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Abstract
With a growing global demand of clean renewable energy, offshore wind activities will extend
to more harsh environments, including sub-arctic areas like the Baltic Sea. Sea ice can occur
here which needs to be taken into consideration in the design of substructures, i.e. jacket
substructures, of offshore wind turbines. Several ice mitigating measures exist for jacket sub-
structures, of which one is disregarding braces crossing the waterline. In this way, ice cannot
induce loads to the relatively slender braces in the jacket. However, disregarding these braces
has disadvantages in terms of structural integrity in comparison to a jacket including these
braces.

In Part I of this thesis, two types of jackets, one without (Type 1) and one with (Type 2)
waterline crossing braces, are implemented in a numerical model and subjected to ice loading
in order to conclude whether the use of a Type 1 jacket design can be justified or whether a
Type 2 jacket design is also suitable in sub-arctic areas.

Since over the past years the modelling techniques regarding ice-structure interaction have
been updated and improved significantly, assessing the loads at the jacket braces can be done
more accurately, allowing to give a more thorough conclusion on whether to use braces cross-
ing the waterline on jackets in sub-arctic areas. As a result, a design including these braces
could become feasible, whereas in the past it would be disregarded.

Two types of ice failure are considered in this research, being ice bending failure and ice
crushing failure. First, a model is developed to quantify the ice actions occurring at a jacket
substructure as function of the approach angle of the ice direction relative to the structure
and as function of an introduced ’threshold angle’. It was found that ice failing in bending
is equally significantly present as ice failing in crushing. Subsequently, numerical models are
introduced that describe the failure behaviour of bending and crushing ice and the force that
both ice failure types will induce to the structure. The structure is represented by a 5 [MW]
offshore reference turbine supported by a jacket substructure. Using these models, dynamic
simulations are performed in order to investigate the local susceptibility to ice-induced vi-
brations (IIV), as well as assessing the Ultimate Limit State (ULS) load at the braces. As a
result, local brace IIV regimes could be recognised, however sustained frequency lock-in could
not be observed. Furthermore, it was found that a Type 2 jacket could be suitable to use in
sub-arctic areas considering the ULS load effects due to ice loading, but care should be taken
for the ULS brace load, as that is of great importance for the design.
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In Part II of this thesis, it is assessed whether coupled dynamic ice-structure interaction
can be modelled using a dynamic substructuring modelling technique, also known as Craig-
Bampton method, since it is industry practice to use such a method when jackets are involved.
This method is based on a model order reduction of the full finite element model representing
the structure, resulting in improved computational time and allowing assembly of multiple
(reduced) substructures. The method is successfully implemented allowing to solve coupled
ice-structure interaction problems and a framework to do so is provided. It is shown that
excluding the loaded degrees of freedom (DoFs) in the jacket from the reduction leads to more
accurate results and is considered convenient since few DoFs are loaded by ice, maintaining
the effectiveness of the reduction method. As a result, IIV can be investigated using this
reduction method, however challenges related to the accumulation of numerical accuracy
errors arise with truncation of more higher frequency modes and require further development
to be resolved.
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Part I

Ice load applied to jacket
substructures
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1
Introduction

Climate change is one of the biggest challenges the world is facing today. In an effort to
combat climate change, an international accord also known as Paris Agreement was signed
(United Nations, 2015). In addition to the Paris Agreement, the European Union has set
up an initiative, the Green Deal, to be fully climate neutral by 2050. The target for 2030
is to reduce the emission of greenhouse gasses by 55% in comparison to 1990 (European
Commission, 2019). Because the costs of offshore wind have significantly dropped over recent
years (Wind Europe, 2021a), the offshore wind industry is one of the most promising and one
of the fastest growing fields of renewable energy.

1-1 Baltic Sea

The research in this thesis will consider the area of the Baltic Sea (Fig.1-1). Offshore wind
activities are already carried out in this area (Wikinger, Baltic 2) and windparks are being
developed and under construction (Kriegers Flak). Currently the Baltic Sea has 2 [GW] of
installed capacity, but could host up to 93 [GW] by 2050 (Wind Europe, 2021b). The purple
areas in Fig.1-1 indicate the possible sites in the near future. One major contributor in the
coming years will be Poland. In 2019, Poland was the only EU member not to commit to
the targets of the Green Deal (European Council, 2019). However, pressure from other EU
members, rising prices of carbon and the increased awareness of climate change has driven
the government of Poland to reconsider their decision (Żuk and Żuk, 2021). Poland is now
planning to install 8 to 11 [GW] of offshore wind power by 2040 (Reuters, 2021). The Polish
exclusive economic zone extends in the Baltic Sea. The objective to install a very significant
amount of offshore wind turbines in the Baltic Sea makes it a relevant location for research.
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4 Chapter 1. Introduction

However, the Baltic Sea is located in a sub-arctic region meaning that sea ice can occur. The
loads induced by this ice on the supporting structure of wind turbines should be taken into
consideration in the design of these structures (ISO 19906, 2019).

