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Abstract. We consider the problem of evolving a particular kind of
shift-invariant transformation – namely, Reversible Cellular Automata
(RCA) defined by conserved landscape rules – using GA and GP. To this
end, we employ three different optimization strategies: a single-objective
approach carried out with GA and GP where only the reversibility con-
straint of marker CA is considered, a multi-objective approach based
on GP where both reversibility and the Hamming weight are taken into
account, and a lexicographic approach where GP first optimizes only the
reversibility property until a conserved landscape rule is obtained, and
then maximizes the Hamming weight while retaining reversibility. The
results are discussed in the context of three different research questions
stemming from exhaustive search experiments on conserved landscape
CA, which concern (1) the difficulty of the associated optimization prob-
lem for GA and GP, (2) the utility of conserved landscape CA in the
domain of cryptography and reversible computing, and (3) the relation-
ship between the reversibility property and the Hamming weight.

Keywords: Shift-invariant transformations · Cellular automata ·
Reversibility · Genetic Programming · Genetic Algorithms

1 Introduction

The property of shift-invariance plays an important role in studying and mod-
eling several types of discrete dynamical systems. In particular, any translation
of the input state results in the same translation of the output state in a system
governed by a shift-invariant transformation. When the state of the system is
described by a finite array, shift-invariant transformations are cellular automata
(CA), i.e., functions defined by a local update rule which is uniformly applied at
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all sites of the array. Due to their simplicity and versatility, CA have been studied
as models for simulating a wide variety of dynamical systems (see e.g. [1]).

Reversible shift-invariant transformations, and in particular Reversible CA
(RCA) have the additional characteristic of preserving information. Thus, the
dynamics of an RCA can be reversed backward in time starting from any state,
and the inverse mapping is itself a CA. This makes RCA especially interesting for
the design of energy-efficient computing devices since as stated by Landauer’s
principle [2] any irreversible logical operation implemented in hardware leads
to the dissipation of heat, hence posing a physical lower bound on the minia-
turization of devices based on irreversible gates. Another domain of interest
is cryptography, where RCA can be used to design encryption and decryption
algorithms [3].

Despite the extensive body of literature about RCA, up to now only a few
classes of reversible CA are known (see [4] for a concise survey). Moreover,
although such RCA are characterized in terms of relatively simple combinato-
rial definitions, there are no straightforward ways to construct them by taking
into account further criteria that are of interest for practical applications. In
this regard, Evolutionary Algorithms (EAs) represent an interesting method to
investigate known RCA classes concerning these additional design criteria, since
exhaustively searching for all possible RCA becomes unfeasible for large local
rule sizes. To the best of our knowledge, this research method has not been pur-
sued before, although some authors employed EA to evolve CA featuring certain
properties other than reversibility [5,6].

The aim of this paper is to start the investigation of RCA by means of Genetic
Algorithms (GA) and Genetic Programming (GP), focusing in particular on the
class of reversible marker CA. There, the local update rule flips the state of a
cell if its neighbors take on a set of patterns (or landscapes), which are conserved
by the resulting shift-invariant transformation [7]. The motivation of our goal is
twofold. First, the local rules of marker CA have a simple description through
their generating functions, which leads to a natural formulation of the optimiza-
tion objective for the reversibility property by minimizing the compatibility of
its flipping landscapes. Second, the Hamming weight of a generating function
in a marker CA is a good indicator of its nonlinearity, a fundamental property
in cryptography, as well as of its dynamical behavior, which is relevant in the
design of reversible computing devices. Consequently, maximizing the Hamming
weight of the generating function can be considered as a further optimization
objective in addition to reversibility.

After defining the genotype encodings for GA and GP to represent the candi-
date marker CA and the fitness function for reversibility, we set up three different
research questions which consider the difficulty of the optimization problem for
GA and GP, the utility of reversible marker CA for applications, and the rela-
tionship between reversibility and Hamming weight. We address this questions
by organizing our experiments in three phases. In the first phase, we adopt
a single-objective approach where only the reversibility of marker CA is opti-
mized. In particular, our results show that both GA and GP always manage to
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generate reversible marker CA over all considered problem instances, although
with different performances. In the second phase, we consider a multi-objective
(MO) approach with GP, where we optimize both the reversibility and the Ham-
ming weight of marker CA. The Pareto fronts approximated by our MOGP algo-
rithm clearly show that there is a trade-off between these two properties: the
higher is the Hamming weight of a generating function, the lower will be the
reversibility of the resulting marker CA. Finally, in the third phase, we use a
lexicographic optimization strategy, where we first use GP to optimize only the
reversibility property, and then maximize the Hamming weight when a reversible
solution is found. With this approach, we manage to obtain a better coverage of
reversible marker CA in terms of the Hamming weights.

