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Database-Driven Online Flight-Envelope Prediction
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Delft University of Technology, 2629 HS Delft, The Netherlands

DOI: 10.2514/1.G002866

Safe flight-envelope prediction is essential for preventing aircraft loss of control after the occurrence of sudden

structural damage and aerodynamic failures. Considering the unpredictable nature of such failures,many challenges

remain in the process of implementing such a prediction system. In this paper, an approach to online safe flight-

envelope prediction is proposed that is based on the retrieval of information fromoffline-assembled databases. One of

the key steps of this approach is determining the structural damage of the state of the aircraft by using the

identification, detection, and classification methods presented in this paper. The estimated damage cases will lead to

structural damage indices in the database corresponding to those safe flight envelopes that are ”closest” to the actual

safe flight envelope of the damaged aircraft. The feasibility of the proposed database-driven approach is proved by

simulation results, where three damage cases are successfully detected and classified.

Nomenclature

Ax, Ay, Az = specific forces along the bodyX, Y, orZ axes,
m∕s2

b = wingspan, m
C = dimensionless aerodynamic coefficient
�c = mean aerodynamic chord, m
Ixx, Iyy, Izz, Ixz = moments and products of inertia
L,M, N = aerodynamic moments along the body X, Y,

or Z axes, N ⋅m
p, q, r = roll, pitch, and yaw rate around the bodyX, Y,

or Z axes, rad∕s
S = wing area, s2

V = airspeed, m∕s
X, Y, Z = aerodynamic forces along the body X, Y, or Z

axes, N
x = training example vector
y = training target vector
α = angle of attack, rad
β = angle of sideslip, rad
δa, δe, δr = control surface deflections of aileron,

elevator, and rudder, rad
ρ = air density, kg∕m3

I. Introduction

A IRCRAFT loss of control (LOC) has remained one of the
dominant causes of fatal aircraft accidents over the past few

decades [1,2]. LOC accidents are generally related to a significant
deviation of the aircraft from the nominal flight envelope due to
external hazards, technical failures, and pilot error [3].
The safe flight envelope (SFE) is characterized by aerodynamic

and kinematicmodels of the aircraft aswell as control authority, and it
represents the region in the state space in which the aircraft can be
safely operated. Different definitions of the flight envelope are

proposed in the literature; see, e.g., [4–9].Widely used to prevent stall
and potential structural damage, the conventional maneuvering
envelope defines hard constraints on the speed and load factor.
In addition to these static limitations, dynamic envelope bounds

can be established by determining the controllable or reachable
states, given the control authority of the pilot or autopilot [5,6]. A
reachability analysis provides a rigorous approach to actually
calculate the dynamic envelope bounds [5,6]. In principle, a
reachability analysis determines the complete set of states that can be
reached from a target set within a given time horizon while subject to
the system dynamics and input constraints. If the dynamics of the
system are nonlinear, as is the case with aircraft, a nonlinear
reachability analysis approach must be used [6]. A nonlinear
reachability analysis defines the SFE as the intersection between a
forward reachable set and a backward reachable set; see Fig. 1. This
intersection indicates the region in the state space, inside which the
aircraft is guaranteed to be capable of maneuvering from as well as
returning to a trim set within a certain time horizon [7–9].
During nominal flight, these envelopes can be stored as a fixed part

of a LOC prevention system [4]. However, they may no longer be
valid after sudden failures or structural damage because the
aerodynamic properties of the damaged aircraft would change: often
significantly. For example, under the situation of wing damage, the
maximum lift coefficient decreases, which results in a higher stall
speed and lower maximum load factor. Therefore, the overall
maneuvering envelope will shrink due to the change in the
aerodynamic coefficients, as is illustrated in Fig. 1. Under such
abnormal conditions, the pilots need to acquire the reduced SFE as
quickly as possible, implying that the onboard computer must
recalculate the solution in near-real time.
Two significant challenges exist when updating the SFE based on

reachable sets. The first, called the fundamental challenge, is the
result of the fact that a nonlinear reachability analysis requires an
accurate global model of the aircraft dynamics to compute an
accurate SFE. In the presence of failures and damage, measurement
data required for online system identification can realistically only be
obtained in a limited region around the current flight condition
because the impaired aircraft may not be able to maneuver freely
without exiting the new SFE, thereby causing the very problem the
system is intended to prevent. Hence, the onboard global model can
only be updated locally in the direct neighborhood of the current
flight state, with the remainder of the global model necessarily
assumed unchanged. Without a valid global model, however, the
computed SFE using nonlinear reachability analysis will be
inaccurate.
The second challenge is more practical in nature, and it is the result

of the very high computational cost of computing the SFE using a
nonlinear reachability analysis with a realistic aircraft model. All
current approaches suffer from the so-called curse of dimensionality,
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in the sense that they scale badly (i.e., exponentially) with increasing

state-space dimension, rendering them infeasible for online

implementations.

The solution that is proposed in this paper is to consider retrieving

the SFE from an onboard database that is constructed offline and

contains the precomputed SFEs for various representative fault and

damage scenarios. For each representative damage case, a global

dynamics model and its corresponding SFE are computed offline and

then stored in the database. Only database retrieval is performed

online, thereby circumventing the two aforementioned challenges

associated with direct online SFE prediction. One of the key steps of

this approach is to determine the index into the database, given an

indication of potential abnormal conditions of sensors, actuators, and

airframe.

