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Abstract

Air pollution within cities is rising; PM levels are estimated to have increased with 8% in
the past five years [WHO, 2016]. Although rapidly emerging technological advancements
appear to provide the answer, deterioration of air quality is only expected to increase in
the future as world population is growing [Vidal, 2016]. Roadside vegetation barriers are
assessed as part of a potential solution to this rising problem. In this study, a k—e turbu-
lence model [Kenjeres and Ter Kuile, 2013] including a dry deposition model, describing
dispersion and deposition processes experienced by the particles [Petroff et al., 2008], is
compared with a large eddy simulation (LES) turbulence model [Tong et al., 2016]. To
do so, a model describing the leaf area density (LAD) is created first. Furthermore, the
performance of the simulation model itself is validated with experimental data [Tiwary
et al., 2006] as well as previously run simulations [Tierolff, 2018]. Next, a vegetation
barrier is employed to explore its effects on particle concentrations released from a high-
way emission zone located upwind of it. Results show a significant decrease in downwind
particle concentration, but do not display a realistic concentration profile. In conclusion,
this study was unable to provide similar results as those obtained by Tong et al., [2016].
After more realistic results are obtained using nano-sized particles, relevant information
could be provided for urban planning and developing infrastructure by imitating desirable
real-life barrier configurations.



1 Preface

Although awareness of air pollution within cities is rising and rapidly emerging technologi-
cal advancements appear to provide the answer, PM levels are estimated to have increased
with 8% in the past five years [WHO, 2016]. Furthermore, deterioration of air quality
is only expected to increase in the future, as world population is growing [Vidal, 2016].
The inhalable aerosol is composed of a complex mixture of tiny particles (< PMjyg), such
as sulphate, nitrates, ammonia, sodium chloride, black carbon, mineral dust and water,
suspended in air [WHO, 2018]; hence they are invisible to the naked eye and therefore
can be of insidious danger.

In this research, roadside vegetation barriers are assessed as a potential solution to
polluted air. A k—e turbulence model [Kenjeres and Ter Kuile, 2013] including a dry
deposition model, describing dispersion and deposition processes experienced by the par-
ticles [Petroff et al., 2008], is compared with a large eddy simulation (LES) turbulence
model [Tong et al., 2016]. The main objective of this study is to compare and evaluate
results, obtained by the time-independent RANS solver, to those provided by Tong et
al., [2016], which uses the more complicated LES model instead. Simulation specifica-
tions are matched to those used in the case study. Furthermore, this study endeavours to
contribute to research that investigates their points of resemblance and difference.

Section 2 consists of theory, describing RANS together with the k—e turbulence closure
model as well as the transport of pollution. Moreover, modelling the leaf area density
(LAD) and the use of a differencing scheme are explained.

Section 3 presents the results together with discussion. In the first two subsections,
the LAD model and the performance of the simulation model are validated. Subsection
three shows the results that are compared to data retrieved from Tong [2016].

This research is executed on behalf of the BSc thesis report belonging to the bachelor
Applied Physics of Delft University of Technology.



2 Theoretical Background

Navier-Stokes theory sets the basis for Computational Fluid Dynamics (CFD) and is
worth taking a look at beforehand. The equations were first developed by Navier in France
in 1822 using molecular arguments [Bird et al., 1962]. However, besides the analytically
absolute equations developed by Navier, Reynolds made his own variant of them, essential
for CFD to function.

2.1 Equation of motion

From a mass balance over a stationary and infinite small volume element, the so-called
equation of continuity can be derived:
dp 0

(pU:) =0 (2.1-1)

The equation, which describes nothing more than the conservation of mass, comes with
an important implication. Namely, when considering an incompressible fluid, meaning
p = constant, the following conclusion can be drawn: 9U;/dx; = 0.

Now, performing a momentum balance in a similar way as was done for the mass
balance, one can derive the equation of motion and from that the sought Navier-Stokes
equations. These equations are therefore nothing more but equations for the conservation
of momentum. Momentum passes the volume element by two mechanisms: by convection
and by molecular transfer. Convection is represented by simply the rate of the bulk fluid
flow whereas molecular transfer by stress terms [Bird et al., 1962]. Moreover, in contrast
to mass, momentum can be produced inside the volume element due to external forces
acting on the system. The stress terms together form a second-order tensor and can be
rewritten into two parts; one part that corresponds to the average stress in all directions,
that is, the hydrostatic pressure P, and a part in which the stresses are determined by
other viscous effects.

The general form of the Navier-Stokes equations with varying density and viscosity
follows:
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In this equation, p is defined as the dynamic viscosity of the fluid. The Navier-Stokes
equations as expressed above, are rarely used in physics when performing calculation, as
they are usually simplified making use of specific conditions [Hinze, 1959]. For example,
equation (2.1-2) will be simplified when the viscosity of the fluid can be assumed to
be constant, as is the case in this research. The second term on the right-hand side of
equation can then be rewritten and the general expression for the Navier-Stokes equations
is modified to:
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2.2 Reynolds averaged

In order to be able to perform computational calculations on equation (2.1-3), it has to
be adjusted by separating the three terms U, p and P in an average and fluctuating part.
These terms to be substituted, look as follows:

U; = U + u; p=p+p P=P+p (2.2-1)

The average part is defined as A = 1/T fOT A(t + 7)dr, with T large compared to the
time scale of the turbulent motions. Important to realize is that the average of the
fluctuating part equals zero, thus: a = 0; for the average of the average part, on the other
hand, applies: A = A, while the average of two different fluctuating parts will also not
result in zero, so: ab # 0. With these characteristics in mind, the three expression given
by equation (2.2-1) must be substituted in the Navier-Stokes equation of a fluid with
constant viscosity (2.1-3) and overall averaged with respect to time, resulting in three
correlations of turbulence: w;u; , pu; and puzu;. In this study the effect of compressibility

may be neglected, as is usual for most studies considering turbulent motion. This second
assumption implies that p is negligibly small and hence p = p = Constant. Furthermore,
applying a constant density to equation (2.1-1), results in: OU,/0z; = 0 = 9U;/0x; =
Ou;/0x;. Only one turbulence term will remain and equation (2.1-3) can ultimately be
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The remaining turbulence term is thus %;u;, which can be interpreted as an additional
stress. These turbulence stresses pu;u; are referred to as Reynolds stresses, because
Reynolds was the first to write the general expression for the Navier-Stokes equations,
equation (2.1-2), in the form of equation (2.2-2) [Hinze, 1959], suitably known as the
Reynolds-averaged Navier-Stokes equation (RANS).

Furthermore, in this research the term representing external forces acting on the fluid
F}, is a drag force due to vegetation and will be discussed together with the source/sink
terms in subsection 2.4.

