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Generating entanglement between distributed network nodes is a prerequisite for the quantum internet. Entan-
glement distribution protocols based on high-dimensional photonic qudits enable the simultaneous generation
of multiple entangled pairs, which can significantly reduce the required coherence time of the qubit registers.
However, current schemes require fast optical switching, which is experimentally challenging. In addition,
the higher degree of error correlation between the generated entangled pairs in qudit protocols compared
to qubit protocols has not been widely studied in detail. We propose a qudit-mediated entangling protocol
that completely circumvents the need for optical switches at the expense of a lower success probability of
the scheme. Furthermore, we quantify the amount of error correlation between the simultaneously gener-
ated entangled pairs and analyze the effect on entanglement purification algorithms and teleportation-based
quantum error correction. We find that optimized purification schemes can efficiently correct the correlated
errors, while the quantum error correction codes studied here perform worse than for uncorrelated error
models.

DOI: 10.1103/PhysRevResearch.6.023075

I. INTRODUCTION

Quantum networking enables new primitives such as
information-theoretically secure communication [1], quantum
sensing networks [2–4], and distributed quantum computation
[5–7]. Furthermore, it provides a promising route towards
scalable quantum computers via modular designs [8]. A
prerequisite for these applications is the distribution of high-
fidelity entanglement between the network nodes to enable
the reliable transfer of quantum information by quantum
teleportation.

Entanglement purification [9,10] and quantum error cor-
rection [11,12] are promising means to suppress the effect
of noise in the generation of entanglement. Both methods
require the generation of many entangled pairs between the
nodes, which are combined to enable high-fidelity transfer of
quantum information.

Recently, several entanglement distribution protocols
based on time-bin photonic qudit encoding were proposed
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for the simultaneous generation of multiple entangled pairs
between network nodes [13–16]. In general, they follow the
setup outlined in Fig. 1. First, a single-photonic qudit encoded
in time bins is entangled with Alice’s qubit registers. The pho-
ton is transmitted to Bob, where the same entangling operation
is performed. A successful run of the protocol is heralded by
the detection of the photon via a high-dimensional X -basis
measurement. If a photon is detected, all qubits in the registers
of Alice and Bob are entangled. This contrasts with conven-
tional schemes based on photonic qubits, where entangled
pairs are generated independently of each other. This leads to
conventional schemes having much more demanding require-
ments on the coherence times of the qubits for the generation
of multiple entangled pairs, as discussed in Ref. [13].

A significant experimental challenge of the schemes in
Refs. [13–16] is the requirement of fast optical switches for
routing of the photon to ensure the correct interaction with
the qubits and to interfere the time bins in the final heralding
measurement of the photon. The schemes also require a single
photon to interact with all qubits, which can cause correlated
errors between the entangled pairs. The extent of correlated er-
rors and their effects on key applications such as entanglement
purification and teleportation-based error correction have not
been widely studied in detail.

In this paper, we propose a photonic qudit-mediated entan-
glement protocol that circumvents the use of optical switches,
making it more accessible to the near-term hardware. This
is obtained at the expense of the final X measurement being
inherently probabilistic. However, we show how the success
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FIG. 1. General schematic of previous photonic qudit-mediated
entanglement generation protocols [13–16]. Alice and Bob have reg-
isters with m qubits. A photonic qudit interacts first with Alice’s and
then with Bob’s qubit registers. Bob performs a high-dimensional
X -basis measurement of the photonic qudit. Heralded on the detec-
tion of a photon, m Bell pairs are generated simultaneously. Finally,
Bob classically communicates to Alice whether or not the protocol
succeeded.

probability can be boosted through a concatenated setup. We
model and characterize the effect of correlated errors on the
quality of the generated Bell pairs and apply optimized en-
tanglement purification protocols [17] to distill high-fidelity
entanglement. We also study the performance of teleportation-
based quantum error correction, focusing on the [[5,1,3]] and
[[4,2,2]] code [18–21]. We show that the optimized purifi-
cation protocols can remove the correlated errors efficiently,
while they have a more negative impact on the error correction
codes.

II. SWITCH-FREE PROTOCOL

The goal of the qudit-mediated entanglement distribution
protocol is to simultaneously generate m Bell pairs between
Alice and Bob of the form

|�+〉⊗m = 1

2m/2
(|0A0B〉 + |1A1B〉)⊗m. (1)

We show an overview of the proposed switch-free im-
plementation in Fig. 2. The need for optical switches is
circumvented in two parts of the protocol. First, previous
protocols required optical switches to ensure the correct en-
tangling procedure between the photonic time-bin qudit and
the spins. This can, however, be circumvented by replacing
the switches with local qubit rotations of the spins. Dif-
ferent from previous schemes, we let each time-bin pulse
generated by Alice interact with all register qubits of both
Alice and Bob through a single-sided cavity-mediated CZ gate
between the photon (logical states |0〉/|1〉 corresponding to
the absence/presence of the photon) and the qubits (logical
states |0〉/|1〉 corresponding to a cavity noncoupled/coupled

spin state). We further discuss the physics of the CZ

gate below.
Through single-qubit HADAMARD gates, we can control

whether or not the presence of the photon in a time-bin pulse
will flip the state of the qubit. This is because the CZ gate will
only have an effect if the qubit state has a nonzero amplitude
in the |1〉 state. Thus, there will be no effect if the qubit is
in state |0〉, while if it is prepared in state |+〉, the scattering
of the photon will flip the state to |−〉. The HADAMARD gates
will be applied at each time bin following a reversed binary
logic to flip the qubit state correspondingly. The reason for
the choice of using reversed binary logic for the encoding is
that

2m−1∑
n=0

|[n]2〉A|[n]2〉B = (|0A0B〉 + |1A1B〉)⊗m, (2)

where [n]2 is the inverse of the binary formation of i in digit
size m, for example, when m = 3, [0]2 → 000, [1]2 → 100,
[2]2 → 010, [3]2 → 110, etc. The reversed binary logic thus
ensures compatibility with the conventional bit ordering of the
register qubits. We note that this choice is, however, arbitrary
and standard binary encoding could also be used.

Second, we circumvent the use of optical switches in the
final photonic X measurement by replacing the switches
with passive beam splitters and delay loops. This results in
a nonzero, heralded failure probability of the measurement.
Nonetheless, the success probability can be boosted through a
concatenated array of beam splitters and delay lines.

We now go through the steps of the protocol in more detail.
First, Alice generates a time-bin photonic qudit with dimen-
sion 2m, where m is the number of entangled pairs we want to
generate. We model this generation assuming a cavity-assisted
Raman scheme similar to the approach in Ref. [22].

We consider a three-level system consisting of two stable
ground states |g0〉, |g1〉 and one excited state |e1〉. The tran-
sition |e1〉 ↔ |g1〉 is coupled to an optical cavity for efficient
photon extraction, while the transition |e1〉 ↔ |g0〉 is driven
by a pulsed laser.

The system is initialized in state |g0〉. At each time bin,
we drive with pulsed excitation such that there is a small
probability that the system is transferred from the ground state
|g0〉 to |g1〉 with the emission of a cavity photon. By carefully
tuning the amplitude of the driving pulses, a time-bin encoded
photonic qudit of the following form will be emitted in the
ideal case:

|ψ〉ph =
2m−1∑
n=0

αn|n〉ph, (3)

where |n〉ph denotes a single photon in the nth time bin and
vacuum in the rest.

