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P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

A SYMMETRY AND DISPERSION-RELATION PRESERVING
HIGH-ORDER SCHEME FOR AEROACOUSTICS AND

AERODYNAMICS

Johan C. Kok

National Aerospace Laboratory NLR,
Anthony Fokkerweg 2, 1059 CM Amsterdam, The Netherlands

e-mail: jkok@nlr.nl
web page: http://www.nlr.nl/

Key words: High-order discretization, skew-symmetric form, dispersion-relation preserving,
computational aeroacoustics, compressible turbulence, large-eddy simulation

Abstract. A new high-order, finite-volume scheme is presented that preserves the symmetry
property and the dispersion relation of the convective operator. The scheme is applied to large-
eddy simulation of compressible, turbulent flow and to the solution of the linearized Euler equa-
tions for aeroacoustic applications. For large-eddy simulation, the discretization is based on
the skew-symmetric form, which ensures that the kinetic energy is conserved by the convective
operator. This property minimizes the interference of numerical errors with the subgrid-scale
model and also enhances numerical stability. Low numerical dispersion is obtained by extend-
ing the dispersion-relation preserving scheme of Tam & Webb to finite-volume schemes. The
proposed finite-volume scheme is unique in that it is truly fourth-order accurate, conservative,
symmetry preserving and dispersion-relation preserving on non-uniform, curvilinear structured
grids.

1 INTRODUCTION

As the air transportation market grows, the noise generated by aircraft is increasingly be-
coming a serious environmental problem. Consequently, there is a need for new concepts and
technologies that reduce the noise levels of future aircraft. The design of such low-noise aircraft
can be supported by computational methods to analyze the generation and propagation of sound.
When the sound generation is related to turbulent, massively separated flow, such as the flow
around a landing gear, then large-eddy simulations (LES) can be used, for example, to evalu-
ate the effect on the sound level of geometric modifications. For full-scale Reynolds numbers,
LES is still out of reach, but hybrid RANS–LES methods, such as extra-large eddy simulation4

(X-LES), are becoming feasible. Other examples of sound generation where X-LES may be
useful are engine jets and weapon bays. A different approach in the field of computational
aeroacoustics is the solution of the linearized Euler equations (LEE). With these equations, the
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propagation of sound in a non-uniform flow can be computed. This can be used, for example,
to determine the far-field directivity and intensity of tonal sound generated by turbine fans or
propellers.

The X-LES method and the linearized Euler equations have been implemented in a com-
pressible, multi-block flow solver. This solver has been well-validated for applications based
on the Reynolds-averaged Navier–Stokes equations. For such applications, second-order accu-
racy is sufficient. Large-eddy simulations, however, require a high-order discretization of the
convective operator to avoid interference with the sub-grid scale model (see, e.g., Kravchenko
& Moin6). Also, solving the linearized Euler equations requires a high-order discretization to
avoid excessive dispersion and dissipation of the sound waves as they travel over long distances.
Therefore, the existing second-order, cell-centred, finite-volume scheme5 has been extended
with a high-order numerical discretization of the convective terms.

The proposed numerical method is unique in that the following properties are truly main-
tained on smooth, non-uniform, curvilinear grids:

• fourth-order accuracy,

• conservation of mass, momentum, and total energy,

• conservation of kinetic energy by the convective operator,

• low numerical dispersion,

• no numerical dissipation, unless explicitly added.