Figure 1-1: Baltic Sea area. X Wikinger X Baltic 2 X Kriegers Flak
The purple areas are in the Concept/Early planning stage (4C Offshore, 2021)

1-2 Substructure designs

Various types of substructure designs exist for offshore wind turbines, the most common being:
monopiles, jackets, gravity base structures, tripods and floating structures. Monopiles are by
far the most used type of foundation with a market share of 81.2% (WindEurope, 2021c), but
for challenging water depths and/or soil conditions, jackets (Fig.1-2a) can be preferred over
monopiles (9.9% market share). This is because in comparison to monopile foundations, less
material is needed to obtain the desired structural properties and jacket foundations could
therefore be more economically feasible (Voormeeren et al., 2014). A jacket typically consists
of legs, braces and a transition piece (TP) (Fig.1-2b). In this case the braces are configured
as x-braces.

Currently the industry is mitigating ice loads on jackets by various methods. In Fig.1-3 a
jacket from the Baltic 2 wind farm in the Baltic Sea is shown. Note that conical tubes of steel
named ice cones are installed at water level. One leg is not equipped with a cone in order to
preserve a boat landing. These ice cones are pushing the ice sheet out-of-plane, i.e. upwards
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(a) Left: Jacket foundation
Right: Monopile foundation

(Stiftung Offshore Windenergie (SOW))
(b) A jacket consists of legs,

(x-)braces and a transition piece

Figure 1-2: Substructure designs and jacket terminology

or downwards, causing the ice to fail in bending. Ice bending failure is described in Section
2-1. The effect of bending the ice out-of-plane is that it reduces the ice load on the structure
in comparison to a situation without an ice cone (Danys and Bercha, 1976). On top of this,
it reduces the susceptibility of ice-induced vibrations (IIV) (Brown and Määttänen, 2009).
However, these ice cones are expensive to fabricate and require special attention at assembly.
Also, the cones increase the diameter at water level, resulting in significantly higher wave
loads when no ice is present (Tang et al., 2020).

Figure 1-3: Baltic 2 jacket, ice cones installed at legs
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Another method to mitigate ice loading is seen at the Wikinger wind farm (Fig.1-4) located
north of Germany in the Baltic Sea. To reduce the effect of ice loading no braces are crossing
the waterline. This is to prevent the ice from crushing into the braces. Ice crushing failure is
described in detail in Section 2-2.

Figure 1-4: Wikinger jacket, x-braces omitted at sea level

When one compares the Wikinger jacket to a ’regular’ jacket as illustrated in Fig.1-5, one
notices that the difference between both types of jackets is whether the x-braces are crossing
the waterline or not. A regular jacket in this case is one that is commonly used in areas
that are not affected by ice. For clarity, from now on the Wikinger jacket will be called
’Type 1’ and the regular jacket will be called ’Type 2’. There are several reasons to prefer
Type 2 over Type 1. Firstly, the fabrication of jackets in this way is industry practice. This
is an advantage as foundation designers can use their conventional methods to design and
construct the jacket. Secondly, in case of failure of one brace or leg, the redundancy of the
Type 2 jacket is higher (Sambu Potty and Ahmad Sohaimi, 2013). It is less likely to collapse
in case of failure of one leg caused by a vessel impact for example. Furthermore, the structural
integrity is better in wave loading. The in-plane loads caused by wave loading will be covered
by axial forces in the members instead of significant internal shear forces and moments in the
legs of the Type 1 jacket. Also, because of this integrity, the legs of the Type 1 jacket often
need to be thicker which could be more expensive. Another important point is that a failure
in the pitch or yaw system of the turbine can cause the turbine to vibrate in the torsional
direction because of asymmetric loading. This causes large oscillating moments around the
vertical axis in the top part of the jacket. A Type 2 jacket naturally has a larger resistance
against these torsional moments because of the aforementioned points.

