

Delft University of Technology

Evolutionary algorithms-assisted construction of cryptographic boolean functions

Carlet, Claude; Jakobovic, Domagoj; Picek, Stjepan

DOI
10.1145/3449639.3459362
Publication date
2021
Document Version
Accepted author manuscript
Published in
GECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation Conference

Citation (APA)
Carlet, C., Jakobovic, D., & Picek, S. (2021). Evolutionary algorithms-assisted construction of cryptographic
boolean functions. In GECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation
Conference (pp. 565-573). (GECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation
Conference). ACM. https://doi.org/10.1145/3449639.3459362
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3449639.3459362
https://doi.org/10.1145/3449639.3459362

Evolutionary Algorithms-assisted Construction of
Cryptographic Boolean Functions

Claude Carlet
University of Bergen
Bergen, Norway

claude.carlet@gmail.com

Domagoj Jakobovic
University of Zagreb

Zagreb, Croatia
domagoj.jakobovic@fer.hr

Stjepan Picek
Delft University of Technology

Delft, The Netherlands
s.picek@tudelft.nl

ABSTRACT
In the last few decades, evolutionary algorithms were successfully
applied numerous times for creating Boolean functions with good
cryptographic properties. Still, the applicability of such approaches
was always limited as the cryptographic community knows how to
construct suitable Boolean functions with deterministic algebraic
constructions. Thus, evolutionary results so far helped to increase
the confidence that evolutionary techniques have a role in cryptog-
raphy, but at the same time, the results themselves were seldom
used.

This paper considers a novel problem using evolutionary algo-
rithms to improve Boolean functions obtained through algebraic
constructions. To this end, we consider a recent generalization
of Hidden Weight Boolean Function construction, and we show
that evolutionary algorithms can significantly improve the cryp-
tographic properties of the functions. Our results show that the
genetic algorithm performs by far the best of all the considered
algorithms and improves the nonlinearity property in all Boolean
function sizes. As there are no known algebraic techniques to reach
the same goal, we consider this application a step forward in accept-
ing evolutionary algorithms as a powerful tool in the cryptography
domain.

CCS CONCEPTS
• Security and privacy→Mathematical foundations of cryptogra-
phy; •Mathematics of computing→Evolutionary algorithms;
• Computing methodologies→ Genetic algorithms; Genetic
programming;

KEYWORDS
Boolean function, Cryptography, Secondary Construction, Hidden
Weight Boolean Function

ACM Reference Format:
Claude Carlet, Domagoj Jakobovic, and Stjepan Picek. 2021. Evolutionary
Algorithms-assisted Construction of Cryptographic Boolean Functions. In
Proceedings of the Genetic and Evolutionary Computation Conference 2021
(GECCO ’21). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Evolutionary computation (EC) represents an interesting option
(often as a last-resort option) for many difficult problems. Common
examples include scheduling [11], cancer detection [2], and com-
munications networks [15]. One more domain where evolutionary
computation proved to be useful is the security domain. There, we
can find a plethora of diverse applications, like in fuzzing [31], side-
channel attacks [33], and evolution of cryptographic primitives like
Boolean functions [26] and pseudorandom number generators [29].
Interestingly, it seems that the evolution of Boolean functions took
most of the evolutionary computation community interest. There
are several intuitive reasons for this: 1) Boolean functions are easy
to encode and evolve, 2) there are multiple interesting properties,
which gives numerous interesting scenarios, and 3) evolutionary
computation can reach top performance for evolving Boolean func-
tion, where this performance rivals the results of the algebraic
construction. Unfortunately, this also means that evolutionary com-
putation is commonly unable to give better results than algebraic
constructions (with rare exceptions like [20]), which makes this line
of research interesting but not applicable in practice. Differing from
this, we propose a novel application of evolutionary computation
for the evolution of Boolean functions. More precisely, we call our
approach EC-assisted construction of Boolean functions, where
we use evolutionary computation to improve the results obtained
through algebraic constructions.

Improving the results of algebraic constructions is a relevant
problem as we can obtain significantly better results. This becomes
especially important in cases where algebraic constructions do not
provide sufficiently good results. Improving algebraic construction
results is also a difficult problem as commonly, we do not know any
deterministic technique to improve the results. While exhaustive
search could be considered a viable option to evaluate whether
improvements are possible, exhaustive search is not practically
possible. Indeed, in cryptography, one commonly works with large
Boolean functions with huge search space (in general, for a Boolean
function of 𝑛 inputs, there are 22

𝑛
possible Boolean functions).

There are no results considering evolutionary computation to
help construct Boolean functions with good cryptographic proper-
ties to the best of our knowledge. Several works use evolutionary
computation to produce Boolean functions to be used in algebraic
constructions or to evolve algebraic constructions [22, 27]. The
closest approach we found would probably be using evolutionary
computation to evolve addition chains that are then used in public-
key cryptography [21].

In this work, we consider a recent proposal of a generalized
Hidden Weight Boolean Function (HWBF) construction [7], based

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GECCO ’21, July 10–14, 2021, Lille, France C. Carlet et al.

on a general construction of so-called parameterized Boolean func-
tions [5]. This construction is efficient to implement and results
in good cryptographic properties. While the properties are good,
they are far that can be obtained with other constructions like
Carlet-Feng [8], which are, on the other hand, very computation-
ally complex and are then not really usable in practical stream
ciphers, since these need to be lighter and faster than block ciphers
and the Boolean function used as filter being the only nonlinear
part of the cipher, the complexity, and speed of the whole cipher lies
precisely in the Boolean function. The generalized HWBF construc-
tion can be (easily) improved by switching bits in the function’s
truth table. Unfortunately, many possible positions can be swapped,
and no mathematical results determine how many bits to flip (be-
yond the fact that if we want to improve the nonlinearity by an
additive factor 𝛿 , we know that we need to change at least 𝛿 bits) or
on what positions. Since random search does not give good results
and exhaustive search is computationally infeasible for practical
sizes, we must look for different approaches. This paper proposes
an evolutionary approach where we experiment with several evo-
lutionary algorithms and Boolean function sizes. Our results show
that genetic algorithms work the best and provide significantly
better nonlinearity than the Hidden Weight Boolean Function (or
its generalization). We consider this to be the first work in the
EC-assisted construction of Boolean functions in cryptography.

