transport on a day are allocated to a tour, and then repeated for all days and
carriers.

This algorithm has two steps where a choice is modeled, for which we estimate a utility function on the
empirical data. We call these two choices the End Tour (ET) and the Select Shipment (SS). The ET choice is
modeled with a Binary Logistic Regression. The dependent variable is binary; a value of 0 means that another
shipment is added to the tour, a value of 1 means that the current tour is ended and a new tour is started. The
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SS choice model is a Multinomial Logit model. If the decision to add another shipment is made in the ET choice
model, the SS choice model is used to choose which shipment is added.

SUB QUESTION 4
The developed model considers many aspects of tour formation, most importantly:

e  Of the identified tour formation objectives, the following are represented in our model: minimization
of travel time/distance/cost, maximization of punctuality, minimization of complexity of tour planning,
maximization of utilized vehicle capacity.

e The following identified constraints are included: availability of shipments, vehicle capacity,
precedence of loading and unloading locations, driver working hours. Goods type restrictions are
considered more implicitly through a preference for tours with one goods type.

e The model acknowledges that different types of tours are preferable and feasible for different
location, vehicle, and goods types.

e The model is shipment-based and, therefore, considers that shipments form the fundamental level at
which many decisions in freight transportation are made (de Bok & Tavasszy, 2018), and that the
demand for freight transportation is derived from goods flows between firms or zones (Boerkamps &
van Binsbergen, 1999; Wisetjindawat et al., 2006). Additionally, application of the tour formation
model in a shipment-based simulation framework allow us to consider the impacts of specific policies
and scenarios on tour formation, such as distribution centers, changes in delivery frequencies and
shipment sizes, and increased cooperation of senders and carriers (Boerkamps & van Binsbergen,
1999).

There are, however, several components of tour formation that our model does not include or acknowledge:

e  Empty trips to and from the home base are not included in the data and, therefore, not modeled. For
this reason, the predicted total Vehicle Kilometers Traveled (VKT) in the network is underestimated,
and the fact that construction of tours with more stops can reduce the number of empty trips (and
thus total VKT) is not considered.

e The incremental fashion of constructing tours imposes a simplified structure on the complex tour
formation process. Consequently, our model does not consider all interrelated decisions. We only
relate the selection of the next shipment to the shipments that are already allocated to the tour and
not to those that might be allocated after it.

e The following identified objectives are not considered in our model: makespan, emissions, visual
attractiveness, and level of balance.

e Time windows are the only identified type of constraint that is not acknowledged by our model in any
way. Furthermore, while vehicle capacity constraints are included in terms of transported weight,
neither volume capacity nor vehicle fleet size is considered.

e While we do consider the impacts of congestion, these impacts are underestimated as we use off-peak
skim matrices to determine travel times and distances. Detours to get lunch or gas or due to truck
access restrictions are not included in these travel times and distances either.

e  Tour durations do not include dwelling time to load and unload goods.

SUB QUESTION 5

Application of the estimated tour formation model to form tours with the shipments of carriers that did not
provide data for estimation has shown that the model can reproduce observed tour statistics very
satisfactorily:

e The predicted distributions of tour distance and number of stops are highly similar to the observed
distributions for a given set of shipments.
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e The model can reproduce differences in the distribution of number of stops between tours visiting
different locations types and transporting various goods types.

In addition, plausible effects are predicted when travel times in the network increase . In this scenario, there is
a stronger focus on the construction of efficient tours to minimize travel costs; therefore, fewer tours are
predicted that transport only one shipment. Tours that visit a large number of customers are found less often
too, as working hour constraints are violated more quickly.

It should be noted that the same set of reported shipments is transported in the observed and predicted tours.
In a freight simulation framework these shipments need to be generated, in that case it might be harder to
reproduce these statistics this accurately.

Because we do not construct empty trips and vehicle trips are not assigned to a traffic network yet, it is difficult
to formulate informed statements about the extent to which this tour formation model can improve our ability
to predict freight truck flows. Because of the surprisingly large share of observed direct tours, the improvement
might be more limited than expected upfront. The extraordinary share of cement/concrete shipments in the
data, results from previous studies, and the fact that tours in the data are ended when the vehicle turns empty
indicate that this share might be lower in reality, though.

MAIN RESEARCH QUESTION

Development of a model that forms tours out of shipments in a way that is similar to reality is indeed possible.
Adopting an iterative shipment allocation structure allows for the calibration of choice models on empirical
shipment data. Most of the identified aspects that explain tour formation can be included in such a model,
which reproduces observed tour statistics very satisfactorily.

In addition, calibration of this model can be performed in a computationally efficient and statistical way.
Construction of tours from a set of more than 200,000 shipments requires about half an hour, and
straightforward measures of model fit can be obtained.

Our tour formation model including estimated parameters can be used in a freight simulation framework,
although several conditions must be fulfilled. Firstly, the geographical scope of the framework should be freight
transportation by road within the Netherlands. Factors such as work hour regulations and the spatial
distribution of activities in the Netherlands influence the estimation results and constraints. Secondly, the
model should be used only to construct tours performed by third-party carriers with advanced planning
systems. We have shown that a model estimated on fifty percent of these carriers in our data can be used to
construct tours of the other carriers in the data in a satisfactory manner. The exact bias of the XML microdata
should be specified more clearly, though, to identify the population of carriers for which our model is
applicable. Thirdly, off-peak skim matrices should be used to obtain travel impedances. Finally, shipments
between firms need to be synthesized and assigned to carriers, and a vehicle type choice model must be
estimated before tours can be constructed.

8.2 RECOMMENDATIONS

MODEL IMPROVEMENTS
While the developed tour formation model is able to consider many influences and reproduce observed tour
statistics excellently, there are technical ways to improve it:

e Both a Binary and Multinomial Logistic Regression assume independently and identically distributed
error terms. This is not the case in the XML microdata, since many shipments are transported by the
same carrier. Estimating the choice models with panel effect can account for this.
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e A thorough analysis can improve our knowledge of the home base locations of carriers in the data.
Robroeks (2016), for example, analyzed the number of shipments that have a particular loading or
unloading location for each carrier to identify the home base location of more tours. Doing so would
allow the incorporation of empty trips in the model. Alternatively, a 2-opt-algorithm may be applicable
for construction of a logical set of empty trips between direct tours.

e  For the last remaining shipment of a carrier on a day, we can develop a decision rule that checks
whether it would fit well in a tour already constructed. This way a backwards flow of information is
included, and we consider that the selection of shipments for a tour is a process of many interrelated
decisions.

e A Nested Logit formulation can be used to model the ET and SS choice as a simultaneous one. The first
nest would be simply ending the tour, the second nest would be continuing the tour, where the
second nest has several shipment alternatives. This way we can incorporate in a more elegant fashion
how the attractiveness of the set of remaining shipments influences the choice to end the tour.

e In the construction of the tour sequence, the first visited location is the loading location of the first
allocated shipment. After further consideration, it may be more efficient and logical to start the tour
sequence at a more peripheral location. Other algorithms may be used to construct the tour sequence
too. One example is the sweep algorithm, which can be used to construct a sequence of the tour
locations by sorting the locations based on their polar angle to the tour starting location
(Suthikarnnarunai, 2008).

e A more elaborate capacity utilization can be used that recognizes that not all shipments of a tour need
to be present in the vehicle simultaneously.

e Usage of different skim matrices for tours departing in the AM peak or PM peak may improve the
prediction of tour distances and durations, as the effects of congestion are included. A challenging
aspect is that tours can stretch out over multiple parts of the day; therefore, different parts of a tour
may require different skim matrices.

FUTURE RESEARCH
More generally, there are many ways in which to extend this research to understand and predict freight
transportation better.

e Logistic decisions are highly interrelated (Khan & Machemehl, 2017; de Bok et al., 2018). Tour
formation cannot be seen completely isolated from the choice for vehicle type and shipment size. If a
carrier wants to add a shipment that would cause an exceedance of the vehicle capacity, it might be
possible to choose a larger vehicle. Another decision closely related to tour formation is the departure
time choice. Incorporation of this tour formation model in a larger simulation framework with other
interrelated choices provides many interesting new challenges to freight modelers.

o A carefully synthesized set of shipments is of vital importance to obtain good results with the tour
formation model developed in this research. Analysis of the spatial distribution of shipments and
relationships between shipment attributes can be of great use to synthesize a realistic set of
shipments in a freight simulation framework. In addition, the synthesized shipments must be assigned
to carriers in an appropriate way.

e Along with such a shipment synthesizer and a traffic assighment module, observed and predicted
traffic link flows can be compared, which would provide far more insight into the extent to which a
tour formation model like ours can improve the predictive performance of a freight simulation
framework.

e As we identified in the interview with a transportation planner that tour formation decisions are often
constrained by the vehicle fleet size, it is useful to include this in a freight simulation framework. While
this is a more strategic decision than the tactical tour formation decisions, assigning a realistic vehicle
fleet size to each carrier would allow us to consider this important constraint for tour formation.
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e Time windows are a crucial feature of freight transportation that impact which tours can be
constructed (Figliozzi, 2007). Inclusion of time windows would greatly improve the behavioral
foundation of a tour formation model like this.

e The current model results are not representative for all freight carriers in the Netherlands. Its use for
application in another geographical context is also questionable. In such a small and dense country as
the Netherlands, parameters such as tour duration and additional generalized cost are expected to
have different values than elsewhere. Therefore, we recommend to estimate similar tour formation
models paying special attention to representative data and perhaps with data of other parts of the
world.

e The general hypothesis is that third-party carriers tend to construct tours with more stops, for they
have a larger set of shipments to combine efficiently (McCabe et al., 2006; Roorda et al., 2010;
Nuzzolo et al., 2012; Beziat et al., n.d.). However, an interview with the transportation planner of an
own-account carrier showed that they make more stops on average than any of the third-party
carriers in our data. We may have to revise this hypothesis and look for new explanations, such as
vehicle fleet size differences. A better understanding of the differences between third-party and own-
account carriers would greatly assist in a more accurate prediction of the tours made by all carriers in
the Netherlands. Using data about own-account carriers, our tour formation model may be estimated
for these carriers too.

POLICYMAKERS
While this research has a strong methodological focus, it has also provided useful insights for policymakers.

e In certain segments of freight transportation almost only direct tours are observed. Tours transporting
concrete, fuels, oils, metals, construction materials, and shipments (un)loaded at ports are the clearest
examples. In these segments, sensitivity with respect to tour formation is strongly limited by large
shipment sizes, dispersed demand, and high time-sensitivity. For policymakers that wish to reduce the
negative external impacts in these segments, developing policies that influence choices other than
tour formation might be more effective, such as the procurement of cleaner vehicles.

e  Travel times on the Dutch road network are increasing due to congestion. In the first half year of 2018,
the gravity’ of traffic jams increased by 20% compared to the same period in 2017 (ANWB, 2018).
With higher travel times in the network, our results indicate that multiple customers are visited in one
tour more often, as there is a stronger focus on travel time savings. Fewer tours (Figliozzi, 2007) and
possibly fewer empty trips are made in that case (Roorda et al., 2010). Fewer empty trips might also
lead to a lower Vehicle Kilometers Traveled (VKT) and may provide a counterforce to the increased
intensity of traffic on the Dutch roads. For solid conclusions, further analyses with an empty trip model
are required though.

e  Previous research has shown that distribution centers can reduce the negative external effects of
freight transportation (van Duin et al., 2012). The findings in this research indicate indeed that
distribution centers might facilitate more efficient tour formation. Tours with more stops are observed
and predicted originating from distribution centers. When tours with more stops are constructed, less
empty trips are required (Roorda et al., 2010).