The finite-volume method is made fourth-order accurate following the approach of Verstappen
& Veldman8,9 using Richardson extrapolation. They used this approach on Cartesian grids;
here, it will be shown that this approach works for curvilinear grids as well. Minimization of
the dispersion of the numerical scheme is done following the so-called dispersion-relation pre-
serving (DRP) approach of Tam & Webb7. It will be shown how the DRP approach can be
combined with a conservative, finite-volume scheme. Finally, for turbulent flows, conservation
of kinetic energy by the convective operator is obtained if the discretization is based on the
skew-symmetric form. Verstappen & Veldman applied this so-called symmetry preserving ap-
proach to incompressible flow, for which it means that the total kinetic energy cannot increase
(but only be dissipated by viscosity), so that numerical stability is ensured. For compressible
flows, however, compression or expansion of the fluid results in an isentropic exchange of ki-
netic and internal energy (through work done by the pressure), allowing for an increase (as
well as decrease) of total kinetic energy. Nevertheless, the skew-symmetric form ensures that
the discretization of the convective operator does not interfere with the dissipation of kinetic
energy due to viscosity or due to the sub-grid scale model in case of LES. It also enhances nu-
merical stability, as will be shown here. For compressible flow, Feiereisen et al.2 were the first
to present a skew-symmetric form and to show how it can be preserved for a finite-differencing
scheme; here, it will be shown how it can be preserved for a finite-volume scheme.
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2 SYMMETRY AND CONSERVATION FOR COMPRESSIBLE FLOW

A numerical method for the compressible Navier–Stokes equations will be presented that
not only preserves the conservation of mass, momentum, and total energy, but also the conser-
vation of kinetic energy by the convective operator. For this purpose, appropriate forms of the
convective operator are defined in this section. For incompressible flow, it is well known that
kinetic energy can be conserved if the discretization of the momentum equation is based on
the skew-symmetric form. For compressible flow, the same can be done if the skew-symmetric
form is defined appropriately.

The Navier–Stokes equations for a compressible flow are based on the conservation laws
for mass, momentum, and total energy. If the equations are cast in divergence form, then in-
tegration of the equations over the flow domain and applying Gauss’ theorem shows that the
total amount of mass, momentum, and energy cannot change (given appropriate boundary con-
ditions). Hence, the divergence form expresses conservation.

An equation for the kinetic energy can be derived from the momentum equation. This equa-
tion cannot be cast into divergence form, because the kinetic energy of a compressible flow is
not conserved. In particular, kinetic energy is dissipated by viscosity. Furthermore, work done
by the pressure leads to an isentropic exchange of kinetic and internal energy in case of com-
pression or expansion of the fluid. The convection of kinetic energy, however, is conservative
and therefore can be cast into divergence form. This divergence form follows immediately from
the momentum equation if one uses the so-called skew-symmetric operator.

Convection of a physical quantity, like mass, momentum, and energy, can be described by
several differential operators. The divergence form of the operator, expressing conservation, is
given by

Dφ =
∂ρφ

∂t
+∇ · (ρuφ) , (1)

with φ(t,x) the convected physical quantity per unit mass, ρ the density and u the fluid velocity.
The advective operator,

Aφ = ρ
∂φ

∂t
+ ρu · ∇φ , (2)

gives the time derivative of φ while moving along with a fluid particle (multiplied by density).
The two forms are easily shown to be equivalent using the continuity equation for a compress-
ible flow,

∂ρ

∂t
+∇ · (ρu) = 0 , (3)

which expresses mass conservation (and is obtained by setting φ = 1 in Dφ = 0).
Convection of a physical quantity implies conservation not only of the quantity itself, but

also of its quadratic form (φ2). This is expressed by the divergence operator applied to the
quadratic form, which is derived by multiplying equations (1) and (2) with φ and applying the
chain rule:

φDφ + φAφ = D(φ2) . (4)
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In fact, a more general relation holds,

φDθ + θAφ = D(φθ) , (5)

which means that D and −A are adjoint operators. A symmetric (or self-adjoint) and a skew-
symmetric operator are then naturally defined as S = 1

2
(D−A) and K = 1

2
(D+A), respectively,

so that D = K + S and A = K − S. The skew-symmetric operator has the property

φKφ = D
(

1
2
φ2

)
, (6)

which shows that using the skew-symmetric operator leads immediately to conservation of the
quadratic form. Substituting the definitions of D and A, the symmetric and skew-symmetric
operators are found to be

Sφ = 1
2

(
∂ρ

∂t
+∇ · (ρu)

)
φ , (7a)

Kφ = 1
2

∂ρφ

∂t
+ 1

2
ρ
∂φ

∂t
+ 1

2
∇ · (ρuφ) + 1

2
ρu · ∇φ . (7b)

Note that it follows from the continuity equation that the symmetric operator is identical to zero,
and that therefore the divergence, advective, and skew-symmetric operators are all equivalent.

