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Abstract

Locality mapping captures the displacement
imposed by a mirroring surface in anamorphic
art. Establishing this mapping for a physical
mirror, however, is a difficult task. Applying
pattern matching on the distorted reflection
is a promising technique, though existing pat-
tern matching strategies are often ill equipped
for this particular task. This paper proposes
a novel pattern- and pattern matching strat-
egy designed to provide robustness against the
artifacts introduced by mirror anamorphosis.
The resulting approach, though computation-
ally intense, is able to provide an arbitrary
quantity of anchor points given the necessary
image quality.

Introduction

Mirror anamorphosis allows for great artistic ex-
pression through the use of a reflective surface,
morphing a source image into a desired projection.
It is, however, not trivial to establish the behaviour
of this anamorphosis, and typical approaches come
with numerous limitations. This paper will pro-
pose a novel solution in the form of pattern matching.

Existing approaches to facilitate anamorphic
artistry require object-specific calculations[1] to ap-
ply grid formation or mapping functions. This relies
on highly regular and well-defined mirroring objects.
Manual sampling may be used as an alternative,
though this is a very labour-intensive process and is
ill suited for use in digital image editors. Ray tracing
offers a solution in digital space, but translating
physical mirrors to a digital space is not always
feasible or even possible. For a physical mirror it is,
however, trivially easy to prepare a canvas and take
a picture of the resulting mirror anamorphosis.

Digital image processing in the form of pattern
matching is widely used in relation to distortion
correction, for instance to calibrate cameras [2] and
for digitisation of deformed materials[3]. As such,

by defining a pattern and analysing the subsequent
distortion created through anamorphosis, we may
extract the information needed to reproduce this
distortion on an arbitrary image. This would be of
immense value when creating anamorphic art, and
could possibly enable novel optic techniques using
mirroring surfaces.

The aim of this research is to deploy pattern
matching to establish a translation of locality
between a given source image and its reflection to a
reasonable degree. To this end, a novel approach to
pattern creation- and matching will be laid out as
well as its strengths and drawbacks.

The question this paper aims to answer is whether
and how we can create a globally unique pattern in
such a way that correspondence can be established
with its reflection, regardless of the distortion.
In proposing a technique to resolve this, we shall
provide an analysis on its performance given a
resolution and an expected distortion.

To setup a pattern matching approach for mirror
anamorphosis, a few steps must be taken. To begin,
a pattern must be defined and constructed. This
pattern is then applied in the mirror anamorphic
scene, resulting in an anamorphic image. Such
images must then be clustered based on the colours
of the source pattern. This should yield a set of
adjacencies between various coloured clusters. A
matching algorithm can then use these adjacencies
to find correspondence between the source pattern
and its anamorphised depiction.

We show that the resulting locality mapping cor-
rectly captures the super majority of points in clear
images, and only discards a few markers in case of sig-
nificant visual obstruction. It is further shown that
the pattern used can be defined for an arbitrary res-
olution and can be configured to use any number of
colours.
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Related Work

Pattern matching is a well-established field with a
broad range of approaches. As such, this Related
Works section will not be exhaustive. Most intuitive
and popular among patterns for pattern matching is
the checkerboard pattern. It is widely used in fields
such as camera calibration[2] and tracking fabrics in
video footage [4]. This approach typically uses the
ubiquitous black-and-white checkerboard pattern to
establish locality mapping. By detecting the bound-
aries between black and white tiles, the distorted
pattern can be mapped. The greatest advantage
of this strategy is its computational simplicity and
robustness against colour distortion. In addition,
this initial computational simplicity enables the
use of corner- and vertex detection algorithms [5]
without any ambiguity or complexities introduced
through colour distortion. However, finding the
global position of any given tile requires a direct or
indirect adjacency to both a horizontal and vertical
edge of the full pattern. For many applications this
relative position can be enriched through inference,
but for mirror anamorphosis this is not possible to
nearly the same extent.

