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Abstract
Purpose Planning a safe path for flexible catheters is one of the major challenges of endovascular catheterization. State-
of-the-art methods rarely consider the catheter curvature constraint and reduced computational time of path planning which
guarantees the possibility to re-plan the path during the actual operation.
Methods In this manuscript, we propose a fast two-phase path planning approach under the robot curvature constraint.
Firstly, the vascular structure is extracted and represented by vascular centerlines and corresponding vascular radii. Then, the
path is searched along the vascular centerline using breadth first search (BFS) strategy and locally optimized via the genetic
algorithm (GA) to satisfy the robot curvature constraint. This approach (BFS-GA) is able to respect the robot curvature
constraint while keeping it close to the centerlines as much as possible. We can also reduce the optimization search space and
perform parallel optimization to shorten the computational time.
Results We demonstrate the method’s high efficiency in two-dimensional and three-dimensional space scenarios. The results
showed the planner’s ability to satisfy the robot curvature constraint while keeping low computational time cost compared
with sampling-based methods. Path replanning in femoral arteries can reach an updating frequency at 6.4 ± 2.3Hz.
Conclusion The presentedwork is suited for surgical procedures demanding satisfying curvature constraintswhile optimizing
specified criteria. It is also applicable for curvature constrained robots in narrow passages.

Keywords Path planning · Flexible catheter · Autonomous endovascular intervention · Curvature constraints · Robotic
surgery

Introduction

Percutaneous coronary intervention (PCI) is used to widen
stenotic and occluded blood vessels by pushing the plaque
aside and placing a stent nearby to restore and maintain the
blood circulation. For example in Fig. 1, a catheter is inserted
from a femoral artery and targeting the occlusion site.
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Tool and navigation guidance can lower the skill require-
ments for percutaneous treatment. Nowadays, steerable
catheters have been developed viamechanical, magnetic, and
fluidic actuation principles. Steerable catheters have different
bending capabilities exhibiting a minimum bending radius.
Theminimumbending radius found in literature lies between
8.13mm and 171mm [17].

Path planning is one of the major challenges of endovas-
cular catheterization. Vascular centerlines were seen as a
reference trajectory, and centerline extraction has aroused
the interest of researchers. A graph matching method is
proposed to establish the correspondence between the 3D
pre-operative and 2D intra-operative skeletons extracting
from fluoroscopic images, and then, the two skeletons are
registered by skeleton deformation [19]. Nevertheless, the
path planning approach which merely follows centerlines
might be infeasiblewhen the path curvature exceeds catheters
bending capability. For example, if the robot is attempting to
follow the centerlines (like in [19]), the minimum bending
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Fig. 1 Clinical background (A) coronary endovascular procedure, (B) femoral endovascular procedure (The anatomy models are made using
BodyParts3D, c©2008 The Database Center for Life Science licensed under CC Attribution-Share Alike 2.1 Japan)

radius is less than 1mm at the bifurcation (Fig. 1B), which
exceeds the robot bending capability 13.1mm [1] and makes
the robot fail to follow.

A performant path planner should provide a reliable
path within the catheter capability. Sampling-based methods
such as extended probabilistic roadmap [8] and bidirectional
rapidly exploring random tree (Bi-RRT) [5] are able to plan
the path in configuration space. These methods have been
coupled with Dubins path and Bézier spline to generate cur-
vature bounded paths. Adaptive fractal tree (AFT) [13] takes
advantage of the fractal theory and the architecture of graph-
ics processing units (GPUs) paralleling the planning process.
It has a higher success rate than RRTs, as demonstrated for
needle insertions in a complex environment [13]. However,
the success rate of RRTs or AFT is not always ensured.

To overcome the drawbacks mentioned above, a com-
promise between following the vascular centerlines and
satisfying the curvature constraint is needed. An approach
that simply decreases the path arch height at the 180◦ turn-
ing until the curvature constraint is satisfiedwas implemented
[18]. In [6], an ant colony optimizationmethodwas presented
with an average time cost of 12.3s (min 2, max 30). Also in
[14], a backbone curvemethod was implemented to optimize
the path under kinematic analysis for a cable-driven con-
tinuum robot in a cardiovascular system. Nevertheless, this
work considers the constrained optimization problem along
the overall path without reducing the optimization search
space.