Following the statements of the previous section, the main point of this thesis is to compare
these jacket designs with each other in terms of Ultimate Limit State (ULS) loading. On top
of that, the internal dynamics will be investigated.
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Therefore, the first research question is:

1. Can the use of the Type 1 design be justified or is a Type 2 jacket also suitable in
sub-arctic areas?

Part I of this thesis will focus on answering this research question. To answer this question
finite element models (FEM) will be made of the Type 1 and Type 2 jacket. Subsequently,
both models will be subjected to different types of ice-loading. Analysing the static and
dynamic loading will justify or debunk the use of the Type 1 jacket.

Figure 1-5: Left: Wikinger (Type 1) design; Right: Traditional jacket design with x-braces
through the water line (Type 2)

1-3 Ice-structure interaction

Ice failing in bending upon interacting with the inclined parts of the structure induces loading
to the structure. It is important to assess these loads for the relatively slender braces in the
structure. This will be further discussed in Section 2-1 and 4-2. The crushing of ice against a
vertical structure can cause the structure to respond in three different ways (Hendrikse, 2017),
being: Intermittent crushing (IC), Frequency lock-in (FLI) and Continuous brittle crushing
(CBR). These different responses will be extensively discussed in Section 2-2. The IC regime
can govern both Ultimate Limit State (ULS) and Fatigue Limit State (FLS) loads and the
FLI regime can have a significant contribution to fatigue (Hendrikse and Koot, 2019). There
are several examples of previous work on this topic and research is still ongoing. Many of
these studies consider monopiles, fewer are concerning jackets. For jackets often the OC4
reference model is used (Vorpahl et al., 2013). However, in these studies the global behaviour
of the structure is considered instead of the local behaviour. On top of that, the ice loading is
often applied only to the legs of the jacket disregarding the loading subjected to the braces.
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1-4 Thesis objective

Since over the past years the modelling techniques regarding ice-structure interaction have
been updated and improved significantly, assessing the loads at the jacket braces can be
done more accurately, allowing to give a more thorough conclusion on whether to use braces
crossing the waterline on jackets in sub-arctic areas. As a result, a design including these
braces could become feasible, whereas in the past it would be disregarded.

The novelty of this research will be the comparison of the susceptibility to IIV of different
jacket types (Type 1 and 2), including the effect of braces. Instead of only analysing the
global response of the structure, the response of the individual braces will now be investigated.
When the responses are known it can be assessed if these braces are susceptible to the regimes
described in Section 1-3 and if so, which regime is governing. Additionally, the loads will be
assessed at these braces to draw conclusions in terms of ULS loading.

Two methods will be considered in this thesis. One is the full model approach. A full FEM
will return the most extensive results so in order to have this, the aforementioned OC4 jacket
model will be built in MATLAB and a FEM will be constructed. Coupling this FEM to the
ice crushing and bending model (Chapter 2) and adding a tower and Rotor-Nacelle Assembly
(RNA) will complete the model. The RNA will be modelled as a lumped mass. This full
FEM will be subjected to different types of ice loading and the response will be analysed.
The second method is discussed in the next section.

1-4-1 Dynamic substructuring

In addition to the full model approach, there is a second modelling option called the ’dynamic
substructuring method’. This method is based on a model order reduction of the jacket
model (Van der Valk, 2014a). One of the effects of the reduction is that the computational
effort per simulation is reduced. Typically, a wind turbine manufacturer runs up to fifty
thousand simulations to assess the structural integrity of the system. Therefore, due to the
reduced simulation time, this modelling option is preferred. Siemens Gamesa Renewable
Energy (SGRE) uses this dynamic substructuring method to model the complete assembly
of foundation, tower and RNA. The principle of the method will be discussed extensively in
Chapter 6.

Apart from improved simulation time, there are more reasons to use this method. Firstly, the
full system can be analysed without evaluating a full FEM of the combined system. Secondly,
it allows a foundation designer to model the structure in their desired software, while the tur-
bine manufacturer can include the reduced matrices representing the foundation in their load
calculations, using their own software. This removes the need to remodel the complete system
and lowers the risk of errors. Furthermore, because there is typically a clear division between
foundation designer and turbine manufacturer, this method protects intellectual property and
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separates responsibility. A downside of this method is that it simplifies the problem and im-
portant information regarding the dynamic behaviour of the jacket substructure could be lost.
It is important to know in which situations the dynamic substructuring method is applicable
to analyse the structure. Therefore, a second research question arises:

2. Can coupled dynamic ice-structure interaction be modelled by a dynamic substructuring
modelling technique?

Part II of this thesis will be about the research regarding this second research question.