The amplitudes αn ∈ R+ can be tuned through the ampli-
tude of the driving pulses. This becomes important later on as
the probabilistic time-bin erasure step at the end of the entan-
glement generation protocol will affect the amplitude of the
time bins differently. This, as well as the general asymmetric
loss in the setup, can be compensated by tuning the initial
amplitudes. We discuss the exact form of αn below.

Next, the generated photonic qudit interacts with the qubits
in Alice’s register. This interaction ensures that the photonic

023075-2



ERROR CORRELATIONS IN PHOTONIC QUDIT-MEDIATED … PHYSICAL REVIEW RESEARCH 6, 023075 (2024)

FIG. 2. The main elements of the switch-free qudit-mediated entangling protocol. On the top left, we show the qubit-qudit entangling
operation that Alice and Bob perform. The initial states of the qubits are |0〉 and HADAMARD gates are applied to specific qubits at each time
bin to ensure the correct qudit-qubit interactions. On the top right, we show the final measurement of the photon, which erases the time-bin
information and heralds successful entanglement generation. Upon arrival at the symmetric beam splitter, the photon is either reflected and
detected or transmitted and delayed by exactly one time bin. To boost the probability of a successful time-bin erasure, a concatenated series of
beam splitters and delay loops can be used, as illustrated at the bottom of the figure.

qudit is entangled with the qubits. The register qubits of Alice
and Bob are all initialized in state |0〉. Each time-bin pulse
will interact with all register qubits through a cavity-mediated
CZ gate [23,24]. This interaction ensures reflection of the
photon from the cavity-spin system with (without) a π phase
shift if the spin is in an uncoupled (coupled) state to the
cavity.

Suppose that the spin state is α|0〉 + β|1〉, where only
state |1〉 is coupled to an excited state via the cavity field.
Reflecting a single photon in the first time bin (|0〉ph) will
result in the transformation |0〉ph ⊗ (α|0〉 + β|1〉) → |0〉ph ⊗
(αr0|0〉 + βr1|1〉). Ideally, r0 = −1 and r1 = 1, which corre-
sponds to a perfect CZ gate up to a global phase.

We can control whether the scattering of a photon will flip
the state of a qubit through the application of HADAMARD

gates. This is done according to a reversed binary encoding
of the time-bin number. As an example, we consider the case
of m = 3. Starting from the initial state

∑7
n=0 αn|n〉ph|000〉,

the procedure would be as follows:
(a) At time bin |0〉ph:
(1) No HADAMARD gates applied
(2) First time-bin pulse is reflected

|0〉ph|000〉 → −|0〉ph|000〉
(3) No HADAMARD gates applied
−|0〉ph|000〉 → −|0〉ph|000〉
Resulting state: −α0|0〉ph|000〉 + ∑7

n=1 αn|n〉ph|000〉
(b) At time bin |1〉ph:
(1) Apply HADAMARD on the first qubit
(2) Second time-bin pulse is reflected
|1〉ph|+00〉 → −|1〉ph|−00〉
(3) Apply HADAMARD on the first qubit
Resulting state: −α0|0〉ph|000〉 − α1|1〉ph|100〉 +∑7
n=2 αn|n〉ph|000〉
(c) At time bin |2〉ph:
(1) Apply HADAMARD on the second qubit
(2) Third time-bin pulse is reflected
|2〉ph|0 + 0〉 → −|2〉ph|0 − 0〉
(3) Apply HADAMARD on the second qubit
Resulting state: −α0|0〉ph|000〉 − α1|1〉ph|100〉 −

α2|2〉ph|010〉
+∑7

n=3 αn|n〉ph|000〉
(d) At time bin |3〉ph:
(1) Apply HADAMARD on the first two qubits
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(2) Fourth time-bin pulse is reflected
|3〉ph|+ + 0〉 → −|3〉ph|− − 0〉
(3) Apply HADAMARD on the first two qubits
Resulting state:
−α0|0〉ph|000〉 − α1|1〉ph|100〉 − α2|2〉ph|010〉
−α3|3〉ph|110〉 + ∑7

n=4 αn|n〉ph|000〉
(e) . . .

Repeating this process for all time bins, Alice’s regis-
ter qubits will be entangled with the photonic qudit in the
following way:

|ψ〉 = α0|0〉ph|000〉 + α1|1〉ph|100〉
+ α2|2〉ph|010〉 + α3|3〉ph|110〉
+ α4|4〉ph|001〉 + α5|5〉ph|101〉
+ α6|6〉ph|011〉 + α7|7〉ph|111〉, (4)

after the scattering of the final (eighth) time bin up to a global
phase. This can be straightforwardly extended to general m.
Bob will perform the same procedure upon receiving the
transmitted qudit from Alice.

After the scattering of the final time bin at Bob’s side, the
total state of the qudit and Alice and Bob’s register qubits will
be

|ψ〉 =
2m−1∑
n=0

αn|n〉ph|[n]2〉A|[n]2〉B. (5)

Next, we need to unentangle the qudit from the spin qubits
by measuring the qudit in a manner that erases the time-bin
information. By measuring the photon, we also herald that the
protocol was successful.

A single-loop, switch-free photon measurement approach
is shown at the top right of Fig. 2. A symmetric beam splitter
will either transmit a time-bin pulse into a delay loop or reflect
it to a single-photon detector. The delay is tuned such that a
delayed time bin will interfere with the successive time bin at
the beam splitter.

To see how this can erase the time-bin information, we
consider an example with only two time bins. In this case,
a detection at a time corresponding to the second time bin will
erase the information about whether the photon was initially in
the first or second time bin. Note, however, that the process is
probabilistic since a detection at the first time bin determines
that the photon was initially in the first time bin.

This can be extended to interfering all time bins through
careful tuning of the initial qudit amplitudes, as we will
show later. However, since the photon erasure is probabilistic,
we can also connect multiple photon loops to increase the
measurement success probability, as shown in the bottom of
Fig. 2. Nevertheless, the connected delay loops lead to several
interference effects not present in the single-loop case:

(i) Destructive interference. We find that due to destructive
interference, certain detection times later than the 2m-th time
bin will not project into a superposition of 2m spin states, but
only a subset of these.

(ii) The tuning of αn depends on the specific detection time
and number of loops. For the single loop, the tuning of the
coefficients αn does not depend on the exact detection time as

long as this is later than, or at, the 2m-th time bin. However, in
the connected loops, this is not the case.

(iii) Phase correction problem. For the single loop, the
phase due to the beam-splitter transformation can always be
corrected by single-qubit gates. For the connected loops, this
is not always the case, depending on the specific detection
time and the number of loops.