DATA COLLECTION

Finally, several recommendations can be made with regard to data collection in order to improve our
understanding of and ability to predict freight transportation. These recommendations relate specifically to the
XML microdata of the CBS, but are valuable to any new freight tour data collection effort.

* Jam length multiplied with duration
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Empty trips to and from the home base are not included in the XML microdata, and are difficult to
deduce as home base locations are filled out poorly. Empty trips have been found to make up 20% of
urban trips and 30-40% of inter-city trips (Sdnchez-Diaz et al., 2015). They are a crucial feature of
freight transportation that needs to be understood to predict truck flows accurately. We recommend
either to (1) include a variable that lists the origin and destination of a possible empty start and return
trip, or to (2) make it easier for respondents to fill in the home base location automatically.

The interview and our interpretation of model parameters lead us to conclude that vehicle capacity in
terms of volume is a very important constraint in freight tour formation. Currently, volume can be
filled in with different units, leading to a variable that is difficult to decipher. It would be advantageous
to have a consistent measure of volume that can be filled out more easily by respondents.

If the arrival and departure time are filled out for each visited location, many other behavioral aspects
of freight tour formation can be unraveled, such as tour sequencing, dwelling times, and goal arrival
times. By simply pressing a button on a display screen at arrival and departure, the truck driver can
provide these times in high detail. Alternatively, GPS or engine data can be used to determine when
the truck is standing still for a longer time.

More information about the carriers can assist in exposing and explaining heterogeneous behavior.
For example, the size of the vehicle fleet provides information about which constraints are
experienced by different carriers.

If the XML-interface can be adapted in such a way that it is easier to install for smaller and own-
account carriers, we would obtain a larger amount of more diverse data. This allows us to understand
the differences in behavior between third-party and own-account carriers, and to sample a data set
representative for all freight carriers in the Netherlands.
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APPENDICES

APPENDIX A: INTERVIEW WITH TRANSPORTATION PLANNER

On July 18" 2018, a semi-structured phone interview was held with Harrie Tissen, transportation planner at
Rensa BV, a Dutch wholesaler of heating and ventilation products. This appendix provides a global transcription
of this interview.

Q: Wat voor goederen vervoeren jullie?
A: De goederen die wij vervoeren hebben betrekking op verwarming en ventilatie.
Q: Doen jullie alleen aan eigen vervoer, zijn het jullie eigen goederen?

A: Ja, al vervoeren we inmiddels ook sanitair, maar dat is van een bedrijf dat we hebben overgenomen. Het is in
principe eigen vervoer.

Q: Over welke afstand worden deze zendingen over het algemeen vervoerd?

A: Wij vervoeren in principe over heel Nederland, en een klein stukje over de grens in Duitsland en Belgié. Niet
veel verder dan 10-15 km over de grens.

Q: Zou u stapsgewijs kunnen beschrijven hoe u met de planning voor het transport op een dag komt?

A: We controleren gedurende de hele dag de orders die binnenkomen, op juistheid van volume en afmetingen.
Dan krijgen wij van de afdeling verkoop orders door die op een bepaald tijdstip geleverd moeten worden, die
tijdstippen hangen we ook aan de orders. Als we dat allemaal gedaan hebben, dan gaan we er een
rittenplanning van maken. Dat zijn zowel trailers, bakwagens, en busjes.

Q: Maken jullie hierbij gebruik van planningssoftware?
A: Ja, wij plannen met het programma Smartour.
Q: In hoeverre is dat slechts een druk op de knop? Wat is de rol van deze software?

A: Wij hebben acht vestigingen in Nederland, op de meeste vestigingen staan twee auto’s, in Moordrecht vier,
en in Doetinchem staat dan de rest van de vloot. We plannen altijd eerst de ritten van de vestigingen vol, als
we dat klaar hebben, dan gaan we vanuit Doetinchem de rest plannen. De planner doet dat zelf, en de software
assisteert hem daarin in zoverre dat het de openingstijden en tijdafspraken bewaakt, en de optimale rit
weergeeft. Maar het is de planner uiteindelijk die bepaalt wat er precies in de auto terechtkomt, om in ieder
geval zo veel mogelijk zendingen op een optimale manier met een auto mee te geven.

Q: Is er veel speling in de dag waarop een zending kan worden afgeleverd?

A: Bij ons is het allemaal 24-uurslevering, alles wat vandaag besteld wordt, moet dus in principe morgen
geleverd worden. Het kan wel eens zijn dat klanten zendingen eerder van tevoren bestellen, of dat er uitloop is
en dat orders vertraging oplopen en dus uitgesteld worden, maar dat is meer uitzondering dan regel.

Q: Hoe verloopt de interactie met de chauffeur bij jullie? Overleggen jullie tijdens de rit om dingen aan te
passen aan de planning?

A: Dat kan, in principe als er wensen zijn van klanten onderweg, dan is het vaak de planning of de service die
met de chauffeur contact heeft om dit aan te passen. We hebben inmiddels overal boardcomputers in zitten,
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en de volgende stap is eigenlijk dat we via de boardcomputers communiceren met de chauffeur, omdat daar de
opdrachten in komen.

Q: Wat zijn voor jullie de voornaamste doelen in het plannen van ritten? Wanneer vindt u het een
goede/sterke planning voor een dag?

A: We proberen met zo weinig mogelijk zo veel mogelijk goederen weg te brengen, dus zo weinig mogelijk
kilometers en uren te maken. Maar wel zo dat in het magazijn de auto’s fatsoenlijk beladen kunnen worden, de
zendingen niet beschadigd raken, en dat we er ook zeker van zijn dat de chauffeur de andere dag de
gelegenheid krijgt om de goederen te lossen. Dus dat we ze niet zo zwaar belasten dat ze aan het eind van de
dag moeten zeggen dat ze een aantal stops niet gehaald hebben. Onze chauffeurs werken in principe 45 uur
per week, dus dat zijn ritten van 9 uur per dag. Dat heeft ook weer verband met wetgeving rondom de Rij- en
Rusttijdenwet. Door dat in de planning goed te doen, zitten we altijd aan de veilige kant.

Q: Dus jullie proberen zendingen in een vrachtwagen samen te voegen, op zo’n manier dat de kans klein is
dat het niet lukt om ze allemaal af te leveren in de shift van de chauffeur.

A: Ja, en dat de chauffeur zich aan de Rij- en Rusttijdenwet kan houden, en dat we niet iedere dag hoeven te
kijken welke chauffeur de volgende dag meer of minder uren moet gaan maken.

Q: In welk aandeel van de ritten die jullie plannen wordt maar 1 klant aangedaan?

A: Minder dan 1% procent. Soms rijdt een chauffeur wel naar een klant, en dan komt hij daarna terug om
andere klanten te doen. Dus dat is maar heel zelden. Als dat wel zo is, dan geven we hem meestal extern weg,
tegen een basisprijs, dat we daar in ieder geval zelf geen last van hebben, en de auto’s bij onszelf dus optimaal
kunnen blijven presteren. Dus we zitten eigenlijk wel gemiddeld 18-20 stops voor een auto te plannen. Het
komt ook wel voor dat auto’s te ver weg gaan en dat we maar 6 stops plannen. Maar dichtbij huis zie je ook wel
veel 30-35 stops.

Q: Is dat dan het aantal stops dat over de hele dag wordt gemaakt? Of meer van vertrek van standplaats tot
terugkomst?

A: Dus van vertrekken van standplaats tot eindigen op de standplaats.
Q: Hebben jullie in principe een voorkeur voor simpele ritten, dus ritten met minder stops?

A: Nee, daar wordt in principe niet naar gekeken. We proberen zo veel mogelijk die 9 werkuren vol te plannen
in de rit. En dat dit dusdanig gepland kan worden dat we qua werkuren, kilometers, en CO2 uitstoot niet te veel
in doen.

Q: Heeft u een idee in welke gevallen er vaker ritten met meer stops voorkomen? Is dat vaker bij zendingen
over lange afstand bijvoorbeeld, of bepaalde goederentypes?

A: Het zijn de auto’s die kort bij de standplaats rondrijden die de meeste stops wegbrengen, die zijn binnen 20
minuten bij hun eerste klant. Die maken dan een rondrit, die kunnen er dan wel 30-35 doen. En een auto die
eerst 100-150 km moet rijden, die is qua rij-uren al 2 uur bezig voor die kan gaan lossen, en dat moet hij ook
nog terugrijden. Dan ben je dus een halve dag aan het rijden en een halve dag aan het lossen. Vaak proberen
we er wel naar te plannen dat andere klanten in de buurt ook aangedaan worden, maar als je met volumes zit
dan wil dat niet altijd lukken. Dan heb je wel eens chauffeurs die met 4 stops de hele dag vol hebben.

Q: En bijvoorbeeld bij winkelbevoorrading, vinden daar over het algemeen meer of minder stops plaats?

A: Ze lopen gewoon in het programma mee, maar het is vooral in de winkelgebieden en binnensteden waar er
rekening mee moet worden gehouden dat de chauffeur er voor een bepaald tijd daar moet zijn. Die informatie
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staat allemaal weer in het plansysteem. Daar kun je dan heel makkelijk mee werken, je ziet al die tijden, dus je
gaat het ook niet dwars door die tijden plannen. Dan geeft hij al aan dat een openingstijd niet kan worden
gehaald en dat dus de rit niet zo kan worden gereden. Dit planningssysteem is dus meer een ondersteuning
voor de planner.

Q: Hoe wordt nu die keuze gemaakt over welke zendingen samengevoegd worden in een rit?

A: Dat is vaak een kwestie van de levertijden plus het volume. Dan proberen we ook de chauffeurs zo veel
mogelijk bij hun vaste klanten en vaste ritten te houden. Omdat ze daar goed te weg weten, maar ook weten
welke wensen de klant heeft, en hoe ze daar moeten laden of lossen. Dat is ook een extra service naar klant,
dat die vaak hetzelfde gezicht ziet. Dat die ook weet, ik moet achterom lossen. Dat zijn allemaal van die zaken
die je niet in het plansysteem kunt vangen, die kennis ligt bij de chauffeur. Een planningssysteem is een
ondersteuning, maar de rest van de informatie ligt toch meestal bij de chauffeur en de planner.

Q: U sprak over volume, heeft u het idee dat volume vaker een rol speelt dan gewicht in wat mogelijk is?

A: Ja, bij ons hier zeker, omdat het gewicht vaak lager is dan het volume. Dan moet je denken aan vloerisolatie,
grote boilers, hoge zonnepanelen. Ze staan op een pallet, en het gewicht is misschien 100kg, maar ze nemen
wel het volume van een pallet in.

Q: Staan de zendingen bij jullie vaak op pallets?