In aerospace engineering, fault detection and isolation (FDI)

methods are intensively used inmonitoring and diagnosing the health

of aircraft sensors and actuators, as well as providing updated

information for control systems [11]. In general, FDImethods rely on

either hardware redundancy or analytical redundancy [12]. Sensor

faults are usually diagnosed by a hardware redundancy approach,

whereas faults in actuators are detected based on mathematical

models and estimation techniques. These techniques have been well

developed and applied to aircraft [13]; in this paper, it is therefore

assumed that faults in sensors and actuators are detected by advanced

FDI systems. The problem this paper seeks to address is the

assessment of the structural integrity of aircraft after sudden damage,

like the partial loss of wings and tails. This issue has not received

much attention in the literature.

One reason for this is that repeated destructive experiments on

large-scale structures like aircraft arevery costly at best and infeasible

at worst; as a result, there are very limited data available for analysis.

However, a number of nondestructive computational fluid dynamics

(CFD) andwind-tunnel experiments have been conducted [14–17] to

satisfy the expanding need for damaged aircraft models. Moreover,

there is ample literature on nondestructive structural health
monitoring (SHM) techniques [11,18,19] using vibration-based
inputs,mode shape curvatures, andmaterial properties based on finite
element models.
Inspired by the techniques and methods used in SHM, a different

approach for online detection and classification of structural damage
is proposed in this paper based on a framework for machine learning
and pattern classification [20]. The featured inputs to the classifier are
the stability derivatives identified from the well-known ”two-step
method” [21]. In this way, structural damage to any main part of the
aircraft can be detected and estimated. Accordingly, the estimation
result is used to generate an index into the databasewith stored SFEs.
The retrieved envelopewill then be used to drive an adaptive envelope
protection system.
The contribution of this paper is a novel procedure for online

classification of structural damage from locally estimated
aerodynamic parameters after failure occurrence. The results from
the classification are used to access a database containing stored SFEs
for different representative damage cases. The novel procedure is
thus a key element of the database-driven online safe flight-envelope
prediction method, indicated as “DEFEND.”
The paper has the following outline. In Sec. II, a general

framework of theDEFEND system is given. In Sec. III, the process of
aerodynamic parameter identification based on a two-step method is
introduced. The methods of aerodynamic anomaly detection and
damage classification using identification results are proposed in
Sec. IV. The method is demonstrated and validated through
simulation results shown in Sec.V. Finally, in Sec.VI, the futurework
of a database retrieval method is briefly introduced, followed by
discussions and conclusions in Secs. VII and VIII.

II. System Overview

The general process of the DEFEND system is illustrated in Fig. 2,
where the onboard system is supported by two offline databases. It is

Normal Flight Abnormal Situation
state1

changed model

structural damage
system failure

target state
reduced backward-reachable set
reduced forward-reachable set

target state
backward-reachable set
forward-reachable set

state1

state2state2

Fig. 1 Safe flight envelope and its change after sudden4 damage and failures.

(Sec. IV.B)

(Sec. IV.C)

Fig. 2 General framework of DEFEND: a database-driven safe flight-envelope prediction system.
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clearly shown that the realization of online SFE prediction is strongly

connected to the database retrieval system, and a reliable online

identification process is essential for successful retrieval from the

database. As displayed in Fig. 2, commands from the onboard flight

controller are first sent to flight actuators as well as the FDImodule to

monitor the health conditions of the actuators. If any failure happens

(e.g., hardover, jam), it will soon be detected by abnormal residuals

between the actual outputs of actuators and the expected values

calculated from their mathematical models [12]. Meanwhile,

onboard sensors are also being monitored by advanced FDI

techniques, such that any sensor faults can be quickly detected and

compensated for [13]. New measurements of flight states and

responses are sent to the system identificationmodule, which uses the

two-step method [21] to update the aircraft model. At the first step,

the aircraft states and the sensor bias are estimated by a Kalman filter

or other advanced state estimators based on aircraft kinematic

models.
Next, the nondimensional forces and moments along each axis are

calculated using the estimated states and sensor information, which

provides the input to the second step of the two-step method, i.e., the

estimation of stability derivatives by using a recursive least-squares

method. For damaged aircraft, it is likely that the conventional model

structure has changed, so a model structure selection scheme is used

[22]. According to a series of experiments and reports [14–17], the

aerodynamicmodel is directly related to the integrity of the airplane’s

components and structures. Hence, the calculated dimensionless

forces and moments are used to initiate an online aerodynamic

anomaly detection process, which works by comparing the output of

nominal flight models with the current output measurements. If there

are any abnormal changes to the forces and moments, control inputs

will be given in an effort to counteract the induced motion, creating

the sufficient input excitation needed for the identification of the

changed local model. Meanwhile, an alarm will be generated that

triggers the damage classification to determine the position and scale

of the possible damage based on the newly identified stability

derivatives. However, online identification can only update themodel

in a local region around the current state due to the limited excitation

provided by small maneuvers after damage. The onboard

classification process needs to retrieve the offline training knowledge

of various global damage models and flight conditions stored in the

database. Once the damage case is estimated, this information will be

provided to the database as an index to retrieve a set of candidate

SFEs. By applying database retrieval schemes and interpolation

algorithms, a unique SFE is obtained that is closest to the current

damage situation. The obtained SFE can then be presented to the

pilots and used by the fault-tolerant controller to generate new

control laws.
Under this general framework, the focus of this paper is the damage

detection and classification based on estimated nondimensional

aerodynamic coefficients (double-framed blocks in Fig. 2), which

will be thoroughly discussed in Secs. IV and V with simulation

results. Additionally, future work on database retrieval and SFE

interpolation methods (shaded blocks in Fig. 2) is introduced in
Sec. VI, which will complete the loop of the DEFEND system.