More importantly, reducing computational time would
help path planners to be applied in path replanning. Intra-
operatively, plannedpathsmight be infeasible or less accurate
due to environment deformations and sensing uncertain-

ties. The work in [7] quantified the displacement of arteries
during endovascular catheterization: The aortic bifurcation
was mostly displaced in a cranial direction with the median
cranio-caudal dislocation of 6.7mm (min 2.1, max 12.3).
Considering that the high computational time of 12.3s [6]
can barely make the path adapted to the deformation, the
need for real-time path planning with low computational
time is highlighted. In real applications, the proper replan-
ning frequency is usually constrained bymultiple factors: the
catheter tip position tracking frequency, vision sensing feed-
back frequency, and controller frequency. For example, the
frequency of an electromagnetic tracking system (Aurora)
is 40Hz [11], the frequency of intra-operative model recon-
struction is 1.25Hz [19], and the controller frequency is 10Hz
[15]. Therefore, the replanning frequency needs to be set
accordingly.

In this manuscript, we propose a fast two-phase path
planning approach considering the robot curvature and time
constraints.

Methodology

The proposed approach is a two-phase searching frame-
work (see pipeline in Fig. 2). The inputs of the path planner
are the centerline points pi and their minimum distances to
the vascular walls ri , where i is the running index (detailed
in Sec 2.1). Globally, we find a cubic B-spline curve as along
the vascular centerlines from a user-defined initial point p0
to a goal point pG (detailed in Sec 2.2). Locally, the afore-
mentioned curve is optimized to satisfy the catheter curvature
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Fig. 2 Pipeline for the proposed path planning approach: given centerlines and radii, global planner computes a tentative curve, then local planner
optimizes the curve to satisfy the catheter curvature constraint

constraint. The final output curve a f is the curve with locally
optimized curve segments (detailed in Sec 2.3).

Centerline extraction

Our approach employs the method demonstrated in [2],
which treats the centerlines as the minimal action paths link-
ing Voronoi vertices inside the model surface. By solving
a nonlinear hyperbolic equation (Eikonal equation) fol-
lowed by an ordinary differential equation, the approach
[2] provides the minimal action paths points pi that locally
maximize their minimum distances ri to the boundary of
the surface. The vascular modeling toolkit (VMTK) library
based on [2] was used to automatically extract pi and ri . For
example, Fig 3A shows the Voronoi regions with Voronoi
vertices (blue), Voronoi edges (yellow), and extracted cen-
terline points (green).

Global planner

From the global planner, a tentative curve from an ini-
tial point p0 to a goal point pG inside blood vessels is
obtained (see Fig 3B). Each waypoint is presented in the
N-dimensional Cartesian coordinate system (N = 2 or 3).

pi = [xi0, xi1, · · · , xi(N−1)] i = 0, · · · ,G (1)

The initial point p0 is regarded as the exploration tree root.
The breadth first search (BFS) strategy starts at the tree root
and explores the k-nearest neighbor centerline nodes at the
present depth prior to moving on to the nodes at the next

depth level. It stops when the goal point is visited. Thus a list
of centerline points from p0 to pG is obtained by navigating
through the BFS tree.

The list of points is smoothed via cubic B-spline interpola-
tion and a tentative B-spline curve as is then obtained. Given
a knot sequence t0, · · · , tG , B-splines with degree M = 3
can be defined by the Cox-de Boor recursion formula as (2),
where w is the parametric space of the B-spline.

0 pi (w) =
{
1 ti ≤ w < ti+1

0 otherwise

M pi (w) = w − ti
ti+M − ti

M−1 pi (w) + ti+M+1 − w

ti+M+1 − ti+1

M−1 pi+1(w)

i = 0, · · · ,G

(2)

Local planner

The curvature si at pi along the B-spline interpolated curve
is defined as (3) in a generic form. Specifying N = 3, the
expression is simplified as (4).

si =

√
1
2

N−1∑
j=0

N−1∑
k=0

(ẋi j ẍik − ẋik ẍi j )2

(
N−1∑
j=0

ẋ2i j )
3
2

i = 0, · · · ,G (3)

si =
√

(ẋi0 ẍi1 − ẋi1 ẍi0)2 + (ẋi0 ẍi2 − ẋi2 ẍi0)2 + (ẋi1 ẍi2 − ẋi2 ẍi1)2

(ẋ2i0 + ẋ2i1 + ẋ2i2)
3
2

(4)
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Fig. 3 The schematic view of: (A) Voronoi regions to extract centerlines and radii, where Voronoi vertices, Voronoi edges, and centerlines are blue,
yellow, and green, respectively. (B) Example of path points definition (C) Example of curve segments to be optimized