Two requirements for a pattern matching solution
in mirror anamorphosis particularly distinguish
this from typical applications: full locality on
a partial reflection, and possible multiplicity in
the reflection. Firstly, it is the goal of pattern
matching in mirror anamorphosis to establish the
locality mapping between the source image and its
reflection. However, there is no guarantee that the
full pattern is reflected. This strongly limits the
utility of inference in determining global positioning.
Furthermore, mirrors may reflect the same part of
the source pattern multiple times. This reduces the
applicability of inference even further.

The Hilbert curve is a notable instance of a
space-filling curve and already applied in other com-
puter science fields where dimensionality reduction
is needed. A particularly valuable property of the
Hilbert curve is the interchangability of its fractal
pattern, which allows for a localised increase or de-

crease of curvature [6].

Pattern Generation

The main objective of the pattern we aim to create
is to provide global uniqueness. This means that any
sufficiently large continuous sample of the pattern
must occur only once. This uniqueness must be
robust against the kinds of distortion observed in
mirror anamorphosis. For this reason adjacency is
the attribute used to guarantee uniqueness.

Figure 1: No singular colour is unique. However,
through adjacency, we can establish unique sequences.

As a way of reducing the dimensionality of the
problem, a line will be used to demarcate the
space. Thus, uniqueness must be established along
a line segment rather than across a two dimensional
surface. The shape of the line is not considered, only
its continuity and consequent adjacency.
The shape of the line is largely arbitrary, since its
shape is not instrumental to establishing uniqueness.
The Hilbert curve was chosen to somewhat evenly
and unilaterally traverse the plane with the line
segment, while avoiding straight segments as much
as possible. The Hilbert curve is a space-filling
fractal curve. In its lowest dimension, it consists of
a ”u” shape. Each subsequent dimension consists
of four of the lower dimension instances connected
together in a particular orientation.

Coloured dots will be used to uniquely identify
points along the line, since these are robust against
distortion. To establish uniqueness through these
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colours it must therefore hold that any given se-
quence of sufficient length must be unique. The dots
may be placed arbitrarily along the line. However,
placement along the grid used by the Hilbert curve
allows for uniform spacing along it. Additionally,
this means all connective line segments are straight.
Though not used within this paper, some amount
of information could be extracted from the resulting
distortion.

Let Cn = {c0, c1, ..., cn−1} be a set of n colours,
and C∗n denote the set of all possible strings of colours
from Cn. Let us define k > 0 as the minimum length
substring that we desire to be uniquely identifiable.
It is important to note that this uniqueness must be
robust against mirroring, since we may not necessar-
ily be able to maintain the same direction of traversal.

Let us further define sn(S, i, k) as a function re-
turning a substring of S starting at index i of length
k in the form (si, si+1, . . . , si+k−1) ⊆ S ∈ C∗n with
smirror
n (S, i, k) = {si+k−1, . . . , si+1, si} ⊆ S ∈ C∗n

We can thus define a string Uk,n ∈ C∗n to be
uniquely identifiable on k-length substrings when:

∀x, y

( sn(U, x, k) = sn(U, y, k) ⇐⇒ x = y
∧

sn(U, x, k) = smirror
n (U, y, k) ⇐⇒ x = y

)

Though we cannot trivially compute the longest
such sequence, we can calculate its upper limit. The
longest theoretically possible sequence would contain
every unique k-length colour sequence in C∗n, exclud-
ing mirrored instances. We can combine all non-
palindromic sequences in mirroring pairs. By tak-
ing half of this set, combined with the set of palin-
dromes, we would acquire the maximum number of
substrings. Since we know each palindrome corre-
sponds to dk2 e-length string in C∗n we know that there

are |Pn,k| = nd
k
2 e k-length palindromes in C∗n. Con-

sidering that a string with t k-length substrings will
have a length of k + t − 1, we can define an upper

limit for the length at

|Uk,n| ≤ k − 1 +
nk − |Pn,k|

2
+ |Pn,k|

Upper bound for length of |Uk,n|
k=3 k=4 k=5 k=6 k=8

n=3 20 48 139 383 3328
n=4 42 139 548 2085 32903
n=5 77 328 1629 7880 195632
n=6 128 669 4000 23441 840463
n=8 290 2083 16644 131333 8390663

Notes

The choice of a Hilbert curve is somewhat arbitrary:
it is simply that its properties are quite desirable.
Namely, proximity of points on the curve correlates
well with proximity in two dimensional space. In
addition, no singular property of the mirroring
surface would unilaterally obstruct the pattern
as it is highly curved compared to for instance a
snake-like pattern. Due to the fractal nature of the
Hilbert curve, additional techniques may be possible
but are not explored here.