The rest of this paper is organized as follows. Section 2 covers the necessary
background notions about shift-invariant transformations and reversible CA.
Section 3 defines the optimization problem for reversible marker CA with con-
served landscapes, discusses the genotype encodings for GA and GP, and defines
the fitness function for the reversibility property. Section 4 briefly reviews the
existing literature about the use of evolutionary algorithms to design CA for
specific purposes, such as in cryptography. Section 5 presents and discusses the
results of our experiments organized into three phases. Finally, Sect. 6 sums up
the main findings of the paper and sketches some directions for future work.

2 Background

2.1 Shift-Invariant Transformations and Cellular Automata

Let A be a finite alphabet and AZ be the full-shift space of bi-infinite strings
over A. In the field of symbolic dynamics, shift-invariant transformations are
those mappings F : AZ → AZ that commute with the shift operator. Cellular
Automata (CA) are a particular class of shift-invariant transformations whose
output is determined by the uniform application of a single local update rule over
all components (or cells) of a bi-infinite string. In this work, we focus only on
shift-invariant transformations over finite arrays, which coincide with finite CA;
thus, in what follows we will use the term CA and shift-invariant transformation
interchangeably.

Various models of CA can be defined depending on the dimension of the
lattice, the alphabet of the cells, and the boundary conditions. In this work, we
focus on one-dimensional periodic Boolean CA, defined as follows:

Definition 1. A one-dimensional periodic Boolean CA (for short, a PBCA) of
length n, diameter d, offset ω, and local rule f : {0, 1}d → {0, 1} is defined by
a vectorial function F : {0, 1}n → {0, 1}n where for all vectors x ∈ {0, 1}n and
0 ≤ i ≤ n − 1 the i-th component of the output is defined as:

F (x)i = f(x[i−ω,i−ω+d−1]) = f(xi−ω, xi−ω+1, · · · , xi−1, xi, xi+1, · · · , xi−ω+d−1)
(1)

with all indices being computed modulo n. Function F is also called the global
rule of the CA.
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1 0 0 1 0 0

⇓ F

10 0 1 1 1 0 1

Fig. 1. Example of CA based on rule 150.

In other words, a PBCA is composed of a one-dimensional vector of n cells that
can be either in state 0 or 1, where each cell simultaneously updates its state
by applying the local rule f on the neighborhood formed by itself, the ω cells
on its left and the d − 1 − ω cells on its right. Here, “periodic” refers to the fact
that all indices are computed modulo n: in this way, the leftmost ω cells and
the rightmost d−1−ω ones respectively have enough left and right neighboring
cells in order to apply the local rule. In particular, the state vector of a PBCA
can be seen as a ring, with the first cell following the last one. In the following,
we will refer to PBCA simply as CA, since the former is the main CA model
considered in this work.

Since the cells of a CA take binary values, the local rule can be seen as a
Boolean function f : Fd

2 → F2 of d variables where F2 = {0, 1} is the finite field
of two elements, and thus it can be represented by its truth table, which specifies
for each of the possible 2d input vectors x ∈ F

d
2 the corresponding output value

f(x) ∈ F2. Assuming that the input vectors of Fd
2 are sorted lexicographically, one

can encode the truth table as a single binary string Ωf ∈ F
2d

2 , which is basically
the output column of the table. In the CA literature, the decimal encoding of
Ωf is also called the Wolfram code of the local rule f [8]. Figure 1 reports an
example of CA with n = 6 cells, diameter d = 3, offset ω = 1, and local rule
defined as f(xi−1, xi, xi+1) = xi−1 ⊕ xi ⊕ xi+1, which corresponds to Wolfram
code 150. Hence, each cell looks at itself and its left and right neighbors in order
to compute its next state through rule 150. The two cells shaded in grey in Fig. 1
represent “copies” respectively of the first and the last cell, in order to better
visualize the neighborhoods of the cells at the boundaries.