1-5 Thesis outline

This thesis is divided in two parts. Each part is devoted to answering one research question.

1-5-1 Part I

The first part is about ice load applied to jacket substructures. In Chapter 1 it has been
outlined what geographical area is considered, which substructure designs exist and what the
challenges are regarding ice loading for these substructures. In Chapter 2 it will be discussed
which ice failure types will be considered in this thesis and what models exist describing these
ice failure types. Thereafter, in Chapter 3, it will be quantified how much of these ice failure
types will occur at a jacket substructure, to have a good overview of the ice actions at a
jacket. Next, in Chapter 4, the models introduced in Chapter 2 will be numerically solved
and implemented to gain understanding of which forces will be induced to the structure by
both ice failure types. In Chapter 5 these forces are applied to the structure and as a result
conclusions can be drawn answering the first research question.

1-5-2 Part II

The second part of this thesis will discuss the dynamic substructuring modelling technique.
In Chapter 6 the method is explained. It will give a thorough overview of the procedure,
substructure assembly, damping and post-processing involved using this method. In Chapter 7
it is discussed what is important to consider when modelling coupled ice-structure interaction
with this modelling technique and it will be verified whether it is possible to use this method
in coupled ice-structure problems, answering the second research question.

Finally, in Chapter 8 a conclusion is provided as well as a discussion on recommendations for
future research.





2
Ice mechanics

Level ice, i.e. floating ice with a flat surface, may fail in multiple ways to the structure. In
this research it is assumed that upon interacting with the structure, the ice can only fail in
bending and crushing.

On vertically sided parts of a structure, ice can fail in creep, crushing, and buckling. Creep is
the (ductile) failure of ice for very low indentation velocities. For higher indentation velocities,
the ice fails in crushing. Buckling failure of the ice as described by Hendrikse and Metrikine
(2016) is not taken into account. On top of these splitting can also occur, referring to an
initiated crack at the ice-structure interaction point propagating to a free edge. This mainly
occurs for small ice floes. In this research it is assumed that the ice floe is sufficient in size
that splitting does not occur. The failure modes for vertically sided structures are shown in
Fig.2-1.

Figure 2-1: Failure modes for vertically sided structures (Hendrikse, 2017)

11
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For inclined surfaces, the ice can fail in upward or downward bending, depending on the
direction of the slope (Fig.2-2).

Figure 2-2: Failure modes for inclined surfaces

In this chapter ice bending failure and ice crushing failure will be described. Also, for both
failure modes models will be introduced that can be used to apply forces to the structure.

2-1 Ice bending failure

When an ice sheet runs up or down on a sloping surface, for example the braces in a jacket,
ice bending failure can occur. Upon bending the internal stress in the ice sheet will increase
because of the out-of-plane bending of the ice. When this stress exceeds the stress capacity
of the ice, the ice will fail in bending. If the velocity of the ice, the angle of the slope and the
mechanical properties of the ice change, the time it takes until breaking, the length of the
broken ice part and the force induced to the structure will differ. An ice bending model can
be constructed to investigate this behaviour.

Ice bending failure is what typically occurs at ice cones (Section 1-2) and is illustrated in Fig.2-
3a (Yue and Bi, 2000). It can be seen that the ice fails in the radial and in the circumferential
direction, shown in Fig.2-3b and 2-3c. Because of the curvature of the cone, radial cracks will
initiate from the ice-structure interaction point. Since the cone is also inclined, circumferential
cracks will develop.

(a) Bending failure at ice cone (b) Radial cracking (c) Circumferential cracking

Figure 2-3: Failure behaviour for ice failing in bending
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To investigate the behaviour of the bending ice, first it needs to be defined on what theory
the ice model will be built. As is clear from Fig.2-3, the ice could be best described by plate
theory. In this way the model will be two dimensional, allowing to account for the curvature
of the cone and thereby include the circumferential and radial cracking behaviour. However,
since the main interest lies in the induced forces to the structure and not particularly in how
the ice cracks, a more simplified one dimensional model could be sufficient.