2.3 Turbulence closure model k—e

The Reynolds stresses are in fact an unknown second order tensor, existing of nine com-
ponents. It could be assumed that these turbulence stresses act like viscous stresses, such
that they are directly proportional to the mean velocity gradient, which was first proposed
by Boussinesq [Hinze, 1959]. He introduced a so-called eddy or turbulence viscosity, v,
as scalar, from which the subsequent relation for the turbulence stresses follow:

ou; U\ 2

Here k is the turbulent kinetic energy and represents the normal-stress components which
are obtained when putting 7=j for the turbulence stresses and hence is defined as: k =
u?/2. In the k—e turbulence model, the eddy viscosity is appropriately modelled by the
variables k—e according to:

vy = C,k* e (2.3-2)



The parameter C), is a model constant, whereas € is a dependent variable and represents
the rate of dissipation of the turbulence kinetic energy, k. When the assumption can be
made that the dissipating eddies are isotropic, € is defined as: € = v(du;/0z;)?, with
v = u/p, representing the kinematic viscosity [Bradshaw et al., 1981].

To close the model, two modelled partial differential transport equations (PDE’s)
describing both k£ and € need to be solved. To be able to derive these equations, the
RANS equation (2.2-2) needs to be slightly adjusted by subtracting it from the Navier-
Stokes equations for incompressible fluids, looking back at the general expression for these
equations given by formula (2.1-2). The transport equation for the velocity fluctuation
u; then follows and reads:
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Furthermore, there is divided by p so that the viscosity is written in its kinematic form.
From equation (2.3-3) and using the previously given definitions of k£ and €, the modelled
PDE’s describing both these parameters can be derived.

To end up with the modelled k-equation, the transport equation for the velocity fluc-
tuation (2.3-3) needs to be multiplied by u;, averaged and finally modelled. The equation

then reads: ok oh 3 5k 50
T i b B e -
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The above equation (2.3-4) is the modelled form of the turbulent kinetic energy PDE,
with o}, the effective Prandtl-Schmidt number as model constant and Sj the source term
relating k to tree effects [Tan, 2009]. In contrast to the predominantly exact derivation
behind the k-equation, the e-equation is more based on empiricism, which is shown by
the extra modelling constants. The e-equation can be derived by differentiating equation
(2.3-3) with respect to z;, then multiplying by 2v(0u;/0x;), subsequently averaging and
finally modelling [Hanjali¢ et al., 2009]. The equation then reads:

Oe - Oe 0 v\ Oe oU, € €
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The above equation (2.3-5) is the modelled expression of the rate of k dissipation PDE,
with o, C¢; and Ce three new model constants and S, the sink term of e [Tierolff, 2018].

2.4 Elaboration on drag, source and sink terms

The drag term F; from the RANS equation (2.2-2), the source term Sj from equation
(2.3-4) and the sink term S, from equation (2.3-5) are all representative of the way the
vegetation affects the fluid flow. To start with, F; is a drag term which the vegetation
imposes on the air moving through its leaves and branches [Steffens et al., 2012]. Air
hitting vegetation acts similar as it does with solid obstacles, causing large-scale turbulent
motion to occur. The interaction of the air with the vegetation produces eddies behind
the obstacle that are of equal size as a whole due to shear [Tierolff, 2018]. The momentum
drag is proportional to the plant drag coefficient C'p and the leaf area density (LAD). The
LAD is the ratio of leaf surface area to the total volume occupied by the vegetative element
[Tong et al., 2016], thus in [m?/m?]. Tt is an essential parameter in order to characterize
different kind of vegetation to perform calculations with and will be intensively used
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throughout this report. The formula describing the relation between the drag force and
these two parameters reads:

_ 1 _

As air moves through the vegetation’s canopy, small branches as well as individual leaves
disturb the mean fluid flow and convert kinetic energy to turbulent kinetic energy [Steffens
et al., 2012]. Small sized eddies are produced with roughly the same size as the leaves
themselves and are typified as wake turbulence. However, this turbulence created is
quickly dissipated, meaning although the turbulence behind the canopy might be high,
locally there is a low turbulence regime. The accelerated dissipation occurs because the
small sized eddies allow for a shortcut in the turbulence cascade, a phenomenon unique
to porous objects [Tierolff, 2018]. The turbulent kinetic energy is hence modelled as a
combination of a source term Sy representing the creation of turbulent kinetic energy k
and a sink term S, representing the rapid dissipation of eddies € from k [Steffens et al.,
2012]. The source term of k scales with the cube of the mean velocity and with k itself.
The expression is given by:

1 _ _
Sk = 5CpLAD (BT — BalUK) (2.4-2)

The term 3, represents the fraction of mean fluid flow converted to turbulent kinetic
energy — production of £ — and [; represents the fraction of turbulent kinetic energy
dissipated within the canopy — destruction of £ — and are both model constants. With
the help of dimensional analysis by making use of the characteristic time k/e [s] and by
adding new model constants, an expression for the sink term is composed from the source
term equation (2.4-2) and reads:

1 € — _
S.= 5CpLAD <0645PE|U|3 _ C€5Bd|U|e> (2.4-3)

Here Cey and C¢5 are model constants and regulate, together with 3, and 4, the effec-
tiveness the vegetation has on the fluid flow in the k—e model [Kenjeres and Ter Kuile,
2013]. The constant S, is equal to “1” for dense canopies, as is assumed in this research
[Steffens et al., 2012]. A full list of all the model constants that are used to close the k—e
model and thereby solve the source and sink terms, is given below in tables 1 and 2:

Ou Ok O Cel 062 Bp Bd 064 065
0.09 1.0 1.3 144 1.92 1.0 5.1 0.9 09

Table 1: Closure model [Launder and Sharma, 1974] Table 2: Source & sink terms [Katul et al., 2004]

2.5 Transport of pollution

Air pollution is caused by tiny particles, with sizes of PMs 5 and lower posing the greatest
health risk [WHO, 2018]. Their small sizes and the relatively low concentration they re-
tain, allow for the k—e model to still be considered completely valid. A transport equation
for the concentration C' of the polluting particles can therefore be drafted independently
and shows similar characteristics to the RANS equation (2.2-2):

oc - oC 0 oC
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The term D is the diffusion coefficient and S¢ the source/sink term related to concentra-
tion changes. The turbulence term cu; can be modelled as:
oC
cu;, = —K— 2.5-2
J (9.77]' ( )

The term K is the eddy diffusion coefficient from which the turbulent Schmidt number is
defined as: Sc¢; = 1 /K.

