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The following is a poem written by Shi Su when he was sightseeing in the Lushan 

mountain. Shi Su (1037 - 1101) was a famous Chinese poet of the Northern Song 

dynasty. 

 

Original: 

 

题西林壁 

苏轼 

横看成岭侧成峰， 

远近高低各不同。 

不识庐山真面目， 

只缘身在此山中。 

 

Translation: 

 

Written on the Wall of Xilin Temple 

Shi Su 

It is a range viewed from the front and a peak viewed from the side, 

It has different shapes viewed from different positions. 

I cannot tell the true face of Lushan mountain, 

Because I am in this very mountain. 
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Chapter 1 

 

Introduction 

 

 
“The beginning is the most important part of the work.” 

— Plato (ca. 427 BC - 347 BC) 
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1.1 Research background 

As important components of transportation systems, pavements enable us 

to travel comfortably and safely. However, the performance of pavements 

deteriorates over time because of the influence of traffic loading and 

environmental factors, which decreases the driving comfort and safety. In 

order to restore the service performance of pavements, maintenance and 

rehabilitation activities are necessary. The maintenance and rehabilitation 

strategy of existing pavements should be accurate enough to properly allocate 

the annual investment of road agencies (Nobakht et al., 2018). 

The formulation of maintenance and rehabilitation strategies for existing 

pavements is generally based on the surface performance and structural 

performance. The surface performance is usually evaluated by using surface-

based surveys to obtain the surface characteristics of pavements, while the 

structural performance is usually evaluated by conducting Non-Destructive 

Testing (NDT) to investigate the bearing capacity of pavements. The NDT 

measurements can be used to calculate some indices, such as the Surface 

Curvature Index (SCI) and the Base Damage Index (BDI), to detect weak 

pavement sections (Flintsch et al., 2013; Nasimifar et al., 2016). However, to 

estimate the remaining life and design overlays for existing pavements, the 

corresponding structural parameters (e.g. layer moduli, layer thicknesses, and 

so on) should be known, which can be achieved by using a so-called parameter 

identification technique. In general, a complete parameter identification 

technique consists of two essential components (Lee et al., 2017): (1) a 

theoretical model which can simulate the response of the considered structure 

caused by the applied load; (2) an iterative or statistical approach which can 

identify the structural parameters based on the measured response and known 

information. In order to be used in engineering practice, the desired parameter 

identification technique should be both numerically accurate and 

computationally efficient (Roddis et al., 1992; Al-Khoury et al., 2001; Li and 

Wang, 2019). The development of such a NDT-based parameter identification 

technique to be used for pavement structural evaluation is the main focus of 

this study. 
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1.2 State-of-the-art research 

A commonly used parameter identification technique for pavement 

structural evaluation is based on the Falling Weight Deflectometer (FWD) test 

(Reddy et al., 2014; Nobakht et al., 2016; Yang and Deng, 2019). As shown 

in Figure 1.1, the FWD test applies an impact load on a pavement surface by 

a falling mass, which gives rise to waves that propagate in the pavement 

structure (Chatti et al., 2017). The FWD measurements show that the applied 

load and the displacements of different detection points reach their maximum 

values at different times. However, a deflection basin is usually artificially 

generated by only connecting the maximum displacements of different 

detection points in the data analysis process; this deflection basin is further 

analysed by a parameter identification technique developed based on a 

theoretical model for elastic layered systems subjected to static loads to 

identify the structural parameters of pavements (Hossain and Zaniewski, 1991; 

Kim et al., 2013; Kavussi et al., 2017). This simplified parameter identification 

technique is not recommended to be used because it conflicts with the physical 

nature of the impact load problem and consequently gives inaccurate results. 

The time-dependent response caused by an impact load can be well simulated 

by a theoretical model considering wave propagation, and the combination of 

this model with a nonlinear minimisation algorithm is a reliable parameter 

identification technique for the FWD test (Al-Khoury, 2002; Lee, 2014). 

 

 

Figure 1.1 Schematic representation of the FWD test 

Although the FWD test is widely used by many road agencies, it still has 

some limitations because of the stop-and-go testing process (Rada et al., 2016). 

For example, the lanes are required to be closed during the test, which causes 
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traffic delays and has potential safety hazards. Furthermore, this test is not that 

cost-effective because of the requirements of operation time and manpower, 

especially for network-level testing. These limitations of the FWD test have 

encouraged and led to the development of NDT methods that can conduct 

continuous measurements, a typical one of which is the Traffic Speed 

Deflectometer (TSD) test (Hildebrand et al., 2000; Rasmussen et al., 2002; 

Krarup et al., 2006). 

As shown in Figure 1.2, the TSD test can measure the response of a 

pavement surface caused by a wheel loading at normal driving speeds (5 to 80 

km/h), so it is more suitable for network-level pavement structural evaluation. 

Currently, the possible application of the TSD measurements is investigated 

by different researchers. For example, Nasimifar et al. (2016) proposed two 

deflection-based indices DSI200-300 and DSI300-900 which have good 

relationships with the critical pavement response (fatigue and rutting strains) 

caused by TSD loading, and the developed relationships can be used for 

pavement structural evaluation at network level. Maser et al. (2017) integrated 

TSD and Ground-Penetrating Radar (GPR) to conduct pavement structural 

evaluation at network level. Levenberg et al. (2018) studied the methodologies 

which can be used to evaluate the agreement between TSD and FWD 

measurements to validate the effectiveness of the TSD test. Zihan et al. (2018) 

developed a nonlinear regression model to predict the pavement structural 

number based on TSD measurements. 

 

 

Figure 1.2 Schematic representation of the TSD test 

However, the number of studies on the application of TSD measurements 

for identifying structural parameters of pavements was found to be very 

limited. For example, Nasimifar et al. (2017) proposed a technique which can 
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identify the elastic and viscoelastic layer moduli of asphalt pavements from 

TSD measurements via a trial-and-error process; this technique uses a 

software tool called 3D-Move as the computational kernel. Furthermore, Liu 

et al. (2018) developed a parameter identification technique by combining a 

semi-analytical finite element model with the Artificial Neural Network (ANN) 

algorithm; this technique can identify the elastic layer moduli of asphalt 

pavements by analysing corresponding TSD measurements. In addition, Wu 

et al. (2020) formulated a parameter identification technique by combining a 

2.5D finite element model with the Constrained Extended Kalman Filter 

(CEKF) to determine the elastic layer moduli of asphalt pavements by 

analysing the response caused by moving loads. Actually, these proposed 

techniques still lack either accuracy or efficiency to identify elastic and/or 

viscoelastic parameters of asphalt pavements based on TSD measurements, 

which will be addressed in this study. 

1.3 Research problem 

In order to facilitate the application of the TSD test for the structural 

evaluation of asphalt pavements at network level, there is a demand to develop 

a both numerically accurate and computationally efficient parameter 

identification technique to deal with TSD measurements. The existing FWD 

test-based parameter identification techniques are not recommended to be 

used for analysing TSD measurements because these two tests have different 

loading configurations. The desired parameter identification technique can be 

formulated by combining a theoretical model for the TSD test of pavements 

with a proper nonlinear minimisation algorithm. However, this approach is 

being hindered by the following potential problems: (1) the theoretical model 

is normally time consuming and resource intensive, because it should consider 

the dynamic nature of moving load problems, the complex geometric 

configuration of pavements, and the viscoelasticity of asphalt layers; (2) the 

minimisation process generally suffers from the problem of multiple solutions, 

because structures with different parameter combinations may have similar 

response under the same loading conditions. 
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1.4 Research objectives 

This dissertation aims to develop a both accurate and efficient TSD test-

based parameter identification technique to be used for network-level 

structural evaluation of asphalt pavements. In order to do so, the following 

research objectives are pursued: 

(1) Formulate a theoretical model for the TSD test of pavements, which 

should be not only mechanically correct to ensure the accuracy of the 

simulation, but also computationally efficient to ensure the feasibility to be 

used in the parameter identification process; 

(2) Develop a robust and practical parameter identification technique of 

pavements based on the formulated theoretical model for the TSD test. 

1.5 Research outline 

This dissertation consists of six chapters that present all the details about 

a parameter identification technique specifically designed for the TSD test of 

pavements. Chapters 2 and 3 are related to the first research objective, while 

Chapters 4 and 5 are related to the second research objective. The detailed 

content of different chapters is described below. 

In Chapter 2, a theoretical model for elastic layered systems under 

moving loads is formulated based on the Spectral Element Method (SEM), 

which is a both accurate and efficient approach to solve dynamic problems of 

layered systems. The developed elastic theoretical model can be used to 

predict the response of pavements caused by the TSD load if all the pavement 

layers are considered to be elastic or elastic with hysteretic damping. 

In Chapter 3, the theoretical model for elastic layered systems under 

moving loads is modified to a theoretical model for viscoelastic layered 

systems under moving loads by incorporating the complex Young’s modulus 

derived from viscoelastic material models. The developed viscoelastic 

theoretical model can be used to predict the response of asphalt pavements 

caused by the TSD load if the asphalt layer is considered to be viscoelastic and 

other layers are considered to be elastic or elastic with hysteretic damping. 
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In Chapter 4, the elastic theoretical model is combined with different 

minimisation algorithms and the performance of these combinations for 

parameter identification of elastic layered systems is evaluated by processing 

synthetic TSD measurements. After comparison, a minimisation algorithm 

which works best with the elastic theoretical model is selected. In addition, the 

performance of the best combination in processing field TSD measurements 

is also investigated. 

In Chapter 5, the selected minimisation algorithm is combined with the 

viscoelastic theoretical model to identify viscoelastic parameters of asphalt 

pavements. The suitability of different viscoelastic material models for the 

identification of viscoelastic parameters is studied. Additionally, the 

performance of the recommended combination(s) in processing field TSD 

measurements is also included. 

In Chapter 6, conclusions based on the current work are drawn. In 

addition, recommendations which are helpful to further academic research 

and/or engineering application are presented. 
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Chapter 2 

 

Simulation of Elastic Layered Systems 

Under Moving Loads 

 
“Mathematics is the language with which 

God has written the universe.”  

— Galileo Galilei (1564 - 1642) 

 

 

Chapter 1 indicated that there is a demand to develop a parameter identification 

technique to deal with measurements of the Traffic Speed Deflectometer (TSD) test. 

However, the progress towards this purpose is hindered by the lack of a proper 

theoretical model for the TSD test of pavements. A theoretical representation of this 

test is a layered system subjected to moving surface loads. As a first step, Chapter 2 

focuses on the simulation of elastic layered systems under moving loads. 

At first, Section 2.1 introduces the moving coordinate system. Next, Section 2.2 

describes the dynamic response of a half-space caused by a moving surface load and 

Section 2.3 formulates two types of spectral elements which can respectively simulate 

a layer and a half-space. Then, Section 2.4 presents the boundary conditions applied 

by the TSD vehicle and Section 2.5 shows a scheme to obtain the desired solutions. 

Afterwards, Section 2.6 validates the proposed model and Section 2.7 investigates the 

characteristics of the response of layered systems caused by TSD loads. At last, 

Section 2.8 presents the main conclusions of this chapter. 

 

 
 

The contents of this chapter are adapted from: Sun, Z., Kasbergen, C., Skarpas, A., Anupam, K., van 

Dalen, K. N., & Erkens, S. M. J. G. (2019). Dynamic analysis of layered systems under a moving 

harmonic rectangular load based on the spectral element method. International Journal of Solids and 

Structures, 180-181, 45-61.  
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The first step to develop a parameter identification technique for the 

Traffic Speed Deflectometer (TSD) test of pavements is to formulate a 

theoretical model. Theoretically, the TSD test can be regarded as a layered 

system subjected to a moving surface load, the corresponding response can be 

obtained by using either analytical or numerical methods. 

Analytical methods generally give exact solutions to dynamic problems, 

and these methods are usually efficient. For example, Eason (1965) 

investigated the stresses in a semi-infinite elastic solid caused by moving 

surface forces with different loading conditions using integral transforms. 

Vostroukhov and Metrikine (2003) proposed a theoretical model to analyse 

the steady-state dynamic response of a railway track caused by moving trains, 

through which an analytical expression of the steady-state deflection of the 

rails was obtained. However, the analytical solutions are generally only valid 

for specific structural and loading configurations, and these solutions are 

usually difficult to calculate because they often contain complicated integrals 

with singular points. 

Numerical methods, such as the Finite Element Method (FEM) and the 

Boundary Element Method (BEM), are powerful tools for the dynamic 

analysis of solid media with different structural combinations and loading 

conditions. For instance, Zaghloul and White (1993) developed a three-

dimensional dynamic finite element program to analyse the behaviour of 

flexible pavements caused by loads moving at different velocities. Andersen 

and Nielsen (2003) conducted boundary element analysis of the steady-state 

response of an elastic half-space caused by a surface moving load. However, 

numerical methods are usually time and resource intensive, and numerical 

distortions may occur in some cases. 

The limitations of analytical and numerical methods may hinder their 

application in engineering, especially for the dynamic analysis of layered 

systems. Hence, semi-analytical or semi-numerical methods which are 

combinations of the analytical and numerical techniques were developed, such 

as the transfer matrix method or the propagator method (Thomson, 1950; 

Haskell, 1953; Kausel and Roësset, 1981), the lumped mass method or the thin 

layer method (Lysmer, 1970; Tassoulas and Kausel, 1983; Kausel, 1994), the 
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spectral element method (Doyle, 1997; Al-Khoury et al., 2002; Lee, 2009), 

and so on. 

The Spectral Element Method (SEM) is promising for efficient dynamic 

analysis of layered systems because it has the advantages of both spectral 

analysis and finite element method. For the SEM-based dynamic analysis of 

layered systems, one element is sufficient to represent a whole layer/half-

space because of the exact description of mass distribution, which reduces the 

size of the system of dynamic equations and further increases the 

computational efficiency. Moreover, this method discretises the continuous 

integrals into series summations, which is more convenient for numerical 

calculation. The SEM has been successfully used to predict the dynamic 

response of pavements caused by an axisymmetric impact load (Al-Khoury et 

al., 2001; Grenier et al., 2009; You et al., 2018). In addition, the SEM also has 

the potential to predict the dynamic response of pavements caused by a 

moving load (Yan et al., 2018). Hence, in this study, the SEM is used to 

formulate a theoretical model for TSD tests of pavements. 

In this chapter, the detailed mathematical formulation of a SEM-based 

theoretical model for elastic layered systems under moving loads is presented. 

The accuracy of this model is verified both numerically and experimentally. 

The proposed model can be used to predict the response of pavements caused 

by TSD loads if all the pavement layers are considered to be elastic or elastic 

with hysteretic damping, so it is a promising computational kernel for 

parameter identification techniques of TSD tests of pavements. 

2.1 Introduction of moving coordinate system 

As shown in Figure 2.1, in order to deal with the moving load problem, it 

is convenient to introduce both a stationary Cartesian coordinate system 

(OXYZ) and a moving Cartesian coordinate system (oxyz) (Jones et al., 1998; 

Lefeuve-Mesgouez et al., 2000; Metrikine, 2004). The stationary coordinate 

system does not move and its origin is located at the centre of the initial 

loading area. The moving coordinate system follows the load and its origin is 

located at the centre of the moving loading area. 
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Figure 2.1 Schematic representation of coordinate system transformation 

It is assumed that the load moves with a constant velocity which can be 

described by a vector 
T

x y zc c c   c . The stationary coordinate vector is 

notated as  TX Y ZX , and the moving coordinate vector is notated as 

 Tx y zx . In addition, these two coordinate systems are coincident at 

time zero. Then, the relationship between these two coordinate vectors can be 

expressed as follows: 

 t x X c  (2-1) 

in which t is time. Additionally, the partial derivatives in the two coordinate 

systems have the following relationships for nonnegative integer n: 

 
n n

n n

 


 X x
 (2-2) 

 
nn

nt t

   
      

X xc
x

 (2-3) 

where x y zc c c
x y z

   
   
   

c
x

. 

2.2 Response of a half-space under a moving surface load 

As shown in Figure 2.2, a homogeneous, isotropic, and linearly elastic 

half-space is subjected to a surface load which moves along the X-axis with a 
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constant speed c. The dynamic response of the half-space caused by the 

moving load is considered first. 

 

 

Figure 2.2 Schematic representation of a half-space under a moving surface load 

In the stationary coordinate system (OXYZ), the equations of motion for 

the medium can be expressed by the Navier’s equation in the absence of body 

forces: 

  
2

2
0 0 0 2t

    
      


U

U U  (2-4) 

in which 
T

0 X Y Z

         
 is the Del operator, 

2 2 2
2
0 2 2 2X Y Z

  
   

  
 

is the Laplacian operator,    T, X Y Zt U U UU X  is the displacement 

vector,   is the density,   and   are the Lamé constants defined by 

Young’s modulus E  and Poisson’s ratio  . 

An elegant approach to solve the Navier’s equation is using the 

Helmholtz decomposition, which expresses a displacement field in the 

following form: 

 0 0   U Ψ  (2-5) 

where  , t X  is a scalar potential related to the P-wave, and 

   T, X Y Zt    Ψ X  is a vector potential related to the S-wave. It can 

be seen that the three components of the displacement vector are related to 

four other functions, the scalar potential and the three components of the 

vector potential, which indicates that an additional constraint condition is 
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needed (Achenbach, 1999). The additional constraint condition can have 

different forms (Vostroukhov and Metrikine, 2003; Hung and Yang, 2001), 

but the solution is uniquely determined by the governing equations and 

boundary conditions by virtue of the uniqueness theorem. In this study, the 

Gauge condition  0 , 0t  Ψ X  is taken as the additional constraint 

condition. 

In this case, the velocity vector of the load is  T0 0cc . According 

to the relationship between the two coordinate systems, equation (2-4) has the 

following form in the moving coordinate system: 

  
2

2 c
t x

              
u u u  (2-6) 

in which 

T

x y z

   
      

 is the Del operator in the moving coordinate 

system, 
2 2 2

2
2 2 2x y z

  
   

  
 is the Laplacian operator in the moving 

coordinate system, and   T
, x y zt u u u   u x  is the displacement vector in 

the moving coordinate system. In addition, equation (2-5) has the following 

form in the moving coordinate system: 

   u ψ  (2-7) 

where  , t x  and   T
, x y zt      ψ x  are the scalar potential and the 

vector potential in the moving coordinate system, respectively. The Gauge 

condition in the moving coordinate system reads  , 0t ψ x . 

After substituting equation (2-7) into equation (2-6), the following 

equation is obtained by considering the identities of 2     and 

0 ψ , and interchanging the order of operations: 

 
2 2

2 22 c c
t x t x

      
                                    

ψ ψ 0 (2-8) 
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This equation will be satisfied if the terms in the square brackets vanish, which 

results in the following uncoupled wave equations in the moving coordinate 

system: 

 
2

2
2
P

1
0c

c t x
         

 (2-9) 

 
2

2
2
S

1
c

c t x

        
ψ ψ 0  (2-10) 

with  P 2 /c      being the velocity of the P-wave, and S /c    

being the velocity of the S-wave. 

In order to solve equations (2-9) and (2-10), the following Fourier 

transform pair is used: 

      i
, , , , , , x yk x k y t

x yf k k z f x y z t e dxdydt


    

  
     (2-11) 

  
 

   i

3

1
, , , , , ,

2
x yk x k y t

x y x yf x y z t f k k z e dk dk d
 



     

  
     (2-12) 

in which i is the imaginary unit satisfying 2i 1  , xk  is the wavenumber in 

the x-direction, yk  is the wavenumber in the y-direction,   is the angular 

frequency,  , , ,f x y z t  is an arbitrary function in the space-time domain 

related to the moving coordinate system, and  , , ,x yf k k z   is the 

corresponding function in the wavenumber-frequency domain related to the 

moving coordinate system. 

By applying the forward Fourier transform according to equation (2-11), 

equation (2-7) and the Gauge condition have the following forms in the 

wavenumber-frequency domain: 

   u ψ    (2-13) 

 0 ψ   (2-14) 

where 
T

i ix yk k
z

      
  is the corresponding expression of the Del 

operator,   T
, , ,x y x y zk k z u u u    u     is the corresponding expression of 
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the displacement vector,  , , ,x yk k z   is the corresponding expression of the 

scalar potential, and   T
, , ,x y x y zk k z       ψ     is the corresponding 

expression of the vector potential. 

Similarly, equations (2-9) and (2-10) have the following forms in the 

wavenumber-frequency domain: 

 
 2

2
2
P

0xck

c


 


     (2-15) 

 
 2

2
2
S

xck

c

 
  ψ ψ 0    (2-16) 

where 
2

2 2 2
2 x yk k

z


   


  is the corresponding expression of the Laplacian 

operator. The solutions of equations (2-15) and (2-16) can be sought in the 

following forms: 

   Pi, , , zk z
x yk k z Ae    (2-17) 

     S
T i, , , zk z

x yk k z B C D e ψ  (2-18) 

in which A, B, C, D are unknown coefficients to be determined by the 

boundary conditions, Pzk  and Szk  are the wavenumbers in the z-direction of 

the P-wave and S-wave, respectively. It should be highlighted that the signs 

of Pzk  and Szk  should be chosen carefully in accordance with the radiation 

condition for the case of a half-space subjected to a moving surface load. 

By substituting equations (2-17) and (2-18) into equations (2-15) and 

(2-16), the expressions of Pzk  and Szk  are obtained: 

 
 2

2 2 2
P 2

P

x
z x y

ck
k k k

c

 
    (2-19) 

 
 2

2 2 2
S 2

S

x
z x y

ck
k k k

c

 
    (2-20) 

In addition, by combining equations (2-19) and (2-20) with the expressions of 

Pc  and Sc , it is found that the Lamé constants have the following relationships: 
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2 2 2 2

P S

2 2 2
P

2x y z z

x y z

k k k k

k k k
 

  
 

 
 (2-21) 

2.3 Spectral element formulation 

In this study, the dynamic analysis of layered systems is achieved by 

using the Spectral Element Method (SEM). The key feature of the SEM is that 

one spectral element is sufficient to simulate a whole layer/half-space of a 

layered system, so the number of spectral elements needed for simulation 

equals to the total number of layers and half-space. This feature significantly 

decreases the size of the global stiffness matrix, and further reduces the 

computational time. In this section, a layer spectral element and a semi-infinite 

spectral element are formulated to simulate a layer and a half-space, 

respectively. The combinations of these two spectral elements are capable of 

modelling different layered systems. For a specific spectral element, the 

response is determined by its total wave field, which is the superposition of 

wave fields originating from different boundaries (Al-Khoury et al., 2001). 

2.3.1 Layer spectral element 

As shown in Figure 2.3(a), the layer spectral element consists of two 

parallel horizontal rectangular surfaces, which constrain the waves to 

propagate within the element. The element vertically covers the whole 

simulated layer, and it horizontally extends to a certain distance after which 

the response is negligible. In addition, the layer spectral element is physically 

defined by two nodes which are located on the top and bottom surfaces, each 

node has three degrees of freedom. For the layer spectral element of a layer 

with thickness h, the total potentials can be expressed as follows (Al-Khoury 

et al., 2001; van Dalen et al., 2015): 

    PP iie
1 2, , , zz k z hk z

x yk k z A e A e     (2-22) 

  
 

 

 

SS

SS

SS

ii
1 2

iie
1 2

ii
1 2

, , ,

zz

zz

zz

k z hk z

k z hk z
x y

k z hk z

B e B e

k k z C e C e

D e D e









 
 

  
 

  

ψ  (2-23) 
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where the superscript “e” means these quantities correspond to an element, 1A , 

2A , 1B , 2B , 1C , 2C , 1D , and 2D  are the unknown coefficients to be 

determined by boundary conditions. The first terms are the potentials of wave 

fields originating from the top surface, while the second terms are the 

potentials of wave fields reflected from the bottom surface. By substituting 

equation (2-23) into equation (2-14), the following relationships are obtained: 

 1 1
1

S

x y

z

k B k C
D

k


   (2-24) 

 2 2
2

S

x y

z

k B k C
D

k


  (2-25) 

Equations (2-24) and (2-25) are substituted into equation (2-23) first to 

decrease the number of unknown coefficients. Then, equations (2-22) and 

(2-23) are substituted into equation (2-13) to obtain the displacements of this 

element, which can be expressed as follows: 

 e e e u N a   (2-26) 

where   Te e e e, , ,x y x y zk k z u u u    u     is the displacement vector of this 

element,  Te
1 2 1 2 1 2A A B B C Ca  is the unknown coefficient 

vector of the element, and  e , , ,x yk k z N  is a 3 by 6 matrix which has the 

following expression: 

 e e e
1 2i    N N N    (2-27) 
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In the wavenumber-frequency domain, the displacements of the top node 

are obtained by setting 0z  , i.e.  e , ,0,x yk k u  with three components 

being notated as 1
xu , 1

yu , and 1
zu ; the displacements of the bottom node are 

obtained by setting z h , i.e.  e , , ,x yk k h u  with three components being 

notated as 2
xu , 2

yu , and 2
zu . According to equations (2-26) and (2-27), the 

nodal displacements of the layer spectral element can be expressed as follows: 

 e e e
0  u L a   (2-28) 

in which 
Te 1 1 1 2 2 2

0 x y z x y zu u u u u u   u        is the nodal displacement vector 

of the element, and eL  is a wavenumber and frequency dependent matrix 

which has the following expression: 
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In the wavenumber-frequency domain, the strains and displacements of 

the element have the following relationships: 
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 (2-30) 

where e
xx , e

yy , e
zz , e

xy , e
yz , and e

zx  are the six components of strain vector 

 e , , ,x yk k z ε , i.e.   Te e e e e e e, , ,x y xx yy zz xy yz zxk k z          ε       . By 
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substituting equation (2-26) into equation (2-30), the strain vector can be 

expressed as follows: 

 e e e ε B a   (2-31) 

in which  e , , ,x yk k z B  is a 6 by 6 matrix which has the following 

expression: 
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The stress-strain relationship of the element can be expressed as follows in the 

wavenumber-frequency domain: 

 e e e σ D ε   (2-33) 

in which   Te e e e e e e, , ,x y xx yy zz xy yz zxk k z          σ        is the stress 

vector, and eD  is a 6 by 6 matrix which has the following expression: 
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D  

For the layer spectral element, the traction vector of the top node is 

notated as   Te 1 1 1, ,0,x y x y zk k t t t    t    , and the traction vector of the 

bottom node is notated as   Te 2 2 2, , ,x y x y zk k h t t t    t    . According to the 

Cauchy stress principle, the nodal tractions have the following relationships 

with the nodal stresses: 

 1 1 1 1 1 1, ,x zx y yz z zzt t t             (2-34) 

 2 2 2 2 2 2, ,x zx y yz z zzt t t          (2-35) 

in which 1
zx , 1

yz , and 1
zz  are the stresses of the top node, which equal to 

 e , ,0,zx x yk k  ,  e , ,0,yz x yk k  , and  e , ,0,zz x yk k  , respectively; 2
zx , 

2
yz , and 2

zz  are the stresses of the bottom node, which equal to 

 e , , ,zx x yk k h  ,  e , , ,yz x yk k h  , and  e , , ,zz x yk k h  , respectively. 
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By combining equations (2-31), (2-33), (2-34), and (2-35), the nodal 

tractions are obtained: 

 e e e
0 t H a   (2-36) 

where 
Te 1 1 1 2 2 2

0 x y z x y zt t t t t t   t        is the nodal traction vector of the 

element, eH  is a wavenumber and frequency dependent matrix which has the 

following form with considering equation (2-21): 
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H  

By combining equations (2-28) and (2-36), the relationship between the 

nodal traction vector and the nodal displacement vector is obtained, which can 

be expressed as: 

 e e e
0 0 t k u   (2-38) 
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in which   1e e e 
 k H L    can be regarded as the element stiffness matrix, and 

the detailed expressions of its components are shown in Appendix 2.1. 