III. Aerodynamic Parameter Identification

The precondition of a reliable online envelope prediction system
is an accurate plant model, which is obtained by an efficient system
identificationmethod. The method used in this paper is the two-step
method in the time domain, where the estimation of flight states and
aerodynamic coefficients are separately dealt with. Because the
research is aimed at classifying aircraft structural damage, the focus
is on the second step of the two-step method, in which the
identification of changed aerodynamic coefficients is key to
diagnosing damage.
The aircraftmodel used in this paper, shown as the plant in Fig. 2, is

the Cessna Citation laboratory aircraft (abbreviated as PH-LAB)
operated by the Delft University of Technology and The
Netherlands’s National Aerospace Laboratory/NLR. The PH-LAB
is a twin-jet business aircraft designed and constructed by the aircraft
manufacturer Cessna [23]. In this paper, the aerodynamic model of
the PH-LAB is identified from the online input/output flight data
generated by a high-fidelity MATLAB/SIMULINK environment,
which incorporates the nonlinear aircraft model with aerodynamic
lookup tables identified from real flight tests (Fig. 3) [24]. The
simulation environment is called ”DASMAT,” which is the acronym
for ”Delft University aircraft simulation model and analysis tool.”
DASMAT is used in our research to simulate, analyze, and compare
the dynamic behavior of damaged and undamaged aircraft, given
different control inputs and strategies [25]. During the simulation, it
is assumed that the generated flight states have been preprocessed by
the state estimation step and that the measurements are free from
sensor bias and external disturbances. The simulated states are then
used to calculate the dimensionless aerodynamic forces andmoments
of the aircraft [22]:

2
4CL

CD

CY

3
5 �

2
4 sin α 0 − cos α
− cos α 0 − sin α
0 1 0

3
5
2
664

mAx

1∕2ρV2S
mAy

1∕2ρV2S
mAz

1∕2ρV2S

3
775 (1)

Cl �
_pIxx � qr�Izz − Iyy� − �pq� _r�Ixz

�1∕2�ρV2Sb

Cm � _qIyy � rp�Ixx − Izz� � �p2 − r2�Ixz
�1∕2�ρV2S �c

Cn � _rIzz � pq�Iyy − Ixx� � �qr − _p�Ixz
�1∕2�ρV2Sb

(2)

The effect of the structural damage is mainly a combination of
aerodynamic changes and mass (and inertia) shifts [26]. However,

[Eq. (3)]

[Eq. (3)]

[Eqs. (1–2)]

Fig. 3 System identification based on the input/output data generated from the simulation environment.
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mass properties, although coupled with forces and moments, seem
not to have a substantial effect on flight characteristics relative to the
aerodynamic and control effects, which is according to recent wind-
tunnel experiments in which a large asymmetric mass change
(physical separation of an engine) was modeled [15]. Directly
measuring or even numerically estimating changed mass properties
after structural damage is currently not feasible. However, the
damage detection and classification method presented in this paper
does not necessarily require the exact value of the forces and
moments, but only the aerodynamic effects of the damage. In this
sense, the effects of changed the weight and inertia are lumped with
that of the aerodynamic changes, and the mass and inertia in Eqs. (1)
and (2) are assumed constant.
According to Fig. 3, the calculated dimensionless coefficients are

used to identify the aerodynamic model parameters. Because, in real
flight as well as in DASMAT simulations, the aerodynamic models
are black box, a model structure needs to be estimated through a
model selection scheme based on the input and output data. The
model structure in Eq. (3) is selected for identifying the aerodynamic
model of theCitation aircraft from simulation data, where eachmodel
parameter corresponds to one of the control and stability derivatives:

CL � CL0
� CLα

α� CLq

q �c

V
� CLδe

δe

CD � CD0
� CDα

α� CD
α2
α2 � CDq

q �c

V
� CDδe

δe

CY � CY0
� CYβ

β� CYp

pb

2V
� CYr

rb

2V
� CYδa

δa � CYδr
δr

Cl � Cl0 � Clβ β� Clp

pb

2V
� Clr

rb

2V
� Clδa

δa � Clδr
δr � Clαα

Cm � Cm0
� Cmα

α� Cmq

q �c

V
� Cmδe

δe

Cn � Cn0 � Cnβ β� Cnp

pb

2V
� Cnr

rb

2V
� Cnδa

δa � Cnδr
δr (3)

The estimation method used in this paper is a recursive least-
squares method. Variable forgetting factors are used to enhance the
influence of new data when the model parameters suddenly change,
as well as mitigating covariance matrix saturation under a steady-
state condition. A more in-depth coverage of this technique can be
found in [27].

IV. Damage Detection and Classification

To ensure the reliability and safety of the aircraft, an onboard
health monitoring and assessment system is essential. Most
malfunctions normally occur in engines, sensors, and actuators, as
well as airframe components like wings and tails [3]. Because
onboard devices and indicators have been developed in the past for
various failures [12] in engines, actuators, and sensors [13], this is
outside the scope of the current research. Instead, the main focus of
this paper is on structural failures (i.e., the damage to a certain part of
the airframe or actuators, where the aerodynamics change on a global
scale), and the stability derivatives related to the structures need to be
reidentified. Because the global aerodynamicmodel is not influenced
by other nonstructural failures, the damage assessment can be
performed independently.
Structural health monitoring techniques for large plants are an

active field of research [19]. SHM techniques aim to detect and
classify component faults like fatigue cracks, friction, and loose
joints by applying machine learning algorithms [28] like neural
networks and fuzzy logic on observation data acquired from large
arrays of sensors. However, conventionally used vibration-based
techniques employed in SHM are currently not available for aircraft
due to the lack of necessary sensors.Moreover, a failure has occurred,
it is more useful from the perspective of flight-envelope prediction if
the structural damage is assessed on a higher level, i.e., to decide
which ”main” part of the aircraft (e.g., fuselage, wings, vertical tail)
has been compromised.