The source/sink term is determined by two separate processes, namely dry deposition
on vegetation and gravitational settling, giving: Sc = SE + S&. The expression for the
gravitational settling reads:

o
_8371 (CUSJ)

SE = (2.5-3)
Logically, the settling velocity Us,i only has a z-component because equation (2.5-3)
concerns gravity. The settling velocity can be calculated from a force balance consisting
of drag and gravitational forces. Furthermore, the Cunningham correction factor C.
needs to be added to account for non-continuum effects, as equation (2.5-3) regards small
particles. The settling velocity is then given by:

U _ chppdp2

2.5-4

In equation (2.5-4), d, is the diameter of the particle, p, the particle’s density, g the
gravitational force and C. the already mentioned Cunningham correction factor. This
correction factor is approximated by: C, = 1 + 3.334%, with A the mean free path of
the particle having a value of 0.066pum. The approximated expression for C, allows the
numerical simulation to run smoother. On the given size interval of the particles the
maximum difference is 12%.
An expression for the second process, namely the dry deposition of the polluting
particles, is given by:
SE = ~LADUC (2.5-5)

The term Uy, represents the average deposition velocity, with the subscript & indicating
the deposition process, like:

e Brownian diffusion — The irregular movement of aerosol suspended in air, caused
by collisions between the particles and surrounding molecules of much smaller size.
Affects mostly smaller particles with diameter d, < 0.1um.

e Interception — Occurs when a particle passing the obstacle too close, gets captured
on it.

e Sedimentation — Happens when aerosol collides with the obstacle due to the down-
ward motion of the particle cause by the gravitational force. Affects mostly larger
particles with diameter d, > 10um.

e Impaction — Takes place when a particle, which does not follow the streamline due
to its inertia, collides with the obstacle and can have an inertial or turbulent origin.

These all are a function of d, and hence follows: Uy(d,) = f(Ugr, Urn, Use, Ur.rm, Ur.1m)
[Sip and Benes, 2016]. Furthermore, there needs to be made distinction between two dif-
ferent types of collectors when treating deposition processes, namely needle-like collectors



and broadleaved collectors. To be able to write an expression for U}, in equation (2.5-5),
an elementary deposition velocity wug, acting on a single leaf, is defined. Moreover, two
assumptions have to be made in order to determine the collective deposition in a given
reference volume D,t.

First of all, any of the individual deposits is a function of the area of a single leaf s
as well as of Uy, = {s, 91, ..., ¥x 4}, describing the ¢ physical quantities which defines the
deposit influencing factors, such as vegetation element specifications and aerodynamics.
An relationship for the individual deposits and the elementary deposition velocity can
then be written as:

dk(M,t, \Ifk) = —sC_'uk(M,t, \Ifk) (25*6)

With M defined as a point on the interface between the vegetation and the air containing
aerosols.

Secondly, the number of leaves within the reference volume is assumed to be large
enough to define a joint probability density function (pdf), (M, ¢, ¥y), of s and Wy, which
corresponds to the deposition process k under consideration. Using the one-dimensional
pdf ¢s(M,s), the LAD can be derived by: LAD(M) = Cx(M)s(M), with Cx the
number of vegetation elements per unit volume and § the average surface of the leaves
inside the reference volume D,. An expression for the average deposition velocity can
now be defined and is given by:

Uv]f :/ iukqbé\lfk (2.5*7)
Dref(\Ilk) S

Equation (2.5-7) can be substituted in equation (2.5-5) to determine the concentration
sink term due to dry deposition [Petroff et al., 2008].

2.6 LAD modelling

The leaf area density has already been briefly mentioned in subsection 2.4, where its
importance in this research was emphasized. The LAD is the all decisive factor when
computing interaction between polluting particles and vegetation. It is a function of the
height z, depends on tree species and is a quite difficult quantity to measure inside a
forest canopy. Because of this reason, the ability to describe the LAD realistically using
an empirical relationship would be extremely powerful.

Three parameters are needed in this model, namely the tree height h, the maximum
value of the leaf area density L,, and corresponding height z,,. Watching the morpholog-
ical nature of trees, two conditions the formula should meet are imposed:

[. When z — 0 and z — h, then LAD(z) must tend to zero.
IT. At z = z,,, LAD(2) should have its maximum, that is, L,, = LAD(z,,).

In deducing the empirical relationship for the LAD, it is assumed that the formula has
a linear tendency for z > z,,, while it shows a hyperbolic behavior for z < z,. To
implement this assumption into the final formula, a parameter n is introduced, with two
values corresponding to these two intervals. With the help of eight datasets which include
the parameters as well as measured values of the LAD, derived from four different types of
forest, the two values of n could be determined. Analysis of minimum root-mean-square



error trying different values of n and comparing the results with the datasets gave the

following values:
6, 0< m
n_{ , VS E<2 (2.6-1)

1
b Z2m < 2 < h

The empirical model describing LAD(z) is derived using a mathematical procedure estab-
lished by Planck, which he used to discover the formula for pure-temperature radiation,

reading:
LAD(z) = Ly, (hh——zm) exp {n (1 — hh_ Zm)} (2.6-2)
— 2 — 2

With the values of n, as given in equation (2.6-1), to be substituted for the given intervals
[Lalic and Mihailovic, 2004]. The parameter h can straightforwardly be measured while
zm can be divided into three groups corresponding to different types of trees: 1) z,, = 0.8h
(oak and silver birch), 2) 0.6h < z, < 0.8h (common maple), and 3) z,, = 0.6h (pine),
with typical species written in the brackets [Kolic, 1978]. This leaves one still to be
discussed parameter L,,. Although in some cases L,, is a known parameter, most of the
times it is not. The leaf area index (LAI) — defined by the ratio of the leaf surface area to
the ground surface area [Tong et al., 2016], thus with unit [m?/m?] — provides a solution,
due to its analytical relationship with the LAD, given by:

LAI = / ' LAD(z)dz (2.6-3)

When the LAI is known, L,, can be calculated by numerically integrating equation (2.6-3).
In essence, the parameter L,,, needed for this model, is changed to a new parameter LAI
from which L,, indirectly follows. The LAI can be measured, in contrast to L,,, using
specific equipment such as the LAI-2000 plant canopy analyzer [Hagler et al., 2012].

After the LAD profile of a given canopy is calculated, it may be discretized in a
preferable number of bins. With each obstacle block in the z-direction, a corresponding
value of the LAD exists. In figure 1 below, an example is given with 10 bins of such a
discretized LAD profile, calculated using the theory from this subsection:

|

Normalized canopy height (z/h)
=] o
I o

LK

0 1 2 3 4 5 6 7 8 9
Leaf area density

Figure 1: Calculated LAD profile divided into 10 horizontal bins. The LAD is normalized by
multiplying by the canopy height.



To calculate this particular LAD profile, the following three parameters were used:
h = 20m, z,, = 0.6h and LAI = 5. It represents a pine tree and was used in an experiment
with which results of the model are compared in subsection 3.1 [Shaw and Schumann,
1992]. Figure 2 below shows the same LAD profile but then divided by 20 bins. One can
expect that when the number of bins increases, the analytically calculated LAD profile is
approached more accurately.

1?\ T T
-

~ \F\
5\508, N\\ i
5 -
& |
i0.6* % -
& ——
g —
5 04 —
8 —
= —
E 02k = -
z =

0 = i | | | | | |

0 1 2 3 4 5 6 7 8 9

Leaf area density

Figure 2: Calculated normalized LAD profile divided into 20 horizontal bins.