Clustering

In order to extract any information out of an image,
it must first be subdivided into its constituent re-
gions. For the technique outlined in this paper, this
subdivision is based on clusters of a predefined set
of colours: background clusters (white), connective
clusters (black) and marking clusters (the colours
from Cn).

Let P represent the two dimensional array contain-
ing the colour values for each pixel, and a decider
algorithm d(a, b) be defined such that

d(a, b) =

{
1, if a and b should be clustered

0, otherwise
(1)

i.
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We create two-dimensional integer array matching
the size of P , with each value starting at -1. This
array will track the cluster indices for each pixel.
This array we shall call P ′. We further create an
empty list C which will track the colour of each
cluster, and an empty list of pairs A which will track
adjacency of clusters.

ii.

To begin the algorithm, we read the colour of the
first pixel and append it to C. We set the value P ′0,0
to zero. After this, we iterate over the elements of P
row-by-row.
Note that P0,0 refers to the top left pixel.

iii.

For each pixel Px,y we first check the colour of its
neighbour to the top, Px,y−1. If d(Px,y, Px,y−1) = 1
we set P ′x,y to equal P ′x,y−1. If not, we check its left
neighbour Px−1,y. If d(Px,y, Px−1,y) = 1 we set P ′x,y
to equal P ′x−1,y.

iv.

In the case no direct left or above neighbours match
colours, we iterate over its right neighbours so long
as it holds that

∀xi ∈ [x, xn] d(Px,y, Pxi,y) = 1

. We stop on the lowest value xn for which
d(Pxn,y, Pxn,y−1) = 1. If such a match is found, we
will assign the value of P ′xn,y−1 to all P ′x,y, . . . , P

′
xn,y.

v.

If no match was found, we assign a new cluster
index equal to the length of C to all P ′x,y, . . . , P

′
xn,y,

and afterwards append the value Px,y to C.
vi.

After a cluster has been assigned to a pixel
Px,y, we check its remaining neighbours in P ′ for
different cluster numbers. We then add a pair of
the cluster numbers (c1, c2) to A where c1 and c2
are the lower and higher cluster numbers respectively.

vii.

Once we have iterated through the entirety of P ,
we iterate through all cluster adjacency pairs (c1, c2)
in A and evaluate d

(
C(c1), C(c2)

)
. If it is 1, we

merge the clusters c1 and c2.

Notes

Considering the proposed method only needs to cat-
egorise a set number of colours, we may introduce
a colour conversion at step six. This way, there is
significantly lower ambiguity in further grouping of
adjacent clusters.
Furthermore, it must be stated that this method is
ill suited for scenario’s with a high presence of colour
gradients.
Finally, this technique in its current description does
not support multithreading. Partitioning the im-
age into various smaller pixel sets would enable this,
though this would require an additional algorithm to
merge the resulting multitude of cluster sets. Given
the extensive benefits of parallelism, however, this
could prove very much worthwhile.

Matching Algorithm

In order to establish correspondence between the
coloured markers in the pattern and the zones de-
tected on the mirrored surface, we must construct
line segments from the mirrored surface and resolve
any contradictions that may arise due to fractions.
Fractions, in this context, refer to discontinuous sec-
tions in the locality mapping between the source im-
age and the anamorphised image.
Various effects may cause non-linearity or fractions
in the locality mapping. Namely, the surface may
itself be discontinuous or it may curve out of view
of the camera. Additionally, the mirror may reflect
the same section of the source pattern multiple times
onto the camera, or reverse the order of traversal. All
these phenomena combined make the establishing of
the locality mapping a non-trivial task.