2.2 Reversible CA

Reversibility is a particular property featured by certain dynamical systems
where the orbits are cycles without transient parts or pre-periods. In partic-
ular, the orbits of a reversible system can also be run backward in time, since
each state has exactly one predecessor, and the “inverse system” is analogous to
the original one. In the CA context, this means that the global rule of a reversible
CA must be bijective (to ensure that each global state of the cellular array has
exactly one predecessor) and its inverse must also be a CA, that is, F−1 must
be defined by a local rule.
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Hedlund [9] showed that an infinite CA is reversible if and only if its global
rule is bijective. On the other hand, the relationship between bijectivity and
reversibility is more complicated in the case of finite CA. In particular, if we
know that a local rule f induces a bijective global rule on a CA of a certain
length n ∈ N, then the inverse global rule is not necessarily defined by a local
rule, nor it is the case, in general, that the global rule remains bijective for
different lengths of the CA using the same local rule.

Local rules that generate bijective global rules only for certain lengths n ∈
N of the CA array and whose inverses cannot be described by local rules are
also called globally invertible. An example is the χ transformation used in the
Keccak sponge construction for hash functions [10], which corresponds to a CA
of length n = 5 and it is defined by the local rule of diameter d = 3 with Wolfram
code 210. The offset of this CA is ω = 0, which means that each cell applies rule
210 over itself and the two cells to its right to update its state. Daemen [11]
showed that rule 210 is globally invertible, since it induces a bijective global rule
only for odd CA lengths.

On the other hand, a local rule that induces a bijective global function for all
finite lengths n ∈ N of the CA array is called locally invertible. In this case, the
inverse mapping is also defined by a local rule, possibly of a different diameter,
and thus the resulting CA is reversible. In what follows, we will consider the
search of locally invertible rules as an optimization problem, focusing on the
class of marker CA.

2.3 Marker CA

A marker CA (or complementing landscape CA [7]) is defined by a local rule that
always complements the bit of the cell whose state is being updated whenever
the cells in its neighborhood form a particular pattern (or marker, hence the
name). Otherwise, the cell keeps its current state. The set of patterns defining
a local rule of a marker CA can be conveniently formalized through the concept
of landscape, which we define below:

Definition 2. Let d, ω ∈ N with ω < d. A landscape of width d and center ω is
a string L = l0l1 · · · lω−1 � lω+1 · · · ld−1 where li ∈ {0, 1,−} for all i �= ω.

The � symbol in a landscape L is used to indicate the origin of the neighborhood
in the local rule (that is, the cell whose state is being updated), and thus it
occurs at position ω. The − symbol represents a “don’t care”, meaning that
the corresponding cell can be either in state 0 or 1. Hence, landscapes can be
considered as a restricted form of regular expressions over the binary alphabet
{0, 1}, where the don’t care symbol stands for the regular expression (0+1) (i.e.,
both 0 and 1 match).

A local rule of a marker CA can be described by one or more landscapes, all
having the same width d and center ω. In particular, in the multiple landscape
case, a cell is flipped if its neighborhood partakes on any of the patterns included
in the union

⋃k
i=1 Li of the landscapes L1, · · · , Lk that define the locale rule.

Observe that it is possible to define a partial order ≤C over the set of landscapes.
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Namely, given two landscapes L = l0 · · · ld−1 and M = m0 · · · md−1 with the
same width d and center ω, we define

L ≤C M ⇔ li = mi or li ∈ {0, 1} and mi = − (2)

for all 0 ≤ i ≤ d − 1. Intuitively, this partial order describes the “generality” of
a landscape: the more don’t care symbols it has, the more patterns it contains.
The extreme cases are the atomic landscapes that do not contain any don’t care
symbol, which describe only single patterns, and the landscape composed only
of don’t cares, which includes all possible patterns. In what follows, we will refer
to ≤C as the compatibility partial order relation. In particular, we will call two
landscapes L1, L2 with the same width d and center ω compatible if L1 ≤C L2

or L2 ≤C L1. Otherwise, if L1 and L2 are not comparable with respect to the
partial order relation ≤C , we will say that they are incompatible.

The compatibility order relation can be used to characterize a subset of
reversible marker CA, namely those of the conserved landscape type. In such
CA, a cell that is in a particular landscape L defined by the local rule will still
be in the same landscape upon application of the global rule. This property can
be formalized by requiring that the cells in the neighborhood are in landscapes
that are incompatible with L, as shown in the following result proved in [7]:

Lemma 1. Let f : Fd
2 → F2 be a local rule of a marker CA defined by a set of

k landscapes L1, · · · , Lk of width d and center ω. Further, for all i ∈ {1, · · · , k}
let Mi,0, · · · ,Mi,ω−1,Mi,ω+1, · · · ,Mi,d−1 be the set of d − 1 landscapes associ-
ated to the neighborhood of Li. Then, if Mi,j is incompatible with all landscapes
L1, · · · , Lk for all i ∈ {1, · · · , k} and j ∈ {0, · · · , ω − 1, ω + 1, · · · , d − 1}, rule f
induces a locally invertible marker CA.