A: De meeste goederen staan op pallets. Wat wij aan kleine goederen versturen, dat wordt via een
geautomatiseerd systeem verzameld, en dat wordt dan op een pallets gestapeld in de juiste volgorde van het
lossen. Dus ook die zendingen staan dan vaak op een pallet.

Q: Dus er staan soms ook zendingen van meerdere klanten op een pallet?

A: Ja, dan heeft de chauffeur een lijst bij met wat er allemaal op die pallet staat, en hoeveel doosjes. Dan weet
hij ook precies, ik moet van die pallets zoveel van die doosjes pakken voor die klant. Die zitten ook nog in de
goede stopvolgorde, dus dan maak je het op die manier makkelijker voor de chauffeur om de juiste spullen te
pakken. Dan wordt de kans op fouten kleiner, en heb je meer tevreden klanten.

Q: Verschilt de hoeveelheid zendingen die jullie per dag hebben veel?

A: Ja op de maandag en dinsdag is er veel volume en is het vrij druk, en dat wordt in de loop van de week weer
wat minder. Wij leveren veel aan bouwplaatsen, die mannen willen dan aan het begin van de week hun spullen
hebben, en daar gaan ze dan de hele week mee aan de slag. En wat er dan nog in de loop van de week
ontbreekt, wordt er nog bijbesteld. Dus het meeste volume gaat er aan het begin van de week uit.

Q: Is het dan ook zo dat jullie ritten plannen met meer stops in die eerste twee dagen, omdat je gewoon
meer klanten hebt?

A: Ja. We huren dan vaak ook nog weleens wat bedrijven in die spullen voor ons wegbrengen, daar hebben we
een drietal partners voor die dat voor ons regelen. We hebben zo’n beetje 45 auto’s van onszelf, en dan zitten
er dagelijks zo’n 10-15 inhuurauto’s bij, dus dan kom je op ongeveer 60 ritten per dag.
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APPENDIX B: MULTICOLLINEARITY STATISTICS

The Tolerance and VIF statistics indicate that there are no multicollinearity issues in the ET first shipment and
ET later shipments model (Table B.1 and Table B.2). The Tolerance is much higher than 0.10 and the VIF is much
lower than 10 for each parameter. Proximity was removed from the ET first shipment model. In Table B.3 we
see that inclusion of this parameter leads to a VIF that approaches 10, and Table 6.1 shows that inclusion leads
to large changes in the ‘tour duration’ parameter.

Table B.1. Multicollinearity statistics of the ET first shipment Table B.2. Multicollinearity statistics of the ET later
model (specification F). shipments model (specification F).
ET first shipment ET later shipments
Variable Tolerance VIF Variable Tolerance VIF

\[Tour duration [h] 0.944 1.06 Tour duration [h] 0.550 1.818
(Weight/capacity)’ 0.564 1.772 Weight/capacity 0.783 1.277
any port 0.715 1.398 Proximity nearest shipment [km] 0.817 1.224
any loading DC 0.822 1.217 Ln(# stops) 0.535 1.870
any unloading DC 0.854 1.171 any port 0.849 1.178
any urban zone 0.956 1.046 any loading DC 0.618 1.617
vehicle type [truck] 0.918 1.089 any unloading DC 0.594 1.683
[truck + trailer] 0.817 1.225 any urban zone 0.856 1.168
[tractor + trailer] - - vehicle type [truck] 0.849 1.177
[other/special] - - [truck + trailer] 0.935 1.069

NSTR tour [0: agricultural] 0.916 1.092 [tractor + trailer] - -

[1: foodstuffs] 0.869 1.151 [other/special] - -
[2-5: fuels, oils, metals] 0.986 1.014 NSTR tour [0: agricultural] 0.829 1.206
[6: construction materials] 0.570 1.753 [1: foodstuffs] 0.709 141

[7: manure/fertilizers] 0.992 1.008 [2-5: fuels, oils, metals] - -
[8: chemical products] 0.855 1.169 [6: construction materials] 0.939 1.065
[9: machinery and other] - - [7: manure/fertilizers] 0.969 1.031
[8: chemical products] 0.795 1.259

[9: machinery and other] - -

Table B.3. Multicollinearity statistics when ‘proximity’ is
added to the ET first shipment model (specification F).

ET first shipment
Variable Tolerance VIF
+/ Tour duration [h] 0.157 6.357
(Weight/capacity)’ 0.966 1.035
Proximity nearest shipment [km] 0.159 6.279
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APPENDIX C: DIFFERENT RUNS SELECT SHIPMENT ESTIMATION

Since the choice set formation is a process that includes random components, we analyzed the robustness of the parameter estimates of the SS choice model with an extra

run for models E to L. In Table C.1, we can see that all parameters are very robust when the estimation is repeated with each model specification.

Table C.1 Comparison of SS estimation results for different runs.

Specification

(run) E(1) E(2) E(3) F(1) F(2) G(1) G(2) H(1) H(2) 1(1) 1(2) J(1) J(2) K(1) K(2) L(1) L(2)

RchFadden 0.189 0.187 0.186 0.170 0.171 0.277 0.276 0.251 0.248 0.187 0.187 0.169 0.171 0.277 0.276 0.249 0.250

LL -63109 -63258 -63291 -73839 -73815 -59403 -59471 -73614 -73928 -63256 -63271 -73929 -73799 -59413 -59459 -73834 -73752

N 43409 43409 43409 37112 37112 45851 45851 41001 41001 43409 43409 37112 37112 45851 45851 41001 41001
additional

generalized cost -0.005 -0.005 -0.005 -0.005 -0.005 -0.010 -0.010 -0.009 -0.009 -0.005 -0.005 -0.005 -0.005 -0.010 -0.010 -0.010 -0.009

[€] (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.010) (0.000) (0.000) (0.000) (0.000) (0.000)

additional -1.043 -1.027 -1.031 -1.187 -1.092 -1.150 -1.139 -1.189 -1.172 -1.039 -1.038 -1.088 -1.091 -1.160 -1.148 -1.176 -1.181

number of stops (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.010) (0.010)

Same NSTR 2.332 2.338 2.322 2.759 2.727 2.235 2.221 2.657 2.648 2.313 2.326 2.712 2.715 2.218 2.227 2.627 2.646

(0.038) (0.038) (0.038) (0.042) (0.042) (0.038) (0.038) (0.041) (0.041) (0.038) (0.038) (0.042) (0.042) (0.038) (0.038) (0.041) (0.041)

Table C.2. Description of tested model specifications for the SS model

Specification Choice set size Tour sequence ‘Weight/capacity > ‘Proximity > X’ Concrete excluded
algorithm 1.1’ excluded excluded
A 2 1 No No No
B 6 1 No No No
C 6 2 No No No
D 6 2 Yes No No
E 6 2 Yes Yes (X=100) No
F 11 2 Yes Yes (X=100) No
G 6 2 Yes Yes (X=150) No
H 11 2 Yes Yes (X=150) No
| 6 2 Yes Yes (X=100) Yes
J 11 2 Yes Yes (X=100) Yes
K 6 2 Yes Yes (X=150) Yes
L 11 2 Yes Yes (X=150) Yes
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APPENDIX D: RETAIL ZONES

Retail zones are distinguished based on the percentage and number of retail establishments in each zone,
reported in the CBS Kerncijfers Wijken en Buurten 2015. Retail establishments fall under the SBI categories G
and | (business and food service). The goal is to distinguish zones where we see a particularly large and dense
cluster of retail activities. Therefore we choose to mark a zone as a retail zone, if the percentage of retail
establishments is above 40% and the number of retail establishments is above 100. In Figure D.1 and Figure D.2
it can be seen that zones with a percentage and number of retail establishments higher than these thresholds
are rather rare. Setting these thresholds at a high end of the distribution like this, allows us to obtain a list of
clearly distinguishable zones with a lot of retail activities. As seen in Figure 4.17, still quite a substantial share of
tours visits a retail zone with this definition.
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Figure D.1. Frequency distribution of the number of zones by percentage of retail establishments.
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Figure D.2. Frequency distribution of the number of zones by number of retail establishments.

For 2290 of the zones the number of retail establishments is unknown. Further analyses showed that all of
these zones have a total number of establishments of any kind that is lower than or equal to twenty. These are
clearly not zones with a large and dense cluster of retail activities. Therefore these zones are not distinguished
as a retail zone.

113



APPENDIX E: DISTRIBUTIONS IN THE END TOUR CHOICE DATA

In this appendix, the distributions of proximity, tour duration, capacity utilization, and tour distance are

reported for the data used to estimate the ET choice models.

Table E.1. Frequency distribution of ET choice observations by

Table E.2. Frequency distribution of ET choice observations by

Table E.3. Frequency distribution of ET choice observations by capacity

proximity. tour duration.
. ET choice ET choice
P;:’:::;:y Add shipment End tour Tou.r Add shipment End tour
shipment Count cum. % Count cum. % duration Count cum. % Count cum. %
column column column column
<10km 24739 40.87% 93601 48.09% <1h. 27277 45.07% 157809 80.05%
10-20km 10232 57.78% 23105 59.96% 1-2h 19419 77.15% 27070 93.78%
20-30km 5402 66.70% 15650 68.00% 2-3h 8969 91.97% 7912 97.79%
30-40km 4336 73.86% 12025 74.18% 3-4h 3141 97.16% 2520 99.07%
40-50km 3203 79.16% 5205 76.86% 4-5h 1017 98.84% 1347 99.75%
50-60km 2005 82.47% 4102 78.96% 5-6h 297 99.33% 330 99.92%
60-70km 1924 85.65% 5080 81.58% 6-7h 141 99.56% 89 99.97%
70-80km 2016 88.98% 3768 83.51% 7-8h 95 99.72% 32 99.98%
80-90km 1046 90.71% 4218 85.68% 8-9h 43 99.79% 16 99.99%
90-100km 1055 92.45% 2646 87.04% more
100-110km 948 94.02% 2829 88.49% than Sh 129 100.00% 20 100.00%
110-120km 543 94.91% 3452 90.27%
120-130km 813 96.26% 2796 91.70%
130-140km 464 97.02% 2595 93.03%
140-150km 331 97.57% 2530 94.33%
150-160km 197 97.90% 1781 95.25%
160-170km 230 98.28% 1549 96.05%
170-180km 222 98.64% 1210 96.67%
180-190km 217 99.00% 1059 97.21%
190-200km 104 99.17% 1458 97.96%
>= 200km 501 100.00% 3969 100.00%

Table E.4. Frequency distribution of ET choice observations by

utilization. tour distance.
ET choice ET choice
Capacity Add shipment End tour Tour Add shipment End tour
utilization K m. 9 distance Cum. % Cum. %
Count S(l:lr:mf: Count S:Ium/r: Count column Count column
0-10% 16527 27.30% 33163 16.82% <100km 32745 54.10% 160724 | 81.53%
10-20% 8317 41.05% 12902 23.37% 100-200km 18213 84.19% 25278 94.35%
20-30% 8736 55.48% 8130 27.49% 200-300km 6752 95.34% 7883 98.35%
30-40% 3894 61.91% 7340 31.21% 300-400km 1927 98.53% 2181 99.45%
40-50% 3429 67.58% 7275 34.90% 400-500km 492 99.34% 827 99.87%
50-60% 4146 74.43% 25176 47.67% >= 500km 399 100.00% 252 100.00%
60-70% 2862 79.16% 7327 51.39%
70-80% 2559 83.38% 8764 55.84%
80-90% 1139 85.26% 21711 66.85%
90-100% 1215 87.27% 25726 79.90%
100-110% 1276 89.38% 28419 94.31%
110-120% 638 90.43% 2218 95.44%
120-130% 824 91.80% 1796 96.35%
130-140% 557 92.72% 1342 97.03%
140-150% 369 93.33% 1007 97.54%
150+ % 4040 100.00% 4849 100.00%
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APPENDIX F: DISTRIBUTIONS IN THE SELECT SHIPMENT CHOICE DATA

In this appendix, the distributions of the additional travel time, distance, number of stops, and generalized
travel cost are reported for the data used to estimate the SS choice model.