2 TECHNICAL BACKGROUND
2.1 Notation
Let 𝑛 be a positive integer, i.e., 𝑛 ∈ N+. The set of all 𝑛-tuples of
elements in the field F2 is denoted as F𝑛2 where F2 is the Galois
field with two elements. We denote the inner product of two vec-
tors 𝑎 and 𝑏 by 𝑎 · 𝑏; it equals 𝑎 · 𝑏 =

⊕𝑛−1
𝑖=0 𝑎𝑖𝑏𝑖 , with “⊕” being

the addition modulo two (bitwise XOR). The support (𝑠𝑢𝑝𝑝) of a
Boolean function 𝑓 is the set containing the non-zero positions in
the truth table representation, i.e., 𝑠𝑢𝑝𝑝 (𝑓) = {𝑥 : 𝑓 (𝑥) = 1}. The
Hamming weight 𝑤𝐻 (𝑓) of a Boolean function 𝑓 equals the size
of its support. For 𝑢 = (𝑢1, . . . , 𝑢𝑛), 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ F2, we define
the partial order on F𝑛2 as 𝑢 ⪯ 𝑣 if and only if 𝑢𝑖 ≤ 𝑣𝑖 ,∀𝑖 .

2.2 Boolean Functions
An (𝑛, 1)-function is any mapping f from F𝑛2 to F2 and such a
function is called a Boolean function. A Boolean function 𝑓 on
F𝑛2 can be uniquely represented by a truth table, which is a vec-
tor (𝑓 (0), . . . , 𝑓 (1)) that contains the function values of 𝑓 with
inputs ordered lexicographically, i.e., 𝑎 ≤ 𝑏. The Walsh-Hadamard
transform𝑊𝑓 is a unique representation of a Boolean function that
measures the correlation between 𝑓 (𝑥) and the linear functions
𝑎 · 𝑥 [6]:

𝑊𝑓 (𝑎) =
∑
𝑥 ∈F𝑛2

(−1) 𝑓 (𝑥) ⊕𝑎 ·𝑥 . (1)

A Boolean function 𝑓 is balanced if it takes the value 1 exactly
the same number 2𝑛−1 of times as the value 0 when the input ranges
over F𝑛2 . If the function is imbalanced, it is not suitable for usage in
cryptography as one can attack its biased output.

The minimum Hamming distance between a Boolean function
𝑓 and all affine functions (in the same number of variables as 𝑓)

is called the nonlinearity of 𝑓 . The nonlinearity 𝑁𝑙𝑓 of a Boolean
function 𝑓 can be expressed in terms of the Walsh-Hadamard coef-
ficients as [6]:

𝑁𝑙𝑓 = 2𝑛−1 − 1
2
max
𝑎∈F𝑛2

|𝑊𝑓 (𝑎) |. (2)

The nonlinearity of a Boolean function with 𝑛 inputs is bounded
above as follows

𝑁𝑙𝑓 ≤ 2𝑛−1 − 2
𝑛
2 −1 . (3)

This bound is usually called the Covering Radius Bound (this in-
equality is an equality for so-called bent functions, which exist for
𝑛 even only). When 𝑛 is odd, the bound given in Eq. (3) cannot be
tight. Then, the maximal nonlinearity lies between 2𝑛−1 − 2

𝑛−1
2 and

2𝑛−1 − 2
𝑛
2 −1.

In our evolutionary assisted construction, we will concentrate
on only those two properties: balancedness and nonlinearity. Still,
we are interested in an additional cryptographic property called
algebraic immunity (AI) [10]. Since this property is computationally
expensive (e.g., one evaluation for 𝑛 = 16 lasts several hours, we
do not include it in the evolution process. We conducted a poste-
riori tests of algebraic immunity and found that the results were
good (i.e., on the HWBF construction level). Finally, we note that
in cryptography (and more precisely, in the design of stream ci-
phers), Boolean functions’ minimum size (i.e. number of variables,
that is, number of input bits) with practical importance is 13 in-
puts [6]. For additional information about Boolean functions and
their cryptology applications, we refer interested readers to [6].

2.3 Hidden Weight Boolean Functions
The Hidden Weight (Weighted) Boolean Function (HWBF) is a
Boolean function in 𝑛 variables defined as follows [4]:

𝑓 (𝑥) =
{
0 if 𝑥 = 0
𝑥𝑤𝐻 (𝑥) otherwise.

The advantages of HWBF are that it has good algebraic immu-
nity (not optimal, but at least ⌊𝑛/3⌋ + 1), it is balanced, and its
output is considerably faster to compute than those of the other
currently known functions having good algebraic immunity [32].
Unfortunately, HWBF has poor nonlinearity, which makes it not
practical to use in cryptography. More precisely, the nonlinearity
parameter equals

𝑁𝑙𝑓 = 2𝑛−1 − 2
(
𝑛 − 2
⌈𝑛−22 ⌉

)
. (4)

Note that the nonlinearity given in Eq. (4) is more or less the worst
nonlinearity of all known functions with optimal algebraic immu-
nity.

3 RELATEDWORK
As already discussed, evolutionary computation is commonly used
to create Boolean functions with good cryptographic properties.
Common examples of such works are Millan et al., where the au-
thors apply genetic algorithms to evolve Boolean functions with
high nonlinearity [17]. Millan et al. used GA, hill climbing, and
a resetting step to evolve Boolean functions with high nonlinear-
ity [18]. In their work, they considered Boolean functions up to

GECCO ’21, July 10–14, 2021, Lille, France

12 inputs. Dawson et al. investigated two-stage optimization to
generate Boolean functions [9]. More precisely, they used simu-
lated annealing and hill-climbing with a cost function motivated
by the Parseval theorem to find functions with high nonlinearity
and low autocorrelation. Kavut and Melek developed improved
cost functions for a search that combines simulated annealing and
hill climbing [13]. With that approach, the authors were able to
find some functions of eight and nine inputs that have a combi-
nation of nonlinearity and autocorrelation values previously not
obtained. Millan et al. proposed a new adaptive strategy for the
local search algorithm for the generation of Boolean functions with
high nonlinearity [19]. Hernan et al. used a multi-objective random
bit climber to search for balanced Boolean functions of size up to
eight inputs with high nonlinearity. [1]. Picek et al. experimented
with genetic algorithms and genetic programming to find Boolean
functions that fulfill several cryptographic constraints [25]. Mariot
and Leporati used Particle Swarm Optimization to find Boolean
functions with good trade-offs of cryptographic properties for di-
mensions up to 12 inputs [16]. Picek et al. conducted a detailed
analysis of the efficiency of several evolutionary algorithms and
fitness functions for Boolean functions with eight inputs [26]. Picek
et al. used immunological algorithms to evolve highly nonlinear
Boolean functions with up to 16 inputs [28].

Next, we discuss several works that used evolutionary algorithms
in different combinations with algebraic constructions. Picek et al.
considered an interesting approach of evolving Boolean functions
that is somewhat orthogonal to ours. More precisely, the authors
evolved Boolean functions in a certain number of inputs to use
them to construct larger Boolean functions algebraically [27]. Picek
and Jakobovic used genetic programming to evolve secondary al-
gebraic constructions of bent (maximally nonlinear) Boolean func-
tions [22]. Picek and Jakobovic also investigated how evolutionary
algorithms can evolve algebraic constructions of S-boxes (which
are vectorial Boolean functions) [23]. For a more detailed overview
of evolutionary computation applications for Boolean functions in
cryptography, we refer interested readers to [24].