2.7 Differencing scheme

In order to perform numerical simulations, a differencing scheme must be applied. A
space is divided into a given number of control volumes and for each of these control
volumes, a value is calculated using the transport equations. The differencing scheme is
then used to assign cell face values of a control volume based on the values the surrounding
control volumes have. The quadratic upwind differencing scheme (QUDS) fits a quadratic
function through three separate points, two of which surround the cell face and one which
is located on the upstream side. Illustration 3 below shows an one-dimensional example:

U
g, & & — &

A

Control Volume

WwWw W w P e E

Figure 3: One-dimensional QUDS example.




Point P represents the center of a given control volume with points w and e marking
its cell faces. Points WW, W/ P and E are known and have assigned values indicated
by the letter ®. The wind flows in this example to the right, so there is one point to
the right of the cell faces needed in order to calculate their value. By fitting a quadratic
function through three points, both ®,, as well as ®, can be determined. In the actual
simulation this procedure is done in three dimensions and repeated with every iteration
the simulations is run. Due to its quadratic fit, QUDS is a higher-order differencing
scheme, hence making it more accurate in comparison to an upwind differencing scheme
(UDS). Throughout this research simulations are preferably run using the QUDS method.
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3 Results and Discussion

In this research results consist of, first of all, validating the model that calculates the LAD
profile for various trees and secondly, running actual simulations using the k—e turbulence
model together with the theory describing transport of pollution. All calculations of LAD
profiles and their subsequent discretizations were done in Matlab [Mat, 2017], while the
simulations of the turbulence models were done using the HPC11 cluster at the University
of Technology in Delft.

3.1 Validating LAD model

Several papers providing experimentally derived LAD profiles together with the param-
eters needed by the Matlab model in this research, were available and are essential to
examen the model’s accuracy. In appendix A-2 the code of the model is displayed. A
comparison between two datasets and calculated LAD profiles concerning a pine forest,
using the LAI as well as parameter L,, directly, are shown in figure 4 below:

 [E—
e
P
0.9 E = =+ = + J
2 N e
3 08 N e :
= [ \\ \\\ SO ~
£ o7 N\ v O\
. L \ \
) b _ \ _
2 6 Lal=2 | J LAI=5 ‘ ) ]
> I / P )
% F e // - -
0.5 + P b
g L ~ /// -
S 04 - —
o P
—8 s a 7 —
L P T
= 03 /4 i 1
< 7 o ——Calculated LAD from LAI
é 02°LC Y R _ _ Calculated LAD from L B
o r // L m
Z. [ 7/ ) // + Observed LAD [Shaw and Schumann, 1992]
0.1 L /// 4 - .
L // s
E // s
0cr ( A | | [ | | |
0 1 2 3 4 5 6 7 8 9

Leaf area density

Figure 4: Calculated and observed vertical profile of the LAD for two values of LAI in a pine forest.
The LAD is normalized by multiplying by the canopy height.

It appears that for calculated LAD profiles where the known value of parameter L,, is
used — meaning it did not needed to be indirectly calculated according to the procedure
as explained at the end of subsection 2.6 — the results show the closest resemblance
to measured LAD profiles from experimental data. When first calculating parameter L,,
from the LAI value, provided in the same experimental datasets, the resulting LAD profile
shows higher values, hence it is shifted to the right. The contrast between computing L,,
from the LAI or using it directly to calculate the LAD profile can be explained when
considering the derivation of equation (2.6-2). The equation, together with the values
of n applied on two different intervals, was derived using eight datasets for which all
the necessary parameters, namely h, z, and L,,, were known, as well as the actual
LAD. Besides the to be deduced equation, parameter n was still unknown and is actually
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derived from the datasets. For every dataset, L,, was directly substituted, instead of the
calculating it indirectly from the LAI, in order to derive equation (2.6-2) as n was an
unknown parameter at first; hence calculating the LAD profile in this manner shows the
greatest similarities with the datasets. Calculating L,, in advance indirectly from the
LAI would be dependent on used values of n, while L,, itself, as parameter with a given
value, is independent of n. When using the LAI instead, equation (2.6-2) computes the
parameter L,, indirectly, showing an error of not larger than 15% in comparison with L,,’s
actual value. Moreover, this error is the largest error found in the overall LAD profile,
as L,, represents the maximum value of the LAD. The error decreases towards 0% when
moving away from L,,, which is located by definition at height z,, as can be seen in figure

4.

3.2 First test case

The performance of the simulation model is first tested by comparing results with a case
study, considering a Hawthorn hedge, found in: Modelling the size-dependent collection
efficiency of hedgerows for ambient aerosols [Tiwary et al., 2006]. The experiment con-
ducted in the case study has already been considered using the same simulation code as
is used in this research [Tierolff, 2018]. Several recommendations for parameters, showing
the best agreement with the experiment, as well as the general simulation specifications
are replicated from the previously ran simulation.

The height of the hedge (H) is 2.2m and its width (I¥) is 2m. In the y-direction, the
hedge has a total length of 20m. Concerning the computational domain, space before the
hedge in the z-direction is 30.4m/15.2WW and space after is 64m/321V. No extra space
was added in the y-direction and, naturally, only space was added above the hedge in
the z-direction, covering 19.8m/9H. The total domain then is 96 x 20 x 22m?, where the
maximum cell size amounts 2 x 4 x 2m® and at the obstacle 0.05 x 0.5 x 0.05m3. The
created mesh consists of 131 x 25 x 85 control volumes and is displayed below in figure 5
for the z-z plane:

Figure 5: Created grid as used in first test case.

The LAD profile of the Hawthorn hedge was provided in the experiment and is dis-
cretized into 11 bins. It could also be calculated by the empirical model using the pa-
rameters given in the case study. Figure 6 below shows the two LAD profiles, for which
simulation results can be compared, in a single plot:
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Figure 6: LAD profile from case study plotted together with calculated one.

From the LAD profile provided in the case study, parameter L,, = 6.77 at a height
Zm/H =~ 0.75 could be retrieved, so no indirect calculation using the LAI was needed.
With parameter H = 2.2m also given, the LAD profile could be calculated using the Mat-
lab model as the three needed parameters are known. Figure 6 shows that the calculated
LAD profile is smaller by a maximum value of about 1, with the least difference at the
beginning and end point of the canopy height as well as at z,,/H, where the two graphs
touch. A smaller LAD profile indicates a less dense foliage and hence would suggest higher
concentrations to be observed when comparing simulation results later on between the
two LAD profiles. The maximum value with which the two profiles differ is highly depen-
dent on z,,/H, which sits around 0.8. On the interval between z/H = 0 and z/H = 0.2
the LAD profile from the case study does not tend to zero but stays constant, which can
be explained by the woody stem of the Hawthorn making a local increase of the LAD
possible. Moreover, the LAI, which was not provided in the case study, could be reversely
calculated using the Matlab model and has a value of around 2.6.