The curvature constraint is expressed as (5), and S is the
allowed maximal curvature value depending on robot kine-
matic constraints.

si ≤ S for i = 0, · · · ,G (5)

It is evaluated for the tentative curve as firstly. If the con-
straint is satisfied, as will be the final path without further
optimization. Otherwise, local optimization will be applied.
The curve to be optimized a0 is defined as

If si > S for i = i0, · · · , iF

Then a0 = [ pi0−Δ, · · · , piF+Δ] (6)

where a0 is the curve segment exceeding robot bending capa-
bility, and it is represented by a list ofwaypoints (see Fig. 3C).
Δ is the user-defined marginal capacity for local optimiza-
tion, such as 5% of the total number of path points. If the
initial or goal point is included in a0, its pose will also be
optimized.

Genetic algorithm (GA) finds the optimal re-interpolated
curve segment. In Fig. 4, there are 8 chromosomesmaking up
the initial population. Each chromosome A j ( j = 1 · · · 8) is
composed of 2 genes, which are the parameters determining
the re-interpolated B-spline curve a j . Specifically, the gene
g j1 is the number of points that are assigned with weight 0
when performingB-spline fitting; the gene g j2 is the smooth-
ness value that affects the trade-off between smoothness and
displacement during spline fitting, and it is the upper boarder
of the error sum of displacement squares. Then the fitness f j
is computed for each re-interpolated curve segment accord-
ing to a cost function.Next, the best re-interpolated curves are
selected for mating. For example, there are 4 chromosomes
selected formating in Fig. 4. Then the crossover andmutation
of genes are performed so that the population is updated.Dur-

ingmutation, a Gaussian distributed noiseΔg j ∼ N (μ, σ 2)

is added to the genes. Finally, the optimal curve segment is
selected from the population after ng iterations.

The cost function is designed to find the optimal path by a
trade-off between the distance to vascular walls, path length,
and curvature. The constrained optimization problem is for-
mulated as

min f (a) = w1gd(a) + w2gs(a) + w3gl(a)

s.t. si ≤ S for i = i0 − Δ, · · · , iF + Δ

di ≤ ri for i = i0 − Δ, · · · , iF + Δ

(7)

where gd(a) is the mean value of normalized distances to the
centerlines, gs(a) is themeanvalue of normalized curvatures,
and gl(a) is the normalized path length.

The mean value of the normalized distances to the center-
lines gd(a) is

gd(a) = mean (dc/r) (8)

dci = min
j=0,··· ,G || p0j − pi || i = i0 − Δ, · · · , iF + Δ

(9)

where dc is the distance from B-spline curve a to the cen-
terline. At the i-th index, dci is computed by the minimum
value of Euclidean distance from the new point pi to center-
line points p0j .

The mean value of normalized curvatures gs(a) is formu-
lated as

gs(a) = mean(s)/S (10)

The normalized path length gl(a) is presented as (11),
where the length l(a) is a cumulative sum of the distance
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Fig. 4 Schematics of the genetic algorithm procedure for local optimization

between adjacent points.

gl(a) = l(a)/l(a0) (11)

l(a) =
iF+Δ∑
i0−Δ

|| pi+1 − pi || (12)

Moreover, there are two constraints in (7): the curvature
constraint and the collision avoidance constraint. In the col-
lision avoidance constraint, by keeping the distance smaller
than the vascular radius, the point is ensured to locate inside
blood vessels. Since the path points are already refined in
the B-spline interpolation in (2), the collision avoidance
constraint is checked merely for the path points to reduce
computational time cost.

The constrained optimization problem (7) is converted to
an unconstrained one via moving constraints to the objective
function as

min f (a) = w1gd(a) + w2gs(a) + w3gl(a)

+ w4 max{0, s − S} + w5 max{0, dc − r} (13)

Here, in order to satisfy the hard constraints (curvature
constraint and collision avoidance), the weights assigned to
the cost function should have a significant difference between
w4, w5 and others, for example w1 = 1, w2 = 1, w3 =
1, w4 = 1000, w5 = 1000. When the hard constraints are
satisfied, the last two elements are 0, otherwise, a large num-
ber will be added to the cost function value f (a), indicating
that the corresponding solution a will not be selected since
the procedure intends to find the minimum cost value. After
ng iterations, if the optimal cost value is greater than a reason-
able threshold (such as 1000), which means the constraints
are not fully satisfied, there is no feasible solution until now.
To look for new solutions within the time limit, the number
of iterations ng will be increased. If the time limit is reached
and there is still no feasible solution found, the path planner
fails to find a path respecting all constraints.