We will now go through these setups in more detail and
also refer the reader to Appendix A 3 for additional informa-
tion. For a setup with s � 1 delay loops and a detection time
of u � 2m (in units of the time-bin duration), we define

Y (s, u, n) =
min[s,u−n]∑

t=1

(−1)t+1

(
s

t

)(
u − n − 1

t − 1

)
. (6)

One has to choose s and u such that Y (s, u, n) have the
same sign throughout all n, i.e.,

Y (s, u, n) > 0 or Y (s, u, n) < 0

for ∀n ∈ {0, 1, 2, . . . , 2m − 1}, (7)

to ensure that we can find suitable coefficients αn such that the
final qubit state following the photon detection is equivalent to
m copies of the Bell state |�+〉 = (|0A0B〉 + |1A1B〉)/

√
2 up to

single-qubit gate corrections. The tuning of the coefficients is
determined by

α2
n =

(
2m−1∑
k=0

2n−k

∣∣∣∣Y (s, u, n)

Y (s, u, k)

∣∣∣∣2
)−1

. (8)

In this way, after the successful photon detection, we have
the state

|ψ〉 = 1

2
m
2

m−1⊗
n=0

(|0A0B〉 + i−2n |1A1B〉), (9)

where the extra phase i−2n
can be easily corrected by applying

single-qubit gates. The probability to detect the photon at time
u is

Psucc(s, u, m) = 2m

(
2m−1∑
k=0

2s+u−k

∣∣∣∣ 1

Y (s, u, k)

∣∣∣∣2
)−1

. (10)

It is important to note that in the single-loop case of s = 1,
there are no interference effects and measuring every time bin
after time bin 2m − 1 leads to success. Therefore, one can find
that in this case, the measurement always succeeds when u �
2m, and the success probability for the single-loop scenario
should be the sum over all Psucc(s = 1, m, u � 2m).

To illustrate the increase in probability by connecting more
loops, we have plotted the success probabilities of measure-
ments under both single loops and interconnected loops in
Fig. 3. In this plot, we demonstrate that connecting loops can
substantially enhance the success probability, especially for a
larger number of Bell pairs, despite the fact that in the single-
loop cases, all instances where u � 2m can be considered as
successful. We note that we have not included loss in the
optical elements and delay lines so far. We will discuss the
effect of this in the following section. We also refer the reader
to Fig. 9 in Appendix A 3 for a version of Fig. 3 with loss
included.
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FIG. 3. The photon measurement success probability for a single
loop and concatenated loops. For the single loop, the success proba-
bility is the sum over all Psucc(s = 1, m, u � 2m ). For the connected
loops, the success probability shown here is the maximum probabil-
ity within the ranges of (s, u) shown above. The optimal (s, u) for
each number of entangled pairs is marked on the plot.

III. ERROR ANALYSIS AND ERROR CORRELATIONS

So far, we have not considered the effect of noise and
general experimental imperfections. These will affect both
the success probability of the protocol and the fidelity of the
generated Bell pairs. To analyze this, we model the effect
of the following possible imperfections on our protocol: (1)
imperfections in the generation of the photonic qudit due
to phase and amplitude fluctuations of the laser drive, (2)
dephasing of the photonic qudit due to phase instability of the
optical circuit including the photonic X-basis measurement,
(3) imperfect cavity scattering in the spin-photon CZ gate, (4)
single-qubit gate errors, (5) spin qubit decoherence, and (6)
photon losses. We model both phase fluctuations of the laser
drive and the general dephasing from optical instability as
random varying phases of the time-bin pulses as discussed in
Appendix A 1.

Photon loss is different from the other imperfections as we
herald the detection of a photon. In our analysis, we assume
that dark counts are negligible and the loss is accurately char-
acterized such that we can compensate for the effect on the
fidelity of the generated entanglement by tuning the initial am-
plitudes of the photonic qudit (see Appendix A 3 for details).
Photon loss will therefore only affect the success probability
of the protocol.

The other imperfections will decrease the fidelity of the
generated Bell pairs since they are not heralded. Moreover,
they can lead to correlated errors, which means that some
errors may be propagated to multiple generated Bell pairs.
This can occur since all register qubits are entangled with
one single photon and any imperfections of the photon and
operations may lead to correlated errors. The details of our
error modeling are presented in Appendix A. The decrease in

the average fidelity of the generated Bell pairs is shown in
Fig. 4(a) for a specific range of error parameters.

To quantify the amount of error correlation between the
Bell pairs, we use the following approach. Suppose the prob-
abilities that a Pauli error happens on qubits a and b are εa(	
1) and εb(	 1), respectively, while the probability that a Pauli
error happens on both qubits a and b is εab. If εab = εaεb, the
errors on qubits a and b are independent and we call them “un-
correlated” throughout this paper, while if εab 
= εaεb holds,
the errors are dependent and we refer to them as “correlated”
errors.

In general, an independent error model is of the form

ρuncorrelated = 	2m[. . . (	3{	2[	1(ρperfect )]})], (11)

where 	 denotes the corresponding Pauli error channel
(I, X,Y, Z ) on each register qubit (2m in total). In this case,
multiqubit errors happen with very low probability since
εab 	 εa, εb. However, if εab 
= εaεb, the errors among the
pairs are correlated. We quantify the amount of error corre-
lations for the qudit-mediated entanglement generation in the
following way.

Let ρcorrelated be the output density matrix of the qubits
after a successful entanglement generation of the qudit pro-
tocol for a specific choice of error parameters. The fidelity
between this state and the perfect output state (collec-
tion of m Bell pairs) is denoted by F (ρcorrelated ). Similarly,
the fidelity between the perfect state and the output of
the uncorrelated error channel in (11) is F (ρuncorrelated ).
We then let Tmin = min	 T (ρuncorrelated, ρcorrelated ) such that
|F (ρcorrelated ) − F (ρuncorrelated )| � ε for sufficiently low ε (we
choose ε = 10−4 in this work) quantify how large the error
correlation is.

Figure 4(b) shows how the amount of error correlations
in the qudit protocol increases as the general errors increase.
Furthermore, we see how the amount of correlation increases
with the number of pairs. In the following two sections, we
consider two strategies for mitigating the effect of the errors
and obtain high-fidelity Bell pairs: entanglement purification
and quantum error correction.

IV. PURIFICATION PERFORMANCE

Entanglement purification is a method that aims to produce
one (or possibly more) high-fidelity entangled pair(s) from a
collection of noisy pairs [9,10,15,25]. It is a key element to
reducing noise in first-generation quantum repeaters [26].

To search for optimal purification protocols, we use the
evolutionary algorithm from Ref. [17], which enables m-to-
one purification for any number of generated noisy Bell pairs,
m. Note that in this work, we adapt the original protocol
in Ref. [17] to a single-round scheme, which only uses si-
multaneously generated Bell pairs, instead of repeating the
purification for many rounds with fewer pairs. Therefore,
when multiple pairs are successfully generated simultane-
ously, we find the optimal local operations and classical
communication (LOCCs) on all 2m local registers that output
one higher-fidelity entangled pair, with the other m − 1 pairs
measured out eventually. For the details of the purification
protocol that we implement in our work, we refer the reader
to Appendix B. The performance of the optimized purification

023075-5
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FIG. 4. (a) Raw fidelity of the generated Bell pairs using the switch-free qudit protocol. (b) Error correlations under the specified error
environment. One can notice that in (a) and (b), the raw fidelity will decrease and the error correlations will grow when increasing errors and
the number of generated pairs.

circuits is shown in Figs. 5(a) and 5(b). We see that the
purification protocol successfully produces a higher-fidelity
entangled pair from the collection of noisy pairs.

We also investigate how well this optimized purification
protocol can mitigate the error correlations. For each error
data point, we find the matching uncorrelated error channel
following the approach outlined in Sec. III. We find the opti-
mal purification protocol for the uncorrelated error channel
and compare it with the performance of the optimized pu-
rification of the qudit-mediated entangled state. The result
is shown in Fig. 5(a). We see that for the purification of a
few pairs, the purification of the qudit-mediated entanglement
performs slightly worse. However, the performance differ-
ence decreases as the number of pairs increases since the

purification circuit has more freedom to target the dominant
error terms. Thus, it seems that optimizing the purification
circuit allows one to target the dominant errors regardless
of whether or not they are correlated. Note that we assume
perfect operations in the purification circuit in Figs. 5(a) and
5(b) to focus on the ability to target the errors from the entan-
glement generation procedure.