The jacket structure in this research will be based on the OC4 reference jacket. The braces
in the OC4 model do have a diameter of 0.8 [m], but since they are inclined, the waterline-
crossing width of the created ellipse is close to 1 [m]. This is a much smaller width in
comparison to an ice cone, reducing the effect of circumferential cracks. The effect of radial
cracks will also be reduced because of the width between these cracks. Less radial cracks can
be formed on a smaller diameter slope. The ice could therefore also be approximated by a
beam model, expressed in terms of [N/m]. It will be less accurate than using plate theory,
but it gives good insight in the physics of ice bending failure.

2-1-1 Euler-Bernoulli beam theory to model bending ice

Based on the research by Wille et al. (2011), where bending ice is also approximated by a
beam, a model will be constructed that will describe downward bending ice. A very long
beam of ice (L = 1000 [m]) of 1 [m] width is assumed. Since the beam is very long, it can be
assumed that the plane cross-sections initially perpendicular to the axis of the beam remain
plane and perpendicular to the neutral axis during bending. This makes it relevant to use
the Euler-Bernoulli beam theory instead of more elaborate beam theories like Timoshenko’s
(Metrikine, 2006). The general equation of motion of an Euler-Bernoulli beam is:

ρA
δ2uz
δt2

+ EI
δ4uz
δx4

= q(x, t) (2.1)

The beam has a mass density ρ [kg/m3], a cross-sectional area A [m2] and a flexural stiffness
EI [Nm2] (Spijkers et al., 2005). The unit of each term is [N/m]. The right-hand side (RHS)
represents the loading on the beam. For the remainder of the chapter, the external load is
assumed to be zero, i.e. no wave load is acting on the ice:

ρA
δ2uz
δt2

+ EI
δ4uz
δx4

= 0 (2.2)

Since the ice beam is floating on water, the buoyancy is modelled by distributed springs,
known as a Winkler foundation. The stiffness k can be computed by k = ρwgb [N/m2].
Where ρw [kg/m3] is the density of the water, g [m/s2] is the gravitational constant and b [m]
is the width of the beam:
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ρA
δ2uz
δt2

+ EI
δ4uz
δx4

+ kuz = 0 (2.3)

The beam is floating to the right side in the direction of the structure (Fig.2-2). When the
beam touches the structure, an axial compression force N [N] is applied to the beam. In
bending, this axial force yields an additional shear force along the beam. Adding this shear
force to the moment equilibrium yields the equation of motion:

ρA
δ2uz
δt2

+ EI
δ4uz
δx4

+ kuz +N
δ2uz
δx2

= 0 (2.4)

The beam is moving with respect to the global coordinate system with velocity vx [m/s]. To
account for this velocity a ’convective term’ is added to the equation of motion. Furthermore,
it is assumed that the horizontal velocity of the ice beam remains constant. As mentioned
by Hendrikse and Nord (2019), what is interesting for jackets opposed to monopiles is that
the jacket members are more slender, resulting in a lower load acting on the ice, resulting in
slowing down the ice less rapidly. This substantiates the assumption of constant horizontal
velocity. The derivation of the convective term can be found in Appendix A.

ρA

(
δ2uz
δt2

+ 2vx
δ2uz
δxδt

+ v2x
δ2uz
δx2

)
+ EI

δ4uz
δx4

+ kuz +N
δ2uz
δx2

= 0 (2.5)

To complete the equation of motion, a damping term has to be added. Unfortunately, it is
unknown how damping is incorporated in the interaction between ice and structure. To be
able to solve the problem, the damping is chosen proportional to the axial compression. The
derivation can be found in Appendix A. This yields the final equation of motion as:

ρA

δ2uz

δt2︸ ︷︷ ︸
mass

+ 2vx
δ2uz

δxδt
+ v2x

δ2uz

δx2︸ ︷︷ ︸
convective

+ EI
δ4uz

δx4︸ ︷︷ ︸
beam stiffness

+ kuz︸︷︷︸
buoyancy

+ N
δ2uz
δx2︸ ︷︷ ︸

axial compression

− cN

(
δ3uz
δx2δt

+ vx
δ3uz
δx3

)
︸ ︷︷ ︸

damping

= 0 (2.6)

Where c [s] is the material damping coefficient and N [N] is the axial force, expressed as
(Wille et al., 2011):
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N =
−EIζ δ3uz

δx3

1 + ζ δuz
δx − cζ

(
δ2uz
δxδt + vx

δ2uz
δx2

) (2.7)

ζ [-] is the ratio between the horizontal and the vertical force exerted on the beam upon
interaction with the structure, expressed as:

ζ =
FH

FV
=

sinαs + µ cosαs

− cosαs + µ sinαs
(2.8)

The derivation of ζ can be found in Appendix A. Here αs [rad] is the slope of the structure
and µ [-] is the ice-structure friction coefficient.

