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1. Abstract 
 

The Morgan-Morgan-Finney (MMF) model is identified as the most appropriate hillslope soil erosion 

model for high resolution global application with the objective of identifying relative erosion risk areas 

and modelling the effect of land cover changes on erosion at a catchment scale. This is justified by its 

simple model structure, low input requirements, semi-empirical basis and distributed application. 

However, transferability to global application is hindered by its reliance on empirical data for input 

requirements. This paper proposes methodologies of generating input data based on remotely sensed 

products which improves the spatial and temporal accuracy of the input rasters. The MMF model is 

further redesigned by coupling it with the IHE Delft Institute for Water Education inhouse hydrological 

model, WaterPix, to replace runoff calculations in order to improve its treatment of infiltration and by 

applying the model in monthly timesteps to analyse erosional differences within the seasonal crop 

calendar. The redesigned MMF model algorithm is coded in python and applied over a headwater in 

the Ganga basin located in the Madhya Pradesh state of India. The model produces realistic erosion 

rates and distributions and provides additional information on the spatial and temporal variation of 

erosion in the study area. However, validation of the redesigned model with field data needs to be 

prioritized before it is utilized.   
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2. Introduction 
 

Soil erosion models are used to simulate the 

movement and transfer of sediment forced by 

hydrological, hydraulic, meteorological and 

geological parameters in order to quantify 

sediment yield and identify soil erosion sources 

and sinks. The importance of such tools in land 

use management and in obtaining system 

insight into erosional processes has inspired an 

extensive inventory of models. A review by 

Karydas, Panagos and Gitas (2014) classified 

an unexhaustive list of 82 soil erosion models 

which are commonly categorized as empirical 

and process models based on the underlying 

principles of their development. This variety is 

owing to the multifaceted and complex 

character of environmental processes and 

conditions the simulations aim to replicate.  

Empirical models run on equations derived 

from statistically evaluated field observations 

and experiments. Considered largely as a black-

box approach, it does not consider individual 

process of erosion but rather lumps them into 

empirical parameters overarchingly describing 

the interrelating and interacting processes 

involved. These models are widely used owing 

to their simplicity, low input and compute 

requirements but has been criticized in its 

exploratory applications under different 

conditions of their development.  

Process based models are created according to 

universal natural rules of conservation of mass, 

energy and continuity, and attempts a 

descriptive representation of the physical 

system. This independence from empirical 

relationships is the common justification for 

their transferrable application. The degree of 

physics represented in these models assures 

many earth-surface process researchers of their 

rigorousness. However, they rarely simulate the 

physical ideal and approximations and 

parameterizations are nearly always present 

(Beven, 1989; Dunin, 1975 qtd in Merritt, 

Letcher and Jakeman, 2003; Murray, 2013) 

Attempts at detailed representation also 

requires numerous parameters related to each 

involved erosional process which at large scales 

become extremely compute intensive, limiting 

application to often plot and hillslope scales.  

Lack of available data to satisfy the intensive 

input requirements often becomes one of the 

main draw-backs of these models (Aiello, 

Adamo and Canora, 2015).  

Within the overarching empirical and process-

based categorization, soil erosion models are 

further classified according to the scales they 

are designed to imitate and the resolutions they 

are applied. Models are developed to a certain 

spatial scale (i.e. plot, hillslope or catchment) 

where different erosional processes dominate. 

Sheet and rill erosion dominate at plot and 

hillslope scale, whereas gully erosion attributes 

up to 44%  of sediment yield at the catchment 

scale (De Vente and Poesen, 2005; Brazier, 

2013; Mitasova et al., 2013). Furthermore, an 

inverse relationship in erosion and modelled 

area has been observed because sediment yield 

is controlled by both erosion and storage 

(Brazier, 2013). Therefore, scaling a model 

developed for plot scale to catchment scale 

would thus simplify erosional processes that 

cannot be resolved by an application of a simple 

factor. 

Soil erosion models also differ in their spatial 

apportionment of the landscape (i.e. spatially 

discretized and spatially distributed models). 

Discretized models spatially average 

parameters over the entire study area or over 

designed hydrologic units which are expected 

to behave similarly under static conditions. 

Distributed models represent input variables 

and modelled values as continuous fields 

usually also discretized as regular grids. 

Physics inclined researchers often argue that 

distributed models are more fundamental as 

they simulate processes at smaller scales, 

however in the emergent phenomena 

viewpoint, discretized models can simulate 

variables and interactions that emerge at the 

large scale (Murray, 2013). Furthermore, the 

viability of lumping up physical relationships 

often developed in small scale to 

interconnecting cells in a large scale grid is 

questionable (Beven, 1989). Distributed 

models still have an advantage because it can 

model erosion at any point depending on the 
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resolution of the simulation (Mitasova et al., 

2013).   

Temporal scale and resolution is another 

important characterization of a model. Many 

simple erosion models assume steady erosion 

over time and provide long-term estimates of 

erosion (most empirical models treat temporal 

variability in this way) (Mitasova et al., 2013). 

This has implications on how the mass of the 

overall long-term record is distributed across 

event magnitudes causing an overestimation of 

low magnitude events and underestimation of 

high magnitude events (Furl, Sharif and Jeong, 

2015). Process based models are proposed to 

perform better at apportioning mass with 

respect to extreme events. However, due to the 

complex, multi-scale interactions and limited 

temporal resolution of the input data, most 

physical based models resort to performing a 

steady state case using peak flows of individual 

erosion events (Mitasova et al., 2013; Furl, 

Sharif and Jeong, 2015). Regardless of the 

empirical or process basis of the models, they 

are limited in fully representing the random 

component of erosional process, thus several 

studies referenced in  Nearing (1998) have 

reported the bias in erosion predictions during 

extreme events.  

Soil erosion model comparisons are often 

inappropriate as models were developed under 

unique stipulations. An underperforming model 

can outperform another in a different context 

(De Vente and Poesen, 2005; Murray, 2013) 

There can thus be no consensus on the best 

performing model across all scales and 

conditions. There is an agreement in literature 

however that validation of many soil erosion 

models are limited (Brazier, 2013). Future 

resources in soil erosion model research needs 

to focus on validation however difficult as 

appropriate measurement are rarely available. 

 

3. Research Objective and 

Approach 
 

The Water Accounting+ Framework supported 

by IHE provides a global standard for the 

impact assessment of climate change and land-

use changes. This study focused on modelling 

hillslope erosion, as its mitigation is an 

important ecosystem services that varies in 

response to land-use changes.  

The objective of this research is to identify and 

adapt a suitable hillslope soil erosion model that 

can recognize erosion risk areas and model the 

effect of land use changes on erosion at high-

resolution (spatial) catchment scale which can 

be applied globally.  The approach of the study 

to fulfill the objective consists of the following 

sequential steps: 

i. Identifying an appropriate model 

through a literature review; 

ii. Adapting model design to better suit 

the objective; 

iii. Improving input parameter definition 

to better suit the objective;  

iv. Analysing model results; and 

v. Comparing model results to a 

simplistic heuristic map to determine 

whether a more resource intensive soil 

erosion model application is justified. 

 

4. Materials and Methods 
 

4.1. Study Area 

The study area is a headwater in the Ganga 

basin located in the Madhya Pradesh state of 

India (Figure 1). Elevation is highest to the 

south with a gradual slope towards the north. 

The area is subtropical with the highest rainfall 

occurring in the monsoon season from June to 

September (Mondal, Khare and Kundu, 2018). 

The area crosses the district boundaries of 

Dewas, Rajgarh and Shajapur where the main 

crops grown are soya bean, wheat and gram 

which are planted over two seasons (Table 1).  

The study area was chosen as it had available 

WaterPix output data from IHE and was at a 

reasonable size for preliminary model 

application and analysis.   
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4.2. Model Selection Criteria 

There is an extensive inventory of soil erosion 

models available for selection in this research, 

developed under different degrees of physical 

basis, scales and contexts. This is owing to the 

multifaceted and complex character of 

environmental processes and conditions the 

simulations aim to replicate.  