In addition, by combining equations (2-26) and (2-28), the relationship 

between displacement vector and nodal displacement vector is obtained: 

 e e e
0 u M u   (2-39) 

in which   1e e e 
 M N L    can be regarded as the shape function matrix. By 

combining equations (2-28) and (2-31), the relationship between strain vector 

and nodal displacement vector is obtained: 

   1e e e e
0


  ε B L u    (2-40) 

The relationship between stress vector and nodal displacement vector can also 

be obtained by combining equations (2-33) and (2-40): 

 e e e
0 σ S u   (2-41) 

where   1e e e e 
  S D B L    is a 6 by 6 matrix. 

2.3.2 Semi-infinite spectral element 

As shown in Figure 2.3(b), the semi-infinite spectral element is composed 

of a horizontal rectangular surface. This element is physically defined by a 

node with three degrees of freedom located on the surface. In the semi-infinite 

spectral element, the waves originating from the surface travel in the positive 

z-direction and no reflections occur, which physically means that the energy 

is radiated away. Actually, the semi-infinite spectral element can be regarded 

as a special case of the layer spectral element that only contains the top surface, 

which requires the coefficients 2A , 2B , 2C , and 2D  in equations (2-22) and 

(2-23) to be zero. Accordingly, the displacements of the semi-infinite spectral 

element can be expressed as follows in the wavenumber-frequency domain: 

 e e e u N a   (2-42) 
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where   Te e e e, , ,x y x y zk k z u u u    u     is the displacement vector of the 

element,  Te
1 1 1A B Ca  is the unknown coefficient vector of the element, 

and  e , , ,x yk k z N  is a 3 by 3 matrix which has the following expression: 

 

S SP

S SP

S SP

2 2
Si ii

S S

2 2
i iie S

S S

i ii
P

i

z zz

z zz

z zz

x y y zk z k zk z
x

z z

x yk z k zk z x z
y

z z

k z k zk z
z y x

k k k k
k e e e

k k

k kk k
k e e e

k k

k e k e k e

 

 

 

 
 

 
     
 
   
  

N  (2-43) 

The nodal displacements can be obtained by setting 0z  , i.e. 

 e , ,0,x yk k u  with three components being notated as 1
xu , 1

yu , and 1
zu . 

According to equations (2-42) and (2-43), the nodal displacements can be 

expressed as follows: 

 e e e
0  u L a   (2-44) 

where 
Te 1 1 1

0 x y zu u u   u     is the nodal displacement vector, and eL  is a 3 by 

3 matrix which has the following form: 
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L  (2-45) 

By substituting equation (2-42) into equation (2-30), the strains of the 

semi-infinite spectral element are obtained: 

 e e e ε B a   (2-46) 

where   Te e e e e e e, , ,x y xx yy zz xy yz zxk k z          ε        is the strain vector, 

and  e , , ,x yk k z B  is a 6 by 3 matrix which has the following form: 



Chapter 2 

 

28 

 

 

   

S SP

S SP

S SP

S SP

2 22
Si ii2

S S

2 2 2
S i ii2

S S

i ii2
P S S

e

2 2 2 2 2 2
S Si ii

S S2 2

z zz

z zz

z zz

z zz

x y zx y k z k zk z
x

z z

y x z x yk z k zk z
y

z z

k z k zk z
z y z x z

x x y z y x y zk z k zk z
x y

z z

k k kk k
k e e e

k k

k k k k k
k e e e

k k

k e k k e k k e

k k k k k k k k
k k e e e

k k

 

 

 

 





  

 


   

  



B

S SP

S SP

2 2 2
S i ii

P

2 2 2
Si ii

P

2

2

z zz

z zz

x y z k z k zk z
y z x y

x y zk z k zk z
x z x y

k k k
k k e e k k e

k k k
k k e k k e e

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
 

     

 

The corresponding stress vector can be calculated by equation (2-33). 

Then, by setting 0z   and considering equation (2-34), the nodal tractions are 

obtained: 

 e e e
0 t H a   (2-47) 

where 
Te 1 1 1

0 x y zt t t   t     is the nodal traction vector, and eH  is a 3 by 3 

matrix which has the following form: 
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H  (2-48) 

By combining equations (2-44) and (2-47), the relationship between nodal 

traction vector and nodal displacement vector is obtained: 

 e e e
0 0 t k u   (2-49) 

where the element stiffness matrix   1e e e 
 k H L   , which has the following 

expression: 
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(a) Layer spectral element (b) Semi-infinite spectral element 

Figure 2.3 Schematic representation of spectral elements 

2.4 Boundary conditions 

The considered layered system is subjected to an external surface load 

which is applied in the positive Z-direction. The load is a uniform traction 

applied on constant rectangular areas, and the magnitude of the traction can 

vary over time. In the moving coordinate system, the position of the load is 

fixed. Hence, the applied surface load can be expressed as follows: 

      0, , ,zp x y t h x y p t  (2-50) 

where  , ,zp x y t  is the traction applied in the positive z-direction with 

dimension of force/area,  0 ,h x y  is the spatial distribution function of the 

traction without dimension, and  p t  is the loading history function of the 

traction with dimension of force/area. 
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Figure 2.4 Loading configuration of the TSD vehicle 

The intention of this study is to predict the response of pavements caused 

by the Traffic Speed Deflectometer (TSD). The TSD vehicle has the 

appearance similar to a truck trailer, and it measures the response of points 

along the midline of the right rear wheel pair. The loading configuration of the 

TSD vehicle is shown in Figure 2.4, which can be described by the following 

spatial distribution function: 

      0 1 2,h x y h x h y  (2-51) 

with  1h x  and  2h y  being defined as follows: 

      1 0 1 0 xh x H x x c H x x l      

  0 0 0 0
2

0 0 0 0
2

2 2 2 2

2 2 2 2y y

y y d y y d
h y H y H y

y y d y y d
c H y l H y l

      
          

    
      

          
    

 

where  H   is the Heaviside step function, 02x  is the length of one 

rectangular loading area in x-direction, 0y  is the length of one rectangular 

loading area in y-direction, d  is the distance between a pair of rectangular 

loading areas, xl  is the distance between two loading axles, yl  is the length of 
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the loading axle, 1c  and 2c  are two coefficients related to the distribution of 

the load. Different loading configurations can be simulated by using different 

parameter combinations. In addition, the traction considered in this study has 

harmonically varying magnitude. Hence, the loading history function  p t  

can be expressed as follows: 

   0i
0

tp t p e   (2-52) 

in which 0p  is the amplitude of the traction and 0  is the angular frequency 

of the traction. 

By substituting equation (2-51) into equation (2-50) and applying the 

forward Fourier transform, the transformed traction  , ,z x yp k k   can be 

derived as follows: 

        1 2 ˆ, ,z x y x yp k k h k h k p 
 

  (2-53) 

     i
1 1

xk x
xh k h x e dx




 


 (2-54) 

     i

2 2
yk y

yh k h y e dy



 


 (2-55) 

     iˆ tp p t e dt
 


   (2-56) 

The expressions of  1 xh k


,  2 yh k


, and  p̂   are obtained after integration:  
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                   
  


 

   0 0ˆ 2p p       

where     is the Dirac delta function. 
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2.5 Solution scheme 

According to the SEM, the combination of several layer spectral elements 

on top of a semi-infinite spectral element is capable of simulating a layered 

system. The numbering and assembling of these elements follow the same 

procedure as that in the traditional finite element method (FEM). However, 

the whole assembling process in the SEM is conducted in the wavenumber-

frequency domain. For a specific layered system, which can be simulated by 

a spectral element model with q-1 layer spectral element(s) and one semi-

infinite spectral element, the global system of equations can be expressed as 

follows in the wavenumber-frequency domain: 

      0 0, , , , , ,x y x y x yk k k k k k   T K U    (2-57) 

in which  0 , ,x yk k T  is the global nodal traction vector with dimensions 3q 

by 1,  , ,x yk k K  is the global stiffness matrix with dimensions 3q by 3q, 

and  0 , ,x yk k U  is the global nodal displacement vector with dimensions 3q 

by 1. 

According to the boundary conditions, the global nodal traction vector is 

expressed as follows: 

    0 3, , , ,x y z x yk k p k k T e   (2-58) 

where 3e  is a 3q by 1 unit vector with the third component being 1. By 

combining equations (2-57) and (2-58), the global nodal displacement vector 

can be calculated as follows: 

      0 3, , , , , ,x y z x y x yk k p k k k k   U G e   (2-59) 

in which  , ,x yk k G , the inverse of  , ,x yk k K , can be regarded as the 

transfer function matrix. The corresponding quantity in space-time domain is 

obtained via inverse Fourier transform: 

  
 

   i

0 03

1
, , , ,

2
x yk x k y t

x y x yx y t k k e dk dk d
 



     

  
   U U  (2-60) 
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where  0 , ,x y tU  is a vector with dimensions 3q by 1, it contains the 

displacement fields of all the horizontal planes where nodes are located. 

The inverse Fourier transform can be numerically evaluated by 

discretising integrals into summations. For the specific case of harmonic loads, 

the integral with respect to frequency can be analytically evaluated first by 

using the property of the Dirac delta function. Then, the integrals with respect 

to wavenumbers can be discretised into summations for further evaluation. For 

example, by combining equations (2-53) with equation (2-59), and then 

substituting equation (2-59) into equation (2-60), the vector  0 , ,x y tU  has 

the following expression after integrating with respect to frequency: 

  
 

       0i
i0

0 1 2 0 32, , , ,
2

x y

t
k x k y

x y x y x y

p e
x y t h k h k k k e dk dk






   

 
  U G e

  

  (2-61) 

After discretising the integrals, equation (2-61) becomes: 

          0i
i0

0 1 2 0 3
0 0

, , , ,
4

xm yn

t
k x k y

xm yn xm yn
m n

p e
x y t h k h k k k e

X Y



   U G e
  

  (2-62) 

in which m and n are integers, 0/xmk m X  and 0/ynk n Y  are the 

discretised wavenumbers in the x-direction and y-direction, respectively. 02X  

and 02Y  are the dimensions of a rectangular space window in the x-direction 

and y-direction, respectively. The space window has a centre located at the 

origin of the moving coordinate system, and its dimensions are large enough 

to ensure that the response outside the space window is negligible. 

In order to calculate the response fields of a specific element (a layer or 

the half-space), its nodal displacements are first obtained by the following 

approach: 

 d d
0 0 u P U  (2-63) 

where  d
0 , ,x yk k u  is the nodal displacement vector of the desired element, 

dP  is a matrix which can pick up the nodal displacements of the desired 

element from the global nodal displacement vector. According to equation 
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(2-39), the displacement field of the desired element  d , , ,x yk k z u  can be 

expressed as follows: 

 d d d
0 u M u   (2-64) 

in which  d , , ,x yk k z M  is the shape function matrix of the desired element. 

The corresponding displacement field in space-time domain is calculated via 

inverse Fourier transform: 

      
 

   id d
3

1
, , , , , ,

2
x yk x k y t

x y x yx y z t k k z e dk dk d
 



     

  
   u u  (2-65) 

For the specific case of harmonic loads, by combining equations (2-53), 

(2-59), (2-63), and (2-64), the displacement field of the desired element can 

be expressed as follows in the wavenumber-frequency domain: 

      d r
0 0, , , 2 , , ,x y x yk k z p k k z      u u   (2-66) 

      r d d
1 2 3, , ,x y x yk k z h k h k    u M P G e
    (2-67) 

After substituting equation (2-66) into equation (2-65) and evaluating the 

integral with respect to frequency, the displacement field of the desired 

element in space-time domain becomes: 

  
 

   0i
id r0

02, , , , , ,
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x y

t
k x k y

x y x y

p e
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
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   

 
  u u  (2-68) 

By using the same discretisation process as for equation (2-61), equation 

(2-68) becomes: 

      0i
id r0

0
0 0

, , , , , ,
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xm yn

t
k x k y

xm yn
m n

p e
x y z t k k z e

X Y



   u u  (2-69) 

Similarly, the strain field of the desired element has the following form after 

discretisation: 

      0i
id r0

0
0 0

, , , , , ,
4

xm yn

t
k x k y

xm yn
m n

p e
x y z t k k z e

X Y



   ε ε  (2-70) 

         1r d d d
1 2 3, , ,x y x yk k z h k h k


    ε B L P G e
     (2-71) 

In addition, the stress field of the desired element has the following form after 

discretisation: 
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      0i
id r0

0
0 0

, , , , , ,
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xm yn

t
k x k y

xm yn
m n

p e
x y z t k k z e

X Y



   σ σ  (2-72) 

      r d d
1 2 3, , ,x y x yk k z h k h k    σ S P G e
     (2-73) 

It should be highlighted that all the calculated response fields are steady-

state solutions, so they are varying over time with the same frequency as that 

of the applied load, as shown in equations (2-69), (2-70), and (2-72). For a 

certain response field (displacement field, strain field, or stress field), it can be 

expressed as follows: 

     0i
0, , tt e r x R x  (2-74) 

where  , tr x  is a certain response field,  0,R x  is the corresponding time-

independent quantity which is normally complex-valued. A certain component 

of the response field vector can be expressed as follows for the loading history 

function with different forms: 
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     
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i
0 0 0
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0 0 0
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R e p t p t





 

 

      
    

x
x

x
 (2-75) 

in which the subscript “k” means the k-th component of the corresponding 

vector,  Re   denotes the real part of a complex term, and  Im   denotes the 

imaginary part of a complex term. 

Assuming the loading history function is in cosine form, equation (2-75) 

can be rewritten as follows: 

          0 0 0 0, Re , cos Im , sink k kr t R t R t          x x x  (2-76) 

Equation (2-76) indicates that the response field component equals to the real 

or imaginary part of the corresponding time-independent quantity at a specific 

time. In addition, equation (2-76) can also be written as: 

      0 0 0, , cos ,k k kr t R t      x x x  (2-77) 

where the variation amplitude  0,kR x  and phase angle  0,k x  are 

calculated as follows: 

      2 2
0 0 0, Re , Im ,k k kR R R         x x x  (2-78) 
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 (2-79) 

Equation (2-77) indicates that, in the moving coordinate system, any 

response quantity of a point is harmonically varying with the loading 

frequency, but different points have different variation amplitudes and phase 

angles. Consequently, a periodically varying profile over time is generated. In 

this study, all the results are presented in the moving coordinate system, 

corresponding results in the stationary coordinate system can be obtained 

based on the relationship between these two coordinate systems. Working in 

the moving or stationary coordinate system should give equivalent solutions, 

because the physical nature of the problem is coordinate system independent 

(Louhghalam et al., 2013). 

Although the presented model is formulated for elastic layered systems, 

it can be combined with different damping models to simulate layered systems 

with different types of damping. Note that the damping models should be 

transformed to the moving coordinate system for application. In this chapter, 

the considered elastic layered system is assumed to exhibit the so-called 

hysteretic damping (Sousa and Monismith, 1987), which physically means 

that the energy loss associated with a given motion only depends on the path. 

This type of damping can be numerically simulated by replacing the Young’s 

modulus E  with a complex Young’s modulus   ,xE k   defined in the 

wavenumber-frequency domain related to the moving coordinate system: 

    , 1 2i sgnx xE k E ck        (2-80) 

in which   is the damping ratio and  sgn   is the signum function. In addition, 

the presented model can handle different types of surface moving loads by 

changing the spatial distribution function and the loading history function of 

the applied load. 
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2.6 Model validation 

The accuracy of the presented model is validated in this section. At first, 

this model is implemented in a computer program to calculate the response of 

a layered system by executing the following steps: 

(1) For each wavenumber combination, it calculates all the element 

stiffness matrices and assembles them to the global stiffness matrix; 

(2) It applies the boundary conditions to the global system of equations 

to compute the global nodal displacements; 

(3) It picks up the nodal displacements of the desired element, which are 

further used to calculate the response fields of this element in wavenumber 

domain; 

(4) It computes the corresponding response fields in space domain via 

inverse Fourier transform in discrete form. 

Then, two case studies are conducted to compare the results calculated by 

the presented model with corresponding boundary element solutions given by 

Andersen and Nielsen (2003). These two case studies consider the surface 

deflection of a half-space and a layered system caused by a moving harmonic 

rectangular load, respectively. The amplitudes and phase angles of 

displacements in the z-direction  ,zu tx  for points along the x-axis on the 

surface are chosen for comparison. Note that the loading amplitude used in the 

current study is 106 times that used in the reference literature to make the 

results comparable with realistic pavement response. 

At last, the presented model is validated by comparing simulated results 

with field measurements. A pavement testing facility called LINTRACK (for 

more details see Appendix 2.2) was used to measure the strains of a pavement 

structure caused by a moving load. The maximum longitudinal strains (in the 

moving direction) at the bottom of the first layer of the pavement structure are 

used for comparison. 
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2.6.1 Response of a half-space under a moving harmonic load 

This part considers the dynamic response of a half-space caused by a 

uniformly distributed moving harmonic rectangular surface load. The details 

of the applied load are shown as follows: 

 The speed of the load 0, 50,100, and 150 m/s;c   

 The loading angular frequency 0 80 rad/s;   

 The amplitude of the load 0 1/ 9 MPap   (instead of 1/9 Pa in the 

reference literature); 

 The dimensions of the loading area are 3 m by 3 m, which is simulated by 

setting 1 2 0 00, 0, 0 m, 1.5 m, and 1.5 m;c c d x y      

 The parameters of the space window 0 0 200 m.X Y   

The structural parameters of the half-space are shown in Table 2.1, these 

parameters correspond to some unsaturated sandy soil with moderate stiffness. 

 

Table 2.1 Structural parameters of the half-space 

Layer 
E ξ ν ρ h 

MPa – – kg/m3 m 

1 369 0.05 0.257 1550 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

The amplitudes and phase angles of the displacements in z-direction 

 ,zu tx  for points along the x-axis on the surface of the half-space are 

calculated by the presented SEM-based model. In order to obtain converged 

solutions, 4096×4096 wavenumbers are used, and this holds for all the results 

shown in this study. The simulated results are compared with those given in 

the reference literature (Andersen and Nielsen, 2003), as shown in Figure 2.5. 

The comparison shows that the results calculated by these two methods are 

almost identical for different cases, which validates the accuracy of the 

developed semi-infinite spectral element. In addition, the results also indicate 

that: 
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(1) When the load does not move, the displacement amplitude curve along 

the x-axis is symmetric with respect to x = 0 and the displacement amplitude 

is maximum at x = 0. 

(2) When the load moves, the displacement amplitude curve along the x-

axis is asymmetric with respect to x = 0. The displacement amplitude curve 

decreases more quickly in front of the loading area than behind, and this trend 

is more obvious at higher speed. 

(3) As the speed increases, the position of the peak of the displacement 

amplitude curve shifts to the left, and the maximum value slightly increases. 

(4) When the speed of the load is zero, the phase angle curve along the x-

axis is symmetric with respect to x = 0. However, with increasing speed, the 

phase angles of zu  for points before the loading area change more quickly, 

which makes the phase angle curve denser on this side. 

 

 

 
(a) c = 0 m/s
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(b) c = 50 m/s

 
(c) c = 100 m/s

 
(d) c = 150 m/s

Figure 2.5 Comparison of uz for points along the x-axis on the half-space surface 

calculated by different methods 
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2.6.2 Response of a layered system under a moving harmonic load 

This part considers the dynamic response of a layered system caused by 

a uniformly distributed moving harmonic rectangular surface load. The details 

of the applied load are shown as follows: 

 The speed of the load 0, 25, 50, and 75 m/s;c   

 The loading angular frequency 0 40 rad/s;   

 The amplitude of the load 0 1/ 9 MPap   (instead of 1/9 Pa in the 

reference literature); 

 The dimensions of the loading area are 3 m by 3 m, which is simulated by 

setting  1 2 0 00, 0, 0 m, 1.5 m, and 1.5 m;c c d x y      

 The parameters of the space window 0 0 200 m.X Y   

The layered system is composed of a horizontal layer with a certain thickness 

and a half-space. The structural parameters of the layered system are shown in 

Table 2.2. The parameters of this layered system correspond to two kinds of 

soil, and the soil in the layer is softer than that in the half-space. 

 

Table 2.2 Structural parameters of the layered system 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

1 100 0.05 0.40 1500 2.0 

2 300 0.05 0.45 2000 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

The displacements in the z-direction  ,zu tx  for points along the x-axis 

on the surface of the layered system are computed by the presented SEM-

based model, and the corresponding amplitudes and phase angles are 

compared with those given in the reference literature (Andersen and Nielsen, 

2003), as shown in Figure 2.6. The comparison indicates that the results 

calculated by different methods have good agreement for different cases, 

which validates the accuracy of the developed layer spectral element and its 
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combination with the semi-infinite spectral element. In addition, the results 

also indicate that: 

(1) The displacement amplitude curves along the x-axis have similar 

changing trends to the case of the half-space with the increase of the speed of 

the load. However, the curves have some fluctuations for the layered system, 

which might be attributed to the relatively complicated wave field in the layer 

spectral element. The half-space has higher modulus than the layer above, 

which makes the contribution of the reflected waves pronounced. 

(2) The phase angle curves along the x-axis are more complicated, but the 

changing trends are similar to the case of the half-space with the increase of 

the speed. 

 

 
(a) c = 0 m/s

 
(b) c = 25 m/s
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(c) c = 50 m/s

 
(d) c = 75 m/s

Figure 2.6 Comparison of uz for points along the x-axis on the layered system 

surface calculated by different methods 

The results of the half-space and the layered system indicate that the 

displacement amplitude curve decreases more quickly in front of the loading 

area, which is more obvious at higher speeds. The reason of this phenomenon 

is the uneven wave field distribution in the vicinity of the loading area caused 

by the Doppler effect (Lefeuve-Mesgouez et al., 2002). The wavelengths of 

the waves in front of the loading area are shorter, while the wavelengths of the 

waves behind the loading area are longer. Consequently, the moving load has 

a smaller influencing zone in front of the loading area than behind. 

 

 

 



Chapter 2 

 

44 

2.6.3 Comparison with field measurements 

A facility called LINTRACK was used to measure the strains of an 

asphalt pavement structure which was designed for heavily loaded highways. 

The first layer of the asphalt pavement structure is porous asphalt concrete 

(PAC), the second layer is newly applied stone asphalt concrete (New STAC), 

the third layer is old STAC, the fourth layer is asphalt granulate cement 

(AGRAC), and the foundation is a thick and well-compacted sand subgrade. 

The parameters of the tested pavement structure are shown in Table 2.3. Strain 

gauges were installed at the bottom of the first layer in the longitudinal 

direction (direction of movement). During the measurements, the LINTRACK 

belt moved straight over the built-in strain gauges at a constant speed of 2.5 

m/s. A constant force was applied on the tire, while the tire pressure was 

maintained to be 900 kPa. 

 

Table 2.3 Parameters of the tested pavement structure 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

PAC 5525 0.05 0.25 2090 0.05 

New STAC 7225 0.05 0.25 2395 0.06 

STAC 8500 0.05 0.25 2395 0.17 

AGRAC 5400 0.1 0.25 2141 0.25 

Subgrade 126 0.2 0.4 1733 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

The maximum longitudinal strains at the bottom of the first layer of the 

pavement structure calculated by the presented model are compared with those 

measured by the strain gauges. The comparison is shown in Table 2.4, which 

indicates a good match between the simulated and measured data, and thus 

further proves the accuracy of the presented model. 
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Table 2.4 Comparison between the simulated and measured data 

Cases 
Forces Maximum longitudinal strains (10-6) 

kN Simulated Measured 

1 20 19 19 

2 25 21 21 

3 30 22 22 

4 35 24 23 

5 40 25 24 

6 45 27 26 

 

2.7 Response characteristics of layered systems under TSD 

loads 

In this section, the characteristics of the response of a layered system 

caused by TSD loads are studied. The structural parameters of the considered 

layered system are shown in Table 2.5. 