There may be several portions of the tentative curve
exceeding the allowedmaximumcurvature. In that case, each
portion is assigned to an individual local planning thread.
Multiple threads are carried on in parallel, instead of being
conducted in serial to reduce computational time. After all
the threads are done, the final path a f under curvature con-
straint is obtained.
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Evaluationmetrics

Multiple criteria are chosen for performance evaluation. The
time cost t is the time spent on path planning in a single
trail from start to finish. The path length (12) is one of the
essential components to evaluate the path optimality, and it
is normalized by dividing it with the shortest distance from
the initial point to the goal point. The curvature (3) is used
to evaluate the bending extent of a curve.

The minimum distance to vascular walls at point pi can
be obtained by the subtraction of two elements: the vascular
radius ri and the distance to vascular centerline dci given
in (9). The distance to the vascular wall represents a safety
margin ensuring collision avoidance between the catheter tip
and vascular wall. To prevent physical harms as scratching
to soft tissues if the catheter comes in contact with vascular
walls, the distance to the vascular wall should not be less than
the outer radius of the catheter.

The success rate is defined as the fraction or percentage
of success among a number of attempts as δ = ns/n, where
ns is the successful times to find a path and n is the number
of attempts. For the proposed two-phase searching approach
in this manuscript, a feasible path solution can be found as
long as there is a feasible solution between initial and goal
points.

Experimental setup

This work targets endovascular procedures such as PCI,
EVAR, TAVI, and iliac recanalization. The datasets include
models such as coronary artery, aorta, femoral artery, periph-
eral arterial, etc., to evaluate and validate the approach. The
datasets are classified into 4 groups, including 2D (G1, G2)
and 3D (G3, G4) space scenarios.

The dataset G1 contains 2D images describing femoral
arteries (pixel resolution of 220 × 294 and spacing of
0.68mm). The dataset G2 includes 2D images describing
lower limb arteries (pixel resolution of 2822 × 1539 and
spacing of 0.37mm). The dataset G3 includes several 3D
mesh models: (i) A model which takes patient-specific com-
puted tomography (CT) images as inputs, typically in a
512 × 512 × 737 voxel dimension with a voxel spacing of
0.6445×0.6445×0.8mm; (ii) A model which takes patient-
specificmagnetic resonance imaging (MRI) images as inputs,
typically in a 512 × 64 × 512 voxel dimension with a voxel
spacing of 0.7813 × 2.0 × 0.7813mm; (iii) An embeddable
model of the lower limb made from anatomical parts, with
the physical dimension of 852× 116× 169mm; (iv) A mesh
model of a single femoral artery with a physical dimension
of 37 × 88 × 450mm. The dataset G4 includes a 3D mesh
model describing coronary arteries in a physical dimension
of 102×89×101mm. Table 1 provides other information of

the datasets, among which the tortuosity is used to measure
the arc-chord ratio of vascular structure.

The inputs of the path planner are obtained as follows.
First, the centerline is extracted using the VMTK module on
the platform 3DSlicer. Second, Gaussian distributed noise
Δ p0,G ∼ N (μ = 0, σ = 10) is added to the initial and goal
points in each trail to increase data variability. Third, without
loss of generality, the path planner is designed in a generic
form which takes the robot’s specification S as an input. The
experiments are carried out on a computer equipped with an
Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz 1.80GHz
processor and 8GB RAM.

The proposed approach is compared with sampling-based
methods RRT and RRT* [10]. Compared with the basic RRT
andRRT* [9], the extendedones [10] take randomsamples on
centerlines instead of randomly sampling inside the vascular
model. The parameter specification is given as follows: the
maximum number of samples to take before timing out is
4048, the probability of checking for a connection to the
goal is 0.1, and the number of nearby branches to rewire is
32.

Statistical analysis

The statistically significant difference between the proposed
method and others will be evaluated via Kruskal-Wallis test
in this work. It is a nonparametric test that does not assume
a normal distribution of populations. The null hypothesis is
that there is no significant difference between solutions using
different methods. If the significance level α = 0.05, the null
hypothesis is accepted having p > 0.05. If p < 0.05, the
null hypothesis is rejected, which demonstrates that there is
a significant difference between the proposed method with
others.