Inspired by the techniques and methods used in SHM [11], this
section proposes a novel way of detecting and classifying aircraft
damage by using locally estimated aerodynamic stability derivatives
to offline train a damage classifier with a supervised learning
approach [20]. The data for offline training are obtained by running
dynamic simulation experiments based on several predefined
structural damage cases. During training, the classifier produces
decision boundaries or surfaces that divide the measurement space
into several damage class regions. After training, the classifier uses
online estimated aerodynamic stability derivatives to assign, in real
time, the current damage condition to one of the damage class
regions. As a proof of concept of the new approach, three
representative damage categories are chosen: horizontal stabilizer
damage, vertical tail damage, and wing damage.

A. Aerodynamic Effect Modeling of Structural Damage

To determine the damage class, the aerodynamic characteristics of
each damage case must be modeled as accurately as possible. In the
”ideal” case, this requires data from systematically conducted flight
experiments with damaged aircraft that, for obvious reasons, are
problematic to obtain. Most experiments are therefore based on
subscale models in the wind-tunnel [17] and CFD experiments [29].
In recent years, the generic transport model (GTM), which is a 5.5%
scale model of a commercial aircraft, has been the subject of a series
of extensive wind-tunnel tests undertaken by NASA [14,15] for the
exploration of loss-of-control events [16]. In these experiments, the
damagewas modeled in the form of partial or complete tip loss of the
three major parts of the subscale GTM model that provided the
aerodynamic forces and moments: the horizontal stabilizers, the
vertical tail, and the wings. Also, preliminary work on damage
modeling has also been performed using digital DATCOM,where the
aerodynamic characteristic of a Cessna Citation aircraft with various
levels of vertical tail damage was modeled [30].
It can be concluded from these experiments that each damage case

results in unique aerodynamic effects on the aircraft and changes in
different stability derivatives. The experimental results of horizontal
stabilizer damage [14] show that the damage causes significant
changes to longitudinal stability, which is indicated by the changed
value of Cmα

and Cmq
. Additionally, due to geometric asymmetry, a

slight incremental rolling moment is observed with the increasing
value of Clα . The vertical tail damage mainly results in a steady
change in lateral forces and directional stability indicated by the
values of CYβ

, Cnβ , and Cnr [30]. For the wing damage experiments
conducted in [14,15], the most important observation is the reduced
lift force and the incremental rolling moment induced by unequal
normal force contributions from left to rightwings.Also, the effective
dihedral Clβ is affected due to wingtip loss.
Another important conclusion from the experimental data is that

the changed aerodynamic coefficients can be simply approximated
by magnitude scaling, and the change scale on different levels of
damage can be calculated as follows:

change scaleΔC � Cdamaged − Cundamaged

jCundamagedj
⋅ 100% (4)

By analyzing the wind-tunnel data, it can be assumed that the
relation between the change scale of each aerodynamic coefficient
and the percentage of tip loss is approximately linear. Therefore, in
order to model the change scale of coefficients for different levels of
damage, linear interpolation is used, based on the calculated change
scales of experiment data [14–16,30]. In this paper, five damage
levels ranging from 10 to 50% are modeled for each of the three
typical damage locations on the Cessna Citation aircraft. The
interpolated change scales of each affected stability derivative under
various damage levels are listed in Table 1. In our simulation
environment of the Cessna Citation aircraft (DASMAT), the
aerodynamic model is stored in the form of lookup tables. The
aerodynamic model for the damaged aircraft is obtained by a linear
scaling of the nominal model according to the interpolated change
scales listed in Table 1:
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CXdmg
� �1� ΔCX�CX0

CYdmg
� �1� ΔCY�CY0

CZdmg
� �1� ΔCZ�CZ0

Cldmg
� �1� ΔCl�Cl0 � ΔClαα Cmdmg

� �1� ΔCm�Cm0
Cndmg

� �1� ΔCn�Cn0
(5)

where, for example,CX0
denotes the original value in the lookup table

of DASMAT, and CXdmg
denotes the modeled value for the damaged

Cessna Citation aircraft. The outputs of the nominal and damaged
models are shown in Figs. 4–6, where the nominal model outputs are
directly retrieved from the aerodynamic lookup table. The modeled
aerodynamic effects of the Cessna Citation display similar patterns to
the wind-tunnel results in [14–16] because they share similar
configurations.

