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Abstract
Weintroduce the use of theZig-Zag sampler to the problemof sampling conditional diffusion processes (diffusion bridges). The
Zig-Zag sampler is a rejection-free sampling scheme based on a non-reversible continuous piecewise deterministic Markov
process. Similar to the Lévy–Ciesielski construction of a Brownian motion, we expand the diffusion path in a truncated
Faber–Schauder basis. The coefficients within the basis are sampled using a Zig-Zag sampler. A key innovation is the use of
the fully local algorithm for the Zig-Zag sampler that allows to exploit the sparsity structure implied by the dependency graph
of the coefficients and by the subsampling technique to reduce the complexity of the algorithm. We illustrate the performance
of the proposed methods in a number of examples.

Keywords Diffusion bridge · Conditional diffusion · Diffusion process · Faber–Schauder basis · Intractable target density ·
Local Zig-Zag sampler · Piecewise deterministic Monte Carlo · High-dimensional simulation

1 Introduction

Diffusion processes are an important class of continuous-
time probability models which find applications in many
fields such as finance, physics and engineering. They nat-
urally arise by adding Gaussian random perturbations (white
noise) to deterministic systems. We consider diffusions
described by a one-dimensional stochastic differential equa-
tion of the form

dXt = b(Xt )dt + dWt , X0 = u, (1)

where (Wt )t≥0 is a driving scalar Wiener process defined
in some probability space and b is the drift of the process.
The solution of Eq. (1), assuming it exists, is an instance
of one-dimensional time-homogeneous diffusion. We aim to
sample X on [0, T ] conditional on {XT = v}, also known as
a diffusion bridge.
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One driving motivation for studying this problem is esti-
mation for discretely observed diffusions. Here, one assumes
observations D = {xt1, . . . , xtN } at observations times t1 <

. . . < tN are given and interest lies in estimation of a parame-
ter θ appearing in the driftb. It iswell known that this problem
can be viewed as amissing data problemas in Peters andWith
(2012), where one iteratively imputes the missing paths con-
ditional on the parameter and the observations, and then the
parameter conditional on the “full” continuous path. Due to
the Markov property, the missing paths in between subse-
quent observations can be sampled independently and each
of such segments constitutes a diffusion bridge. As this appli-
cation requires sampling iteratively many diffusion bridges,
it is crucial to have a fast algorithm for this step. We achieve
this by adapting the Zig-Zag sampler for the simulation of
diffusion bridges. The Zig-Zag sampler is an innovative non-
reversible and rejection-free Markov process Monte Carlo
algorithm which can exploit the structure present in this
high-dimensional sampling problem. It is based on simu-
lating a piecewise deterministic Markov process (PDMP).
To the best of our knowledge, this is the first application of
PDMPs for diffusion bridge simulation. This method also
illustrates the use of a local version of the Zig-Zag sampler
in a genuinely high-dimensional setting (arguably even an
infinite-dimensional setting).

The problem of diffusion bridge simulation has received
considerable attention over the past two decades, see, for
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example, Bladt and Sørensen (2014), Beskos et al. (2006),
Roberts and Tweedie (1996), van der Meulen et al. (2018),
and Bierkens (2020) and references therein. This far from
exhaustive list of references includes methods that apply
to a more general setting than considered here, such as
multivariate diffusions, conditioning on partial observations
and hypo-elliptic diffusions. Among the methods that can
be applied, most of the methodologies available are of the
acceptance–rejection type and scale poorly with respect to
some parameters of the diffusion bridge. For example, if the
proposed path is not informed by the target distribution, the
probability of accepting the path depends strongly on the
discrepancy between the proposed path and the target dif-
fusion bridge measure and usually scales poorly as the time
horizon of the diffusion bridge T grows. In contrast, gradient-
based techniques which compute informed proposals (e.g.
Metropolis-adjusted Langevin algorithm) require the evalu-
ation of the gradient of the target distribution, which, in this
case, is a path integral that has to be generally computed
numerically and its computational cost is of order T , lead-
ing to computational limitations. The present work aims to
alleviate such restrictions through the use of a rejection-free
method and an exact subsampling technique which reduces
the cost of evaluating the gradient. On a more abstract level,
our method can be viewed as targeting a probability distribu-
tion which is obtained by a push-forward of Wiener measure
through a change of measure. It then becomes apparent that
the studied problem of diffusion bridge simulation is a nicely
formulated non-trivial example problem within this setting
to study the potential of simulation based on PDMPs. Our
results open new paths towards applications of the Zig-Zag
for high-dimensional problems.

1.1 Approach

In this section, we present the main ideas used in this paper.

1.1.1 Brownian motion expanded in the Faber–Schauder
basis

Our starting point is the Lévy–Ciesielski construction of
Brownian Motion. Define φ̄(t) = √

t , φ0,0(t) =
√
T ((t/T )

1[0,T /2](t)+ (1− t/T )1(1/2,1](t)
)
and set

φi, j (t) = 2−i/2φ0,0(2
i t − jT ), for

i = 0, 1, . . . , j = 0, 1, ...2i − 1.

If ξ̄ is standard normal and {ξi, j } is a sequence of independent
standard normal random variables (independent of ξ̄ ), then

XN (t) = φ̄(t)ξ̄ +
N∑

i=0

2i−1∑

j=0

ξi, jφi, j (t) (2)

converges almost surely on [0, T ] (uniformly in t) to a Brow-
nian motion as N → ∞ [see, for example, Sect. 1.2 of
McKean (1969)]. The basis formed by φ̄ and {φi, j } is known
as the Faber–Schauder basis (see Fig. 1). The larger the
i , the smaller the support of φi, j , reflecting that higher-
order coefficients represent the fine details of the process.
A Brownian bridge starting in u and ending in v can be
obtained by fixing ξ̄ = v/

√
T and adding the function

¯̄φ(t)u = (1 − t/T )u t �→ u(1 − t/T ) to (2). By sampling
ξ N := (ξ0,0, ξ1,0, . . . , ξN ,2N−1) (which in this case are stan-
dard normal), approximate realisations of a Brownian bridge
can be obtained.

1.1.2 Zig-Zag sampler for diffusion bridges

Let Qu denote the Wiener measure on C[0, T ] with initial
value X0 = u [cf. Sect. 2.4 of Karatzas and Shreve (1991)],
and let Pu denote the law on C[0, T ] of the diffusion in
(1). Under mild conditions on b, the two measures are abso-

lutely continuous and their Radon–Nikodym derivative dPu
dQu

is given by the Girsanov formula. Denote by Pu,vT andQu,vT

the measures of the diffusion bridge and the Wiener bridge,
respectively, both starting at u and conditioned to hit a point
v at time T . Applying the Bayes’ law for conditional expec-
tations (Klebaner 2005, Chapt. 10), we obtain:

dPu,vT

dQu,vT
(X) = q(0, u, T , v)

p(0, u, T , v)

dPu

dQu
(X), (3)

where p and q are the transition densities of X under P,Q,
respectively, so that for s < t , p(s, x, t, y)dy = P(Xt ∈
dy | Xs = x). As p is intractable, the Radon–Nikodym
derivative for the diffusion bridge is only knownup to propor-
tionality constant. The main idea now consists of rewriting
the Radon–Nikodym derivative in (3), evaluating it in XN

and running the Zig-Zag sampler for ξ N targeting this den-
sity. Technicalities to actually get this to work are detailed in
Sect. 3. A novelty is the introduction of a local version of the
Zig-Zag sampler, analogously to the local bouncy particle
sampler (Bouchard-Côté 2015). This allows for exploiting
the sparsity in the dependence structure of the coefficients
of the Faber–Schauder expansion efficiently, resulting in a
reduction of the complexity of the algorithm. The method-
ology we propose is derived for one-dimensional diffusion
processes with unit diffusivity. However, diffusions with
state-dependent diffusivity can be transformed to this set-
ting using the Lamperti transform. (An example is given in
Sect. 5.3.) In Sect. 6.1, we generalise the method to mul-
tivariate diffusion processes with unit diffusivity, assuming
the drift to be a conservative vector field.
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1.2 Contributions of the paper

The Faber–Schauder basis offers a number of attractive prop-
erties:

(a) The coefficients of a diffusions have a structural condi-
tional independence property (see Sect. 4 and
Appendix A) which can be exploited in numerical algo-
rithms to improve their efficiency.

(b) A diffusion bridge is obtained from the unconditioned
process by simply fixing the coefficient ξ̄ .

(c) It will be shown (see, for example, Fig. 8) that the non-
linear component of the diffusion process is typically
captured by coefficients ξi j in equation (2) for which i is
small. This allows for a low-dimensional representation
of the process and yet a good approximation. Therefore,
the approximation error caused by leaving out fine details
is equally divided over [0, T ], contrary to approaches
where a proxy for the diffusion bridge is simulated by
Euler discretisation of an SDE governing its dynamics.
In the latter case, the discretisation error accumulates over
the interval on which the bridge is simulated.

(d) It is very convenient from a computational point of view
as each function is piecewise linearwith compact support.