4 PROBLEM DEFINITION
Recently, C. Carlet proposed a generalization of the Hidden Weight
Boolean Function that allows a construction of 𝑛-variable balanced
functions 𝑓 from (𝑛 − 1)-variable Boolean functions 𝑔 satisfying
some rather light condition, see Eq. (6) below [7]. The function is
defined as:

𝑓𝐹𝑔 (𝑥) = (𝑥𝑤𝐻 (𝑥)+1 + 1) (𝑔(𝑥
′
) + 1) +𝑥𝑤𝐻 (𝑥) (𝑥)𝑔(𝑥

′′
), 𝑥 ∈ F𝑛2 . (5)

Here, 𝑥
′
is the vector obtained from 𝑥 by erasing its coordinate of

index 𝑤𝐻 (𝑥) + 1 and 𝑥
′′
is the vector obtained from 𝑥 by erasing

its coordinate function of index𝑤ℎ (𝑥).
Function 𝑔 can be any function fulfilling the property:

∀𝑢 ∈ F𝑛−22 ; 𝑔(𝑢 (0) ≤ 𝑔(𝑢 (1)), (6)

where we denote by 𝑢 (𝑗) the vector obtained from 𝑢 by inserting
a coordinate of value 𝑗 at position𝑤𝐻 (𝑢) + 1 (and shifting on the
right by one position all the coordinates whose indices were at least
𝑤𝐻 (𝑢) + 1 before the insertion). Many functions are fulfilling this
property where obvious examples are monotone Boolean functions.

𝑛 𝐻𝑊𝐵𝐹 𝐺𝐻𝑊𝐵𝐹3 Exhaustive Random

6 20 22 24 24
7 44 46 52 52
8 88 94 104 104
9 186 194 − 216
10 372 394 − 426
11 772 802 − 862
12 1544 1628 − 1710
13 3172 3284 − 3440
14 6344 6668 − 6732
15 12952 13372 − 13674
16 25904 27158 − 27026
17 52666 54250 − 54984
18 105332 110194 − 108320

Table 1: The best-obtained nonlinearity results for the
HWBF anf GWHBF functions. The last two columns show
nonlinearity of 𝐺𝐻𝑊𝐵𝐹3 after applying random search and
exhaustive search to improve the nonlinearity. The results
include the first five monomials.

A Boolean function is monotone if whenever 𝑢 ⪯ 𝑣 , then 𝑓 (𝑢) ≤
𝑓 (𝑣).

This generalized HWBF construction (we denote it as GHWBF)
allows keeping HWBF quality of being fast to compute if function
𝑔 is fast enough to compute and having good algebraic immunity
while improving its nonlinearity. Note that the construction results
in a function 𝑓 in 𝑛 variables, and to build it, we use a function 𝑔 in
𝑛 − 1 variables. If 𝑔 is a constant function 1, then GHWBF becomes
HWBF.

As already stated, there are multiple choices for the function 𝑔.
The current results indicate that the best nonlinearity is obtained
when 𝑔 is a monomial function of the form

∏𝑛−1
𝑖=0 𝑥𝑖 . What is more,

the best results are reached when the degree of the monomial equals
3 (i.e., has the form 𝑥𝑖𝑥 𝑗𝑥𝑧). In our experiments, we consider only
the monomial functions of degree 3, and we denote the resulting
function 𝑓𝐹𝑔 as 𝐺𝐻𝑊𝐵𝐹3.

Still, this results in a large number of possible monomials one
should potentially investigate. The best nonlinearity results ob-
tained through GHWBF are given in Table 1. We also denote the
values one reaches with theHWBF function and the results obtained
after improving nonlinearity through random search or exhaustive
search (for small 𝑛) as discussed in the next paragraphs.

Clearly,𝐺𝐻𝑊𝐵𝐹3 improves over the nonlinearity of 𝐻𝑊𝐵𝐹 , but
the values are still far from the upper bound as given in Eq. (3). Natu-
rally, the problem arises from the choice of the function𝑔 as it is easy
to notice that some other functions 𝑔 that fulfill Eq. (6) reach much
lower nonlinearity. Thus, a natural question is whether we can mod-
ify the function 𝑔 to still fulfill Eq. (6) at the expense of, e.g., not be-
ing a monotone function anymore. Indeed, C. Carlet discussed that
visiting all 𝑢 and choosing 𝑔(𝑢 (0)) 𝑎𝑛𝑑 𝑔(𝑢 (1)) such that 𝑔(𝑢 (0)) ≤
𝑔(𝑢 (1)), is computationally intractable, but also may result in some
contradictions because there are more than one possible choice of
such 𝑢, given some 𝑧. Taking 𝑧 nonzero and different from the all-1
vector, and writing 𝑧 = (𝑧1, . . . , 𝑧𝑤𝐻 (𝑧) , 𝑧𝑤𝐻 (𝑧)+1, . . . , 𝑧𝑛−1):

GECCO ’21, July 10–14, 2021, Lille, France C. Carlet et al.

(1) if 𝑧𝑤𝐻 (𝑧) = 1 and 𝑧𝑤𝐻 (𝑧)+1 = 0, then 𝑧 can be obtained as
𝑢 (0) for 𝑢 = (𝑧1, . . . , 𝑧𝑤𝐻 (𝑧) − 1, 𝑧𝑤𝐻 (𝑧)+1, . . . , 𝑧𝑛−1) (which
has weight𝑤𝐻 (𝑧) − 1 and the insertion is correctly made at
position𝑤𝐻 (𝑢) + 1 = 𝑤𝐻 (𝑧)) and as 𝑢 (1) for 𝑢 = (𝑧1, . . . ,
𝑧𝑤𝐻 (𝑧) , 𝑧𝑤𝐻 (𝑧)+2, . . . , 𝑧𝑛−1) (which has weight 𝑤𝐻 (𝑧) and
the insertion is correctly made at position 𝑤𝐻 (𝑢) + 1 =

𝑤𝐻 (𝑧) + 1). One then needs to make choices on the values
taken by 𝑔 that can avoid contradictions.

(2) if 𝑧𝑤𝐻 (𝑧) = 0 and 𝑧𝑤𝐻 (𝑧)+1 = 1 then 𝑧 will never be obtained
as 𝑢 (0) or 𝑢 (1) . Consequently, 𝑔(𝑧) can be arbitrary.

(3) if 𝑧𝑤𝐻 (𝑧) = 𝑧𝑤𝐻 (𝑧)+1 then 𝑧 will be obtained only once as
𝑢 (0) or 𝑢 (1) and there is no risk a contradiction.