B. Anomaly Detection

Anomaly detection refers to the problem of finding patterns in the
data that do not conform with expected behaviors. In this research,
anomalies are defined as abnormal values of observed aerodynamic
forces and moments that may indicate the occurrence of structural
damage. The basic idea is to fit a probability distribution into the
training set of normal data, based on which the data points that have
very low probabilities are labeled as anomalies [31].
In this paper, the normal data and abnormal data are defined,

respectively, as the measured dimensionless forces and moments of
undamaged and damaged aircraft. If the residual r�t� denotes the
difference between the measured output y�t� and an estimated output
ŷ�t� computed based on the aerodynamic model [i.e., r�t� � y�t�
−ŷ�t�], the mean of the residual E�r�t�� should be zero in the no-
damage case; otherwise, it will deviate from zero. In reality, however,

the residuals are corrupted by noise, unknown disturbances, and
uncertainties in the system model [12]. Therefore, the distribution of
the residual is used as the criterion for anomaly detection because the
output residual during undamaged flight can be expected to have
statistics determined by the noise present in the system [32].
As illustrated in Fig. 7, the distribution of the residual is calculated

using data from a series of experiments on the undamaged aircraft.
Each training data point is the absolute value of the residual, which is
used to fit a certain distribution (e.g., Gaussian) by calculating the
parameters of its probability density function (PDF). The trained PDF
is then used to evaluate the probability density of newly measured
data and decide whether it contains anomalies or not. Take Gaussian
distribution, for example; the probability density of each incoming
new data point p�rnew� is computed according to the following:

p�rnewjμ; σ� �
1����������
2πσ2

p exp

�
−
�rnew − μ�2

2σ2

�
(6)

where μ and σ are the trained parameters of the Gaussian distribution
of the undamaged aircraft. When damage occurs, the sudden change
of forces and moments will result in a residual that has a very low
probability in the distribution of normal data. Anomalies can then be
detected using a threshold, where y � 1 signifies the potential

existence of an anomaly:

y �
�
1 if p�rnew� < ε�anomaly�
0 if p�rnew� > ε�normal� (7)

The threshold ε is determined based on a cross-validation set of
labeled examples, including both normal and abnormal data points

[31]. Because each of the six dimensionless forces andmoments has a
separate channel, the anomaly detection can be processed separately
for each channel based on one of the six thresholds, which will be
combined to trigger the damage classification process discussed in
the next section.

C. Damage Classification Using Neural Networks

If the anomaly detection algorithm indicates the existence of
damage, further steps should be taken to find the location of the
damage to the horizontal stabilizers, wings, and the vertical tail; and
subsequently assess the damage severity. However, two problems
exist. One problem is that there is no explicit mapping, i.e., a precise
analytic mathematical function that describes the relationship
between the damage condition of the aircraft and the changed
aerodynamic characteristics of the damaged aircraft. The second
problem is that, even if the damage severity could be estimated in an
analytic form, it may take one of infinite values between 0 and 100%,
which makes database building and retrieval of the corresponding
SFE impractical. These problems are tackled in this paper by using
pattern classification techniques, where ”patterns” or ”classes”
specifically indicate the damage situation of the aircraft represented
by discrete values with a chosen interval (e.g., 10, 20, 30%, : : : ). In
this way, the entire range of damage severity is decomposed into
small segments so that the damage severity can be approximated by
these discrete values. Furthermore, the mapping from identified
aerodynamic coefficients to the damage conditions can be learned
from a training process. Therefore, the current damage condition is
estimated without explicit functions. The essential part of any pattern
classification method is the training of the mapping from a datasetX
to its assigned class label set Y:

f:X → Y (8)

The class label set Y, or target set, contains k vectors y
corresponding to k potential damage cases (e.g., 20% tip loss of the
left wing). The dataset X consists of m vectors x collected from m
experiments, and each n-dimensional vector x�m� contains n
extracted features, which are specifically defined in this paper as the
stability derivatives (e.g., Cmα

, Cmq
) identified from each of the k

damage cases. If k � 2 and y ∈ f0; 1g, the problem is reduced to
binary classification. Many methods are well developed for binary
classification, such as logistic regression and support vector
machines [20,33], and each method has different ways of computing
decision boundaries. In our research, however, more than two
damage cases need to be isolated and classified, which turns the
problem into multiclass classification. This kind of problem can be
solved by decomposition into several binary classification tasks that
can be solved efficiently using binary classifiers. In general, there are
two binarization schemes that are most widely used: one vs all, and
one vs one. Literature can be found comparing these schemes with
various binary classifiers, and both of them have their pros and cons,
depending on the classifier used and the size of the training set [34].
In this paper, a multilayer neural network is used for classification.

One major difference of the neural network from other classifiers is
that it can deal with multiclass classification problems by a single

Table 1 Changed value of dimensionless forces and moments due to different levels of damage

Left horizontal stabilizer tip loss Vertical tail tip loss Left wingtip loss

Damage severity, % ΔCmα
, % ΔCmq

, % ΔClα , % ΔCnβ , % ΔCYβ
, % ΔCnr , % ΔCLα

, % ΔClβ , % ΔClα , %

10 15 8 −3 −25 8 20 −5 10 −10
20 25 15 −5 −40 15 30 −10 10 −10
30 30 20 −10 −50 25 40 −15 30 −28
40 45 30 −12 −60 30 50 −20 40 −36
50 57 43 −15 −70 40 60 −25 50 −45
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network structure [34,35], where each input unit represents one of the
features in the vector x, and each output label defined as y ∈ Rk

represents one of the k classes by setting only one element in the
vector to be one. A multilayer neural network [20] consists of one
input layer, several hidden layers, and an output layer, which are all

interconnected by modifiable weights; and a single bias unit that is
connected to each unit other than the input units. Nonlinear
multilayer networks have great approximation power and can
implement arbitrary decision boundaries. The decision regions need
not be convex nor simply connected. The neural networks have two

Fig. 7 Anomaly detection process during flight simulations.

a) Static longitudinal stability b) Pitch damping c) Incremental rolling moment versus angle 
of attack