We adopt the Zig-Zag sampler (Bierkens et al. 2019)
which is a sampler based on the theory of piecewise determin-
isticMarkov processes (see Fearnhead 2018; Bouchard-Côté
2015; Andrieu 2018; Andrieu and Livingstone 2019). The
main reasons motivating this choice are:

a. The partial derivatives of the log-likelihood of a diffusion
bridge measure usually appear as a path integral that has
to be computed numerically (introducing consequently
computational burden derived by this step and its bias).
The Zig-Zag sampler allows us to replace the gradient of
the log-likelihood with an unbiased estimate of it with-
out introducing bias in the target measure. This is done
in Sect. 4.4 with the subsampling technique which was
presented in Bierkens et al. (2019) for applications for
which the evaluation of the log-likelihood is expensive
due to the size of the dataset.

b. In the same spirit as the local Bouncy Particle Sam-
pler of Bouchard-Côté (2015) and Mider (2019), the
local and the fully local Zig-Zag sampler introduced in
Sect. 4 reduces the complexity of the algorithm improv-
ing its efficiency with respect to the standard Zig-Zag
algorithm as the dimensionality of the target distribution
increases (see Sect. 6.2). This opens the way to high-
dimensional applications of the Zig-Zag sampler when
the dependency graph of the target distribution is not
fully connected and when using subsampling. The fac-
torisation of the log-likelihood and the local method we

proposed is reminiscent of other work such as Faulkner
(2018), Meulen and Schauer (2017) and Mider et al.
(2020).

c. The method is a rejection-free sampler, differing from
most of the methodologies available for simulating dif-
fusion bridges.

d. The Zig-Zag sampler is defined and implemented in con-
tinuous time, eliminating the choice of tuning parameters
appearing, for example, in the proposal density of the
Metropolis–Hastings algorithm. This advantage comes
at the cost of a more complicated method which relies
upon bounding fromabove rateswhich aremodel specific
and often difficult to derive (see Sect. 5 for our specific
applications).

(e) The process is non-reversible: As shown, for example,
in Diaconis (2000), non-reversibility generally enhances
the speed of convergence to the invariant measure and
mixing properties of the sampler. For an advanced analy-
sis on convergences results for this class of non-reversible
processes, we refer to the articles Andrieu (2018) and
Andrieu and Livingstone (2019).

The local Zig-Zag sampler relies on the conditional inde-
pendence structure of the coefficients only. This translates to
other settings thandiffusionbridge sampling, or other choices
of basis functions. For this reason, Sect. 4 describes the algo-
rithms of the sampler in their full generality,without referring
to our particular application. A documented implementation
of the algorithms used in this manuscript can be found in
Roberts and Stramer (2001).

1.3 Outline

In Sect. 2, we set some notation and recap the Zig-Zag
sampler. In Sect. 3, we expand a diffusion process in the
Faber–Schauder basis and prove the aforementioned con-
ditional dependence. The simulation of the coefficients ξ N

presents some challenges as it is high dimensional and its
density is expressed by an integral over the path.We give two
variants of the Zig-Zag algorithm which enables sampling in
a high-dimensional setting. In particular, in Sect. 4wepresent
the local and fully local Zig-Zag algorithms which exploit
a factorisation of the joint density (Appendix A) and a sub-
sampling technique which, in this setting, is used to avoid the
evaluation of the path integral appearing in the density (which
otherwise would severely complicate the implementation of
the sampler). In Sect. 5, we illustrate our methodology using
a variety of examples, validate our approach and compare the
Zig-Zag sampler with other benchmark MCMC algorithms.
We conclude by sketching the extension of our method to
multi-dimensional diffusion bridges, carrying out an infor-
mal scaling analysis and providing several remarks for future
research (Sects. 6 and 7).
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2 Preliminaries

Throughout, we denote by ∂i the partial derivative with
respect to the coefficient ξi , the positive part of a function
f by ( f )+, the i th element and the Euclidean norm of a
vector x , respectively, by [x]i and ‖x‖. The cardinality of a
countable set A is denoted by |A|.

2.1 Notation for the Faber–Schauder basis

To graphically illustrate the Faber–Schauder basis, a con-
struction of a Brownian motion with the representation of
the basis functions is given in Fig. 1. The Faber–Schauder
functions are piecewise linear with compact support. The
length of the support and the height of the function are deter-
mined by the first index, while the second index determines
the location. All basis functions with first index i are referred
to as level i basis functions. For convenience, we often swap
between double and single indexing of Faber–Schauder func-
tions. Denote the double indexing with (i, j) and the single
indexing with n. We go from one to the other through the
transformations

i = 	log2(n)
, j = n − 2i , n = 2i + j;

where 	·
 denotes the floor function. The basis with trunca-
tion level N has M := 2N+1− 1 coefficients. Let ξ N denote
the vector of coefficients up to level N , i.e.

ξ N := (ξ0,0, ξ1,0, . . . , ξN ,2N−1) ∈ RM , (4)

and let X ξ N := XN when wewant to stress the dependencies
of XN on the coefficients ξ N . Using double indexing, we
denote by Si, j = suppφi, j .

2.2 The Zig-Zag sampler

A piecewise deterministic Markov process (Davis 1993) is a
continuous-time processwith behaviour governed by random
jumps at points in time, but deterministic evolution governed
by an ordinary differential equation in between those times
(yielding piecewise-continuous realisations). If the differen-
tial equation can be solved in closed form and the random
event times can be sampled exactly, then the process can be
simulated in continuous time without introducing any dis-
cretisation error (up to floating number precision) making it
attractive from a computational point of view.

By a careful choice of the event times and deterministic
evolution, it is possible to create and simulate an ergodic and
non-reversible process with a desired unique invariant dis-
tribution (Fearnhead 2018). The Zig-Zag sampler (Bierkens
et al. 2019) is a successful construction of such a processes.

We now recap the intuition and the main steps behind the
Zig-Zag sampler.

The one-dimensional Zig-Zag sampler is defined in the
augmented space (ξ, θ) ∈ R × {+1,−1}, where the first
coordinate is viewed as the position of a moving particle and
the second coordinate as its velocity. The dynamics of the
process t �→ (ξ(t), θ(t)) (not to be confused with the time
indexing the diffusion process) are as follows: starting from
(ξ(0), θ(0)),

(a) its flow is deterministic and linear in its first component
with direction θ(0) and constant in its second component
until an event at time τ occurs. That is, (ξ(t), θ(t)) =
(ξ(0)+ tθ(0), θ(0)), 0 ≤ t ≤ τ .

(b) At an event time τ , the process changes the sign of its
velocity, i.e. (ξ(τ ), θ(τ )) = (ξ(τ−),−θ(τ−)).

The event times are simulated from an inhomogeneous Pois-
son process with specified rate λ : (R×{1,−1}) → R+ such
that P(τ ∈ [t, t + ε]) = λ(ξ(t), θ(t))ε + o(ε), ε ↓ 0.

The d-dimensional Zig-Zag sampler is conceived as the
combination of d one-dimensional Zig-Zag samplers with
rates λi (ξ, θ), i = 1, . . . , d, where the rates create a cou-
pling of the independent coordinate processes. The following
result provides a sufficient condition for the d-dimensional
Zig-Zag sampler to have a particular d-dimensional target
density π as invariant distribution. Assume that the target
d-dimensional distribution has strictly positive density with
respect to the Lebesgue measure, i.e.

π(dξ) ∝ exp(−ψ(ξ))dξ, ξ ∈ Rd .

Define the flipping function as Fi (θ) = (θ1, . . . ,−θi , . . . ,

θd), for θ ∈ {−1,+1}d . For any i = 1, . . . , d and (ξ, θ) ∈
Rd × {1,−1}d , the Zig-Zag process with Poisson rates sat-
isfying

λi (ξ, θ) − λi (ξ, Fi (θ)) = θi∂iψ(ξ), (5)

has π as invariant density. Condition (5) is derived in the
supplementary material of Bierkens et al. (2019). Condition
(5) is equivalent to

λi (ξ, θ) = (θi∂iψ(ξ))+ + γi (ξ) (6)

for some γi (ξ) ≥ 0. Throughout, we set γi (ξ) = 0 because
generally the algorithm is more efficient for lower Poisson
event intensity (see, for example, Andrieu 2018, Sect. 5.4).

Assume the target density is π(ξ) = cπ̃ (ξ). The process
targets the specific distribution function through the Poisson
rate λ which is a function of the gradient of ξ �→ ψ(ξ) =
− log(π̃(ξ)), so that any proportionality factor of the density
disappears. Throughout we refer to the function ψ as the
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Fig. 1 Lévy–Ciesielski construction of a Brownian motion on (0, 1).
On the left the Faber–Schauder basis functions up to level N = 3, on
the top right the values of the corresponding coefficients located at the
peak of their relative FS basis function and on the bottom right the
resulting approximated Brownian path XN (black line) compared with

a finer approximation (red line). The truncated sum defines the process
in 2N+1 + 1 finite dyadic points (black dots) with linear interpolation
in between points. A finer approximation corresponds to Brownian fill-
in noise between any two neighbouring dyadic points. (Color figure
online)

energy function.As opposed to standardMarkov chainMonte
Carlo methods, the process is not reversible and it is defined
in continuous time.

Example 2.1 Consider a d-dimensional Gaussian random
variable with mean μ ∈ Rd and positive-definite covariance
matrix � ∈ Rd×d . Then,

• π(ξ) ∝ exp
(−(ξ − μ)′�−1(ξ − μ)/2

)
,

• ∂kψ(ξ) = [
�−1(ξ − μ)

]
k ,

• λk(ξ, θ) = (
θk[�−1(ξ − μ)]k

)+
.

Notice that if � is diagonal, then λk(ξ, θ) = 0 whenever the
process is directed towards the mean so that no jump occurs
in the kth component when one of the following conditions is
satisfied: (θk = −1, ξk −μk ≥ 0) or (θk = 1, ξk −μk ≤ 0).
In Fig. 2, we simulate a realisation of the Zig-Zag sampler
targeting a univariate standard normal random distribution.

Algorithm 1 shows the standard implementation of the
Zig-Zag sampler. After initialisation, the first event time
τ ∗ is determined by taking the minimum of event times
τ1, τ2, . . . , τd simulated according to the Poisson rates
λi , i = 1, 2, . . . , d. At event time τ ∗, the velocity vec-
tor becomes θ(τ ∗) = Fi∗(θ), with i∗ = argmin(τ1, . . . ,
τd). The algorithm iterates this step moving forward each
time until the next simulated event time exceeds the final
clock τfinal.