Eq.2.6 is a fourth order differential equation in space. To solve the system, four boundary
conditions are required, two at each side of the beam. At the left (away from the structure) it
is assumed that the beam is clamped (but moving in the horizontal direction with velocity vx).
Assuming a very long beam (L = 1000 [m]), the deflection and rotation will be negligible far
away from the ice-structure interaction point. This yields the first two boundary conditions:

uz(0, t) = 0,
δuz
δx

(0, t) = 0 (2.9)

On the right end of the beam, the boundary conditions depend on the interaction with the
structure. For the bending failure mode, the structure is assumed to be fixed and immovable.
In Section 2-2, where crushing is discussed, the structure is assumed to be compliant. The
axial force at the right end of the beam (N) is used to define the boundary condition. For
clarity it is called FH , being the horizontal force acting between the structure and the beam
of ice. The bending moment and the deflection at the right end of the beam are used as the
remaining two boundary conditions, being:

−EI
δ2uz
δx2

(L, t) = −h

2
FH

uz(L, t) = vx∆t0 sin(αs), ∆t0 = t− t0

(2.10)

Where h [m] is the ice thickness, vx [m/s] is the constant horizontal velocity of the beam and
∆t0 [s] is the elapsed time since interaction.
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Eq.2.6 is second order in time, therefore two initial conditions are required. It is assumed
that the beam is initially at rest, giving the two conditions:

uz(x, 0) =
δuz
δt

(x, 0) = 0 (2.11)

Now this system of equations can be solved using the ’Finite Difference method’, explained in
Appendix B, using the explicit Runge-Kutta (4,5) method (ODE45) implemented in MATLAB.
This is further discussed in Chapter 4, where it will also be discussed how the forces induced
to the structure can be obtained from the solution of this system of equations.

2-2 Ice crushing failure

Now that the bending failure mode of the ice is described, the following step is to describe the
ice crushing failure mode. The difficulty of modelling ice crushing failure is that the ice force
induced to the structure is a function of the structural displacement and vice versa, requir-
ing a coupled model. This behaviour is and has been investigated extensively for monopile
structures (Willems, 2016; Hendrikse, 2017; Hendrikse et al., 2018; Hendrikse and Nord, 2019;
Willems and Hendrikse, 2019), as well as some multi-leg structures (Timco et al., 1992; Yue
and Bi, 2000; Marsman, 2018; Hendrikse and Koot, 2019; Chuang et al., 2020). The most
recent iteration of the phenomenological model developed by Hendrikse and Metrikine (2016)
as described by Hendrikse and Nord (2019) is used in this thesis.

2-2-1 Modelling crushing failure

In the ISO and IEC code (ISO 19906, 2019; IEC 61400-3-1, 2019a) guidance is given on how
to account for ice loading. However, this guidance is based on predefined ice loads instead
of coupled ice-structure loads. This results in such conservative structural responses that
designing for IIV becomes challenging (Hendrikse and Nord, 2019). In order to account for
the coupling between ice and structure, a phenomenological ice model has been developed by
Hendrikse and Metrikine (2016). The latest iteration of that model described by Hendrikse
and Nord (2019) will be discussed here. The numerical implementation of this model will be
discussed in Section 4-3.

The model describes the load induced by ice crushing onto the structure. To capture the
contact area variation and the statistical nature of the crushing process, the ice approaching
the structure is divided into N [-] elements (Fig.2-4). Each element is positioned with a
uniformly distributed offset to the structure.
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Figure 2-4: Schematic of the ice crushing model. The ice edge is modelled by N individual
elements each with an offset to the structure drawn from a uniform distribution. Each element is

described by Burgers model to capture the ice velocity dependent crushing behaviour

Upon contact, the local deformation and failure behaviour of the ice is described by a system
of (non-)linear dashpots and springs, also known as Burgers rheological model. The rear
non-linear dashpot, C2 [N3 m−1 s], describes the behaviour of the ice in the creep range, for
very low ice velocities. The deformation of this part is a function of the stress cubed, also
known as ’power law creep’ (Weertman, 1983).