Fig. 4 Aerodynamic effects of different levels of horizontal stabilizer damage.
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Fig. 5 Aerodynamic effects of different levels of vertical tail damage.
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Fig. 6 Aerodynamic effects of different levels of wing damage.
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primary modes of operation: evaluation and learning. For evaluation,
the input is simply passed through the network to the output layer. For
supervised learning of the network, the network parameters (i.e.,
weights) are modified such that the network output converges toward
a target output. For training the weights of the multilayer networks,
the backpropagation algorithm is used [20].
When structural damage occurs, some representative stability

derivatives are extracted from the identified models as features for
damage classification. The identified parameters in every simulated
flight test form a training set for each typical damage case, which is
used to generate decision boundaries during the training process. The
richness of the training set is one of the key factors that determine the
accuracy of the classification results. If the number of classes is too
small, the estimation of the actual situation can be coarse and
inaccurate, whereas too many classes may lead to the problem of
ambiguity and complex implementations. Hence, the designed
number of classes in the training set is a tradeoff between desired
numerical accuracy and physical restrictions. For each new feature
vector xnew ∈ X extracted from an unknown damage case, the
classification can be performed by finding out its class label ynew ∈ Y
based on the trained mapping:

ynew � f�xnew� (9)

In this way, the current damage severity can be classified and
estimated based on the identified aerodynamic parameters. In the
next section, it will be shown how the whole process is implemented
via well-trained neural networks in a high-fidelity simulation
environment.

V. Simulation Results

To simulate the in-flight onboard identification process, output
data are generated with the open-loop DASMAT simulation model
given doublet maneuvers of �5 deg on elevators, ailerons, and
rudders triggered at different times, where the data are contaminated
by measurement noise [signal-to-noise ratio �SNR� � 25]. It is
important to note that, when damage happens in reality, the actuator
inputs required for excitation of the system for online system
identification are not specified as doublets but generated
automatically by the onboard fault-tolerant controller to compensate
for damage-induced excursions from the reference trajectory. In that
sense, the fault-tolerant controller indirectly excites the system by
making efforts to stabilize it. The incorporation of a fault-tolerant
controller is currently not the scope of this paper, but it will be
included in future work.
As is discussed in Sec. IV.A, the modeling of the aerodynamic

effects of damage in DASMAT is based on the analysis of
experimental (wind-tunnel) data. In the simulation setup, the
damage cases and the corresponding changes to the dimensionless
aerodynamic coefficients are listed in Table 1. It is illustrated in

Fig. 8 how the training data are generated and used in the simulation
of damage classification. For each damage case, the stability
derivatives that have the most dominant and discernible effects are
picked as classification features for the damage classifier, as listed
in Table 2. These features are estimated by the system identification
process described in Sec. III based on the model structure defined in
Eq. (3). First, doublet maneuvers along with simulated noise are
used as actuator inputs to the DASMAT model to generate the
simulated responses of actual flight. The measurements of the
dimensionless forces and momentsCY ,CL,Cl,Cm, andCn are used
as inputs to the aerodynamic model identification algorithm. To test
the performance of the system identification routine, three damage
scenarios are designed, which are a 30% tip loss of the left
horizontal stabilizer, a 20% tip loss of the vertical tail, and a 40% tip
loss of the left wing.
The first two subplots of Figs. 9–11 show the time histories of

dimensionless forces and moments obtained by applying a doublet
maneuver of �5 deg on the actuators of the DASMAT simulation
model. The measurements and identified values of the damaged
aircraft are denoted by solid lines and dashed lines, respectively, which
are compared with measurements from the undamaged aircraft in
solid–dashed lines. It is observed that the identification algorithm
succeeds in tracking the measured value of dimensionless forces and
moments of the damaged aircraft and results in satisfactory low
identification errors during the entire time span, as shown in Figs. 9c,
10c, and11c. The identification results of the stability derivatives along
with their real values are displayed in the second row of Figs. 9–11 for
each of the damage cases accordingly. It is noted that the real values are
extracted from the lookup table from the simulation model; but, in real
flight, these cannot be directly read or measured from the aircraft. The
estimated values are expected to converge to the real values during the
identification process.
The ratio between the converged coefficients of the damaged and

undamaged aircraft indicates the change induced by structural
damage. It is clearly shown that the identified stability derivatives
quickly converge to the changed values, capturing the aerodynamic
characteristics accurately and providing essential information for
damage classification, which is immediately triggered once the
anomaly detection block gives a positive alarm. The last rows of
Figs. 9–11 show the anomaly detection results of three damage cases
based on the residuals between the responses of damaged and

Fig. 8 Training and validation process for damage classification.

Table 2 Damage parts and the
corresponding stability derivatives used as

features

Damage part Features for classification

Horizontal stabilizers Cmα
, Cmq

Vertical tail Cnβ , Cnr
Wings Clα , CLα

11
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undamaged models described in Sec. IV.B. The upper plots of

Figs. 9g, 9h, 10g, 10h, 11g, and 11h depict the absolute value of

residuals between measured outputs and estimated outputs with

respect to time; and the probability density of the residuals computed

from Eq. (5) are displayed in the lower plots. The increase of the

estimation error and the corresponding decrease of its probability

density is observed soon after the damage is triggered. A threshold is

used to capture the anomaly observed in the data. Each channel has a

separate detection threshold and different reidentification time, so the

anomaly alarms are triggered individually, which are displayed in

Figs. 9i, 10i, and 11i. It is important to note that, in the open-loop

simulation, the time of change detection and the anomaly alarms are

closely related to the time of maneuver execution of the aircraft.

Hence, an updatedmodel identified from sufficient input excitation is

a key factor for a successful anomaly detection, which again leads to

the future work of the application of fault-tolerant controllers in the

identification loop.