The most straightforward approach to further improve the non-
linearity results would be to take 𝐺𝐻𝑊𝐵𝐹3 and modify them so
that they are no more monotone but still satisfy Eq. (6). To do so,
we would change the values of 𝑔 taken at the inputs such that
𝑧𝑤𝐻 (𝑧) = 0 and 𝑧𝑤𝐻 (𝑧)+1 = 1. Unfortunately, this does not tell
us how many such values to change or on what positions exactly.
Running the experiments for function 𝑓 with a small dimension
𝑛 shows that the function 𝑔 (which is in 𝑛 − 1 variables) can be
changed in 1

4 of the positions in its truth table. This results in com-
putationally intractable computations for any function size that
has practical importance. For instance, if we consider function 𝑓 in
𝑛 = 13 inputs, this means that the function 𝑔 has 212 positions in
the truth table. This again means that we can change 210 specific
values in the truth table. While it is easy to calculate their positions,
we cannot know the exact combination of changes and positions
to improve the nonlinearity. What is more, it is clear that the ex-
haustive search (denoted as 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 in Table 1) can work for
values 𝑛 ≤ 8, as already 𝑛 = 8 gives computational complexity of
232 combinations (considering one monomial only). Note that ran-
dom search (denoted as 𝑅𝑎𝑛𝑑𝑜𝑚) can be used, but it does not give
competitive results already for 𝑛 = 9. Interestingly, we can observe
that even random search reached higher nonlinearity values than
obtained from 𝐻𝑊𝐵𝐹 and 𝐺𝐻𝑊𝐵𝐹3.

5 EXPERIMENTAL SETUP
5.1 Encodings and Algorithms
We consider solutions to be masks of values denoting whether we
flip a bit on a certain position or not. As such, we consider two
intuitive solution encodings: bitstring and tree encoding. In the
bitstring encoding, a bit value equal to 1 means that a bit on that
position will be flipped, and a bit value equal to 0 means no change.
The length of the encoding is of the same size as the length of the
maximal number of positions to swap (2𝑛−3, where 𝑛 is the size of
the Boolean function 𝑓). Note that we internally map each of the
individual’s bit values to the corresponding position that can be
swapped in the truth table of function 𝑔. We assume lexicographical
ordering, where the first bit in the individual solution represents
the first bit in 𝑔 allowed to be swapped, etc.

The second encoding we use is tree encoding. More precisely,
we evolve a Boolean function in the form of a syntactic tree by
using genetic programming. The truth table of the evolved function
is then applied the same way bitstring encoding is used to denote
bitflips in function 𝑔. Genetic programming (GP) [14] works on the

population of computable expressions, where the most common
form is symbolic expressions corresponding to parse trees. The
building elements in a tree-based GP are functions (inner nodes) and
terminals (leaves, problem variables). The terminal set consists of
𝑛 − 3 input Boolean variables, denoted {𝑣0, . . . , 𝑣𝑛−3}. The function
set (i.e., the set of inner nodes of a tree) should consist of appropriate
Boolean operators that allow the definition of any function with
𝑛 inputs. The function set used in all the experiments consists of
Boolean functions OR, XOR, AND (taking two arguments), NOT
(one argument), and IF (it takes three arguments and returns the
second argument if the first one evaluates to ’true’ and the third
one otherwise). The application of this particular function set is
based on our previous experience in applying GP to the Boolean
domain.

Genetic Algorithm (GA). For GA [12], we use a 3-tournament
selection, which eliminates the worst individual among three ran-
domly selected ones. After the elimination, a new individual is
produced using the crossover operator applied on the remaining
two. The new individual immediately undergoes mutation subject
to a defined individual mutation rate. The crossover operators are
one-point and uniform crossover, performed uniformly at random
for each new offspring. The mutation operator is selected uniformly
at random between a simple mutation, where a single bit is inverted,
and a mixed mutation that randomly shuffles the bits in a randomly
selected substring. The individual mutation probability is used to
select whether an individual would be mutated or not, and the
mutation operator is executed only once on a given individual.

Evolution Strategy (ES).We use (𝜇 + 𝜆)-ES [3], where in each
generation, parents compete with offspring, and from their joint
set, 𝜇 test individuals are kept. The offspring is generated using the
same mutation operators as used in the GA.

Genetic Programming (GP). In our experiments, GP uses the
same steady-state tournament selection algorithm as the GA. The
variation operators are simple tree crossover, uniform crossover,
size fair, one-point, and context preserving crossover (selected at
random), and subtree mutation [30].

5.2 Parameter Tuning
For all algorithms, we conduct a short tuning phase; more precisely,
for GA, we explore the population size (200 and 500). For GP, we
explore the maximum tree depth (3, 5, and 7) and the population
size (200, 500). Following the tuning, for GA and GP we select the
population size of 500 and the mutation rate of 0.3, and the GP has
the maximum tree depth equal to 5. All experiments are repeated
50 times, and initial populations are created uniformly at random.
For all algorithms, as the termination criterion, we use 1 000 000
evaluations or stagnation in 25 000 evaluations.

5.3 Fitness Functions
The first fitness function uses the nonlinearity value with the goal
of maximizing it:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠1 = 𝑁𝑙𝑓 . (7)

In the second fitness function, we consider the Walsh-Hadamard
spectrum’s values to have more granularity and provide gradient
information. Recall that the nonlinearity depends on the highest

GECCO ’21, July 10–14, 2021, Lille, France

values in the Walsh-Hadamard spectrum. Thus, observing the spec-
trum and minimizing the number of the highest values could also
lower the final nonlinearity. Note that due to the Parseval theo-
rem, the sum of all Walsh-Hadamard values is fixed and equals 22𝑛 ,
which means lowering some of the spectrum’s values increases
some other values. Our second fitness function looks at the non-
linearity value but also the whole Walsh-Hadamard spectrum, and
we aim to maximize it:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠2 = 𝑁𝑙𝑓 + 2𝑛 − 𝑐𝑜𝑢𝑛𝑡

2𝑛
, (8)

where 𝑐𝑜𝑢𝑛𝑡 denotes the number of times that theWalsh-Hadamard
spectrum’s largest value is encountered (since theWalsh-Hadamard
values can be less than zero, we take the absolute value). As already
stated, the maximal value determines nonlinearity and having that
value as low as possible will increase the nonlinearity. Note that
we normalize the second part of the fitness function in the [0, 1]
range so that the actual nonlinearity is still the primary criterion.

6 RESULTS
In this section, we present the experimental results from our inves-
tigation. We consider only the first five monomials that reach the
nonlinearity equal to that from𝐺𝐻𝑊𝐵𝐹3. Our results indicate very
similar behavior (the maximal nonlinearity values after running
the improvement experiments) for those monomials, so we believe
that adding more monomials to the experiments would not bring
significantly different results.