 

Table 2.5 Structural parameters of the layered system 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

1 3000 0.05 0.3 2400 0.1 

2 500 0.05 0.3 2000 0.3 

3 60 0.05 0.3 1600 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

2.7.1 Response caused by the right rear wheel pair 

The response caused by the whole TSD loading is the superposition of 

the response caused by different wheel pairs. Hence, it is meaningful to first 

investigate the characteristics of the response caused by one wheel pair (e.g. 

the right rear wheel pair). According to the actual loading conditions, the load 
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applied by the right rear wheel pair of the TSD vehicle is represented by using 

the following parameters: 

 The speed of the load  13.9 m/s 50 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa ;p   

 The parameters of the loading area 1 20, 0, 0.15 m,c c d    

0 00.06316 m, and 0.27432 m;x y   

 The parameters of the space window 0 0 200 m.X Y   

 

The rear axle of the TSD vehicle is loaded with 10 tonnes. With the 

parameter combination shown above, the total force 0F  used in the simulation 

is about 49 kN, which is comparable to the force applied by the right rear 

wheel pair of the TSD vehicle. For the layered system with the specified 

structural and loading configuration, the vertical deflection curve and 

corresponding slope curve along the x-axis observed on the surface are shown 

in Figure 2.7. These results are compared with those of a purely elastic layered 

system, which has the same structural parameters except that all the damping 

ratios are zero. The results indicate that the vertical deflection curve of the 

purely elastic layered system is totally symmetric and the maximum deflection 

appears at x = 0. However, for the elastic layered system with hysteretic 

damping, the vertical deflection curve is asymmetric and the maximum 

deflection appears slightly behind x = 0. Compared with the case of the purely 

elastic layered system, the maximum deflection of the elastic layered system 

with hysteretic damping is slightly smaller; the vertical deflection curve 

increases more slowly behind the loading area and decreases more quickly in 

front of the loading area with increasing x, which can also be found from the 

slope curves. 
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(a) Vertical deflection curve (b) Slope curve of vertical deflection 

Figure 2.7 Comparison between the response of different elastic layered systems 

caused by the right rear wheel pair 

 

To have an insight into the surface deflection basin caused by the right 

rear wheel pair, the contour curves of surface vertical deflection for both the 

elastic layered systems without and with damping are obtained, as shown in 

Figure 2.8. The results indicate that the contour curves of surface vertical 

deflection for the purely elastic layered system are symmetric with respect to 

both y = 0 and x = 0. Hence, the surface deflection basin of the purely elastic 

layered system decreases at the same rate in front of and behind the load. 

However, for the elastic layered system with hysteretic damping, the contour 

curves of surface vertical deflection are only symmetric with respect to y = 0, 

while they are asymmetric with respect to x = 0. Specifically, the surface 

deflection basin of the elastic layered system with hysteretic damping 

decreases more quickly in front of the load than behind the load. 
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(a) Without damping (b) With damping 

Figure 2.8 Contour curves of surface vertical deflection of different elastic layered 

systems caused by the right rear wheel pair 

2.7.2 Response caused by the whole TSD loading 

In the TSD test, the response caused by a wheel pair could be influenced 

by other wheel pairs. Hence, the characteristics of the response caused by the 

whole TSD loading are investigated in this part. According to the actual 

loading conditions, the following parameters are used to represent the whole 

TSD loading: 

 The speed of the load  13.9 m/s 50 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa ;p   

 The parameters of the loading area 1 20.6, 1.0, 8.15 m,xc c l    

0 01.82 m, 0.15 m, 0.06316 m, and 0.27432 m;yl d x y     

 The parameters of the space window 0 0 200 m.X Y   

 

The front and rear axles of the TSD vehicle are loaded with 6 tonnes and 

10 tonnes, respectively. With the parameter combination shown above, the 

forces applied on the front and rear axles of the TSD vehicle are respectively 

58.8 kN and 98 kN, which is comparable to the situation in practice. For the 

considered layered system subjected to the specified loading conditions, the 

vertical deflection curve and corresponding slope curve along the x-axis 
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observed on the surface are shown in Figure 2.9. These results are also 

compared with those of the purely elastic layered system. 

The results show that, for the purely elastic layered system, the vertical 

deflection curve is not symmetric anymore because of the influence of the 

wheel pairs on the front axle; specifically, the vertical deflection of a point in 

front of the coordinate origin is larger than that of its symmetry point, and the 

maximum deflection appears almost at the coordinate origin. For the elastic 

layered system with hysteretic damping, the vertical deflection curve is still 

asymmetric, and the maximum deflection appears slightly behind the 

coordinate origin; specifically, in the vicinity of the right rear wheel pair, the 

vertical deflection of a point in front of the coordinate origin is smaller than 

that of its symmetry point. In addition, compared with the case of the purely 

elastic layered system, the vertical deflection curve of the elastic layered 

system with hysteretic damping increases more slowly behind the loading area 

and decreases more quickly in front of the loading area with increasing x in 

the vicinity of the right rear wheel pair. 

 

 
(a) Vertical deflection curve (b) Slope curve of vertical deflection 

Figure 2.9 Comparison between the response of different elastic layered systems 

caused by the whole TSD loading 

 

To have an insight into the surface deflection basin caused by the whole 

TSD loading, the contour curves of surface vertical deflection for both the 

elastic layered systems without and with damping are obtained, as shown in 

Figure 2.10. The results indicate that the response of the points around the 
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right rear wheel pair is significantly affected by the other wheel pair on the 

same axle, while it is slightly affected by the wheel pairs on the front axle. In 

addition, compared with the case of the purely elastic layered system, the TSD 

loading has a longer influence distance behind the vehicle and a shorter 

influence distance in front of the vehicle for the case of the elastic layered 

system with hysteretic damping. 

 

 
(a) Without damping (b) With damping 

Figure 2.10 Contour curves of surface vertical deflection of different elastic layered 

systems caused by the whole TSD loading 

 

2.8 Conclusions 

In this chapter, a theoretical model which can predict the response of 

elastic layered systems under moving loads is developed based on the Spectral 

Element Method (SEM). The accuracy of this model is validated by comparing 

with other modelled and measured results. The formulated theoretical model 

can be used for the simulation of Traffic Speed Deflectometer (TSD) tests of 

pavements if all the pavement layers are considered to be elastic or elastic with 

hysteretic damping. Based on this model, the response characteristics of 

layered systems caused by TSD loads are investigated. The results show that, 

when considering the response only caused by the right rear wheel pair of the 

TSD vehicle, the vertical deflection curve of an elastic layered system with 

hysteretic damping is asymmetric and the maximum deflection appears 
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slightly behind the centre of the loading area. In addition, when considering 

the response caused by the whole TSD loading, it is found that the response at 

the points around the right rear wheel pair is significantly affected by the other 

wheel pair on the same axle, while it is slightly affected by the wheel pairs on 

the front axle. 
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Appendix 2.1 

The element stiffness matrix ek  of the layer spectral element has the 

following expression: 
e e e e e e
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Appendix 2.2 

As shown in Figure A1, LINTRACK is a pavement tester consisting of a 

free-rolling wheel which can move forward and backward with a guidance 

system. The force applied on the wheel can be varied between 15 and 100 kN 

and the speed of movement can be changed between 0 and 20 km/h. A fully 

automatic electronic control system makes it possible to run LINTRACK 

continuously and collect data automatically. Various measuring instruments 

(e.g. displacement, stress, or strain gauges) can be built into tested pavement 

sections to collect necessary response information. 

 

 

Figure A1 LINTRACK device with wide base tire 

 



 

 

 

Chapter 3 

 

Simulation of Viscoelastic Layered  

Systems Under Moving Loads 

 
“If you cannot explain it simply, you do not understand it 

well enough.” 

— Albert Einstein (1879 - 1955) 

 

 

The detailed formulation of a theoretical model for elastic layered systems under 

moving loads has been presented in Chapter 2. However, this model does not consider 

the viscous damping in asphalt layers, so it cannot accurately simulate Traffic Speed 

Deflectometer (TSD) tests of asphalt pavements. In order to solve this problem, 

Chapter 3 presents the simulation of viscoelastic layered systems under moving loads. 

At first, the spectral elements for viscoelastic layered systems are formulated in 

Section 3.1. Next, the damping of viscoelastic materials is simulated in Section 3.2. 

Then, the proposed model is validated in Section 3.3. Afterwards, the response 

characteristics of asphalt pavements under TSD loads are investigated in Section 3.4. 

At last, the main conclusions of this chapter are presented in Section 3.5. 

 

 

 

 

 

 
 

The contents of this chapter are adapted from: Sun, Z., Kasbergen, C., Skarpas, A., van Dalen, K. N., 

Anupam, K., & Erkens, S. M. J. G. (2022). A nonlinear spectral element model for the simulation of 

traffic speed deflectometer tests of asphalt pavements. International Journal of Pavement Engineering, 

23(4), 1186-1197.  
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The surface layer of asphalt pavements exhibits viscoelastic behaviour, 

which has influence on the measurements of the Traffic Speed Deflectometer 

(TSD) test. In order to accurately consider this effect, it is necessary to 

formulate a theoretical model for viscoelastic layered systems under moving 

loads. Currently, some models which can predict the dynamic response of 

asphalt pavements caused by moving loads have been developed by different 

researchers. For example, Siddharthan et al. (1998) formulated a pavement 

model called 3D-Move by using a continuum-based finite-layer approach. 

Chabot et al. (2010) proposed a pavement model called ViscoRoute 2.0 by 

using a semi-analytical method. Wu et al. (2020) developed a pavement model 

by using the 2.5D finite element method. Mabrouk et al. (2021) proposed a 

pavement model by using 3D finite element method. However, efforts are still 

needed to find a more suitable model for the TSD test of asphalt pavements to 

be used as a computational kernel for the purpose of parameter identification. 

Hence, with considering the advantages of the Spectral Element Method 

(SEM), this chapter aims to develop a promising SEM-based theoretical model 

to simulate viscoelastic layered systems under moving loads. 

3.1 Spectral element formulation for viscoelastic layered 

systems 

For a homogeneous, isotropic, and linearly viscoelastic material, the 

equations of motion in the frequency domain related to the stationary 

coordinate system can be expressed as follows in the absence of body forces 

(Al-Khoury et al., 2002): 

           2 2
0 0 0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ, , ,                   U X U X U X 0 (3-1) 

where the “hat” means these quantities are frequency domain representations, 
T

0 X Y Z

         
 is the Del operator, 

2 2 2
2
0 2 2 2X Y Z

  
   

  
 is the 

Laplacian operator,  0̂   and  0̂   are the complex Lamé constants,   is 

the density, and  ˆ ,U X  is the displacement vector. 
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In order to solve equation (3-1), the Helmholtz decomposition of the 

displacement vector is used: 

      0 0
ˆˆ ˆ, , ,      U X X Ψ X  (3-2) 

in which  ˆ , X  is a scalar potential related to the P-wave, while  ˆ ,Ψ X  

is a vector potential related to the S-wave and satisfies the Gauge condition 

 0
ˆ , 0  Ψ X . After substituting equation (3-2) into equation (3-1), the 

following equation can be obtained by using the identities 

   2
0 0 0

ˆ ˆ, ,      X X  and   0 0
ˆ , 0   Ψ X , and exchanging the 

order of operations: 

      2 2 2 2
0 0 0 0 0 0 0

ˆ ˆ ˆˆ ˆˆ ˆ2                       Ψ Ψ 0  (3-3) 

Equation (3-3) will be satisfied if the following equations hold: 

        2 2
0 0 0

ˆ ˆ ˆˆ2 , , 0              X X  (3-4) 

      2 2
0 0

ˆ ˆˆ , ,      Ψ X Ψ X 0  (3-5) 

According to the relationships between the two coordinate systems, for the 

transformation from the frequency domain related to the stationary coordinate 

system to the wavenumber-frequency domain related to the moving coordinate 

system, the following replacements need to be introduced in the terms related 

to partial derivatives: 

 i , i ,x yk k
X Y Z z

   
    

   
 (3-6) 

 xck    (3-7) 

Hence, equations (3-4) and (3-5) can be written as follows in the wavenumber-

frequency domain related to the moving coordinate system: 

         22, 2 , , , , , , , 0x x x y x x yk k k k z ck k k z               
   (3-8) 

        22, , , , , , ,x x y x x yk k k z ck k k z        ψ ψ 0    (3-9) 

where 
2

2 2 2
2 x yk k

z


   


  is the corresponding quantity of the Laplacian 

operator,  ,xk   and  ,xk   are  the corresponding quantities of the 
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complex Lamé constants,  , , ,x yk k z   and  , , ,x yk k z ψ  are respectively 

the corresponding quantities of the scalar and vector potentials. Similar to the 

case of elastic layered systems, the solutions of equations (3-8) and (3-9) can 

be sought in the following forms: 

   Pi, , , zk z
x yk k z Ae    (3-10) 

     S
T i, , , zk z

x yk k z B C D e ψ  (3-11) 

in which A, B, C, D are unknown coefficients to be determined by the 

boundary conditions, Pzk  and Szk  are the wavenumbers in the z-direction of 

the P-wave and S-wave, respectively. The signs of Pzk  and Szk  should also be 

chosen carefully in accordance with the radiation condition for the case of a 

half-space subjected to a moving surface load. 

By substituting equations (3-10) and (3-11) into equations (3-8) and (3-9), 

the expressions of Pzk  and Szk  are obtained: 

 
 

 

2

2 2 2
P 2

P ,
x

z x y
x

ck
k k k

c k





  


 (3-12) 

 
 

 

2

2 2 2
S 2

S ,
x

z x y
x

ck
k k k

c k





  


 (3-13) 

with      P , , 2 , /x x xc k k k        
   and     S , , /x xc k k     , 

which are related to the phase velocities of the P-wave and S-wave, 

respectively. In addition, by combining equations (3-12) and (3-13) with the 

definitions of  P ,xc k   and   S ,xc k  , the complex Lamé constants can be 

found to have the following relationship in the wavenumber-frequency 

domain: 

    
2 2 2 2

P S

2 2 2
P

2
, ,x y z z

x x
x y z

k k k k
k k

k k k
   

  
 

 
   (3-14) 

Then, by following the same procedure as that for elastic layered systems 

presented in Chapter 2, a layer spectral element and a semi-infinite spectral 

element are developed for viscoelastic layered systems based on the Spectral 

Element Method (SEM). The detailed formulation of these two spectral 
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elements for viscoelastic layered systems is omitted because of the similarity 

to that for elastic layered systems. These two spectral elements can 

respectively simulate a layer and a half-space, and combinations of them are 

able to simulate different viscoelastic layered systems. 

3.2 Simulation of material damping 

For a linearly viscoelastic material, its frequency/temperature dependent 

behaviour can be numerically simulated by different viscoelastic material 

models. A well-developed viscoelastic material model is the so-called 2S2P1D 

model (Olard and Di Benedetto, 2003), which consists of 2 spring elements, 2 

parabolic elements, and 1 dashpot element. The combination and 

characteristic constants of these elements are shown in Figure 3.1. Physically, 

E0 is called the static modulus because it corresponds to the complex Young’s 

modulus when loading angular frequency equals zero (E0 can be set to zero 

for binders), E∞ is called the glassy modulus because it corresponds to the 

complex Young’s modulus when loading angular frequency equals infinity. 

 

 

Figure 3.1 Schematic representation of the 2S2P1D model 

The expression of the complex Young’s modulus of the 2S2P1D model 

in the frequency domain related to the stationary coordinate system has been 

presented in the literature by Olard and Di Benedetto (2003), and the 

expressions of the absolute value and phase angle of this complex Young’s 

modulus are shown in Appendix 3.1. With considering equation (3-7), the 

complex Young’s modulus of the 2S2P1D model has the following form in 

the wavenumber-frequency domain related to the moving coordinate system: 
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 
     

0
0 1,

1 i i ip px k h

x x x

E E
E k E

ck ck ck


      


  


 

               



  (3-15) 

where  ,xE k   is the complex Young’s modulus, pk  and ph  are 

dimensionless exponents of the two parabolic elements with relationship 

0 1p pk h   ,   is a positive dimensionless constant,   is the characteristic 

time that depends only on temperature, and   is a dimensionless constant 

which is related to the viscosity constant   of the dashpot element via 

 0E E    . 

For viscoelastic materials, the Poisson’s ratio could also be 

frequency/temperature dependent (Graziani et al., 2014). However, assuming 

a constant Poisson’s ratio still simulates the viscoelastic behaviour reasonably 

well, and it simplifies the simulation significantly. Therefore, the Poisson’s 

ratio of viscoelastic materials is assumed to be constant. Consequently, 

analogous to the relationships of elastic materials, the complex Lamé 

constants of viscoelastic materials can be expressed as follows in the 

wavenumber-frequency domain: 

    
  

,
,

1 1 2
x

x

E k
k

 
 

 


 


  (3-16) 

    
 

,
,

2 1
x

x

E k
k


 







  (3-17) 

in which   is the Poisson’s ratio.  

3.3 Model validation 

In this section, the performance of the proposed model is validated by 

conducting a case study, which considers the response of a layered system 

caused by the right rear wheel pair of the TSD vehicle. The loading 

configuration of the TSD vehicle shown in Figure 2.4 and described by 

equation (2-51) is consistently used in all studies in this dissertation. The 
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following parameters are used to represent the load applied by the right rear 

wheel pair: 

 The speed of the load  13.9 m/s 50 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa;p   

 The parameters of the loading area 1 20, 0, 0.15 m,c c d    

0 00.06316 m, and 0.27432 m;x y   

 The parameters of the space window 0 0 200 m.X Y   

In addition, the considered layered system consists of three layers, the first 

layer is viscoelastic and other layers are purely elastic. The detailed structural 

parameters of the layered system are shown in Table 3.1. 

 

Table 3.1 Structural parameters of the layered system 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

1 – – 0.3 2400 0.1 

2 500 0.0 0.3 2000 0.3 

3 60 0.0 0.3 1600 5.0 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

The complex Young’s modulus of the first layer is simulated by the 

2S2P1D model, which has the following parameters to represent an asphalt 

mixture labelled as “50/70 mix” in the literature by Olard and Di Benedetto 

(2003):  0 250 MPaE  , 45400 MPaE  , 0.175pk  , 0.55ph  , 2.0  , 

320  , and 43.855 10 s    (at 25 degrees Celsius). With this parameter 

combination, the absolute value and phase angle of the complex Young’s 

modulus in the stationary coordinate system versus frequency are obtained, as 

shown in Figure 3.2. 
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(a) Absolute value (b) Phase angle 

Figure 3.2 Simulated complex Young’s modulus versus frequency 

In order to validate the performance of the presented Spectral Element 

Method-based (SEM-based) model, the response of the layered system 

calculated by this model is compared with that calculated by a Finite Element 

Method-based (FEM-based) model developed by the software CAPA-3D 

(Scarpas, 1993). The surface vertical deflection curves calculated by the two 

models are shown in Figure 3.3, which shows that the results calculated by 

different models have good agreement. The relative error of the maximum 

deflection is only 6.8%, which is acceptable considering different 

methodologies used in the two models. 

 

 

Figure 3.3 Comparison of vertical deflection curves calculated by different models 

In addition, the computational requirements for different models are 

summarised in Table 3.2. The comparison indicates that the SEM-based model 
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needs much less time and resource than the FEM-based model while giving 

relatively similar results. Hence, with considering the relatively high 

computational efficiency, the SEM-based model has the potential to be used 

as a computational kernel in parameter identification techniques based on TSD 

measurements. 

Table 3.2 Computational requirements for different models 

Models 
Number of 

elements 

Computational 

time 

Number of 

processors 

Type of 

processors 

FEM-based 91800 4 h 32 
Intel Xeon E5-

2620 @ 2.40 GHz 

SEM-based 3 2 min 8 
Intel i7-7700HQ 

@ 2.80 GHz 

 

3.4 Response characteristics of asphalt pavements under TSD 

loads 

In this section, the characteristics of the response of an asphalt pavement 

caused by TSD loads are investigated. The considered pavement structure 

consists of asphalt layer, base layer, and subgrade. The asphalt layer is 

viscoelastic, while the base layer and subgrade are elastic with hysteretic 

damping. The 2S2P1D model with the same parameters as those shown in 

Section 3.3 is used to simulate the asphalt layer, and other structural 

parameters are shown in Table 3.3. 

Table 3.3 Structural parameters of the asphalt pavement 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

Asphalt – – 0.3 2400 0.1 

Base 500 0.05 0.3 2000 0.3 

Subgrade 60 0.05 0.3 1600 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 



Chapter 3 

 

68 

3.4.1 Response caused by the right rear wheel pair 

In this part, the characteristics of the response caused by the right rear 

wheel pair of the TSD vehicle are investigated. The load applied by the right 

rear wheel pair is represented by using the same parameters as those shown in 

Section 3.3. For the asphalt pavement with the specified loading and structural 

parameters, the vertical deflection curve and corresponding slope curve along 

the x-axis observed on the pavement surface are obtained, as shown in Figure 

3.4. The response of the viscoelastic layered system is compared with that of 

a purely elastic layered system, in which the Young’s modulus of the asphalt 

layer is 3000 MPa and all the damping ratios are zero. 

 
 

 
(a) Vertical deflection curve (b) Slope curve of vertical deflection 

Figure 3.4 Comparison between the response of different layered systems caused by 

the right rear wheel pair 

The results indicate that the vertical deflection curve of the elastic layered 

system is totally symmetric and the maximum deflection appears in the centre 

of the loading area. However, for the viscoelastic layered system, the vertical 

deflection curve is asymmetric and the maximum deflection appears slightly 

behind the centre of the loading area. Compared with the case of the elastic 

layered system, the vertical deflection curve of the viscoelastic layered system 

increases more slowly behind the loading area and decreases more quickly in 

front of the loading area with increasing x, which is also obvious from the 

slope curves. These conclusions are consistent with those shown in the 

literature by Nielsen (2019). 
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To have an insight into the surface deflection basin caused by the right 

rear wheel pair, the contour curves of surface vertical deflection for both the 

elastic and viscoelastic layered systems are obtained, as shown in Figure 3.5. 

The results indicate that the contour curves of surface vertical deflection for 

the elastic layered system are symmetric with respect to both y = 0 and x = 0. 

Hence, the surface deflection basin of the elastic layered system decreases at 

the same rate in front of and behind the load. However, for the viscoelastic 

layered system, the contour curves of surface vertical deflection are only 

symmetric with respect to y = 0, while they are asymmetric with respect to x 

= 0. Specifically, the surface deflection basin of the viscoelastic layered 

system decreases more quickly in front of the load than behind the load. It can 

be found that the effect of viscous damping on the response of layered systems 

caused by moving loads is similar to that of hysteretic damping. 

 

 
(a) Elastic (b) Viscoelastic 

Figure 3.5 Contour curves of surface vertical deflection of different layered systems 

caused by the right rear wheel pair 

3.4.2 Response caused by the whole TSD loading 

In this part, the characteristics of the response caused by the whole TSD 

loading are studied. The whole loading of the TSD vehicle is represented by 

using the following parameters: 

 The speed of the load  13.9 m/s 50 km/h ;c   

 The loading angular frequency 0 0 rad/s;   
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 The amplitude of the load 0 707 kPa;p   

 The parameters of the loading area 1 20.6, 1.0, 8.15 m,xc c l    

0 01.82 m, 0.15 m, 0.06316 m, and 0.27432 m;yl d x y     

 The parameters of the space window 0 0 200 m.X Y   

For the considered asphalt pavement subjected to the specified loading 

conditions, the vertical deflection curve and corresponding slope curve along 

the x-axis observed on the pavement surface are obtained, as shown in Figure 

3.6. The response of the viscoelastic layered system is also compared with that 

of the purely elastic layered system, in which the Young’s modulus of the 

asphalt layer is 3000 MPa and all the damping ratios are zero. 

 

 
(a) Vertical deflection curve (b) Slope curve of vertical deflection 

Figure 3.6 Comparison between the response of different layered systems caused by 

the whole TSD loading 

The results show that, for the elastic layered system, the vertical 

deflection curve is not symmetric anymore because of the influence of the 

wheel pairs on the front axle; specifically, the vertical deflection of a point 

before the coordinate origin is larger than that of its symmetry point, and the 

maximum deflection appears almost at the coordinate origin. For the 

viscoelastic layered system, the vertical deflection curve is still asymmetric, 

and the maximum deflection appears slightly behind the coordinate origin; 

specifically, in the vicinity of the right rear wheel pair, the vertical deflection 

of a point before the coordinate origin is smaller than that of its symmetry 

point. In addition, compared with the case of the elastic layered system, the 
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vertical deflection curve of the viscoelastic layered system increases more 

slowly behind the loading area and decreases more quickly in front of the 

loading area with increasing x in the vicinity of the right rear wheel pair. 

To have an insight into the surface deflection basin caused by the whole 

TSD loading, the contour curves of surface vertical deflection for both the 

elastic and viscoelastic layered systems are obtained, as shown in Figure 3.7. 

The results indicate that the response of the points around the right rear wheel 

pair is significantly affected by the other wheel pair on the same axle, while it 

is slightly affected by the wheel pairs on the front axle. In addition, compared 

with the case of the elastic layered system, the TSD loading has a longer 

influence distance behind the vehicle and a shorter influence distance in front 

of the vehicle for the case of the viscoelastic layered system. The similarity 

between the effect of viscous damping and hysteretic damping still holds. 

 

 
(a) Elastic (b) Viscoelastic 

Figure 3.7 Contour curves of surface vertical deflection of different layered systems 

caused by the whole TSD loading 

3.5 Conclusions 

In this chapter, a theoretical model which can predict the response of 

viscoelastic layered systems under moving loads is developed based on the 

Spectral Element Method (SEM), the viscoelasticity is simulated by 

incorporating the complex Young’s modulus derived from viscoelastic 

material models. The prediction accuracy and computational efficiency of this 
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model is verified by comparing the performance with that of a Finite Element 

Method (FEM)-based model. In addition, the response characteristics of 

asphalt pavements under Traffic Speed Deflectometer (TSD) loads are 

investigated, which shows that the effect of viscous damping on the response 

is similar to that of hysteretic damping. 
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Appendix 3.1 

In the frequency domain related to the stationary coordinate system, the 

complex Young’s modulus  Ê   of the 2S2P1D model has the following 

expression: 

 
     

0
0 1

ˆ
1 i i ip pk h

E E
E E

   


  


 

  
 

where 0E  is the static modulus, E  is the glassy modulus, pk  and ph  are 

dimensionless exponents of the two parabolic elements with relationship 

0 1p pk h   ,   is a positive dimensionless constant,   is the characteristic 

time that depends only on temperature, and   is a dimensionless constant 

which is related to the viscosity constant   of the dashpot element via 

 0E E    . According to the Euler’s formula, the terms  i pk 
 and 

 i ph 
 can be expressed as: 

   i cos isgn sin
2 2

pp kk p pk k 
       

     
    

 

   i cos isgn sin
2 2

pp hh p ph h 
       

     
    

 

Hence, the complex Young’s modulus  Ê   becomes: 

    1 2
0 0 2 2 2 2

1 2 1 2

ˆ iE E E E
 

   

 
      

 

in which the definitions of 1  and 2  are: 

1 1 cos cos
2 2

p pk hp pk h 
       

     
   

 

      1

2 sgn sin sgn sin
2 2

p pk hp pk h 
           

     
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The absolute value and phase angle of the complex Young’s modulus are: 

     2 2ˆ ˆ ˆRe ImE E E           
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 
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with the following definitions: 
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Chapter 4 

 

Parameter Identification of Elastic 

Layered Systems Using Moving Loads 

 
“No great discovery was ever made without a bold guess.” 

