<]
TUDelft

Delft University of Technology

Extracting hemodynamic activity with low-rank spatial signatures in functional ultrasound
using tensor decompositions

Kotti, Sofia Eirini; Hunyadi, Borbala

DOI
10.23919/EUSIPCO63174.2024.10714979

Publication date
2024

Document Version
Final published version

Published in
32nd European Signal Processing Conference, EUSIPCO 2024 - Proceedings

Citation (APA)

Kotti, S. E., & Hunyadi, B. (2024). Extracting hemodynamic activity with low-rank spatial signatures in
functional ultrasound using tensor decompositions. In 32nd European Signal Processing Conference,
EUSIPCO 2024 - Proceedings (pp. 1347-1351). (European Signal Processing Conference). European
Signal Processing Conference, EUSIPCO. https://doi.org/10.23919/EUSIPCO63174.2024.10714979

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.23919/EUSIPCO63174.2024.10714979
https://doi.org/10.23919/EUSIPCO63174.2024.10714979

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



Extracting hemodynamic activity with low-rank
spatial signatures in functional ultrasound using
tensor decompositions

Sofia-Eirini Kotti* and Borbala Hunyadi'
Signal Processing Systems, EEMCS, Delft University of Technology, Delft, The Netherlands
Email: *S.E.Kotti @tudelft.nl, TB.Hunyadi@tudelft.nl

Abstract—Functional ultrasound (fUS) is a neuroimaging
modality that indirectly measures local neuronal activity by
imaging cerebral blood volume fluctuations. However, accurately
estimating neuronal activity from fUS measurements remains an
open challenge. Hemodynamic changes are often modeled as the
output of a system characterized by the hemodynamic response
function (HRF), with neuronal activations as input. In this work,
we propose a model for fUS measurements that assumes that
hemodynamic activity has a low-rank spatial characterization.
Starting from the tensor block term decomposition, we propose
a method to estimate the spatial signatures, the HRF and the
neuronal activation signals. This method is entirely data-driven
and can be applied to entire fUS datasets. After an investigation
using simulations, application to task experiment data of a mouse
verified that activity that is spatially low rank and temporally
correlated with the stimulus can be extracted in expected regions,
which opens up the way to application on resting state data.

Index Terms—Functional ultrasound, hemodynamic response
function, tensor block term decomposition.

I. INTRODUCTION

The continuing effort of humans to visualize and understand
the brain’s complex organization has led to significant discov-
eries in neuroscience and related fields [1], [2]. The ultimate
goal is to provide a detailed view of the information processing
architecture of cognitively engaged networks, in health or
under various pathological conditions. A common objective in
functional imaging is to characterize the activity in a particular
brain region in terms of its interactions with other regions
or with a behavioral state [3]. Hemodynamics-based imaging
modalities, such as functional magnetic resonance imaging
(fMRI) and functional ultrasound (fUS), measure brain activity
in an indirect way through the neurovascular coupling [4].
Therefore, there is a need to invert this hemodynamic system
and obtain an approximation of the neuronal signals. This need
is motivated both neurobiologically, since brain interactions
occur at the neuronal level, and mathematically, since model-
ing interactions at the hemodynamic level is not equivalent to
modeling them neuronally [3].

The hemodynamic system is typically modeled as a linear
time-invariant (LTI) system, described by the hemodynamic
response function (HRF) [5]. There are two common assump-
tions in literature: a) a binary representation of the stimulus
is used as a proxy for the neuronal signals, and b) the HRF
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is considered known a priori. These approaches can introduce
bias in the results or cannot be applied to resting-state data.

In fMRI literature, multiple works investigate neuronal
activations and the HRF. Total activation [6] estimates activity-
inducing signals from noisy fMRI measurements, assuming
a common, known HRF. The method uses sparse spatio-
temporal priors that favor piecewise constant activity-inducing
signals and coherent activation patterns in a priori atlas-defined
brain regions. In [7], a low-rank matrix modeling of the fMRI
signal is proposed: each extracted component consists of a
temporal activation atom alongside an associated spatial map.
These learned components correspond to distinctive functional
networks in the brain. The temporal activation signals are
assumed piecewise constant, whereas the HRF is fixed in the
selected voxels to the canonical HRF model [8].