The initial approach for the model selection was 

to identify a single best performing model 

through a literature review of comparison 

studies and model descriptions. The approach 

proved to be difficult because of the number of 

models available and the largely contradicting 

conclusions of the comparison studies. Soil 

erosion models do not simulate the ideal and 

consequently, performance depends on the 

context they are applied to. Thus, a selection 

criterion for the model was created based on the 

objective of the research. This is discussed in 

the following paragraphs. 

The intended use for the soil erosion model in 

this context is to identify erosion risk areas and 

model the effect of land use changes on erosion. 

To identify erosion risk areas, the chosen model 

has to run in a distributed manner in order to 

ensure an appropriate spatial detail to generate 

meaningful conclusions. Absolute values of 

sediment yield are not necessary as relative 

values will give sufficient information on 

higher and lower risk areas. To model the effect 

of land use changes, the model needs to be 

compatible with GIS inputs and raster data. For 

this use, event and daily time resolutions are not 

necessary because land use changes at larger 

temporal resolutions.  

The model must be capable of generating high 

spatial resolution outputs at a catchment scale. 

This limits the selection to distributed models 

developed for catchment scale applications to 

ensure dominant processes at this scale are 

represented. In addition, simple model 

structures are preferred to ensure reasonable 

compute requirements when modelling at high 

resolution over a large area.  

Finally, the model is intended for global 

application in gauged and ungauged basins 

Crop 
Area * 
[ha] Season 

Growth Period 

J F M A M J J A S O N D 

Soyabean 935284 Kharif           P       H     

Wheat 512706 Rabi       H       P      

Gram 261934 Rabi       H       P      
*Total crop area over the whole of Dewas, Rajgarh and Shajapur 
*P=Plant; H=Harvest 
*Dark Green=Always Planted; Light Green = Early Plant of late Harvest 
Source:  Central Bank of India and Government of India (2014) 

 

Table 1. Crop Calendar of the main crops grown in the Dewas, Rajgarh and Shajapur Districts. 

 

Figure 1. Study area. 
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which fundamentally adds uncertainty to data 

availability. To satisfy the criteria, the model 

must have low input requirements and/or easily 

gathered input parameters. Additionally, the 

model needs to be robust in exploratory 

applications.  

There is a certain dichotomy in the 

aforementioned model requirements. Only 

process-based models can be exploratory, 

however typically these have high input 

requirements and complex model structures. 

Empirical models, while simple and easy to 

apply, characteristically cannot be 

transferrable. Nevertheless, empirical models, 

such as the Universal Soil Loss Equation 

(USLE) and its revisions, are arguably the most 

utilized soil erosion models even in exploratory 

applications.  

The USLE was developed for uniform plot 

scale applications on 22.1 m hill slope lengths 

(Wischmeier and Smith, 1978). When applied 

on catchment scale and areas with complex 

topography, the model and its variations was 

found to produce subpar results (Romero-Díaz, 

Alonso-Sarriá and Martínez-Lloris, 2007; 

Oliveira et al., 2013; Furl, Sharif and Jeong, 

2015; Arkowitz, 2017). Some argue that by 

applying the USLE in a distributed manner over 

a catchment, it inherently reverts to a plot scale 

application. However, erosional processes 

dominant in plot scale, with which USLE was 

developed for, may not be dominant in the 

catchment scale. Such a lumped application of 

a plot scale model may simplify the erosional 

processes at the catchment scale.  

Other frequently recurring models during the 

literature review are the process-based WEPP 

and SWAT models. WEPP is input and 

compute intensive with a complex model 

structure which is not applicable to global 

studies and at high resolution over a catchment 

scale (Arkowitz, 2017). SWAT is a holistic 

model which computes hydrologic and 

erosional responses separately. For the latter the 

model uses USLE-based equations and inherits 

the same drawbacks (Arnold et al., 1998). For 

these reasons, widely used models did not 

satisfy the requirements for this research. 

Rather, the lesser known semi-empirical 

Morgan-Morgan-Finney (MMF) model was 

chosen. Specific justification for the selection 

and a description of the MMF model will be 

discussed in the following subsection 4.2.1. 

 

4.2.1. Morgan-Morgan-Finney (MMF) 

Model Selection Justification and 

Description 

The  Morgan–Morgan–Finney (MMF) model is 

semi-empirical in that it applies concepts by 

Meyer and Wischmeier (1969) to provide a 

stronger physical basis than the USLE while 

retaining the characteristic flexibility and 

simplicity of empirical models (Morgan, 2001). 

The model needs less data than most of the 

other processed-based models  (Shrestha, 

1997). Furthermore, the MMF model is 

compatible with GIS input data and grid 

distributed application at any resolution. These 

characteristics make the model ideal for global 

and high-resolution application.  

Output rigorousness is sacrificed for the 

simplicity of the model. However it is suitable 

as a rapid first-approximation of erosion risk 

areas which is the intended use of the model for 

this research (Morgan, 2001).  

There are three versions of the Morgan-

Morgan-Finney (MMF) model. It was first 

developed by Morgan, Morgan and Finney in 

1984 for plot scale application. A revision of 

the model published by Morgan in 2001, 

included routing for application at the 

catchment scale and changed the way soil 

particle detachment by raindrop and flow is 

simulated. The revised version showed an 

improvement in model performance when 

compared to the original model (Morgan, 

2001). Another  modification was made by 

Morgan and Duzant in 2008, in which the effect 

of vegetation was elaborated and depositional 

processes were considered. The Morgan and 

Duzant modification does add several input 

parameters to the model with seemingly low 

performance improvements (Morgan, 2001; 

Morgan and Duzant, 2008). Therefore, to 

maintain the simplicity of the model, the 

revised MMF model from 2001 is applied in 

this study.  
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Finally, comparison studies of the earlier 

versions of the MMF model against common 

erosion models such as the USLE and WEPP 

show that the 1984 version of the MMF model 

generally underperforms and a clear 

improvement in relative performance is seen   

when comparisons are made against the 2001 

version of the MMF model (Table 2). 

Comparison studies of the 2008 modification of 

the MMF model could not be found during the 

literature review. Although comparison studies 

cannot by itself function as a good justification 

of a model selection, it gives an indication of an 

improvement in relative performance which 

further justifies the model selection.  

 

4.3. MMF model design and application 

The model calculates soil erosion in two parts, 

the water phase and erosion phase and 

considers splash and run-off detachment as 

defined on Figure 2. A conceptual diagram of 

the model is shown on Figure 3 with the 

operating functions listed on Table 3. A 

description of the input parameters used in the 

equations of Table 3 and their references are 

listed on Table 4.  

The water phase determines the kinetic energy 

from direct throughfall, KE(DT), and leaf 

drainage, KE(LD), available to detach soil 

particles. In this phase, effective rainfall (ER) is 

first calculated based on an interception factor 

(A) which represents the proportion of rainfall 

permanently intercepted by the cover. The 

proportion of the effective rainfall reaching the 

ground as leaf drainage (LD) or direct 

throughfall (DT) is further divided according to 

the percentage canopy cover (CC).  The kinetic 

energy of leaf drainage is then calculated based 

on the plant height (PH) according to an 

equation by Brandt (1990). The kinetic energy 

of direct throughfall is dependent on the 

characteristic intensity of erosive rain (I) for the 

climate of the application area. Typical energy-

intensity relationships used as the operating 

function for different climate types are listed in  

Morgan (2001). The operating function listed 

on Table 4 is specific for the subtropical climate 

of the study site. 

The kinetic energy values derived in the water 

phase are used in the soil phase of the model to 

calculate soil particle detachment by rainfall (F) 

and run-off (H) using a simplification of soil 

erosion equations described by Meyer and 

Wischmeier (1969). The former is dependent 

on the detachability of soil (K) whereas the 

latter is dependent on the soil cohesion (COH). 

Soil detachment due to runoff and the transport 

capacity is further dependent on the volume of 

runoff (Q), cover factors (GC and C) and the 

slope (S).  

The sum of the erosion caused by rainfall and 

runoff are compared to the transport capacity 

(TC). The lower of the two values is taken as 

the final erosion rate. 

 

Table 2. Preferred model from Comparison studies of the 1984 and 2001 version of the MMF against other soil erosion 

models.