For the inlet wind velocity, the classical logarithmic profile is used, given by:

u_ %m (Z ki ZO) (3.2-1)

u* 20

With zg the roughness height, reading 0.01892m, k& the Karman constant having a value of
0.41 and u* the friction velocity, which is recommended to have a value of 0.1903m/s. The
inlet profile of the wind velocity has a major influence on the overall simulation outcome
and needs to be determined precisely in order to retrieve correct results.

Another important parameter is the drag coefficient, which was compared for different
values with measured data from the experiment and found to show best agreement when
having a value of Cp = 0.19 [Tierolff, 2018].

To test simulation results and compare them with the ones obtained when implement-
ing the calculated LAD profile, several parameters are chosen from the case study. The
particle diameter is set to D), = 15pum and the leaf width of the hedge to [ = 0.005m. The
Hawthorn hedge is first assumed to be a pure broadleaf collector, meaning the deposition
velocity as described in subsection 2.5, is calculated solely using the broadleaf model.
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The first simulation run, is identical to the one run by Tierolff [2018] when considering
the case study and the resulting concentration field is shown in his MSc thesis report in
figure 14.A [Tierolff, 2018]. In the second simulation run, all parameters are kept identical
and only the LAD profile provided in the case study is changed with the one calculated
by the empirical model. Figure 7 below shows the results of the concentration field from
the two simulations:

(a) Simulation with provided LAD profile.

(b) Simulation with calculated LAD profile.

Figure 7: Concentration field from simulation using same specifications but two different LAD profile’s.

The lowest concentration is observed at the upper half of the hedge around the
downwind edge. This corresponds to the largest value of the LAD which is located at
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zm/H = 0.75. The fact that the lowest concentration is situated around the downwind
edge makes sense as the particles have passed the longest distance inside the canopy when
they arrive at this point. After the hedge the concentration increases again as lower and
higher particle concentrations in the air meet and get mixed.

When looking at figure 7(a), extremely similar results are generated in comparison to
those of Tierolff [2018] as expected, because identical simulation specifications were used.
However, results were not exactly the same and values, especially in the region where the
concentration is the lowest, differed with 0—2%. This small deviation can be explained by
minor specification differences when running the simulation, like the scaling factor which
has influence on the inlet velocity profile.

More interesting is comparing figure 7(a) to 7(b). The latter shows an overall slightly
higher concentration field, but both figures hold very similar characteristics. The dif-
ference in simulated concentration field can be explained when looking back at figure 6,
showing the two LAD profiles in a single plot. Because the calculated LAD profile, used
to run the second simulation shown in figure 7(b), is smaller than the one provided by
the case study, the canopy of the hedge is less effective in decreasing the particle concen-
tration. This result hence agrees with the previously done prediction when discussing the
difference between the two LAD profiles from figure 6.

Two velocity profiles are extracted from the simulation results at z/H = 0.1 and
x/H = 10 behind the hedge. All the simulation specifications are kept unchanged and
the LAD profile provided by the case study is used. In the case study, measurements of
the velocity at the same position behind the hedge are performed at three heights, namely
at z/H = 0.25, z/H = 0.50 and z/H = 0.75 [Tiwary et al., 2006]. Figure 8 below shows
the simulated velocity profiles together with measurement data:
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Figure 8: Velocity profiles retrieved at /H = 0.1 & z/H = 10 together with measurement data.

Considering the velocity profile at x/H = 0.1, the maximum value of the LAD is
located around z/H = 0.75 and therefore a decrease in velocity can be observed near this
location. The velocity increases again after this point, reaching eventually the free stream
velocity. At z/H = 0.50, the model underpredicts the wind velocity with respect to the
measurement. The drag coefficient largely influences the velocity profile in the region
z/H = 0.40 — 0.75 and when using a slightly lower drag coefficient, like Cp, = 0.17, better

15



matching results could be achieved with this measurement point. However, the wind
velocity would then again be overpredicted at z/H = 0.75, where the drag coefficient has
the most impact. Velocity profiles that are extracted farther behind the hedge do not show
the characteristic increase to decrease to, again, increase, because the wind velocity at
this point is already distributed more evenly. Instead, they show a solely increasing wind
velocity with increase in height. An example is shown by the velocity profile retrieved at
x/H = 10, marked with the dashed line in figure 8.

In validating the performance of the simulation model, a final comparison is done
considering the collection efficiency for different particle sizes. The collection efficiency

(CE) is defined as: oo

in — Yout

CE = c

with Cj, and C,,; the particle concentration measured at x/H = 0.1 upwind and down-
wind respectively at a height z/H = 0.75. Specifications of the simulation are adopted to
the recommended ones in order to achieve best matching results with the experimental
data. The hawthorn hedge is not considered a solely broadleaf collector anymore, but in-
stead a combination of a broadleaf and needle-like collector. Leaf hairs and thorns of the
hedge namely increase the deposition velocity and hence the hedge should be represented
as partially a needle-like collector. Using a distribution variable ¢, the respective weight
between the two types of collectors, each with their corresponding deposition velocity
model, could be set with the following relationship: Uy(d,) = (1 — ¢)Uproed + pUpecdle
[Sip and Benes, 2016]. The mean leaf width is provided in the case study and is set to
[ = 0.022m, whereas the needle diameter is estimated to dy = 0.0005m. The distribution
variable is recommended to have a value of ¢ = 0.30 [Tierolff, 2018]. Multiple simula-
tions are run, using identical particle diameters as were measured during the experiment.
Figure 9 shows the results of the CE:
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Figure 9: Simulated concentration efficiency together with measurement data.

Simulation results clearly show the trend of increasing CE for particles of larger size.
The results match the experimental data well, except for D, = 6.25um, where the model
overpredicts the CE. By lowering ¢, the CE will be lowered as the proportion of fine needle-
like collectors, with corresponding higher deposition velocities, is decreased. However,
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CE results at other measurement points, including at D, = 15um, will all be lowered
simultaneously.

3.3 Second test case

After initially testing the performance of the RANS simulation model, results of a second
case study obtained with large eddy simulation (LES) turbulence model are compared;
the results are found in: Roadside vegetation barrier designs to mitigate near-road air
pollution impacts [Tong et al., 2016]. The more complicated LES model was initially
evaluated against the same dataset [Hagler et al., 2012] adapted by a previous research
[Steffens et al., 2012], which used the comprehensive turbulent aerosol dynamics and gas
chemistry (CTAG) model in addition to RANS to simulate vegetation effects on polluting
particles. Although discrepancies were present, results from LES compared to the original
dataset showed overall close agreement [Tong et al., 2016].