The results shown in Figs. 9–11 are identification results from only

one simulation experiment conducted on the DASMAT simulation

model. To generate a classification dataset of 300 examples for each

damage part and damage level, 5400 simulations were repeatedly run

with the same input and noise level. The dataset is divided into a

training set and a validation set with the proportion of 2:1, where each
data vector contains two features listed in Table 2. The training builds

on a base architecture of one hidden layer neural network with

sigmoid functions as the activation function. The output layer has six

outputs, with the softmax function as the output transfer function.

Various numbers of hidden nodes ranging from 3 to 30 were

experimented with, and the performances were evaluated based on

the validation data. In this simulation, the best performance is given

by the neural network with 10 hidden nodes. The training results of

two features based on this structure are displayed in Fig. 12,where six

damage levels on three different parts of the aircraft are defined as

class labels. The blackmarkers represent the training data of different

classes, and the region of each class is demonstrated. The accuracy of

the training results relies on the richness of the training data.

However, in real physical experiments, the generated data cannot be

scattered evenly throughout the grid because data without physical

meanings are unlikely to be collected in the flight simulation as

training data. Hence, it is important to note that, in Fig. 12, the

training result on the boundary may not be accurate due to lack of

training data.

To evaluate the performance of the trained classifier, validation

experiments are conducted on different damage scales for a single

damage location. If data assigned to the correct class are defined as

positive and the rest as negative, the validation results can be

represented by four measures, which are the number of correctly

classified positive data (true positive), correctly classified negative

data (true negative), misclassified positive data (false positive), and

misclassified negative data (false negative), respectively. Widely

used criteria to evaluate classifier performance for classification

problems are precision and recall, which are defined as follows [33]:
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Fig. 9 Identification and anomaly detection results of 30% tip loss of left horizontal stabilizer. The damage is triggered after 1 s.
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Recall � number of true positives

number of true positives� number of false negatives

Precision � number of true positives

number of true positives� number of false positives

(10)

The evaluation results of the classifiers for each of the damage

cases are listed in Table. 3, which shows that the damage to any of

the three main parts of the Cessna Citation aircraft can be

successfully detected and classified under a moderate noise

level (SNR � 25).
In real flight accidents, however, structural damage may happen

simultaneously tomore than one location on the aircraft. Because it is

impossible to list all the possible combinations that might occur, the

domain of damage locations is restricted to the three major parts

investigated in this paper. As was discussed in Sec. IV.A, the

aerodynamic effects of damage to different parts of the aircraft are

relatively independent from each other and the couplings, although

they do exist, are of little impact. As a result, the combined forms of

damage can be detected and classified by using separate training

features, i.e., the dimensionless aerodynamic coefficients listed in

Table 2. For example, if one of the horizontal stabilizers and vertical

tail are damaged at the same time, the changed dimensionless

moment coefficients caused by damaged horizontal stabilizers areCm

and Cl, whereas for a damaged vertical tail, the most affected

dimensionless force and moment coefficients are CY and Cn. Hence,

alarms in these four channels will be triggered individually by the
anomaly detection system. After that, the corresponding
classification process will be initiated using training results
displayed in Fig. 12. In this sense, themultidamage identification can
be reduced to several simultaneous single-damage detection and
classification problems.

VI. Database Building and Retrieval

To support the online operations of theDEFEND system, two sets
of databases are needed for damage classification and SFE
prediction, respectively, which are depicted in Fig. 13. In the
databases used for damage classification, each entity contains the
training results based on predefined features, and the data are
retrieved according to the current flight conditions. The attributes of
the training results stored in the database vary in the trainingmethod
and the binarization schemes that are applied offline. For a
multilayer neural network, the whole network structure should be
stored, including the number of layers and units, the weights
between layers, and the types of activation functions, etc.
Given new features with unknown labels, the training information is
retrieved based on current flight conditions and new data are
expected to be classified into one of the damage cases with a unique
index number.
The database that contains the precalculated SFEs is a key part in the

main loop of the DEFEND system, as shown in Fig. 2. The database
takes in the index number of the specific damage case identified in the
previous step and retrieves the corresponding SFE. Some earlier work
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Fig. 10 Identification and anomaly detection results of 20% tip loss of vertical tail. The damage is triggered after 4 s.
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on the computation of SFEs can be found in [7–10,30],whereSFEs are

defined as the set-based intersection between the forward reachable set

and the backward reachable set calculatedby the level setmethod [5,6].

To illustrate how the changes to aerodynamic coefficients affect the

shape of the SFE, an example is presented in Fig. 14 for two different

scales of wing damage, from which it can be clearly seen that the

changes to the aircraft model directly influence the shape of the SFE.

Given certain flight conditions, one damage case in the classification

training set corresponds to one SFE, which is calculated from the

global models of that damage case obtained by wind-tunnel and CFD

experiments. Following this method, the whole offline database of

SFEs can be generated.

In real applications of database retrieval for damaged aircraft,

however, safety should be included as the primary consideration in

the process of transforming the classification results (i.e., the damage

severity of a certain part) into themost accurate flight envelope that is

guaranteed to be safe. Take wing damage, for example; suppose the

actual damage is around 13% and is classified as 10% by the trained

neural networks. If the classification result is directly used as the

index to the database, a SFE of 10% wing damage will be retrieved,

which is larger than the ”true” SFE of the current 13% damage, given

the fact that the SFE is continuously shrinking with increasing

damage scales [30]. In this way, the retrieved SFE is less conservative

and may lead to potential risks. For practical safety considerations, it
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Fig. 11 Identification and anomaly detection results of 40% tip loss of left wing. The damage is triggered after 1 s.