When the conditions of Lemma 1 are fulfilled, we also say that f is a conserved
landscape rule. As noted in [7], a conserved landscape local rule induces an
involution, i.e., the global rule of the resulting marker CA equals its own inverse.
This is due to the fact that any cell being in one of the marker landscapes will still
be in the same landscape after applying the local rule. After a further application
of the local rule, the cell will go back to its initial state.

Hence, conserved landscape rules define a particular type of reversible CA,
since all cycles have length 2. Daemen [11] argued that such CA can be useful
in those cryptographic applications where both the encryption and decryption
functions must be implemented in hardware. As noted in [7], one can relax the
conditions of Lemma 1 by allowing the landscapes of the local rule to partially
overlap one another. In this case, a cell that is in a landscape defined by the
local rule will be in any of the other landscapes defined by the local rule after
applying the global rule. As a consequence, the resulting marker CA can exhibit
more complex behaviors, with longer cycle lengths.
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�0 1 0

�− − 1

�− 0 −

�1 − −

xi

xi−1

xi+1

xi+2

(a) Landscape tabulation for rule 0 � 10.

0 1 1 0 0 1

0 0 1 0 1 1

(b) Example of cycle of length 2.

Fig. 2. A locally invertible CA defined by the single landscape 0 � 10.

To better illustrate the idea, we conclude this section by showing an example
of a single conserved landscape rule of diameter d = 4, originally discovered by
Patt [12]:

Example 1. Let d = 4 and ω = 1, and let f : F4
2 → F2 be the local rule defined

by the single landscape L = 0 � 10. The tabulation depicted in Fig. 2a shows
that all three landscapes of the neighboring cells are incompatible with L. In
particular, when xi is in landscape L, then:

– Cell xi−1 is in landscape −�−1, which is incompatible with 0�10 since there
is a mismatch in position 3.

– Cell xi+1 is in landscape −�0−, which is incompatible with 0�10 since there
is a mismatch in position 2.

– Cell xi+2 is in landscape 1�−−, which is incompatible with 0�10 since there
is a mismatch in position 0.

Figure 2b displays an example of cycle starting from the initial state 011001. The
two cells shaded in grey are in the landscape 0 � 10.

3 Optimizing Landscapes

3.1 Genotype Representation for Marker CA

Lemma 1 states that a conserved landscape CA can be constructed by search-
ing for a set of landscapes L1, · · · , Lk such that their associated neighborhood
landscapes are incompatible with them. To perform such a search through Evo-
lutionary Algorithms such as GA and GP, the first question is how to encode
the genotype of the candidate solutions. In particular, since GA usually works
on a bitstring encoding of the candidate solutions while GP relies on a tree rep-
resentation, directly using the landscape specification of a marker CA rule does
not seem a straightforward choice for encoding the genotype.

Let L1, · · · , Lk be a set of landscapes of diameter d and center ω defining
a local rule f : F

d
2 → F2. Additionally, let L =

⋃k
i=1 Li be the union of the

landscapes, and define ν = xi−ω · · · xi−1xi+1 · · · xi+d−1−ω be the vector of d − 1
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variables describing the states of the cells in the neighborhood of the cell at
position i. Consider now the generating function g : Fd−1

2 → F2 that outputs 1
if and only if the pattern formed by inserting the origin symbol � in vector ν at
position ω belongs to L. Then, the local rule of the marker CA can be defined as:

f(xi−ω · · · xi−1xixi+1 · · · xi+d−1−ω) = xi ⊕ g(xi−ω · · · xi−1xi+1 · · · xi+d−1−ω)
(3)

for all neighborhood configuration xi−ω · · · xi−1xixi+1 · · · xi+d−1−ω ∈ F
d
2. Hence,

the algebraic expression of the local rule of a marker CA can be expressed as
the XOR of the cell in the origin with the generating function g computed on
the surrounding cells. This is due to the fact that g evaluates to 1 if and only if
the neighborhood takes on any of the landscapes in L.

Consequently, we can reduce the representation of the local rule f of a marker
CA to its generating function g. In particular, for GA we take the 2d−1-bit string
of the truth table Ωg as encoding for the candidate solution. For GP, we use
a tree where the terminal nodes represent the input variables of g, while the
internal nodes are Boolean operators combining the values received from their
child nodes and propagating their output to their parent node. The output of
the root node will be the output of the whole generating function g.