Common near-road configurations are drafted, consisting of only vegetation or a com-
bination of vegetation and a physical barrier. The vegetation is represented by a mixture
of coniferous evergreens, like Pine and Cedar, meaning only the needle-like velocity de-
position model is used. The needle diameter is estimated to dy = 0.005m based on these
tree species. The case study uses the same LAD profile as the one provided by Steffens
et al., [2012]. It was claimed to be calculated as described in subsection 2.6, using equa-
tions (2.6-2) and (2.6-3). Subsequently, two LAD profiles are calculated having similar
parameters: one using the unadjusted theory to compare results, the other using adjusted
intervals for n in equation (2.6-1) in order to reproduce the provided LAD profile. Figure
10 shows the three LAD profiles in a single plot:
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Figure 10: LAD profile used by case study plotted together with calculated ones.
The provided LAD profile shows a distinctive nod around z = 0.04h, which indicates
equation (2.6-1) was adjusted by modifying the lower interval from 0 < z < z, to a

relatively small region 0 < z < 0.04h, still having the same value n = 6. Furthermore, the
upper interval of n, going from z,, < z < h, is modified to occupy the remaining region
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0.04h < z < z =< h. In summary, the original equation (2.6-1) for n is changed to:

(3.3-1)

3, 004h < z<h

{& 0 < z < 0.04h
n =
It is striking that the new boundary of the two intervals is not anymore where it should be,
namely at z,,(= 0.4h), but instead at z,,/10(= 0.04h). Possibly a mistake was made, as
the calculated LAD profile with modified intervals of n appears unnatural in comparison
to the calculated LAD with original intervals of n. The LAI is measured with a LAI-2000
plant canopy analyzer and has a value of LAI = 3.3 + 1.0 [Hagler et al., 2012]; when
constructing the original LAD from figure 10, the LAI is actually set to LAl = 4. The
provided LAD profile is divided in 14 bins and used later on.

The computational domain has dimensions 227 x 150 x 50m?® and is divided in 248
x 70 x 160 control volumes. The maximum cell size is 2 x 4 x 2m? and at the obstacle
0.1 x 1 x 0.05m?. A logarithmic inlet velocity profile normal to the barrier is generated
using formula (3.2-1), with an average inlet velocity of v = 2m/s [Tong et al., 2016].
The roughness height has a value zy = 0.6m, appertaining to the given coniferous canopy
[Katul et al., 2004], whereas the friction velocity reads v* = 0.382m/s. The particles in the
case study have diameters D, ranging from 15nm — 253nm, with density p, = 1500kg/ m’
[Hagler et al., 2012]. Moreover, they experience a plant drag coefficient, having a value
of Cp = 0.2 [Katul et al., 2004]. Important to note is that the particles are not anymore
released from the domain inlet, but from a highway emission zone reaching 0.5 to 2 meters
in height, with a width of 12m.

The baseline configuration considers a row of 6m tall trees, 12m wide, located at 3m
away from the road. Figure 11 gives a schematic representation of this configuration,
including appropriate proportions:
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Figure 11: Schematic representation of baseline configuration.
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Furthermore, figure 12 shows the created mesh for the x-z plane:

Figure 12: Created grid as used in second test case.

At the location of the highway emission zone a finer mesh is chosen, in order to
accurately track the concentration of the particles. The first vertical dense grid lines
visible, represent the start of the road, whereas the second indicate the end of the road
together with the start of the vegetation 3m behind it. The third and last vertical dense
grid lines indicate the end of the vegetation.

To start off, instead of emitting the particles from the highway emission zone, they
are released from the inlet, identical to the first test case. Doing so enables to create a
first impression of the new setting, consisting of a different domain, velocity profile, LAD
profile and so on. Figure 13 shows the resulting concentration field from such simulation
using D, = 100nm:

[~ |

Figure 13: Concentration field using model from first test case, D, = 100nm.

The results are as expected; because the entire domain has a particle concentration
of one as initial condition, the concentration field shows relatively high values. The first
square indicates the 2m tall highway emission zone, deactivated during this simulation,
and the second square the 6m tall vegetation. The lowest concentration is witnessed
around the downwind edge of the tree stands, just like in the first test case. The fact
that the canopy does not reduce the concentration with roughly 10% like then, but with
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merely 0.1%, can be explained because of the small particle diameter now used. The
canopy is much less effective in reducing particle concentration for these smaller sized
particles, implying their deposition velocity is lowered significantly.

The model is slightly adjusted so that the particles will be released solely from the
highway emission zone. The particle concentration normalized by the peak concentration
from a no-barrier case at corresponding particle size is measured and defined by the letter
X- The concentration field of the no-barrier case is shown in figure 14 and in order to
compare results, the concentration field of the baseline configuration using D, = 15nm is
shown in figure 15:

Figure 14: Concentration field no-barrier case, D, = 15nm.

]
q@

Figure 15: Concentration field baseline configuration, D, = 15nm.

In contrast to figure 13, which shows the concentration field generated using the model
from the first test case, the concentration is overall low in both plots. The highest concen-
tration can be observed at the end inside of the highway emission zone, as the particles
are released from the entire zone and pushed due to perpendicular wind to the end of the
road, where subsequently accumulation of the particles takes place. The particles in the
no-barrier case just undergo dispersion with no vegetation barrier present, which is well
noticeable by the scattering of particles behind the emission zone.
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Results differ, logically, regarding the baseline configuration. Due to the particles de-
celerating upwind to the vegetation barrier in addition to their accumulation at the end
of the road, the on-road concentration is elevated in comparison to the no-barrier case. In
between the highway emission zone and the vegetation barrier, similar patterns of scat-
tering due to dispersion can be observed as in the no-barrier case. Within the vegetation,
the concentration remains about constant after it decreases instantly, immediately behind
the barrier. A sharp drop in concentration makes sense as the particles with D, = 15nm
are the smallest particles to be tested and hence should show a higher deposition velocity
than larger particles would. The fact that the sharp drop occurs behind the vegetation
barrier instead of within is not expected and needs to be investigated further using the
normalized concentration results for different particle sizes.

In order to obtain correct normalized concentration results, the location of the peak
concentration in the no-barrier cases needs to be determined first using figure 14, plotted
using D, = 15nm. Its location is in the on-road regime, at 11.85m distance and 0.70m
height. Like in the case study, all the data measurements are performed over a distance
of 100m, starting from the road. The measurements are performed at the corresponding
height of the peak concentration of the no-barrier case to ensure valid results; that is in
general at z = 0.70m. Figure 16 includes measurement data from the case study as well
as the most essential results generated, after performing multiple simulations:
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Figure 16: Normalized concentration profiles together with provided data.

Concerning the different particle sizes tested in the case study, only concentration
profiles of the smallest and the largest ones, respectively 15nm and 253nm in diameter,
are plotted. The simulation results for these and all other particle sizes in between are
identical, which strongly disagrees with the results provided by the case study. The
discussed constancy of the particle concentration from figure 15 within the barrier as well
as the sharp drop behind it, are again well visible in figure 16 and evidently apply also to
the plotted particles with D, = 253nm.
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When comparing the simulated results of D, = 15/253nm with those from the case
study, both have similar concentrations profiles in the on-road regime. They reach a
normalized concentration value of around 1.2, which is an increase of roughly 20% with
respect to the no-barrier case. Same argument can be made as was given for the results
in figure 15 in the on-road regime: the on-road particle accumulation upwind to the
vegetation barrier together with the deceleration of the perpendicular moving wind, causes
the local increase in particle concentration.