— Isaac Newton (1643 - 1727) 
 

Chapters 2 and 3 have developed the theoretical models for elastic and 

viscoelastic layered systems under moving loads, respectively. However, these 

models still need to be supplemented with a suitable minimisation algorithm to be 

able to identify the structural parameters of layered systems on the basis of response. 

In Chapter 4, pavements are considered to be elastic layered systems with hysteretic 

damping, and the suitability of different minimisation algorithms for corresponding 

parameter identification is investigated. 

At first, Section 4.1 introduces the potential minimisation algorithms which can 

be combined with the theoretical model of elastic layered systems for parameter 

identification. Next, Section 4.2 analyses the sensitivity of the response of an elastic 

layered system with hysteretic damping to different structural parameters to have an 

insight into the feasibility of accurately identifying these parameters. Then, Section 

4.3 evaluates the performance of techniques using different minimisation algorithms 

for parameter identification of elastic layered systems to find the technique with the 

best performance. Afterwards, Section 4.4 investigates the performance of the 

selected technique in processing field measurements of the Traffic Speed 

Deflectometer (TSD) test. At last, Section 4.5 presents the main conclusions of this 

chapter. 
 

The contents of this chapter are adapted from: Sun, Z., Kasbergen, C., van Dalen, K. N., Anupam, K., 

Skarpas, A., & Erkens, S. M. J. G. (2022). A parameter identification technique for traffic speed 

deflectometer tests of pavements. Road Materials and Pavement Design, 1-23. 
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After the formulation of the theoretical model for elastic layered systems 

under moving loads, a suitable approach is still needed for the purpose of 

parameter identification on the basis of response. Actually, this goal can be 

reached by many approaches, in which the iteration-based approaches are 

commonly used. Generally, the iteration-based approaches determine the 

optimum parameters by minimising the differences between modelled and 

measured response via an iterative process. In the literature, several 

minimisation algorithms have been used by different researchers for parameter 

identification, such as the generalised reduced gradient method used by Lee et 

al. (2017), the Sequential Quadratic Programming (SQP) algorithm used by 

Cao et al. (2019), the Constrained Extended Kalman Filter (CEKF) used by 

Wu et al. (2020), the Nelder-Mead Simplex (NMS) search used by Yi and Mun 

(2009), and the Genetic Algorithm (GA) used by Zaabar et al. (2014). In 

addition, the parameter identification can also be achieved by using training-

based approaches, which usually apply the Artificial Neural Network (ANN) 

to develop ANN-based parameter identification techniques via a training 

process (Ceylan et al., 2007; Sharma and Das, 2008; Li and Wang, 2019). In 

this chapter, the development of an iteration-based technique for the parameter 

identification of elastic layered systems using moving loads is the main 

objective. 

4.1 Potential minimisation algorithms 

Actually, there are many minimisation algorithms which can be used to 

solve multi-dimensional nonlinear equations. However, a general technique 

suitable to cope with a wide range of problems is still not available. In order 

to find a minimisation algorithm which works best with the theoretical model 

of elastic layered systems with hysteretic damping, three potential 

minimisation algorithms which have been used by Al-Khoury et al. (2001) to 

develop parameter identification techniques for the Falling Weight 

Deflectometer (FWD) test of pavements are considered. 
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4.1.1 Factored secant update algorithm 

The factored secant update algorithm can be used to solve an 

unconstrained system of nonlinear simultaneous equations in a manner similar 

to that of Newton’s method but by using a finite-difference approximation to 

the Jacobian. This algorithm solves a system of equations described as follows: 

   , with : andM M M  f a 0 f R R a R  (4-1) 

in which  f a  is the function of interest, a  is a vector that contains all the 

unknown parameters, and M is the total number of unknown parameters. In 

this case, the number of unknown parameters equals to the number of 

equations. 

For a certain point na , a double dogleg method is used to approximately 

solve the following minimisation problem to obtain a direction vector ns  at 

this point: 

     22
min , subject to

M
n

n n n n n


  
s R

f a J a s s  (4-2) 

where 
2

  is the Euclidean norm,  nf a  is the function value evaluated at 

this point,  nJ a  is the approximate Jacobian evaluated at this point, and n  

is the trust region which limits the size of ns . 

Then, the function value at the next point 1n n n  a a s  is evaluated to 

see whether this point should be accepted. If the point 1na  is rejected, the 

algorithm solves equation (4-2) again with a reduced trust region n  to obtain 

another direction vector ns . This procedure is repeated until an accepted point 

1na  is found. 

If the point 1na  satisfies the stopping criterion, the algorithm will 

terminate. Otherwise, the algorithm continues from the point 1na  with 

corresponding trust region 1n   and approximate Jacobian  1nJ a . The 

approximate Jacobian  1nJ a  is calculated by the following Broyden’s 

formula (Broyden, 1970): 
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    
      T

1

1 T

n n n n n

n n
n n




      


f a f a J a s s
J a J a

s s
 (4-3) 

This procedure is repeated until finding a point which satisfies the stopping 

criterion. For more details, see Dennis and Schnabel (1983, Chapter 8). 

4.1.2 Modified Levenberg-Marquardt algorithm 

The modified Levenberg-Marquardt algorithm can be used to solve an 

unconstrained nonlinear least-squares problem by using a finite-difference 

approximation to the Jacobian. This algorithm combines the steepest descent 

method and Newton’s method. The steepest descent method is used to seek an 

estimate which is sufficiently close to the minimum point. Then, Newton’s 

method is used to refine the results until matching the stopping criterion. The 

nonlinear least-squares problem to be solved by this algorithm can be stated 

as follows: 

      T 2

1

1 1
min min , with :

2 2N N

M
N M

m
m

f
  

         


a R a R
f a f a a f R R  (4-4) 

where a  is a vector that contains all the unknown parameters,  f a  is the 

function of interest,  mf a  is the m-th component of the function of interest, 

N is the total number of unknown parameters, and M is the total number of 

components of the function of interest. In addition, the relationship M N  

holds as this algorithm is suitable for solving determined/over-determined 

problems. 

For a certain point na , the Levenberg-Marquardt algorithm modifies the 

Gauss-Newton algorithm by introducing a non-negative scalar n  called the 

Levenberg-Marquardt parameter: 

        T T
n n n n n n       J a J a I s J a f a  (4-5) 

where I  is the identity matrix of order N,  nf a  is the function value 

evaluated at this point,  nJ a  is the approximate Jacobian evaluated at this 

point, and ns  is the direction vector defined by 1n n n s a a  with 1na  being 

the next point. 
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By combining equation (4-5) and the definition of the direction vector 

ns , the next point 1na  is determined as follows: 

        1T T
1n n n n n n n



        a a J a J a I J a f a  (4-6) 

If the point 1na  satisfies the stopping criterion, it means that the algorithm 

has attained the minimum successfully. Otherwise, the Levenberg-Marquardt 

parameter and approximate Jacobian corresponding to the point 1na  are 

submitted to equation (4-6) to determine the next point. This procedure is 

repeated until finding a point which satisfies the stopping criterion. For more 

details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel 

(1983, Chapter 10). 

4.1.3 Modified Powell hybrid algorithm 

The modified Powell hybrid algorithm can be used to solve an 

unconstrained system of nonlinear simultaneous equations by using a finite-

difference approximation to the Jacobian. The Powell hybrid algorithm 

requires that the number of unknown parameters should be equal to the 

number of equations. In addition, this algorithm determines the direction 

vector by using either the quasi-Newton method or the steepest descent 

method according to a step size criterion. For a certain point na , this algorithm 

first calculates the direction vector ns  by using the quasi-Newton method: 

    1

2
so thatn n n n n

    s J a f a s  (4-7) 

where 
2

  is the Euclidean norm,  nf a  is the function value evaluated at 

this point,  nJ a  is the approximate Jacobian evaluated at this point, and n  

is the step size parameter. 

If the criterion 
2n n s  is satisfied, the calculated direction vector will 

be accepted and the next point will be determined via equation 1n n n  a a s . 

If this criterion fails, a second criterion will be tested: 

 
2n n n  r  (4-8) 

with the following definitions of n  and nr : 
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   
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2T

2
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n n

n

n n n





 

J a f a

J a J a f a
 

   T
n n n  r J a f a  

If this criterion is satisfied, the direction vector will be calculated by using the 

steepest descent method via equation  2
/n n n n s r r . If the second 

criterion still fails, the direction vector is determined by using a hybrid 

between the quasi-Newton method and the steepest descent method via 

equation     1n n n n n n    s f a r , where n  is chosen such that 

2n n s . This procedure is repeated until finding a point which satisfies the 

stopping criterion. For more details, see Scales (1985) or Moré et al. (1980). 

4.2 Parameter sensitivity analysis 

In this section, the sensitivity of the response of elastic layered systems 

caused by moving loads to different structural parameters is investigated based 

on single factor analysis to have an insight into the possibility and accuracy of 

identifying these parameters. The Traffic Speed Deflectometer (TSD) 

measures the slopes of vertical deflection at a set of points along the midline 

of the right rear wheel pair of the TSD vehicle. Hence, the response of interest 

is the slope curve of vertical deflection along the x-axis observed on a 

pavement surface caused by the whole TSD loading. Similar to Chapter 2, the 

whole loading of TSD vehicles is represented by the following parameters: 

 The speed of the load  13.9 m/s 50 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa;p   

 The parameters of the loading area 1 20.6, 1.0, 8.15 m,xc c l    

0 01.82 m, 0.15 m, 0.06316 m, and 0.27432 m;yl d x y     

 The parameters of the space window 0 0 200 m.X Y   

The reference structural parameters of the pavement are shown in Table 

4.1, and the variation of a certain parameter is 50% of its reference value. In 
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the obtained results, the response of the reference pavement structure caused 

by the whole TSD loading is shown in solid lines. In addition, the subscripts 

“1”, “2”, and “3” in legends refer to the surface layer, base layer, and subgrade, 

respectively. For the convenience of description, the degree of sensitivity of 

the slope curve to different parameters is qualitatively divided into five levels: 

hardly sensitive, slightly sensitive, moderately sensitive, relatively sensitive, 

and highly sensitive. It should be highlighted that the results of the sensitivity 

analysis could depend on the reference values and the variations of parameters. 

 

Table 4.1 Reference structural parameters of the pavement 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

Surface 3000 0.05 0.3 2400 0.1 

Base 500 0.05 0.3 2000 0.3 

Subgrade 60 0.05 0.3 1600 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

Sensitivity to Young’s modulus 

The slope curves of pavements with different Young’s moduli of the 

surface layer, base layer, and subgrade are shown in Figure 4.1(a-c), 

respectively. The results show that the slope curve is relatively sensitive to the 

Young’s modulus of the surface layer, while it is highly sensitive to the 

Young’s moduli of the base layer and subgrade. 

 

Sensitivity to damping ratio 

The slope curves of pavements with different damping ratios of the 

surface layer, base layer, and subgrade are shown in Figure 4.1(d-f), 

respectively. The results show that the slope curve is hardly sensitive to the 

damping ratio of the surface layer, while it is slightly sensitive to the damping 

ratios of the base layer and subgrade. It should be noted that the damping ratio 

can vary from 0 to 0.3 for different materials (Nielsen, 2019), and the slope 

curve could change more if the damping ratio has larger variations. 
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Sensitivity to Poisson’s ratio 

The slope curves of pavements with different Poisson’s ratios of the 

surface layer, base layer, and subgrade are shown in Figure 4.1(g-i), 

respectively. The results show that the slope curve is slightly sensitive to the 

Poisson’s ratios of the surface layer and subgrade, while it is moderately 

sensitive to the Poisson’s ratio of the base layer. 

 

Sensitivity to density 

The slope curves of pavements with different densities of the surface 

layer, base layer, and subgrade are shown in Figure 4.1(j-l), respectively. The 

results show that the slope curve is hardly sensitive to all the densities. 

 

Sensitivity to thickness 

The slope curves of pavements with different thicknesses of the surface 

layer and base layer are shown in Figure 4.1(m,n), respectively. The results 

show that the slope curve is highly sensitive to these two thicknesses. 

 

 
(a) Young’s modulus of surface layer (b) Young’s modulus of base layer 
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(c) Young’s modulus of subgrade (d) Damping ratio of surface layer 

 
(e) Damping ratio of base layer (f) Damping ratio of subgrade 

  
(g) Poisson’s ratio of surface layer (h) Poisson’s ratio of base layer 
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(i) Poisson’s ratio of subgrade (j) Density of surface layer 

  
(k) Density of base layer (l) Density of subgrade 

  
(m) Thickness of surface layer (n) Thickness of base layer 

Figure 4.1 Sensitivity of the slope curve to different structural parameters of 

pavements 
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4.3 Performance of techniques using different minimisation 

algorithms 

The response of a structure is determined by the loading conditions and 

structural parameters. Theoretically, if the response and loading conditions are 

known, it should be possible to identify the structural parameters. This process 

needs a so-called parameter identification technique, which can be the 

combination of a theoretical model and a proper nonlinear minimisation 

algorithm. A set of most likely parameters can be found by minimising the 

difference between the modelled and measured response. This section 

evaluates the performance of techniques using different minimisation 

algorithms for parameter identification in terms of the convergence stability 

and convergence rate. The convergence stability refers to the ability of an 

algorithm to converge to the desired minimum regardless of starting points 

(Scales, 1985). The convergence rate refers to the performance of an algorithm 

at each iteration and the total number of iterations needed for convergence. 

For the specific case of the TSD test, the function of interest for the 

minimisation process can be defined as follows: 

    
 

modelled

measured

, ;
1

,
m m

m
m m

s x y
f

s x y
 

a
a  (4-9) 

in which  mf a  is the m-th component of the function of interest  f a , a  is 

a vector that consists of all the parameters to be identified,  modelled , ;m ms x y a  

and  measured ,m ms x y  are the modelled and measured slopes of vertical 

deflection at detection point  ,m mx y , respectively. It can be concluded from 

the description of different minimisation algorithms that the number of 

unknown parameters should be no more than the number of detection points. 

In practice, the TSD vehicle can only measure the slopes of vertical deflection 

of about 9 points. Hence, some pavement parameters should be fixed to make 

the problem solvable. 

The results of the parameter sensitivity analysis (as shown in Section 4.2) 

suggest that the Young’s moduli and thicknesses of pavement layers are the 

parameters suitable for identification. However, preliminary investigation 
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shows that the minimisation algorithms could give different combinations of 

Young’s modulus and thickness for a given set of TSD measurements. This 

phenomenon is understandable because the influence caused by the change of 

Young’s modulus can be offset by the change of thickness. For example, the 

Young’s modulus and thickness of the surface layer mainly affect the 

pavement response via the flexural rigidity  3 2
1 1 1 112 1D E h     . Hence, 

many combinations of 1E  and 1h  which give the same value of 3
1 1E h  can 

correspond to similar pavement response (Nielsen, 2019). In order to increase 

the chance to obtain unique solutions, the Young’s moduli of pavement layers 

are chosen to be the only parameters for identification in this section. In what 

follows, some case studies are conducted to evaluate the performance of 

techniques using different minimisation algorithms for parameter 

identification by processing synthetic TSD measurements. 

4.3.1 Parameter identification of a typical pavement 

A pavement with structural parameters shown in Table 4.1 is considered 

as a typical pavement, and the modelled vertical deflection slopes of three 

points (x = -0.269 m, 0.163 m, and 0.362 m) along the x-axis on the pavement 

surface caused by the whole TSD loading are taken as the synthetic TSD 

measurements. These synthetic measurements are analysed by the proposed 

technique to identify the Young’s moduli of pavement layers, the true values 

of which are E1 = 3000 MPa, E2 = 500 MPa, and E3 = 60 MPa. 

The function of interest for the minimisation process nonlinearly depends 

on the unknown parameter vector. Hence, for different initial guesses, the 

proposed technique could give different parameter vectors corresponding to 

different minima. In addition, the convergence rate relates to the 

computational efficiency of the proposed technique. Hence, it is meaningful 

to investigate both the convergence stability and convergence rate of the 

proposed technique. Preliminary investigation shows that good initial guesses 

of unknown parameters are important to the parameter identification process. 

Therefore, some auxiliary tools could be used to find a good set of initial 

guesses. In order to conduct a comprehensive study on the convergence 
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stability and convergence rate of the proposed technique, eight cases with 

different initial guesses shown in Table 4.2 are considered. These cases are 

generated by considering that each parameter has two initial guesses, and the 

variation of the initial guesses is about 15% of the corresponding true value. 

This principle is consistently used to generate cases with different initial 

guesses. 

 

Table 4.2 Cases with different initial guesses for the typical pavement 

Cases 
E1 E2 E3 

MPa MPa MPa 

1 3500 600 70 

2 2500 400 50 

3 2500 600 70 

4 3500 400 70 

5 3500 600 50 

6 2500 400 70 

7 2500 600 50 

8 3500 400 50 

 

The quality of the results of the parameter identification can be evaluated 

by the error between the identified values and true values, which can be 

quantified by a dimensionless quantity p  defined as follows: 

 

2identified

true
1

1
1

N
n

p
n n

a

N a




 
  

 
  (4-10) 

where identified
na  is the n-th component of the identified parameter vector 

identifieda , true
na  is the n-th component of the true parameter vector truea , and N 

is the total number of the parameters to be identified. It can be concluded that 

a minimisation algorithm converges to the true parameter values if the quantity 

p  of the identified parameter values is small enough. For all the cases with 

different initial guesses considered by a minimisation algorithm, the 

percentage of cases that converge to the true parameter values is used to 

evaluate the convergence stability of the algorithm; the average number of 
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iterations needed to converge is used to evaluate the convergence rate of the 

algorithm. The results obtained by different minimisation algorithms are 

presented below. 

 

Factored secant update algorithm 

The results obtained by the factored secant update algorithm for the 

typical pavement are shown in Table 4.3. The results show that all the cases 

converge to the true parameter values, hence the factored secant update 

algorithm has good convergence stability to identify the parameters of the 

typical pavement if a good set of initial guesses is provided. In addition, the 

average number of iterations in the parameter identification process is about 

68 (each iteration takes about 2 min), which indicates that the convergence 

rate of this algorithm is not that high when compared to the other algorithms. 

Hence, the corresponding parameter identification technique is not that 

computationally efficient to deal with TSD measurements obtained from 

network-level testing. 

 

Table 4.3 Results obtained by the factored secant update algorithm for the typical 

pavement 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 3000.000 500.000 60.000 1.4E-08 82 

2 3000.000 500.000 60.000 4.6E-10 47 

3 3000.000 500.000 60.000 9.2E-09 88 

4 3000.065 500.019 59.994 6.6E-05 80 

5 3000.000 500.000 60.000 4.9E-10 48 

6 3000.000 500.000 60.000 5.3E-10 67 

7 3000.000 500.000 60.000 1.8E-09 50 

8 3000.019 500.000 60.000 3.9E-06 80 

 

Modified Levenberg-Marquardt algorithm 

If the vertical deflection slopes of only the three detection points are used 

for parameter identification, the results obtained by the modified Levenberg-

Marquardt algorithm for the typical pavement are shown in Table 4.4. The 
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results indicate that all the cases converge to the true parameter values, hence 

the modified Levenberg-Marquardt algorithm has good convergence stability 

to identify the parameters of the typical pavement if a good set of initial 

guesses is provided. In addition, the average number of iterations in the 

parameter identification process is 17, which indicates that this algorithm has 

high convergence rate. Hence, the corresponding parameter identification 

technique has high computational efficiency to deal with TSD measurements 

obtained from network-level testing. 

 

Table 4.4 Results obtained by the modified Levenberg-Marquardt algorithm for the 

typical pavement (3 detection points) 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 2999.995 500.000 60.000 1.0E-06 17 

2 3000.236 499.986 60.002 5.1E-05 17 

3 2999.914 500.005 59.999 1.9E-05 17 

4 2999.988 500.001 60.000 2.7E-06 17 

5 2999.997 500.000 60.000 5.7E-07 17 

6 3000.016 499.999 60.000 3.6E-06 17 

7 3000.009 499.999 60.000 2.1E-06 17 

8 3000.043 499.997 60.000 9.6E-06 17 

 

In addition, the modified Levenberg-Marquardt algorithm has the ability 

to solve over-determined systems. Hence, in order to make full use of the TSD 

measurements, the vertical deflection slopes of all the nine detection points (x 

= -0.366 m, -0.269 m, -0.167 m, 0.163 m, 0.260 m, 0.362 m, 0.662 m, 0.964 

m, and 1.559 m) along the x-axis on the pavement surface are used for 

parameter identification. With using all the nine detection points, the results 

obtained by the modified Levenberg-Marquardt algorithm for the typical 

pavement are shown in Table 4.5. It can be seen that all the cases also converge 

to the true parameter values after about 17 iterations. There is no obvious 

difference between using three detection points and using nine detection points 

for identifying layer moduli of the typical pavement. 
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Table 4.5 Results obtained by the modified Levenberg-Marquardt algorithm for the 

typical pavement (9 detection points) 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 3000.000 500.000 60.000 1.2E-08 17 

2 3000.000 500.000 60.000 1.8E-08 17 

3 3000.000 500.000 60.000 6.3E-08 17 

4 3000.000 500.000 60.000 1.1E-07 17 

5 2999.784 500.015 59.998 4.9E-05 13 

6 3000.000 500.000 60.000 2.4E-09 17 

7 2999.999 500.000 60.000 1.3E-07 17 

8 3000.001 500.000 60.000 2.6E-07 17 

 

Modified Powell hybrid algorithm 

The results obtained by the modified Powell hybrid algorithm for the 

typical pavement are shown in Table 4.6. The results show that all the cases 

converge to the true parameter values, hence the modified Powell hybrid 

algorithm also has good convergence stability to identify the parameters of the 

typical pavement if a good set of initial guesses is provided. In addition, the 

average number of iterations in the parameter identification process is about 

22, which indicates that the convergence rate of this algorithm is relatively 

high. Hence, the corresponding parameter identification technique has 

relatively high computational efficiency to deal with TSD measurements 

obtained from network-level testing. 
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Table 4.6 Results obtained by the modified Powell hybrid algorithm for the typical 

pavement 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 3000.000 500.000 60.000 5.7E-08 28 

2 3000.026 499.957 60.003 5.8E-05 13 

3 2995.012 500.590 59.932 1.3E-03 28 

4 3000.012 499.999 60.000 2.5E-06 26 

5 3000.301 499.655 60.028 4.8E-04 21 

6 3000.008 500.000 59.998 1.9E-05 19 

7 2999.994 500.001 60.000 1.9E-06 22 

8 2999.868 500.001 59.999 2.8E-05 20 

 

4.3.2 Parameter identification of a pavement with rigid base 

In this part, the performance of techniques using different minimisation 

algorithms in identifying parameters of a pavement with rigid base is 

investigated. In engineering practice, this type of pavement is important 

because a stiff base layer is necessary if the subgrade is composed of a kind of 

weak soil. In addition, parameter identification techniques may exhibit 

numerical instability when dealing with the response of this type of pavement 

(Al-Khoury, 2002). The structural parameters of the pavement with rigid base 

are shown in Table 4.7. For this pavement, the modelled vertical deflection 

slopes of three points (x = -0.269 m, 0.163 m, and 0.362 m) along the x-axis 

on the pavement surface caused by the whole TSD loading are taken as the 

synthetic TSD measurements. These synthetic measurements are analysed by 

the proposed technique to identify the Young’s moduli of pavement layers. 
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Table 4.7 Structural parameters of the pavement with rigid base 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

Surface 3000 0.05 0.3 2400 0.1 

Base 5000 0.05 0.3 2000 0.3 

Subgrade 60 0.05 0.3 1600 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

In order to investigate the convergence stability and convergence rate of 

different minimisation algorithms to identify parameters of the pavement with 

rigid base, eight cases with different initial guesses shown in Table 4.8 are 

considered. The results obtained by different minimisation algorithms are 

presented below. 

 

Table 4.8 Cases with different initial guesses for the pavement with rigid base 

Cases 
E1 E2 E3 

MPa MPa MPa 

1 3500 6000 70 

2 2500 4000 50 

3 2500 6000 70 

4 3500 4000 70 

5 3500 6000 50 

6 2500 4000 70 

7 2500 6000 50 

8 3500 4000 50 

 

Factored secant update algorithm 

The results obtained by the factored secant update algorithm for the 

pavement with rigid base are shown in Table 4.9. It can be seen that all the 

cases converge to the true parameter values, hence the factored secant update 

algorithm has good convergence stability to identify the parameters of the 

pavement with rigid base if a good set of initial guesses is provided. In addition, 

the average number of iterations is about 142, which indicates that the 
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convergence rate of this algorithm is not that high either for the case of a 

pavement with rigid base. 

 

Table 4.9 Results obtained by the factored secant update algorithm for the pavement 

with rigid base 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 3000.000 5000.000 60.000 4.2E-08 77 

2 3000.000 5000.000 60.000 2.4E-08 71 

3 3000.000 5000.000 60.000 1.5E-08 157 

4 3000.000 5000.000 60.000 8.1E-08 87 

5 3000.000 5000.000 60.000 8.5E-08 131 

6 3000.005 4999.998 60.000 1.7E-06 152 

7 3000.000 5000.000 60.000 3.8E-08 214 

8 2996.198 5000.496 60.038 8.2E-04 244 

 

Modified Levenberg-Marquardt algorithm 

If the vertical deflection slopes of only the three detection points are used 

for parameter identification, the results obtained by the modified Levenberg-

Marquardt algorithm for the pavement with rigid base are shown in Table 4.10. 