V. TELEPORTATION-BASED QUANTUM
ERROR CORRECTION

Teleportation-based quantum error correction is another
method to correct for noisy connections in a quantum net-
work, as exploited in so-called second-generation quantum

FIG. 5. (a) Purified fidelity for error-correlated and error-uncorrelated pairs, and (b) purification success probability under the specified
error environment shown below. The error range is the same as in Fig. 4. For the purification plots (a) and (b), one can see an obvious fidelity
increase after the purification [the raw pair fidelity has been shown in Fig. 4(a)]. The error range shown in the plot is the same as in Fig. 4.
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FIG. 6. The performance of teleportation-based [[5,1,3]] and [[4,2,2]] codes under the switch-free implementation. For each code, we
simulate the infidelity of the transmitted message against the Bell pair infidelity. The blue dots correspond to direct message teleportation, i.e.,
without encoding and using a single Bell pair. The orange and green dots correspond to the correction code, teleported by multiple Bell pairs
with correlated (output from the realistic correlated error model of the switch-free qudit protocol) and uncorrelated error models, respectively.
The [[4,2,2]] code can only detect and not correct errors; thus we also show the probability that the code fails to detect an error in the inset on
the right. Here, we assume perfect encoding and decoding operations.

repeaters [11,12,26] and modular quantum computing [27].
In the teleportation-based setting, Alice wishes to teleport an
encoded message to Bob via multiqubit quantum teleportation
[28,29] requiring the simultaneous availability of multiple
entangled pairs [18–21].

We consider two simple codes: the [[5,1,3]] and the
[[4,2,2]] codes requiring five and four Bell pairs, respectively,
for teleportation. The former is the smallest code that can per-
form quantum error correction [30], and the latter only detects
the errors due to its limited code space [31]. The Bell pairs
are generated with the qudit protocol and we assume perfect
operations in the encoding and decoding of the message to
focus on the ability of the code to correct errors from the noisy
Bell pairs.

The simulation results are shown in Fig. 6, where we com-
pare the fidelity of the encoded transmission to the fidelity
of teleporting unencoded qubits. We sample the qubit states
(one-qubit teleportation for the [[5,1,3]] code and two-qubit
teleportation for the [[4,2,2]] code) to be teleported at ran-
dom, and each data point denotes the average result over all
sampled random cases. Notably, for the [[5,1,3]] code, there
is a threshold above which the encoding performs worse than
the unencoded transmission. We find the threshold around a
Bell pair infidelity of ∼10−3. Such a threshold is always found
for quantum error correcting codes since, for high enough
error rates, the error correction process adds more errors than
it removes. Thus, above this threshold, the net total error
increases. For the [[4,2,2]] code, however, we see that tele-
porting the perfect code will always win if we only consider
the transmitted message fidelity. However, since the [[4,2,2]]
code cannot correct the errors but only detect them, the trans-
mitted message will fail if an error is detected, resulting in a
nondeterministic transfer.

We also investigate the effect of correlated errors on the
performance of the error correction, following the same ap-
proach as for entanglement purification. We see from Fig. 6
that the codes perform worse on the error-correlated states.

In contrast to the purification circuit, these codes are also not
designed for correlated errors, which might be a subject for
further study.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a different implementation
of a qudit-mediated entanglement generation protocol that
completely circumvents the use of optical switches. Notably,
we show how probabilistic erasure of the photon time-bin
information can be implemented with passive linear optics
elements and how the success probability can be increased
through the concatenation of beam splitters and delay loops.

In previous protocols, the use of optical switches allows,
in principle, for a deterministic operation, in contrast to the
scheme considered here. In practice, fast optical switches tend
to be lossier than beam splitters, which can have close to
negligible losses. In Ref. [13], the photon erasure includes
2m − 1 fast optical switches, and 2m−1(2m − 1) delay lines.
Forgetting about the experimental difficulty in operating such
a large optical circuit, we can estimate how efficient the
optical switches need to be to surpass the efficiency of the
probabilistic scheme. To generate m Bell pairs, the photonic
qudit in Ref. [13] goes through an average of m switches. To
reach the same success probability as in Fig. 10, the efficiency
of the switches should be ∼20–30%.

In addition, we have simulated the amount of error
correlation that the qudit protocol introduces between the
simultaneously generated Bell pairs and its impact on key
applications such as entanglement purification and quantum
error correction. We found that significant error correlations
are introduced, but through optimization of the purification
circuit [17], the errors can still be efficiently targeted. For the
two quantum error correcting codes, the [[5,1,3]] and [[4,2,2]]
codes that we considered for teleportation negatively impact
the performance.
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FIG. 7. (a) Schematic of the photonic qudit. The laser pulses
drive a cavity-assisted Raman transition from the initial state |g0〉 to
|g1〉 with the emission of a photon. (b) Example of how varying the
amplitude of the laser pulses affects the amplitude of the resulting
qudit state.

Given the significantly reduced memory requirements for
the spin qubits [13], this protocol can be used to boost
the performance of current quantum hardware for quan-
tum networking. In particular, quantum repeaters, where the
distillation of high-fidelity Bell pairs through entanglement
purification is a key requisite, necessitate the availability of
multiple Bell pairs at the same point in time. Importantly,
we have shown that high-fidelity entanglement can indeed be
distilled from the simultaneously generated Bell pairs in the
qudit protocol, even in the presence of correlated errors.
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APPENDIX A: ERROR MODELS

Here we discuss the analytical error estimations for
the switch-free, qudit-mediated entanglement generation
protocol.

1. Photonic qudit generation and imperfections

At the beginning of the switch-free implementation, Alice
should generate a photonic time-bin qudit with 2m pulses.
We consider a Raman scheme for photonic qudit generation,
which has been experimentally realized in quantum dot [32]
and silicon-vacancy diamond systems [22]. The setup is
shown in Fig. 7(a). We initialize the emitter in state |g0〉. At
each time bin, a laser pulse drives with a tunable probability
the transition from |g0〉 to |g1〉 with the emission of a cavity
photon.

Here, we illustrate an example. Suppose we would like to
generate an eight-time-bin photonic qudit illustrated in Eq. (3)
(where m = 3) as follows:

(a) At time bin |0〉ph, the pulse P0 drives |g0〉 to |g1〉 with
the emission of |0〉ph resulting in the state

|g0〉 →
√

1 − α2
0 |g0〉|vac〉ph + α0|g1〉|0〉ph. (A1)

(b) At time bin |1〉ph, the pulse P1 drives again |g0〉 to |g1〉
with the emission of |1〉ph such that√

1 − α2
0 |g0〉|vac〉ph + α0|g1〉|0〉ph

→
√

1 − α2
0 − α2

1 |g0〉|vac〉ph + |g1〉(α0|0〉ph + α1|1〉ph).

(A2)

(c) At time bin |2〉ph, the pulse P2 drives |g0〉 to |g1〉 with
the emission of |2〉ph such that

√
1 − α2

0 − α2
1 |g0〉|vac〉ph + |g1〉

1∑
n=0

αn|n〉ph

→
√√√√1 −

(
2∑

n=0

α2
n

)
|g0〉|vac〉ph + |g1〉

2∑
n=0

αn|n〉ph. (A3)

(d) . . .