Table F.1. Frequency distribution of SS choice observations by Table F.2. Frequency distribution of SS choice observations by
additional travel time. additional travel distance.
SS choice SS choice
Additional Chosen shipment Sample.d unchosen Additional Chosen shipment Sample.d unchosen
travel time shipment !:ravel shipment
Count Cum. % Count Cum. % distance Count Cum. % Count Cum. %
column column column column
<0.5h 36831 66.51% 11073 20.00% <50km 40021 72.27% 13212 23.86%
0.5-1h 11464 87.21% 10103 38.24% 50-100km 9328 89.12% 10839 43.43%
1-1.5h 4860 95.99% 11343 58.72% 100-150km 4104 96.53% 10828 62.99%
1.5-2h 1418 98.55% 9564 76.00% 150-200km 1305 98.88% 8650 78.61%
2-2.5h 625 99.68% 6431 87.61% 200-250kmh 474 99.74% 5633 88.78%
2.5-3h 143 99.94% 3401 93.75% 250-300km 106 99.93% 3013 94.22%
>=3h 35 100.00% 3461 100.00% >=300km 38 100.00% 3201 100.00%
Table F.3. Frequency distribution of SS choice observations by Table F.4. Frequency distribution of SS choice observations by
additional number of stops. additional generalized cost.
SS choice SS choice
Additional Chosen shipment Sample.d unchosen Additio'nal Chosen shipment Samplgd unchosen
number of shipment generalized shipment
stops Count cum. % Count Cum. % travel cost Count cum. % Count cum. %
column column column column
0 13874 25.05% 4593 8.29% <50€ 40206 72.61% 13022 23.52%
1 36098 90.24% 13056 31.87% 50-100€ 10018 90.70% 11969 45.13%
2 5404 100.00% 37727 100.00% 100-150€ 3647 97.28% 11997 66.79%
150-200€ 1123 99.31% 8916 82.90%
200-250€ 310 99.87% 5016 91.95%
>=250€ 72 100.00% 4456 100.00%
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APPENDIX G: VALIDATION DATA FOR SEPARATE RUNS

In Section 7.1, predicted distributions are averaged over three model runs because the tour formation model
includes probabilistic and random components. In this appendix, the predicted distributions of number of stops
and tour distances are reported separately for each of the three runs.

Table G.1. Observed and predicted percentage tours by number of stops.

Number of stops
Model | Run
1to2 3 4 5 6 7 8 9 10 11 12 13 14 >15

1st 92.49% 2.18% 1.80% 1.21% 0.84% 0.54% 0.32% 0.18% | 0.11% 0.08% 0.05% 0.05% 0.04% 0.11%

A 2nd | 92.57% | 2.08% 1.78% 1.27% 0.84% 0.52% | 0.33% | 0.16% | 0.12% | 0.08% | 0.05% | 0.05% | 0.03% | 0.12%

3rd 92.49% 2.21% 1.78% 1.21% 0.87% 0.51% 0.32% 0.18% | 0.13% 0.08% 0.05% 0.04% 0.03% 0.11%

1st 92.52% | 2.09% 1.74% 1.17% 0.85% 0.57% | 0.35% | 0.22% | 0.14% | 0.08% | 0.06% | 0.05% | 0.03% | 0.14%

B 2nd 92.59% 2.11% 1.73% 1.16% 0.83% 0.55% 0.33% 0.20% | 0.14% 0.09% 0.06% 0.05% 0.03% 0.13%

3rd 92.57% 2.11% 1.69% 1.18% 0.84% 0.55% 0.35% 0.22% | 0.13% 0.09% 0.06% 0.05% 0.03% 0.13%

1st 93.02% 1.90% 1.61% 1.13% 0.77% 0.51% 0.35% 0.20% | 0.14% 0.08% 0.06% 0.05% 0.02% 0.14%

C 2nd 93.03% 1.96% 1.64% 1.06% 0.79% 0.52% 0.31% 0.20% | 0.13% 0.08% 0.07% 0.05% 0.03% 0.14%

3rd 92.97% | 1.94% 1.61% 1.10% 0.83% 0.52% | 0.33% | 0.20% | 0.12% | 0.08% | 0.06% | 0.05% | 0.05% | 0.13%

Table G.2. Observed and predicted percentage of tours by tour distance.
Model and run
Tour distance A B C
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

<50km 72.53% 72.50% 72.45% 72.37% 72.41% 72.41% 71.92% 71.93% 71.84%
50-100km 10.04% 10.08% 10.08% 10.09% 10.16% 10.16% 10.49% 10.52% 10.57%
100-150km 7.62% 7.62% 7.65% 7.72% 7.67% 7.67% 7.90% 7.94% 7.89%
150-200km 4.34% 4.33% 4.38% 4.38% 4.40% 4.37% 4.51% 4.49% 4.51%
200-250km 2.56% 2.57% 2.57% 2.54% 2.53% 2.53% 2.53% 2.54% 2.55%
250-300km 1.06% 1.06% 1.05% 1.11% 1.03% 1.06% 1.01% 0.99% 1.02%
300-350km 0.65% 0.65% 0.64% 0.64% 0.66% 0.64% 0.61% 0.59% 0.59%
350-400km 0.43% 0.41% 0.40% 0.39% 0.42% 0.41% 0.37% 0.37% 0.37%
400-450km 0.26% 0.28% 0.26% 0.30% 0.26% 0.27% 0.24% 0.23% 0.23%
450-500km 0.17% 0.18% 0.17% 0.16% 0.16% 0.16% 0.15% 0.14% 0.15%
500-550km 0.12% 0.12% 0.11% 0.11% 0.12% 0.11% 0.10% 0.09% 0.09%
550-600km 0.08% 0.07% 0.08% 0.09% 0.06% 0.08% 0.06% 0.05% 0.06%
600-650km 0.05% 0.06% 0.06% 0.04% 0.05% 0.06% 0.04% 0.05% 0.04%
650-700km 0.04% 0.03% 0.04% 0.03% 0.04% 0.02% 0.03% 0.03% 0.03%
700-750km 0.02% 0.03% 0.02% 0.03% 0.02% 0.02% 0.02% 0.02% 0.02%
750-800km 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.01%
800-850km 0.01% 0.01% 0.01% 0.01% 0.00% 0.01% 0.01% 0.01% 0.01%
850-900km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
900-950km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
950-1000km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
>1000km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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APPENDIX H: SENSITIVITY DATA FOR SEPARATE RUNS

In Section 7.2, predicted distributions for different travel time scenarios are averaged over two model runs
because the tour formation includes probabilistic and random components. In this appendix, the predicted
distributions of number of stops and tour distance are reported separately for both runs.

Table H.1. Observed and predicted percentage of tours by number of stops in the four travel time scenarios.

Number of stops

Scenario Run
1-2 3 4 5 6 7 8 9 10 11 12 13 14 >15

+50% 1st 91.46% 2.63% 2.17% 1.36% 0.93% 0.56% | 0.34% | 0.17% | 0.10% | 0.07% | 0.06% | 0.04% | 0.04% | 0.07%

2nd | 91.46% | 2.58% | 2.22% | 1.41% | 0.93% | 0.52% | 0.32% | 0.17% | 0.11% | 0.07% | 0.05% | 0.05% | 0.03% | 0.07%

1st | 92.31% | 2.27% | 1.86% | 1.25% | 0.86% | 0.51% | 0.32% | 0.18% | 0.12% | 0.08% | 0.06% | 0.04% | 0.03% | 0.11%

2nd | 92.33% | 2.22% | 1.87% | 1.22% | 0.87% | 0.53% | 0.30% | 0.19% | 0.13% | 0.08% | 0.06% | 0.05% | 0.03% | 0.11%

1st | 92.76% | 2.09% | 1.73% | 1.16% | 0.80% | 0.52% | 0.30% | 0.18% | 0.11% | 0.08% | 0.05% | 0.04% | 0.04% | 0.11%

2nd | 92.83% 2.05% 1.69% 1.12% 0.82% 0.52% | 0.33% | 0.19% | 0.11% | 0.08% | 0.05% | 0.04% | 0.04% | 0.12%

0% 1st | 93.77% | 1.66% | 1.38% | 1.01% | 0.73% | 0.47% | 0.31% | 0.19% | 0.11% | 0.08% | 0.05% | 0.04% | 0.04% | 0.17%

2nd | 93.86% 1.65% 1.34% 0.98% 0.73% 0.48% | 0.30% | 0.17% | 0.12% | 0.07% | 0.06% | 0.05% | 0.03% | 0.15%

Table H.2. Observed and predicted percentage of tours by tour distance in the four travel time scenarios.
Scenario and run
Tour distance +50% -50%
1st 2nd 2nd 1st 2nd 1st 2nd

<50km 72.32% 72.28% 72.48% 72.39% 72.50% 72.53% 72.58% 72.60%
50-100km 9.79% 9.83% 10.03% 10.02% 10.17% 10.18% 10.45% 10.58%
100-150km 7.64% 7.67% 7.68% 7.66% 7.70% 7.66% 7.74% 7.68%
150-200km 4.50% 4.43% 4.32% 4.45% 4.31% 4.32% 4.31% 4.27%
200-250km 2.67% 2.68% 2.51% 2.53% 2.44% 2.50% 2.40% 2.33%
250-300km 1.15% 1.19% 1.09% 1.08% 1.05% 1.01% 0.90% 0.90%
300-350km 0.74% 0.75% 0.69% 0.67% 0.64% 0.63% 0.53% 0.54%
350-400km 0.47% 0.48% 0.42% 0.44% 0.42% 0.39% 0.35% 0.35%
400-450km 0.29% 0.28% 0.30% 0.28% 0.24% 0.26% 0.20% 0.23%
450-500km 0.20% 0.18% 0.18% 0.17% 0.17% 0.18% 0.16% 0.15%
500-550km 0.11% 0.12% 0.12% 0.13% 0.11% 0.12% 0.11% 0.10%
550-600km 0.07% 0.07% 0.07% 0.07% 0.08% 0.09% 0.08% 0.07%
600-650km 0.03% 0.02% 0.05% 0.06% 0.06% 0.06% 0.06% 0.06%
650-700km 0.01% 0.01% 0.04% 0.03% 0.04% 0.03% 0.03% 0.04%
700-750km 0.00% 0.00% 0.02% 0.02% 0.03% 0.02% 0.03% 0.03%
750-800km 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.02% 0.03%
800-850km 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.02%
850-900km 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.02% 0.01%
900-950km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.01%
950-1000km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00%
>1000km 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02%
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APPENDIX |: COMPARISON ESTIMATION AND VALIDATION DATA

We divide the data for estimation of model parameters and the data for validation of the model. In this
appendix, we report the distribution of the number of stops, goods type, and vehicle type in both data sets.
Two types of data divisions were made: by day + carrier and by carrier. With the first division, data of all
carriers is found in both the estimation and validation data, in contrast to the second division. In Tables I.1 to
1.3, we see that the estimation and validation data set are more heterogeneous when we divide the data by
carriers.