Comparison Study MMF Version  Soil Erosion Models Preferred Model 

Vigiak and Sterk (2001) 1984 USLE MMF 

Svorin (2003) 1984 USLE, RULSE, SLEMSA USLE 

Pandey et al. (2009) 1984 USLE USLE 

Bayramov, Buchroithner and Mcgurty (2013) 1984 USLE USLE 

Mondal, Khare and Kundu (2018) 1984 USLE, RUSLE RUSLE 

Yazidhi (2003) 2001 RUSLE RULSE 

Fernández, Vega and Vieira (2010) 2001 RUSLE MMF 

Jha and Paudel (2010) 2001 RUSLE MMF 

Tesfahunegn, Tamene and Vlek (2014) 2001 SWAT MMF, SWAT 

Vieira et al. (2014) 2001 RUSLE, WEPP MMF 

Li et al. (2017) 2001 

RULE, MUSLE, Zheng's Model, 

WEPP, SWAT, DYRIM, 
WATEM/SEDEM, Tian's Model, 

Si's Model, Yang's Model MMF, WEPP, Si's Model 
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Figure 3. Conceptual diagram of redesigned MMF model. 

 

Figure 2. Soil particle detachment by raindrop and runoff considered in the MMF model. 
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Table 3. Operating Functions 

Water Phase: 

Effective Rainfall 𝐸𝑅 [𝑚𝑚] = 𝑅 × (1 − 𝐴) 

Leaf Drainage 𝐿𝐷 [𝑚𝑚] = 𝐸𝑅 × 𝐶𝐶 

Direct Throughfall 𝐷𝑇 [𝑚𝑚] = 𝐸𝑅 − 𝐿𝐷 

Kinetic Energy of Direct Throughfall 𝐾𝐸(𝐷𝑇) [
𝐽

𝑚2
] = 𝐷𝑇 × (11.8 + 8.73 × 𝑙𝑜𝑔𝐼) 

Kinetic Energy of Leaf Drainage 𝐾𝐸(𝐿𝐷) [
𝐽

𝑚2
] = 𝐿𝐷 × (15.8 × 𝑃𝐻0.5) − 5.87 

Soil Phase: 

Soil Particle Detachment by Raindrop Impact 𝐹 [
𝑘𝑔

𝑚2
] = 𝐾 × (𝐾𝐸(𝐷𝑇) + 𝐾𝐸(𝐿𝐷)) × 10−3 

Soil Particle Detachment by Runoff 𝐻 [
𝑘𝑔

𝑚2
] =

(∑ 𝑄𝑚)
1.5

∑(𝑄𝑚
1.5)

.
[𝑄𝑚

1.5 × sin 𝑆 × (1 − 𝐺𝐶) × 10−3]

0.5 × 𝐶𝑂𝐻
 

Transport Capacity 𝑇𝐶 [
𝑘𝑔

𝑚2
] =

(∑ 𝑄𝑚)
2

∑(𝑄𝑚
2)

. [𝑄𝑚
2 × sin 𝑆 × (𝐶) × 10−3] 

  

The application of the model in this study 

deviates from the proposed application in four 

main points. The first deviation comes from the 

coupling of the MMF model to the IHE in house 

hydrological model, WaterPix, which is used in 

place of the Kirkby (1976) equations, as quoted 

in Morgan (2001), to generate the volume of 

runoff as input to the soil phase of the MMF 

model. This deviation has the advantage of 

accounting for infiltration as runoff is routed 

through the catchment. The ignorance of the 

process in the MMF model was identified by 

Feng et al. (2014) as a significant source of 

error in the original application.  

The second deviation is the application of 

runoff routing for the calculation of the soil 

particle detachment by runoff in the soil phase 

of the model. The proposed application of 

routing was limited to transport capacity 

calculations in the original publication.  

The third deviation is in the preparation of the 

input data. Recommended empirically based 

parameters are replaced by values calculated 

from remote sensing products in order to 

improve on the temporal/spatial accuracy and 

transferability of the inputs. By increasing 

reliance on remotely sensed products, the ease 

for global application of the model is improved. 

This is particularly important to accommodate 

the final deviation of study which is the 

reduction of the modelling timestep from yearly 

to monthly. This deviation preserves the 

resolution of the WaterPix overland flow output 

and gives further insight into erosion risk 

throughout the life and agricultural cycle of the 

crops as well as the effects of seasonal weather 

differences. In order to accommodate a 

reduction in timestep, the operating function for 

transport capacity (TC) and soil particle 

detachment from runoff (H) on Table 3 are 

normalized against their yearly value as 

recommended by Davison et al. (2008).  

The model was applied over the study area 

using inputs from 2010. The semi-empirical 

nature of the model allows application in a 

distributed manner so it can provide useful 

information on the source areas of sediment. 

For application in this study, the interest area 

was distributed into 2.4x2.4 km2 grid cells to 

mimic the output resolution of WaterPix. The 

model was developed for catchment scale 

application and this will be maintained in this 

study.  

The MMF model algorithm is written in python 

language. Instructions to run the coded model 

are on Appendix 1 while a copy of the scripts 

are on Appendix 2 and 3. 
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Table 4. Input Parameters to MMF 

 

Factor Parameter Definition Type Source Reference 

Overland Flow O Overland Flow (mm) Raster Overland flow 

WaterPix Output 

- 

Climate R Monthly rainfall (mm) Raster CHIRPS Funk et al. (2015) 

I Typical value for intensity of 
erosive rain (mm/h) 

Value or 
Type 

Literature Review Mondal, Khare and Kundu 
(2018)* 

Type Climate Type Type Literature Review  Mondal, Khare and Kundu 

(2018)* 

Soil K Soil detachability index (g/J) 
defined as the weight of soil 

detached from the soil mass 

per unit of rainfall energy 

Raster Empirical value 
 

Soil Map 

Morgan (2001) 
 

Land and Development 

Division, FAO, ROME 
(2003) 

COH Cohesion of the surface soil 

(kPa) as measured with a 
torvane under saturated 

conditions 

Raster Empirical value 

 
Soil Map 

Morgan (2001) 

 
Land and Development 

Division, FAO, ROME 

(2003) 

Landform S Slope steepness (°) Raster DEM  Lehner, Verdin and Jarvis 
(2008)(HydroShed Database) 

– accessed from WA toolbox 

Land Cover A Proportion (between 0 and 1) 
of the rainfall contributing to 

permanent interception and 

stemflow. 

Raster LAI   
 

 

Number of Rainy days 

NASA LAP DAAC ( 2010) 
 – accessed from WA toolbox 

 

Funk et al. (2015) 

C Crop cover management 

factor 

Raster NDVI NASA LAP DAAC ( 2010)  

– accessed from WA toolbox 

CC Canopy cover expressed as a 

proportion (between 0 and 1) 
of the soil surface protected 

by the vegetation or crop 

canopy 

Raster LAI  NASA LAP DAAC ( 2010) 

 – accessed from WA toolbox 

GC Ground cover expressed as a 

proportion (between 0 and 1) 

of the soil surface protected 
by vegetation or crop cover 

on the ground 

Raster LAI  NASA LAP DAAC ( 2010) 

 – accessed from WA toolbox 

PH Plant height (m) Raster Ecocrop database 

 
Land Use Map 

FAO (2013) 
 

Created by IHE based on 

information from Goethe 
Universit (n.d.), ESA (n.d.) 

and  NIRCA (n.d.)   

*Reference is specific to study site 

 

5. Input Data and Pre-processing  
 

The required inputs listed on Table 4 to the 

MMF model are pre-processed to the same 

resolution as the overland flow output of 

WaterPix. The inputs are derived from a 

combination of remotely sensed products and 

empirically derived values to create raster maps 

covering the study area. The processing of 

several input parameters diverge from the 

recommended methods stated in Morgan 

(2001) to improve on their spatial and temporal 

accuracy as suggested methods often rely on 

empirically derived values that would likely not 

account for the monthly land use and land cover 

changes. By increasing reliance on remotely 

sensed products for input data, the model is 

more capable of being applied globally where 

lack of data is often the biggest hindrance. 

These divergences are elaborated in the 

sections below discussing the processing of 

input parameters where required. Any 

generalized values proposed here should be 

replaced when actual field data is available.  