In [9], the authors propose an algorithm to jointly estimate
the HRFs and the low-rank neuronal activity across the whole
brain. The central assumption is that the observed fMRI signals
result from convolving the weighted neuronal activation atoms
with region-dependent HRFs. For this, a brain parcellation has
to be provided. The region-specific HRF depends on a single
dilation parameter 0, as hs, (t) = href(0mt), where heg(t) is
the canonical HRF. Thus, two distinct types of networks are
defined: known disjoint anatomical regions based on an atlas
and estimated overlapping functional networks.

In [10], the authors perform blind source separation utilizing
tensor decompositions on multi-subject fMRI data tensors that
have been unfolded into lower-order tensors. All considered
tensor decompositions exploit a low rank constraint in the
spatial domain, as motivated in [11].

Although the majority of research on HRF identification and
the recovery of functional networks is focused on fMRI data,
there have been recent works using fUS data, e.g., [4], [12],
[13]. These methods, however, solve the problem for specific
brain pixels, which are considered representative of regions of
interest. In contrast, tensors and tensor decompositions natu-
rally lend themselves to the representation and processing of
original three-dimensional fUS data (time-varying 2D slices).

The contribution of this paper lies in applying tensor de-
compositions on experimental fUS measurements to uncover
functional networks and subsequently performing deconvolu-
tion to estimate the neuronal activation signals and an HRF
with a more flexible parametrization than in [9]. The proposed
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method follows a low-rank spatial model, similarly to [10], is
entirely data-driven and, as such, does not require any a priori
knowledge of the system.

II. FUNCTIONAL ULTRASOUND SYSTEM MODELING

A. Signal model and assumptions

In this work, we assume that the hemodynamic system
is an LTI system characterized by a single HRF, common
everywhere in the imaged slice of the brain. The drivers
of this system are the neuronal activation signals. These
activation signals are analogous to the activation atoms in
[7], [9] and the activity-inducing signals in [6], and, as such,
they may correspond to activity under task performance or
spontaneous activity. Following the approach outlined in these
works, we assume these signals to be piecewise constant.
Each activation signal has an associated spatial map containing
the corresponding weights for all pixels. These spatial maps
are two-dimensional, contrary to [7], [9], and are assumed to
be of low rank, consistent with the assumptions in [10] and
the multisubject dictionary learning probabilistic atlas of [11].
The fUS measurements (outputs of the hemodynamic system)
capture the total activity per pixel owing to all components.

We consider an fUS data tensor ) € RV=*NaxXNt \where
N, is the number of pixels in the depth dimension, N, is
the number of pixels in the width dimension, and V; is the
number of time stamps. The 2D spatial maps are denoted U,.,
r=1,..., R, each with rank L,. Thus, each can be rewritten
as U, = A, BT, where the matrices A, € RV=*Lr and B,. €
RNv>*Lr are of full column rank L,. With these assumptions,
the signal model in Fig. 1 becomes

R R
Y=> U,o(hxz,)=)Y (AB])o(hxz), (1)

r=1 r=1

where o indicates the outer product operation, * indicates the
convolution operation, h is the HRF and z, are the activation
signals.

hxz hxzp

/

BT L
\—“ ! B} Ln
v ~ |A; + + | Ag

Ly Lr

Fig. 1: Proposed fUS system model.

Furthermore, we assume that the HRF is parametrizable
according to the following model [4], [12], [13]

h(t; 8) = 6, (T(0)) 1052102~ 1e =05t )

where 6 = [01, 0, 65]T and 6, s, 03 > 0. Vector h in
(1) contains the samples of (2) at the given time stamps. This
model is more flexible than the one used in [9] for fMRI and
can capture large HRF variability.

B. Tensor block term decomposition

The model in (1) follows the form of a tensor (L, L, 1)-
block term decomposition (BTD) [14], which writes a tensor
Y € RNexNyxNe a5 a sum of multilinear rank-(L,, L, 1)
terms, 1 < r < R, in the form

R
y=> (AB])oc, 3)
r=1
where A, and B,. are of full column rank L,.. In the sequel, the
terms BTD and (L,., L,., 1)-BTD will be used interchangeably.

C. BTD-based fUS deconvolution

It is now easy to see that the model in (1) is that of an
(L, L, 1)-BTD, whose time signatures are constrained to be
the result of a convolution of h and z,.. The question now is:
how can we solve for this constrained BTD?