To solve this problem, we begin with a rudimen-
tary reconstruction by finding adjacency sequences
that match the characteristics of the pattern. This
refers to any chain of sequential adjacencies that
alternates between black and a sequence color.
Let C = {c0, c1, . . . , cn} be the set of n colours con- i.
stituting the pattern. In addition let b be the color
black and w the color white. Let K = {0, 1, . . . , k−1}
be the set of all k indices of the clusters. The func-
tion color(x) will return the color of a cluster x ∈ K.

4



We also define the function Adjacency(x, y) which
returns true if clusters x and y are adjacent and false
otherwise.
We begin the algorithm by constructing theii.
sets Kc = {i | i ∈ K ∧ color(i) ∈ C} and
Kb = {j | j ∈ K ∧ color(j) = b}. We then con-
struct a (possibly disjoint) graph from these points
following adjacency. Mathematically, this will be
represented as a function neighbours : K 7→ K∗. In
implementation, a pythonic dictionary provides the
necessary functionality.
For each value in

neighbours(a) =


{i | i ∈ Kc ∧A(a, i)}, if a ∈ Kb

{i | i ∈ Kb ∧A(a, i)}, if a ∈ Kc

∅, otherwise
(2)iii.

We construct trees from this set. In particular, we
select an arbitrary instance ki/inKc which has not
yet appeared in any tree to create a new instance
T . We then find and append all kj for which holds
that ∃x

(
x ∈ neighbours(ki) ∧ kj ∈ neighbours(x)

)
which are not yet in T . We repeat this process for
each newly appended element, until no new elements
can be added to T . In case there are still elements
in Kc which have yet to be assigned to a tree, we
select one of these as the start of a new instance un-
til eventually all elements of K have been categorised.

iv.

To initiate the mapping process for any given tree,
we select the deepest leaf as an initial head and grow
from there. Each newly selected head is appended
to a substring, so long as the total corresponds to a
valid substring of the color sequence defined in the
pattern. Candidates for a new head are the parent of
the current head, or a child of the current head which
was not yet added to the sequence. Only sequences
exceeding the minimum identifiable substring length
are considered.

v.

After finding the longest valid sequence from
the given leaf, the sequence is stored and its cor-
responding nodes are removed. If this causes the
tree to become disjoint, we split the tree up. From
the remaining tree or trees, we repeat the process

outlined in iv. until no valid sequence exceeding the
minimum identifiable substring length can be found.

vi.

The sequences that have been identified now
allow for establishing correspondence between the
anamorphised image and the source pattern. Inter-
polation methods may now be applied to create a
more complete locality mapping.

Notes

There exist a number of signs within the cluster adja-
cency which indicate and point towards areas where
surface distortion is particularly severe. Namely, any
direct adjacency between two coloured clusters indi-
cates a discontinuous zone removing the space be-
tween them. Additionally, having more or less than
two black clusters neighbouring a given colored clus-
ter shows that some degree of distortion or discon-
tinuity has shifted the pattern. The same holds for
any coloured cluster which indirectly (through black
clusters) neighbours more than two coloured clusters.
Another option not explored in the above method is
analysing the shape of the clusters. Since all source
shapes are either circular or rectangular and are all
small relative to the overall pattern, simple approxi-
mation methods to the local distortion may prove to
greatly amplify the overall accuracy of the locality
mapping.

Results

Pattern Generation

Firstly, the pattern generation will be assessed.
In particular, the length of the sequences used to
provide uniqueness will be computed and compared
to the theoretical upper bound. Since the search is
depth-first and the search space grows exponentially
with the number of colours n and the minimal
identifiable substring length k, the process was cut
off after no new longest candidate was found for
some time.
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The values of n and k were set to all permutations
in the set (3, 4, 5, 6, 8). Each coloured line represents
a different value of n, with the x-axis representing
the chosen k value and the y-axis the corresponding
length achieved in log10. We observe as we expected
that the length of the sequence grows exponentially
with both n and k.

Figure 2: Plot of the sequence lengths given values
for n and k

Using the same values as displayed above, for each
combination of n and k the sequence length was
compared to the maximum theoretical value. We
observe that for higher values of k we come closer to
this maximum. This goes against our expectation
for the result of the algorithm, since for these larger
sequences we have explored a smaller percentage of
the search space.