Two alternatives for the skew-symmetric form for compressible flow can be found in the
literature. Feiereisen et al.2,3 use

∂ρφ

∂t
+ 1

2
∇ · (ρuφ) + 1

2
ρu · ∇φ + 1

2
φ∇ · (ρu) , (8)

which is, in fact, the divergence operator, written as the sum of the skew-symmetric and sym-
metric operators (except for the time derivative). Others write the divergence operator as

∂ρφ

∂t
+ 1

2
∇ · (uρφ) + 1

2
u · ∇(ρφ) + 1

2
ρφ∇ · u , (9)

but discretizations based on this form will not lead to conservation of φ2. This form seems to
be based on the intuitive idea that ρφ is the conserved quantity that is convected by the velocity
u. Convection, however, conserves the physical quantities of a fluid particle. As a fluid particle
has a constant mass, and not a constant volume, the quantities per unit mass are conserved (φ)
and not the quantities per unit volume (ρφ).

3 CONSERVATIVE DISCRETIZATION

As stated above, the aim is to discretize the convective operator such that both momentum
and kinetic energy are conserved. A finite-volume discretization of the flow equations, which is
based on the divergence form, ensures conservation of mass, momentum, and total energy. To
ensure conservation of kinetic energy, equation (6) should also hold in a discrete sense.
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A finite-volume discretization of the gradient operator ∇F can be written as

∇iF =
1

Vi

∑
f

FfAf , (10)

with Vi the volume of a grid cell Ωi, Ff the flux at cell face f , and Af the area vector of cell
face f . For a structured grid, the grid cells are numbered by a triple index i = (i, j, k) and the
variables located at the cell centres are indicated with a subscript i. The summation takes place
over all faces f of the considered grid cell. Conservation requires that the fluxes at the cell faces
are unique and that the area vectors satisfy the geometric conservation law∑

f

Af = 0 . (11)

For a second-order central scheme, the fluxes are obtained by averaging the variables from the
adjacent cells. When a flux consists of the product of several variables, one has to choose which
variables are averaged. For this purpose, define the following averages

ūf = 1
2
(ui,j,k + ui+1,j,k) , (12a)

ũvf = 1
2
(ui,j,kvi+1,j,k + ui+1,j,kvi,j,k) , (12b)

where, without loss of generality, the face between cells Ωi,j,k and Ωi+1,j,k is considered. Now,
using the geometric conservation law, the following rules can be derived for the discrete gradient
operator,

∇iūv̄ = 1
2
∇iuv + 1

2
∇iũv , (13a)

∇iũv = ui∇iv̄ + vi∇iū . (13b)

In order to preserve equation (6) in a discrete sense, discretize the skew-symmetric operator
as

Kiφ = 1
2

dρiφi

dt
+ 1

2
ρi

dφi

dt
+ 1

2
∇i · ρuφ + 1

2
ρiui · ∇iφ̄ . (14)

Using the rules of equation (13), it is then possible to show that indeed

φiKiφ =
d

dt
(ρi

1
2
φ2

i) +∇i · (ρu1
2
φ̃φ) , (15)

which is a finite-volume discretization of the divergence operator applied to φ2, ensuring con-
servation of φ2. Since equation (14) is not a finite-volume discretization of convection, the
question remains whether φ itself is conserved. To this end, define the discrete divergence
operator as Di = Ki + Si, with the symmetric operator discretized as

Siφ = 1
2

(
dρi

dt
+∇i · ρu

)
φi . (16)
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Using again the rules of equation (13), one finds that

Diφ =
dρiφi

dt
+∇i · ρuφ̄ , (17)

which is indeed a finite-volume discretization of the divergence operator applied to φ. Thus,
both φ and φ2 are conserved.