Directly estimating all quantities in (1) by minimizing a
data-fitting error is a complex problem: the objective function
would be jointly nonconvex in the large number of variables,
but also nonconvex in the variable 8, when all other quantities
are fixed. However, there is an alternative approach: if the BTD
is (essentially) unique [14], it is possible to first calculate
the (L, L;,1)-BTD of (3), potentially with a few simple
constraints, and subsequently deconvolve the time signatures
as ¢, = hxz,., given the constraints on h and z,. If the BTD is
unique, the interpretability of the components is also ensured
[15], [16]. With this in mind, we propose a two-step strategy:

Step 1: Solve for the BTD spatial and temporal signatures,
given the number of components R and the spatial ranks L,
2

R
. 1 T
L A DL At I
subject to  [|c.|[o=1 and A, >0,B,>0.

Step 2: Jointly estimate the HRF and the neuronal activation
signals by solving

1 R
5 1C—HZT|| {4+ 2> Dz, |,

min
0.z,
r=1
subject to 0 = [01, 0, 03]" (5)

h(t; 8) = 01 (T (62)) 105202 te= 0t
05<6; <5, 1<6,<6, 1<63<10

where C = [¢; ... cg], H = Toeplitz(h), Z = [z1 ...
and D is the first-order difference operator.

A white Gaussian noise hypothesis leads to the least squares
optimality criterion. The constraint ||c.||]s = 1 is added to
deal with scale ambiguities. Constraining matrices A, and B,
to be elementwise nonnegative ensures that the spatial maps
U, = A,.BI will also be nonnegative, as in [7], [9]. Piecewise
constant activation signals are promoted through the total
variation regularization term in (5). Finally, the parameters in
6 are constrained to lie in specific ranges to reduce potential
indeterminacies and facilitate the optimization. These ranges
are wide enough to cover the expected HRF shapes. The reader

ZR]
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is referred to [13] for the effect of & on the HRF shape. It
should be noted that time-shift ambiguities in the estimation
of h and z, are unavoidable due to the convolution, and so
are scaling ambiguities. We solve problems (4) and (5) using
the structured data fusion (SDF) framework in Tensorlab [17].

IIT. NUMERICAL EXPERIMENTS
A. Simulation setup

For the numerical experiments, we defined a scenario with
R = 2 components: one for a task-related source and one
for spontaneous neuronal fluctuations. The former consisted
of 2 nonzero blocks of random durations and amplitudes. A
series of 8 Dirac impulses with random signs and amplitudes
is generated for the latter. Their timings are drawn uniformly,
and their intensity follows a Gaussian distribution N'(0, 0.25).
Integrating this signal over time produced the second activation
signal. The temporal signals are generated with a sampling
frequency of 8 Hz and a total length of 240 samples.

Subsequently, we defined two corresponding 2D spatial
maps of size 20 x 20 pixels. Similarly to [9], each spatial
map has a single activated squared region of size 5 x 5 pixels.
Each active pixel has a randomly drawn weight between 1 and
100, and each map is normalized by its £1-norm. The signals
resulting from the outer product of the activations with their
spatial maps were then added together and convolved with a
randomly defined HRF, with @ in the ranges given in (5). We
added white Gaussian noise to produce the observed signals
at multiple signal-to-noise ratio (SNR) levels, as a final step.

The above procedure was repeated 35 times with randomly
generated spatial maps, activation signals, and HRF. For
solving (4), we assumed that the values of R and L are known.
The regularization parameter was set using the relweight
parameter of Tensorlab. A grid search approach led to choos-
ing the relweight values of 30 and 1 for the two terms
in (5), respectively. Each of the BTD and the deconvolution
steps were run with 24 initializations. The initialization with
the smallest reconstruction error was chosen for the final result,
which aligns with the Gaussian noise assumption. The code
for the simulations is available on GitHub'.

B. Simulation results

The estimation results for the spatial maps, the HRF, and
the activation signals are shown in the boxplots of Fig. 2(a)-
(c), respectively, as obtained by solving (4) and (5). The
black line indicates the median value. Regarding the spatial
maps, the median relative error is generally low; even at 0 dB
SNR, it is below 0.2. To compare the true and estimated HRF
and activation signals point-by-point, the estimated HRF was
shifted in time so as to have the maximum correlation with
the true HRF. The estimated activation signals were shifted
accordingly. Additionally, both were normalized to the same
maximum amplitude as the true quantities, since the algorithm
results suffer from scaling ambiguities. The median HRF error
is low, around 0.2 even at -5 dB SNR. The error in the
activation signals is larger, which was also the case in [7].