The simulated concentration profiles of D, = 15/253nm inside the vegetation are
highly unrealistic and differ strongly with those provided by the case study. The concen-
tration remains almost constant within the vegetation, after it sharply drops behind the
barrier. Based on multiple simulations run, needle diameter, particle density and refer-
ence velocity do not explain this result; nor does the particle diameter — figure 18 shows
that a result with similar characteristic is already obtained using D, = 5um. Further-
more, the velocity profile, as always, has large effect on simulation results, but varying
this would change concentration profile results not only for the barrier regime, but the
entire domain. Measuring concentration profiles at different heights, like at 2m, 3m or
even 6m, only makes results worse. However, one parameter that majorly influences the
results for particles with diameters in the nanometer range, is the plant drag coefficient
Cp. With an unrealistically low value of C'p = 0.05 and a measuring height of 2.25m — for
a drag coefficient this low, changing the measuring height in contrast does improve the
normalized concentration results with respect to the case study — best agreement could
be achieved with the results of D, = 253nm. When continuing the trend of decreasing
Cp, one quickly arrives at C'p = 0 which represents the no-barrier case in this study; in
this case, the vegetation does not interact with the particles whatsoever according to the
theory described in subsection 2.4.

Looking at the no-barrier case, results of the simulation and the case study are quite
similar. From the start of the vegetation barrier until the end of the domain, the simulated
plot decreases faster and eventually reaches x ~ 0.1. In the y-direction, there is an empty
space of 25m created at each side of the domain. When this empty space is neglected,
the two plots better agree, as the particles from the simulated case cannot disperse to the
sides of the domain anymore, resulting in a higher normalized concentration profile.

The dry deposition model, constituted in Tierolff [2018], suggests to not realistically
predict particle movement of the particle sizes tested in the case study. From all different
factors influencing the deposition velocity as discussed in subsection 2.5, the only depo-
sition process that has increasing effect with decreasing particle diameter is Brownian
diffusion [Petroff et al., 2008]. Figure 5.A in Tierolff [2018] as well as figure 1.A in Sip and
Benes [2016] support this claim, showing a major shift from several different deposition
processes acting in the micrometer range to Brownian diffusion gaining dominance in the
nanometer range. However, these figures also suggest interception still may play an active
roll for particles with D, > 100nm, or perhaps even lower.

To test if this argumentation indeed explains the obtained results, the dry deposition
model is turned completely off, while the plant drag coefficient is kept unchanged at
Cp = 0.2. Results are shown in figure 17:
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Figure 17: Normalized concentration profiles together with dry deposition model turned off.

The results apodictically falsify the previous proposed reasoning, as the only difference
between having the dry deposition model active or not, is the fact that the overall concen-
tration with the latter is higher due to the various deposition processes not acting on the
particles anymore. With no dry deposition, the unexpected sharp drop behind the vege-
tation barrier is still visible, while the concentration remains almost constant within the
canopy. On the other hand, the strong dependency between the concentration profile and
the plant drag coefficient, together with the theory provided in subsection 2.4, give rise
to a renewed argumentation: regarding this specific study, the current k—e turbulence
model does not realistically predict particle movement of the concerning particle sizes.
The interaction between nano-sized particles and the vegetation barrier cannot correctly
be modelled. In the no-barrier case, the dry deposition model is still active, strengthening
this argumentation only more as the concentration profile shows a natural decline within
the vegetation similar to the results provided by the case study.

The simulated results show that the vegetation with Cp = 0.2 is retaining the small
sized particles, resulting in a constant concentration profile, while almost no dispersion
takes place. The sharp drop behind the vegetation can simply be explained by a mass
balance analysis. While the normalized concentration of particles remains constant around
X = 0.8 within the canopy, there are no particles left to provide for a realistic decline in
concentration behind the barrier. Instead, it appears hyper dispersion has taken place,
eventhough this is not the case. Eventually, the particle concentration approaches the plot
of D, = 15nm from the case study around 25m downwind of the barrier. In appendix
A-1, a brief summary of the reasoning behind the expected results from the case study is
given.

In the first test case, the performance of the simulation model was tested using particles
with diameters in the micrometer range. Three different particle sizes in this range are
plotted in figure 18:
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Figure 18: Normalized concentration profiles in pm-range together with provided data.

All three show a much more natural deposition process within the vegetation barrier,
followed by a small decline due to dispersion. Particles with D, = 5um already start to
approach a similar concentration profile as those of the D, = 15/253nm plots. These three
plots indicate that current turbulence model does not lack to produce realistic simulation
results for larger particle sizes.

The turbulent kinetic energy and velocity fields are plotted in figures 19 and 20:

Figure 19: TKE field, baseline configuration with D, = 15nm.
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Figure 20: Velocity field, baseline configuration with D, = 15nm.

Inside vegetation barriers, especially forest canopies, there usually forms a sink of TKE
when the LAD or plant drag coefficient increases, as leaves act as turbulence suppressors
[Kenjeres and Ter Kuile, 2013]. Referring back to subsection 2.4, leaves inside the canopy
namely generate small-scaled eddies causing a quick dissipation of TKE. Moreover, larger
generated eddies behind the obstacle due to shear causes acts as a source of TKE. Both
processes are well visible in figure 19, showing a region of low TKE within the vegetation
barrier, followed by a region of high TKE just behind it. Another interesting aspect is the
fact that both the high region of TKE in figure 19 and the hyper dispersion of particles
visible in the same region, looking back at figure 15, confirm each other; higher TKE
means an increase in turbulent mixing, leading to a faster dispersion of particles [Sl’p and
Benes, 2016].

The velocity within the canopy decreases substantially due to the drag imposed by
the vegetation, as is shown in figure 20. However, it reaches its lowest value behind
the canopy, where a strong velocity gradient is created. When looking upwind to the
vegetation barrier, part of the logarithmic inlet velocity profile can be recognized.
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4 Conclusion

In this research, an empirically derived leaf area density (LAD) model is implemented in
Matlab and used to calculate and discretize LAD profiles of various tree and plant species.
In the model, crucial parameter L,,, representing the maximum value of the LAD, can be
obtained by numerically integrating the LAD function in the case its value is unknown.
Calculated LAD profiles using numerically obtained values of L,, are similar, although
15% too large at most, in comparison to measured LAD profiles from experimental data.
As a consequence, they are slightly shifted, while closest resemblance to experimental
data is obtained when using known values of L,,.