Although we consider the velocities for each dimension
of a d-dimensional Zig-Zag process to be either 1 or −1,
these can be taken to be any nonzero values (θi ,−θi ) for
i = 1, . . . , d. A fine-tuning of θ1, . . . , θN can improve the
performance of the sampler. Note that the only challenge
in implementing Algorithm 1 lies on the simulation of the
waiting times which correspond to the simulation of the first
event time of d inhomogeneous Poisson processes (IPPs)
with rates λ1, λ2, . . . , λd which are functions of the state
space (ξ, θ) of the process. Since the flow of the process is
linear and deterministic, the Poisson rates are known at each
time and are equal to

λi (t; ξ, θ) = λi (ξ + tθ, θ), i = 1, 2, . . . , d.

To lighten the notation, we write λi (t) := λi (t; ξ, θ) when
ξ, θ are fixed. Given an initial position ξ and velocity θ , the
waiting times τ1, . . . , τd are computed by finding the roots
for x of the equations

∫ x

0
λi (s)ds + log(ui ) = 0, i = 1, 2, . . . , d, (7)

where (ui )i=1,2,...,d are independent realisations from the
uniform distribution on (0, 1). When it is not possible to
find roots of equation (7) efficiently; for example, in closed
form, it suffices to find upper bounds for the rate functions
for which this is possible, Sect. 4.4 treats this problem for
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Fig. 2 One-dimensional
Zig-Zag targeting a Gaussian
random variable N (0, 1). Left:
t �→ ξ(t), right: t �→ θ(t)

our particular setting. The linear evolution of the process and
the jumps of the velocities are always trivially computed and
implemented.

Algorithm 1 returns a skeleton of values corresponding
to the position of the process at the event times. From these
values, it is straightforward to reconstruct the continuous path
of the Zig-Zag sampler. Given a sample path of the Zig-Zag
sampler from 0 to τfinal, we can obtain a sample from the
target distribution in the following way:

• Denote by ξ(τ ) the value of the vector ξ at the Zig-Zag
clock τ < τfinal. Fixing a sample frequency 
τ , we can
produce a sample from the density π by taking the values
of the random vector ξ at time τburn-in + 
τ, τburn-in +
2
τ, . . . , τfinal where τburn-in is the initial burn-in time
taken to ensure that the process has reached its stationary
regime. Throughout the paper, we create samples using
this approach.

Algorithm 1 Standard d-dimensional Zig-Zag sampler
(Bierkens et al. 2019)
procedure ZigZag(τfinal, ξ, θ)

Initialise k = 1, t = 0
τ j ∼ IPP (λ j (·; ξ, θ)), j = 1, . . . , d � Draw from

Inhomogeneous Poisson process (IPP)
while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, . . . , τd )
Update: ξ ← ξ + θ(τ ∗ − t)
Update: θi∗ ← −θi∗ ; t ← τ ∗
Save ξ (k) ← ξ ; t (k) ← t
for j = 1, . . . , d do

τ j ∼ t + IPP(λ j (·; ξ, θ))

end for
k ← k + 1

end while
return Skeletons (ξ (l), t (l))l=1,...,k−1

end procedure

2.3 Zig-Zag sampler for Brownian bridges

The previous subsections contain all ingredients necessary to
run the Zig-Zag sampler in a finite-dimensional projection of
the Brownian bridge measureQ0,v on the interval [0, T ]. We
fix ξ̄ to v and run the Zig-Zag sampler for ξ N as defined in (4)
targeting a multivariate normal distribution. Figure 3 shows
100 samples obtained from one sample run of the Zig-Zag
sampler where the coefficients are mapped to samples paths
using (2). The final clock of the Zig-Zag is set to τfinal = 500
with initial burning τburn-in = 10.

Both Brownian motion and the Brownian bridge are spe-
cial in that all coefficients in the Faber–Schauder basis are
independent. Of course, these processes can directly be sim-
ulated without need of a more advanced method like the
Zig-Zag sampler. However, for a diffusion process with
nonzero drift this property is lost. Nevertheless, we will see
that when the process is expanded in the Faber–Schauder
basis, many coefficients are still conditionally independent.
This implies that the dependency graph of the joint density
of the coefficients is sparse. We will show in Sect. 4 how
this property can be exploited efficiently using the Zig-Zag
sampler in its local version.

3 Faber–Schauder expansion of diffusion
processes

We extend the results of Sect. 2 to one-dimensional diffu-
sions governed by the SDE in (1). Although the density is
defined in infinite-dimensional space, in this section we jus-
tify both intuitively and formally that the diffusion can be
approximated to arbitrary precision by considering a finite-
dimensional projection of it.

The intuition behind using the Faber–Schauder basis is
that, under mild assumptions on the drift function b, any
diffusion process behaves locally as a Brownian motion.
Expanding the diffusion process with the Faber–Schauder
functions, this notion translates to the existence of a level
N such that the random coefficients at higher levels which
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Fig. 3 100 samples from the
Brownian bridge measure
starting at 0 and hitting 0 at time
1 obtained by one run of the
Zig-Zag sampler targeting the
coefficients relative to the
measure expanded with the
Faber–Schauder basis. The
resolution level is fixed to
N = 6 and the Zig-Zag clock to
τfinal = 500 and initial burn in
τburn-in = 10

are associated with the Faber–Schauder basis are approxi-
mately independent standard normal and independent from
ξ N under the measure P.

Define the function Zt : R+ × C[0, T ] → R+ given by

Zt (X) = exp

(∫ t

0
b(Xs)dXs − 1

2

∫ t

0
b2(Xs)ds

)
(8)

where the first integral is understood in the Itô sense and
X ≡ (Xs, s ∈ [0, T ]).
Assumption 3.1 Zt is a Q-martingale.

For sufficient conditions for verifying that this assumption
applies, we refer to Remark 3.6, Remark 3.9 and Liptser
et al. (2013), Chapter 6.

Theorem 3.2 (Girsanov’s theorem) If Assumption 3.1 is sat-
isfied,

dPu

dQu
(X) = ZT (X). (9)

Moreover, a weak solution of the stochastic differential equa-
tion exists which is unique in law.

Proof This is a standard result in stochastic calculus (see
Liptser et al. 2013, Sect. 6). ��
As we consider diffusions on [0, T ] with T fixed, we denote
Z(X) := ZT (X). Due to the appearance of the stochastic Itô
integral in Z(X), we cannot substitute for X its truncated
expansion in the Faber–Schauder basis. Clearly, whereas
the approximation has finite quadratic variation, X has not.
Assuming that b is differentiable and applying Itô’s lemma
to the function B(x) = ∫ x

0 b(s)ds, the stochastic integral can

be replaced and Eq. (8) is rewritten as

Z(X) = exp

(
B(XT ) − B(X0) − 1

2

∫ T

0

(
b2(Xs) + b′(Xs)

)
ds

)
, (10)

where b′ is the derivative of b.

Definition 3.3 Let X be a diffusion governed by (1). Let XN

be the process derived from X by setting to zero all coeffi-
cients of level exceeding N in its Faber–Schauder expansion
[see Eq. (2)]. Set

ZN (X) = exp

(
B
(
XN
T

)
− B

(
XN
0

)
− 1

2

∫ T

0

[
b2
(
XN
s

)

+ b′
(
XN
s

)]
ds
)

.

We define the approximating measure PN by the change of
measure

dPu
N

dQu
(X) = ZN (X)

cN
, (11)

where cN = EQ

(
ZN (X)

)
.

Note that the measure Pu
N associated with the approxi-

mated stochastic process is still on an infinite-dimensional
space and such that the joint measure of random coeffi-
cients ξ N is different from the one under Qu , while the
remaining coefficients stay independent standard normal and
independent from ξ N . This is equivalent to approximating the
diffusion process at finite dyadic points with Brownian noise
fill-in in between every two points. We now fix the final point
vT by setting ξ̄ = vT . Define the approximated stochastic
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bridge with measure Pu,vT
N in an analogous way of equation

(11), so that

dPu,vT
N

dQu,vT
(X) = ZN (X)

cvT
N

. (12)

where cvT
N = EQ

u,vT

(
ZN (X)

)
. The following is the main

assumption made.

Assumption 3.4 The drift b is continuously differentiable,
and b2 + b′ is bounded from below.

Theorem 3.5 If Assumptions 3.1 and 3.4 are satisfied, then
P
u,vT
N converges weakly to Pu,vT as N →∞.

Proof In the following, we lighten the notation by omitting
the initial point u from the notation, which will be assumed
fixed to u = x0. We wish to show that PvT

N converges weakly
to PvT as N → ∞. This is equivalent to showing that∫

f dPvT
N → ∫

f dPvT for all bounded and continuous func-
tions f . Write cvT∞ = p(0, x0, T , vT )/q(0, x0, T , vT ). By
equation (3) and (9),

EQ
vT Z(X) = EQ

vT
dPx0

dQx0
= cvT∞EQ

vT

[
dPvT

dQvT

]
= cvT∞

and we have that
∣∣∣∣

∫
f dPvT

N −
∫

f dPvT

∣∣∣∣

=
∣
∣∣∣

∫
f

(
ZN

cvT
N

− Z

cvT∞

)
dQvT

∣
∣∣∣

≤ ‖ f ‖∞
∫ ∣∣
∣∣
ZN (X)

cvT
N

− Z(X)

cvT∞

∣∣
∣∣ dQ

vT (X)

≤ ‖ f ‖∞
(

1

cvT
N

∫ ∣
∣∣ZN (X)− Z(X)

∣
∣∣ dQvT (X)

+
∫

Z(X)

∣
∣∣∣
1

cvT
N

− 1

cvT∞

∣
∣∣∣ dQ

vT (X)

)

≤ ‖ f ‖∞
(

1

cvT
N

∫ ∣∣∣ZN (X)− Z(X)

∣∣∣ dQvT (X)+
∣∣∣∣
cvT∞
cvT
N

− 1

∣∣∣∣

)

(13)

where we used Assumption 3.1 for applying the change
of measure between the conditional measures. Notice that
ZN (X) = Z(XN ). The mapping X �→ Z(X), as a function
acting onC(0, T )with uniform norm, is continuous, since B,
b and b′ are continuous. Therefore, it follows from the Lévy–
Ciesielski construction of Brownian motion (see Sect. 1.1.1)
and the continuous mapping theorem that

ZN (X) → Z(X) QvT − a.s.