It can be seen that only cases 5 and 7 converge to the true parameter values, 

while the other cases converge to combinations of other parameter values 

which correspond to other local minima. Hence, the convergence stability of 

the modified Levenberg-Marquardt algorithm to identify the parameters of the 

pavement with rigid base is not that good when considering three detection 

points, although the convergence rate of this algorithm is relatively high (the 

average number of iterations is about 30). 
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Table 4.10 Results obtained by the modified Levenberg-Marquardt algorithm for 

the pavement with rigid base (3 detection points) 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 4064.404 4887.350 50.207 2.3E-01 24 

2 1636.563 5106.498 80.687 3.3E-01 26 

3 3789.190 4912.795 52.510 1.7E-01 32 

4 3895.932 4905.666 51.533 1.9E-01 28 

5 2993.480 5000.625 60.074 1.4E-03 32 

6 1636.414 5106.503 80.690 3.3E-01 29 

7 2995.834 5000.400 60.047 9.2E-04 37 

8 3660.327 4931.686 53.463 1.4E-01 35 

 

In addition, the performance of the modified Levenberg-Marquardt 

algorithm with considering all the nine detection points (x = -0.366 m, -0.269 

m, -0.167 m, 0.163 m, 0.260 m, 0.362 m, 0.662 m, 0.964 m, and 1.559 m) is 

also investigated. With using the vertical deflection slopes of the nine 

detection points for parameter identification, the results shown in Table 4.11 

are obtained. It can be seen that all the cases converge to the true parameter 

values, hence the modified Levenberg-Marquardt algorithm has good 

convergence stability to identify the parameters of the pavement with rigid 

base when considering all the nine detection points. In addition, the average 

number of iterations is about 18, which indicates that the convergence rate of 

this algorithm is also high when considering all the nine detection points. 
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Table 4.11 Results obtained by the modified Levenberg-Marquardt algorithm for 

the pavement with rigid base (9 detection points) 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 2999.986 5000.002 60.000 3.7E-06 17 

2 2999.984 5000.008 60.000 3.2E-06 17 

3 2999.998 5000.002 60.000 4.1E-07 17 

4 2999.998 5000.002 60.000 5.0E-07 17 

5 3000.013 4999.998 60.000 2.8E-06 21 

6 2999.959 5000.021 60.000 8.3E-06 17 

7 3000.055 5000.004 59.999 1.3E-05 17 

8 2999.980 5000.016 60.000 4.3E-06 17 

 

Modified Powell hybrid algorithm 

The results obtained by the modified Powell hybrid algorithm for the 

pavement with rigid base are shown in Table 4.12. It can be seen that most 

cases converge to the true parameter values except case 2, which converges to 

a combination of other parameter values corresponding to a local minimum. 

Hence, the convergence stability of the modified Powell hybrid algorithm to 

identify the parameters of the pavement with rigid base is relatively good. In 

addition, the average number of iterations needed to converge is about 68, 

which indicates that the convergence rate of this algorithm is not that high 

when analysing the response of the pavement with rigid base. 
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Table 4.12 Results obtained by the modified Powell hybrid algorithm for the 

pavement with rigid base 

Cases 
E1 E2 E3 εp Iterations 

MPa MPa MPa – – 

1 2999.998 5000.000 60.000 4.5E-07 83 

2 1636.452 5106.502 80.689 3.3E-01 39 

3 2999.712 5000.026 60.003 6.1E-05 53 

4 2999.940 5000.006 60.001 1.3E-05 91 

5 2999.992 5000.001 60.000 1.7E-06 73 

6 3000.198 4999.981 59.998 4.4E-05 52 

7 3004.719 4999.547 59.946 1.0E-03 56 

8 3000.464 4999.959 59.995 1.0E-04 94 

 

It is worth noting that case 2 can converge to true parameter values if the 

initial guesses have less variations. For example, if the initial guesses in case 

2 are chosen to be E1 = 2500 MPa, E2 = 4500 MPa, and E3 = 50 MPa, the 

following parameter values are identified after 73 iterations: E1 = 3000.001 

MPa, E2 = 5000.000 MPa, and E3 = 60.000 MPa. These identified parameter 

values are very close to the true parameter values. 

4.3.3 Performance comparison 

On the basis of the results presented above, the performance of techniques 

using different minimisation algorithms is summarised in Table 4.13. In this 

table, “Secant” represents the factored secant update algorithm, “LM-3” 

represents the modified Levenberg-Marquardt algorithm using 3 detection 

points, “LM-9” represents the modified Levenberg-Marquardt algorithm 

using all the 9 detection points, and “Powell” represents the modified Powell 

hybrid algorithm. This table shows that analysing the response of the 

pavement with rigid base generally has lower accuracy and needs more 

iterations to converge than analysing the response of the typical pavement. 

Compared with other algorithms, the LM-9 has the highest overall 

performance for parameter identification. Hence, in what follows, the 

modified Levenberg-Marquardt algorithm using all the 9 detection points 
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(LM-9) will be combined with the theoretical model to achieve parameter 

identification. 

Table 4.13 Performance of techniques using different minimisation algorithms 

Algorithms 
Typical pavement Pavement with rigid base 

Accuracy Iterations Accuracy Iterations 

Secant 100% 68 100% 142 

LM-3 100% 17 25% 30 

LM-9 100% 17 100% 18 

Powell 100% 22 87.5% 68 

 

4.4 Performance in processing field TSD measurements 

In practice, the TSD measurements will contain a certain degree of error 

introduced by the measuring system or external environment. Hence, it is 

important to investigate the performance of the developed technique in 

processing field data. The field TSD measurements used in this section are 

derived from the measurements at location 5.17 km on a road section near 

Copenhagen, as presented in the literature by Nielsen (2019). In the parameter 

identification process, the whole TSD loading is represented by the following 

parameters: 

 The speed of the load  22.2 m/s 80 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa;p   

 The parameters of the loading area 1 20.6, 1.0, 8.15 m,xc c l    

0 01.82 m, 0.15 m, 0.06316 m, and 0.27432 m;yl d x y     

 The parameters of the space window 0 0 200 m.X Y   

In what follows, the combination of the theoretical elastic model and the 

modified Levenberg-Marquardt algorithm using all the 9 detection points 

(LM-9) is used to process field TSD measurements for parameter 

identification. 
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4.4.1 Performance in identifying layer moduli 

In this part, the performance of the developed technique in identifying 

layer moduli of pavements based on field TSD measurements is investigated. 

The other structural parameters of pavements are assumed to have values 

shown in Table 4.14. 

 

Table 4.14 The values of other structural parameters 

Layers 
ξ ν ρ h 

– – kg/m3 m 

Surface 0.25 0.3 2400 0.1 

Base 0.15 0.3 2000 0.3 

Subgrade 0.10 0.3 1600 Infinite 

Note: ξ is the damping ratio, ν is the Poisson’s ratio, ρ is the density, and h is the 

thickness. 

 

In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 4.15 are considered. The identified values of layer 

moduli and the number of iterations needed for convergence are also shown 

in Table 4.15. It can be seen that the identified values of layer moduli are 

almost identical for different cases, which confirms the good convergence 

stability of this technique. Furthermore, the comparison between case 4 and 

case 5 shows that a larger deviation between the initial guess and the right 

solution results in more iterations to converge. In general, more iterations are 

needed to converge and/or less accurate parameter values are obtained if the 

initial guess has a larger deviation from the right solution. It should be 

highlighted that the technique used can converge to an incorrect solution if the 

initial guess is not that good. For example, if the initial guess is chosen to be: 

E1 = 100 MPa, E2 = 100 MPa, and E3 = 10 MPa, the following parameter 

values are identified after 25 iterations: E1 = 98.0 MPa, E2 = 272.3 MPa, and 

E3 = 59.9 MPa. Hence, a good set of initial guesses is important for the 

parameter identification technique to converge to the right solution. In 

addition, the average number of iterations for the cases shown in Table 4.15 is 
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about 26, which indicates that this technique has relatively high convergence 

rate to process field TSD measurements. 

 

Table 4.15 Initial guesses and identified values of layer moduli 

Cases 
Initial guesses (MPa) Identified values (MPa) Iterations 

E1 E2 E3 E1 E2 E3 – 

1 700 20 10 3517.2 123.4 56.9 29 

2 1000 100 10 3518.1 123.3 56.9 29 

3 5000 500 50 3517.0 123.4 56.9 26 

4 6000 200 50 3516.0 123.4 56.9 22 

5 6000 200 100 3505.6 123.7 56.9 26 

 

To check the validity of the identified parameter values, the modelled 

vertical deflection slope curve corresponding to the parameter values 

identified in case 4 is compared with the measurements, as shown in Figure 

4.2. The good match between the modelled and measured data confirms the 

validity of the identified parameter values. Hence, the combination of the 

theoretical elastic model and the LM-9 can be used to identify layer moduli of 

pavements on the basis of field TSD measurements. 

 

 
Figure 4.2 Comparison between modelled and measured data 
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However, due to the nature of multiple solutions in the parameter 

identification of layered systems, the identified layer moduli are only reliable 

when the other parameters (especially the layer thicknesses) are reliable. For 

example, when the thickness of the surface layer in Table 4.14 is assumed to 

be 0.2 m and all the other parameters remain unchanged, the layer moduli 

shown in Table 4.16 are identified for cases with different initial guesses. It 

can be seen that this technique stably converges to the same solution for the 

identification of layer moduli. Furthermore, compared with the identified layer 

moduli when assuming h1 to be 0.1 m, the identified E1 is significantly smaller 

and the identified E2 is relatively smaller when assuming h1 to be 0.2 m. Hence, 

to ensure the validity of the identified parameters, the parameters which are 

not intended to be identified should be close to reality, especially the 

parameters that have significant influence on the slope curve of vertical 

deflections (such as the layer thicknesses). To accurately determine the layer 

thicknesses of pavements, it is recommended to use the Ground-Penetrating 

Radar (GPR). 

 

Table 4.16 Results of parameter identification when the thickness of the surface layer 

is assumed to be 0.2 m 

Cases 
Initial guesses (MPa) Identified values (MPa) Iterations 

E1 E2 E3 E1 E2 E3 – 

1 100 10 10 612.1 85.9 58.0 29 

2 1000 100 100 612.0 85.9 58.0 22 

3 3000 200 50 612.0 85.9 58.0 22 

4 6000 200 50 612.1 85.9 58.0 35 

5 5000 500 500 612.1 85.9 58.0 45 

 

4.4.2 Performance in identifying layer moduli and damping ratios 

In this part, the performance of the developed technique in identifying 

layer moduli and damping ratios of pavements based on field TSD 

measurements is investigated. The other structural parameters of pavements 

are maintained to be the same as those shown in Table 4.14. In the parameter 
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identification process, 5 cases with different initial guesses shown in Table 

4.17 are considered. The corresponding results of parameter identification are 

shown in Table 4.18. It can be seen that all the cases converge to almost the 

same solution, which confirms the good convergence stability of the 

developed technique. In addition, the average number of iterations for 

convergence is about 54, which indicates that the identification of layer moduli 

and damping ratios at the same time is not that computationally efficient. 

 

Table 4.17 Cases with different initial guesses for the identification of layer moduli 

and damping ratios 

Cases 
E1 E2 E3 ξ1 ξ2 ξ3 

MPa MPa MPa – – – 

1 700 20 10 0.05 0.05 0.05 

2 1000 100 10 0.10 0.10 0.10 

3 5000 500 50 0.15 0.15 0.15 

4 6000 200 50 0.20 0.20 0.20 

5 6000 200 100 0.25 0.25 0.25 

 

Table 4.18 Results of the identification of layer moduli and damping ratios 

Cases 
E1 E2 E3 ξ1 ξ2 ξ3 Iterations 

MPa MPa MPa – – – – 

1 3176.5 123.4 56.4 0.307 0.169 0.087 57 

2 3219.4 122.6 56.4 0.301 0.172 0.085 50 

3 3176.2 123.4 56.4 0.307 0.169 0.087 60 

4 3194.6 123.0 56.4 0.304 0.171 0.086 37 

5 3228.5 122.4 56.4 0.298 0.173 0.084 65 

 

4.4.3 Performance in identifying layer moduli and thicknesses 

In this part, the performance of the developed technique in identifying 

layer moduli and thicknesses of pavements based on field TSD measurements 

is investigated. The other structural parameters of pavements are maintained 

to be the same as those shown in Table 4.14. In the parameter identification 
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process, 5 cases with different initial guesses shown in Table 4.19 are 

considered. The corresponding results of parameter identification are shown 

in Table 4.20. It can be seen that the technique used gives multiple 

combinations of layer moduli and thicknesses on the basis of the field TSD 

measurement, which confirms the importance of determining the thicknesses 

of pavement layers in advance to obtain unique solutions. In addition, the 

average number of iterations for the cases considered is about 78, which 

indicates that the proposed technique is not that computationally efficient to 

identify layer moduli and thicknesses at the same time. 

 

Table 4.19 Cases with different initial guesses for the identification of layer moduli 

and thicknesses 

Cases 
E1 E2 E3 h1 h2 

MPa MPa MPa m m 

1 700 20 10 0.20 0.50 

2 1000 100 10 0.10 0.15 

3 5000 500 50 0.15 0.20 

4 6000 200 50 0.20 0.25 

5 6000 200 100 0.05 0.10 

 

Table 4.20 Results of the identification of layer moduli and thicknesses 

Cases 
E1 E2 E3 h1 h2 Iterations 

MPa MPa MPa m m – 

1 3073.7 108.0 54.9 0.106 0.388 55 

2 2748.6 106.4 54.9 0.111 0.392 64 

3 2515.9 105.2 54.9 0.114 0.393 92 

4 2615.8 105.7 54.9 0.113 0.392 83 

5 5398.8 115.2 54.9 0.087 0.378 97 

 

4.4.4 Performance comparison 

According to the results presented above, the performance of the 

developed technique in identifying different parameters based on field TSD 
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measurements is compared in this part. The accuracy and number of iterations 

for identifying different parameters are summarised in Table 4.21. It can be 

seen that identifying layer moduli is more efficient than identifying both layer 

moduli and damping ratios, and it is more accurate and efficient than 

identifying both layer moduli and thicknesses. Hence, if pavements are 

considered to be elastic layered systems with hysteretic damping, only 

identifying elastic layer moduli is recommended in practice. 

 

Table 4.21 Performance of the technique in identifying different parameters 

Types 
Parameters for identification 

E E and ξ E and h 

Accuracy 5/5 5/5 3/5 

Iterations 26 54 78 

Note: E is the Young’s modulus, ξ is the damping ratio, and h is the thickness. 

 

4.5 Conclusions 

In this chapter, the suitability of three kinds of potential minimisation 

algorithms (i.e. the factored secant update algorithm, the modified Levenberg-

Marquardt algorithm, and the modified Powell hybrid algorithm) for the 

parameter identification of elastic layered systems using moving loads is 

investigated. By comparing the performance of techniques using different 

minimisation algorithms in processing synthetic measurements of the Traffic 

Speed Deflectometer (TSD) test, it is found that the modified Levenberg-

Marquardt algorithm using all the 9 detection points (LM-9) is the most 

suitable one to identify parameters of elastic layered systems. In addition, the 

combination of the theoretical elastic model and the LM-9 has good 

performance in processing field TSD measurements to identify elastic layer 

moduli of pavements. 
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Chapter 5 

 

Parameter Identification of Viscoelastic 

Layered Systems Using Moving Loads 

 
“An experiment is a question which science poses to Nature and 

a measurement is the recording of Nature’s answer.” 

— Max Karl Ernst Ludwig Planck (1858 - 1947) 
 

 

In Chapter 4, a minimisation algorithm which can be used to identify parameters 

of elastic layered systems based on the response caused by moving loads was selected. 

However, the performance of this minimisation algorithm in identifying parameters 

of viscoelastic layered systems is still unknown, which is the main focus of Chapter 

5. 

At first, the potential viscoelastic material models which can be used in the 

theoretical model of viscoelastic layered systems under moving loads are introduced 

in Section 5.1. Next, in order to select parameters which can be accurately identified, 

the sensitivity of the response of viscoelastic layered systems to different parameters 

is investigated in Section 5.2. Then, with using the selected minimisation algorithm, 

the suitability of different viscoelastic material models for parameter identification of 

viscoelastic layered systems is studied in Section 5.3. Afterwards, the performance 

of the recommended combination(s) in processing field measurements of the Traffic 

Speed Deflectometer (TSD) test is evaluated in Section 5.4. At last, the main 

conclusions of this chapter are presented in Section 5.5. 
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The modified Levenberg-Marquardt algorithm using all the 9 detection 

points (LM-9) demonstrates good performance for the parameter identification 

of elastic layered systems using moving loads, so this algorithm is chosen to 

be used for the parameter identification of viscoelastic layered systems using 

moving loads. Because of the viscoelasticity of materials, more efforts are 

needed to identify parameters of viscoelastic layered systems. For the specific 

case of asphalt pavements, the viscoelasticity of the asphalt layer is usually 

described by different material models that consist of springs and dashpots, 

such as the Maxwell model, the Kelvin-Voigt model, the Standard Linear 

Solid model, the Burgers model, and so on. Generally, the parameters of these 

models are determined by conducting laboratory frequency sweep tests on 

specimens cored from pavements, which is not that attractive due to high cost 

and inevitable damage to pavement structures. In order to solve this problem, 

researchers tried to identify viscoelastic parameters of asphalt pavements 

based on the results of Non-Destructive Testing (NDT), such as the Falling 

Weight Deflectometer (FWD) test. For example, Kutay et al. (2011) identified 

the relaxation modulus and complex Young’s modulus of asphalt layers based 

on the time-dependent surface deflections measured by the FWD test, in which 

the relaxation modulus in time domain was characterised by using a sigmoid 

function and the complex Young’s modulus in frequency domain was obtained 

by using a Prony series-based interconversion procedure. Zhao et al. (2015) 

identified the complex Young’s modulus of the asphalt layer, the elastic 

Young’s modulus of the base layer, and the elastic Young’s modulus of the 

subgrade on the basis of the time histories of FWD measurements, in which 

the modified Havriliak-Negami (MHN) model was used to describe the 

complex Young’s modulus of the asphalt layer. Lee et al. (2019) investigated 

the possibility of identifying all the parameters used to describe asphalt 

pavements by analysing the time histories of surface deflections measured by 

the FWD test, in which the time-dependent relaxation modulus of the asphalt 

layer was characterised by a sigmoid function and the nonlinear behaviour of 

unbound layers was considered. However, studies focusing on identifying 

viscoelastic parameters of asphalt pavements based on the results of the 

Traffic Speed Deflectometer (TSD) test are found to be limited. For example, 

Nasimifar et al. (2017) identified the elastic and viscoelastic layer moduli of 
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asphalt pavements from TSD measurements via a trial-and-error process, in 

which the Witczak-Andrei equation was used to calculate the complex 

Young’s modulus of the asphalt layer. In order to make the research in this 

direction further, this chapter aims to develop a technique to identify 

viscoelastic parameters of asphalt pavements by analysing the response caused 

by the TSD load. 

5.1 Potential viscoelastic material models 

Generally, a better description of the viscoelastic behaviour of materials 

needs more complicated constitutive models, which may make the process of 

parameter identification more difficult. The desired viscoelastic material 

model should not only have acceptable accuracy to describe material 

behaviour, but also be suitable for parameter identification. To find such a 

model, three potential viscoelastic material models are considered. 

 

Zener model 

The Zener model consists of 2 spring elements and 1 dashpot element. 

The combination and characteristic constants of these elements are shown in 

Figure 5.1. In the frequency domain related to the stationary coordinate system, 

the complex Young’s modulus  Ê   of the Zener model can be expressed as 

(Zener, 1948; Pritz, 1999; Sun et al., 2020): 

    
 

0 0

0

iˆ
i

E E E E
E

E E



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 



 


 
 (5-1) 

where i is the imaginary unit defined as i2 = -1, ω is the angular frequency, E0 

is the static modulus, E∞ is the glassy modulus, and η is the viscosity constant 

of the dashpot element. The values of the 3 parameters (E0, E∞, and η) are 

needed to determine the expression of the complex Young’s modulus of the 

Zener model. 
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Figure 5.1 Schematic representation of the Zener model 

 

Burgers model 

The Burgers model consists of 2 spring elements and 2 dashpot elements. 

The combination and characteristic constants of these elements are shown in 

Figure 5.2. In the frequency domain related to the stationary coordinate system, 

the complex Young’s modulus  Ê   of the Burgers model can be expressed 

as (Burgers, 1939; Shames and Cozzarelli, 1992; Al-Khoury et al., 2002): 
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in which Em and Ek are elasticity constants of the two spring elements, ηm and 

ηk are viscosity constants of the two dashpot elements. The values of the 4 

parameters (Em, Ek, ηm, and ηk) are needed to determine the expression of the 

complex Young’s modulus of the Burgers model. 

 

 

Figure 5.2 Schematic representation of the Burgers model 
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2S2P1D model 

The 2S2P1D model has been introduced in Chapter 3, its main 

characteristics will be repeated here for the purpose of comparison. The 

2S2P1D model consists of 2 spring elements, 2 parabolic elements, and 1 

dashpot element. The combination and characteristic constants of these 

elements are shown in Figure 5.3. In the frequency domain related to the 

stationary coordinate system, the complex Young’s modulus  Ê   of the 

2S2P1D model can be expressed as (Olard and Di Benedetto, 2003; Yusoff et 

al., 2013; Sun et al., 2022): 

  
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1 i i ip pk h
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where 0E  is the static modulus, E  is the glassy modulus, pk  and ph  are 

dimensionless exponents of the two parabolic elements with relationship 

0 1p pk h   ,   is a positive dimensionless constant,   is the characteristic 

time that depends only on temperature, and   is a dimensionless constant 

which is related to the viscosity constant   of the dashpot element via 

 0E E    . The values of the 7 parameters (E0, E∞, kp, hp, ζ, β, and τ) 

are needed to determine the expression of the complex Young’s modulus of 

the 2S2P1D model. 

 

 

Figure 5.3 Schematic representation of the 2S2P1D model 

 

 

 



Chapter 5 

 

114 

5.2 Parameter sensitivity analysis 

It is easier to identify a certain parameter if the response is more sensitive 

to this parameter. Therefore, conducting a parameter sensitivity analysis is 

necessary to determine parameters suitable for identification on the basis of 

pavement response. The response of interest is the slope curve of vertical 

deflection along the x-axis observed on a pavement surface caused by the 

whole TSD loading. Similar to Chapter 2, the following parameters are used 

to represent the whole TSD loading: 

 The speed of the load  13.9 m/s 50 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa;p   

 The parameters of the loading area 1 20.6, 1.0, 8.15 m,xc c l    

0 01.82 m, 0.15 m, 0.06316 m, and 0.27432 m;yl d x y     

 The parameters of the space window 0 0 200 m.X Y   

In this section, a pavement structure that consists of an asphalt layer, a 

base layer, and a subgrade is considered. The asphalt layer is considered to be 

viscoelastic, while the base layer and subgrade are considered to be elastic 

with hysteretic damping. The asphalt layer is simulated by the three 

viscoelastic material models to investigate the suitability of these models for 

parameter identification. According to the experience of Chapter 3, the 

parameter values of different viscoelastic material models are chosen to be: 

 The Zener model: 0 250 MPaE  , 45400 MPaE  , and 

50 MPa s;    

 The Burgers model: 45400 MPamE  , 53 MPa sm   , 

22700 MPakE  , and 700 MPa s;k    

 The 2S2P1D model: 0 250 MPaE  , 45400 MPaE  , 0.175pk  , 

0.55ph  , 2.0  , 320  , and 43.855 10 s    (at 25 degrees 

Celsius). 

With these parameter values, the expressions of the complex Young’s moduli 

of different viscoelastic material models are determined. For the sake of 
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comparison, the absolute values and phase angles of these complex Young’s 

moduli at different frequencies are shown in Figure 5.4. It can be concluded 

that these three models have similar behaviour at medium-high frequencies. 

However, at low frequencies, the Zener model and the 2S2P1D model mainly 

exhibit elastic behaviour, while the Burgers model mainly exhibits viscous 

behaviour. The asphalt layer is constructed with asphalt mixtures, the 

mechanical behaviour of which mainly depends on the locking effect between 

aggregates at low frequencies. Hence, the asphalt layer mainly exhibits elastic 

behaviour at low frequencies, which is more consistent with the behaviour of 

the Zener model and the 2S2P1D model. 

 

 
(a) Absolute value (b) Phase angle 

Figure 5.4 Comparison of complex Young’s moduli of different viscoelastic 

material models 

The other structural parameters of the asphalt pavement are shown in 

Table 5.1. In the process of parameter sensitivity analysis, these parameter 

values are used as a reference and the variation of a certain parameter is 50% 

of its reference value. In the obtained results, the response of the reference 

pavement structure caused by the whole TSD loading is shown in solid lines. 

Furthermore, the subscripts “1”, “2”, and “3” in legends correspond to the 

asphalt layer, base layer, and subgrade, respectively. In addition, the following 

five levels are used to qualitatively describe the degree of sensitivity: hardly 

sensitive, slightly sensitive, moderately sensitive, relatively sensitive, and 
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highly sensitive. It should be highlighted that the results of the sensitivity 

analysis could depend on the reference values and the variations of parameters. 

Table 5.1 Structural parameters of the asphalt pavement 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

Asphalt – – 0.3 2400 0.1 

Base 500 0.1 0.3 2000 0.3 

Subgrade 60 0.1 0.3 1600 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio which is related to the 

hysteretic damping of materials, ν is the Poisson’s ratio, ρ is the density, and h is the 

thickness. 

5.2.1 Sensitivity to parameters of viscoelastic material models 

To know the possibility and accuracy of identifying parameters of 

different viscoelastic material models, the sensitivity of the slope curve of 

vertical deflection to these parameters is analysed. 