3.2 Fitness Functions

We can now define the fitness function used to drive the search of conserved land-
scape CA rules. Suppose that we have the truth table of a generating function g,
and let supp(g) = {x ∈ F

d−1
2 : g(x) �= 0} be the support of g, i.e., the set of input

vectors over which g evaluates to 1. By construction, the elements of supp(g)
coincide with all patterns that the cells surrounding the origin must feature to
flip the state of the central cell. To obtain the list of atomic landscapes, it just
suffices to insert the origin symbol � in position ω to each vector of the support.
The set of atomic landscapes obtained from the support can be used to check
if a rule is of the conserved landscape type or not. In fact, it is not difficult to
see that two landscapes with don’t care symbols in them are incompatible if and
only if all the atomic landscapes that they describe are incompatible between
themselves. This means that we can directly use the support of the generating
function to count the number of pairs of landscapes that are compatible.

Given that we want to minimize such number to get a conserved landscape
rule, we define the following fitness function. Let g : Fd−1

2 → F2 be a generating
function of a marker CA rule f : Fd

2 → F2 of diameter d and offset ω, and let
supp(g) be its support. Further, let L1, · · · , Lk be the set of atomic landscapes
obtained by adding the origin symbol � in position ω to each vector in supp(g),
and for each i ∈ {1, · · · , k} let Mi,0, · · · ,Mi,ω−1,Mi,ω+1, · · · ,Mi,d−1 be the set
of neighborhood landscapes associated to Li obtained through the tabulation
procedure. Then, the reversibility fitness value of g is defined as:

fit1(g) =
∑

i,t∈[k],j∈[d−1]ω

comp(Mi,j , Lt), (4)
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where [k] = {1, · · · , k}, [d − 1]ω = {0, · · · , ω − 1, ω + 1, · · · , d − 1}, and the
function comp(·, ·) returns 1 if the two landscapes passed as arguments are com-
patible, and 0 otherwise. Hence, the fitness function loops over all neighborhood
landscapes Mi,j induced by each atomic landscape Li, compares each of these
neighborhood landscapes with all atomic landscapes L1, · · · , Lk through the
function comp(·, ·), and adds 1 whenever a compatible pair is found. Therefore,
the fitness function fit1 measures the degree of compatibility of a set of atomic
landscapes induced by the support of a generating function g. Consequently, the
optimization objective is to minimize fit1, with fit1(g) = 0 corresponding to an
optimal solution where all neighborhood landscapes are incompatible with the
atomic landscapes, and thus the latter define a conserved landscape rule.

A good indicator of the complexity of the dynamical behavior of a marker
CA is the Hamming weight of its generating function g, i.e., the cardinality
of its support. This can be used both as a utility measure of a marker CA in
cryptography (where it is related to the nonlinearity of the CA) and in designing
reversible computing circuits. Given a generating function g, we thus define a
second optimization objective by maximizing the following fitness function:

fit2(g) = |supp(g)|. (5)

4 Related Work

As already stated, this work is the first to use Evolutionary Algorithms to evolve
reversible shift-invariant transformations. As such, there are no related works on
the topic. Still, we mention several characteristic works where EAs are used to
evolve shift-invariant transformations or related objects.

Bäck and Breukelaar used genetic algorithms to evolve behavior in CA where
the authors explored different neighborhood shapes [6]. Sipper and Tomassini [13]
proposed a cellular programming algorithm to co-evolve the rule map of non-
uniform CA for designing random number generators. For a somewhat outdated,
but very detailed overview of works using GA to evolve CA, we refer readers
to [5]. Picek et al. demonstrated that GP can be used to evolve CA rules that
then produce S-boxes with good cryptographic properties [14]. Next, Picek et al.
used the same technique to further demonstrate that the S-boxes obtained from
the CA rules have good implementation properties [15]. Mariot et al. conducted
a more detailed analysis of the S-boxes based on CA where they also proved what
are the best possible values for relevant cryptographic properties if one uses CA
rules of a certain size [3]. There, the authors used GP to experimentally validate
their findings but also to reverse engineer a CA rule from a given S-box. Mariot et
al. used EA to construct orthogonal Latin squares based on CA [16]. Finally, the
evolution of CA rules for cryptographic purposes is connected with the evolution
of Boolean functions with good cryptographic properties. There, there are several
works considering various evolutionary approaches, see for example [17,18].
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5 Experiments