Now, notice that, under conditional measures QvT and PvT ,
the term B(XT ) − B(X0) is fixed. By the assumptions on b

and b′, Z is a bounded function and by dominated conver-
gence, we get that

lim
N→∞E

vT
Q
|ZN (X) − Z(X)| = 0

giving convergence to zero of the first term in (13). This
implies that also the constant cN := E

vT
Q
|ZN (X)| converges

to EvT
Q
|Z(X)| = cvT∞ so that all the terms in (13) converge to

0. ��
We now list some technical conditions for the process to

satisfy Assumptions 3.1 and 3.4.

Remark 3.6 If |b(x)| ≤ c(1+|x |), for some positive constant
c, then Assumption 3.1 is satisfied.

Proof See Liptser et al. (2013), Sect. 6, Example 3 (b). ��
Remark 3.7 If b is globally Lipschitz and continuously dif-
ferentiable, then Assumptions 3.1 and 3.4 are satisfied.

Proof Assumption 3.4 is trivially satisfied. By Remark 3.6,
also Assumption 3.1 is satisfied. ��
In Sect. 5.3, we will present an example where the drift b is
not globally Lipschitz, yet Assumption 3.4 is satisfied.

Assumption 3.8 There exists a non-decreasing function h :
[0,∞) → [0,∞) such that B(x) ≤ h(|x |) and
∫ ∞

0
exp(h(x) − x2/(2T )) dx < ∞.

The above integrability condition is, for example, satisfied if
h(|x |) = c(1+ |x |) for some c > 0.

Remark 3.9 If Assumptions 3.4 and 3.8 hold, then Assump-
tion 3.1 is satisfied.

Proof By Sect. 3.5 in Karatzas and Shreve (1991), (Zt ) is a
local martingale. Say b′(x) + b2(x) ≥ −2C , where C ≥ 0.
Using the assumptions, we have

Zt = exp

(
B(Xt ) − B(X0) − 1

2

∫ t

0
{b′(Xs) + b2(Xs)} ds

)

≤ A exp(Ct) exp(h(|Xt |)),

with constant A = exp(−B(X0)). Then,

sup
t∈[0,T ]

Zt ≤ A sup
t∈[0,T ]

exp(Ct) exp(h(|Xt |)) ≤ A exp(CT )

exp

(
h

(
max
t∈[0,T ] |Xt |

))
.

By Lemma 3.10,

E sup
t∈[0,T ]

Zt ≤ A exp(CT )E exp(h( max
t∈[0,T ] |Xt |)) < ∞.
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Then, for a sequence of stopping times (τk) diverging to infin-
ity such that (Z τk

t )0≤t≤T is a martingale for all k, we have

EZ0 = EZ τk
0 = EZ τk

t → EZt

as k →∞ by dominated convergence. ��
Lemma 3.10 Suppose h : [0,∞) → [0,∞) is non-decrea-
sing. Let NT = max0≤t≤T |Xt | where (Xt ) is a Brownian
motion. Then,

E exp h(NT ) ≤ 4
∫ ∞

0

1√
2πT

exp(h(x) − x2/(2T )) dx .

Proof The maximum MT = max0≤t≤T Xt of a Brownian
motion is distributed as the absolute value of a Brownian
motion and thus has density function 2√

2πT
exp(−x2/(2T )),

see Karatzas and Shreve (1991), Sect. 2.8. We have P(NT ≥
y) ≤ 2P(MT ≥ y) from which the result follows. ��
Finally, we mention that Theorem 3.5 can be generalised in
the following way to diffusions without a fixed end point.

Proposition 3.11 If Assumption 3.4 is satisfied and B is
bounded, then PN converges weakly to P.

The proof follows the same steps of the one of Theorem 3.5.
In this case, we need to pay attention on B, as for uncondi-
tioned process, the final point is not fixed. If B is bounded,
then Assumption 3.8 is satisfied. By Remark 3.9, also
Assumption 3.1 is satisfied so that we can apply Theorem 3.2
for the change of measure. Finally, by the assumptions on b
and B, the function Z is bounded and by dominated conver-
gence, we get that

lim
N→∞EQ|ZN (X) − Z(X)| = 0.

4 A local Zig-Zag algorithmwith
subsampling for high-dimensional
structured target densities

In Sect. 4.4, we will show that the task of sampling dif-
fusion bridges boils down to the task of sampling a high-
dimensional vector ξ N ∈ RM under the measure P

u,vT
N .

Define by Pξ N the distribution of the vector ξ N . Under the
target measure,

Pξ N (dξ N ) = π(ξ N )dξ N .

We take the density π to be the M-dimensional invariant
density (target density) for the Zig-Zag sampler. An effi-
cient implementation of piecewise deterministicMonteCarlo
methods including the local and fully local Zig-Zag sampler
can be found in Roberts and Stramer (2001).

4.1 Subsampling technique

In our setting, the integral appearing in the Girsanov formula
(10) poses difficulties when finding the root of equation (7)
andwould require numerical evaluation of the integral, hence
also introducing a bias. By adapting the subsampling tech-
nique presented in Bierkens et al. (2019) (Sect. 4), we avoid
this problem altogether (see Sect. 4.4). In general, this tech-
nique requires

(a) unbiased estimators for ∂iψ , i.e. random functions
∂i ψ̃i (ξ,Ui ) such that

EUi [∂i ψ̃i (ξ,Ui )] = ∂iψ(ξ),

for all i and ξ . These random functions create new (ran-
dom) Poisson rates given by

λ̃i (t; ξ, θ;Ui ) = (θi∂i ψ̃(ξ(t),Ui ))
+, i = 1, 2, . . . , d,

(14)

whose evaluation becomes feasible and computationally
more efficient compared to the original Poisson rates
given by Eq. (6).

(b) upper bounds λ̄i : (R+ × Rd × {−1,+1}d) → R+ for
all i = 1, . . . , d such that for any point (ξ, θ) and t ≥ 0,
we have

P
(
λ̃i (t; ξ, θ;Ui ) ≤ λ̄i (t; ξ, θ)

)
= 1. (15)

As we show in Algorithm 2 and in Sect. 5, these upper
bounds are used for finding the roots of Eq. (7).

Algorithm2 gives the algorithm for the Zig-Zag samplerwith
subsampling. It can be proved (see Bierkens et al. 2019) that
the Zig-Zag samplerwith subsampling has the same invariant
distribution as its original and therefore does not introduce
any bias. Note that we slightly modified the algorithm from
Bierkens et al. (2019) in order to reduce its complexity. In
particular, it is sufficient to draw new waiting times and to
save the coordinates only when the if condition at the sub-
sampling step of Algorithm 2 is true.

4.2 Local Zig-Zag sampler

Section 3.1 of Bouchard-Côté (2015) proposes a local algo-
rithm for the Bouncy Particle Sampler which is a process
belonging to the class of piecewise-deterministic Markov
processes. Similar ideas apply to our setting.

Assumption 4.1 The Poisson rate λi for a d-dimensional
target distribution is a function of the coordinates Ni ⊂
{1, . . . , d},
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Algorithm 2 d-dimensional Zig-Zag sampler with subsam-
pling
procedure ZigZag_ws(τfinal, ξ, θ)

Initialise k = 1, t = 0
τ j ∼ IPP(λ̄ j (·; ξ, θ)), j = 1, . . . , d
while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, . . . , τd )
ξold ← ξ

Update: ξ ← ξ + θ(τ ∗ − t)
Update: 
t ← τ ∗ − t; t ← τ ∗
Ui∗ ∼ Law(Ui∗ ), V ∼ Unif(0, 1)
if V ≤ λ̃i∗ (0, ξ, θ,Ui∗ )/λ̄i∗ (
t; ξold , θ) then � Subsampling

step
Save ξ (k) ← ξ, t (k) ← t
k ← k + 1
θi∗ ← −θi∗
for j ∈ {1, . . . , d} \ {i∗} do

τ j ∼ t + IPP(λ̄ j (·; ξ, θ))

end for
else

τi∗ ∼ t + IPP(λ̄i∗ (·; ξ, θ))

end if
end while
return Skeletons (ξ (l), t (l))l=1,2,...,k−1

end procedure

λi (s; ξ, θ) = λi (s; ξk, θk : k ∈ Ni ).

Recall that by the definition ofλi (see equation (6)), the i th
partial derivative of the negative log-likelihood determines
the sets Ni . Now, let us suppose that the first event time τ

is triggered by the coordinate i so that at event time, the
velocity θi is flipped. For all λk which are not function of
this coordinate (k /∈ Ni ), we have

λoldk (τ + s) = λnewk (s),

which implies that the waiting times drawn before τ are still
valid after switching the velocity i . This allows us to rescale
the previous waiting time and reduce the number of compu-
tations at each step. The sets N1, . . . , Nd are connected to
the factorisation of the target distribution and define its con-
ditional dependence structure. Indeed, take a d-dimensional
target distribution with the following decomposition

π(ξ) =
N∏

i=1

πi (ξ
(i))

where ξ (i) := {ξ j : j ∈ �i } and �i ⊂ {1, 2, . . . , N } defines
a subset of indices. We have that

−∂k log(π(ξ)) = −
N∑

i=1

∂k logπi (ξ
(i)), k = 1, . . . , d

where the i th term in the sum is equal to 0 if k /∈ �i .
Since the Poisson rates (6) are defined through the partial

derivatives, the factorisation defines the sets N1, . . . , Nd of
Assumption 4.1.

Algorithm 3 shows the implementation of the local sam-
pler which exploits any conditional independence structure
so that the complexity of the algorithm scales well with the
number of dimensions.