Table 2 gives the best-obtained results for the fitness function 1
and all five monomials (if existing) for all algorithms. The highest
nonlinearities are given in bold font. Notice that the nonlinearity
values across different monomials are rather similar. As the mono-
mial 1 reached the highest value the most times (10 out of 13 sizes),
we continue with a detailed analysis for it only.

Formonomial 1, in Table 3we give detailed results for both fitness
functions and all four considered algorithms (GA, ES, GP, random
search). The results are aggregated over 50 independent runs where
we consider the maximal nonlinearity value reached in every run.
The best fitness values are given in bold style. Considering fitness 1
(which equals the nonlinearity value) and sizes 6 to 8, all algorithms
behave the same, and in every run, the same maximal value is
obtained. For larger sizes, GA reaches the highest nonlinearity,
with GP being the second best. On average, ES is the third-best
algorithm, and as expected, random search performs the worst.
Notice how fitness 2 improves the resulting nonlinearity values
for all algorithms except random search. While ES and GP benefit
from extra information provided by the fitness function already for
Boolean functions with ten inputs, GA manages to reach higher
nonlinearity for all Boolean function sizes from 14 to 18 inputs.

Figure 1 depicts the distribution of results for Boolean function
sizes 13 to 18. The white circle represents the median value, while
the thick line inside the shape denotes quartile 1 and quartile 3.
Note that fitness function 2 gives slightly higher values than fit-
ness function 1 due to the additional term in the expression. Still,
since that term is limited to [0, 1], we can disregard that term’s
influence in the graph. The visible differences are the result of dif-
fering nonlinearity values. Figures 1a and 1b show significantly
different behavior for GA and the rest of the algorithms. First, the

𝑛 mon. 1 mon. 2 mon. 3 mon. 4 mon. 5

6 𝑥1𝑥3𝑥4 𝑥2𝑥3𝑥4 𝑥1𝑥4𝑥5 𝑥3𝑥4𝑥5 −
24 22 24 24 −

7 𝑥1𝑥2𝑥4 𝑥1𝑥3𝑥4 𝑥2𝑥3𝑥4 𝑥1𝑥4𝑥6 𝑥2𝑥4𝑥6
52 52 50 52 52

8 𝑥1𝑥4𝑥5 𝑥2𝑥4𝑥5 𝑥3𝑥4𝑥5 𝑥4𝑥5𝑥6 𝑥4𝑥5𝑥7
104 104 102 104 104

9 𝑥1𝑥4𝑥5 𝑥2𝑥4𝑥5 𝑥3𝑥4𝑥5 𝑥4𝑥5𝑥7 𝑥4𝑥5𝑥8
216 216 216 216 216

10 𝑥1𝑥5𝑥6 𝑥2𝑥5𝑥6 𝑥3𝑥5𝑥6 𝑥4𝑥5𝑥6 𝑥5𝑥6𝑥8
438 438 438 434 438

11 𝑥1𝑥5𝑥6 𝑥2𝑥5𝑥6 𝑥3𝑥5𝑥6 𝑥4𝑥5𝑥6 𝑥5𝑥6𝑥8
888 888 888 886 888

12 𝑥1𝑥6𝑥7 𝑥2𝑥6𝑥7 𝑥3𝑥6𝑥7 𝑥4𝑥6𝑥7 𝑥5𝑥6𝑥7
1794 1794 1794 1794 1780

13 𝑥1𝑥6𝑥7 𝑥2𝑥6𝑥7 𝑥3𝑥6𝑥7 𝑥4𝑥6𝑥7 𝑥5𝑥6𝑥7
3614 3614 3612 3612 3606

14 𝑥1𝑥7𝑥8 𝑥2𝑥7𝑥8 𝑥3𝑥7𝑥8 𝑥4𝑥7𝑥8 𝑥5𝑥7𝑥8
7266 7266 7270 7268 7270

15 𝑥1𝑥7𝑥8 𝑥2𝑥7𝑥8 𝑥3𝑥7𝑥8 𝑥4𝑥7𝑥8 𝑥5𝑥7𝑥8
14612 14610 14612 14612 14606

16 𝑥1𝑥8𝑥9 𝑥2𝑥8𝑥9 𝑥3𝑥8𝑥9 𝑥4𝑥8𝑥9 𝑥5𝑥8𝑥9
29162 29166 29168 29184 29196

17 𝑥1𝑥8𝑥9 𝑥2𝑥8𝑥9 𝑥3𝑥8𝑥9 𝑥4𝑥8𝑥9 𝑥5𝑥8𝑥9
58734 58762 58724 58732 58762

18 𝑥1𝑥9𝑥10 𝑥2𝑥9𝑥10 𝑥3𝑥9𝑥10 𝑥4𝑥9𝑥10 𝑥5𝑥9𝑥10
116840 116796 116810 116804 116838

Table 2: The best obtained nonlinearities for the first five
monomials, GA/ES/GP, and fitness function 1. Monomial 1
reaches the highest nonlinearity the most times. For 𝑛 = 6,
there are only four monomials satisfying the conditions for
the nonlinearity of 𝐺𝐻𝑊𝐵𝐹3 so there are no results to dis-
play.

GA reaches much higher values, and the results are concentrated
around only a few fitness values. For both ES and GP, we notice a
much wider spread of obtained values, where for fitness function 1,
GP works substantially better than ES. Going to the fitness function
2 improves the maximal nonlinearity for ES and GP, but we can
notice that GP now has more spread out values and lower minimal
value. At the same time, the difference between the maximal values
for those two algorithms decreases. Larger Boolean function sizes
(Figures 1c and 1d) continue with the trend we described but now,
the differences are even more pronounced. For GA, we can observe
a clear improvement in the fitness values when going from fitness 1
to fitness 2. For fitness 1 and sizes 15 and larger, GP is significantly
better than ES and has a larger spread of obtained values. Going to
fitness function 2 shows that the differences between the maximal
fitness values for GP and ES are reduced and that GP has a larger
spread of values. Notice that this decrease in the difference of the
maximal values happens as ES improves its performance, while GP
does not seem to benefit from the extra information provided by

GECCO ’21, July 10–14, 2021, Lille, France C. Carlet et al.