5.1 Research Questions and Experimental Setting

As noted in Sect. 3.1, the local rule of a marker CA of diameter d can be identi-
fied with its generating function g of d − 1 variables which is computed on the
neighborhood cells surrounding the origin, since the state of the central cell is
simply XORed with the result of g. Given a diameter d ∈ N, this means that
we can define the phenotype space as the set P(d) = {g : Fd−1

2 → F2} of all
Boolean functions of d−1 variables. The genotype space, on the other hand, will
correspond to the set of all binary strings of length 2d−1 specifying the truth
tables Ωg of the generating functions in P(d), while for GP it will be the space
of all Boolean trees whose terminals represent the d − 1 input variables and the
internal nodes represent Boolean operators. In what follows, we will assume that
the offset ω is always fixed to �(d − 1)/2	, i.e., when d is odd the neighborhood
origin will be the middle cell, while for d even it will be the left middle cell. This
does not hinder the scope of our investigation since as shown in [7] reversible
marker rules in different offsets are symmetric under rotations and reflection.

Note that, since the number of Boolean functions of d − 1 variables is 22
d−1

,
the phenotype space P(d) can be exhaustively searched for reversible marker
CA rules up to diameter d = 6, since there are at most 232 ≈ 4.3 · 109 gen-
erating functions to check for the conserved landscape property. As far as we
are aware, an exhaustive search of reversible marker CA rules has been carried
out only by Patt [12], who considered diameters up to d = 4. For completeness,
Table 1 reports the numbers of conserved-landscape rules we found by exhaus-
tively searching the sets of generating functions up to d = 6, along with the
length of the truth table (2d−1), the size of the phenotype space (#P(d)), and
the observed Hamming weights. Recall that the Hamming weight of the gen-
erating function corresponds to the number of atomic landscapes over which a
cell flips its state. Further, we excluded from the count the identity rule which
simply copies the state of the central cell, since it is trivially reversible for any
diameter. As a general remark, one can see from Table 1 that the number of
conserved landscape rules is much smaller than the size of the whole generating
function set. Moreover, the number of observed Hamming weights is quite lim-
ited, since for the largest considered instance of diameter d = 6 we only found
reversible rules defined by at most 3 landscapes, which are thus not very useful for

Table 1. Numbers of conserved landscape rules found by exhaustive search.

d 2d−1 #P(d) #REV Weights

3 4 16 0 −
4 8 256 1 1

5 16 65 536 10 1, 2

6 32 4.3 · 109 46 1, 2, 3
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cryptographic and reversible computing purposes. Nevertheless, these findings
prompt us with three interesting research questions:

– RQ1: Does the limited number of conserved landscape rules with respect to
the search space size imply a difficulty for evolutionary algorithms to find
them?

– RQ2: Do there exist conserved landscapes rules of a larger diameter which
are useful for cryptographic and reversible computing applications, i.e., having
larger Hamming weights with respect to the size of the generating function
truth table?

– RQ3: Is there a trade-off between the reversibility of a marker CA rule (as
measured by the fitness function fit1 defined in Sect. 3.2) and its Hamming
weight?

We employed Genetic Algorithms (GA) and Genetic Programming (GP) to
investigate the three questions above, by optimizing the fitness functions fit1
and fit2. The reason for comparing GA and GP was to assess whether the rep-
resentation of the solutions as bitstrings or trees affected the convergence to an
optimal solution on this particular problem. We considered the spaces of marker
CA rules of diameter between d = 8 and d = 13 as problem instances for our
experiments, using the d = 7 case for tuning our evolutionary algorithms. Both
our GA and GP employed a steady-state tournament selection operator, which
randomly samples three individuals from the populations. Next, the crossover
is applied to the best two individuals of the tournament to produce a child
candidate solution, which is then mutated and inserted into the population by
replacing the worst individual of the tournament. For GA, we employed one-
point, two-point, and uniform crossover operators (selected at random at each
iteration), while we adopted a classic bit-flip operator for mutation. In the case
of GP, we used a function set for the Boolean trees composed of the binary
operators AND, OR, XOR, XNOR, and the unary operator NOT. Addition-
ally, we included the ternary function IF, which returns the second argument if
the first one is true, and the third one otherwise. Although this function set is
redundant, since any Boolean function can be formulated with a smaller set, the
choice of these elements is based on our previous experience evolving Boolean
expressions with GP that define CA [3]. To avoid bloat, we observed through
preliminary experiments that setting the maximum tree depth equal to the num-
ber of variables of the generating functions (d−1) was a good choice in terms of
GP performance. Further, for crossover in GP, we employed five different oper-
ators, namely simple subtree crossover, uniform crossover, size fair, one-point,
and context preserving crossover, again selected at random at each iteration.
Analogously to GA, for mutation we adopted a single operator, namely sub-
tree mutation. Concerning the population size and the mutation probability, we
performed a tuning phase over the d = 7 problem instance, which resulted in
population sizes of 25 and 500 individuals for GA and GP, respectively, and a
mutation probability of 0.8 and 0.5 for GA and GP. Similarly to previous works
on related optimization problems [16,18], we set a budget of 500 000 fitness
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evaluations for both GA and GP, and we performed 30 runs for each considered
problem instance.