Table I.1. Percentage of tours by number of stops in the estimation and validation data set.

Number of stops Data divided by day + carriers Data divided by carriers
Estimation data Validation data Estimation data Validation data
1to2 92.52% 92.37% 90.76% 92.82%
3to5 4.65% 4.72% 6.96% 4.17%
6to 10 2.46% 2.59% 2.02% 2.64%
>10 0.37% 0.32% 0.26% 0.36%

Table 1.2. Percentage of tours by NSTR goods type in the estimation and validation data set.

NSTR goods type Data divided by day + carriers Data divided by carriers
Estimation data Validation data Estimation data Validation data
0: agricultural 2.38% 2.47% 1.52% 2.63%
1: foodstuffs 5.09% 5.25% 15.84% 2.76%
2-5: fuels, oils, metals 0.19% 0.19% 0.68% 0.08%
6: construction materials 11.14% 11.74% 4.92% 12.92%
7: manure/fertilizers 0.11% 0.10% 0.15% 0.10%
8: chemical products 53.63% 52.58% 26.98% 59.02%
9: machinery and other 27.45% 27.67% 49.90% 22.50%
Table 1.3. Percentage of tours by vehicle type in the estimation and validation data set.
. Data divided by day + carriers Data divided by carriers
Vehicle type - - — - - —
Estimation data Validation data Estimation data Validation data
Truck 49.91% 48.83% 11.35% 58.00%
Truck + trailer 9.35% 9.73% 11.03% 9.20%
Tractor + trailer 40.19% 40.91% 77.33% 32.19%
Other/special vehicle 0.55% 0.53% 0.28% 0.60%
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APPENDIX J: SUMMARY OF RESEARCH AS A DRAFT SCIENTIFIC PAPER

A BEHAVIORAL SHIPMENT-BASED MODEL OF FREIGHT
TOUR FORMATION

S. Thoen

Abstract

Tour formation is a distinguishing feature of freight transportation. An increasing amount of research is
dedicated to the consideration of tour formation in freight simulation models, but these tour formation models
lack statistical calibration on empirical data, do not represent shipments explicitly, or focus on a narrow
segment of freight transportation. This paper presents a novel shipment-based approach to model tour
formation behavior. We developed an algorithm that constructs tours through iterative allocation of an
additional shipment. Two choice models provide an empirical foundation to this algorithm. Parameters of these
choice models are estimated on a dataset with information regarding over two million shipments. This
information is gathered automatically from the planning systems of carriers transporting goods in the
Netherlands. With this model we are able to reproduce observed tour patterns excellently for a given set of
shipments. In addition, the model considers many objectives and constraints that determine the tour formation
process and acknowledges differences between goods, vehicle, and location types. For example, shipments at
ports tend to be transported with direct tours, while tours starting at a distribution center have more stops.
This model can be applied in a shipment-based freight simulation framework to construct tours for large third-
party carriers in the Netherlands.

Keywords: Tour formation, freight transportation, behavioral model, big data, third-party carriers

1. INTRODUCTION

Freight transportation is crucial for economic development, yet freight trucks have many negative external
impacts on society. Compared to passenger cars, freight trucks pay disproportionally large contributions to
congestion, air pollution, traffic accidents, and pavement wear (Hunt & Stefan, 2007; Quak, 2008; Kim et al.,
2014). As freight volumes are expected to increase only further (ITF-OECD, 2015), governments are developing
policies that reduce the negative impacts of freight transportation. Simulations models are a common tool for
the evaluation of these policies (de Bok et al., 2018).

One of the distinguishing features of road freight transportation is tour formation, multiple shipments are
delivered often in a single tour to save transportation costs (Hunt & Stefan, 2007; Sanchez-Diaz et al., 2015).
Trucks do not need to drive directly from the pick-up location to the delivery location of a shipment but may
pick-up/deliver other shipments in between. Consequently, omitting tour formation in a freight simulation
model causes inaccuracy of traffic flow predictions (Holguin-Veras et al., 2014).

Shipment-based models describe the tour formation process more accurately than models that predict vehicle
trips directly, because shipments determine the possibilities and constraints for tour formation. Consequently,
differences in the economic characteristics, constraints, and geographical distribution of goods types can be
considered in shipment-based models (Holguin-Veras et al., 2014). Additionally, shipment-based models allow
us to analyze the impacts of detailed policies and scenarios, such as new distribution centers and changes in
delivery frequencies (Boerkamps & van Binsbergen, 1999).

In this research, we develop a behavioral tour formation model that is shipment-based and calibrated on
empirical data. Calibration is performed using a data set that covers the total road freight demand in the
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Netherlands, consists of 2.6 million transported shipments, and contains highly detailed information on
shipment attributes and (un)loading locations. Shipment data are collected with an innovative method that
allows carriers to use an XML-interface to complete and deliver surveys automatically.

This paper is organized as follows. Section 2 provides a literature overview on tour formation modeling and
defines the knowledge gap that our study fills. Section 3 presents the structure of the developed tour
formation model, while Section 4 describes the data used for calibration of this model. In Section 5 the
estimated parameters of the model are presented and interpreted. Section 6 reports a validation study and a
sensitivity analysis performed with the model. Conclusions and recommendations are formulated in Section 7.

2. LITERATURE OVERVIEW

Different approaches exist to model tour formation, we distinguish the following three: (1) tour-based entropy
maximization, (2) mathematical optimization, (3) and tour construction based on Random Utility Modeling
(RUM).

Wang & Holguin-Veras (2009) developed the tour-based entropy maximization, in which an Origin Destination
(OD) matrix is estimated by finding the most likely set of tours that respects constraints such as zonal trip
productions and attractions. Sanchez-Diaz et al. (2015) extended this concept to match traffic counts and
included a time-of-day component. While this approach can connect microscopic tours to traffic counts and
macroscopic OD estimation, it is not shipment-based and a tour formation model is still needed to generate the
tours as input.

Mathematical optimization techniques can be used to form tours from a set of shipments. While the Vehicle
Routing Problem (VRP) was developed to prescribe optimal behavior to a decision-maker, VRPs may be solved
to represent observed tour formation too (e.g. Boerkamps & van Binsbergen, 1999; Taniguchi & van der
Heijden, 2000; Wisetjindawat et al., 2006; Polimeni et al., 2010; Anand et al., 2014). Others apply more
heuristic algorithms for behavioral tour formation modeling (e.g. Alho et al., 2017). As carriers sometimes use
these optimization techniques for tour formation, it is an appropriate and straightforward modeling choice if
no empirical data is available (You, 2012). To be able to base parameters relating to the objectives and
constraints in a VRP on empirical data, though, You et al. (2016) applied inverse optimization to GPS truck diary
data of the San Pedro Bay Ports in California, USA. This model is able to consider time windows, an important
constraint in tour formation, but it is not shipment-based, it is computationally too heavy for application in a
regional model, and its parameters are not calibrated in a statistical way.

RUM provides the statistical methods to calibrate parameters. These statistical methods allow us to test
hypothesized effects empirically, generalize findings to a population, and control for the correlation between
variables. The difficulty of tour formation, however, is that it is not possible to narrow it down to a single
choice. For this reason, different algorithms have been developed that form tours using several choice steps.
Hunt & Stefan (2007) pioneered this approach to behavioral tour formation modeling and applied it to the city
of Calgary, Canada. Firstly, the number of tours originating in each zone is estimated. Secondly, the vehicle type
and tour purpose are chosen. Thirdly, the tour is grown iteratively by choosing the next stop location until the
choice is made to return to the home base.

None of the aforementioned studies are both shipment-based and statistically calibrated on empirical data. To
the best of the author’s knowledge, Nuzzolo et al. (2012) and Outwater et al. (2013) are the only two studies
that satisfy both criteria. Nuzzolo et al. (2012) developed a model for restocking tours performed for and by
retailers in Rome, Italy. Tour formation starts by deciding for each shipment the number of trips of the tour
that it will be part of, after which tours are constructed with a ‘next stop location’ choice model. For their
framework in Chicago, IL, USA, Outwater et al. (2013) model the choice for the number of stops and the tour
pattern, i.e. the number of tours required to deliver all shipments. Geographically close shipments with the
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same tour pattern and number of stops are grouped into tours with a hierarchical clustering, after which a
nearest neighbor search is used to construct the sequence of locations. Only tours that distribute food and
manufactured goods from a central warehouse are modeled.

While Nuzzolo et al. (2012) and Outwater (2013) have developed tour formation models that are shipment-
based and statistically calibrated, their scope of application is rather limited: retailer restocking tours and tours
that distribute food and manufactured goods from a central warehouse. Additionally, the assumption that the
number of stops is chosen before tours are constructed is questionable. In reality the number of stops is an
outcome of the process of grouping shipments into tours. Modeling the tour formation process as such is more
appropriate.

3. METHODOLOGY

Our tour formation model allocates shipments to tours. Tours are grown iteratively through allocation of one
additional shipment. After each shipment allocation, we consider ending the tour. If the tour is ended, then a
new tour is constructed. If the tour is not ended, one shipment is selected and added to the tour and we
consider ending the tour again. Two choice models can be identified in our tour formation model, the End Tour
(ET) model and the Select Shipment (SS) model. The ET model has a binary dependent variable with the
categories ‘O = continue adding shipments to tour’ and ‘1 = end tour’. The SS model is a Multinomial Logit
(MNL) with a choice set of y shipments that may be added to the tour.

This incremental structure is similar to the tour-based microsimulation of Hunt & Stefan (2007). However, Hunt
& Stefan (2007) chain vehicle trips into a tour, while we group shipments into a tour. Additionally, we construct
a sequence of visiting locations with a separate tour sequence algorithm, while Hunt & Stefan (2007) let this
sequence depend on the iteration in which trips were added to the tour.

The ‘choices’ in the ET and SS models should not be seen as actual choices made by transportation planners.
Representing each choice made in tour formation is not a realistic goal, because tour formation is a complex
process with many unobserved choices, for which transportation planners might use different methods and
software. Instead, the two models should be seen as statistical equations that allow us to consider observed
behavior in a tour formation algorithm. To represent this behavior accurately, though, it is important that
meaningful effects can explain the dependent variable. For example, because the number of stops is not a
choice like in Nuzzolo et al. (2012) and Outwater et al. (2013) but an outcome of the process instead, we can
consider explicitly that the geographical proximity of the set of available shipments influences not only which
shipments, but also how many shipments are transported in the same tour.