 

5.1. Overland Flow 

The overland flow in this study diverges from 

the original methodology in two ways: (i) it 

uses the output of the IHE inhouse hydrological 

parameterization, WaterPix, in order to account 
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for infiltration; and (ii) a single-pathway 

routing algorithm (GRASS – r.watershed 

module) is applied to the overland flow raster 

to generate a distributed overland flow 

accumulation map in order to account for the 

routing of flow (De Jong et al., 1999; Shrestha 

and Jetten, 2018).  

 

5.2. Climate 

The monthly rainfall input to the model is the 

same as the monthly rainfall used to run the 

hydrological parameterization, WaterPix, for 

consistency. The climate type of the study area 

is subtropical which informs the selection of the 

intensity of erosive rain (25 mm/h) and the 

operating function for the kinetic energy of 

direct through fall on Table 3. Other typical 

values and relationships for specific climate 

types are listed by (Morgan, 2001). 

 

5.3. Soil 

The soil type informs values for the 

detachability of soil (K) and soil cohesion 

(COH).  A soil map was first generated using 

the “The Digital Soil Map of the World” 

maintained by The Land and Development 

Division of  FAO maintains. This is a 

standardized dataset of percentage 

compositions of clay, sand and silt for 106 soil 

units, derived from a statistical analysis of 4553 

soil profiles held in the WISE (World Inventory 

of Soil Emission) database (Batjes, 1997). 

Based on a soil texture diagram, the soil type is 

identified for every cell generating the soil map 

shown on Figure 1. The soil type is assigned a 

numerical value according to Table 5 and is 

input to the model where the values of K and 

COH are inherently applied. 

 

5.4. Landform 

The slope steepness is calculated from the DEM 

using the r.slope.aspect module from GRASS 

where the degree format can be specified. 

  

 

 

 

Table 5. Soil Type numerical value and K&COH values. 

Soil Type Value K (Morgan 

2001) 
COH 

(Morgan 

2001) 
Sand 1 1.2 2 
Loamy 

sand 
2 0.3 2 

Sandy 

loam 
3 0.7 2 

Loam 4 0.8 3 
Silt 5 1.0 3* 
Silt loam 6 0.9 3 

Sandy clay 

loam 
7 0.1 3 

Clay loam 8 0.7 10 

Silty clay 

loam 
9 0.8 9 

Sandy clay 10 0.3 9* 

Silty clay 11 0.5 10 

Clay 12 0.05 12 
*Values for these soil types were not available. The values on 
this table are assumed based on similar soil types 

 

5.5. Landcover 

Input rasters under the landcover category are 

conventionally derived by assigning empirical 

constants to specific crop types or land use 

classifications on a land use map. The validity 

of these values is certain only when they are 

applied under the same environmental 

conditions as the empirical tests which are often 

not carried out over the life and agricultural 

cycle of the crop and may not reflect the 

appropriate temporal variation for outputs at a 

monthly timescale. The spatial accuracy of 

input rasters generated from this methodology 

is further depended on the quality of the land 

use map.  

Inputs derived from remotely sensed data 

improves on the conventional approach by (i) 

removing dependence on the accuracy of the 

land-use map; (ii) removing inaccuracies 

inherent in empirical values; (iii) retaining 

accuracy when up sampling (i.e. whereas the 

conventional approach can only be up sampled 

using the mode statistic, remotely sensed data 

can be averaged therefore retaining information 

of lumped crop types within an up sampled cell) 

and (iv) improves the efficiency and ease of
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 application as it does not require an extensive 

literature review to identify the appropriate 

empirical values, which may be time 

consuming as an encompassing database is 

non-existent. In some cases, an appropriate 

value may not be found in literature.  

The methods used for deriving the input rasters 

based on remotely sensed data are discussed in 

detail in the following sections which includes 

comparison to empirically derived values.  

 

Interception Factor 

The interception factor (A) has values between 

0 and 1 and is described as the proportion of 

rainfall contributing to permanent interception. 

The input raster was generated in this study as 

a function of interception (i), precipitation (P), 

number of rainy days (n) and the LAI product 

which describes the percentage of plant cover 

over the percentage of ground cover. For cells 

where n = 0 while P > 0, the n values are 

assigned to 1. 

𝑖 = 𝑛 ∗ 𝐿𝐴𝐼(1 − (1 +
𝑃(1 − 𝑒−0.5∗𝐿𝐴𝐼)

𝑛 ∗ 𝐿𝐴𝐼
)

−1

) 

𝐴 =
𝑖

𝑃
 

A timeseries of the LAI-based A-values for 

several sampling locations on different land use 

classes are on Figure 4(a). For comparison, 

empirical values for the study site gathered 

from a literature review are listed on Table 6 

and plotted on Figure 4(a).  

Values generated from remote sensing products 

are significantly smaller than their empirical 

counterparts for all dominant land use types. 

The temporal variability of the LAI-based 

values is more realistic as they follow the crop 

calendar patterns on Table 1. However, they do 

not have the clear distinction that empirical 

values have between land use types.  

The magnitude difference between the two 

methods when calculating the effective rainfall 

increases with the magnitude of precipitation, 

as the empirical based values assume a linear 

relationship and the LAI-based values are 

computed as a function of precipitation.  

Crop Cover Management Factor 

The crop cover management factor (C-factor) is 

the product of the Cropping Management 

Factor (C) and the Support Practice Index (P) 

of the USLE. The former is the ratio of soil loss 

from land cropped under specified conditions 

(combination of cover, crop sequence, and 

management practices) to the corresponding 

loss from clean-tilled, continuous fallow. The 

latter is the ratio of soil loss with a specific 

support practice(i.e. contouring, strop cropping 

and terrace contour farming) to the 

corresponding loss with up-and-down-slope 

culture (Wischmeier and Smith, 1978). Both 

factors range from 0 to 1. A value of 1 

indicating no cover effects and no erosion 

control.  

The C-factor is calculated in this study using 

the NDVI product according to the function 

below (Van Der Knijff, Jones and Montanarella 

1999). The recommended values for alpha and 

beta are 2 and 1 respectively. Artefacts/noise 

likely due to clouds were observed in the raw 

NDVI data. Cells affected were removed and 

interpolated. 

𝐶 =  𝑒
−𝛼

𝑁𝐷𝑉𝐼
(𝛽−𝑁𝐷𝑉𝐼) 

𝐶 − 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐶 ∗ 𝑃 

The support practice index (P) is based on 

direct observations and thus difficult estimate. 

Pham, Degener and Kappas (2018) lists studies 

that have attempted to relate it to slope 

inclination and land-use maps. However due to 

the low performance of the proposed 

methodologies, this study will maintain the 

empirical value on Table 6. 

Figure 4(b) shows a time-series comparison of 

the empirical C-factor values and the NDVI-

based values for sampling locations over the 

dominant land use classes. The latter values 

have strong temporal variation significantly 

exceeding the empirical range but follows the 

crop calendar pattern on Table 1. High 

variability proves the importance of a 

temporally varying C-factor value for 

calculating monthly erosion estimates. The 

NDVI-based values have no apparent 

distinction between crop types.  The year 
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average values are 0.34, 0.31 and 0.31 for 

wheat, soybean and gram respectively thus 

aligning only to the empirical value for 

Soybean. 

 

Percentage Canopy Cover/ Ground Cover 

Morgan (2001) does not explicitly state a 

methodology for calculating the percentage 

canopy cover (CC) and ground cover (GC) 

although empirical values were added in a 

lookup table in the publication of the Morgan 

and Duzant (2008) modification.  

To determine the percentage canopy cover, an 

LAI-based approach was applied in this study 

following the same methodology as in 

WaterPix. Canopy cover (CC) is calculated as a 

function of LAI according to the equation 

below.  

𝐶𝐶(%) = 1 − 𝑒−0.5∗𝐿𝐴𝐼 

The percentage ground cover may be inferred 

from the crop cover management (C) values of 

the previous section. Although GC only 

accounts for vegetation cover in the ground 

while C-values account for vegetation cover as 

well as foliage, trash and management 

practices, these would disperse overland flow 

energy in a similar way. In fact, the earlier 

version of the MMF model used the C-factor in 

place on GC (Morgan, Morgan and Finney, 

1984). 