-2 -1 0 1 2
-10

-8

-6

-4

-2

0 0.05 0.1 0.15 0.2

-0.1

-0.05

0

0.05

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

a) Left horizontal stabilizer tip loss b) Vertical tail tip loss c) Left wingtip loss

Fig. 12 Training results of damage severity classification in three different parts.

10 ZHANG, DE VISSER, AND CHU



may be advisable to go for the most pessimistic SFE, which points to
the 20%damage level in this case. If jd ∈ f1; 2; 3; 4; 5; 6g is the index
of six damage levels from the classification label set {0, 10, 20, 30,
40, 50%} and js ∈ f1; 2; 3; 4; 5; 6g is the index of the corresponding
SFE stored in the database, a simple but safe retrieval strategy would
be like the following:

js �
�
jd � 1 if jd < 6

jd if jd � 6
(11)

On the other hand, however, this strategy may result in
overconservative and inaccurate SFEs if the interval between each
class is too large. As shown in Fig. 14, the gap between the SFE of 10
and 20% damage is not trivial. It can be concluded that, the closer the
discrete values of damage levels are to each other, themore accurately
the SFE can be predicted. However, the number of designed damage
scales is restricted by the limitations of physical experiments like
wind-tunnel tests and simulations, where data are contaminated by
noise. Therefore, a better approach might be through online
interpolation between two or more closest SFEs retrieved from the
database, as depicted in Figs. 2 and 13. The interpolation algorithm
depends on the numerical method of computing the SFE and its
storing format in the database, which is ongoingwork. In general, the
retrieval of the SFE is extremely important to the implementation of
the whole DEFEND system, which will be the main focus of our
future research work.

VII. Discussion

The ultimate goal of this research is verifying the feasibility of the
proposed online DEFEND system. Thus, many practical issues must
be taken into consideration during the process of damage modeling
and simulation design. For example, due to the formidable practical
challenge of flying damaged aircraft, the model in the simulation
environment is based on thewind-tunnel results of a subscale aircraft
model. In the configuration of wind-tunnel experiments, the damage
interval ranges from 7 to 25% tip loss for different locations [14,15],
which indicates the physical limitation of making a subscale
damaged aircraft and conducting wind-tunnel experiments with it.
Moreover, external noise and disturbances are inevitable in real
flight, which should also be modeled for the damaged aircraft. If the
damage interval is too small, the aerodynamic effects will be
obscured by the presence of noise and disturbances, and what is left
will be a set of data that is not well suited for identification and
classification. On the other hand, the number of trained damage
classes and calculated SFEs largely depends on the size of designed
damage intervals. By using small intervals, coarse results can be

avoided during classification and safety can be guaranteed by a more

comprehensive database. Hence, in this paper, a realistic number of

10% for the interval of damage severity is chosen to verify the

applicability of the proposed approach. Future research will focus on

SFE interpolation in order to enhance the accuracy of the envelope

predictions.

As is discussed in Sec. II, the online process of the database

approach is mainly composed of three parts: system identification,

damage classification, and database retrieval. The system

identification and damage classification algorithms presented in this

paper easily run in real time on the DASMAT flight simulator,

indicating the feasibility of at least these parts of the complete system

on flight hardware. The final part of the system (database retrieval) is

ongoing work that will, in the near future, be verified in the real-time

simulator. It should be noted that database technology by itself is a

solution to fast retrieval of information from large amounts of data in

real life, which are used in many applications such as search engines

and online shopping [36].

This means that being efficient in real time is a dominant driving

factor in the development of databases in various applications. Thus,

in our DEFEND system, the current information retrieval methods

are expected to provide results in real time once the database is

successfully built offline. At this point in time, a database containing

108 flight envelopes has been constructed based on different damage

cases and flight conditions. Preliminary work on a database setup and

Fig. 13 Online database retrieval and safe13 flight-envelope interpolation.

Table 3 Validation results of classification (SNR � 25)

Horizontal stabilizer Vertical tail Wing

Damage severity, % Recall, % Precision, % Recall, % Precision, % Recall, % Precision, %

10 95.15 98.98 96.57 98.78 98.98 97.76
20 98.94 98.51 98.65 99.88 98.61 97.89
30 99.00 99.50 97.86 98.96 99.50 95.89
40 98.02 98.50 97.58 98.66 99.50 96.98
50 99.05 99.00 99.76 98.56 99.00 99.75
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Fig. 14 Safe flight envelopes corresponding to two damage classes.
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retrieval strategy has shown the feasibility of database building
offline. In the future, the database will be expanded with more data
from experiments or accident investigations.

VIII. Conclusions

A database-driven online safe flight-envelope prediction system is
presented in this paper.With the aid of offline-constructed databases,
challenges associated with obtaining the global model of damaged
aircraft and high computational cost of safe flight-envelope
prediction can be circumvented. To find the correct index to the
database, pattern classification techniques are used to detect and
identify the damage state of the aircraft using locally estimated
stability derivatives as classification features. Finally, a general
scheme for database retrieval is provided, which will close the loop
for the complete envelope prediction system. It is obvious that, the
more informative the database is designed to be, the higher the level
of safety that can be guaranteed under damage-induced upset
conditions. In this paper, three damage cases are considered as a proof
of feasibility. Future work will concentrate on more real-life damage
scenarios, such that the databases can be expanded to contain more
damage cases. Another important issue is the interpolation of
retrieved safe flight envelopes, which is a current research topic.
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