5.2 Single-Objective Approach

As a first attempt to investigate the research questions stated in the previ-
ous section, we employed a single-objective approach where GA and GP only
minimized the reversibility fitness function fit1 as an optimization criterion,
analyzing the Hamming weights of the best solutions in a second moment. The
motivation was to address research question RQ1, i.e., investigate how difficult
it is for GA and GP to optimize fit1, especially considering the scarcity of
conserved landscape rules assessed by our exhaustive search experiments.

The first remarkable finding is that GA and GP achieved a full success rate
over all considered problem instances, i.e., both algorithms always converged to
a reversible rule in all 30 experimental runs for each diameter between d = 8 and
d = 13. In particular, using the fitness function fit1 as defined in Eq. (4), GP
always converged to the trivial solution 0, which corresponds to the identity rule.
For this reason, we slightly tweaked fit1 for our GP experiments by adding a
penalty factor that punishes a candidate solution having a null Hamming weight.
After this modification, GP again obtained a full success rate over all problem
instances, thus finding non-trivial conserved landscape rules. Interestingly, this
finding is analogous to what was observed in [16] for the optimization of orthog-
onal Latin squares based on cellular automata, where GP always converged to
“simple” solutions – which in that context were represented by linear local rules
– when optimizing only the orthogonality constraint.

The remarks above seem to answer question RQ1 in negative: the limited
number of conserved landscape rules as compared to the size of the search space
does not seem to pose a problem for GA and GP to converge to an optimal
solution. However, the comparison shown in Fig. 3 on the number of fitness eval-
uations performed by GA and GP tells us a more precise story. As can be seen,
the number of fitness evaluations required by GA to find a reversible rule scales
exponentially with respect to the rule diameter (note that we adopted a logarith-
mic scale in Fig. 3 for the sake of comparison). In particular, the median number
of fitness evaluations performed by GA approximately doubles every time the
diameter increases by 1. On the contrary, GP features a much more stable and
slower growth in the number of fitness evaluations that are necessary for converg-
ing to an optimal solution. Further, this number is always smaller by at least one
order of magnitude than the number of GA fitness evaluations over all problem
instances. This observation indicates that GP is a better suited heuristic than
GA for this optimization problem, for which reason we employed only GP in our
subsequent experiments on multi-objective and lexicographic optimization. The
superiority of GP with respect to GA is also reflected in the Hamming weights of
the optimal solutions found by the two heuristics: although GA provides a better
coverage of distinct weights over all 30 experimental runs for each instance, the
maximum weight found by GP is always consistently greater than the maximum
achieved by GA. We refer the reader to Table 2 for a comparison of the Hamming
weights found by all optimization approaches.
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Fig. 3. Comparison of fitness evaluations performed by GA and GP.

5.3 Multi-objective Approach

To investigate the interaction between the reversibility of a marker CA rule and
the Hamming weight of its generating function, we adopted a multi-objective
strategy as a second optimization approach. In particular, we considered only a
multi-objective version of GP (MOGP), since in the single-objective approach we
observed that GP outperformed GA in terms of fitness evaluations. The MOGP
approach used the well-known NSGA-II algorithm, where we minimized the
reversibility fitness value fit1 and maximized the Hamming weight as measured
by fit2. For each considered problem instance, we run the MOGP algorithm
with the same experimental parameters adopted for the single-objective setting
described in Sect. 5.1, and at the end of each run, we recorded all Pareto optimal
solutions in the population and added them to a list. Figure 4 plots the Pareto
front approximated by MOGP for the instance d = 8. The main observation one
can draw from the plot is that there is a clear trade-off between reversibility and
the Hamming weight, thereby providing an empirical answer to research question
RQ3: the closer a marker CA rule is to being of the conserved landscape type,
the lower the Hamming weight of its generating function must be. Incidentally,
the left tail of the Pareto front also provides some hints with respect to research
question RQ2. Indeed, there are only a few points aligned on the fit1 = 0 value,
all having small Hamming weights with respect to the truth table size of the
generating function (which for d = 8 equals 128). This finding seems to hinder
the applicability of conserved landscape rules in cryptography, and in particular
in the design of S-boxes based on CA [3], since a local rule with a low Hamming
weight will induce an S-box with low nonlinearity.
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Fig. 4. Pareto front for d = 8.