Figure 3.1 shows the tour formation model in a flow diagram. In Section 3.1 and Section 3.2 we discuss the
building blocks of this flow diagram in more detail. Section 3.1 focuses on the part that is used to make the End
Tour decision, while Section 3.2 focuses on the Select Shipment procedure.

3.1 ENDING THE TOUR

Before we can start constructing tours, it is necessary to define the universal set of shipments that we
construct tours with. The universal set consist of all shipments transported on the same day by the same
carrier. We use this definition of the universal set for it is not reasonable to assume that carriers can add
shipments of other carriers to their tours, and an interview with a transportation planner indicated that the
delivery date of a shipment is often rigid.

A random non-allocated shipment in the universal set is selected as the first shipment of a new tour. We select
the first shipment at random because the tour does not have any shipments yet, there are no characteristics to
base this choice on.
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Next, we construct the sequence of visiting the loading and unloading locations of all shipments that have been
allocated so far to the tour. This sequence allows us to calculate the tour duration and, additionally, would
allow us to assign vehicle trips to a network. To construct the sequence, we have developed two tour sequence
algorithms. Both algorithms use a nearest neighbor search; after each location, the nearest remaining location
is visited. The first algorithm visits all loading locations before unloading locations are visited, while the second
algorithm visits alternately loading and unloading locations. Using more advanced algorithms to solve a
Traveling Salesman Problem would lead to shorter and more logical sequences (AlSalibi et al., 2013). However,
the computational efficiency of the nearest neighbor search is of large importance in this framework, as the
sequence needs to be constructed each time we allocate a shipment to a tour, and sometimes for a large
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number of locations (>10). With our nearest neighbor search, construction of tours from 200,000+ shipments
takes approximately half an hour.

Characteristics of the tour are calculated to obtain the probability that the tour is ended with the ET choice
model and to check constraints. In Section 5, we report and interpret the variables that explain the ET choice.
When constraints are violated, the tour is ended regardless of the probability calculated with the ET choice
model. Four types of constraints are specified: (1) proximity, (2) concrete/cement, (3) vehicle capacity, and (4)
work shift constraints.

Firstly, if there are no non-allocated shipments left with a proximity lower than o km to the tour as constructed
so far, then we end the tour because all non-allocated shipments would require a lot of additional time.
Proximity is calculated as shown in Figure 3.2. Secondly, we always end a tour with a concrete/cement
shipment, for we observed virtually only direct tours (i.e. with one shipment) transporting concrete/cement,
which can be explained by large shipment sizes and a high time-sensitivity (Khan & Machemehl, 2017). Thirdly,
because of regulations and physical limitations, the total transported weight may not exceed the vehicle
capacity. Fourthly, the tour is ended after nine hours because truck drivers are not allowed to drive for more
than nine hours on more than two days of the week in the Netherlands.
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Figure 3.2 If the current tour consists of shipments A and B, then the ‘proximity’ of shipment C is the sum of the distance of the two dashed

arrows.

3.2 SELECTING AN ADDITIONAL SHIPMENT

If the tour is not ended, we choose which shipment to add to the tour. For this purpose, we distinguish three
choice sets of shipments that may be added to the tour: the universal choice set (UC), the feasible choice set
(FC), and the consideration choice set (CC). We have defined the UC in Section 3.1: all shipments of the same
carrier and day. The FC is a subset of the UC that respects constraints, while the CC is a randomly sampled
subset of the FC.

To be consistent with the constraints in the ET procedure, we define the following types of constraints that
guide the formation of the FC: (1) proximity, (2) concrete/cement, and (3) vehicle capacity. Shipments are
removed when the proximity is larger than a km, when the shipment is concrete/cement, and when the
shipment causes the total transported weight to exceed the vehicle capacity. The tour duration constraint is
not checked in formation of the FC for it requires the construction of the tour sequence, which would get
computationally very heavy, considering that the UC can consist of hundreds of shipments.
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4. SHIPMENT DATA COLLECTION

For the development of our tour formation model, we have access to the aforementioned dataset, called the
XML microdata, that is collected by the Dutch Central Bureau of Statistics (CBS). The staggering amount of data,
2.6 million shipments, has two main reasons. Firstly, CBS draws a random sample of trucks of the total Dutch
fleet; for each truck that the CBS selects, carriers are obliged to report all shipments transported for a week.
Secondly, carriers can install an XML-interface which allows them to send the data for the survey in a (partially)
automated way from their transport management systems (de Bok et al., 2018).

A consequence of the automated data collection is that a self-selection of third-party carriers with advanced
planning systems has taken place. Third-party carriers are firms that transport goods for other parties, in
contrast to own-account carriers, who transport their own goods.

The data are listed as separate shipments and we know which shipments were transported in the same tour.
The definition of a tour is unique compared to definitions found in other studies. In the data, a tour starts at
the location where the first shipment is loaded into an empty vehicle, and a tour ends at the location where the
vehicle turns empty or at the home base location. Consequently, empty trips are not reported, and when a
vehicle turns empty before picking up its next shipment, a new tour record is started.

In addition to this shipment data, we use land use data4, employment dataS, and skim matrices®. Land use data
is used to distinguish urban and retail zones, while employment data provides the information to determine
which zones have port transshipment and goods distribution activities. We distinguish zones at the level of
‘buurten’, a Dutch administrative unit of approximately 12,000 zones. As (un)loading zones and other variables
are often not filled out, 515,810 shipment records of the approximately 2.6 million records remain for our
analyses.

In Table 4.1 we see that a strikingly large portion of tours are direct (92.44%). Khan & Machemehl (2017), for
example, found only 34.02% of direct tours in their dataset of 338 trucks in Central Texas, USA. We expect that
this is due to the aforementioned definition of a tour and the large share of concrete/cement shipments in our
dataset. Due to large shipment sizes and a high time-sensitivity, multiple-stop tours are often not feasible for
concrete/cement (Khan & Machemehl, 2017). Additionally, relatively short distances are observed because we
only analyze tours that stay within the Netherlands. Table 4.2 shows for which goods, vehicles, and locations,
direct tours are observed most often. The analyses in Table 4.2 have guided our search for explanatory
variables in our model, which is why we interpret these effects in Section 5.

* CBS Kerncijfers wijken en buurten 2015

®CBS Algemeen Bedrijven Register

6 Off-peak travel times and distances based on the shortest path with a traffic assignment of the calibrated NRM-West, a
Dutch regional transportation model

124



Table 4.1. Descriptive tour statistics.

Table 4.2. The percentage of direct tours for different

goods, vehicles, and locations.

Tour characteristics

Frequency (tours)

Tour characteristics

Percentage of direct tours

Number of stops Average 92.44%
1-2 (direct) 365,905 (92.44%) Average (excl. concrete/cement) 86.18%
3-5 18,538 (4.68%) Concrete/cement 100.00%
6-10 10,008 (2.53%) NSTR goods type”®
>10 1,361 (0.34%) 0: agricultural 73.05%
Tour distance [km] 1: foodstuffs 64.11%
0-20 172,341 (43.54%) 2-5: fuels, oils, metals 96.92%
20-40 82,995 (20.97%) 6: construction materials 97.67%
40-60 19,508 (4.93%) 7: manure/fertilizers 77.02%
60-80 14,976 (3.78%) 8: chemical products 95.25%
80-100 13,747 (3.47%) 9: machinery and other 84.14%
100-120 14,383 (3.63%) Vehicle type®
120-140 12,578 (3.18%) Truck 72.92%
140-160 11,749 (2.97%) Truck + trailer 96.44%
160-180 6,944 (1.75%) Tractor + trailer 85.26%
180-200 6,748 (1.70%) Other/special vehicle 97.29%
2200 39,843 (10.07%) Any location visited in tour’
Concrete/cement 179,468 (45.35%) Port loading 96.35%
NSTR goods type7 Port unloading 96.01%
0: agricultural 9,541 (2.41%) DC loading 68.45%
1: foodstuffs 20,617 (5.21%) DC unloading 70.35%
2-5: fuels, oils, metals 746 (0.19%) Urban zone 60.97%
6: construction materials 45,279 (11.44%) Retail zone 72.03%

7: manure/fertilizers
8: chemical products

9: machinery and other

457 (0.12%)
210,151 (53.09%)

109,021 (27.54%)

Vehicle type
Truck
Truck + trailer
Tractor + trailer
Other/special vehicle

194,875 (49,37%)
37,660 (9,54%)
160,049 (40,55%)
2,134 (0,54%)

Any location visited in tour

Port 102,679 (25,94%)
DC 176,249 (44,53%)
Urban zone 146,098 (36.91%)
Retail zone 48,164 (12.17%)

5. ESTIMATION RESULTS

This section presents the estimates of the ET and SS choice models. We distinguish three types of explanatory
variables: (1) instrumental variables, (2) location type variables, and (3) vehicle/goods type variables. Variables
were added consecutively to the models and removed when the p-value is higher than 0.05 or multicollinearity
issues arise. We tested the square root and the square of non-categorical variables in order to investigate non-
linear effects. The specification that leads to the highest pseudo-R2 was chosen if the non-linearity is clearly
interpretable. Instrumental variables were added first, for these reflect the decision-making process of a
transportation planner and are most intuitive. The ET choice model is estimated separately for the first
shipment and for later shipments, because we observed that the majority of tours is ended after the first
shipment; different effects can explain the two ET choices.

Estimation results with four model variations (A to D) are reported (Table 5.1). Observations that violate our
tour constraints are not used for estimation; in model application we do not use the choice model either when
constraints are violated. In Model A to C we vary the choice set size (y=6 or y=11) and the rigidity of the
proximity constraint (a=100km or a=150km), for these methodological model specifications are more difficult
to define intuitively than operational constraints such as vehicle capacity utilization. Fifty percent of the data
(based on date) is used to estimate Model A to C. All carriers provide shipments for the estimation data sets of

" NSTR goods type with the highest transported weight in the tour
8 Analysis excluding concrete/cement shipments
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Model A to C. Model D tests how results differ when data regarding fifty percent of the carriers is used for
estimation instead.

Table 5.1. The specifications of model variations A to D.

Model Proximity constraint (a) Choice set size (y) Data used for estimation
A <100km 6 50% of days
B <100km 11 50% of days
C <150km 11 50% of days
D <100km 6 50% of carriers

5.1 ESTIMATES END TOUR CHOICE MODEL

Tables 5.2 and 5.3 present respectively the estimation results of the ET first shipment model and ET later
shipments model. A positive parameter implies a higher probability of ending the tour.

If the first shipment of a tour requires a longer travel time from loading to unloading, the probability of ending
the tour is lower. A direct tour is more likely to be chosen for a shipment within short reach. Nuzzolo et al.
(2012) found similar effects and reasoned that carriers prefer to construct direct tours to reduce the
complexity of planning. Additionally, the travel time savings of grouping shipments might be smaller for these
shipments. The square root indicates a stronger effect for lower tour durations; the attractiveness of a direct
tour does not decrease as strongly for longer tour durations.

The probability of ending the tour increases with a larger share of the vehicle capacity (in terms of weight)
used. This reflects the strategy of transportation planners to fill vehicles optimally to save transportation costs.
The quadratic component implies a stronger effect for higher utilization rates; the transportation planner
prefers not to end the tour until the capacity is nearly reached. As capacity utilization could only be obtained
with respect to weight, many other parameters are expected to reflect differences in volume.