Finally, a second-order finite-volume discretization of convection that conserves both mo-
mentum and kinetic energy is obtained by discretizing the continuity equation according to
equation (16), by applying equation (17) to the convective term in the momentum equation, and
by applying equation (15) to the convective term of the kinetic energy equation (as part of the
total energy equation).

4 FOURTH-ORDER DISCRETIZATION ON CURVILINEAR GRIDS

The second-order discretization of the previous section is extended to fourth order by Richard-
son extrapolation. Consider the second-order scheme for the gradient operator in Rd, written
as

V h
i ∇iF = Bh

i , (18)

with the flux balance Bh
i given by

Bh
i =

∑
f

F h
f Ah

f , (19)

and with the superscript h indicating the mesh size in the computational domain. Also consider
an additional second-order schemes consisting of the same discretization stencil applied on a
grid with a three times larger mesh size in the computational domain (indicated with superscripts
3h). For each cell centre, the control volume Ω3h of the 3h scheme is constructed by joining the
3d cells around the cell centre, as illustrated in figure 1 in 2D. This discretization of the gradient
operator can be written as

V 3h
i ∇iF = B3h

i , (20)

with V 3h
i the volume of the control volume Ω3h

i and with the flux balance B3h
i given by

B3h
i =

∑
f

F 3h
f A3h

f , (21)

where the summation takes places over the cell faces f of the control volume Ω3h. Averages
needed to define the flux at the face between control volumes Ω3h

i,j,k and Ω3h
i+3,j,k are defined as

ū3h
f = 1

2
(ui,j,k + ui+3,j,k) , (22a)

ũv3h
f = 1

2
(ui,j,kvi+3,j,k + ui+3,j,kvi,j,k) . (22b)

The fourth-order scheme is constructed by annihilating the leading-order errors of the two
second-order schemes. The cell volumes and the flux balances are both of order hd. For the
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ii−1 i+1

j

j+1

j−1

Ω i,j

Ω i,j

h

3h

Figure 1: Control volumes Ωh
i,j and Ω3h

i,j around cell centre (i, j) in 2D.

second-order schemes of equations (18) and (20), the leading-order error is therefore of order
hd+2. In particular, if the leading-order error is equal to Chd+2 for the h scheme, then it is
equal to C(3h)d+2 for the 3h scheme, because the schemes use the same stencil. Applying
Richardson extrapolation to annihilate the leading-order error results in the following finite-
volume discretization of the gradient operator:

Vi ∇iF = Bi , (23)

with

Vi =
9

8
V h

i − 1

8 · 3d
V 3h

i , (24a)

Bi=
9

8
Bh

i −
1

8 · 3d
B3h

i . (24b)

Since central differences are employed, the leading-order error is now of order hd+4, i.e., a
fourth-order scheme has been obtained. Note that the scheme is fourth-order accurate on non-
uniform, curvilinear grids, provided that the mapping from the computational to the physical
domain is sufficiently smooth.