𝐺𝐶(%) = 1 − 𝐶 

 

 

Plant Height 

Plant Height is difficult to estimate with 

remotely sensed products. This study assigned 

averaged values from the Ecocrop database of 

FAO according to the land-use map (Table 6).  
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Table 6. Empirical values for MMF input 

LULC Classification  Dominant crop  Cover 

(%) 

A (%)  Reference C 

Value  

Reference P 

Value 

Reference PH (m)  Reference 

Herbaceous cover - 0.43 32.5 Morgan (1995) 0.04  Jain and Kothyari ( 2000) 

1 

Mondal, 

Khare and 
Kundu 

(2018) 

0.3 Morgan and Duzant ( 2008) 

Rainfed crops - cereals Wheat 7.91 43  Morgan (1995) 0.2 Morgan (1995) 1.2 EcoCrop database by FAO (2013) 

Rainfed crops - oilseed Soybean 34.31 15 Dunne and Leopold (1978) 0.35 Morgan (1995) 1 EcoCrop database by FAO (2013) 

Irrigated crops - leguminous Chickpea 57.06 25* - 0.53  Vigiak and Sterk ( 2001) 0.6 EcoCrop database by FAO (2013) 

Irrigated crops - fruit and nuts - 0.14 25* - 0.29 Jain and Kothyari ( 2000) 1* - 

Urban paved Surface  - 0.14 0 Morgan (1995) 1 - 0 - 

*No information found. Value is assumed. 

Figure 5.  Sampling locations 

for the dominant land use 

classes, Wheat(W1,W2,W3), 

Soybean(S1,S2,S3) and 

Gram(G1,G2,G3). 

Figure 4. Left(a): A-factor empirical and LAI-based values for sampling locations on Figure 5. Middle (b):  C-factor empirical and NDVI-based values for 

sampling locations on Figure 5.  Right (c): CC values calculated from LAI for sampling locations on Figure 5. 
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6. Limitations and Uncertainties 

of Input Data and Model 
 

The semi-empirical nature of the MMF model 

allows some physical basis while maintaining 

the simplicity and minimal input requirement of 

an empirical model. This allows grid 

application globally but does not exempt it fully 

from the transferability uncertainties often 

attached to empirical models. Furthermore, it 

was initially developed for plot scale 

application which was then adapted to 

catchment scale by applying routing of flow 

and sediment so scalability issues may be 

inherited.   

The model is further limited by its lumped 

treatment of events. It essentially smooths out 

high and low magnitude events as it deals with 

long term totals of runoff. This adds to the 

model’s uncertainty as not all precipitation 

events result in erosion. A month with frequent 

low magnitude events can represent itself as a 

relatively high monthly runoff total but may in 

reality have little to no erosion (Andresen, 

2017). Soil type can exacerbate the uncertainty. 

Clayey soils, for example, require a significant 

amount of runoff to erode during a particular 

event. The model is likely to overpredict 

erosion in these areas during months of frequent 

low intensity events. The model can also 

underestimate erosion because it smooths out 

upper end events where the highest erosion 

rates occur (Furl, Sharif and Jeong, 2015). In 

fact, when tested on plots in the Loess region of 

China, the 1984 and 2001 version of the MMF 

model could not predict the very high erosion 

rates (Morgan, 2001). These inaccuracies 

however can also be attributed to the soil 

erosion models, in general, not being able to 

capture the random component of erosion 

within a deterministic model (Nearing, 1998).  

The rigorousness of the operating functions as 

well as the quality of the input data are other 

characteristics that may limit the performance 

of the model. The outstanding inaccuracies in 

the operating functions of the original 2001 

revision of the MMF  model are: (i) ignorance 

to deposition (ii) neglection of infiltration in the 

water phase (iii) the assumption of erosion only 

occurring on bare ground; and (iv) neglecting 

convergence and divergence of overland flow 

for calculating soil detachment by runoff.  

The first point is resolved in the 2008 

modification of the model. However, this 

version increased input requirements without 

assuring an improvement in performance. 

Therefore, it was not selected for application in 

this research. Deposition can be applied in 

future development of this version by defining 

the deposition rate in cells to be the difference 

between detachment capacity and transport 

capacity when the latter is exceeded.  

The second point is resolved in this study by 

using the overland flow output from WaterPix 

which considers infiltration. This implies, 

however, that the validity of the model is 

essentially linked to the validity of the 

hydrological parameterization. Validation of 

the hydrological parameterization would 

inform the level of uncertainty its utilization 

would incur.  

The final point is resolved by passing the runoff 

output of WaterPix through a single pathway 

routing algorithm to generate the distributed 

overland flow accumulation map. This flow 

direction algorithm assumes a concentrative 

flow where water moves only to one cell, 

although dispersive flow frequently occurs in 

reality (Oliveira et al., 2013). Future works 

could apply a dispersive multi-direction flow 

algorithm instead.   

Originally, the majority of input parameters to 

the model are based on empirical values. This 

study aimed to reduce reliance on empirical 

data by proposing methods of input derivation 

based on remotely sensed data. The remaining 

empirical values used in this redesign are the 

intensity of erosive rain(I), plant height (PH) 

and soil detachability (k) and cohesiveness 

(COH). These values are characteristically only 

valid when applied in similar environments 

they were derived in. Often, they do not reflect 

the characteristic changes during the life cycle 

and agricultural cycle of the site. For example, 
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plant height values would vary temporally 

according to the growth and harvesting stages 

of the crop. Inaccuracies due to static plant 

height inputs in this research are partly 

alleviated because plant height is scaled 

indirectly by crop cover calculated from 

remotely sensed data. 

The accuracy of the spatial distribution of 

empirically based raster inputs also depend on 

the accuracy and resolution of the GIS maps 

(i.e. land-use map and soil map) they are 

attached to. The soil map used in this study was 

generated from a statistical analysis of 

sampling locations inferring some degree of 

interpolation. Hence, it shows very little 

variation in the study site. As another example, 

the land-use map used general classifications 

forcing assumption on the specific crop type.  

These GIS-based maps are often static and 

rarely reflect monthly variations which may be 

particularly essential for land use changes when 

double cropping is involved or multi-season 

harvesting.  

Certainty of input rasters generated from 

remotely sensed data are also not assured 

without costly verification in field. The 

accuracy of the data is further restricted to 

available resolutions and can be affected by 

artefacts. For example, the uncertainty in a 

DEM increases in areas with high relief and a 

low resolution may fail to capture the correct 

route of water accumulation (Andresen, 2017). 

When modelling sediment erosion specifically, 

Chaplot (2005) found the best results at 

resolutions <50m.  

Due to the limitations and uncertainties stated 

above, it is recommended perform a field 

verification regardless of the nature of the input 

data presented in this study. Ultimately, the 

results from this study should not be taken as 

absolute values of soil erosion but rather as a 

good rapid first approximation of erosion rates 

to identify source areas of sediments in the 

catchment (Morgan, 2001). But the biggest 

limitation of this research, much like many soil 

erosion modelling publications, is the lack of 

validation against field data.  

 

7. Results and Discussion 
 

The model returns spatially distributed monthly 

erosion rates over the study area. Figure 6 

depicts an image compilation of the model 

results for 2010. Table 8 lists additional 

monthly information, namely: (i) the 

percentage area composition under different 

soil erosion classes based on the definition used 

by Mondal, Khare and Kund (2018); (ii) Total 

erosion over the entire study site; (iii) 

Percentage of area composition under the 

detachment and transport limiting cases; (iv) 

Percentage area composition dominated by 

raindrop impact or runoff detachment; (v) Total 

monthly erosion for different slope classes; and 

(vi) Total monthly erosion for different land use 

classes. 

The cell-by-cell calculated erosion rates range 

from a minimum of 2.69x10-13 kg/m2 in April to 

a maximum of 62.7 kg/m2 in July. However, 

magnitudes greater than 10 kg/m2 are only 

found along the stream network where huge 

quantities of flow converge maintaining here a 

detachment limited state. Estimates over the 

stream network are likely inaccurate as the 

model does not consider hydraulic factors.  