Continuing the procedures until the final time bin |7〉ph, we
will have removed all the amplitude of the |g0〉 state such that
the emitter is in state |g1〉 and the photonic state is

|ψ〉ph =
7∑

i=0

αn|n〉ph, (A4)

where
∑2m−1

n=0 α2
n = 1. This procedure can readily be extended

to any qudit dimension.
Note that at each time bin, different laser driving strengths

should be applied to generate each time-bin pulse, as shown in
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Fig. 7(b). For example, as shown for the eight-time-bin case in

Fig. 7, P0 = α2
0 , P1 = α2

1

1−α2
0
, P2 = α2

2

1−α2
0−α2

1
,..., P7 = α2

7

1−∑6
k=0 α2

k

.

For a general 2m-time-bin case, we have

P0 = α2
0 (A5)

and

Pn = α2
n

1 − ∑n−1
k=0 α2

k

for 1 � n � 2m − 1. (A6)

Imperfect cavity coupling will predominantly lead to
loss of the photon or dephasing of the qudit state through
spontaneous decay from the excited state |e1〉 followed by ree-
mission. The first can be absorbed in the general transmission
probability of the photon in the scheme. In addition, phase
and amplitude fluctuations of the laser drive can also lead to
dephasing and modulation of the amplitudes of the desired
qudit state in addition to dephasing of the spin states. More-
over, since different time bins experience different amounts
of delay, the phase instabilities will also lead to an overall
dephasing of the qudit state and therefore we absorb this
imperfection as an overall dephasing channel to the photonic
qudit, along with the laser drive noise.

All the errors considered above lead to dephasing and mod-
ulation of the amplitudes of the desired qudit state. We choose
a simplified model where we model these imperfections as
random Gaussian fluctuations applied to the laser drive since
this will lead to the same effect. The output qudit state is thus
modeled as

|ψ〉ph =
2m−1∑
n=0

√
1 + ζn

Pn
αneiθn |n〉ph

≈
2m−1∑
n=0

(
1 + ζn

2Pn

)
αneiθn |n〉ph. (A7)

For simplicity, we consider θn ∼ N (0, σ 2) and ζn ∼
N (0, 1∑2m−1

k=0 α4
k P−2

k

σ 2). This is to make sure that the total am-

plitude error gives
∑2m−1

n=0
α2

n
Pn

ζn ∼ N (0, σ 2).

2. Cavity scattering

In the main text, we discussed that after scattering of a pho-
ton, the qubit state α|0〉 + β|1〉 will become αr0|0〉 + βr1|1〉
and, ideally, r0 ≈ −1 and r1 ≈ 1, which forms a perfect
CONTROL-Z gate. In the nonideal case, however, one may con-
sider the four-level cavity system with two ground states |0〉,
|1〉 and their excited states |e0〉, |e1〉 shown in Fig. 8 [13,33–
35], as this is a good model for realistic hardware such as
quantum dots and group-IV diamond vacancy systems.

Here, we briefly introduce the model used in this work.
One may refer to Ref. [13] for more details. We denote ĉ as
the annihilation operator of the cavity field and 0 (1) as the
detuning between the transitions |0〉 ↔ |e0〉 (|1〉 ↔ |e1〉) and
the cavity mode. The coupling rate of the two transitions is g0

and g1, respectively. The Hamiltonian H of the system is

H = 0|e0〉〈e0| + 1|e1〉〈e1|
+ (g0|e0〉〈0|ĉ + h.c.) + (g1|e1〉〈1|ĉ + H.c.). (A8)

FIG. 8. The structure of a spin-photon entanglement system in
a four-level cavity [13,33–35]. âin and âout are the photonic input
and output of the cavity system, respectively. |e0〉 and |e1〉 denote
the corresponding excited states of |0〉 and |1〉. g0 and g1 are the
transition couplings. 0 and 1 are the detunings between the transi-
tion coupling and the cavity mode. γ0 and γ1 denote the spontaneous
emissions of e0 → |0〉 and e1 → |1〉, respectively.

Considering the spin-photon interaction in the weak-
driving regime, one can derive the reflection coefficients r0

(r1) for the state |0〉 (|1〉),

r0 = 1 − Kin/K

− iω
K + 1

2 + C0

− i
γ0

(ω+0 )+ 1
2

,

r1 = 1 − Kin/K

− iω
K + 1

2 + C1

− i
γ1

(ω+1 )+ 1
2

, (A9)

where Kin is the decay rate of the cavity field into the collected
mode and Kloss is the cavity loss rate. Thus, the total cavity de-
cay rate is K = Kin + Kloss. We also define the cooperativities
C0 and C1 as

C0 = |g0|2
Kγ0

, C1 = |g1|2
Kγ1

. (A10)

For example, if the atomic qubit state is in a perfect |+〉 =
1√
2
(|0〉 + |1〉), after the cavity scattering, we get the following

state (normalization omitted):

|n〉ph ⊗ 1√
2

(|0〉 + |1〉)
CS−→ |n〉ph ⊗ 1√

2
(r0|0〉 + r1|1〉),

(A11)

where n ∈ [0, 2m − 1]. Ideally, C � 1 and Kin ≈ K . Then we
have

r0 ≈ −1, r1 ≈ 1. (A12)

Therefore, in the ideal cases, this interaction will form a
CONTROL-Z gate applying to the atomic qubit in the cavity.

3. Photon measurement

a. Single delay loop

We first calculate the case where there is one delay loop in
the time-bin erasure. The right-hand side of Fig. 2(b) shows
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an overview of this setup. We write the state (5) as follows:

|ψ〉 = 1

2
m
2

2m−1∑
n=0

αn|n〉phSn

= 1

2
m
2

2m−1∑
n=0

â†
1,n|vac〉ph,nαnSn. (A13)

Here, index n denotes the time bin and Sn = |[n̄]2〉A|[n̄]2〉B.
We denote i as the imaginary unit. As shown in Fig. 2, the
indices 0, 1, 2, and 3 denote the operator positions at the four
ports of the symmetric beam splitter τ ,

τ = 1√
2

[
1 i
i 1

]
. (A14)

Therefore, for the four ports of the symmetric beam splitter
τ , we have

â†
0, j = 1√

2
(â†

2, j + iâ†
3, j ),

â†
1, j = 1√

2
(iâ†

2, j + â†
3, j ). (A15)

Here, j denotes the time bin. The delay line between â†
3, j

and â†
0, j+1 moves a pulse in time bin j to time bin j + 1.