Tours that visit a port transshipment zone are more likely to be ended after the first shipment. The transported
shipment is likely to be a producer flow as part of an international logistics chain. These shipments tend to have
larger volumes (Friedrich et al., 2014). Consequently, it is usually not feasible to transport multiple shipments in
a single tour. When a distribution center is visited, though, the probability of ending the tour decreases. The
transported shipments are more likely to be transported to a place of consumption and to have a smaller
volume (Friedrich et al., 2014). In addition, distribution centers organize their (un)loading activities in such a
way that more customer visits can be made (Khan & Machemehl, 2017) and tend to use larger vehicles (van
Duin et al., 2012). The effect is stronger when shipments are loaded at a distribution center than when they are
unloaded. Shipments unloaded at a distribution center might be flows originating from a producer more often.

The probability of ending the tour after the first shipment is lower when an urbanized zone is visited. The
demand is more concentrated in cities, efficient tours serving multiple customers might be possible more
often. Especially if the driver has to enter a large city from a rural location it can save a lot of time to reduce the
number of trips in and out of the city.

Differences between vehicle types can be explained through differences in volumes and ease of (un)loading.
Truck + trailers are less practical for transportation of shipments of multiple customers, as the trailer needs to
be uncoupled to unload goods from the truck. Differences in goods types can be related to differences in
volume, ease of (un)loading, stricter restrictions on combination with other goods, and dispersion of
supply/demand. Restaurants with a demand for foodstuffs (NSTR 1) might be concentrated in a city center,
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while gas stations (NSTR 2-5) might be more dispersed. The estimated parameters for vehicle, goods, and
location types in the ET first shipment model show effects similar to the descriptive statistics in Table 4.2.

Table 5.2. Estimation results ET first shipment. Cells present Table 5.3. Estimation results ET later shipments. Cells present
the Beta and standard error. the Beta and standard error.
ET first shipment A&B C D ET later shipments A&B C D
R%Nagelkerke 0.442 0.439 0.570 RNagelkerke 0.292 0.293 0.186
-2 LL 47315 55186 55866 -2 LL 37894 39933 62022
Percentage correct 84.8 85.3 87.8 Percentage correct 81.8 81.6 75.1
N 75255 90000 99273 N 44618 46336 59869
Constant 1.684 1.473 1.681 Constant -2.526 -2.547 -2.516
(0.029) (0.027) (0.024) (0.062) (0.060)  (0.054)
- -1.698 -1.112 -2.403 . 0.386 0.364 0.449
J[Tour duration [h] ©0037)  (0030) (0034 Tour duration [h] (0014)  (0014)  (0.012)
. 2 5.471 6.022 5.258 . i 3.286 3.285 3.122
(Weight/capacity) (0.102) (0.098) (0.088) Weight/capacity (0.057) (0.055)  (0.048)
any port 1.588 1.484 2.354 Proximity nearest shipment 0.009 0.008 0.008
yp (0.037)  (0.035) (0.037) [km] (0.001)  (0.000)  (0.000)
. -0.578 -0.517 -0.942 -0.911 -0.841 -0.828
any loading DC (0.026  (0.024) (0.025) Lnli stops) (0.042)  (0.041)  (0.036)
anv unloading DC -0.475 -0.450 -0.765 any port 0.526 0.545 0.450
v 9 (0.026)  (0.024) (0.025) yp (0.047)  (0.046)  (0.040)
anv urban zone -0.461 -0.605 -0.499 anv loading DC -0.191 -0.179 -0.281
v (0.038) (0.036) (0.037) v 9 (0.036)  (0.035)  (0.031)

-1.295 -1.370 -1.684 0.094 0.078 -0.150

vehicle type [truck] any unloading DC

(0.039) (0.037) (0.039) (0.036) (0.035)  (0.031)

[truck + trailer] (é:gig) (é:gig) (;:323) any urban zone (g'cnl:f) (333?25) (ggzgf)

[tractor + trailer] - - - vehicle type [truck] (013665) ( 01(?56 :) (ggss : )

[other/special] - - - [truck + trailer] ((?335 g) ( C:)l ggg) (85;55)
NSTR tour [0: agricultural] (— g 5376) (— g gf:) (— g 53771) [tractor + trailer] - - -
[1: foodstuffs] (—(?(?;29) (3555}8) (—353772) [other/special] - - -

[2-5: fuels, oils, metals] ((1);13% ((1)222) ((1)51) NSTR tour [0: agricultural] ((2)(2):2) (5(2)22) ((2)(1)22)

[6: construction materials] (;ggg) (;gzi) (3322) [1: foodstuffs] (gg;;) (gggi) (g:gi)
[7: manure/fertilizers] (g;é:) - (gggg) [2-5: fuels, oils, metals] - - -

[8: chemical products] (ggiz) (3(534312) (égg) [6: construction materials] (gggi) (833:) (832:)

[9: machinery and other] - - - [7: manure/fertilizers] (_01312075 ) (_ 0127 g ;) (-(;)fff)

1.517 1.468 1.168

[8: chemical products] (0.063) (0.060) (0.062)

[9: machinery and other] - - -

Most effects are similar for the ET later shipments model, but three key differences are found with the ET first
shipment model: (1) the sign of tour duration switches from negative to positive, and (2) proximity nearest
shipment and (3) number of stops are additional variables.

The probability of ending the tour increases with a higher tour duration in the ET later shipments model. Tours
with multiple shipments are more likely to cover a full working shift than tours with one shipment. The
transportation planner prefers not to construct tours that last close to a maximum work shift duration. If the
tour lasts longer than expected due to congestion, then either customers experience a delay of a day, or the
driver must work overtime.
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If the nearest non-allocated shipment is closer to the tour as constructed so far, then the probability of ending
the tour is lower. If there are shipments that can be added with little additional time, then the transportation
planner prefers to add more shipments to the tour.

The number of stops shows a negative parameter. When the tour as constructed so far has more stops, the
probability of ending the tour is lower. An additional shipment is not as unattractive when the tour visits many
stops, the tour is already long and complex. The natural logarithm indicates a stronger effect for lower values;
tours with fourteen and fifteen are considered more similar than tours with three and four stops.

Models A and B show the same estimation results, the choice set size only impacts the shipment selection, it
does not influence the choice to end the tour. A more lenient proximity constraint (a=150km) has only minor
impacts on the estimated parameters. Model D, estimated on a subset of the carriers, leads to larger
differences with Models A to C. The only sign that changes direction is that of the ‘any unloading DC’ parameter
in the ET later shipments model; however, in accordance with the parameters for Model A to C, the ‘any
unloading DC’ parameter is still lower than that of ‘any loading DC’ in Model D.

5.2 ESTIMATES SELECT SHIPMENT CHOICE MODEL

Table 5.4 presents the estimation results of the SS model. A positive parameter increases the probability that
an alternative (i.e. a non-allocated shipment) is selected as the additional shipment to a tour. All three
variables can be considered instrumental.

The additional generalized cost is a weighted sum of the travel time (€45.12/h) and the distance (€0.45/km) the
shipment adds to a tour. These weights have been used in the Dutch national freight model BasGoed and
reflect the costs (e.g. labor and fuel) that carriers make for each driven hour or kilometer (Significance, 2018). A
shipment with a higher additional cost has a lower probability of being selected, carriers wish to minimize
transportation costs by constructing efficient tours.

As a shipment has only two stops, one for loading and one for unloading, the additional number of stops of a
shipment can be zero, one, or two. A shipment that adds more stops to the tour (or: has fewer stops in
common with the tour) has a lower probability of being selected. Shipments that have more stops in common
with the tour add less complexity to the tour and might require less additional dwelling time (e.g. parking,
(un)loading).

In 93.17% of the cases that multiple shipments are transported in a tour, we observe that all shipments have
the same NSTR goods classification. Consequently, in the SS model the probability of selecting a shipment is
higher if it has the same goods type as the other shipments in the tour. This may be explained with restricted
goods combinations.

Table 5.4. Estimation results Select Shipment model. Cells present the Beta and standard error.

Specification A B C D
R%wcradden 0.187 0.169 0.249 0.156
LL -63256 -73929 -73834 -101620
N 43409 37112 41001 67181
additional generalized cost [€] -0.005 (0.000) -0.005 (0.010) -0.010 (0.000) -0.006 (0.000)
additional number of stops -1.039 (0.010) -1.088 (0.010) -1.176 (0.010) -0.918 (0.008)
Same NSTR 2.313 (0.038) 2.712 (0.042) 2.627 (0.041) 2.176 (0.031)
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Estimation results are relatively stable for Models A to D. The pseudo-RZ of Model C is higher and the
‘additional generalized cost’ parameter of Model C is twice as low compared to Models A and B. In Model C, a
is increased from 100km to 150km. Consequently, we have a less attractive choice set, it includes more distant
shipments. Correctly predicting the observed choice is easier in such a choice set, which improves the pseudo-
R%. Distant shipments have a higher additional cost, these higher values influence the ‘additional generalized

cost’ parameter.

6. VALIDATION AND SENSITIVITY ANALYSIS

Estimation of the ET and SS models does not provide sufficient information to judge the performance of the
tour formation model. Other model aspects, such as constraints and choice set formation, influence how tours
are constructed. For this reason, we test the model performance by constructing tours with the shipments in
the validation data set (i.e. the data not used for estimation). Section 6.1 reports the validation study while
Section 6.2 presents a sensitivity analysis.

6.1 VALIDATION

The model performance is assessed by comparing the observed tours with our predicted tours. For this
purpose, we calculate the coincidence ratio between the observed and predicted frequency distribution of
tours by number of stops and by tour distance.

A coincidence ratio higher than 80% is generally considered good in validation of zonal freight trip distance
distributions (National Cooperative Highway Research Program, 2008). As the coincidence ratio is above 80%
for both the number of stops and tour distance (Table 6.1), we can conclude that our model reproduces
aggregate tour statistics excellently for a given set of shipments. In addition, the distribution of number of
stops is reproduced satisfactorily for different location and goods types (Table 6.2). The model acknowledges
that tours that visit a distribution center tend to have more stops. For unknown reasons, though, too many
direct tours are predicted for foodstuffs (NSTR1).

Table 6.1. Coincidence ratio between observed and predicted distributions of number of stops and distance. Averaged over three models
runs for A-C and two model runs for D.

Coincidence ratio

Model

Number of stops Tour distance
A 98.81% 89.30%
B 98.98% 89.36%
C 98.57% 89.54%
D 96.92% 84.19%

Table 6.2. Coincidence ratio between observed and predicted distributions of number of stops by location and goods type. Averaged over
three models runs for A-C and two model runs for D.