It is evident that the study area is most sensitive 

to erosion in the month of July when according 

to the crop calendar on Table 1, agricultural 

fields of gram and wheat have been harvested 

and soybean fields are young. Input parameters 

that represent coverage such as the C-factor and 

CC% does show that this month has lower 

coverage (Figure 4). Though not the lowest, 

erosion is exacerbated as this month 

experiences the highest precipitation amounts 

in the year Figure 4(a).  

The breakdown of unscaled erosion in the 

detachment limited case due to raindrop impact 

and overland flow for this month verifies that 

the former dominates detachment in the 

majority area (Figure 7). This may be an 

artefact of the analysis as runoff dominates in-

stream where flow converges which makes up 

a significantly smaller area percentage than the 

on-site coverage where raindrop erosion 

dominates. Also evident in this figure is the soil 
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map footprint which implies the importance of 

the factor in the calculations of raindrop 

detachment. Raindrop detachment is the 

dominant cause of erosion for the majority area 

for most of the year as seen on Table 8, 

therefore it is important to improve on the 

quality of the soil map in future runs. The 

relative dominance of raindrop detachment may 

be attributed to the clayey soils in the study 

area. 

Another outstanding observation from Figure 6, 

is the contrast of erosion magnitudes at the 

southern and northern section of the study site 

during August 2010. To a lesser extent a similar 

pattern is observed in September. A significant 

section of the area in these months become 

transport limited as seen on Table 6, due to an 

increase in coverage denoted by the C-factor in 

the northern part of the study area as seen on 

Figure 4(b). This suggests distinct agricultural 

practices between the two areas. Based on the 

seasonal pattern of erosion and coverage, it may 

be inferred that the north section grows crops 

during the Kharif season (i.e. soybean) and the 

southern section grows during the Rabi season 

(i.e. Gram or wheat).   

Slight soil loss (up to 0.05 kg/m2) is observed 

in the majority area at the beginning and later 

part of the year coinciding with the Rabi crop 

season. Areas classified under severe loss 

during these months are over stream networks 

where flow converge. The coincidence of high 

precipitation and low coverage in July increases 

the severe soil loss area percentage (greater 

than 0.6 kg/m2) to 43.7% which gradually 

decreases towards the end of the year as 

coverage increases and precipitation decreases.  

Areas with 2-5-degree slopes experience the 

greatest erosion as they are found often along 

the stream network. The lowest slope class has 

a greater average soil loss than the steepest 

class for most months of the year. Lower slopes 

are often found downstream and thus have more 

upstream contributing flow. These numbers 

may also be misleading as lower slopes are 

found along the stream network with high flow 

convergence. August is an exception to this 

trend because of significantly lower coverage in 

the “steeper” southern section of the site 

causing more erosion. There is no indication in 

these results that slope is big determiner for 

erosion. Rather, erosion magnitudes are more 

dependent on flow convergence.  

The highest soil losses in the land use classes 

are found under Gram. These results may be 

misleading because the majority area is 

classified under this class, thus streams with 

high values may skew the result. Furthermore, 

the results may be compromised by 

inaccuracies in the land use map. It became 

clear from the erosion and C-factor spatial 

distribution in the month of august that the 

northern and southern section of the study area 

have very distinct land use practices. Whereas 

the land use map does not show such an evident 

distinction indicating some inaccuracies. 

The majority area during months with low 

runoff relative to the precipitation (i.e. May, 

June, September and November) are transport 

limited. Whereas the area during months with 

high runoff relative to the precipitation (i.e. 

May and October) is mostly detachment 

limited. This trend emerges because raindrop 

detachment is the dominant erosional process 

for the majority area while the transport 

capacity is calculated based on runoff. This 

indication that raindrop impact is the dominant 

cause of erosion can inform the appropriate 

practices for mitigation. 

From the results it may be inferred that for the 

transport limited case, coverage and flow are 

the determining factors while for the 

detachment limited case, rainfall and soil type 

become dominant parameters. 

Mondal, Khare and Kundu (2018) published 

results of a comparative study of three erosion 

models, MMF, USLE and RUSLE, south of the 

study site on a part of the Narmada river basin 

in Madhya Pradesh. Though not directly 

comparable as this study was done on a 

different location and time period, it can serve 

as a sanity check for the results. The soil loss 

classes and their percentage distribution have a 

similar distribution as the year average results 

of this study. The three erosion models 

computed that 50.63-61.87% of the area have 

slight erosion (<5 t/h/yr) and severe erosion 
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areas were estimated at 0.89-1.95% of the study 

site. High estimates in this study for severe 

erosion areas are attributed to the consideration 

of erosion along the stream network which were 

ignored in the 2018 publication.  

When looking at the yearly averaged results of 

this study and the annual results of Mondal, 

Khare and Kundu (2018), one can reach a 

conclusion that erosion mitigation measures are 

not required as the majority area experiences 

only slight soil loss. However, by simulating 

monthly erosion patterns, it becomes evident 

that there is significant monthly variation and 

the majority area shifts to very severe loss in 

July when land cover is low and precipitation is 

high.  There is a significant amount of 

information achieved by redesigning the model 

to run on monthly timesteps. 

 

7.1. Heuristic Map Comparison 

Soil erosion requires a significant amount of 

resources to model while the confidence on 

model accuracy for most of the scientific 

community remains small owing to the 

difficulty of validation. A simple heuristic map 

can be created based on commonly known rules 

of hillslope erosion from easily accessible data 

that require no processing. This section 

explores the added value of modelling over the 

information provided by a heuristic map.  

 

The heuristic map is created following a similar 

logic to the MMF model, erosion is divided into 

splash and runoff erosion and are affected 

positively and negatively by factors stated in 

Table 7. The specific values of these factors are 

normalised to 1 with 0 being the lowest 

occurring value and 1 being the highest 

occurring value. The normalised values are then 

summed for each cell and their relative values 

reflect their relative erosion severity. Factors 

that affect both splash and runoff erosion are 

only added once. 

 

Table 7. Factors used to create a Heuristic map of 

hillslope erosion.  

Splash Erosion Runoff Erosion 

Precipitation (+) Precipitation (+) 

Ground Cover* (-) Ground Cover* (-) 

Soil Type – Detachability 

(K) (+) 

Soil Type – Cohesiveness 

(COH) (-) 

 Upstream contributing area (+) 

 Slope (+) 

*The simplest raw representation of ground cover is LAI 

 

The difficulty in this method is assigning the 

correct weights to the factors. Investigation into 

the appropriate weights is beyond the scope of 

this study so for simplicity, the factors are 

assumed to have equal weights. The cells are 

then binned into three classes based on their 

relative values: (i) The lowest 20th percentile 

the values constitute the low erosion class, (ii) 

Values between the 20th and 80th percentile are 

classified as moderate erosion and; (iii) the 

highest 20th percentile constitute the high 

erosion class. The generated heuristic maps for 

the year, 2010, are shown on Figure 9. MMF 

model results classified under the same 

definition are shown on Figure 8 for 

comparison.   

 

There is a general trend in the MMF model 

results of the northern section having lower 

erosion than the southern section. On the 

contrary, the heuristic map predicts sudden 

shifts in the areas of high and low erosion 

because it becomes very sensitive to shifts in 

the inputs without regard of the actual 

magnitudes as these are normalized.  

 

The soil map foot print is consistently evident 

in the heuristic map and the erosion along the 

stream network is not continuous. Convergence 

of flow along the network should generate a 

continuity of erosion as evident in the MMF 

results. These results suggest that without the 

appropriate weights, a heuristic map may not 

give very meaningful results and the 

identification of these weights may require 

similar resources to applying a model.