The local Zig-Zag sampler simplifies to independent
one-dimensional Zig-Zag processes if the coefficients are
pairwise-independent coefficients, as it was the case in the
example of sampling a Brownian motion or Brownian bridge
(see Sect. 2.3). On the other hand, it defaults to Algorithm 1
when the dependency graph is fully connected, that is if
Ni = {1, . . . , d},∀i .

Algorithm 3 d-dimensional local Zig-Zag sampler
Input: The bounds λ̄i depend only on ξk , θk , for k ∈ Ni
procedure ZigZag_local(τfinal, ξ, θ)

Initialise k = 1, t = 0
τ j ∼ IPP(λ j (·; ξ, θ)), j = 1, . . . , d
while t ≤ τfinal do

τ ∗, i∗ ← findmin(τ1, . . . , τd )
Update: ξ ← ξ + θ(τ ∗ − t)
Update: θi∗ ← −θi∗ ; t ← τ ∗
Save ξ (k) ← ξ ; t (k) ← t
k ← k + 1
for j in Ni∗ do � Local step

τ j ∼ t + IPP(λ j (·; ξ, θ))

end for
end while
return Skeletons (ξ (l), t (l))l=1,...,k−1

end procedure

4.3 Fully local Zig-Zag sampler

Combining the subsampling technique and the local ZZ
can lead to a further reduction of the complexity of the
algorithm. Indeed, the bounds for the Poisson rates might
induce sparsity as λ̄i can be function of few coordinates (see,
for example, Sect. 5.2). This means that, after flipping θi ,
λ̄oldj (τ+t) = λ̄newj (t) for almost all j �= i making the if state-
ment in the local step of Algorithm 3 almost always satisfied
and improving the efficiency of the algorithm. This means
that, after flipping θi , we have that λ̄oldj (τ + t) = λ̄newj (t) for
almost all j �= i or, in other words, the cardinality of the set
Ni in the local step of Algorithm 3 is small. Furthermore, the
evaluation of λ̃i (t, ξ, θ) and λ̄i (t, ξ, θ) for i = 1, 2, . . . , d
does not necessarily require to access the location of all the
coordinates ξ j so that, by assigning an independent time for
each coordinate and updating only the coordinates needed
for the evaluation of λ̃i and λ̄i , the algorithm can be made
more efficient. This is shown in the fully local ZZ sampler
(Algorithm4)where N̄i , Ñi (Ui ) define, respectively, the sub-
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Algorithm 4 Implementation of the d-dimensional fully
local Zig-Zag sampler

Input: The bounds λ̄i depend only on ξk , θk , for k ∈ N̄i and the ran-
dom Poisson rates λ̃i (eq. (14)) depends only onUi (the randomizing
argument of ∂̃iψ) and ξk , θk for k ∈ Ñi (Ui )

procedure ZigZag_fully_local(τfinal, ξ, θ)
Initialise: k = 1, t = 0 ∈ Rd , τ ∗ = 0
τ j ∼ IPP(λ̄ j (·; ξ, θ)), j = 1, . . . , d
while max(t) ≤ τfinal do

τ oldi∗ ← τ ∗, ξoldi∗ ← ξi∗
τ ∗, i∗ ← findmin(τ1, . . . , τd )
Ui∗ ∼ Law(Ui∗ )
for j in N̄i∗ ∪ Ñi∗ (Ui∗ ) do

Update: ξ j ← ξ j + θ j (τ
∗ − t j )

Update: t j ← τ ∗
end for
V ∼ Unif(0, 1)
if V ≤ λ̃i∗ (0; ξ, θ;Ui∗ )/λ̄i∗ (τ ∗ − τ oldi∗ ; ξold , θ) then

Update: θi∗ ← −θi∗
Update: k ← k + 1
Save: i (k) ← i∗, s(k) ← τ ∗, ξ (k) ← ξi∗

for n in
(⋃

j∈N̄i∗ N̄ j

)
\
(
N̄i∗ ∪ Ñi∗ (Ui∗ )

)
do

Update: ξn ← ξn + θn(τ
∗ − tn)

Update: tn ← τ ∗
end for
for j in N̄i∗ \{i∗} do

τ j ∼ τ ∗ + IPP(λ̄ j (·; ξ, θ))

τ oldj ← τ ∗, ξoldj ← ξ j
end for

end if
τi∗ ∼ τ ∗ + IPP(λ̄i∗ (·; ξ, θ))

end while
return reflection tuples ((i (l), s(l), ξ (l)))l=1,...,k

end procedure

set and the random subset of the coordinates required for the
evaluation of λ̄i (·; ξ, θ) and λ̃i (·; ξ, θ;Ui ).

4.4 Sampling diffusion bridges

In order to employ the Zig-Zag sampler to simulate from the
bridge measure, we choose the truncation level N in Eq. (2).
Then, under Pu,vT

N

π(dξ N ) ∝ ZN (X) exp

(−‖ξ N‖2
2

)
dξ N .

This is a straightforward consequence of the change of mea-
sure in (12) and the Lévy–Ciesielski construction.

We need to make one further assumption:

Assumption 4.2 The drift b of the diffusion process is twice
differentiable.

Assumption 4.2 is necessary in order to compute the ξk-
partial derivative of the energy function, which becomes

∂kψ(ξ N ) = 1

2

∫

Sk
hk(s; ξ N )ds + ξk, (16)

where

hk(s; ξ N ) = φk(s)
(
2b(XN

s )b′(XN
s ) + b′′(XN

s )
)

.

As the index k in the Faber–Schauder basis function gets
larger, both the magnitude of φk and the size of its support
decrease so that typically

∫
hk(s; ξ N )ds gets smaller and

∂kψ(ξ) ≈ ξk which corresponds to the partial derivative of
the energy function of a standardised Gaussian random vari-
able with independent components. This justifies one more
time the intuition that for high levels i , the random variables
ξi j , j = 1, . . . , 2i−1 are approximately normally distributed
and almost independent from the other random coefficients.

In order to avoid the evaluation of the integral appearing
in (16) and the difficulty of drawing a Poisson time from
its corresponding rate (6), we employ the subsampling tech-
nique. Considering ξ N non-random, we take as an unbiased
estimator for ∂kψ(ξN ) the (random) function

1

2
|Sk |hk(Uk; ξ N ) + ξk, (17)

where Uk ∼ Unif(Sk) and as the bounding intensity rate

λ̄k(t, ξ
N , θN ) = 1

2
|Sk ||θk |�̄k f (ξ

N (t)) + (θkξk(t))
+ , ξ N ∈ RM ,

(18)

where �̄k = maxs(φk(s)) and f (ξ N ) ≥
∣∣∣2b(X ξ N

s )b′(X ξ N

s )

+b′′(X ξ N

s )

∣∣∣ , ∀s ∈ [0, T ], ξ N ∈ RM . The subsampling

technique avoids the numerical computation of the time
integral (16), thus avoiding a numerical bias and reducing
the computational effort from O(T ) (for fixed discretisation
size) to O(1). The variance of this unbiased estimator can
be reduced by averaging over multiple independent uniform
draws or similar strategies (see, for example, Sect. 5.4), albeit
at the cost of additional computations. In Sect. 5, we show
specifically for each numerical experiment how we derived
the Poisson upper bounds λ̄i .

The compact support of the Faber–Schauder functions
induces a sparse dependency structure on the target mea-
sure π . Indeed, Xt only depends on those values of ξl,k for
which t ∈ Sl,k . See Fig. 4 for an illustration. It is easy to

see that this implies that ∂ψ(ξ N )
∂ξ(i, j)

depends only on those ξ(k,l)

for which the interior of Si, j ∩ Sk,l is non-empty. In partic-
ular, define the relation ξi, j � ξk,l to hold if Sk,l ⊂ Si, j . If
this happens, then we refer to ξi, j as the ancestor of ξk,l (and
conversely ξk,l as the descendant). Then, the sets in Assump-
tion 4.1 (using double indexing) can be chosen as Ni, j =
{ξh,d : ξh,d � ξi, j ∨ ξh,d � ξi, j } with cardinality |Ni, j | =
2N−i+1 + i − 1, where N is the truncation level. Formally,
Ni, j are the neighbourhoods of the interval graph induced
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0 T

S3,0 S3,1 S3,2 S3,3 S3,4 S3,5 S3,6 S3,7

S2,0 S2,1 S2,2 S2,3

S1,0 S1,1

S0,0

Fig. 4 Support of the Faber–Schauder functions (φi, j : i ∈
{0, 1, . . . , N }, j = {0, 1, . . . , 2i − 1} with N = 3. The coefficient ξi, j
is independent of the coefficient ξk,l conditionally on the set of common
ancestors (ξm,n : Sm,n ∩ Si, j �= ∅ ∧ Sm,n ∩ Sk,l �= ∅) if Si, j ∩ Sk,l = ∅

by ((Si, j : i ∈ {1, 2, . . . , N }, j ∈ {0, 1, . . . , 2i − 1})) with
vertices {(i, j) : i ∈ {1, 2, . . . , N }, j ∈ {0, 1, . . . , 2i − 1}},
where there is an edge between (i, j) and (l, k) if the interior
of Si, j ∩ Sk,l is non-empty (see Fig. 11). The factorisation of
the partial derivatives leads to a specific dependency structure
of the coefficients under the target diffusion bridge measure:
the coefficient ξi, j is conditionally independent of the coeffi-
cient ξk,l if Si, j∩Sk,l = ∅ conditionally on the set of common
ancestors (ξm,n : ξm,n � ξi, j ∧ ξm,n � ξk,l). This argument
is mademore formal by decomposing the likelihood function
in Appendix A.