Moreover, the performance of the simulation model is tested. The results from the
simulations, considering a Hawthorn hedge and particles with diameters in the microm-
eter range, show overall close agreement with the experimental data from the first case
study provided by Tiwary et al., [2006], as well as with the previously obtained results
from Tierolff, [2008], which uses the same simulation code as is used in this research.

Review concerning main objective study:

The simulation model is compared with a large eddy simulation (LES) turbulence model
from the second case study provided by Tong et al., [2016]. A common near-road baseline
configuration is drafted, consisting of a 12m wide vegetation barrier with 6m tall coniferous
trees. From a highway emission zone, located upwind to the barrier, the pollutants are
released. The LAD profile provided by the case study, is calculated using a slightly
adjusted formula than the one used in this research and therefore shows a distinctive nod
around z/h = 0.04. Normalized concentration results are compared and evaluated against
those obtained by Tong et al., [2016], which examines particles with diameters ranging
from 15nm — 253nm:

e An unexpected sharp drop behind the vegetation barrier is visible, while the concen-
tration remains almost constant within the canopy; a mass balance analysis confirms
this. On top of that, concentration profiles using D, = 15—253nm are identical. Be-
cause the dry deposition model does not influence these observations but the plant
drag coefficient drastically does, it can be argued that, regarding this specific study,
the current k—e turbulence model does not realistically predict particle movement
of the concerning particle sizes. It is recommended to re-examine part of the the-
ory behind the model that depends on the plant drag coefficient and describes the
interaction between vegetation and fluid flow.

e The no-barrier case, with Cp = 0 but LAD still active, as well as a barrier case using
an unrealistically low value of the plant drag coefficient, provide similar results to
those found in the case study, giving rise to the same, drawn argumentation. In
a future study, it is suggested to make the LAD inactive when simulating the no-
barrier case, as the dry deposition model may otherwise still effect concentration
results.

e Particles with diameters of D, > 5um, do not experience similar behavior as the
nano-sized particles do, implying the turbulence model provides realistic results for
larger sized particles. This corresponds with the accurate results obtained in the
first test case, using particles with diameters in the micrometer range.
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Variations between the most dominant deposition processes acting on particles in the
nanometer range — these are presumably Brownian diffusion and perhaps also interception
— could not be explored in detail with the current results. When improved results are
realized, it is hence suggested to investigate the dependency of the deposition velocity
on the particle diameter using identical simulation specifications to clarify the regimes
in which a specific deposition process dominates relative to others. In addition, different
deposition models could, moreover, be compared with one another.

At a later stage, after more realistic results are obtained using nano-sized particles, it
would be interesting to perform simulations with barrier specifications varying from the
baseline configuration to test the model’s diversity and to be able to imitate desirable
real-life barrier configurations, yielding relevant results.
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Appendix

A-1

A brief summary of the reasoning behind the results from the case study which were
expected is given below for D, = 253nm and D, = 15nm [Tong et al., 2016]:

— Concerning the particles with size D, = 253nm, it was expected their concentra-
tion profile would be greater in the immediate vicinity behind the barrier than
the no-barrier case, due to reduced dispersion within the vegetation as well as the
generated behind-barrier wake zone, as the general acting dispersion of particles
in the no-barrier case is more efficient than the deposition of those particles due
to vegetation. Roughly 20m downwind of the barrier, the concentration is lower
than that of the no-barrier case, which can be explained by a mass balance.

— The particles with size D, = 15nm experience a sharp drop in concentration
within the vegetation barrier due to their higher deposition velocity. The con-
centration already is lower in around the start of the barrier than the no-barrier
case. Downwind of the barrier, dispersion shows almost no effect because of the
low particle concentration.

A-2

Matlab model used to calculate LAD and print obstacles in requested format:

© 0 NN O A W N

e =
w N = O

14

15

16
17
18
19
20
21
22
23
24

close all
clear all

%% Calculating LAD

h = 6; %Height of coniferous Evergreen

z = 0.4%h; %Location at which maximum LAD occurs
LAI = 4; %Leaf Area Index

k = 50; %Number of discretizations

%$Calculate L_m analytically

n = 0@(z) ((0<z & z<z_m).*6 + (z_m<z & z<h)=*0.5);

$n = @(z) ((0<z & z<0.04xh).»6 + (0.04xh<z & z<z._m).x0.5 + (z_m<z &
z<h) *0.5); Modified interval of n

LAD = @(z,L_m)
Lm.*((h-z.m)./(h-2z)). " n(z).*exp(n(z).+x(1-(h-z_m)./(h-2)));

f = @(L.m) integral(@(z)LAD(z,L.-m),0,h, 'waypoints', [0 z_.m h])-LAI;

L.m = hxfzero(f,0);

%$Use calculated L.m to discretize LAD

z = linspace(0,h,k);

LAD = Lm.*((h-z-m)./(h-2)). " n(z).+exp(n(z) . (l-(h-z_m) ./ (h-2)));
plot (LAD,z/h, "k")

axis ([0 Lmx1.1 0 11])

xlabel ('"Leaf area density')
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25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47

48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66

67

68

69

ylabel ('Normalized canopy height (z/h)

%% Specification blocks vegetation
Xstart_veg = 15;

Xend.veg = 27;

Ystart_veg = 0;

Yend_-veg = 100;

")

X_s = ones(l,k-1)«Xstart_veg;

X_e = ones(l,k-1)«Xend_veg;

Y_s = ones(l,k 1l)xYstart_veg;

Y_e = ones(l,k-1)+*Yend_veqg;

Z.s = z(1: end 1); %Number of intervals are k-1
Z_.e = z(2:end);

A = (LAD(l:end-1)+[LAD(2:end-1),LAD(end-1)])/2;

LAD for each interval on z

Array.veg = round([X_.s;X_e;Y_.s;Y_e;Z_s;Z_e;A]l"',5);
for i = l:size(Array._veqg,l)
if Array.veg(i,7) ==
fprintf('%$1.0£f. %$1.0f. %$1.0f. %1.0f. %1.1f %1.1f
\n',Array-veg (i, :))
else
fprintf ('%$1.0f. $1.0f. %$1.0f. %1.0f. %1.1f %1.1f
\n',Array.veg (i, :))
end
end
Table = array2table (Array._veqg, 'VariableNames',
{'X,start‘,'X,end',‘Y,start',‘Y,end','Z,start','Z,end',

%% Specification blocks barrier
Xstart_block = 0;

Xend_block = 12;

Ystart_block = 0;

Yend_-block = 100;

Zstart_block = 0;

Zend_block = 2;

Array-block =

[Xstart_block;Xend_block;Ystart_block;Yend block;Zstart_block;Zend block]"'

for i = l:size(Array-block,1)

fprintf('%$1.0£. $1.0f. $1.0f.

\n',Array._block (i, :))
end

$1.0f.

$1.0f.

$Taking average of

$1.0f.

$1.4f

"LAD'}) ;

$1.0f.
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