GA ES GP Random
n min max average stdev min max average stdev min max average stdev min max average stdev

Fitness 1

6 24 24 24.0 0.0 24 24 24.0 0.0 24 24 24.0 0.0 24 24 24.0 0.0
7 52 52 52.0 0.0 52 52 52.0 0.0 52 52 52.0 0.0 52 52 52.0 0.0
8 104 104 104.0 0.0 102 104 103.9 0.5 102 104 103.8 0.7 102 104 102.4 0.8
9 216 216 216.0 0.0 214 216 214.4 0.8 212 216 214.0 1.0 210 214 212.0 0.7
10 436 438 437.6 0.8 426 430 428.8 1.1 426 432 428.7 1.5 418 424 420.3 1.8
11 886 888 887.9 0.4 868 878 875.1 2.1 870 880 875.4 2.8 846 862 850.7 3.3
12 1788 1794 1791.2 1.2 1738 1754 1745.6 4.0 1734 1758 1747.3 5.5 1668 1700 1676.7 6.6
13 3608 3614 3611.2 1.2 3514 3560 3541.5 9.9 3514 3564 3547.9 10.4 3386 3412 3395.4 6.0
14 7242 7266 7256.6 4.7 7020 7102 7061.7 19.3 7026 7106 7073.9 17.0 6672 6722 6688.1 10.4
15 14570 14612 14594.8 8.7 14146 14292 14236.8 37.4 14144 14414 14320.1 69.7 13614 13666 13634.3 11.2
16 29066 29162 29112.7 22.4 28172 28500 28359.4 86.8 28072 28744 28608.3 116.3 26814 26960 26858.7 27.0
17 58574 58734 58681.7 25.9 56844 57340 57178.5 132.5 56684 57878 57429.8 365.8 54790 54922 54856.4 30.6
18 116682 116840 116779.2 34.7 113028 113194 113091.5 36.1 113832 115688 115224.0 391.4 108096 108264 108171.4 41.5

Fitness 2

6 24.8 24.8 24.8 0.0 24.8 24.8 24.8 0.0 24.8 24.8 24.8 0.0 24.8 24.8 24.8 0.0
7 52.9 52.9 52.9 0.0 52.9 52.9 52.9 0.0 52.9 52.9 52.9 0.0 52.9 52.9 52.9 0.0
8 105 105 105.0 0.0 105 105 105.0 0.0 105 105 105.0 0.0 103 105 103.5 0.9
9 217 217 217.0 0.0 217 217 217.0 0.0 213 217 215.7 1.3 211 215 212.8 0.8
10 437 439 438.9 0.4 431 435 433.0 1.4 427 435 430.9 1.8 419 425 422.0 1.4
11 889 889 889.0 0.0 877 885 882.4 2.2 869 883 877.8 3.4 847 859 852.2 2.6
12 1791 1795 1793.4 1.1 1743 1767 1754.0 5.5 1735 1761 1748.9 6.0 1667 1695 1677.5 5.2
13 3609 3615 3613.0 1.3 3529 3571 3557.0 8.1 3509 3575 3549.2 15.1 3385 3413 3397.5 6.6
14 7255 7275 7266.7 4.9 7033 7097 7077.1 12.5 6971 7109 7074.8 25.6 6671 6715 6690.4 10.0
15 14611 14639 14624.4 7.4 14237 14403 14360.8 27.8 14031 14421 14331.7 62.8 13615 13693 13634.7 13.6
16 29233 29343 29309.2 17.0 28543 28681 28600.1 34.9 28067 28723 28576.9 126.0 26809 26951 26858.2 27.5
17 58861 58935 58920.6 19.3 57385 57613 57553.1 57.5 56839 58009 57591.8 312.6 54799 54907 54851.2 26.8
18 116909 117021 116963.5 45.5 113385 113503 113448.0 36.5 113743 115703 114820.0 660.4 108099 108305 108178.7 46.2

Table 3: Fitness values for the first monomial. All values are rounded to one decimal place. Sizes 8 to 11 differ from the third
decimal place, while larger sizes differ from the fifth decimal place only. From the min and max columns of fitness function
2, it is easy to obtain the nonlinearity: 1) for every value that has decimal part, remove the decimal part, and 2) for every value
that is odd, subtract 1.

the fitness function 2. We believe this is because for GP, evolving
the masks that improve the nonlinearity value is a difficult problem
as we do not assume how many inputs the mask needs to change,
so GP tries to find a suitable mask while using all terminals.

In Figure 1d, we depict the results for 𝑛 = 16, where we con-
firm our assumptions for GP: extra information does not benefit
the nonlinearity significantly but only changes the frequency of
specific nonlinearity values that are reached. ES improves the most
considering the change from fitness function 1 to fitness function
2, but those values are still far from GA (where we also see an
improvement due to fitness function 2). Finally, in Figures 1e and 1f,
we depict the results for sizes 17 and 18, respectively. It is obvious
how the differences in the performance between GA and other
algorithms continue to increase. For both GA and ES, we observe
substantial benefit from using fitness function 2, while for GP, the
differences are small (but still in favor of the fitness function 2).

Next, in Figure 2, we depict the convergence results for sizes 13
to 18 and both fitness functions. Here, we confirm our previous
observations as we see that fitness function 2 results in higher
values, where the most pronounced differences are for ES. On the
other hand, GP shows little to no improvement (there are somewhat
more pronounced differences for sizes 17 and 18). Interestingly, we
see that GA and GP have a rapid increase in the fitness values and
smaller improvements after 40% to 50% of evaluations. ES shows
a slower increase, but it does not seem to reach stagnation even
after 100% of evaluations. ES works with a much smaller number of

solutions at a time, and it requires significantly more evaluations
to reach the same fitness levels as with other algorithms. Still, we
observe that additional information provided in fitness function 2
is highly beneficial and enables ES to reduce the difference from
the GP’s performance.

Based on the previous observations, we can give several general
remarks:

(1) Extra information in the fitness function about the Walsh-
Hadamard spectrum improves the performance of EAs.

(2) GA works by far the best, where even fitness function 1
works better than fitness function 2 for other algorithms.

(3) GP works better than ES if considering the first fitness func-
tion. These differences diminish with the second fitness func-
tion as the performance of ES improves dramatically (the
improvements for GP are more modest, and for smaller sizes,
fitness function 2 mostly results in a wider spread of ob-
tained values). For sizes 17 and 18, ES does not reach good
performance even with the second fitness function.

(4) ES converges slower than other algorithms and could need
significantly more evaluations to approach the performance
of GP (and especially GA).

(5) GP works surprisingly poorly considering the results from
related works on Boolean functions’ evolution with good
cryptographic properties. We hypothesize this is partly be-
cause GP tries to construct a single Boolean function in 𝑛− 3
variables. However, the intermediate function properties

GECCO ’21, July 10–14, 2021, Lille, France

GA1 ES1 GP1 GA2 ES2 GP2
Algorithm

3520

3540

3560

3580

3600

3620
F
it
n
e
s
s

(a) Boolean function with 13 inputs

GA1 ES1 GP1 GA2 ES2 GP2
Algorithm

7000

7050

7100

7150

7200

7250

F
it
n
e
s
s

(b) Boolean function with 14 inputs

GA1 ES1 GP1 GA2 ES2 GP2
Algorithm

14100

14200

14300

14400

14500

14600

F
it
n
e
s
s

(c) Boolean function with 15 inputs

GA1 ES1 GP1 GA2 ES2 GP2
Algorithm

28200

28400

28600

28800

29000

29200

29400

F
it
n
e
s
s

(d) Boolean function with 16 inputs

GA1 ES1 GP1 GA2 ES2 GP2
Algorithm

57000

57500

58000

58500

59000

F
it
n
e
s
s

(e) Boolean function with 17 inputs

GA1 ES1 GP1 GA2 ES2 GP2
Algorithm

113000

113500

114000

114500

115000

115500

116000

116500

117000

F
it
n
e
s
s

(f) Boolean function with 18 inputs

Figure 1: Violin plots for two fitness functions and three evolutionary algorithms. We denote fitness function as a subscript
in the algorithm name, e.g., 𝐺𝐴1 represents GA and fitness function 1.

have little relevance since its truth table is only used as a
bit flip mask of nonadjacent positions in the truth table of
another Boolean function (𝑔) of 𝑛−1 variables. Any structure
of the intermediate function of 𝑛−3 variables that GP creates
(the genotype) is disrupted in the decoding into the resulting
function 𝑔 (the phenotype).