Thttps://github.com/sofigami/btd-based-fus-deconvolution
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(a) Spatial maps. (b) HRF. (c) Activation signals.

Fig. 2: Boxplot of ¢2-norm relative error for different estimated quantities,
defined as ||x — %x||2/||x||2 for quantity x and its estimate X, at different
SNR levels, averaged over the R = 2 components and over the 35 runs.

It should be noted that all simulation results were included
without removing cases where the BTD step did not converge
to the global minimum; e.g., sometimes the resulting spatial
maps were combinations of the true spatial maps. This explains
the outliers and the large variance, mainly in the activation
signals and the spatial maps at low SNR levels.

Example results for a single scenario in Fig. 3 show that,
even at low SNR, the spatial maps are estimated very well.
The estimation of the HRF and the activation signals in Fig. 4
is almost perfect at 20 dB SNR, whereas it is not sufficient
at -5 dB (results are shown for Comp#1, but were similar for
Comp#2).

The most challenging scenarios for the BTD are high-noise
scenarios, especially when the activating regions overlap in
space or are partly aligned. This, in turn, affects the estimation
of the HRF and the activation signals. The deconvolution step,
which is not convex in the @ variable, adds further complexity.
Overall, the BTD step of the proposed algorithm seems more
robust than the deconvolution step.

#2 #1 #2

0 008 0 005 0
006
004 6
005 5 006 5 5 008
004 003
004
10 00410 10
003 002
002
> 002
15 00215 00115
001
0 0 0 0

0 s 10 15 0 s 10 15 0 5 10 15
Width [mm] Width [mm]

Width [mm]

(a) True spatial signatures. (b) Estimated spatial signatures.

Fig. 3: Example BTD results at -5 dB SNR.
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(a) True and estimated HRF. (b) True and estimated signal z1.

Fig. 4: Example deconvolution results at 20 dB and -5 dB SNR.

IV. REAL EXPERIMENTS
A. Data acquisition and preprocessing

Two visual experiments (on two brain slices of a single
mouse) were conducted at the Center for Ultrasound and Brain
Imaging at Erasmus University Medical Center (CUBE). The
subject mouse was presented with randomly generated high-
contrast images on two screens simultaneously, in 10 blocks of
4 seconds each. Each repetition was followed by a rest period
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(b) Exp. 2.

(a) Exp. 1.
Fig. 5: Correlation images for the two experiments.

lasting between 10 and 15 seconds. For the data acquisition
procedure details, the reader is referred to [13].

The time series of a pixel corresponds to its power variation
over the power Doppler image (PDI) stream [13]. The PDI rate
was 4 Hertz. Outlier PDIs were removed and interpolated over,
as in [18]. In Exp. 1, part of the SC was imaged, whereas in
Exp. 2, parts of the LGN and V1, regions known to be involved
in the processing of visual stimuli. The obtained correlation
images can be found in Fig. 5, where pixels with a Pearson
correlation coefficient (PCC) larger than 0.3 with the stimulus
are indicated. The final step of data preprocessing included
standardizing each pixel time series and band-pass filtering
using a fifth-order Butterworth filter with a 0.01-0.3 Hertz
passband in order to remove high-frequency noise components
[19] and the slow baseline drift in the signals.

B. Implementation details

As discussed in Section II-C, the BTD has to be unique
for the two-step method to be applicable. Solving (4) for the
fUS data delivered factor matrices A = [A; ... Ag] and
B = [B; ... Bg| that were full rank, but, unfortunately,
matrix C = [¢; ... cg] had proportional columns; this means
that the decomposition was not unique, as per the conditions
in [14]. For this reason, in order to promote the uniqueness
of the BTD, we imposed an orthogonality constraint on C,
which can be easily added to Tensorlab. The result satisfied the
uniqueness conditions of [14]. The orthogonality requirement
means that the components must differ in their reaction to
stimuli to be distinguishable from each other, as required in
[13]; otherwise, they are extracted under a single component.
Additionally, since the PDIs include pixels that do not belong
to the brain (the rough brain limits in Fig. 5 were estimated
from the data), the algorithm should be free to fit any value
to those pixels of no interest. This was possible using NaN
values and the fmt option of Tensorlab. Furthermore, we ran
the algorithm with different values of R. Since we have no
information on the spatial ranks, we assume that L, = L for
all r, similarly to [10]. We tried 24 random initializations for
each step. The best set of values for relweight was chosen
using the stimulus timings.