18 

 

 

Figure 6. Monthly erosion [kg/m2] MMF Result 

Figure 7. Runoff and raindrop 

detachment for July 2010 
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Table 8. Monthly MMF Model Erosion Results 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec   
Area in Soil loss Class (%)              Average 

Class Soil loss (kg/m2)               

slight loss <=0.05 91.9% 92.6% 94.1% 91.5% 86.7% 82.8% 2.2% 49.6% 69.8% 87.7% 90.0% 91.1%  77.5% 

moderate 0.05-0.1 1.0% 0.3% 4.0% 1.6% 4.6% 3.5% 10.0% 6.8% 5.9% 2.7% 2.3% 1.6%  3.7% 

high loss 0.1-0.15 1.3% 0.7% 1.0% 0.0% 0.4% 0.9% 10.5% 3.6% 2.7% 0.7% 1.6% 0.1%  2.0% 

very high loss 0.15-0.3 1.7% 0.7% 0.9% 0.7% 0.6% 5.3% 19.5% 7.4% 11.7% 1.0% 5.1% 0.6%  4.6% 

severe loss 0.3-0.6 0.4% 1.0% 0.0% 0.7% 0.6% 2.2% 14.1% 18.8% 4.0% 0.9% 1.0% 0.9%  3.7% 

very severe loss >0.6 3.6% 4.6% 0.0% 5.5% 7.1% 5.3% 43.7% 13.9% 5.8% 6.9% 0.0% 5.8%  8.5% 

                
Total Soil loss (kg/m2) 121.70 61.61 4.85 57.56 530.41 57.60 1484.64 281.19 87.04 275.06 13.00 113.14   

                
Area with Limiting Case (%)               

 Detachment 43.9% 30.3% 10.0% 36.8% 69.0% 11.7% 38.5% 25.0% 18.0% 69.0% 9.5% 58.3%   

 Transport 56.1% 69.7% 90.0% 63.2% 31.0% 88.3% 61.5% 75.0% 82.0% 31.0% 90.5% 41.7%   

      
 

         
Area with Dominant Erosion Process 

(%)     
 

         

 In-stream (Runoff)  8.7% 9.1% 6.5% 10.4% 25.1% 6.6% 7.5% 4.6% 6.9% 12.3% 2.7% 12.0%   

 On-Site (Raindrop) 91.3% 90.9% 93.5% 89.6% 74.9% 93.4% 92.5% 95.4% 93.1% 87.7% 97.3% 88.0%   

                
Average Soil loss in Slope 

Class(kg/m2)               

 <=2 0.1466 0.0838 0.0070 0.0830 0.7463 0.0856 2.2139 0.3918 0.1353 0.3914 0.0195 0.1504  0.3712 

 2-5 0.3601 0.1244 0.0073 0.0852 0.9203 0.0716 1.8068 0.4806 0.0723 0.4499 0.0148 0.2492  0.3869 

 >5 0.0211 0.0042 0.0001 0.0469 0.0155 0.0120 0.1916 0.5976 0.0086 0.0159 0.0024 0.0171  0.0777 

                
Average Soil loss in Land Use 

Class(kg/m2)         
 

     

 Wheat 0.0043 0.0014 0.0001 0.0004 0.0060 0.0005 0.3570 0.0325 0.0073 0.0077 0.0006 0.0015  0.0349 

 Soybean 0.3168 0.1198 0.0069 0.0840 0.8494 0.0612 1.8782 0.3887 0.0729 0.4201 0.0141 0.1983  0.3675 

 Gram 0.0698 0.0688 0.0074 0.0859 0.7251 0.1031 2.4129 0.4521 0.1716 0.3935 0.0229 0.1324  0.3871 
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Figure 9. Spatial distribution of Low, Medium and High erosion 

classes based on a Heuristic map. 
Figure 8. Spatial distribution of Low, Medium and High erosion 

classes based on the MMF results. 
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8. Conclusion 
 

Selecting a soil erosion model appropriate for 

this research proved challenging because of the 

extensive library of models available and the 

contradicting conclusions of comparison 

studies. Model performance ostensibly relies on 

the context it is applied to. The model selection 

was thus executed by defining specific criterion 

according to the objectives of this research 

which resulted in the selection of the Morgan-

Morgan-Finney (MMF) Model.  

The MMF model was then redesigned to better 

fit the objectives of the study and alleviate some 

of its limitations.  The modelled erosion result 

trends across the year are consistent with the 

seasonal crop calendar in the area. Furthermore, 

a sanity check with a comparison study 

validates to small degree, the soil erosion 

magnitudes and spatial distribution generated 

by the MMF model. However, the performance 

and reliability of the model has not been 

validated due to a lack of field data at the study 

area.  

The redesigned MMF model improves on the 

original by providing more information on the 

distribution of erosion risk both temporally and 

spatially to help prioritize and identify high risk 

areas and inform mitigation measures. 

Additionally, by reducing its reliance on 

empirical information and by generating input 

parameters from remotely sensed data, 

exploratory application of the model globally is 

justifiable. 

 

9. Recommendations 
 

It is recommended that validation of the model 

with field data is prioritised in future works. 

After which, the model configuration can be 

improved by: 

• Performing a comparison analysis of 

model results using empirical inputs 

and inputs derived from remotely 

sensed products; 

• Applying a multi-flow direction 

routing algorithm, such as D∞, to 

account for divergent flow;  

• Accounting for deposition in the same 

way as the USPED model which 

assumes that if erosion exceeds 

transport capacity deposition occurs at 

this cell; 

• Testing application of the model with 

higher resolution data (i.e. 250x250m);  

• Excluding streams/lakes from the 

model run as erosion prediction over 

these are likely inaccurate because 

hydraulics is not considered; and 

• Replace empirical P-factor values with 

values derived from remote sensing 

products. 

The model code can further be improved by: 

• Allowing single month runs; and 

• Incorporating input pre-processing. 
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Appendices 

Appendix 1: Morgan-Morgan-Finney Model Running Instructions 

 

The MMF model generated for this research is simulated using two python scripts: RUN.py and 

MMF.py. These scripts can be found in Appendix 2 and Appendix 3 respectively. RUN.py is the 

executable file which imports the inputs and executes the MMF.py script. The user is required to enter 

file handles for the input files and the preferred location for the output files (Note: monthly input file 

names must have 2-integer numbering from 01 to 12 referring their associated months). The 

model accepts exactly 12 files for monthly data as it has been programmed to run for 1 year.  

MMF.py contains the operating functions organized in classes associated with the main phases of the 

model, WaterPhase, SoilPhase and TransportCapacity. The output class applies the scaling factor, 

determines the final erosion rates and generates the output of the model. The model calculates the 

distributed monthly erosion at each month in the same resolution and extent of the input data. The 

files are written in geotiff format and can be viewed in GIS software. 
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Appendix 2: RUN.py 
import numpy as np 

import wa 

import becgis 

import matplotlib.pyplot as plt 

import glob 

import netCDF4 as nc 

from collections import Counter 

import MMF 

 

## Input parameters/filehandles are specified here   

 

outputfh = #file handle where output tif's are saved 

 

Itype= #0=Temperate,1=Tropical,2=Strongly Seasonal 

KEtype= #0=North America east of the Rocky Mountains,1=North-western Europe, 2=Mediterreanean-type,  

                #3=Western Mediterranean, 4=Tropical, 5=Eastern Asia,  

                # 6=Temperate southern hemisphere climates (i.e. Australia) 

 

## Single files 

 

PH = becgis.OpenAsArray('.../Plant_Height.tif') 

SoilMap = becgis.OpenAsArray('.../Soil_map.tif') 

Steepness= becgis.OpenAsArray('.../Steepnes.tif') 

Pfactor = becgis.OpenAsArray('.../Pfactor.tif') 

 

## Multiple files 

 

Runofflist = glob.glob('.../Monthly_Runoff_*.tif') 

LAIlist = glob.glob('.../Monthly_LAI_*.tif') 

NDVIlist = glob.glob('.../Monthly_NDVI_*.tif') 

 

##Files input to WaterPix 

 

NC = nc.Dataset('.../Forcing_input_from_WaterPix.nc') 

Year = 2010 

 

Pall = NC.variables['Precipitation_M'] 

Nall = NC.variables['RainyDays_M'] 

 

list = np.array([t/100 for t in NC.variables['time_yyyymm'][:]]) 

P = Pall[np.where(list==Year)] 

N = Nall[np.where(list==Year)] 

 

geoinfo = becgis.GetGeoInfo(fh=Runofflist[0])  

 

MMF = MMF.output(LAIlist,P,N,Itype,KEtype,Runofflist,NDVIlist,geoinfo, PH, SoilMap, Steepness,Pfactor,outputfh) 
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Appendix 3: MMF.py 
import numpy as np 

import wa 

import becgis 

import matplotlib.pyplot as plt 

import glob 

import netCDF4 as nc 

from collections import Counter 

 

class WaterPhase(): 

        def __init__(self,LAIM,PM,NM,Itype,KEtype,PH,Ilib,KElib): 