(6) Unfortunately, the results for all algorithms are still rather
far from the upper bound for nonlinearity.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we approach the practical problem of improving
Boolean functions’ nonlinearity values obtained through algebraic
constructions. To this end, we develop a novel technique we call
evolutionary-assisted construction of Boolean functions, and we
test it on the recently proposed generalization of the HiddenWeight
Boolean Function construction. Our results indicate that evolution-
ary algorithms (most notably, GA) significantly improve the non-
linearity values for all investigated Boolean function sizes, where
the largest differences can be observed for Boolean functions with
more inputs that also have practical relevance. Additionally, we

GECCO ’21, July 10–14, 2021, Lille, France C. Carlet et al.

0 20 40 60 80 100
% of evaluations

3400

3450

3500

3550

3600

F
it

n
e
s
s

GA1

ES1

GP1

GA2

ES2

GP2

(a) Boolean function with 13 inputs

0 20 40 60 80 100
% of evaluations

6700

6800

6900

7000

7100

7200

F
it

n
e
s
s

GA1

ES1

GP1

GA2

ES2

GP2

(b) Boolean function with 14 inputs

0 20 40 60 80 100
% of evaluations

13600

13800

14000

14200

14400

14600

F
it

n
e
s
s

GA1

ES1

GP1

GA2

ES2

GP2

(c) Boolean function with 15 inputs

0 20 40 60 80 100
% of evaluations

27000

27500

28000

28500

29000

F
it

n
e
s
s

GA1

ES1

GP1

GA2

ES2

GP2

(d) Boolean function with 16 inputs

0 20 40 60 80 100
% of evaluations

55000

55500

56000

56500

57000

57500

58000

58500

59000

F
it

n
e
s
s

GA1

ES1

GP1

GA2

ES2

GP2

(e) Boolean function with 17 inputs

0 20 40 60 80 100
% of evaluations

110000

112000

114000

116000

F
it

n
e
s
s

GA1

ES1

GP1

GA2

ES2

GP2

(f) Boolean function with 18 inputs

Figure 2: Convergence graphs for two fitness functions and three evolutionary algorithms

can observe that GA enables larger nonlinearity improvements
over 𝐺𝐻𝑊𝐵𝐹3, than the increase in 𝐺𝐻𝑊𝐵𝐹3 over 𝐻𝑊𝐵𝐹 . We
consider our results to be especially important as there are no other
known (and practical) techniques to help improve the nonlinearity
value of Boolean functions obtained through the generalized HWBF
construction.

Our experiments started from construction solutions obtained
through the monomial functions of degree 3 as this construction
gave the best results among all the tested ones. As EA managed to
improve the nonlinearity values obtained with 𝐺𝐻𝑊𝐵𝐹3 consider-
ably, it would be interesting to explore other functions 𝑔. We leave
as open question whether it is possible to improve the nonlinearity

value even more if starting with the less fit Boolean functions. Fi-
nally, we mentioned that we also require good values of algebraic
immunity (AI). Since AI evaluation is expensive, we do not consider
it in our fitness function in the hope that the best-obtained results
will have good AI. Nevertheless, we could evaluate AI for smaller
values of 𝑛 (e.g., up to 10) and gain insights if the increase in AI is
possible.

ACKNOWLEDGMENTS
The research of Claude Carlet is partly supported by the Trond
Mohn Foundation.

GECCO ’21, July 10–14, 2021, Lille, France

REFERENCES
[1] Hernan Aguirre, Hiroyuki Okazaki, and Yasushi Fuwa. 2007. An Evolutionary

Multiobjective Approach to Design Highly Non-linear Boolean Functions. In
Genetic and Evolutionary Computation Conference (GECCO). 749–756.

[2] Qurrat Ul Ain, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. 2020. A genetic
programming approach to feature construction for ensemble learning in skin
cancer detection. InGECCO ’20: Genetic and Evolutionary Computation Conference,
Cancún Mexico, July 8-12, 2020, Carlos Artemio Coello Coello (Ed.). ACM, 1186–
1194. https://doi.org/10.1145/3377930.3390228

[3] Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution Strategies –A Com-
prehensive Introduction. Natural Computing: An International Journal 1, 1 (May
2002), 3–52. https://doi.org/10.1023/A:1015059928466

[4] R. E. Bryant. 1991. On the complexity of VLSI implementations and graph
representations of Boolean functions with application to integer multiplication.
IEEE Trans. Comput. 40, 2 (1991), 205–213. https://doi.org/10.1109/12.73590

[5] Claude Carlet. 2020. Parametrizing Boolean functions by vectorial functions and
studying related constructions. (December 2020). https://www.math.univ-paris13.
fr/~carlet/english.html.

[6] Claude Carlet. 2021. Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press. https://doi.org/10.1017/9781108606806

[7] Claude Carlet. 2021. A class of Boolean functions generalizing the hidden weight
bit function. (March 2021). https://www.math.univ-paris13.fr/~carlet/english.
html.

[8] Claude Carlet and Keqin Feng. 2008. An Infinite Class of Balanced Functions
with Optimal Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and
Good Nonlinearity. In Advances in Cryptology - ASIACRYPT 2008, Josef Pieprzyk
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 425–440.

[9] John A Clark and Jeremy L Jacob. 2000. Two-Stage Optimisation in the Design of
Boolean Functions. In Information Security and Privacy. LNCS, Vol. 1841. Springer,
242–254.

[10] Nicolas T. Courtois and Willi Meier. 2003. Algebraic Attacks on Stream Ciphers
with Linear Feedback. In Advances in Cryptology — EUROCRYPT 2003, Eli Biham
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 345–359.