5 Numerical results

We shownumerical results for three representative examples.
In general, when applying our method, we start from amodel
(1) and devise a representation of the approximate diffusion
bridge (12) that we sample using generic implementations of
algorithms 1-4 from our package, which are easily adapted to
the task of sampling the coefficients of the Faber–Schauder
expansion. To this end, we provide the k-th partial deriva-
tive of the energy function (16) or an upper bound to the
Poisson rate (18) as argument for the sampler, as well as
the sets Ni, j as given in Sect. 4.4. The reader is referred
to the file faberschauder.jl in the public repository
https://github.com/SebaGraz/ZZDiffusionBridge/src for the
implementation of the expansion and for the generic imple-
mentation of the different variants of the Zig-Zag sampler to
our package (Roberts and Stramer 2001).

The first class of diffusion processes considered are diffu-
sions with linear drift function (Sect. 5.1). This is a special
case, where our method does not require the subsampling
technique described in Sect. 4.1 and only Algorithm 3 has
been employed. Notice that for this class, the transition ker-
nel of the conditioned process is known. In Sect. 5.2, we
apply our method for diffusions which substantially differ

from Brownian motions, being highly nonlinear and multi-
modal and therefore creating challenging bridge distributions
for standard MCMC. Here, we use the fully local algorithm
(Algorithm 4). In the specific example considered, the imple-
mentation of the Zig-Zag sampler is facilitated by the drift
function and its derivatives being bounded, and therefore,
a bounded Poisson rate for the subsampling technique is
available. In view of this, we choose for the third numerical
experiment a diffusion with unbounded drift (Sect. 5.3). For
all the models, Assumptions 3.1, 3.4 and 4.2 are immediate
to verify and Assumption 4.1 is satisfied. For each experi-
ment, the burn-in τburn-in and final clock τfinal are manually
tuned by inspecting the trace of ξ N and ensuring that the pro-
cess reached stationarity before τburn-in and fully explore the
state space before the final clock τfinal. The computations
are performed with a conventional laptop with a 1.8GHz
intel core i7-8550U processor and 8GB DDR4 RAM. We
wrote the program in Julia 1.4.2 which allows profiling
and optimizing the code for high performance. The pro-
gram is publicly available on GitHub at https://github.com/
SebaGraz/ZZDiffusionBridge where the reader can follow
the documentation to reproduce the results.

5.1 Linear diffusions

A linear stochastic differential equation conditioned to hit a
final point vT has the form

dXt = (α + βXt )dt + dWt , X0 = u, XT = vT (19)

for some (α, β) ∈ R2. Assumptions 3.1, 3.4 and 4.2 can be
easily verified. In this case, the energy function of the target
distribution is

ψ(ξ N ) = C1 − ln(ZN (X)) + ‖ξ N‖2
2

= C2 + 1

2

∫ T

0

(
β2

(
X ξ N

t

)2

+ 2αβX ξ N

t

)
dt + ‖ξ N‖2

2
,

for some constantC1,C2. Note thatψ is a quadratic function
of ξ , which means that the target density is still Gaussian
under Pu,vT

N . It follows that

∂ξkψ(ξ N ) =
∫

t∈Sk
φk(t)

⎛

⎝β2

⎛

⎝ ¯̄φ(t)u + φ̄(t)vT /
√
T +

∑

j∈Nk

φ j ξ j

⎞

⎠

+αβ)) dt + ξk .

Interchanging the integral and the sum, this becomes

∂ξkψ(ξ N ) = β2
( ¯̄�ku + �̄kvT /

√
T

+
∑

j∈Nk

� jkξ j

⎞

⎠+ αβ�k + ξk,
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Fig. 5 Simulation of the
diffusion bridge measure (100
samples) given by Eq. (19)
starting at −1.0 and conditioned
to hit 2.0 at T = 10.
α = −5.0, β = −1.0 which is
equivalent to a mean reverting
process with mean reversion at
x = −5 (straight line). The
truncation level is N = 6, final
clock τfinal = 1000 and burn-in
τburn-in = 10

where �k =
∫

φkdt , � jk =
∫

φkφ jdt , �̄k =
∫

φ̄φkdt and¯̄� = ∫ ¯̄φφkdt . This is a linear function of ξ N , and for each
i , the event times with rates λi , see (6), can be directly simu-
latedwithout upper bounds. Figure 5 shows samples from the
resulting diffusion bridge measure with α = −5, β = −1
obtained with this method running the Zig-Zag sampler for
τfinal = 1000,with a burn-in time of τburn-in = 10. The closed
form of the expansion of linear processes, or more generally,
reciprocal linear processes, with the Faber–Schauder basis
was also found and used in Schauer and Grazzi (2020) for
the problem of nonparametric drift estimation of diffusion
processes. The results are validated by computing analyti-
cally the density of the random variable XT /2 (which, for
the linear case, is known in close form) and comparing this
with its empirical density obtained from one sample of the
Zig-Zag process (see Fig. 7, left panel).

5.2 Nonlinear multimodal diffusions

The stochastic differential equation considered here has the
form

dXt = α sin(Xt )dt + dWt , X0 = u, XT = vT (20)

for someα ≥ 0.Whenα = 0, the process is a standardBrow-
nian motion, while for positive α, the process is attracted to
its stable points (2k−1)π, k ∈ N.Assumptions 3.1, 3.4, 4.2
follow from drift, its primitive and its derivative being glob-
ally bounded. Fixing N , the energy function is given by

ψ(ξ N ) = α

2

∫ T

0

(
α sin2(X ξ N

t ) + cos(X ξ N

t )
)
dt + ‖ξ N‖2

2
.

Using trigonometric identities, we obtain that

∂ξkψ(ξ N ) = 1

2

∫

Sk
φk(t)

(
α2 sin

(
2X ξ N ,k

t

)
− α sin

(
X ξ N ,k
t

))
dt + ξk

where X ξ N ,k
t := ¯̄φ(t)u + φ̄(t)vT /

√
T +∑

j∈Nk
φ j (t)ξ j . To

avoid the need to find the roots of Eq. (7), we apply the sub-
sampling technique described in Sect. 4.1. Since the drift and
its derivatives are bounded, we can easily find the following
upper bound for (14):

λ̄k(t) = |θk |a1 + (θkξk(t))
+, (21)

with a1 = �̄k Sk(α2+α)/2, �̄k = max(φk) and ξk(t) = ξk+
θk t . In this case, the upper bound λ̄i is a function only of the
coefficient ξi . Figure 6 shows the results obtained with this
method setting α = 0.7. For this diffusion, the nonlinearity
and multiple modes make the mixing of the Zig-Zag sampler
slower, so we set τfinal = 10,000 and burn-in τburn-in = 10.

Analysing the goodness of the empirical diffusion bridge
distribution obtained is a difficult task since the true con-
ditional distribution is not known in a tractable form. We
start by checking if some geometrical properties of the dif-
fusion bridge distributions are preserved in the simulations.
For example, in Fig. 6, it can be noticed that the diffusion
is attracted to the stable points ±π,±3π, ..., and symmetric
(geometrically speaking, after rotation) around the vertical
axes t = T /2. We furthermore validate our method by simu-
lating forward diffusion processes, using Euler discretisation
in a fine grid and retaining only the paths which end in a ε-
ball of a certain point at time T (ε-ball forward simulation).
If the final point is such that the probability of ending in this
ε-ball is high enough, we can create in this way a sample
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Fig. 6 Simulation of the
diffusion bridge measure (200
samples) given by Eq. (20) with
α = 0.7 starting at −π at time 0
and hitting 3π at T = 50.
Truncation level N = 6, final
clock τfinal = 10,000 and
burn-in 10. The straight
horizontal lines are the
attraction points of the process

from the approximated bridge and compare it to the samples
obtained from the Zig-Zag. The right panel of Fig. 7 shows
the joint empirical distribution with the two methods of the
first quarter and third quarter randomvariables. Finally, Fig. 8
illustrates that the marginal distribution of the coefficients in
higher levels is approximately Gaussian and the nonlinearity
of the process is absorbed by the coefficients in low levels.

5.3 Diffusions with unbounded drift

Here, we consider stochastic exponential logisticmodels. For
this class, the process grows exponentially with rate r until
it reaches its saturation point K . Its dynamics are perturbed
by noise which grows as the population grows. The resulting
stochastic differential equation takes the form

dYt = rYt (1− Yt/K )dt + βYtdWt ,

X0 = u > 0, XT = vT > 0. (22)

We can transform the process in order to get a new process
with unitary diffusivity σ = 1 (Lamperti transform with
Xt = − log(Yt )/β). The transformed differential equation
becomes

dXt = (c1 + c2e
−βXt )dt + dWt ,

X0 = − log(u)/β, XT = − log(v)/β.

with c1 = β/2 − r/β and c2 = r/(βK ). Note that the drift
function b of the transformed process is not global Lipschitz
continuous. Nevertheless, Assumptions 3.4 and 4.2 are sat-
isfied and by Remark 3.9, also Assumption 3.1 is verified.
In this case, the partial derivative of the energy function is
given by

∂kψ(ξ N ) = 1

2

∫

Sk
φk(s)

(
a1e

−βX ξN
s − a2e

−2βX ξN
s

)
ds + ξk,

where a1 = 2r2/(βK ), a2 = a1/K . As before, it is not pos-
sible to simulate directly the first event time using the Poisson
rates given by Eq. (6). The subsampling technique requires
an upper bound for the unbiased estimator (14). Define the
following quantities

b(1)
k := inf

s∈Sk

⎧
⎨

⎩
¯̄φ(s)u0 + φ̄(s)vT /

√
T +

∑

i∈Nk

φi (s)ξi

⎫
⎬

⎭
,

b(2)
k := inf

s∈Sk

⎧
⎨

⎩

∑

i∈Nk

φi (s)θi

⎫
⎬

⎭
.