Pattern Matching

A pattern was chosen for the pattern matching exper-
iments with n = 8 colours and a minimum identifiable
substring length k = 5. This will be used within all
tests described in this section.

In order to properly test the algorithm, three sce-
narios will be tested. Firstly, the pattern will be
tested as-is without any modification. This should
yield a fully accurate mapping of the pattern, given
no distortion will be present. Secondly, a rudimen-
tary spherical distortion will be showcased to show

Figure 3: Plot of the ratio between the longest found
and the theoretical upper bound, as a percentage

Figure 4: A generated instance of the pattern de-
scribed in the paper, with n = 8 and k = 5

resilience against light distortion. Further, a section
of the scene will be obstructed to showcase that global
position can be derived only from partial connectiv-
ity.
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Figure 5: The predefined pattern, with each colour
within the sequence enumerated according to the
found values

Figure 6: Scene 1: a textured plane with a reflective
sphere

Figure 7: Scene 2: a textured plane with a reflective
sphere and an obstruction

Figure 8: Scene 1, enumerated

Figure 9: Scene 2, enumerated
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Discussion

To maintain the scope of the research within the
allotted time, many decisions had to be made to
narrow down the search space. In particular, it was
chosen to not pursue research into colour gradients
since this avenue was far more complex and novel
than the given time allowed. Additionally, the
research presumed that the given count of colours
could be adequately distinguished in real-world
scenarios.

Within the original scope definition, it was out-
lined to strive towards the integration of multiple
patterns to establish the locality mapping with
higher precision and accuracy. It proved, however,
that it was much more beneficial for the overall
quality of the research to focus on the establishment
of a singular pattern.

A notable roadblock and discovery within the ex-
ploratory phase of research was around the establish-
ment of the colour sequence. This proved to be much
more difficult to algorithmically solve than initially
thought, which required significant experimentation
on creating a more efficient way to determine these
strings.

Conclusion

Succinctly put, this paper sought to propose a novel
solution to pattern matching within the context
of mirror anamorphosis. A technique would be
outlined, and further substantiated through tests.
In addition, the benefits and drawbacks would be
explored.

An interesting result from the pattern definition is
the apparent contradiction in the relation between
the length of the minimum identifiable substring
length and the permitted resolution: the larger this
minimum is set to be, the higher the overall resolu-
tion. This can be intuited quite well, as linear growth
of the length of the substring will cause an exponen-
tial growth in the number of permutations. Though

the process of appending these strings is not triv-
ial and not all possible permutations may be added,
current data suggests that this reduction does not ex-
ceed the exponential growth of the substring space.
As such, the algorithm benefits greatly from higher
resolution imagery.

1 Future Work

With correspondence between coloured markers
established, the relation between the distortion
and its original could be exploited to increase the
resolution of the locality mapping. Further, the
shape and distribution of the markers may be further
refined to this end.
The approach as described in this paper does not
consider the false adjacency that is detected; in
particular, any directly neighbouring coloured clus-
ters are incorrectly adjacent, as are black clusters
which neighbour more than two coloured markers.
Finding such points within the pattern allows one
to establish regions of discontinuity in the locality
mapping.
Another avenue not explored is the enrichment
of the coloured pattern. for instance, defining
sequences which may not occur in the pattern would
allow for an improved detection of false positives.
Additionally, matching speed could be improved by
restricting small marker substrings to regions of the
pattern.
This paper set out to provide the conceptual
foundation and validation of the described pattern
matching approach. In this, the choice of colour
values was done largely arbitrary. Further research
could be done to find a set of colours optimised
against colour distortion.
In a rather tangental approach to that explored in
this paper, it may prove fruitfull to use a digital
screen in order to establish locality mapping.. This
would allow for much more dynamic and accurate
mapping, at the cost of a loss in flexibility when it
comes to surface size and shape.
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Appendix

Figure 10: The predefined pattern, with each colour within the sequence enumerated according to the found
values
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Figure 11: Scene 1: a textured plane with a reflective sphere
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Figure 12: Scene 2: a textured plane with a reflective sphere and an obstruction
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Figure 13: Scene 1, enumerated
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Figure 14: Scene 2, enumerated
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