A fourth-order discretization of the convective operator is obtained by applying the fourth-
order discrete gradient operator, as defined above, in the definitions of the discrete skew-
symmetric and symmetric operators as defined by equations (14) and (16). For the fourth-order
scheme, conservation of both φ and φ2 can be proven in the same manner as was done for the
second-order scheme. This prove depends on the rules of equation (13). Because the fourth-
order flux balance is a linear combination of the second-order flux balances, the fourth-order
discrete gradient operator will satisfy these rules as well.
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5 DISPERSION-RELATION PRESERVING SCHEME ON CURVILINEAR GRIDS

In aeroacoustic applications, waves have to travel over long distances, which requires that
the numerical scheme has low dissipation and dispersion. Dissipation is minimized by using
central differences and explicitly adding a minimal amount of artificial diffusion if required for
stability. To minimize dispersion, the ideas of Tam & Webb7 are followed. Their dispersion-
relation preserving (DRP) scheme uses finite differencing to discretize the gradient operator.
A symmetric, seven-point stencil is used. The coefficients of the stencil have three degrees of
freedom of which two are used to make the scheme fourth-order accurate and the remaining one
is used to minimize the dispersion.

Thus, to apply the DRP approach to the fourth-order finite-volume scheme as presented in
the previous section, an additional degree of freedom is needed. At each cell centre, a third
control volume Ω2h is introduced with a mesh size of 2h in the computational domain. Again,
the same discretization stencil is employed on the 2h grid for the gradient operator, which can
be written as

V 2h
i ∇iF = B2h

i , (25)

with V 2h
i the volume of the control volume Ω2h

i and with B2h
i the flux balance. Combining

all three discretization stencils through Richardson extrapolation to annihilate the leading-order
error, results in the following fourth-order finite-volume discretization of the gradient operator:

Vi ∇iF = Bi , (26)

with

Vi =β

(
4

3
V h

i − 1

3 · 2d
V 2h

i

)
+ (1−β)

(
9

8
V h

i − 1

8 · 3d
V 3h

i

)
, (27a)

Bi=β

(
4

3
Bh

i −
1

3 · 2d
B2h

i

)
+ (1−β)

(
9

8
Bh

i −
1

8 · 3d
B3h

i

)
. (27b)

The parameter β leaves the necessary freedom to minimize the dispersion.
On a uniform grid, the finite-volume scheme can be written as a finite-differencing scheme.

The value of the parameter β can be chosen such that, in that case, the finite-volume scheme is
equivalent to the DRP scheme. On a uniform grid in one dimension, the finite-volume scheme
reduces to the following symmetric finite-differencing scheme:

Bi = a1(Fi+1 − Fi−1) + a2(Fi+2 − Fi−2) + a3(Fi+3 − Fi−3) , (28)

with the coefficients given by

a1 =
27 + 5β

48
, a2 = − β

12
, a3 =

β − 1

48
. (29)

On a uniform grid in multiple dimensions, the finite-volume scheme reduces to this stencil for
each computational direction separately. For the DRP scheme the coefficients are given by

a1 = 0.770882380518 , a2 = −0.166705904415 , a3 = 0.0208431427703 . (30)
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Using Taylor series expansions, it can be shown that the finite-differencing scheme is fourth-
order accurate if the coefficients satisfy the following two relations:

a1 + 2 a2 + 3 a3 = 1
2
, (31a)

a1 + 23a2 + 33a3 = 0 . (31b)

The coefficients of the finite-volume scheme and those of the DRP scheme satisfy these two
relations. Thus, if one coefficient is made equal, then the other two must be equal as well and
therefore the finite-volume scheme is made equivalent to the DRP scheme (on a uniform grid)
by taking the value of β as

β = −12a2 = 2.00047085298 . (32)

Note that the vertices of the control volume Ω2h do not lie at grid points, but at cell centres.
To compute the volume and the area vectors of this control volume, the coordinates of the
cell centres are therefore required. To maintain the fourth-order accuracy of the scheme, these
coordinates must be computed with fourth-order accuracy as well.