For any a, b, c ∈ R, (a + b + c)+ ≤ (a)+ + (b)+ + (c)+,
and hence, a valid upper bound for the Poisson rate (14) is
given by

λ̄k(t) = λ
(1)
k (t)+ λ

(2)
k (t)+ λ

(3)
k (t) (23)

with

λ
(1)
k (t) = max (0, θkξk(t)) ,

λ
(2)
k (t) = max

(
0,

1

2
θk φ̄k Skz

(1)
k e−β�

k t
)

,

λ
(3)
k (t) = max

(
0,−1

2
θk φ̄k Skz

(2)
k e2β

�
k t
)

and
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Fig. 7 On the left panel: comparison between empirical distribution
(blue line, computed with a kernel estimator) and the exact distribution
(red line) of the mid-point random variable X5 for the linear diffusion
(Eq. 19) with a = −5 and b = −1. The empirical distribution has
been extracted from the same experiment shown in Fig. 5. On the right

panel: comparison between the joint distribution of the variables XT /4
and X3T /4 of the process given in Eq. (20) starting at−π and hitting π

at T = 50. The scatter plot with red dots is obtained with ε-ball Euler
simulation with ε = 0.1 and discretisation
t = 0.0005, while the blue
continuous path is the Zig-Zag path. (Color figure online)

Fig. 8 Q–Q (quantile–quantile) plot against standard normal distri-
butions of the sample path of 7 coefficients, respectively, at level
0, 1, 2, 3, 4, 5, 6 targeting the conditional bridge measure given by Eq.
(20) with α = 0.7 and initial point u = 0 and final point v = 0

at T = 100. On the bottom right panel, the heatmap of the absolute
value of the sample correlation between the coefficients at different
levels. The blue straight lines correspond to the marginal measures of
the coefficients relatively to a Brownian bridge. (Color figure online)
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Fig. 9 Simulation of the
diffusion bridge measure (100
samples) given by the logistic
growth model [Eq. (22)] with
parameters
K = 2000, r = 0.08, β = 0.1,
starting at the value 50 and
hitting 1000 at time 200.
Truncation level N = 6, final
clock τfinal = 1000 and burn-in
τburn-in = 10 . The blue smooth
line is the solution of the
deterministic logistic model
without final condition. (Color
figure online)

z(1)k = a1 exp(−βb(1)
k ), z(2)k = z(1)k exp(−βb(1)

k ),

β�
k = −βb(2)

k , φ̄i = max
s

φi (s).

Using the superposition theorem (see, for example, Grim-
mett and Stirzaker 2001), we can simulate a waiting time
with Poisson rate (23) by means of simulating three waiting
times according to the Poisson rates λ

(1)
k , λ

(2)
k , λ

(3)
k and then

take the minimum of the three realisations. Since at any time
t > 0, either λ

(2)
k (t) or λ

(3)
k (t) is 0, we just need to evalu-

ate two waiting times. Figure 9 shows the results obtained
with our method for this process. The final clock of the Zig-
Zag sampler is set to T � = 1000 and initial burn-in time
τburn-in = 10.

5.4 Numerical comparisons

In this section, we benchmark the fully local Zig-Zag sam-
pler against the Metropolis-adjusted Langevin algorithm
(MALA) (Roberts and Rosenthal 1998), Hamiltonian Monte
Carlo (HMC) (Duane 1987) and another well-known PDMP,
the Bouncy particle sampler (Bouchard-Côté 2015). The
Bouncy Particle sampler can use the exact subsampling
technique in a very similar way as explained in Sect. 4.1.
According to the scaling limit results obtained in Bierkens
et al. (2020), the Zig-Zag is more efficient compared to the
Bouncy Particle sampler in a high-dimensional setting when
the conditional dependency graph corresponding to the tar-
get measure exhibits sparsity (which clearly is the case here).
The MALA sampler is a well-known discrete-time Markov
chainMonteCarlomethodwhich performs informed updates
through the gradient of the target distribution. HMC is con-
sidered a state-of-the-art algorithm. In contrast to PDMPs,

for HMC and MALA the gradient needs to be fully evalu-
ated and no subsampling methods can be exploited. Thus,
the integral in (16) needs to be computed numerically, intro-
ducing bias. Furthermore, contrary to PDMPs, the resulting
Markov chain is reversible. We study the performance of the
samplers for the stochastic differential equation (20) with
u, v = 0 and the time horizon T = 100 and we let α vary. As
α increases, the target distribution on the coefficients presents
higher peaks and valleys and is therefore a challenging distri-
bution for general Markov chain Monte Carlo methods. We
fix the refreshment rate of the Bouncy Particle sampler to 1
to avoid a degenerate behaviour and implement the MALA
algorithmwith adaptive step size over 250,000 iterations.We
used the automatically tuned dynamic integration time HMC
Algorithm (Betancourt 2018) with 3000 iterations and with
diagonal mass matrix and integrator step size both adaptively
tuned in a warm-up phase of 2000 iterations, with the lat-
ter adapted using a dual-averaging algorithm (Hoffman and
Gelman 2014) with target acceptance statistic of 0.8. The
algorithm is provided in the package AdvancedHMC.jl
(see Ge et al. 2018) with 3000 iterations. The integral appear-
ing in the gradient of the energy function is computed for the
MALA sampler and for the HMC sampler numerically with
a simple Euler integration scheme over 2N+1 points, where
N is the truncation level which is fixed to 6 for all the exper-
iments. The final clock for the PDMPs is T ′ = 25, 000. We
also include the numerical results of two variants of the Zig-
Zag sampler:

(ZZv1) where the partial derivative in (16) is estimated by
averaging over multiple independent realisations of (17),
with the number of realisations proportional to the length
of the range of the integral in (16);
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Fig. 10 Performance comparison of the fully local Zig-Zag (ZZ), its
variants (ZZv1 and ZZv2), the Bouncy Particle sampler with sub-
sampling (refreshment rate set to 1), MALA and HMC sampler. The
performancemeasure considered here is, respectively, the effective sam-
ple size (ESS) of the middle point XT /2, the median and the minimum
of the ESS over the dimension of the coefficients of the expansion. The
target diffusion bridge with drift b(x) = α sin(x) with u, v = 0 and
T = 50 and truncation level N = 6. The final clock for the PDMPs is
set to T ′ = 25,000, the number of iterations for the MALA is set to be

250,000with adaptive time step targeting the acceptance rate 0.6 (Pierre
2020), and the number of iteration for the HMC is 3000 with the algo-
rithmfine-tuned by the packageAdvancedHMC.jl. All the quantities
are normalised by the runtime of execution. The asymptotic variance
estimate used for computing the ESS is obtained using batch means.
Notice that while the subsampling technique adopted for the piecewise
deterministic Monte Carlo methods does not introduce bias on the tar-
get distribution, the numerical integration adopted for the MALA and
HMC samplers introduces bias on the target distribution

(ZZv2) where the partial derivative in (16) is estimated by
decomposing the range of the integral into N subintervals
(with N proportional to the length of the range of the
integral) and evaluating the integrand at a random point
drawn inside each subinterval.

These variants of the Zig-Zag have been proposed after notic-
ing that the coefficients at low levels are the ones deviating the
most from normality and the partial derivative with respect
to those coefficients have larger support. This suggests that
refining the estimates of the partial derivative of the energy
function only with respect to those coefficients can be benefi-
cial and improve the performances of the PDMPs. Figure 10
shows the results obtained. The fully local Zig-Zag and its
variants always outperform the Bouncy Particle sampler, the

MALAand theHMCwith respect to the statistics considered,
namely themean, median andminimum of the effective sam-
ple size computed for each coefficient of the Faber–Schauder
expansion and the effective sample size of the coefficient ξ0,0,
which gives the middle point XT /2 and, as shown in Fig. 10,
is one of the most difficult coefficients to sample.

6 Extensions

In this section,webriefly sketch the extension of the approach
presented in Sect. 3 to a class of multi-dimensional diffusion
bridges. Then, we study the scaling properties of the algo-
rithm with respect to three quantities: the time horizon of the
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diffusion bridge T , the truncation level N and the dimension-
ality of the diffusion bridge d.

6.1 Multivariate diffusion bridge

Consider a d-dimensional diffusion bridge given the stochas-
tic differential equation

dXt = ∇B(Xt )dt + dWt , X0 = u, XT = vT , u, vT ∈ Rd ,

where (Wt )t≥0 is a d-dimensional Wiener process and ∇B :
Rd �→ Rd is a conservative vector field, i.e. the gradient
of some scalar-valued function B. Denote its law by Pu,vT .
Similarly to Eq. (10), under mild assumption on ∇B(Xt ),
we can write the change of measure between Pu,vT and the
standard d-dimensional Wiener bridge measure Qu,vT as

dPu,vT

dQu,vT
(X) = C exp

{
B(XT ) − B(X0) − 1

2

∫ T

0
‖b(Xt )‖2 +
B(Xt ) dt

}
,

where b = ∇B, 
B is the Laplacian of B, and C is a
normalisation constant which depends on u, vT and T . It is
straightforward to derive an equivalent approximated mea-
sure as done in equation (12) and prove Theorem 3.11 in the
multi-dimensional setting. In this case, the d-dimensional
diffusion bridge measure is approximated by the same trun-
cated expansion of equation (2) with coefficients ξi, j , i =
0, . . . , N ; j = 0, . . . , 2N which now are d-dimensional ran-
dom vectors. The total dimensionality of the target density
for diffusion bridges becomes d(2N+1 − 1) . Similarly to
the one-dimensional case, Proposition 7.1 holds. (The proof
follows in a similar fashion of the proof of Proposition 7.1
and is omitted for brevity.) The Poisson rates λki, j (where,
k ∈ {1, . . . , d} defines the coordinate of the d-dimensional
process) are functions of the sets Nk

i, j which have maximum

admissible size |Nk
i, j | = d(2N−i+1+ i − 1) ≤ d(2N+1− 1)

so that Assumption 4.1 holds.