Ideally, this achieves â†
3, j → â†

0, j+1. However, there can be

an additional probability of losing photons in the delay loop
which will affect the amplitude of the pulses. We model this
with a beam splitter with the following transfer matrix τη:

τη = 1√
2

[√
1 − η

√
η√

η −√
1 − η

]
, (A16)

where η is the probability to the lose a photon in the delay
loop. Taking into account the lossy beam splitter, we find the
following recurrence relations:

â†
3, j =

√
1 − ηâ†

0, j+1 + √
ηâ†

lost, (A17)

â†
0, j = 1√

2
(â†

2, j + i
√

1 − ηâ†
0, j+1 + i

√
ηâ†

lost ). (A18)

For the operator going to the detector [denoted as â†
2 in

Fig. 2(b)], we keep calculating the initial input operator â†
1, j

denoted by â†
2 in different time bin n. Then we have

â†
1, j =

∑
n�1

(
in−1(1 − η)

n
2

2
n+1

2

â†
2, j+n + inη

1
2 (1 − η)

n
2

2
n+1

2

â†
lost

)

+ iâ†
2, j√
2

+
√

η√
2

â†
lost. (A19)

Since â†
1, j is carrying the qubit state S j , one can calculate

the final state as

|ψ〉 =
(

i

2
1
2

α0S0

)
|0〉ph +

(
i

2
1
2

α1S1 + (1 − η)
1
2

2
α0S0

)
|1〉ph +

(
i

2
1
2

α2S2 + (1 − η)
1
2

2
α1S1 + i(1 − η)

2
3
2

α0S0

)
|2〉ph

+
(

i

2
1
2

α3S3 + (1 − η)
1
2

2
α2S2 + i(1 − η)

2
3
2

α1S1 − (1 − η)
3
2

4
α0S0

)
|3〉ph + · · · +

+
(

i√
2
αx−1Sx−1 +

x−1∑
n=1

in−1(1 − η)
n
2

2
n+1

2

αx−n−1Sx−n−1

)
|x − 1〉ph +

(
x∑

n=1

in−1(1 − η)
n
2

2
n+1

2

αx−nSx−n

)
|x〉ph

+
(

x∑
n=1

in(1 − η)
n+1

2

2
n+2

2

αx−nSx−n

)
|x + 1〉ph + · · · +

+
(

x∑
n=1

iu+n−x−1(1 − η)
u+n−x

2

2
u+n−x+1

2

αx−nSx−n

)
|u〉ph + · · · + (loss terms)

= (terms before |x〉ph) +
∞∑

u=x

iu−x(1 − η)
u−x

2

2
u−x

2

(
x∑

n=1

in−1(1 − η)
n
2

2
n+1

2

αx−nSx−n

)
|u〉ph + (loss terms), (A20)

where we denote x = 2m. Obviously, only when the detector
clicks at or after time bin x, the final qubit states can be written
in a nicely formed summation without information loss. In
order to get the compensation αn, we first define

H (n) = in−1(1 − η)
n
2

2
n+1

2

, (A21)

and it must satisfy the following relation:

|H (1)|2α2
x−1 = |H (2)|2α2

x−2 = |H (3)|2α2
x−3

= · · · = |H (x)|2α2
0 . (A22)

Therefore, we have

α2
n =

(
2

1−η

)x−n−1∑x−1
j=0

(
2

1−η

) j . (A23)

In this way, we can successfully compensate for the losses.
The extra phases can be corrected by applying phase gates on
Bob’s qubits. Therefore, we finally achieve m copies of the
Bell state |�+〉 = (|0A0B〉 + |1A1B〉)/

√
2. Note that this pho-

ton erasure approach is probabilistic instead of deterministic,
unlike the one introduced in [13]. According to (A20), the
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success probability Psucc for the switch-free implementation
is

Psucc(m) =
∞∑

k=0

(1 − η)k

2k

(
2m∑

n=1

(1 − η)n

2n+1
α2

2m−n

)

=
∞∑

k=0

2m−k−2(1 − η)k+1∑2m−1
j=0

(
2

1−η

) j . (A24)

b. Concatenated delay loops

As shown in the main text, the Psucc in the single-loop pho-
ton erasure is too low. Therefore, one may connect multiple
loops and apply the detection at the end, as shown in the bot-
tom of Fig. 2. Suppose there are s photon loops connected, and

we denote the operators in each loop as â(0)
†
, â(1)

†
, â(2)

†
,...,

̂a(s−1)
†
. Note that we have

â(k)
†

2, j = ̂a(k+1)
†

1, j, (A25)

where k ∈ {0, 1, 2, 3, . . . , s − 2}. By combining the calcula-
tions for the single loop and using (A25), we are able to

deduce that the input â(0)
†
1, j satisfies the following Pascal’s

triangle pattern:

When s = 1, the detection happens on â(0)
†
2,

â(0)
†
1, j = i√

2
â(0)

†
2, j +

∑
n(0)�1

H (n(0) )â(0)
†
2, j+n(0) + loss terms.

(A26)

When s = 2, the detection happens on â(1)
†
2,

â(0)
†
1, j = i√

2
â(0)

†
2, j +

∑
n(0)�1

H (n(0) )â(0)
†
2, j+n(0) + loss terms

= i√
2

â(1)
†
1, j +

∑
n(0)�1

H (n(0) )â(1)
†
1, j+n(0) + loss terms

=
(

i√
2

)2

â(1)
†
2, j + 2

i√
2

∑
n(0)�1

H (n(0) )â(1)
†
2, j+n(0)

+
∑

n(0),n(1)�1

H (n(0) )H (n(1) )â(1)
†
2, j+n(0)+n(1) + loss terms.

(A27)

When s = 3, the detection happens on â(2)
†
2,

â(0)
†
1, j =

(
i√
2

)2

â(1)
†
2, j + 2

i√
2

∑
n(0)�1

H (n(0) )â(1)
†
2, j+n(0) +

∑
n(0),n(1)�1

H (n(0) )H (n(1) )â(1)
†
2, j+n(0)+n(1) + loss terms

=
(

i√
2

)2

â(2)
†
1, j + 2

i√
2

∑
n(0)�1

H (n(0) )â(2)
†
1, j+n(0) +

∑
n(0),n(1)�1

H (n(0) )H (n(1) )â(2)
†
1, j+n(0)+n(1) + loss terms

=
(

i√
2

)3

â(2)
†
2, j + 3

(
i√
2

)2 ∑
n(0)�1

H (n(0) )â(2)
†
2, j+n(0) + 3

i√
2

∑
n(0),n(1)�1

H (n(0) )H (n(1) )â(2)
†
2, j+n(0)+n(1)

+
∑

n(0),n(1),n(2)�1

H (n(0) )H (n(1) )H (n(2) )â(2)
†
2, j+n(0)+n(1)+n(2) + loss terms. (A28)

One can continue the calculations and get the general formula for any s ∈ Z+,

â(0)
†
1, j =

(
s

0

)(
i√
2

)s
̂a(s−1)

†

2, j +
s∑

d=1

(
s

d

)(
i√
2

)s−d
⎡⎣ ∞∑

n(0),...,n(d−1)=1

(
d−1∏
τ=0

H (n(τ ) )

)
̂a(s−1)

†

2, j+∑d−1
k=0 n(k)

⎤⎦. (A29)

Now, we perform the actions on the state, i.e., the final state, after the detector clicks. According to the state before photon
measurement in (A13), we can calculate the resulting state for each clicking moment. Similar to the single-loop scenario, we
obtain the final state,

|ψ〉 = (terms before |x〉ph) +
(

i√
2

)s−1 ∞∑
u=x

{
x−1∑
n=0

[
min[s,u−n]∑

k=1

(−1)k+1

(
s

k

)(
u − n − 1

k − 1

)]
H (u − n)αnSn}|u〉ph + (loss terms)

= (terms before |x〉ph) +
(

i√
2

)s−1 ∞∑
u=x

{
x−1∑
n=0

[Y (s, u, n)H (u − n)αnSn]

}
|u〉ph + (loss terms)

= (terms before |x〉ph) +
∞∑

u=x

{(
is+u−2√1 − η

u

√
2

s+u

)
x−1∑
n=0

( √
2

i
√

1 − η

)n

Y (s, u, n)αnSn

}
|u〉ph + (loss terms), (A30)
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where we define

Y (s, u, k) =
min[s,u−k]∑

t=1

(−1)t+1

(
s

t

)(
u − k − 1

t − 1

)
. (A31)