 

(1) Sensitivity to parameters of the Zener model 

 

In this part, the sensitivity of the slope curve to parameters of the Zener 

model is investigated. 

 

Sensitivity to the static modulus in the model 

If the asphalt layer is simulated by the Zener model with different static 

moduli, the slope curves of vertical deflection as presented in Figure 5.5(a) are 

obtained. It can be seen that the slope curve is slightly sensitive to the static 

modulus. 

 

Sensitivity to the glassy modulus in the model 

If the asphalt layer is simulated by the Zener model with different glassy 

moduli, the slope curves of vertical deflection as presented in Figure 5.5(b) 

are obtained. It can be seen that the slope curve is slightly sensitive to the 

glassy modulus. 
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Sensitivity to the viscosity constant in the model 

If the asphalt layer is simulated by the Zener model with different values 

of viscosity constant, the slope curves of vertical deflection as presented in 

Figure 5.5(c) are obtained. It can be seen that the slope curve is relatively 

sensitive to the viscosity constant. 

 

 
(a) Static modulus (b) Glassy modulus 

 
(c) Viscosity constant 

Figure 5.5 Sensitivity of the slope curve to parameters of the Zener model 
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(2) Sensitivity to parameters of the Burgers model 

 

In this part, the sensitivity of the slope curve to parameters of the Burgers 

model is investigated. 

 

Sensitivity to the elasticity constant Em in the model 

If the asphalt layer is simulated by the Burgers model with different 

values of elasticity constant Em, the slope curves of vertical deflection as 

presented in Figure 5.6(a) are obtained. It can be seen that the slope curve is 

slightly sensitive to the elasticity constant Em. 

 

Sensitivity to the elasticity constant Ek in the model 

If the asphalt layer is simulated by the Burgers model with different 

values of elasticity constant Ek, the slope curves of vertical deflection as 

presented in Figure 5.6(b) are obtained. It can be seen that the results are 

almost identical, so the slope curve is hardly sensitive to the elasticity constant 

Ek. 

 

Sensitivity to the viscosity constant ηm in the model 

If the asphalt layer is simulated by the Burgers model with different 

values of viscosity constant ηm, the slope curves of vertical deflection as 

presented in Figure 5.6(c) are obtained. It can be seen that the slope curve is 

relatively sensitive to the viscosity constant ηm. 

 

Sensitivity to the viscosity constant ηk in the model 

If the asphalt layer is simulated by the Burgers model with different 

values of viscosity constant ηk, the slope curves of vertical deflection as 

presented in Figure 5.6(d) are obtained. It can be seen that the results are 

almost identical, so the slope curve is hardly sensitive to the viscosity constant 

ηk. 

 



Parameter Identification of Viscoelastic Layered Systems Using Moving Loads 

 

119 

 
(a) Elasticity constant Em (b) Elasticity constant Ek 

 
(c) Viscosity constant ηm (d) Viscosity constant ηk 

Figure 5.6 Sensitivity of the slope curve to parameters of the Burgers model 

 

(3) Sensitivity to parameters of the 2S2P1D model 

 

In this part, the sensitivity of the slope curve to parameters of the 2S2P1D 

model is investigated. 

 

Sensitivity to the static modulus in the model 

If the asphalt layer is simulated by the 2S2P1D model with different static 

moduli, the slope curves of vertical deflection as presented in Figure 5.7(a) are 

obtained. It can be seen that the results are almost identical, which means that 

the slope curve is hardly sensitive to the static modulus. 
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Sensitivity to the glassy modulus in the model 

If the asphalt layer is simulated by the 2S2P1D model with different 

glassy moduli, the slope curves of vertical deflection as presented in Figure 

5.7(b) are obtained. The results show that the slope curve is relatively sensitive 

to the glassy modulus. 

 

Sensitivity to the exponent kp in the model 

If the asphalt layer is simulated by the 2S2P1D model with different 

values of exponent kp, the slope curves of vertical deflection as presented in 

Figure 5.7(c) are obtained. The results show that the slope curve is slightly 

sensitive to the exponent kp. 

 

Sensitivity to the exponent hp in the model 

If the asphalt layer is simulated by the 2S2P1D model with different 

values of exponent hp, the slope curves of vertical deflection as presented in 

Figure 5.7(d) are obtained. The results show that the slope curve is relatively 

sensitive to the exponent hp. 

 

Sensitivity to the constant ζ in the model 

If the asphalt layer is simulated by the 2S2P1D model with different 

values of constant ζ, the slope curves of vertical deflection as presented in 

Figure 5.7(e) are obtained. The results show that the slope curve is slightly 

sensitive to the constant ζ. 

 

Sensitivity to the constant β in the model 

If the asphalt layer is simulated by the 2S2P1D model with different 

values of constant β, the slope curves of vertical deflection as presented in 

Figure 5.7(f) are obtained. It can be seen that the results are almost identical, 

which means the slope curve is hardly sensitive to the constant β. 

 

Sensitivity to the characteristic time in the model 

If the asphalt layer is simulated by the 2S2P1D model with different 

values of characteristic time, the slope curves of vertical deflection as 
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presented in Figure 5.7(g) are obtained. The results show that the slope curve 

is moderately sensitive to the characteristic time. 

 

  
(a) Static modulus (b) Glassy modulus 

 
(c) Exponent kp (d) Exponent hp 

  
(e) Constant ζ (f) Constant β 
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(g) Characteristic time 

Figure 5.7 Sensitivity of the slope curve to parameters of the 2S2P1D model 

5.2.2 Sensitivity to structural parameters 

To know the possibility and accuracy of identifying different structural 

parameters, the sensitivity of the slope curve of vertical deflection to these 

parameters is analysed. Without loss of generality, the 2S2P1D model is 

chosen to simulate the asphalt layer. 

 

Sensitivity to Young’s moduli 

The slope curves of vertical deflection for asphalt pavements with 

different Young’s moduli of the base layer and subgrade are presented in 

Figure 5.8(a,b), respectively. The results show that the slope curve is highly 

sensitive to these two Young’s moduli, and the Young’s modulus of subgrade 

influences the response in a larger area than that of base layer. 

 

Sensitivity to damping ratios 

The slope curves of vertical deflection for asphalt pavements with 

different damping ratios of the base layer and subgrade are presented in Figure 

5.8(c,d), respectively. The results show that the slope curve is moderately 

sensitive to these two damping ratios, and it is a bit more sensitive to the 

damping ratio of subgrade. In addition, it can also be concluded that the 

vertical deflection curve will be more asymmetric with increasing damping 

ratio. 
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Sensitivity to Poisson’s ratios 

The slope curves of vertical deflection for asphalt pavements with 

different Poisson’s ratios of the asphalt layer, base layer, and subgrade are 

presented in Figure 5.8(e-g), respectively. The results show that the slope 

curve is slightly sensitive to the Poisson’s ratios of the asphalt layer and 

subgrade, while it is moderately sensitive to the Poisson’s ratio of the base 

layer. 

 

Sensitivity to densities 

The slope curves of vertical deflection for asphalt pavements with 

different densities of the asphalt layer, base layer, and subgrade are presented 

in Figure 5.8(h-j), respectively. It can be seen that the results are almost 

identical, which means the slope curve is hardly sensitive to all the densities. 

 

Sensitivity to thicknesses 

The slope curves of vertical deflection for asphalt pavements with 

different thicknesses of the asphalt layer and base layer are presented in Figure 

5.8(k,l), respectively. The results show that the slope curve is highly sensitive 

to these two thicknesses. 

 

  
(a) Young’s modulus of base layer (b) Young’s modulus of subgrade 
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(c) Damping ratio of base layer (d) Damping ratio of subgrade 

  
(e) Poisson’s ratio of asphalt layer (f) Poisson’s ratio of base layer 

 
(g) Poisson’s ratio of subgrade (h) Density of asphalt layer 
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(i) Density of base layer (j) Density of subgrade 

  
(k) Thickness of asphalt layer (l) Thickness of base layer 

Figure 5.8 Sensitivity of the slope curve to structural parameters for the case using 

the 2S2P1D model 

 

Compared with the results of parameter sensitivity analysis for elastic 

layered systems, similar sensitivity level is found for most of the structural 

parameters investigated in this section except damping ratios. The reason for 

the difference in the sensitivity to damping ratios is that the reference value of 

the damping ratio used in the case of viscoelastic layered systems is twice as 

big as that used in the case of elastic layered systems. Hence, the level of 

sensitivity to different parameters is related to the refence values of parameters. 
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5.3 Performance of techniques using different viscoelastic 

material models 

Different theoretical models for asphalt pavements under moving loads 

can be obtained if the asphalt layer is simulated by different viscoelastic 

material models. The combinations of these theoretical models of asphalt 

pavements and the modified Levenberg-Marquardt algorithm using all the 9 

detection points (LM-9) are the potential parameter identification techniques 

for viscoelastic layered systems. In this section, the performance of these 

combinations in identifying viscoelastic parameters of asphalt pavements by 

processing corresponding synthetic TSD measurements is investigated. The 

considered synthetic TSD measurements are the modelled vertical deflection 

slopes of nine points (x = -0.366 m, -0.269 m, -0.167 m, 0.163 m, 0.260 m, 

0.362 m, 0.662 m, 0.964 m, and 1.559 m) along the x-axis on the pavement 

surface caused by the whole TSD loading. To comprehensively investigate the 

performance of techniques using different viscoelastic material models, the 

parameter identification of a typical asphalt pavement and an asphalt 

pavement with rigid base is considered. 

5.3.1 Parameter identification of a typical asphalt pavement 

In this part, the combinations of different theoretical models of asphalt 

pavements under moving loads and LM-9 are used to identify viscoelastic 

parameters of a typical asphalt pavement by analysing corresponding synthetic 

TSD measurements. The considered typical asphalt pavement is the asphalt 

pavement shown in Section 5.2. In addition, according to the results of the 

parameter sensitivity analysis, the structural parameters suitable for 

identification are E2, E3, h1, and h2. However, the effect caused by the change 

of Young’s modulus can be offset by the change of thickness, so many 

combinations of Young’s modulus and thickness can give similar pavement 

response. To increase the probability to obtain unique solutions, the Young’s 

moduli of base layer and subgrade are selected for identification. For the 

asphalt layer, different model parameters are selected for identification when 

different viscoelastic material models are used. 
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(1) Performance of the technique using the Zener model 

 

According to the results of parameter sensitivity analysis, if the asphalt 

layer is simulated by the Zener model, all the three model parameters are 

selected for identification. Hence, the whole list of parameters selected for 

identification includes the static modulus, the glassy modulus, the viscosity 

constant, the Young’s modulus of base layer, and the Young’s modulus of 

subgrade. For the case of the typical asphalt pavement, the true values of these 

parameters are: E0 = 250 MPa, E∞ = 45400 MPa, η = 50 MPaꞏs, E2 = 500 MPa, 

and E3 = 60 MPa. In order to conduct a comprehensive study on the 

convergence stability and convergence rate of the technique using the Zener 

model for the parameter identification of the typical asphalt pavement, 32 

cases with different initial guesses shown in Table 5.2 are considered. These 

cases are generated by considering that each parameter has two initial guesses, 

and the variation of the initial guesses is about 15% of the corresponding true 

value. This principle is consistently used to generate cases with different initial 

guesses. 

For the typical asphalt pavement, the results obtained by the technique 

using the Zener model are shown in Table 5.3. It can be seen that all the cases 

converge to the right solution. Hence, this technique has good convergence 

stability for the parameter identification of the typical asphalt pavement. In 

addition, the average number of iterations needed for convergence is about 26, 

which indicates that this technique has high convergence rate to identify 

viscoelastic parameters of a typical asphalt pavement. 
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Table 5.2 Cases with different initial guesses for the technique using the Zener 

model in the case of the typical asphalt pavement 

Cases 
E0 E∞ η E2 E3 

MPa MPa MPaꞏs MPa MPa 

1 300 50000 60 600 70 

2 300 50000 60 600 50 

3 300 50000 60 400 70 

4 300 50000 60 400 50 

5 300 50000 40 600 70 

6 300 50000 40 600 50 

7 300 50000 40 400 70 

8 300 50000 40 400 50 

9 300 40000 60 600 70 

10 300 40000 60 600 50 

11 300 40000 60 400 70 

12 300 40000 60 400 50 

13 300 40000 40 600 70 

14 300 40000 40 600 50 

15 300 40000 40 400 70 

16 300 40000 40 400 50 

17 200 50000 60 600 70 

18 200 50000 60 600 50 

19 200 50000 60 400 70 

20 200 50000 60 400 50 

21 200 50000 40 600 70 

22 200 50000 40 600 50 

23 200 50000 40 400 70 

24 200 50000 40 400 50 

25 200 40000 60 600 70 

26 200 40000 60 600 50 

27 200 40000 60 400 70 

28 200 40000 60 400 50 

29 200 40000 40 600 70 

30 200 40000 40 600 50 

31 200 40000 40 400 70 

32 200 40000 40 400 50 
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Table 5.3 Results obtained by the technique using the Zener model for the typical 

asphalt pavement 

Cases 
E0 E∞ η E2 E3 εp Iterations 

MPa MPa MPaꞏs MPa MPa – – 

1 250.0 45400.0 50.0 500.0 60.0 4.2E-09 25 

2 250.0 45399.7 50.0 500.0 60.0 7.2E-06 19 

3 250.0 45399.9 50.0 500.0 60.0 2.2E-06 25 

4 250.0 45399.3 50.0 500.0 60.0 7.1E-06 25 

5 250.0 45400.0 50.0 500.0 60.0 4.4E-08 37 

6 250.0 45400.0 50.0 500.0 60.0 2.7E-08 37 

7 250.0 45400.0 50.0 500.0 60.0 9.5E-08 25 

8 250.0 45400.0 50.0 500.0 60.0 3.3E-10 25 

9 250.0 45400.0 50.0 500.0 60.0 7.3E-09 25 

10 250.0 45399.5 50.0 500.0 60.0 5.7E-06 19 

11 250.0 45399.9 50.0 500.0 60.0 1.2E-06 25 

12 250.0 45399.9 50.0 500.0 60.0 2.1E-06 25 

13 250.0 45400.0 50.0 500.0 60.0 2.4E-07 31 

14 250.0 45393.3 50.0 500.0 60.0 6.7E-05 25 

15 250.0 45400.0 50.0 500.0 60.0 8.0E-09 25 

16 250.0 45400.0 50.0 500.0 60.0 5.2E-09 25 

17 250.0 45400.0 50.0 500.0 60.0 1.2E-08 25 

18 250.0 45399.6 50.0 500.0 60.0 5.3E-06 19 

19 250.0 45400.0 50.0 500.0 60.0 4.8E-07 25 

20 250.0 45399.5 50.0 500.0 60.0 5.9E-06 25 

21 250.0 45400.0 50.0 500.0 60.0 2.1E-07 37 

22 250.0 45400.0 50.0 500.0 60.0 9.5E-08 37 

23 250.0 45400.0 50.0 500.0 60.0 3.6E-07 25 

24 250.0 45400.0 50.0 500.0 60.0 2.5E-08 25 

25 250.0 45400.0 50.0 500.0 60.0 4.6E-09 25 

26 250.0 45400.0 50.0 500.0 60.0 8.3E-07 19 

27 250.0 45400.0 50.0 500.0 60.0 2.0E-07 25 

28 250.0 45400.0 50.0 500.0 60.0 1.6E-06 25 

29 250.0 45400.0 50.0 500.0 60.0 1.1E-07 31 

30 250.0 45400.0 50.0 500.0 60.0 1.1E-07 31 

31 250.0 45400.0 50.0 500.0 60.0 1.9E-08 25 

32 250.0 45400.0 50.0 500.0 60.0 1.2E-09 25 
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(2) Performance of the technique using the Burgers model 

 

According to the results of parameter sensitivity analysis, if the asphalt 

layer is simulated by the Burgers model, the model parameters selected for 

identification are the elasticity constant Em and the viscosity constant ηm. 

Hence, the whole list of parameters selected for identification includes the 

elasticity constant Em, the viscosity constant ηm, the Young’s modulus of base 

layer, and the Young’s modulus of subgrade. For the case of the typical asphalt 

pavement, the true values of these parameters are: Em = 45400 MPa, ηm = 53 

MPaꞏs, E2 = 500 MPa, and E3 = 60 MPa. In order to conduct a comprehensive 

study on the convergence stability and convergence rate of the technique using 

the Burgers model for the parameter identification of the typical asphalt 

pavement, 16 cases with different initial guesses shown in Table 5.4 are 

considered. 

Table 5.4 Cases with different initial guesses for the technique using the Burgers 

model in the case of the typical asphalt pavement 

Cases 
Em ηm E2 E3 

MPa MPaꞏs MPa MPa 

1 50000 65 600 70 

2 50000 65 600 50 

3 50000 65 400 70 

4 50000 65 400 50 

5 50000 40 600 70 

6 50000 40 600 50 

7 50000 40 400 70 

8 50000 40 400 50 

9 40000 65 600 70 

10 40000 65 600 50 

11 40000 65 400 70 

12 40000 65 400 50 

13 40000 40 600 70 

14 40000 40 600 50 

15 40000 40 400 70 

16 40000 40 400 50 
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For the typical asphalt pavement, the results obtained by the technique 

using the Burgers model are shown in Table 5.5. It can be seen that 15 out of 

16 cases converge to the right solution, while case 6 converges to another 

solution which is physically unrealistic. Hence, this technique has good 

convergence stability for the parameter identification of the typical asphalt 

pavement. In addition, the average number of iterations needed for 

convergence is about 27, which indicates that this technique has high 

convergence rate to identify viscoelastic parameters of a typical asphalt 

pavement. 

 

Table 5.5 Results obtained by the technique using the Burgers model for the typical 

asphalt pavement 

Cases 
Em ηm E2 E3 εp Iterations 

MPa MPaꞏs MPa MPa – – 

1 45400.0 53.0 500.0 60.0 5.8E-09 21 

2 45394.3 53.0 500.0 60.0 6.2E-05 21 

3 45400.0 53.0 500.0 60.0 2.1E-07 26 

4 45400.1 53.0 500.0 60.0 8.6E-07 26 

5 45400.0 53.0 500.0 60.0 2.6E-09 41 

6 -74459507.3 49.9 516.5 59.6 8.2E+02 62 

7 45400.0 53.0 500.0 60.0 4.3E-07 26 

8 45400.0 53.0 500.0 60.0 2.3E-08 21 

9 45400.0 53.0 500.0 60.0 4.0E-09 21 

10 45399.3 53.0 500.0 60.0 7.5E-06 21 

11 45397.3 53.0 500.0 60.0 3.0E-05 21 

12 45396.9 53.0 500.0 60.0 3.5E-05 21 

13 45399.2 53.0 500.0 60.0 8.7E-06 26 

14 45400.0 53.0 500.0 60.0 2.3E-08 31 

15 45399.4 53.0 500.0 60.0 6.9E-06 21 

16 45400.0 53.0 500.0 60.0 1.5E-08 21 
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(3) Performance of the technique using the 2S2P1D model 

 

According to the results of the parameter sensitivity analysis, if the 

asphalt layer is simulated by the 2S2P1D model, the model parameters initially 

selected for identification are the glassy modulus, the exponent kp, the 

exponent hp, the constant ζ, and the characteristic time. However, preliminary 

investigations showed that many sets of values of these parameters could 

correspond to the same pavement response. In order to increase the possibility 

of obtaining a unique solution on the basis of pavement response, the model 

parameters finally selected for identification are the glassy modulus, the 

exponent hp, and the characteristic time. Hence, the whole list of parameters 

to be identified includes the glassy modulus, the exponent hp, the characteristic 

time, the Young’s modulus of base layer, and the Young’s modulus of 

subgrade. For the case of the typical asphalt pavement, the true values of these 

parameters are: E∞ = 45400 MPa, hp = 0.55, τ = 3.855×10-4 s, E2 = 500 MPa, 

and E3 = 60 MPa. In order to conduct a comprehensive study on the 

convergence stability and convergence rate of the technique using the 2S2P1D 

model for the parameter identification of the typical asphalt pavement, 32 

cases with different initial guesses shown in Table 5.6 are considered. 

For the typical asphalt pavement, the results obtained by the technique 

using the 2S2P1D model are shown in Table 5.7. The results show that 27 out 

of 32 cases converge to the right solution, while cases 3, 7, 19, 23, and 28 

converge to other solutions (most of them are physically unrealistic). Hence, 

this technique has relatively good convergence stability for the parameter 

identification of the typical asphalt pavement. In addition, the average number 

of iterations needed for convergence is about 47, which indicates that the 

convergence rate of this technique is not that high to identify viscoelastic 

parameters of a typical asphalt pavement. 
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Table 5.6 Cases with different initial guesses for the technique using the 2S2P1D 

model in the case of the typical asphalt pavement 

Cases 
E∞ hp τ E2 E3 

MPa – s MPa MPa 

1 50000 0.65 4.5×10-4 600 70 

2 50000 0.65 4.5×10-4 600 50 

3 50000 0.65 4.5×10-4 400 70 

4 50000 0.65 4.5×10-4 400 50 

5 50000 0.65 3.0×10-4 600 70 

6 50000 0.65 3.0×10-4 600 50 

7 50000 0.65 3.0×10-4 400 70 

8 50000 0.65 3.0×10-4 400 50 

9 50000 0.45 4.5×10-4 600 70 

10 50000 0.45 4.5×10-4 600 50 

11 50000 0.45 4.5×10-4 400 70 

12 50000 0.45 4.5×10-4 400 50 

13 50000 0.45 3.0×10-4 600 70 

14 50000 0.45 3.0×10-4 600 50 

15 50000 0.45 3.0×10-4 400 70 

16 50000 0.45 3.0×10-4 400 50 

17 40000 0.65 4.5×10-4 600 70 

18 40000 0.65 4.5×10-4 600 50 

19 40000 0.65 4.5×10-4 400 70 

20 40000 0.65 4.5×10-4 400 50 

21 40000 0.65 3.0×10-4 600 70 

22 40000 0.65 3.0×10-4 600 50 

23 40000 0.65 3.0×10-4 400 70 

24 40000 0.65 3.0×10-4 400 50 

25 40000 0.45 4.5×10-4 600 70 

26 40000 0.45 4.5×10-4 600 50 

27 40000 0.45 4.5×10-4 400 70 

28 40000 0.45 4.5×10-4 400 50 

29 40000 0.45 3.0×10-4 600 70 

30 40000 0.45 3.0×10-4 600 50 

31 40000 0.45 3.0×10-4 400 70 

32 40000 0.45 3.0×10-4 400 50 
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Table 5.7 Results obtained by the technique using the 2S2P1D model for the typical 

asphalt pavement 

Cases 
E∞ hp τ E2 E3 εp Iterations 

MPa – s MPa MPa – – 

1 45400.2 0.550 3.8550E-04 500.0 60.0 5.5E-06 25 

2 45398.4 0.550 3.8555E-04 500.0 60.0 5.5E-05 37 

3 92014.0 0.443 2.8176E-05 498.5 59.9 6.2E-01 94 

4 45398.2 0.550 3.8555E-04 500.0 60.0 6.2E-05 25 

5 45400.2 0.550 3.8550E-04 500.0 60.0 5.6E-06 31 

6 45401.3 0.550 3.8546E-04 500.0 60.0 4.9E-05 37 

7 39716.0 0.042 -5.7268E-04 450.2 59.4 1.2E+00 89 

8 45399.6 0.550 3.8551E-04 500.0 60.0 1.3E-05 37 

9 45401.0 0.550 3.8547E-04 500.0 60.0 3.3E-05 72 

10 45392.8 0.550 3.8571E-04 500.0 60.0 2.5E-04 25 

11 45398.9 0.550 3.8553E-04 500.0 60.0 4.0E-05 90 

12 45395.9 0.550 3.8562E-04 500.0 60.0 1.4E-04 38 

13 45401.8 0.550 3.8545E-04 500.0 60.0 6.2E-05 25 

14 45399.1 0.550 3.8552E-04 500.0 60.0 3.0E-05 40 

15 45400.0 0.550 3.8550E-04 500.0 60.0 5.1E-07 96 

16 45401.4 0.550 3.8546E-04 500.0 60.0 4.9E-05 51 

17 45400.0 0.550 3.8550E-04 500.0 60.0 1.5E-06 31 

18 45400.3 0.550 3.8549E-04 500.0 60.0 1.0E-05 37 

19 43400.8 0.083 -3.5584E-04 452.6 59.5 9.4E-01 48 

20 45402.0 0.550 3.8543E-04 500.0 60.0 7.9E-05 25 

21 45399.7 0.550 3.8551E-04 500.0 60.0 1.2E-05 31 

22 45400.3 0.550 3.8549E-04 500.0 60.0 8.1E-06 37 

23 41154.1 0.007 -4.0767E-04 447.4 59.5 1.0E+00 82 

24 45396.6 0.550 3.8559E-04 500.0 60.0 1.1E-04 31 

25 45399.7 0.550 3.8551E-04 500.0 60.0 1.0E-05 25 

26 45400.5 0.550 3.8548E-04 500.0 60.0 1.9E-05 32 

27 45403.6 0.550 3.8540E-04 500.0 60.0 1.2E-04 83 

28 38794.2 0.066 -7.2806E-04 452.2 59.3 1.4E+00 72 

29 45399.8 0.550 3.8551E-04 500.0 60.0 6.3E-06 31 

30 45400.0 0.550 3.8550E-04 500.0 60.0 2.0E-07 32 

31 45399.6 0.550 3.8551E-04 500.0 60.0 1.3E-05 51 

32 45398.3 0.550 3.8555E-04 500.0 60.0 5.8E-05 31 
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5.3.2 Parameter identification of an asphalt pavement with rigid base 

In this part, the combinations of different theoretical models of asphalt 

pavements and LM-9 are used to identify viscoelastic parameters of an asphalt 

pavement with rigid base by analysing corresponding synthetic TSD 

measurements. The asphalt layer of the considered asphalt pavement is 

simulated by the three viscoelastic material models with the same parameters 

as those shown in Section 5.2, while the other structural parameters are shown 

in Table 5.8. In this case, the parameters selected for identification are the 

same as those in the case of a typical asphalt pavement. 