6 PROPAGATION OF AN ACOUSTIC PULSE

To illustrate that the proposed fourth-order finite-volume scheme has low numerical disper-
sion, even on non-uniform curvilinear grids, the propagation of a 2D acoustic pulse is consid-
ered. The linearized Euler equations (LEE) are solved. The steady flow is a uniform flow in
positive x direction at a Mach number M = 0.5. Let ρ be the density, u the velocity, p the
pressure, and c the speed of sound, and let ′ indicate the perturbation of a variable. The initial
solution for the LEE equations is given by

ρ′

ρ
=

p′

γp
= A 2−(‖x‖/b)2 , u′ = 0, (33)

with amplitude A = 0.01 and half-width b = 3L and with γ the ratio of specific heats. The flow
domain is defined as x ∈ [−100L, 100L]2 with periodic boundary conditions.

The LEE equations are solved using the second-order scheme, the basic fourth-order scheme,
and the fourth-order low-dispersion scheme. The skew-symmetric form is not used. The equa-
tions are integrated in time by the standard four-stage Runge–Kutta scheme. The size of the
time step is set such that the Courant number is equal to one.

A non-uniform, curvilinear grid is employed with strong stretching and skewness, as illus-
trated in figure 2a. The grid has been obtained by a smooth mapping of a uniform grid in the
computational domain to the physical domain.

Figure 2 gives the contour lines of the pressure distribution on the grid with 200 × 200 grid
cells (i.e., average mesh size 〈∆x〉/L = 1) at time c t/L = 32 (i.e., the pulse has travelled a
distance of 32L in the direction normal to the flow velocity). For the second-order and basic
fourth-order scheme, the non-uniformity of the grid has a strong effect on the contour lines,
which become more and more distorted. For the low-dispersion fourth-order scheme, the circu-
lar shape of the contour lines are well maintained (only the innermost contour line is distorted,
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(a) Grid
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(b) Second-order scheme
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(c) Basic fourth-order scheme
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(d) Low-dispersion fourth-order scheme

Figure 2: Numerical solution of 2D acoustic pulse at time c t/L = 32 on strongly non-uniform curvilinear grid
with 200× 200 grid cells

10



Johan C. Kok

x / L

ρ’
/ρ

-25 0 25 50
-0.001

-0.0005

0

0.0005

0.001

(a) Second-order scheme
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(b) Basic fourth-order scheme
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(c) Low-dispersion fourth-order
scheme

Figure 3: Numerical solution of 2D acoustic pulse at time c t/L = 32 on strongly non-uniform curvilinear grid
with varying number of grid cells compared to analytic solution at y = 0

but there the solution is almost constant). The superiority of the low-dispersion scheme is also
shown in figure 3 where the grid convergence is shown, compared to the exact solution. Note
that all computations are stable without any explicit artificial diffusion.

7 CONVECTION OF AN ISENTROPIC VORTEX

In order to test the capability of the high-order finite-volume scheme to accurately capture
vortices without significant dissipation or dispersion, the convection of a 2D isentropic vortex
in a uniform flow is considered, which is an exact solution of the compressible Euler equations.
The uniform flow is in the positive x direction at a Mach number M∞ = 0.5. The initial solution
is given by

u =

(
u∞
0

)
+ uAe(1−(r/b)2)/2

(
(y − y0)/b
−(x− x0)/b

)
, (34)

and
T

T∞
=

(
p

p∞

)(γ−1)/γ

=

(
ρ

ρ∞

)γ−1

= 1− γ − 1

2

u2
A

c2
∞

e1−(r/b)2 , (35)

with T the temperature, with r2 = (x − x0)
2 + (y − y0)

2 the distance from the vortex centre
(x0, y0), and with b the radius where the velocity induced by the vortex reaches its maximum
value uA. The flow domain is defined as x ∈ [−100L, 100L] with periodic boundary conditions.

A strong, compact vortex is considered with uA/u∞ = 0.8 and (b/L)2 = 16/ ln 2 (i.e.,
e−(r/b)2 = 1

2
at r = 4L). It is initially located at (x0, y0) = (−75L, 0) and convected for a time

period u∞t/L = 150. Computations are performed on the same strongly non-uniform grid as
used for the acoustic pulse, with the number of cells ranging from 100× 100 to 400× 400. The
equations are integrated in time by a low-storage 4-stage Runge–Kutta scheme.