6.2 Scaling for large T,N, d

The following scaling analysis serves as preliminary work
for future explorations. The expected run time of the fully
local Zig-Zag sampler (Algorithm 4) is intimately related to
the number of Poisson event times for a fixed final clock
τfinal and the conditional independence structure appearing
in the target measure. The former is determined by the size
of the Poisson bounding rates λ̄1, . . . , λ̄M , while the latter
is defined by the sets N1, . . . , NM and determines the com-
plexity of the local step of Algorithm 3.

Remark 6.1 For a fixed position and velocity, the Poisson
bounding rates used in theZig-Zag samplerwith subsampling
(Algorithm 2) for diffusion bridges are of the form λ̄i, j =
C1T 3/22−3i/2+C2, i = 0, 1, . . . , N ; j = 0, 1, . . . , 2i − 1,
for some terms C1 and C2 which do not depend on i and T .

Proof For every i = 0, 1, . . . , N ; j = 0, 1, . . . , 2i − 1, the
time horizon T and scaling index i enter in the bounding
rates of (18) through the terms Si, j and φ̄i, j . The first term
is of O(T 2−i ), and the second one is of O(

√
T 2−i/2). ��

Proposition 6.1 helps in understanding how the complex-
ity of the algorithm scales as T grows and as the truncation
level N grows. As T grows, the Poisson rates increase with
order T 3/2 so that the total number of Poisson events for a
fixed Zig-Zag clock increases with the same order.

Furthermore, as the truncation level N grows, the change
of measure affects less and less the coefficients in high lev-
els and the partial derivative of the energy function goes
to zero with rate 2−3N/2) implying that the for large N ,
λ̄N , j ≈ C2 = (ξN , jθN , j )

+ (which is the Poisson rate for
the Brownian bridge). As a consequence, the Poisson pro-
cesses of the coefficients in high levels (i large) will be
approximately independentwith all the other coefficients and
not function of the level i so that the complexity of Algo-
rithm 4 scales approximately linearly with the number of
mesh points. This is opposed to the standard Zig-Zag algo-
rithm (Algorithm 1) which does not take advantage of the
approximate independence of the coefficients in high levels
so that the 2N+1 − 1 waiting times have to be renovated at
every reflection of each coefficient.

The scaling result undermesh refinement (when N grows)
is unsatisfactory as the algorithm deteriorates when the reso-
lution of the path increases. A partial solution can be obtained
by letting the absolute value of the marginal velocities |θN , j |
to decrease as N increases. This would enhance the scaling
property of the algorithmundermesh refinement at the cost of
a slowmixing of high-level components. An alternative solu-
tion is considered in Bierkens et al. (2018) where the authors
enhance the scaling property of the algorithmby replacing the
Zig-Zag algorithm with the Factorised Boomerang sampler.
The Factorised Boomerang sampler differs from the Zig-Zag
by having curved trajectories which are invariant to a pre-
scribed Gaussian measure. This allows the process to sample
from the Gaussian measure (Brownian bridge measure) at
barely no cost. However, the main drawback of the factorised
Boomerang sampler is the current limiting techniques for
simulating Poisson times given the curved trajectories which
lead to Poisson upper bounds which are not tight.

Finally, when the dimensionality of the diffusion bridge
is d � 1, both the dimensionality of the target density of the
Zig-Zag sampler and the sets Nk

i, j for i = 0, . . . , N ; j =
0, . . . , 2i − 1; k = 1, . . . , d grow linearly with d so that, in
general, we expect the computational time to grow with rate
d2. When the drift of the multi-dimensional bridge presents
a sparse structure, i.e. not all coordinates of the differen-
tial equation interact directly with each other, as common in
the high-dimensional case arising from discretised stochastic
partial differential equations (e.g.Michel et al. 2019, Sect. 6),
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the size of those sets reduces considerably until the extreme
case of d independent diffusion bridges where the sets Nk

i, j
are not anymore a function of d and clearly the complexity
grows linearly with the dimensionality d.

7 Conclusions

In this paper, we have introduced a new method for the sim-
ulation of diffusion bridges which substantially differs from
existing methods by using the Zig-Zag sampler and the basis
of representation adopted. We motivated both choices and
presented the method and its implementation. The result-
ing simulated bridge measures are shown to be close to the
real measures, even for low-dimensional approximations and
bridges which are highly nonlinear.We took advantage of the
subsampling technique and a local version of the Zig-Zag to
sample high-dimensional approximation to conditional mea-
sures of diffusions with intractable transition densities. The
subsampling technique is a key property in favour of using
piecewise deterministic Monte Carlo methods for diffusion
bridges (and whenever the target measure is expressed as
an integral that requires numerical evaluation). However, the
main limitation found for these methods is that they rely on
upper bounds of the Poisson rates which are model-specific.
Upper bounds for PDMC are easily derived in situations
where the log-likelihood has a bounded Hessian. In our set-
ting, this means that we wish for the function b2(x) − b′(x)
to have bounded second derivative. In other cases, tailor-
made bounds need to be derived which can be substantially
more complicated. Furthermore, the performance of these
samplers can be affected if the upper bounds are too large.

In conclusion, this is the first time (to our knowledge) the
Zig-Zag has been employed in a high-dimensional practi-
cal setting. We claim that the promising results will open
research towards applications of the Zig-Zag for high-
dimensional problems. We mention below some possible
extensions of the methodology proposed which are left for
future research:

a. The hierarchical structure of the Faber–Schauder basis
suggests that the Zig-Zag should explore the space
at different velocities to achieve optimal performance.
Unfortunately, it is not immediately clear how to tune
the velocity vector;

b. InSect. 6,we anticipated the possibility to simulatemulti-
dimensional diffusion bridges. In order to generalise the
results presented in this paper, we assumed the drift being
a conservative vector field. In order to relax this limiting
assumption, new convergence results have to be derived
which deal explicitly with the stochastic integral appear-
ing in equation (8).

c. The drivingmotivation for proposing thismethodology is
to perform parameter estimation of a discretely observed
diffusion model. For this purpose, the Zig-Zag sampler
runs jointly on the augmented path space given by the
coefficients ξ and the parameter space �.
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Appendix A Factorisation of the diffusion
bridgemeasure

Here, we derive rigorously the conditional independence
structure of the coefficients which arise from the compact
support of the Faber–Schauder functions as shown in Fig. 4.
Recall that the relation ξi, j � ξk,l holds if Sk,l ⊂ Si, j and
in that case we refer to ξi, j as the ancestor of ξk,l (and con-
versely ξk,l as the descendant). Notice that each coefficient
is both descendant and ancestor of itself.

Proposition 7.1 (Conditional independence structure)Deno-
te the set of common ancestors of ξi, j and ξk,l by A(i, j;k,l) :=
{ξh,d : ξh,d � ξk,l ∧ ξh,d � ξi, j }. Under P

vT
N , ξi, j is

conditionally independent from ξk,l , given the set A(i, j;k,l),
whenever the interior of the supports of their basis function is
disjoint that is neither ξi, j � ξk,l nor ξk,l � ξi, j is satisfied.

Proof For i = 1, . . . , N ; j = 1, . . . , 2i − 1, define the
vectors of ancestors and descendants of ξi, j as ξ (i, j) :=
{ξm,n : ξm,n � ξi, j ∨ ξm,n � ξi, j }. Assume, without loss of
generality, that i ≤ k and consider two coefficients ξi, j , ξk,l .
We factorise ZN (X) by partitioning the integration interval
[0, T ] in a sequence of sub-intervals Sk,0, Sk,1, . . . , Sk,2k−1
so that
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ξ3,1
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ξ3,3

ξ2,2

ξ2,3
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ξ3,5
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Fig. 11 Graphical representation of the dependency structure of the
random vector of the coefficients under Pu,vT

N . ξi, j ⊥⊥ ξk,l conditionally
on the vertices which have a direct hedge to both ξi, j and ξk,l if ξi, j
does not have a direct edge to ξk,l . The dependency graph is a chordal
graph

Z N (X) =
2k−1∏

p=1

fk,p(ξ
(k,p)). (24)

Here,

fk,p(ξ
(k,p)) = exp

(
B(XN

max Sk,p ) − B(XN
min Sk,p )

× −1

2

∫

Sk,p
b2
(
XN ;k,p
s

)
+ b′

(
XN ;k,p
s

)
ds

)

.

with

XN ;k,p
s = ¯̄φ(s)u + φ̄(s)vT /

√
T +

∑

(i, j) : ξi, j�ξk,p

φi, j (s)ξi, j

and we used that XN
s = XN ;i, j

s when s ∈ Si, j , XN
T =

φ̄(T )vT /
√
T and XN

0 = ¯̄φ(0)u. Now, just notice that, under
this factorisation, the only factor which is a function of ξk,l
is fk,l(ξ (k,l)). Here, if ξi, j �� ξk,l , then ξ (k,l) does not con-
tain ξi, j . Conversely, the factors containing ξi, j are those
fk,p(ξ (k,p)) such that ξi, j � ξk,p with p = 0, 1, . . . , 2k−1.
If ξi, j �� ξk,l , none of the vectors ξ (k,p) contains ξk,l . Since,
under the measure Qu,vT , the random variables in the vec-
tor ξ N are pairwise independent, the factorisation on ZN (X)

defines the dependency structure of the vector ξ N under PvT
N

so that ξi, j and ξk,l are independent conditionally on their
common coefficients given by the set A(i, j;k,l). ��

More intuitively, the factorisation of Z(X) gives rise to the
dependency graph displayed in Fig. 11 which shows that the
coefficients in high levels (i large) are coupled with just few
other coefficients and conditionally independent from all the
remaining. The conditional independence of the coefficients
implies that the partial derivatives of the energy function (and
consequently the Poisson rates given by equation (6)) are
functions of only few coefficients in the sense of Assump-
tion 4.1. In particular, the sets in Assumption 4.1 (using
double indexing) can be chosen as Ni, j = {ξh,d : ξh,d �
ξi, j ∨ ξh,d � ξi, j }with size |Ni, j | = 2N−i+1+ i −1, where
N is the truncation level.
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