 

Table 5.8 Structural parameters of the asphalt pavement with rigid base 

Layers 
E ξ ν ρ h 

MPa – – kg/m3 m 

Asphalt – – 0.3 2400 0.1 

Base 5000 0.1 0.3 2000 0.3 

Subgrade 60 0.1 0.3 1600 Infinite 

Note: E is the Young’s modulus, ξ is the damping ratio, ν is the Poisson’s ratio, ρ is 

the density, and h is the thickness. 

 

(1) Performance of the technique using the Zener model 

 

If the asphalt layer is simulated by the Zener model, the whole list of 

parameters selected for identification includes the static modulus, the glassy 

modulus, the viscosity constant, the Young’s modulus of base layer, and the 

Young’s modulus of subgrade. For the case of the asphalt pavement with rigid 

base, the true values of these parameters are: E0 = 250 MPa, E∞ = 45400 MPa, 

η = 50 MPaꞏs, E2 = 5000 MPa, and E3 = 60 MPa. In order to conduct a 

comprehensive study on the convergence stability and convergence rate of the 

technique using the Zener model for the parameter identification of the asphalt 

pavement with rigid base, 32 cases with different initial guesses shown in 

Table 5.9 are considered. 

For the asphalt pavement with rigid base, the results obtained by the 

technique using the Zener model are shown in Table 5.10. It can be seen that 
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30 out of 32 cases converge to the right solution, while cases 6 and 22 

converge to other solutions (both of them are physically unrealistic). Hence, 

this technique has good convergence stability for the parameter identification 

of the asphalt pavement with rigid base. In addition, the average number of 

iterations needed for convergence is about 28, which indicates that this 

technique has high convergence rate to identify viscoelastic parameters of an 

asphalt pavement with rigid base. 
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Table 5.9 Cases with different initial guesses for the technique using the Zener 

model in the case of the asphalt pavement with rigid base 

Cases 
E0 E∞ η E2 E3 

MPa MPa MPaꞏs MPa MPa 

1 300 50000 60 6000 70 

2 300 50000 60 6000 50 

3 300 50000 60 4000 70 

4 300 50000 60 4000 50 

5 300 50000 40 6000 70 

6 300 50000 40 6000 50 

7 300 50000 40 4000 70 

8 300 50000 40 4000 50 

9 300 40000 60 6000 70 

10 300 40000 60 6000 50 

11 300 40000 60 4000 70 

12 300 40000 60 4000 50 

13 300 40000 40 6000 70 

14 300 40000 40 6000 50 

15 300 40000 40 4000 70 

16 300 40000 40 4000 50 

17 200 50000 60 6000 70 

18 200 50000 60 6000 50 

19 200 50000 60 4000 70 

20 200 50000 60 4000 50 

21 200 50000 40 6000 70 

22 200 50000 40 6000 50 

23 200 50000 40 4000 70 

24 200 50000 40 4000 50 

25 200 40000 60 6000 70 

26 200 40000 60 6000 50 

27 200 40000 60 4000 70 

28 200 40000 60 4000 50 

29 200 40000 40 6000 70 

30 200 40000 40 6000 50 

31 200 40000 40 4000 70 

32 200 40000 40 4000 50 
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Table 5.10 Results obtained by the technique using the Zener model for the asphalt 

pavement with rigid base 

Cases 
E0 E∞ η E2 E3 εp Iterations 

MPa MPa MPaꞏs MPa MPa – – 

1 250.0 45400.1 50.0 5000.0 60.0 9.4E-07 25 

2 250.0 45400.0 50.0 5000.0 60.0 5.2E-07 25 

3 250.0 45395.3 50.0 5000.0 60.0 4.7E-05 25 

4 250.0 45398.7 50.0 5000.0 60.0 1.4E-05 25 

5 250.0 45400.0 50.0 5000.0 60.0 5.7E-08 31 

6 109.0 -71745579.7 45.4 5209.0 60.3 7.1E+02 56 

7 250.0 45400.0 50.0 5000.0 60.0 4.5E-07 25 

8 250.0 45400.4 50.0 5000.0 60.0 4.4E-06 25 

9 250.0 45400.1 50.0 5000.0 60.0 1.8E-06 25 

10 250.0 45399.9 50.0 5000.0 60.0 1.3E-06 25 

11 250.0 45399.4 50.0 5000.0 60.0 6.4E-06 25 

12 250.0 45399.7 50.0 5000.0 60.0 2.7E-06 25 

13 250.0 45401.2 50.0 5000.0 60.0 1.4E-05 25 

14 250.0 45398.1 50.0 5000.0 60.0 1.9E-05 25 

15 250.0 45400.0 50.0 5000.0 60.0 4.1E-07 25 

16 250.0 45400.0 50.0 5000.0 60.0 6.2E-07 25 

17 250.0 45400.0 50.0 5000.0 60.0 3.1E-07 25 

18 250.0 45400.0 50.0 5000.0 60.0 6.4E-07 25 

19 250.0 45397.8 50.0 5000.0 60.0 2.2E-05 25 

20 250.0 45399.9 50.0 5000.0 60.0 1.5E-06 25 

21 250.0 45400.1 50.0 5000.0 60.0 1.0E-06 56 

22 109.3 -101392455.2 45.4 5208.2 60.3 1.0E+03 62 

23 250.0 45399.9 50.0 5000.0 60.0 6.1E-07 25 

24 250.0 45399.9 50.0 5000.0 60.0 9.6E-07 25 

25 250.0 45400.1 50.0 5000.0 60.0 1.1E-06 25 

26 250.0 45400.0 50.0 5000.0 60.0 1.2E-07 25 

27 250.0 45401.3 50.0 5000.0 60.0 1.5E-05 25 

28 250.0 45400.0 50.0 5000.0 60.0 9.4E-07 25 

29 250.0 45398.8 50.0 5000.0 60.0 1.2E-05 25 

30 250.0 45399.8 50.0 5000.0 60.0 8.8E-06 25 

31 250.0 45400.0 50.0 5000.0 60.0 2.5E-07 25 

32 250.0 45399.8 50.0 5000.0 60.0 2.3E-06 25 
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(2) Performance of the technique using the Burgers model 

 

If the asphalt layer is simulated by the Burgers model, the whole list of 

parameters selected for identification includes the elasticity constant Em, the 

viscosity constant ηm, the Young’s modulus of base layer, and the Young’s 

modulus of subgrade. For the case of the asphalt pavement with rigid base, the 

true values of these parameters are: Em = 45400 MPa, ηm = 53 MPaꞏs, E2 = 

5000 MPa, and E3 = 60 MPa. In order to conduct a comprehensive study on 

the convergence stability and convergence rate of the technique using the 

Burgers model for the parameter identification of the asphalt pavement with 

rigid base, 16 cases with different initial guesses shown in Table 5.11 are 

considered. 

 

Table 5.11 Cases with different initial guesses for the technique using the Burgers 

model in the case of the asphalt pavement with rigid base 

Cases 
Em ηm E2 E3 

MPa MPaꞏs MPa MPa 

1 50000 65 6000 70 

2 50000 65 6000 50 

3 50000 65 4000 70 

4 50000 65 4000 50 

5 50000 40 6000 70 

6 50000 40 6000 50 

7 50000 40 4000 70 

8 50000 40 4000 50 

9 40000 65 6000 70 

10 40000 65 6000 50 

11 40000 65 4000 70 

12 40000 65 4000 50 

13 40000 40 6000 70 

14 40000 40 6000 50 

15 40000 40 4000 70 

16 40000 40 4000 50 
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For the asphalt pavement with rigid base, the results obtained by the 

technique using the Burgers model are shown in Table 5.12. It can be seen that 

14 out of 16 cases converge to the right solution, while cases 3 and 11 

converge to other solutions (both of them can be easily distinguished from the 

right solution because of obvious differences). Hence, this technique has 

relatively good convergence stability for the parameter identification of the 

asphalt pavement with rigid base. In addition, the average number of iterations 

needed for convergence is about 24, which indicates that this technique has 

high convergence rate to identify viscoelastic parameters of an asphalt 

pavement with rigid base. 

 

Table 5.12 Results obtained by the technique using the Burgers model for the 

asphalt pavement with rigid base 

Cases 
Em ηm E2 E3 εp Iterations 

MPa MPaꞏs MPa MPa – – 

1 45400.2 53.0 5000.0 60.0 2.5E-06 21 

2 45396.8 53.0 5000.0 60.0 3.5E-05 21 

3 9159.5 62.8 4780.8 60.2 4.1E-01 50 

4 45398.9 53.0 4999.9 60.0 4.4E-05 16 

5 45400.0 53.0 5000.0 60.0 6.8E-08 21 

6 45399.6 53.0 5000.0 60.0 4.3E-06 26 

7 45386.2 53.0 5000.0 60.0 1.5E-04 21 

8 45400.0 53.0 5000.0 60.0 5.1E-07 21 

9 45400.4 53.0 5000.0 60.0 4.1E-06 21 

10 45397.3 53.0 5000.0 60.0 3.0E-05 21 

11 9159.4 62.8 4780.7 60.2 4.1E-01 27 

12 45400.0 53.0 5000.0 60.0 3.4E-07 21 

13 45399.5 53.0 5000.0 60.0 5.9E-06 21 

14 45399.9 53.0 5000.0 60.0 1.6E-06 26 

15 45399.9 53.0 5000.0 60.0 1.6E-06 21 

16 45399.7 53.0 5000.0 60.0 3.4E-06 21 
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(3) Performance of the technique using the 2S2P1D model 

 

If the asphalt layer is simulated by the 2S2P1D model, the whole list of 

parameters to be identified includes the glassy modulus, the exponent hp, the 

characteristic time, the Young’s modulus of base layer, and the Young’s 

modulus of subgrade. For the case of the asphalt pavement with rigid base, the 

true values of these parameters are: E∞ = 45400 MPa, hp = 0.55, τ = 3.855×10-

4 s, E2 = 5000 MPa, and E3 = 60 MPa. In order to conduct a comprehensive 

study on the convergence stability and convergence rate of the technique using 

the 2S2P1D model for the parameter identification of the asphalt pavement 

with rigid base, 32 cases with different initial guesses shown in Table 5.13 are 

considered. 

For the asphalt pavement with rigid base, the results obtained by the 

technique using the 2S2P1D model are shown in Table 5.14. The results show 

that 25 out of 32 cases converge to the right solution, while cases 4, 7, 9, 15, 

19, 20, and 27 converge to other solutions (some of them are close to the right 

solution, which indicates the complexity of the corresponding objective 

function). Hence, this technique has relatively good convergence stability for 

the parameter identification of the asphalt pavement with rigid base. In 

addition, the average number of iterations needed for convergence is about 52, 

which indicates that the convergence rate of this technique is not that high to 

identify viscoelastic parameters of an asphalt pavement with rigid base. 
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Table 5.13 Cases with different initial guesses for the technique using the 2S2P1D 

model in the case of the asphalt pavement with rigid base 

Cases 
E∞ hp τ E2 E3 

MPa – s MPa MPa 

1 50000 0.65 4.5×10-4 6000 70 

2 50000 0.65 4.5×10-4 6000 50 

3 50000 0.65 4.5×10-4 4000 70 

4 50000 0.65 4.5×10-4 4000 50 

5 50000 0.65 3.0×10-4 6000 70 

6 50000 0.65 3.0×10-4 6000 50 

7 50000 0.65 3.0×10-4 4000 70 

8 50000 0.65 3.0×10-4 4000 50 

9 50000 0.45 4.5×10-4 6000 70 

10 50000 0.45 4.5×10-4 6000 50 

11 50000 0.45 4.5×10-4 4000 70 

12 50000 0.45 4.5×10-4 4000 50 

13 50000 0.45 3.0×10-4 6000 70 

14 50000 0.45 3.0×10-4 6000 50 

15 50000 0.45 3.0×10-4 4000 70 

16 50000 0.45 3.0×10-4 4000 50 

17 40000 0.65 4.5×10-4 6000 70 

18 40000 0.65 4.5×10-4 6000 50 

19 40000 0.65 4.5×10-4 4000 70 

20 40000 0.65 4.5×10-4 4000 50 

21 40000 0.65 3.0×10-4 6000 70 

22 40000 0.65 3.0×10-4 6000 50 

23 40000 0.65 3.0×10-4 4000 70 

24 40000 0.65 3.0×10-4 4000 50 

25 40000 0.45 4.5×10-4 6000 70 

26 40000 0.45 4.5×10-4 6000 50 

27 40000 0.45 4.5×10-4 4000 70 

28 40000 0.45 4.5×10-4 4000 50 

29 40000 0.45 3.0×10-4 6000 70 

30 40000 0.45 3.0×10-4 6000 50 

31 40000 0.45 3.0×10-4 4000 70 

32 40000 0.45 3.0×10-4 4000 50 
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Table 5.14 Results obtained by the technique using the 2S2P1D model for the 

asphalt pavement with rigid base 

Cases 
E∞ hp τ E2 E3 εp Iterations 

MPa – s MPa MPa – – 

1 45399.2 0.550 3.8553E-04 5000.0 60.0 3.1E-05 50 

2 45401.5 0.550 3.8545E-04 5000.0 60.0 5.5E-05 56 

3 45400.6 0.550 3.8548E-04 5000.0 60.0 2.3E-05 44 

4 81110.0 0.471 4.8687E-05 5006.4 60.0 5.3E-01 51 

5 45398.9 0.550 3.8553E-04 5000.0 60.0 4.0E-05 44 

6 45396.6 0.550 3.8560E-04 5000.0 60.0 1.2E-04 44 

7 48115.5 0.543 3.2255E-04 4998.9 60.0 7.8E-02 53 

8 46140.5 0.548 3.6693E-04 4999.6 60.0 2.3E-02 64 

9 47880.5 0.544 3.2736E-04 4999.1 60.0 7.2E-02 72 

10 45406.5 0.550 3.8531E-04 5000.0 60.0 2.4E-04 38 

11 45401.1 0.550 3.8548E-04 5000.0 60.0 3.1E-05 48 

12 45400.6 0.550 3.8548E-04 5000.0 60.0 2.3E-05 57 

13 45400.0 0.550 3.8550E-04 5000.0 60.0 6.2E-07 43 

14 45399.8 0.550 3.8551E-04 5000.0 60.0 1.2E-05 38 

15 48264.2 0.543 3.1948E-04 4998.9 60.0 8.2E-02 59 

16 45403.6 0.550 3.8538E-04 5000.0 60.0 1.4E-04 44 

17 45392.5 0.550 3.8573E-04 5000.0 60.0 2.8E-04 51 

18 45392.5 0.550 3.8577E-04 5000.0 60.0 3.2E-04 44 

19 42521.4 0.558 4.7033E-04 5001.4 60.0 1.0E-01 79 

20 73721.6 0.491 7.5879E-05 5000.7 60.0 4.6E-01 40 

21 45404.6 0.550 3.8536E-04 5000.0 60.0 1.6E-04 57 

22 45400.1 0.550 3.8550E-04 5000.0 60.0 3.8E-06 58 

23 45404.9 0.550 3.8535E-04 5000.0 60.0 1.8E-04 45 

24 45393.4 0.550 3.8569E-04 5000.0 60.0 2.3E-04 44 

25 45404.4 0.550 3.8536E-04 5000.0 60.0 1.7E-04 37 

26 45401.1 0.550 3.8547E-04 5000.0 60.0 3.8E-05 52 

27 39275.5 0.568 5.9653E-04 5003.8 60.0 2.5E-01 138 

28 45398.5 0.550 3.8554E-04 5000.0 60.0 4.9E-05 70 

29 45394.7 0.550 3.8565E-04 5000.0 60.0 1.8E-04 31 

30 45398.0 0.550 3.8556E-04 5000.0 60.0 6.9E-05 44 

31 45407.1 0.550 3.8529E-04 5000.0 60.0 2.5E-04 34 

32 45385.7 0.550 3.8590E-04 5000.0 60.0 4.9E-04 51 
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5.3.3 Performance comparison 

On the basis of the results presented above, the performance of techniques 

using different viscoelastic material models for parameter identification of 

asphalt pavements is summarised in Table 5.15. It can be seen that, for a 

certain technique, identifying parameters of an asphalt pavement with rigid 

base has lower accuracy than identifying parameters of a typical asphalt 

pavement, while the numbers of iterations are comparable. 

In addition, the Zener model consists of 3 parameters and all the 3 

parameters are identified; the Burgers model consists of 4 parameters and 2 

parameters are identified; the 2S2P1D model consists of 7 parameters and 3 

parameters are identified. With considering the results shown in Table 5.15, it 

can be concluded that if a more complicated viscoelastic material model is 

used, the percentage of parameters that can be identified will be smaller and 

the accuracy of parameter identification will be lower. However, a more 

complicated viscoelastic material model normally has a better simulation of 

viscoelasticity. Hence, if all the model parameters are unknown and a rough 

estimate of the complex Young’s modulus of asphalt layers is sufficient, the 

Zener model can be the choice for the identification of viscoelastic parameters 

of asphalt pavements. If the model parameters which are difficult to identify 

can be determined based on experience and an accurate estimate of the 

complex Young’s modulus of asphalt layers is expected, the 2S2P1D model 

can be the choice. 

 

Table 5.15 Performance of techniques using different viscoelastic material models 

Material models 
Typical asphalt pavement Asphalt pavement with rigid base 

Accuracy Iterations Accuracy Iterations 

Zener 100% 26 93.8% 28 

Burgers 93.8% 27 87.5% 24 

2S2P1D 84.4% 47 78.1% 52 
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5.4 Performance in processing field TSD measurements 

In this section, the performance of techniques using the Zener model and 

the 2S2P1D model in processing field TSD measurements is investigated. 

Similar to the case in Chapter 4, the field TSD measurements used for analysis 

are also the measurements at location 5.17 km on a road section near 

Copenhagen, as shown in the literature by Nielsen (2019). In addition, the 

following parameters are used to represent the whole TSD loading in the 

process of parameter identification: 

 The speed of the load  22.2 m/s 80 km/h ;c   

 The loading angular frequency 0 0 rad/s;   

 The amplitude of the load 0 707 kPa;p   

 The parameters of the loading area 1 20.6, 1.0, 8.15 m,xc c l    

0 01.82 m, 0.15 m, 0.06316 m, and 0.27432 m;yl d x y     

 The parameters of the space window 0 0 200 m.X Y   

5.4.1 Performance in identifying layer moduli 

In this part, the performance of techniques using the Zener model and the 

2S2P1D model in identifying elastic and complex moduli of asphalt pavement 

layers based on field TSD measurements is investigated. 

 

(1) Performance of the technique using the Zener model 

 

If the technique using the Zener model is employed, the parameters to be 

identified are chosen to be the static modulus, the glassy modulus, the 

viscosity constant, the Young’s modulus of base layer, and the Young’s 

modulus of subgrade. The values of other structural parameters are assumed 

to be those shown in Table 5.16. 

 

 

 

 



Chapter 5 

 

146 

Table 5.16 The values of other structural parameters 

Layers 
ξ ν ρ h 

– – kg/m3 m 

Asphalt – 0.3 2400 0.1 

Base 0.15 0.3 2000 0.3 

Subgrade 0.10 0.3 1600 Infinite 

Note: ξ is the damping ratio, ν is the Poisson’s ratio, ρ is the density, and h is the 

thickness. 

 

In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 5.17 are considered. The corresponding results 

obtained by the technique using the Zener model are shown in Table 5.18. It 

can be seen that all the cases give almost the same parameter values, which 

confirms the good convergence stability of this technique when identifying 

layer moduli of asphalt pavements. Furthermore, the comparison between case 

1 and case 2 shows that more iterations are needed to converge if the initial 

guess has a larger deviation from the right solution. Generally, a larger 

deviation between the initial guess and the right solution results in more 

iterations to converge and/or less accurate parameter values. It should be 

highlighted that if the parameter identification technique starts with an 

improper initial guess, it may converge to an incorrect solution or even not 

converge. For example, the technique using the Zener model did not converge 

if the initial guess was: E0 = 2000 MPa, E∞ = 2000 MPa, η = 10 MPaꞏs, E2 = 

100 MPa, and E3 = 100 MPa. Hence, a good set of initial guesses is important 

for the parameter identification technique to converge to the right solution. In 

addition, the average number of iterations for the considered cases is about 35, 

which indicates that the technique using the Zener model has relatively high 

convergence rate to identify the elastic and complex moduli of asphalt 

pavement layers on the basis of field TSD measurements. 

 

 

 

 



Parameter Identification of Viscoelastic Layered Systems Using Moving Loads 

 

147 

Table 5.17 Cases with different initial guesses for the identification of layer moduli 

by the technique using the Zener model 

Cases 
E0 E∞ η E2 E3 

MPa MPa MPaꞏs MPa MPa 

1 500 10000 50 100 50 

2 800 8000 50 100 50 

3 1000 5000 10 100 50 

4 2000 3000 10 100 100 

5 3000 5000 10 100 50 

 

Table 5.18 Identified layer moduli by the technique using the Zener model 

Cases 
E0 E∞ η E2 E3 Iterations 

MPa MPa MPaꞏs MPa MPa – 

1 1197.6 4684.9 20.0 147.5 57.9 56 

2 1205.0 4692.5 20.0 147.4 57.9 32 

3 1203.1 4690.6 20.0 147.4 57.9 25 

4 1207.0 4694.7 20.0 147.4 57.9 38 

5 1211.5 4699.1 19.9 147.3 57.9 25 

 

In order to check the validity of the identified parameters, the modelled 

vertical deflection slopes corresponding to the parameters identified in case 4 

are compared with the measurements, as shown in Figure 5.9. The comparison 

shows that the modelled data match well with the measured data, which 

confirms the validity of the identified parameters. Hence, the technique using 

the Zener model can be used for the identification of layer moduli of asphalt 

pavements based on field TSD measurements. 
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Figure 5.9 Comparison between modelled and measured data for the case using the 

Zener model 

 

(2) Performance of the technique using the 2S2P1D model 

 

If the technique using the 2S2P1D model is employed, the parameters to 

be identified are chosen to be the glassy modulus, the exponent hp, the 

characteristic time, the Young’s modulus of base layer, and the Young’s 

modulus of subgrade. The values of other parameters of the 2S2P1D model 

are assumed to be: E0 = 250 MPa, kp = 0.175, ζ = 2.0, and β = 320. In addition, 

the other structural parameters have fixed values shown in Table 5.16. 

In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 5.19 are considered. The corresponding results 

obtained by the technique using the 2S2P1D model are shown in Table 5.20. 

It can be seen that 4 out of 5 cases (except case 1) give almost the same 

parameter values, which indicates the relatively good convergence stability of 

this technique when identifying layer moduli of asphalt pavements. Moreover, 

the average number of iterations for the considered cases is about 80, which 

indicates that the convergence rate of this technique is not that high to identify 

the elastic and complex moduli of asphalt pavement layers based on field TSD 

measurements. In addition, it is worth mentioning that all the cases stably 

converge to almost the same Young’s moduli of the base layer and subgrade. 
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Table 5.19 Cases with different initial guesses for the identification of layer moduli 

by the technique using the 2S2P1D model 

Cases 
E∞ hp τ E2 E3 

MPa – s MPa MPa 

1 20000 0.50 5.0E-04 100 10 

2 20000 0.50 5.0E-04 100 50 

3 30000 0.50 5.0E-04 200 50 

4 30000 0.50 5.0E-04 300 100 

5 50000 0.60 3.0E-04 200 50 

 

Table 5.20 Identified layer moduli by the technique using the 2S2P1D model 

Cases 
E∞ hp τ E2 E3 Iterations 

MPa – s MPa MPa – 

1 80012.2 0.386 4.4879E-06 145.5 57.9 141 

2 21148.9 0.667 8.6834E-04 145.6 57.9 37 

3 21208.2 0.666 8.6196E-04 145.6 57.9 51 

4 24219.4 0.627 5.8315E-04 145.0 57.9 60 

5 24314.7 0.626 5.7623E-04 145.0 57.9 111 

 

To check the validity of the identified parameters, the modelled vertical 

deflection slopes corresponding to the parameters identified in case 4 are 

compared with the measurements, as shown in Figure 5.10. The good match 

between the modelled data and the measured data verifies the validity of the 

identified parameters. Hence, the technique using the 2S2P1D model can be 

used to identify the layer moduli of asphalt pavements on the basis of field 

TSD measurements. 
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Figure 5.10 Comparison between modelled and measured data for the case using the 

2S2P1D model 

 

(3) Comparison of the results of parameter identification 

 

By comparing the parameters identified by techniques using the Zener 

model and the 2S2P1D model, it can be found that the Young’s moduli of both 

base layer and subgrade identified by these two techniques are almost the same. 

Furthermore, the Young’s moduli of both base layer and subgrade identified 

by techniques for viscoelastic layered systems are slightly higher than those 

identified by the technique for elastic layered systems (the results shown in 

Section 4.4.1 of Chapter 4). 

In addition, with the parameters in case 4 identified by the technique 

using the Zener model and those in case 4 identified by the technique using 

the 2S2P1D model, the absolute values of the corresponding complex Young’s 

moduli of asphalt layers are compared, as shown in Figure 5.11. The 

comparison shows that the absolute values of the complex Young’s moduli 

simulated by the two viscoelastic material models are very close in a certain 

range of frequencies. This phenomenon is reasonable because the dynamic 

response of asphalt pavements is associated with the properties of the asphalt 

layer mainly at predominant frequencies; the predominant frequencies are 

generally between 5 and 45 Hz (Nasimifar et al., 2017). 
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Figure 5.11 Comparison of the complex Young’s moduli of asphalt layers identified 

by techniques using different viscoelastic material models 

 

From another point of view, as shown in Figure 5.12 and mentioned in 

Chapter 3, the transformation from the frequency domain related to the 

stationary coordinate system to the wavenumber-frequency domain related to 

the moving coordinate system makes the   associated with time derivatives 

become xck  , which further becomes 0 xck   after inverse Fourier 

transform with respect to   because of the existence of  0    for the 

case of a moving harmonic load. In this process, what essentially happens is 

that the   associated with time derivatives becomes 0 xck  . 