Note that the index k is upper bounded by min[s, u − n]
since, practically, we do not have an infinitely large number of
loops s. Thus, some of the terms in (A29) may be truncated.
Still, we have the terms in a nicely formed summation until
the clicking time bin is at or after |x〉ph. However, it does not
guarantee that we have good states. In order to make the state
without information loss and phase correctable (i.e., the terms
before each Sn are nonzero and have the same sign), we must
choose a suitable integer set (s, u) such that Y (s, u, n) has the
same sign throughout all n, i.e.,

Y (s, u, n) > 0 or Y (s, u, n) < 0

for ∀n ∈ {0, 1, 2, . . . , x − 1}. (A32)

In this way, we can compensate for the amplitude of the
photonic pulses, which should satisfy∣∣∣∣∣Y (s, u, 0)

(1 − η)−
0
2

2− 0
2

α0

∣∣∣∣∣
2

=
∣∣∣∣∣Y (s, u, 1)

(1 − η)−
1
2

2− 1
2

α1

∣∣∣∣∣
2

=
∣∣∣∣∣Y (s, u, 2)

(1 − η)−
2
2

2− 2
2

α2

∣∣∣∣∣
2

= · · · =

=
∣∣∣∣∣Y (s, u, x − 1)
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(A33)

Therefore, according to the equation above and the normal-
ization condition

∑2m−1
n=0 α2

n = 1, we can obtain the amplitude
compensation term,

α2
n = 1∑x−1

k=0

∣∣Y (s,u,n)
Y (s,u,k)

∣∣2( 1−η

2

)k−n
. (A34)

In this way, when the detector clicks at time bin u, we can
acquire the state (9) and transform it to m copies of the Bell
state by applying phase correction single-qubit gates. Accord-
ing to (A30), when we fix the number of connected loops s
and the clicking time bin u, the corresponding photon erasure
success probability (regardless of qubit-qudit entanglement
local losses and transmission loss) is

Psucc(s, u, m) = x(1 − η)u

2s+u

1∑x−1
k=0

∣∣ 1
Y (s,u,k)

∣∣2( 1−η

2

)k
. (A35)

Note that in this case, since αn depends on u and s and
we need to generate the pulses according to αn at the very
beginning of the protocol, we need to choose only one clicking
time bin as the success flag. Therefore, one needs to find the
best (s, u) set that outputs the maximum Psucc(s, u, m).

Additionally, the above calculations for the concatenated
loops also fit the case for the single loop where s = 1. The
only change to make is that one needs to sum over all the
success probabilities Psucc for the clicking time u � x as

the erasure success probability for the single loop, i.e.,

Psucc(s = 1, m) =
∞∑

u=x

Psucc(s = 1, u, m). (A36)

c. Photon measurement with loss

Generally, the loss of the photon can happen during the
local qubit-qudit interaction, the transmission between Alice
and Bob, and the delay loop of the photon erasure.

The fidelity of the resulting state will not be affected by
the previous two losses since the photon is subject to the
same amount of losses regardless of which time bin it is in.
Therefore, they do not contribute any correlated errors, but
will only lower the success probability of the protocol. The
local losses increase with the number of entangled pairs such
that the total loss probability from the qudit-qubit interac-
tions is (1 − ηAB)m, where ηAB is the loss per interaction. The
transmission probability between Alice and Bob is denoted as
1 − η0 and we assume fiber loss at telecom frequencies.

For the third kind of photon losses—the losses in the delay
loops of the photon erasure—they lower the success probabil-
ity but they also affect the fidelity of the generated pairs since
each qudit pulse may also experience a different number of
delay loops. Nevertheless, we can choose the compensation
coefficients αn in Eq. (A34), which will vary with the loss on
each delay loop η as well. As a result, the success probability
for photon measurement will change correspondingly. The
overall success probability Ptotal is

Ptotal = (1 − ηAB)m(1 − η0)Psucc, (A37)

where Psucc is defined in (A36) for s = 1 and (A35) for s � 2.
Now, we can input some moderate loss parameters for η, ηAB,
and η0 to discuss the Ptotal.

First, we assume the photon wavelength is in the range of
∼600–800 nm, corresponding to typical optical transitions of
relevant quantum hardware such as group-IV diamond defect
centers. For the transmission between Alice and Bob, the
photon will have to be frequency converted to the telecom
band for efficient transmission in low-loss optical fibers before
being converted back to ∼600–800 nm for interaction with
Bob’s qubits. We assume that after interaction with Bob’s
qubits, the wavelength is kept at ∼600–800 nm for the erasure
measurement. Assuming fiber delay lines, the loss is ∼5–10
dB/km [36] for this wavelength range.

Assuming that the time-bin duration is approximately
70 ns [22,24] and the transmission velocity of the photon
in the fiber is 2 × 105 km/s, we find that the dB loss on
each delay loop is ∼0.07–0.14 dB and the corresponding loss
percentage is η ∼0.0160–0.0317.

Assuming frequency conversion to the telecom band for
the transmission between Alice and Bob, the transmission loss
will be ∼0.15–0.25 dB/km [37] and result in a transmission
of η0 ∼ 0.499–0.684 for 20 km separation. We also assume
ηAB ∼ 0.05–0.10 for a general approximation of the local
losses.

With these parameters and according to Ptotal, one can find
the total photon measurement success probability, as shown
in Fig. 9. We can find that Ptotal will, of course, drop when
the number of generated pairs increases. Moreover, for the

023075-12



ERROR CORRELATIONS IN PHOTONIC QUDIT-MEDIATED … PHYSICAL REVIEW RESEARCH 6, 023075 (2024)

FIG. 9. The total success probability of the photon erasure with
respect to the number of generated pairs (m ∼ 2–5) is shown. We
consider both the single-loop and the connected-loops cases. We
define the possible parameter ranges for the losses, s and u, and then
find the maximum Ptotal. The applied (s, u)’s are marked on the plot.
Connecting photon loops increases the total measurement success
probability compared to the case where only one single-photon loop
is placed. Note that for a single-photon loop, the success probability
refers to (A36). The cases where no loss occurs are also plotted for
the comparisons.

single-photon loop, the Ptotal drops drastically, which will
make the measurement vulnerable to the detector’s dark count
rate (∼10−7–10−6). However, with photon loops connected,
the drop of the Ptotal can be slightly mitigated, making the
measurement more resistant to the dark count.

4. Quantum memory

Qubits are vulnerable to decoherence. To simulate qubit
decoherence during transmission, we employ a dephasing and
generalized amplitude damping channel. Suppose the distance
between Alice and Bob is L; the speed of photon transmission
between them is represented by c. In this scenario, Alice must
send the photon to Bob and wait for the heralding information
to return. Additionally, we define the success of the protocol
based on Alice receiving Bob’s heralding message. Therefore,
the waiting time t for Alice is

tA = 2L

c
, (A38)

and for Bob, it is

tB = L

c
. (A39)

Suppose the dephasing time is Tp; then the Kraus operators
of the dephasing channel are

A0 =
√

1 + e−t/Tp

2
I, A1 =

√
1 − e−t/Tp

2
Z, (A40)

where I and Z denote the identity and Pauli-Z matrix, respec-
tively. Also, by indicating the relaxation time T1, the Kraus
operators of the amplitude damping channel are

E0 = √
aβ

[
1 0
0 e−t/2T1

]
,

E1 = √
aβ

[
0

√
1 − e−t/T1

0 0

]
,

E2 = √
1 − aβ

[
e−t/2T1 0

0 1

]
,

E3 = √
1 − aβ

[
0 0√

1 − e−t/T1 0

]
, (A41)

where

aβ = e−βE = e− E
kBT , (A42)

and E , kB, and T denote the energy difference between
|0〉 and |1〉, Boltzmann constant, and system temperature,
respectively. Therefore, by applying the two kinds of Kraus
operators, the output density matrix ρ becomes

ρ ′ =
∑

i=0,1; j=0,1,2,3

AiEjρE†
j A†

i . (A43)

We set L = 20 km, T1 = 10 ms, Tp = 5 ms, and aβ =
0.5. Note that this is the case for only one qubit. For a
multiqubit system, since the decoherence channels on each
qubit are uncorrelated, we can apply Eq. (A43) on each qubit
independently.