Coincidence ratio
Number of stops

Model
DC visited \:]igitDe((:i NSTRO NSTR1 NSTR2-5 NSTR6 NSTR7 NSTR8 NSTR9
A 99.06% 96.56% 92.66% 69.57% 95.58% 96.44% 77.94% 99.53% 92.50%
B 98.95% 97.01% 93.74% 68.84% 95.23% 96.56% 78.40% 99.55% 93.05%
C 98.79% 97.26% 91.50% 70.56% 95.46% 98.00% 80.59% 99.47% 95.35%
D 98.61% 90.36% 95.83% 85.05% 94.39% 94.88% 88.99% 96.25% 90.82%

The differences between the coincidence ratios of Models A to C are negligibly small. Consequently, we can
conclude that the model performance is robust to differences in the choice set size (A to B) and the rigidity of
the proximity constraint (B to C). Model D shows lower coincidence ratios overall than Models A to C, indicating
a worse performance. Model D was estimated with less diverse information (only a subset of carriers instead of
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a subset of days), and applied to a more dissimilar validation data set (data of other carriers instead of other
days). However, the coincidence ratios of Model D are still highly satisfactory. This indicates that model
parameters estimated for one set of carriers are applicable to another set of carriers. Because our data shows a
strong self-selection of large third-party carriers, though, the estimated model is not representative for any
other set of carriers. To be able to specify the population to which our model results apply, we need to know
better what the exact bias of the XML microdata is.

While observed distributions are reproduced well, Models A to C overestimate slightly the percentage of tours
with three or four stops and underestimate the percentage of tours with six or seven stops (Table 6.3). This is
caused by the fact that the ET later shipments model is estimated on all observations with multiple shipments.
A separate model for each iteration (i.e. third shipment, fourth shipment) is expected to lead to better results.
Additionally, too many tours with more than fifteen stops are predicted; the process of adding shipments can

linger on too long in our probabilistic iterative approach.

Models A to D overestimate the percentage of tours with a short distance (Table 6.4). We expect this to be
caused by measurement differences between observed and predicted tour distances. Observed tour distances
are filled out in the survey while the predicted distances are calculated with our tour sequence algorithm and
off-peak skim matrices. Consequently, the observed tour distances may include kilometers driven to get gas,
have lunch, and evade a congested AM or PM peak highway; kilometers that our predicted tour distance does

not include.

Table 6.3. The observed and predicted distribution of number of stops. Averaged over three models runs for A-C and two model runs for D.

Percentage of tours

Nuntwber of 50% of days for estimation 50% of carriers for estimation
stops Observed Predicted (A) Predicted (B) Predicted (C) Observed Predicted (D)
1-2 (direct) 92.50% 92.51% 92.56% 93.01% 90.76% 89.22%
3 1.97% 2.16% 2.10% 1.93% 3.28% 3.49%
4 1.49% 1.79% 1.72% 1.62% 2.25% 2.76%
5 1.19% 1.23% 1.17% 1.10% 1.43% 1.51%
6 1.11% 0.85% 0.84% 0.80% 0.81% 0.92%
7 0.68% 0.52% 0.55% 0.52% 0.51% 0.54%
8 0.35% 0.32% 0.34% 0.33% 0.28% 0.38%
9 0.20% 0.17% 0.21% 0.20% 0.25% 0.23%
10 0.14% 0.12% 0.13% 0.13% 0.17% 0.18%
11 0.12% 0.08% 0.09% 0.08% 0.13% 0.14%
12 0.09% 0.05% 0.06% 0.06% 0.05% 0.12%
13 0.06% 0.05% 0.05% 0.05% 0.03% 0.08%
14 0.05% 0.03% 0.03% 0.03% 0.02% 0.07%
>15 0.05% 0.12% 0.13% 0.14% 0.04% 0.36%

Table 6.4. The observed and predicted distribution of tour distance. Averaged over three models runs for A-C and two model runs for D.

Percentage of tours

Tour distance

[km] 50% of days for estimation 50% of carriers for estimation
Observed Predicted (A) Predicted (B) Predicted (C) Observed Predicted (D)

<50 67.78% 72.50% 72.39% 71.90% 49.50% 58.09%
50-100 9.13% 10.07% 10.13% 10.53% 19.75% 16.53%
100-150 8.02% 7.63% 7.69% 7.91% 12.59% 11.41%
150-200 5.07% 4.35% 4.38% 4.50% 7.75% 7.22%
200-250 3.13% 2.57% 2.53% 2.54% 3.79% 2.93%
250-300 2.23% 1.06% 1.07% 1.01% 2.12% 1.44%
300-350 1.56% 0.65% 0.65% 0.60% 1.50% 0.84%
350-400 1.14% 0.41% 0.41% 0.37% 1.15% 0.55%
400-450 0.72% 0.27% 0.28% 0.23% 0.70% 0.33%
450-500 0.43% 0.17% 0.16% 0.15% 0.38% 0.21%
500-550 0.27% 0.12% 0.11% 0.09% 0.25% 0.16%
550-600 0.19% 0.08% 0.08% 0.06% 0.13% 0.11%
600-650 0.11% 0.06% 0.05% 0.04% 0.10% 0.07%
650-700 0.06% 0.04% 0.03% 0.03% 0.05% 0.05%
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700-750 0.03% 0.02% 0.02% 0.02% 0.04% 0.03%

750-800 0.02% 0.01% 0.01% 0.01% 0.02% 0.02%
800-850 0.02% 0.01% 0.01% 0.01% 0.02% 0.01%
850-900 0.01% 0.00% 0.00% 0.00% 0.01% 0.00%
900-950 0.01% 0.00% 0.00% 0.00% 0.03% 0.00%
950-1000 0.01% 0.00% 0.00% 0.00% 0.02% 0.00%

>1000 0.05% 0.00% 0.00% 0.00% 0.10% 0.00%

We should note that the predicted tours are constructed with the same set of shipments as the observed tours.
This explains at least partially why observed tour statistics are reproduced so well. Solid statements about the
extent to which this tour formation model can improve traffic forecasts can be made only when the model is
applied to a synthesized set of shipments and when assigned vehicle trips are compared with traffic counts.

6.2 SENSITIVITY ANALYSIS

To further validate our model and understand its behavior, we analyze the sensitivity to travel time changes.
Four simple scenarios are defined in which all OD pairs experience the same increase or decrease in travel time.
In reality, feedback mechanisms (e.g. latent demand) and spatial demand patterns influence which links
experience larger increases/decreases, and behavior other than tour formation might be impacted (e.g. vehicle
type/shipment size choice). However, large model elaborations are required to consider this accurately and the
impacts of our simple scenarios are easier to interpret.

When travel times in the network increase, fewer direct tours (Figure 6.1) and fewer tours with 15+ stops are
predicted (Figure 6.2). Longer travel times lead to higher transportation costs; therefore, carriers have a
stronger focus on travel time savings, which may be achieved by combining multiple shipments efficiently more
often. In addition, a tour with the same set of shipments requires a longer travel time in this scenario;
regulated maximum driver shifts are reached with fewer shipments, which limits the construction of tours with
many shipments. Both impacts are interpretable and plausible, and are found repeatedly over model runs.

95.00% 1 93.81%
£ 93.00% - 92.32% 92.51% 92.80%
2 91.46% Scenario
8 91.00% - W +50% travel time
s +10% travel time
S 89.00% -
% ONull
g 87.00% 1 -10% travel time
[5)
E 85.00% : : : : W -50% travel time
+50% travel +10% travel Null -10% travel -50% travel
time time time time

Figure 6.1. The percentage of direct tours under varying travel time scenarios. Averaged over two runs with Model A.
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Figure 6.2. The percentage of tours with multiple stops under varying travel time scenarios. Averaged over two runs with Model A.

7. CONCLUSIONS

In this research, we developed a behavioral tour formation model that is shipment-based and statistically
calibrated on empirical data. Tours are grown iteratively by allocating one additional shipment until the choice
is made to end the tour. Parameters of choice models were estimated using a large and inclusive database that
covers road freight transportation performed by third-party carriers in the Netherlands.

Relevant aspects of our tour formation model include, but are not limited to, the following:

e The model is shipment-based; therefore, we can represent the possibilities and constraints that guide
the tour formation process more accurately than in tour-based models, we can consider the
heterogeneity of goods types (Holguin-Veras et al., 2014), and we can evaluate the impacts of more
detailed policies and scenarios (Boerkamps & van Binsbergen, 1999).

e  Parameters of the model are statistically calibrated on empirical data that is not limited to a specific
segment (e.g. retail restocking tours) but covers all freight demand in the Netherlands.

e  Realistic considerations influence the tour formation process. The model acknowledges that carriers
construct efficient multiple-stop tours to minimize transportation costs but prefer to construct direct
tours to reduce the complexity of planning (Nuzzolo et al., 2012) when efficiency gains are a small.
Constraints related to vehicle capacity (in terms of weight) and working shift regulations are respected
in the model.

e We can consider that tours visiting distribution centers and urbanized areas are more likely to visit
multiple stops, while direct tours are more common when a port transshipment zone is visited.

Validation results showed a highly satisfactory reproduction of observed statistics regarding tour distance and
number of stops, with coincidence ratios exceeding 90% when the model is used to construct tours with
shipments of other carriers than the carriers that provide data for estimation. Both the model estimates and
performance are robust for varying choice set sizes and shipment selection rules. In addition, increases in travel
times lead to plausible results; fewer direct tours and fewer tours with more than fifteen stops are predicted,
because there is a stronger focus on travel time savings and working shifts are filled with fewer stops.

Consequently, we conclude that this model provides a valid representation of tour formation and can be
applied in a shipment-based freight simulation framework. However, four conditions must be met. Firstly,
because the Netherlands is a particularly dense and small country, and patterns of freight transportation differ
highly between regions (Zhou et al., 2014), application of the model in other countries requires estimation of
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new parameters and possibly specification of new constraints. Secondly, in a framework covering the
Netherlands, the model should be applied only to transportation performed by large third-party carriers,
because a self-selection of these carriers has taken place in the dataset. More research is needed about the
exact bias of the dataset, or parameters should be estimated with representative data. Thirdly, off-peak skim
matrices should be used, as those were used in estimation. Finally, both a synthesized set of shipments
assigned to carriers and a vehicle type choice model are needed before tours can be constructed.

Several features that might be added to or improved about the model include the following:

e A model that predicts empty trips is of large importance. While empty trips constitute a large portion
of all freight trips (Sanchez-Diaz et al., 2015), these empty trips are not reported in the data and,
therefore, we do not model them.

e A departure time choice model would allow us to consider that traffic flows and travel times vary
throughout the day.

e  Estimation of a separate End Tour model for each consecutive shipment in a tour is expected to
improve the reproduction of statistics regarding the number of stops.

A more general direction that we recommend for future research relates to the application of a tour formation
model in a larger freight simulation framework. As mentioned, we need a vehicle type choice model and a
module that generates shipments assigned to carriers. Both are currently under development for the agent-
based MASS-GT framework of the agglomeration of Rotterdam, the Netherlands (de Bok et al., 2018). Analysis
of the relationships between shipment attributes and the geographical distribution of supply and demand
would allow for the synthesis of a realistic set of shipment that leads to accurate traffic predictions. The
integration of tour formation and vehicle type choice requires more attention. Our model assumes the vehicle
type to be given, but it might be more appropriate to allow feedback of information, e.g. choosing a larger
vehicle because capacity is nearly reached. Additionally, a traffic assignment allows us to compare predicted
traffic flows with observed traffic counts, which would give much greater insight into the extent to which this
tour formation model improves freight traffic predictions.
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