[11] Marko Durasevic and Domagoj Jakobovic. 2020. Comparison of schedule gen-
eration schemes for designing dispatching rules with genetic programming in
the unrelated machines environment. Appl. Soft Comput. 96 (2020), 106637.
https://doi.org/10.1016/j.asoc.2020.106637

[12] John H. Holland. 1992. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
Press. https://doi.org/10.7551/mitpress/1090.001.0001

[13] Selçuk Kavut and Melek D. Yücel. 2003. Improved Cost Function in the Design
of Boolean Functions Satisfying Multiple Criteria. In Progress in Cryptology -
INDOCRYPT 2003. LNCS, Vol. 2904. Springer, 121–134.

[14] John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

[15] David Lynch, Takfarinas Saber, Stepán Kucera, Holger Claussen, and Michael
O’Neill. 2019. Evolutionary learning of link allocation algorithms for 5G het-
erogeneous wireless communications networks. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Repub-
lic, July 13-17, 2019, Anne Auger and Thomas Stützle (Eds.). ACM, 1258–1265.
https://doi.org/10.1145/3321707.3321853

[16] Luca Mariot and Alberto Leporati. 2015. Heuristic Search by Particle Swarm
Optimization of Boolean Functions for Cryptographic Applications. InGenetic and
Evolutionary Computation Conference, GECCO, Companion Material Proceedings.
1425–1426.

[17] William Millan, Andrew Clark, and Ed Dawson. 1997. An Effective Genetic Algo-
rithm for Finding Highly Nonlinear Boolean Functions. In First Int. Conference

on Information and Communication Security (ICICS ’97). Springer, 149–158.
[18] William Millan, Andrew Clark, and Ed Dawson. 1998. Heuristic Design of

Cryptographically Strong Balanced Boolean Functions. In Advances in Cryptology
- EUROCRYPT ’98. 489–499.

[19] William Millan, Joanne Fuller, and Ed Dawson. 2004. New concepts in evolution-
ary search for Boolean functions in cryptology. Computational Intelligence 20, 3
(2004), 463–474.

[20] Stjepan Picek, Claude Carlet, Sylvain Guilley, Julian F. Miller, and Domagoj
Jakobovic. 2016. Evolutionary Algorithms for Boolean Functions in Diverse
Domains of Cryptography. Evolutionary Computation 24, 4 (2016), 667–694.
https://doi.org/10.1162/EVCO_a_00190

[21] Stjepan Picek, Carlos A. Coello Coello, Domagoj Jakobovic, and Nele Mentens.
2016. Evolutionary Algorithms for Finding Short Addition Chains: Going the
Distance. In Evolutionary Computation in Combinatorial Optimization, Francisco
Chicano, Bin Hu, and Pablo García-Sánchez (Eds.). Springer International Pub-
lishing, Cham, 121–137.

[22] Stjepan Picek andDomagoj Jakobovic. 2016. Evolving Algebraic Constructions for
Designing Bent Boolean Functions. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016 (GECCO ’16). Association for ComputingMachinery,
New York, NY, USA, 781–788. https://doi.org/10.1145/2908812.2908915

[23] Stjepan Picek and Domagoj Jakobovic. 2019. On the Design of S-Box Construc-
tions with Genetic Programming. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO ’19). Association for Computing Ma-
chinery, New York, NY, USA, 395–396. https://doi.org/10.1145/3319619.3322040

[24] Stjepan Picek and Domagoj Jakobovic. 2020. Evolutionary Computation and Ma-
chine Learning in Cryptology. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion (GECCO ’20). Association for Computing Ma-
chinery, New York, NY, USA, 1147–1173. https://doi.org/10.1145/3377929.3389886

[25] Stjepan Picek, Domagoj Jakobovic, and Marin Golub. 2013. Evolving Crypto-
graphically Sound Boolean Functions. In Genetic and Evolutionary Computation
Conference (GECCO) (GECCO ’13 Companion). ACM, 191–192.

[26] Stjepan Picek, Domagoj Jakobovic, Julian F. Miller, Lejla Batina, and Marko Cupic.
2016. Cryptographic Boolean functions: One output, many design criteria. Appl.
Soft Comput. 40 (2016), 635–653.

[27] Stjepan Picek, Elena Marchiori, Lejla Batina, and Domagoj Jakobovic. 2014.
Combining Evolutionary Computation and Algebraic Constructions to Find
Cryptography-Relevant Boolean Functions. In Parallel Problem Solving from Na-
ture – PPSN XIII, Thomas Bartz-Beielstein, Jürgen Branke, Bogdan Filipič, and
Jim Smith (Eds.). Springer International Publishing, Cham, 822–831.

[28] Stjepan Picek, Dominik Sisejkovic, and Domagoj Jakobovic. 2017. Immuno-
logical algorithms paradigm for construction of Boolean functions with good
cryptographic properties. Eng. Appl. of AI 62 (2017), 320–330.

[29] Stjepan Picek, Dominik Sisejkovic, Vladimir Rozic, Bohan Yang, Domagoj
Jakobovic, and Nele Mentens. 2016. Evolving Cryptographic Pseudorandom
Number Generators. In Parallel Problem Solving from Nature (PPSN). Springer,
613–622.

[30] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A Field
Guide to Genetic Programming. Lulu Enterprises, UK Ltd.

[31] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In
NDSS, Vol. 17. 1–14. https://doi.org/10.14722/ndss.2017.23404

[32] Qichun Wang, Claude Carlet, Pantelimon Stănică, and Chik How Tan. 2014.
Cryptographic properties of the hidden weighted bit function. Discrete Applied
Mathematics 174 (2014), 1 – 10. https://doi.org/10.1016/j.dam.2014.01.010

[33] Zhenbin Zhang, Liji Wu, An Wang, Zhaoli Mu, and Xiangmin Zhang. 2015. A
Novel Bit Scalable Leakage Model Based on Genetic Algorithm. Sec. and Commun.
Netw. 8, 18 (Dec. 2015), 3896–3905. https://doi.org/10.1002/sec.1308

https://doi.org/10.1145/3377930.3390228
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1109/12.73590
https://www.math.univ-paris13.fr/~carlet/english.html
https://www.math.univ-paris13.fr/~carlet/english.html
https://doi.org/10.1017/9781108606806
https://www.math.univ-paris13.fr/~carlet/english.html
https://www.math.univ-paris13.fr/~carlet/english.html
https://doi.org/10.1016/j.asoc.2020.106637
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1145/3321707.3321853
https://doi.org/10.1162/EVCO_a_00190
https://doi.org/10.1145/2908812.2908915
https://doi.org/10.1145/3319619.3322040
https://doi.org/10.1145/3377929.3389886
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1016/j.dam.2014.01.010
https://doi.org/10.1002/sec.1308

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Notation
	2.2 Boolean Functions
	2.3 Hidden Weight Boolean Functions

	3 Related Work
	4 Problem Definition
	5 Experimental Setup
	5.1 Encodings and Algorithms
	5.2 Parameter Tuning
	5.3 Fitness Functions

	6 Results
	7 Conclusions and Future Work
	References