Notably, despite the errors mentioned above, qubit gate
errors should also be considered, especially for the latter one
since we put a lot of HADAMARD operations inside.

APPENDIX B: GENETIC PURIFICATION PROTOCOL

In this Appendix, we show the basic idea of the optimized
purification protocol proposed in [17].

1. Error detection by measurement

Consider that the noises on the entangled pairs are de-
scribed as depolarizing errors,

ρAB = (1 − x0 − y0 − z0)|�+〉〈�+| + x0|�+〉〈�+|
+ y0|�−〉〈�−| + z0|�−〉〈�−|. (B1)

Similar to the conventional depolarizing channel, we input I
(no errors), X , Y , or Z errors into the perfect state with the
corresponding possibilities. For the Bell pair case, the desired
perfect state is |�+〉 and the other three erroneous states are

|�+〉 = 1√
2

(|01〉 + |10〉) → X error,

|�−〉 = 1√
2

(|01〉 − |10〉) → Y error,

|�−〉 = 1√
2

(|00〉 − |11〉) → Z error. (B2)

Note that in the output states, there may also exist some
coherent errors (e.g., |�+〉〈�−|). These errors can be elim-
inated by using the twirling error mitigation technique [38].
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FIG. 10. (a) How CNOT propagates the input errors. (b) The error map evolution within the Bennett protocol [9].

However, for the discussions in our work, we will not add the
twirling process but implement the purification only.

If Alice and Bob then measure their own register qubits
separately, they will know whether or not their previous
shared entangled pair has errors. There are three possible
measurement blocks that Alice and Bob can choose:

(i) Measurement in X basis,
(ii) Measurement in Y basis,
(iii) Measurement in Z basis,
and there are two possible measurement results from Alice

and Bob:
(i) Coincidence result: 0A0B and 1A1B,
(ii) Anticoincidence result: 0A1B and 1A0B.
Note that the measurement on one certain basis can only

detect two kinds of errors. For example, by applying the X -
basis measurement, only Y and Z can be detected. Also, one
should always preserve |�+〉 and cannot consider it as one
of the erroneous states. Therefore, if Alice and Bob want to
know whether their previous shared ρAB is possibly in |�+〉,
their measurement results and measurement basis should obey
the criteria as follows:

(a) Measurement in X basis: Coincidence result → |�−〉
and |�−〉 detectable.

(b) Measurement in Y basis: Anticoincidence result →
|�+〉 and |�−〉 detectable.

(c) Measurement in Z basis: Coincidence result → |�−〉
and |�+〉 detectable.

If the measurement result of Alice and Bob violates the
above criteria, then Alice and Bob will know that their previ-
ous shared pair ρAB is in one of the erroneous states.

2. Error propagation

By directly measuring the entangled pair, we are indeed
able to detect the errors inside the Bell pair, but, in the mean-
time, also destroy the entanglement. In order to make errors
detectable without entanglement demolition, one should intro-
duce another sacrificial entangled pair. Alice and Bob can then
apply CNOTs locally to connect the preserved and sacrificial
pair and propagate the errors in the preserved pair to the
sacrificial pair, as shown in Fig. 10(a). The final measurement
check will be applied to the sacrificial pairs to detect and
eliminate errors.

Consider the simplest purification protocol: the Ben-
nett protocol [9]. Suppose both pairs are modeled as the

depolarizing channel, as shown in Eq. (B1), and the error map
is shown in Fig. 10(b). The CNOT will change the error map
according to the error propagation in Fig. 10(a). The final
Z-basis measurement will eliminate the blocks with X and Y
errors on the sacrificial pair.

3. Error permutation

The error propagation indeed provides the approach to send
the larger errors to the sacrificial pair and eliminate them by
measurements. However, the freedom of controlling the error
flow is still limited.

The error permutation is a technique that permutes the
error coefficients by letting Alice and Bob apply the corre-
sponding operations locally. The coefficient permutation and
the corresponding single-qubit gate operations on Alice and
Bob are shown in Fig. 11. For example, if Alice and Bob
apply nothing, the density matrix will remain the same as
Eq. (B1). However, if Alice and Bob apply a HADAMARD gate,
respectively, the shared density matrix will become

ρAB = (1 − x0 − y0 − z0)|�+〉〈�+| + z0|�+〉〈�+|
+ y0|�−〉〈�−| + x0|�−〉〈�−|, (B3)

which applies the exchange between x0 and z0. Suppose z0 is
much larger than x0 and z0 and we still keep the Z-basis mea-
surement. In Eq. (B1), we can only eliminate |�+〉 and |�−〉
affiliated with x0 and y0. However, if we apply the permutation
shown above, |�+〉 and |�−〉 will still be eliminated, but they
are affiliated with z0 and y0. In this way, we flow the erroneous
states with the largest coefficient into the error detection part
without changing the measurement basis.

4. Evolutionary algorithm

We already have different measurement blocks, error
propagation, and permutation techniques. Now, we should
assemble these components to find the optimal purification
circuit. Note that the circuit is designed only for one-round
purification. It means that we implement the aforementioned
components into the whole local m-qubit system. Then, the
evolutionary algorithm is adopted to search for an optimized
purification protocol. The procedure is shown as follows:

(i) Completely randomize the initial circuit group by
stochastically assembling the CNOTs, permutation gates, and
measurement blocks.
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FIG. 11. The error permutation and the corresponding single-qubit gate operations applied on Alice and Bob.

(ii) Input the Bell pair state with the specific er-
ror model in the purification circuits, and output the
fidelity of the purified Bell pair for all purification cir-
cuits. Select the best purification circuits (more than
one).

(iii) Consider that the selected circuits are the parent cir-
cuits, and the operations on the circuits are their genes. Let the
parent circuits reproduce baby circuits by randomly mixing
the genes from their parents.

(iv) The selected circuits and the baby circuits form the
new circuit group.

(v) Since no new genes (operations) are involved, the
mutations should be introduced, i.e., some of the operations
are mutated to another random different operation with rela-
tively low probabilities among all circuits in the newly formed
group.

(vi) Output the purified fidelity in the circuits from the
mutated group.

(vii) Loop it back to the parent circuit selection step and
continue the loop hundreds of times until the maximum puri-
fied fidelity reaches convergence.

(viii) The purification circuit with the converged fidelity
will be the optimized purification circuit for the specific error
model.

Note that all of the purified circuits and the follow-
ing output results are under the condition of the minimum
entanglement requirement. The minimum entanglement re-
quirement means using the minimum number of CNOTs to
connect all shared Bell pairs without leaving any pair unop-
erated. One can indeed set the purified circuits to a larger
size and run the algorithm, but with more local two-qubit gate
consumptions.
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