             

            m,n = np.shape(PM) 

             

            for i in range (m): 

                for j in range (n): 

                    if PM[i,j]>0 and NM[i,j]<1: 

                        NM[i,j]=1 

             

            self.Cov = self.Cover(LAIM,m,n) 

            self.Int = self.Interception(LAIM,PM,NM,m,n) 

            self.ke = self.KE(PM,Itype,KEtype,Ilib,KElib, PH, m,n) 

             

        def Interception(self,LAIM,PM,NM,m,n): 

     

            A_m = np.zeros([m,n]) 

 

            for i in range(m):  

                for j in range(n): 

                    try: 

                        I=LAIM[i,j] * (1 - (1 + (PM[i,j]/NM[i,j]) * (1 - np.exp(-0.5 * LAIM[i,j])) * (1/LAIM[i,j]))**-1)  * NM[i,j]  

                        A_m[i,j] = (I/PM[i,j]) 

                    except: 

                        A_m[i,j] = np.nan 

            return A_m 

             

        def Cover(self,LAIM,m,n): 

             

            CC= np.zeros([m,n]) 

             

            for i in range(m):  

                for j in range(n):                     

                    try: 

                        CC[i,j] = 1-np.exp(-0.5 * LAIM[i,j]) 

                    except: 

                        CC[i,j] = np.nan 

            return CC 

         

        def KE(self,PM,Itype,KEtype, Ilib, KElib, PH, m,n): 

             

            KE = np.zeros([m,n]) 

            KE_DT = np.zeros([m,n]) 

            KE_LD = np.zeros([m,n]) 

             

            for i in range(m):  

                for j in range(n): 

                    try: 

                        ER= (1-self.Int[i,j])*PM[i,j] 

                        LD = ER*self.Cov[i,j] 

                        DT = ER - LD 

             

                        I = Ilib[Itype] 

                         

                        KE_DT[i,j] = (eval(KElib[KEtype]))*DT 

                        KE_LD[i,j] = LD*((15.8*PH[i,j]**0.5)-5.87) 

                         

                        if KE_LD[i,j] < 0: 

                            KE[i,j] = KE_DT[i,j] 

                        else: 
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                            KE[i,j] = KE_DT[i,j]+KE_LD[i,j] 

                         

                    except: 

                        KE[i,j] = np.nan 

                             

            return KE,KE_DT,KE_LD 

         

class SoilPhase(): 

        def __init__(self, 

                     Soillib, 

                     SoilMap, 

                     Steepness, 

                     RunoffM, 

                     KE, 

                     GC): 

             

            m,n = np.shape(Steepness) 

             

            self.k = self.Soil(Soillib,SoilMap,m,n)[0] 

            self.COH = self.Soil(Soillib,SoilMap,m,n)[1] 

             

            #Calculate detachment by rainfall 

         

            self.F = self.k*KE*10**-3 

             

            #Calculate detachment by runoff 

             

            self.H = (1/(0.5*self.COH))*(RunoffM**1.5)*np.sin(np.deg2rad(Steepness))*(1-GC)*10**-3 

             

            self.Total = self.F+self.H 

         

        def Soil(self,Soillib,SoilMap,m,n): 

             

            k = np.zeros([m,n]) 

            COH = np.zeros([m,n]) 

             

            for i in range(m):  

                for j in range(n): 

                    try: 

                        k[i,j]= Soillib[int(SoilMap[i,j]-1)][0] 

                        COH[i,j]= Soillib[int(SoilMap[i,j]-1)][1] 

                    except: 

                        k[i,j] = np.nan 

                        COH[i,j] = np.nan 

            return k,COH 

 

class TransportCapacity(): 

    def __init__(self, 

                NDVIM, 

                Steepness, 

                RunoffM, 

                Pfactor): 

         

        m,n = np.shape(NDVIM) 

         

        self.Cfactor = self.CFactor(NDVIM,Pfactor,m,n) 

         

        self.Cap = self.Cfactor[1]*(RunoffM**2)*np.sin(np.deg2rad(Steepness))*(10**-3) 

     

    def CFactor (self,NDVIM, Pfactor, m,n): 

         

        C = np.zeros([m,n]) 

        CF = np.zeros([m,n]) 

         

        for i in range(m):  

            for j in range(n): 

                try: 

                    C[i,j]= np.exp(-2*NDVIM[i,j]/(1-NDVIM[i,j])) 

                    CF[i,j]=C[i,j]*Pfactor[i,j] 

                except: 
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                    C[i,j] = np.nan 

                    CF[i,j] = np.nan 

        return C,CF 

 

class output(): 

    def __init__(self,LAIlist,P,N,Itype,KEtype,Runofflist,NDVIlist,geoinfo, PH, SoilMap,Steepness, Pfactor,outputfh): 

         

        l,m,n = np.shape(P) 

         

        Ilib = [10,25,30] #[Temperate,Tropical,Strongly Seasonal] 

         

        KElib = ['11.8+8.73*(np.log10(I))', #North America east of the Rocky Mountains 

                 '8.95+8.44*(np.log10(I))', #North-western Europe 

                 '9.81+11.25*(np.log10(I))', #Mediterreanean-type  

                 '35.9*(1-0.56*np.exp(-0.034*I))', #Western Mediterranean 

                 '29.8-(127.5/I)', #Tropical  

                 '9.81+10.60*(np.log10(I))', #Eastern Asia 

                 '29*(1-0.6*np.exp(-0.04*I))'] #Temperate southern hemisphere climates (i.e. Australia) 

 

        Soillib = ([1.2,2],[0.3,2],[0.7,2],[0.8,3],[1,3],[0.9,3],[0.1,3],[0.7,10],[0.8,9],[0.3,9],[0.5,10],[0.05,12]) 

         

        self.Actualtemp = np.zeros([m,n,12]) 

        self.Actual = np.zeros([m,n,12]) 

        self.Capacitytemp = np.zeros([m,n,12]) 

        self.Capacity = np.zeros([m,n,12]) 

         

         

        for i in range (12): 

            RunoffM = np.abs(becgis.OpenAsArray(Runofflist[i])) 

            #Negative numbers in the runoff raster indicate that those cells possibly have surface runoff from  

            #outside of the current geographic region. As this model is developed for catchmetn application 

            #it is assumed that surface runoff comes from within the geographic region and thus the absolute of the 

            #raster is taken.  

            LAIM = becgis.OpenAsArray(LAIlist[i]) 

            NDVIM = becgis.OpenAsArray(NDVIlist[i]) 

            PM = P[i,:,:] 

            NM = N[i,:,:] 

             

            WP = WaterPhase(LAIM,PM,NM,Itype,KEtype,PH, Ilib, KElib) 

            ke = WP.ke[0] 

            Atemp = WP.Int 

            CC = WP.Cov 

 

            TC = TransportCapacity(NDVIM,Steepness,RunoffM, Pfactor) 

            self.Capacitytemp[:,:,i]=TC.Cap 

            GC = 1-TC.Cfactor[0] 

             

            SP = SoilPhase(Soillib,SoilMap,Steepness,RunoffM,ke,GC) 

            self.Actualtemp[:,:,i] = SP.Total 

         

        ScaleA = ((np.sum(self.Actualtemp,axis=2))**1.5)/(np.sum((self.Actualtemp**1.5),axis=2)) 

              

        self.Actual = self.Actualtemp*(np.repeat(ScaleA[:, :, np.newaxis], 12, axis=2)) 

         

        ScaleC = ((np.sum(self.Capacitytemp,axis=2))**2)/(np.sum((self.Capacitytemp**2),axis=2)) 

        self.Capacity = self.Capacitytemp*(np.repeat(ScaleC[:, :, np.newaxis], 12, axis=2)) 

         

        self.Erosion = np.minimum(self.Actual,self.Capacity) 

         

        for i in range(12): 

             

            becgis.CreateGeoTiff(outputfh+'_'+str(i+1)+'.tif', 

                                self.Erosion[:,:,i], 

                                geoinfo[0], 

                                geoinfo[1], 

                                geoinfo[2], 

                                geoinfo[3], 

                                geoinfo[4], 

                                geoinfo[5])      