5.4 Lexicographic Optimization

Our third experiment consisted of a lexicographic optimization approach, to
assess whether a better coverage of the Hamming weights of conserved landscape
rules could be obtained. In the first optimization stage, GP minimized only the
reversibility fitness value fit1. After obtaining a conserved landscape solution,
in the second stage GP maximized fitness fit2, logging each new solution that
was still reversible and with a higher Hamming weight.

Table 2 compares in terms of solutions diversity the four optimization
approaches adopted in our experiments – single-objective GA (SOGA) and GP
(SOGP), multi-objective GP (MOGP), and lexicographic GP (LEXGP). In par-
ticular, each entry of the table is a triplet of the form (UHW, MHW, USol)
where UHW denotes the number of distinct Hamming weights found, MHW
is the maximum Hamming weight observed, and USol is the number of dis-
tinct optimal solutions found. For single-objective GA and GP, we report only
the data of the best solutions found over all 30 experimental runs, while for
MOGP and lexicographic GP we consider the whole populations after finishing
the 30 runs. In particular, one can see that LEXGP is the method achieving
the best trade-off in terms of distinct weights coverage, maximum weight, and
uniqueness of solutions produced. SOGA is the heuristic that reaches the widest
diversity of distinct Hamming weights but its maximum weights are the lowest
among all four methods. SOGP, on the other hand, reaches higher maximum
weights than GA, but with a quite low variety of the Hamming weights. MOGP
further improves on the maximum weights and have similar coverage of dis-
tinct weights to SOGP, but the number of distinct solution is quite low (recall
that with MOGP we recorded all Pareto optimal solutions in the population
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Table 2. Diversity of the solutions produced by all optimization methods.

d SOGA SOGP MOGP LEXGP

UHW MHW USol UHW MHW USol UHW MHW USol UHW MHW USol

8 5 6 30 4 8 27 4 10 24 5 10 47

9 6 7 30 4 16 29 2 20 22 8 20 60

10 7 11 30 3 16 30 4 32 48 6 28 65

11 9 15 30 3 32 29 6 56 40 6 56 64

12 11 23 30 4 64 30 4 72 29 7 80 71

13 12 29 30 2 64 29 4 128 50 7 160 73

over all runs). Finally, LEXGP is the one obtaining a good coverage of distinct
weights, although not as good as SOGA. This is compensated by the fact that
LEXGP achieved the highest maximum weights among all four methods (except
for the case d = 10 where it was outperformed by MOGP). Moreover, LEXGP
generated more distinct reversible solutions than MOGP.

6 Conclusions and Future Work

In this paper, we used GA and GP to study a particular class of reversible shift-
invariant transformations – namely CA defined by conserved landscape rules –
using three different optimization approaches. We now sum up the main findings
of our experiments and suggest some possible future developments in the context
of the three research questions that we posed.

Regarding the first research question, the results obtained with the single-
objective approach seems to indicate that evolutionary algorithms, and in par-
ticular GP, can find relatively easily conserved landscape CA rules, despite the
limited size of the optimal solutions set. Although this makes the associated
optimization problem unsuitable for benchmark purposes, it would be interest-
ing to investigate the performance difference between GA and GP, for example
by analyzing the fitness landscapes induced by fit1 on the two genotype spaces.

For the second research question, our findings show that the relevance of con-
served landscape CA for cryptography and reversible computing is quite limited
since their Hamming weights are too low concerning the truth table size of their
generating functions. Nevertheless, as remarked in Sect. 2.3, one can easily relax
the definition of conserved landscape rules by allowing partial overlapping of the
landscapes, and obtain a larger class of reversible CA with more complex behav-
iors. A possible idea worth exploring in this direction would be to adapt the
fitness function fit1 to allow for this partial overlapping, and use GP to investi-
gate the Hamming weights of the resulting reversible CA, in particular with the
lexicographic optimization method that proved to be the best performing one.
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