C. Results

The spatial and temporal signatures for Exp. 1 when R = 2
and L = 2,5 are shown in Fig. 6. We see that the spatial sig-
nature of component 2 in both cases resembles the correlation
image of Fig. 5 (a). The obtained time signatures were very

0.3

° )
= o

Amplitude [-]

0 50 100 150
Time [s]

(b) Temporal signatures.

Amplitude [-]

0 50 100 150
Time [s]

2 o 2
Width [mn]

2 0 2
Width [mm]

(c) Spatial signatures.

Fig. 6: Results for Exp. 1 when R = 2 and L = 2 (a), (b), L = 5 (c), (d).

(d) Temporal signatures.

similar for both values of L, and they had a PCC of 0.46 and
0.40 with the stimulus, respectively. It is clear that a higher
spatial rank allows for more detailed shapes in the spatial
maps. However, the overall shape of the SC is sufficiently
captured for L = 2; therefore, we will only present results for
L = 2 in the following.

When the number of components increases to 5 (Fig. 7), the
SC is extracted at a much higher contrast (Comp#3). However,
interpreting the rest of the components is challenging. Comp#5
mainly includes pixels on the big vessels near the brain
limit. Comp#2 probably relates to an edge effect of the
algorithm: its highest weights are for pixels outside the brain
(not depicted), and most of its temporal signature samples are
roughly 0. Comp#]1 possibly captures meaningful information.
For Exp. 2, two of the five extracted components are presented
in Fig. 8. Comp#2 includes the LGN and V1 of Fig. 5 (b).
Importantly, the BTD extracts the M1 region (reported in [20])
as well (Comp#3), which was not visible in Fig. 5 (b).

The deconvolution results for Exp. 1 can be found in Fig. 9.
Comp#2 was not included in this step since it contained virtu-
ally no temporal variation. The activation signal for Comp#2
now clearly points towards the experimental paradigm timings.
The reason the signal appears slightly ahead of the stimulus
in time is the time-shift ambiguity shared with the HRF.

Some indicative results for various R are included in Table I.
For Exp. 1, the maximum PCC with the stimulus significantly
increases when the number of components goes from 2 to
5. No improvement is yielded as R increases further. In
Exp. 2, additional components improve the extraction of the
task-related source. In both experiments, increasing R from
2 to 20 slightly improves the BTD relative error. Note that
the observed relative errors (~0.8) are comparable to those
observed in the simulations for -5 dB SNR.

These results show that the component extraction heavily
depends on the data: for Exp. 1, the task-related component
can already be extracted with a high correlation for R = 5.
This is not the case for R = 2, where we essentially divide
components into two types, thus allowing part of the artifacts
to mix into the task-related component. This is also clear from
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Fig. 7: Spatial maps for Exp. | when R =5, L = 2.
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Fig. 9: Deconvolution results for Exp. 1.
the correlation results: the lag for the maximum correlation
was not the same as the one used in Fig. 5 (a). The extraction
of the task-related component was straightforward in Exp. 2

already for R = 2, albeit at a lower correlation, which was
expected from the values in Fig. 5.

TABLE I: Results for both experiments and for L = 2.

Max. PCC

components R Exp. 1 | Exp. 2
2 0.4594 | 0.5322
5 0.8667 | 0.5636
10 0.8678 | 0.6557
20 0.8711 | 0.7006

Number of BTD Relative error
Exp. 2
0.8642
0.7904
0.7718

0.7510

Exp. 1
0.8886
0.8600
0.8029
0.7866

V. CONCLUSIONS

In this work, we extracted brain activity with low-rank
spatial signatures in a two-step approach: using the BTD to
estimate the spatial maps and semi-blind deconvolution to
estimate the activation signals and the HRF in the imaged
slice. The main advantages of this approach are that it is data-
driven, acts on whole-slice data, and can be applied to resting-
state data. As noted in [10], the BTD only relies on two
assumptions: low spatial ranks and additive white Gaussian
noise. In this real data implementation, we added the constraint
of orthogonal time signatures to promote the uniqueness of the
BTD, but other constraints can be used instead. The method
does not come without consideration: the number of compo-
nents and the ranks are generally unknown, so multiple values
must be tested. Furthermore, the regularization parameter has
to be finetuned. Finally, the extent to which the HRF can be
considered constant in the slice remains an open question that
has received diverse answers in literature [19], [21].
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