 

 
 

Figure 5.12 Expressions of the ω associated with time derivatives in different 

domains 
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Hence, when a moving harmonic load is applied on a system, the angular 

frequency excited by the load can be expressed as: 

 0e xck    (5-4) 

The angular excitation frequency e  consists of two parts, one part is 0  

which is caused by the variation of the load, the other part is xck  which is 

caused by the relative motion between the load and the system. In the process 

of calculating the inverse Fourier transform with respect to xk , a discrete 

transform with truncated values of xk  is normally used (as shown in Chapter 

2). The truncation of xk  should be sufficiently high to ensure that the 

remaining contribution is negligible. For a certain quantity (e.g. vertical 

displacement), its counterpart in the wavenumber domain has nontrivial values 

only in a limited range of wavenumbers. For example, the relationship 

between the transformed vertical displacement and wavenumber is shown in 

Figure 5.13. It is found that a discrete transform over the range of 

20 20xk    is normally sufficient to obtain accurate results of the response 

caused by a moving load, which is consistent with the statement shown in 

Lefeuve-Mesgouez et al. (2000). Hence, the range of the excitation angular 

frequency caused by a moving constant load will be 20 20ec c   . For the 

specific case in this section, the positive frequencies excited by the moving 

constant load are between 0 and 71 Hz, which confirms the statement that the 

dynamic response of asphalt pavements is associated with the properties of the 

asphalt layer mainly in the predominant frequency range. 
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(a) Real part (b) Imaginary part 

Figure 5.13 Relationship between transformed vertical displacement and 

wavenumber 

 

In conclusion, for a certain TSD measurement, different expressions of 

the complex Young’s modulus of the asphalt layer could be identified by 

techniques using different viscoelastic material models. However, these 

expressions should have similar values of the complex Young’s modulus in 

the predominant frequency range. In other words, the complex Young’s 

moduli of the asphalt layer mainly in the predominant frequency range can be 

accurately identified on the basis of TSD measurements. 

 

5.4.2 Performance in identifying layer moduli and damping ratios 

In this part, the performance of techniques using the Zener model and the 

2S2P1D model in identifying layer moduli and damping ratios of asphalt 

pavements based on field TSD measurements is investigated. 

 

(1) Performance of the technique using the Zener model 

 

If the technique using the Zener model is used, the parameters to be 

identified are chosen to be the static modulus, the glassy modulus, the 

viscosity constant, the Young’s modulus of base layer, the Young’s modulus 

of subgrade, the damping ratio of base layer, and the damping ratio of subgrade. 
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The values of other structural parameters are assumed to be the same as those 

shown in Table 5.16. 

In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 5.21 are considered. The corresponding results 

obtained by the technique using the Zener model are shown in Table 5.22. The 

results show that cases 1, 3, and 4 converge to almost the same parameter 

combination, while cases 2 and 5 converge to other parameter combinations. 

Hence, the convergence stability of the technique using the Zener model is not 

that good when identifying layer moduli and damping ratios at the same time. 

In addition, the average number of iterations for the considered cases is about 

61, which indicates that the convergence rate of this technique is not that high 

to identify both layer moduli and damping ratios. 

 

Table 5.21 Cases with different initial guesses for the identification of layer moduli 

and damping ratios by the technique using the Zener model 

Cases 
E0 E∞ η E2 E3 ξ2 ξ3 

MPa MPa MPaꞏs MPa MPa – – 

1 600 8000 50 200 100 0.05 0.05 

2 800 8000 50 100 50 0.10 0.10 

3 1000 5000 10 100 50 0.15 0.15 

4 2000 3000 10 100 100 0.20 0.20 

5 3000 5000 10 100 50 0.25 0.25 

 

Table 5.22 Identified layer moduli and damping ratios by the technique using the 

Zener model 

Cases 
E0 E∞ η E2 E3 ξ2 ξ3 Iterations 

MPa MPa MPaꞏs MPa MPa – – – 

1 117.1 4255.8 31.9 153.5 59.7 0.113 0.096 51 

2 -149.2 4186.8 36.4 153.0 60.1 0.107 0.090 61 

3 145.4 4264.0 31.4 153.5 59.6 0.114 0.097 93 

4 151.7 4263.8 31.0 153.9 59.6 0.113 0.098 69 

5 2264.0 7390.3 9.9 143.5 55.8 0.188 0.112 33 
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(2) Performance of the technique using the 2S2P1D model 

 

If the technique using the 2S2P1D model is used, the parameters to be 

identified are chosen to be the glassy modulus, the exponent hp, the 

characteristic time, the Young’s modulus of base layer, the Young’s modulus 

of subgrade, the damping ratio of base layer, and the damping ratio of subgrade. 

The values of other parameters of the 2S2P1D model are assumed to be: E0 = 

250 MPa, kp = 0.175, ζ = 2.0, and β = 320. In addition, the other structural 

parameters have the same values as those shown in Table 5.16. 

In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 5.23 are considered. The corresponding results 

obtained by the technique using the 2S2P1D model are shown in Table 5.24. 

The results show that cases 3, 4, and 5 converge to almost the same parameter 

combination, while cases 1 and 2 converge to other parameter combinations. 

Hence, the convergence stability of the technique using the 2S2P1D model is 

not that good when identifying layer moduli and damping ratios at the same 

time. In addition, the average number of iterations for the considered cases is 

about 70, which indicates that the convergence rate of this technique is not that 

high to identify both layer moduli and damping ratios. 

 

Table 5.23 Cases with different initial guesses for the identification of layer moduli 

and damping ratios by the technique using the 2S2P1D model 

Cases 
E∞ hp τ E2 E3 ξ2 ξ3 

MPa – s MPa MPa – – 

1 10000 0.60 3.0E-04 200 100 0.05 0.05 

2 20000 0.50 5.0E-04 100 50 0.10 0.10 

3 30000 0.50 5.0E-04 200 50 0.15 0.15 

4 30000 0.50 5.0E-04 300 100 0.20 0.20 

5 50000 0.80 5.0E-04 200 50 0.15 0.15 
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Table 5.24 Identified layer moduli and damping ratios by the technique using the 

2S2P1D model 

Cases 
E∞ hp τ E2 E3 ξ2 ξ3 Iterations 

MPa – s MPa MPa – – – 

1 11008.0 1.182 4.05E-03 151.7 59.8 0.114 0.095 42 

2 7123.0 -1.189 -1.21E-02 113.2 51.4 0.376 0.108 141 

3 29660.3 0.579 2.87E-04 145.4 57.6 0.154 0.102 53 

4 26854.8 0.601 3.99E-04 145.6 57.7 0.153 0.102 70 

5 25980.0 0.609 4.45E-04 145.6 57.7 0.153 0.102 45 

 

5.4.3 Performance in identifying layer moduli and thicknesses 

In this part, the performance of techniques using the Zener model and the 

2S2P1D model in identifying layer moduli and thicknesses of asphalt 

pavements based on field TSD measurements is investigated. 

 

(1) Performance of the technique using the Zener model 

 

If the technique using the Zener model is used, the parameters to be 

identified are chosen to be the static modulus, the glassy modulus, the 

viscosity constant, the Young’s modulus of base layer, the Young’s modulus 

of subgrade, the thickness of surface layer, and the thickness of base layer. 

The values of other structural parameters are assumed to be the same as those 

shown in Table 5.16. 

In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 5.25 are considered. The corresponding results 

obtained by the technique using the Zener model are shown in Table 5.26. The 

results show that cases 2, 3, and 5 converge to almost the same parameter 

combination, while cases 1 and 4 converge to other parameter combinations. 

Hence, the convergence stability of the technique using the Zener model is not 

that good when identifying layer moduli and thicknesses at the same time. In 

addition, the average number of iterations for the considered cases is about 
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233, which indicates that the convergence rate of this technique is not that high 

to identify both layer moduli and thicknesses. 

 

Table 5.25 Cases with different initial guesses for the identification of layer moduli 

and thicknesses by the technique using the Zener model 

Cases 
E0 E∞ η E2 E3 h1 h2 

MPa MPa MPaꞏs MPa MPa m m 

1 500 6000 50 300 100 0.05 0.25 

2 800 8000 50 100 50 0.10 0.20 

3 1000 5000 10 100 50 0.15 0.25 

4 1500 3000 100 300 50 0.20 0.20 

5 2000 3000 10 100 100 0.20 0.30 

 

Table 5.26 Identified layer moduli and thicknesses by the technique using the Zener 

model 

Cases 
E0 E∞ η E2 E3 h1 h2 Iterations 

MPa MPa MPaꞏs MPa MPa m m – 

1 -57.6 18652.5 129.5 216.6 58.7 0.056 0.247 109 

2 235.8 784.1 1.3 71.9 20.1 0.286 2.261 299 

3 235.8 784.3 1.3 71.9 20.1 0.286 2.259 242 

4 7127.4 1416.4 109.7 421.9 59.1 0.105 0.076 257 

5 235.7 782.9 1.3 71.8 19.3 0.287 2.296 259 

 

(2) Performance of the technique using the 2S2P1D model 

 

If the technique using the 2S2P1D model is used, the parameters to be 

identified are chosen to be the glassy modulus, the exponent hp, the 

characteristic time, the Young’s modulus of base layer, the Young’s modulus 

of subgrade, the thickness of surface layer, and the thickness of base layer. 

The values of other parameters of the 2S2P1D model are assumed to be: E0 = 

250 MPa, kp = 0.175, ζ = 2.0, and β = 320. In addition, the other structural 

parameters have the same values as those shown in Table 5.16. 
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In the process of parameter identification, 5 cases with different initial 

guesses shown in Table 5.27 are considered. The corresponding results 

obtained by the technique using the 2S2P1D model are shown in Table 5.28. 

The results show that cases 1 and 2 converge to almost the same parameter 

combination, while cases 3, 4, and 5 converge to other parameter combinations. 

Hence, the convergence stability of the technique using the 2S2P1D model is 

not that good when identifying layer moduli and thicknesses at the same time. 

In addition, the average number of iterations for the considered cases is about 

244, which indicates that the convergence rate of this technique is not that high 

to identify both layer moduli and thicknesses. 

 

Table 5.27 Cases with different initial guesses for the identification of layer moduli 

and thicknesses by the technique using the 2S2P1D model 

Cases 
E∞ hp τ E2 E3 h1 h2 

MPa – s MPa MPa m m 

1 10000 0.60 3.0E-04 200 100 0.30 0.40 

2 30000 0.50 5.0E-04 200 50 0.15 0.25 

3 30000 0.50 5.0E-04 300 100 0.20 0.30 

4 40000 0.80 1.0E-03 200 80 0.20 0.20 

5 50000 0.50 5.0E-04 200 50 0.20 0.40 

 

Table 5.28 Identified layer moduli and thicknesses by the technique using the 

2S2P1D model 

Cases 
E∞ hp τ E2 E3 h1 h2 Iterations 

MPa – s MPa MPa m m – 

1 2530.9 0.996 6.58E-04 72.3 20.8 0.276 2.205 242 

2 2498.3 1.000 6.73E-04 72.3 20.9 0.276 2.198 344 

3 43074.1 -0.794 -1.76E-02 84.2 24.9 0.075 1.660 227 

4 54758.6 -0.193 -9.25E-04 215.8 59.3 0.062 0.238 179 

5 38749.9 -0.748 -2.41E-02 80.6 22.8 0.080 1.803 229 
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5.4.4 Performance comparison 

According to the results presented above, the performance of techniques 

using the Zener model and the 2S2P1D model in identifying different 

parameters based on field TSD measurements is compared in this part. The 

accuracy and number of iterations for different techniques to identify different 

parameters are summarised in Table 5.29. It can be seen that only identifying 

layer moduli has higher accuracy than identifying both layer moduli and 

damping ratios (or both layer moduli and thicknesses). Hence, for the purpose 

of practical application, it is recommended to only identify elastic and 

complex layer moduli of asphalt pavements. 

 

Table 5.29 Performance of techniques in identifying different parameters 

Types 
Zener model 2S2P1D model 

E E and ξ E and h E E and ξ E and h 

Accuracy 5/5 3/5 3/5 4/5 3/5 2/5 

Iterations 35 61 233 80 70 244 

Note: E is the Young’s modulus, ξ is the damping ratio, and h is the thickness. 

 

5.5 Conclusions 

In this chapter, with employing the modified Levenberg-Marquardt 

algorithm using all the 9 detection points (LM-9), the suitability of different 

viscoelastic material models for the parameter identification of viscoelastic 

layered systems using moving loads is investigated. The results show that the 

Zener model can be used to simulate the asphalt layer if all the model 

parameters are unknown and a rough estimate of the complex Young’s 

modulus of the asphalt layer is sufficient, while the 2S2P1D model can be used 

if the model parameters which are difficult to identify (such as E0, kp, ζ, and β) 

can be determined based on experience and an accurate estimate of the 

complex Young’s modulus of the asphalt layer is expected. However, no 

matter which viscoelastic material model is used, the identified complex 

Young’s moduli of the asphalt layer should be similar in the predominant 
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frequency range (about 0 to 70 Hz for moving constant loads), because the 

dynamic response of asphalt pavements is associated with the properties of the 

asphalt layer mainly at these frequencies. In other words, the complex 

Young’s moduli of the asphalt layer can be accurately identified based on 

measurements of the Traffic Speed Deflectometer (TSD) test mainly in the 

predominant frequency range. In addition, the combination of the theoretical 

viscoelastic model and the LM-9 has good performance in processing field 

TSD measurements to identify the elastic and complex layer moduli of asphalt 

pavements. 
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Conclusions and Recommendations 

 

 
“Every new beginning comes from other beginnings’ end.” 

— Lucius Annaeus Seneca (ca. 4 BC - 65 AD) 
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6.1 Conclusions 

The bearing capacity of highways and airport runways can be elegantly 

evaluated by using Non-Destructive Testing (NDT) methods. A widely used 

NDT device for the structural evaluation of pavements is the Falling Weight 

Deflectometer (FWD). However, the FWD is a stationary measuring device, 

so it is not that convenient and cost-effective to be used for measuring long 

pavement sections. To overcome the limitations of FWD, some devices which 

can conduct continuous measurements of pavements have been developed, 

such as the Curviamètre, the Rapid Pavement Tester (Raptor), the Rolling 

Wheel Deflectometer (RWD), the Traffic Speed Deflectometer (TSD), and so 

on. These devices have higher measuring efficiency because they can measure 

the surface response of pavements caused by a moving load at normal driving 

speeds. The application of the continuous measuring devices for pavement 

structural evaluation has drawn a lot of interests and investments from both 

academia and industry. However, the lack of a commonly accepted parameter 

identification technique hinders the wide application of these devices. To 

tackle this problem, this dissertation focuses on developing a parameter 

identification technique for the TSD test of pavements, which can also be used 

for other continuous measuring devices after minor modifications. 

The desired parameter identification technique for the TSD test should be 

mechanically correct to be able to capture the dynamic nature of the test and 

computationally efficient for the purpose of daily engineering application. In 

order to achieve this goal, a theoretical model for elastic layered systems under 

moving loads is first formulated based on the Spectral Element Method (SEM). 

Then, this elastic theoretical model is modified to a theoretical model for 

viscoelastic layered systems under moving loads by incorporating the complex 

Young’s modulus derived from viscoelastic material models. Next, a 

minimisation algorithm which works best with the elastic theoretical model to 

identify parameters of elastic layered systems is selected. At last, the selected 

minimisation algorithm is combined with different theoretical models of 

viscoelastic layered systems, and the performance of these combinations in 

identifying parameters of viscoelastic layered systems is investigated to 

choose the combination suitable for practical application. 



Conclusions and Recommendations 

 

165 

According to the work conducted in Chapters 2 and 3, the following 

conclusions related to the theoretical modelling of the TSD test can be drawn: 

(1) The SEM-based theoretical model can accurately and efficiently 

predict the response of layered systems subjected to moving loads. By using 

the SEM, different spectral elements are developed to exactly describe the 

response of a layer/half-space, which ensures the accuracy of the developed 

model. Because of the exact description of response, a single element suffices 

to simulate a whole layer/half-space. Consequently, the number of elements 

needed to simulate a layered system is the same as the number of layers 

involved. This feature reduces the computational time significantly. For 

instance, one run of the SEM-based theoretical model takes about 2 minutes 

on an Intel-based PC. 

(2) When considering the response only caused by the right rear wheel 

pair of the TSD vehicle, the vertical deflection curve of a purely elastic layered 

system is totally symmetric and the maximum deflection appears at the centre 

of the loading area; while the vertical deflection curve of an elastic layered 

system with hysteretic damping is asymmetric and the maximum deflection 

appears slightly behind the centre of the loading area. In addition, when 

considering the response caused by the whole TSD loading, it is found that the 

response at the points around the right rear wheel pair is significantly affected 

by the other wheel pair on the same axle, while it is slightly affected by the 

wheel pairs on the front axle. 

(3) The theoretical model of viscoelastic layered systems can be obtained 

by replacing the elastic Young’s modulus in the theoretical model of elastic 

layered systems with the complex Young’s modulus derived from viscoelastic 

material models. In addition, the effect of the viscous damping on the response 

of layered systems caused by moving loads is similar to that of the hysteretic 

damping. 

According to the work conducted in Chapters 4 and 5, the following 

conclusions related to the parameter identification based on the TSD test can 

be drawn: 

(1) Among all the investigated minimisation algorithms, the modified 

Levenberg-Marquardt algorithm using all the 9 detection points (LM-9) is 

found to be the most suitable one for the parameter identification of layered 
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systems using moving loads. In addition, the combination of the LM-9 and the 

theoretical model of elastic/viscoelastic layered systems under moving loads 

has good performance in processing field TSD measurements to identify 

elastic and/or complex layer moduli of pavements. 

(2) In the proposed parameter identification technique for viscoelastic 

layered systems under moving loads, the Zener model can be used to simulate 

the asphalt layer if all the model parameters are unknown and a rough estimate 

of the complex Young’s modulus of the asphalt layer is sufficient, while the 

2S2P1D model can be used if the model parameters which are difficult to 

identify (such as E0, kp, ζ, and β) can be determined based on experience and 

an accurate estimate of the complex Young’s modulus of the asphalt layer is 

expected. However, no matter which viscoelastic material model is used, the 

complex Young’s moduli of the asphalt layer identified from TSD 

measurements should be similar in the predominant frequency range (about 0 

to 70 Hz), because the dynamic response of asphalt pavements caused by 

moving loads is mainly associated with the properties of the asphalt layer at 

these frequencies. In other words, the complex Young’s moduli of the asphalt 

layer can be accurately identified based on TSD measurements mainly in the 

predominant frequency range. 

6.2 Recommendations 

In this study, parameter identification techniques for elastic/viscoelastic 

layered systems subjected to moving loads were developed. On the basis of 

the experience gained in this process, the following recommendations which 

could be helpful to further academic research and/or engineering application 

are made: 

(1) It is recommended to carry out more engineering validation on the 

performance of the proposed TSD test-based parameter identification 

technique to accumulate experience for practical application. 

(2) It is recommended to make use of all the known information of the 

evaluated pavement to reduce the solution space as much as possible. 

(3) It is recommended to use more than one set of initial guesses of the 

unknown parameters to obtain the most likely solution. 
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(4) It is recommended to install more sensors on TSD vehicles to measure 

the response of more detection points, which enables to identify more 

parameters and helps to improve the accuracy of identified parameters. 

(5) It is recommended to enable TSD vehicles to apply a varying load on 

pavements and measure the vertical deflection slopes of different detection 

points at different times, which makes it possible to develop a more accurate 

and efficient parameter identification technique. 

(6) It is recommended to conduct TSD tests on asphalt pavements at 

different temperatures to identify the complex Young’s moduli of the asphalt 

layer in the predominant frequency range at different temperatures, which can 

be used to construct the master curves of the asphalt layer based on the time-

temperature superposition principle (TTSP); the constructed master curves can 

be compared with those obtained from laboratory tests for further validation. 

In addition, the fact that TSD measurements contain inevitable noise 

should be considered. The source of the noise can be: (a) the measuring system 

of TSD vehicles, such as the electronic parts, the mechanical parts, the data 

processing parts, and so on; (b) the physical nature of pavement structures, 

such as the roughness of pavement surfaces, the inhomogeneity of materials, 

the debonding between pavement layers, and so on; (c) the human factors in 

the TSD test, such as the variation of the driving speed, the change of the 

driving direction, and so on. Hence, it is more reasonable to include the effect 

of noise in the process of parameter identification, which can be achieved by 

introducing an error factor such that: 

   n f a e 0  (6-1) 

where  f a  is the function of interest in the minimisation process and ne  is 

the error factor representing the effect of noise (the subscript “n” means noise). 

The dimension of the error factor is the same as the number of detection points. 

The quantification of the error factor should be further investigated because it 

needs a lot of practical experience about the TSD test. By incorporating this 

modification, a robust, accurate, and efficient parameter identification 

technique for TSD tests of pavements can be produced. 
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Summary 

An elegant approach to evaluate the quality of engineering structures is the Non-

Destructive Testing (NDT). In the field of pavement engineering, a promising NDT 

method for pavement structural evaluation at network level is the Traffic Speed 

Deflectometer (TSD) test, which can continuously measure the surface response of 

pavements caused by moving loads at normal driving speeds. However, the wide 

application of the TSD test has been hindered by the lack of a commonly accepted 

parameter identification technique to process TSD measurements. To tackle this 

problem, this dissertation aims to formulate a mechanically correct, numerically 

accurate, and computationally efficient parameter identification technique 

specifically for the TSD test of pavements. 

The developed parameter identification technique is the combination of a 

theoretical model of the TSD test and a minimisation algorithm. The unknown 

parameters can be identified by minimising the differences between modelled and 

measured response of pavements. At first, a theoretical model for elastic layered 

systems subjected to moving loads is formulated based on the Spectral Element 

Method (SEM). This model is further modified to a theoretical model for viscoelastic 

layered systems subjected to moving loads by incorporating the complex Young’s 

modulus derived from viscoelastic material models. Then, a minimisation algorithm 

which is suitable for the parameter identification of elastic layered systems is selected. 

At last, viscoelastic material models which are suitable for the parameter 

identification of viscoelastic layered systems are recommended. 

The conducted work shows that the SEM-based theoretical models can 

accurately and efficiently predict the response of layered systems caused by moving 

loads. Furthermore, among all the investigated minimisation algorithms, the modified 

Levenberg-Marquardt algorithm (using all the 9 detection points) is the most suitable 

one for the parameter identification of layered systems using moving loads. Moreover, 

either the Zener model or the 2S2P1D model can be used in the viscoelastic parameter 

identification technique to accurately identify the complex Young’s moduli of the 

asphalt layer in the predominant frequency range. In addition, for the purpose of 

engineering application, it is recommended to only identify complex and/or elastic 

layer moduli of pavements based on TSD measurements. 

In conclusion, the parameter identification techniques developed in this study 

are promising tools for the identification of elastic and/or viscoelastic parameters of 
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pavements based on TSD measurements. This work contributes to the development 

of engineering techniques for pavement structural evaluation at network level. 
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Samenvatting 

Een elegante benadering om de kwaliteit van bouwconstructies te evalueren is 

de Niet-Destructieve Test (NDT). Op het gebied van de wegbouwkunde is de Traffic 

Speed Deflectometer (TSD)-test, die continu de oppervlakterespons van het wegdek 

veroorzaakt door bewegende lasten bij normale rijsnelheden kan meten, een 

veelbelovende NDT-methode voor de evaluatie van wegconstructies op 

netwerkniveau. De brede toepassing van de TSD-test werd echter belemmerd door 

het ontbreken van een algemeen aanvaarde parameteridentificatietechniek om TSD-

metingen te verwerken. Om dit probleem aan te pakken, heeft dit proefschrift tot doel 

een mechanisch correcte, numeriek nauwkeurige en rekenkundig efficiënte 

parameteridentificatietechniek te formuleren, specifiek voor de TSD-test van 

wegconstructies. 

De ontwikkelde parameteridentificatietechniek is de combinatie van een 

theoretisch model van de TSD-test en een minimaliseringsalgoritme. De onbekende 

parameters kunnen worden geïdentificeerd door de verschillen tussen de 

gemodelleerde en gemeten respons van wegconstructies te minimaliseren. In eerste 

instantie wordt een theoretisch model voor elastische gelaagde systemen, die worden 

onderworpen aan bewegende belastingen, geformuleerd op basis van de Spectral 

Element Method (SEM). Dit model wordt verder aangepast tot een theoretisch model 

voor visco-elastisch gelaagde systemin, die worden onderworpen aan bewegende 

belastingen, door gebruik van de complexe Young's modulus afgeleid uit visco-

elastische materiaalmodellen. Vervolgens wordt een minimaliseringsalgoritme 

geselecteerd dat geschikt is voor de parameteridentificatie van elastische gelaagde 

systemen. Tenslotte worden visco-elastische materiaalmodellen aanbevolen die 

geschikt zijn voor de parameteridentificatie van visco-elastisch gelaagde systemen. 

Het uitgevoerde werk laat zien dat de op SEM gebaseerde theoretische modellen 

nauwkeurig en efficiënt de respons van gelaagde systemen, die wordt veroorzaakt 

door bewegende lasten, kunnen voorspellen. Bovendien is van alle onderzochte 

minimaliseringsalgoritmen het gemodificeerde Levenberg-Marquardt-algoritme (met 

alle 9 detectiepunten) het meest geschikt voor de parameteridentificatie van gelaagde 

systemen onder bewegende lasten. Bovendien kan het Zener-model of het 2S2P1D-

model worden gebruikt in de visco-elastische parameteridentificatietechniek om de 

complexe Young's moduli van de asfaltlaag in het bepalende frequentiebereik 

nauwkeurig te identificeren. Daarnaast wordt voor technische toepassingen 
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aanbevolen om alleen complexe en/of elastische laagmoduli van asfaltlagen te 

identificeren op basis van TSD-metingen. 

Concluderend, de in deze studie ontwikkelde parameteridentificatietechnieken 

zijn veelbelovende tools voor de identificatie van elastische en/of visco-elastische 

parameters van asfaltlagen op basis van TSD-metingen. Dit werk draagt bij aan de 

ontwikkeling van praktische technieken voor de evaluatie van wegconstructies op 

netwerkniveau. 
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