The second-order scheme, the basic fourth-order scheme and the low-dispersion fourth-order
scheme are used. For all three schemes, computations using the skew-symmetric form of the
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convective operator are compared to computations based on the divergence form. The skew-
symmetric form is stable without artificial diffusion. For the divergence form, standard flux
averaging turned out to be unstable. Therefore, the fluxes at the cell faces are computed by
averaging the flow variables per unit volume. This approach differs only slightly from the
skew-symmetric form; in fact, for incompressible flow, it is equivalent to the skew-symmetric
form.

Figure 4 shows the temperature distributions on the medium grid (200×200 cells) computed
with all six schemes. For the second-order scheme, the vortex has clearly lost its shape, in
particular when using the divergence form, while also the centre of the vortex has drifted to a
positive y position (of approximately y = 4L). The low-dispersion fourth-order scheme is the
most successful in maintaining the shape and position of the vortex.

Figure 5 gives the difference of the numerical solution with the analytical solution as a
function of the grid resolution for all six schemes (with h the mesh size in the computational
domain). This shows that the fourth-order schemes are indeed fourth-order accurate on this
strongly non-uniform, curvilinear grid. For the low-dispersion scheme, the error is reduced by
an order of magnitude compared to the basic fourth-order scheme.

As the chosen approach for the divergence form differs only slightly from the skew-symmetric
form, one would not expect large differences in the error levels. Indeed, the error levels for the
velocity components are indiscernible. For the entropy, however, a clear reduction of the error
by almost an order of magnitude is seen for the skew-symmetric form (figure 5d). Essentially,
there is less entropy production using the skew-symmetric form, because it ensures that there
is no dissipation (or creation) of kinetic energy stemming from the discretized convective op-
erator. Larger differences would be expected with the divergence form based on averaging the
fluxes, since it requires artificial diffusion to maintain stability.

8 DECAYING ISOTROPIC HOMOGENEOUS TURBULENCE

The high-order finite-volume scheme is intended to be used for the X-LES model when in
LES mode. To assess the numerical scheme in pure LES mode, the decay of isotropic ho-
mogeneous turbulence is considered. The results are compared to the experiment of Comte-
Bellot and Corrsin1. In this experiment, the turbulence was generated by a grid with mesh size
M = 5.08 cm and with an onset velocity of U0 = 10 m/s. The Reynolds number based on these
scales is Re0 = U0M/ν = 34 000. In the computations, a cubic box of thickness L = 10M is
used with periodic boundary conditions. The initial solution consists of a random velocity field
generated from the filtered experimental energy spectrum at time t+ = tU0/M = 42.

X-LES computations with the second-order scheme have been presented before by Kok et
al.4. The same computational procedure is followed here. To study the grid dependence of the
numerical scheme, a fixed filter width ∆ = L/32 is employed, while the mesh size is varied
from h = L/32 to h = L/128. Because LES computes a filtered velocity field, the experimental
data is filtered as well to allow a proper comparison (see again Kok et al.4 for details).

For compressible flow, the skew-symmetric form ensures that the kinetic energy is conserved
by the convective operator. This is illustrated by first performing inviscid computations at com-
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(a) Second-order scheme, divergence form
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(b) Second-order scheme, skew-symmetric form
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(c) Basic fourth-order scheme, divergence form
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(d) Basic fourth-order scheme, skew-symmetric
form
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(e) Low-dispersion fourth-order scheme, diver-
gence form
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(f) Low-dispersion fourth-order scheme, skew-
symmetric form

Figure 4: Convection of strong isentropic vortex on strongly non-uniform grid: temperature field at time u∞t/L =
150 (centre should be located at (x, y) = (75L, 0)) on medium grid (200× 200 cells)
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Figure 5: Convection of strong isentropic vortex on strongly non-uniform grid: Grid dependence of root-mean-
square value of difference with analytical solution at time u∞t/L = 150