Results and discussion

The proposed approach is performed on our datasets and
compared with sampling-based methods. Figure 5A shows
that with respect to computational time cost, the proposed
method has a smallermedian and variance. In specific scenar-
ios, where the blood vessels are slender and narrow, collision
checking and avoidance of RRT series could take more
time than continuous sampling along the vascular center-
lines. More importantly, instead of considering the curvature
constraint in the overall path planning which can be time
consuming, we optimize curve segments in the local plan-
ner, for the reason that in most cases the curvature limitation
would be respected except for some sharp turns along the
centerlines. Therefore, the proposed method takes less com-
putational time. Reducing computational timewould help the
path planner to be applied in path replanning. For example,
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Table 1 The datasets
description and related
parameters of experiments

dataset subjects tortuosity source S (mm−1) trials

G1 5 2.365 ± 0.100 - 0.08 250

G2 3 1.067 ± 0.015 [3] 0.10 150

G3 4 1.075 ± 0.045 [4,12,16] 0.08 200

G4 1 1.501 ± 0.120 [16] 0.20 100

Fig. 5 The performance comparison between the proposed method and sampling-based methods [10] according to (A) time cost, (B) path length,
(C) distance to vascular walls, and (D) curvature. (∗, p < 0.05 using Kruskal-Wallis test)

the time cost on G1 is 191± 102ms and the path replanning
can achieve an updating frequency at 6.4±2.3Hz. Compared
with serial threads processing in the proposed local planner,
the speed of parallel threads processing improves noticeably.
For instance, the time is reduced by 41% (p < 0.05) when
processing two threads in parallel on the dataset G4.

For path length, Fig. 5B shows that the proposed method
has a smaller median value, while the variance is similar with
the results of other methods. The random sampling property
of RRT series leads to path points locating not always on vas-
cular centerlines. Floating around the centerlines results in
paths that can not be ensured to be the shortest one. To avoid
this drawback, the proposed method adopts a BFS strategy
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Table 2 The performance comparison regarding to success rate

Method G1 G2 G3 G4

RRT [10] 0.980 0.760 0.890 0.910

RRT* [10] 0.988 0.740 0.890 0.950

BFS-GA 1 1 1 1

within the vascular tree, ensuring the path solution to be the
shortest one. Moreover, the local planner pushes the path
points in the same direction away from the centerlines, avoid-
ing bidirectional floating around the centerlines that increases
path length.

Figure 5C shows that the proposed method increases the
distance to vascular walls by keeping close to centerlines.
It resulted not only from the sampling property analyzed in
the previous paragraph, but also from the specified optimiza-
tion criteria in the local planner. Figure 5D demonstrates
that the curvature constraint is satisfied using the proposed
method and the curvature median value is decreased. Specifi-
cally, the curvature constraint is respected in the local planner.
The median value is also decreased by avoiding bidirectional
floating around the centerline.

From Table 2, we can see that the success rate of our
method is higher. As long as a feasible path exists, the pro-
posed method is able to find it by navigating through the
tree and optimize it locally. RRT series can not ensure a path
could be found in a specific trail due to its incompleteness.

In short, the results show that the proposed method
achieves a higher efficiency and better performance. It is
further applicable for path planning in narrow passages for
curvature constrained robots.

Conclusion

In this manuscript, a fast two-phase path planning approach,
named BFS-GA, is proposed for endovascular catheteriza-
tion. Vascular centerlines were seen as a reference trajectory
assisting catheterization in literature. State-of-the-art meth-
ods rarely consider the catheter curvature constraint. The
presented approach is able to respect robot curvature con-
straints while keeping it close to the centerlines as much
as possible. Moreover, researchers in literatures considered
merely the constrained optimization problem along the over-
all path without reducing search space. In this work, we
formulated and solved the optimization problem only for
portions of the path and performed parallel optimization
to shorten computational time. The limit is that it could
lose accuracy in intra-operative interventions resulting from
vasculature deformations and sensing uncertainties. Future
works will concentrate on developing an accurate intra-

operative path planner.A real-time path replanning algorithm
based on a pre-operative path should also be proposed.
Such an algorithm should consider additional factors like the
unpredictable deformation of environments and the uncer-
tainties of model sensing (e.g., the tip position and vascular
model).
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