14



Johan C. Kok

t+

E
+ to

t

50 100 150 200 250 300
0

0.5

1

skew-symmetric form
divergence form

Figure 6: Compressible isotropic homogeneous turbulence: time dependence of total kinetic energy for inviscid
computations with low-dispersion fourth-order scheme using skew-symmetric and divergence forms and without
artificial diffusion

pressible flow conditions (Mach number M = 0.2 based on the initial turbulence intensity
u1 = 0.222 m/s). Without viscous dissipation, the total kinetic energy in the box can only change
due to the work done by the pressure. Figure 6 gives the time dependence of the total kinetic
energy for computations on the coarse grid (h = L/32) with the skew-symmetric form and the
divergence form (using flux averaging) and without artificial diffusion. The low-storage 4-stage
Runge–Kutta scheme has been used with a small time step (∆t+ = 0.873 or u1∆t/h = 0.062).
The computation with the divergence form is unstable and breaks down within a short time
period. For the computation with the skew-symmetric form, the kinetic energy also grows, but
on a much larger time scale and at a rate that is negligible compared to the experimental decay
(about 80% at time t+ = 170). Thus, the skew-symmetric form strongly enhances stability and
ensures that there is no significant dissipation or production of kinetic energy originating from
the inviscid terms in the momentum equation. Therefore, no interference with the sub-grid scale
model is expected for the X-LES computations.

Next, the grid convergence is considered for X-LES computations in pure LES mode at
incompressible flow conditions. The equations are integrated in time by a second-order implicit
scheme with time step ∆t+ = 3.49. Figure 7 shows the grid dependence of the energy spectra at
times t+ = 98 and t+ = 171 for the second-order scheme with fourth-order artificial diffusion
and the low-dispersion fourth-order scheme with sixth-order artificial diffusion. The fourth-
order scheme has clearly improved the grid convergence over the second-order scheme. For
sufficient accuracy, the second-order scheme requires at least a mesh size of h = L/128, i.e.,
four cells per filter width, while the fourth-order scheme obtains the same level of accuracy with
a mesh size of h = L/64, i.e., two cells per filter width.

Finally, the effect of artificial diffusion is considered. Ideally, no artificial diffusion is used,
but in practice it often is required to maintain stability. Figure 8 shows the decay of the total
kinetic energy for the fourth-order low-dispersion scheme with and without sixth-order artificial
diffusion. Both converge to the same solution for zero mesh size, but from opposite sides. With
artificial diffusion, the grid convergence appears to be at least as good as it is without. The
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(b) Time t+ = 171

Figure 7: Incompressible isotropic homogeneous turbulence: grid dependence of energy spectra for second-order
and low-dispersion fourth-order schemes
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Figure 8: Incompressible isotropic homogeneous turbulence: decay of total kinetic energy for low-dispersion
fourth-order scheme with and without sixth-order artificial diffusion

decay of kinetic energy is virtually grid independent at a mesh size h = L/64 (i.e., 2 cells per
filter width). Thus, for this case, adding a limited amount of artificial diffusion appears to be
harmless.

9 CONCLUDING REMARKS

A high-order finite-volume method has been presented that preserves both the symmetry
properties and the dispersion relation of the convective operator. For X-LES computations of
compressible flow, the discretization is based on the skew-symmetric form, which ensures that
the kinetic energy is conserved by the convective operator. This enhances the numerical stability
and minimizes the interference of numerical errors with the sub-grid scale model. The scheme
has low numerical dissipation and dispersion which is essential to capture vortices accurately
in X-LES computations and to allow sound waves to travel over long distances for aeroacoustic
computations. Finally, it has been demonstrated that the scheme maintains these advantageous
properties as well as its fourth-order accuracy on non-uniform (yet smooth) curvilinear grids.
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