The parallel linear spring-dashpot combination consisting of spring K1 [N/m] and damper
C1 [Ns/m] accounts for the delayed-elastic deformation of the ice. This is to describe the
behaviour of the ice for ice velocities between creep and high velocity crushing.

The front non-linear spring K2 [N/m] accounts for the local elastic deformation of the ice and
failure when it reaches a predefined critical local deformation, δcrit [m].

ui,2 − ui,1 = δcrit (2.12)

When the indentation of the spring is equal to the maximum admissible value δcrit, the ice
element breaks and is removed from the interaction point. The element is placed back at a
distance drawn from a uniform distribution U . The offset can therefore be described by:

ui,1 = ui,2 = ui,3 = us(tfrac)− U(0, rmax) (2.13)

Where tfrac [s] is the time of fracture and rmax [m] is the maximum offset of the element with
respect to the structure. Spring K2 describes the behaviour of the ice for larger ice velocities.

The combined system of these three parts results in an ice velocity dependent deformation
and failure behaviour of each ice element, shown in Fig.2-5. Here the ice load induced to
the structure for an individual ice element can be seen as function of the deformation of the
element. At high ice velocities, the deformation grows linearly until it reaches the predefined
critical load deformation δcrit. Upon reaching this point, brittle failure will occur and the
element is removed and set back according to Eq.2.13. At low ice velocities, brittle failure will
never occur because of the deformations in the rear dashpot element C2. For intermediate
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ice velocities, local brittle failure will eventually occur when the element deformation exceeds
δcrit.

Figure 2-5: Load induced by a single ice element as function of the deformation of the element
for different ice velocities

Equations of motion

The equations of motion for a single ice element are given as:

ui,1 =

{
ui,2, ui,1 < us (no contact)
us, ui,1 ≥ us (contact)

u̇i,2 =
K2

C1
(ui,1 − ui,2) +

K1

C1
(ui,3 − ui,2) + vice −

1

C2
(K2(ui,2 − ui,1))

3

u̇i,3 = vice −
1

C2
(K2(ui,2 − ui,1))

3

(2.14)

Where ui,1, ui,2 and ui,3 [m] are the displacements of the nodes in a single element. A single
overdot represents the velocity of that node [m/s]. us [m] is the displacement of the structure.
The total force induced to the structure by the ice, also referred to as global ice load, is the
sum of the forces in springs K2 for all ice elements N :

Fice =
N∑
i=1

K2(ui,2 − ui,1) (2.15)

Here it is assumed that each element i acts at a single point on the structure.
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Ice parameters

The values for K1,K2, C1, C2, N, δcrit and rmax have to be obtained from measurement data.
These measurements are performed on a rigid structure, after which simulations can be per-
formed on flexible structures with similar ice conditions (Hendrikse and Nord, 2019). In this
thesis the values are based on data from the STRICE project, performed in the Baltic Sea
(Cordis, 2021).

In this thesis the ice properties that will be varied are the ice velocity (vice) and the ice
thickness (h). In the research by Gravesen et al. (2009) it was found that the 1/50 year ice
thickness for the Southern Baltic sea is 0.4 [m]. For the ice velocity, reference is made to
the research by Leppäranta (1981) who constructed an ice drift model for the Baltic Sea. A
maximum ice velocity of 0.4 [m/s] was found and will also be used as maximum ice velocity
in this thesis.

2-2-2 Ice induced vibrations

As can be deducted from the equations of motion, the force induced to the structure by
crushing ice depends on the ice velocity relative to the structure. Hence, a coupled system
is formed. For different relative velocities between ice and structure, the build-up of global
ice load is different. As a result, different crushing failure regimes can be distinguished over
a range of ice velocities. The regimes are illustrated in Fig.2-6.

Figure 2-6: IIV regimes as function of ice velocity (Hendrikse, 2017). The top figures represent
the structural motion, the bottom figures represent the ice load
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Intermittent crushing

For low ice velocities intermittent crushing can develop. During loading the structure deflects
slowly in the direction of the ice motion. During this phase the relative velocity decreases,
resulting in ductile failure of the ice, gradually increasing the contact area between ice and
structure. Energy is stored in the structure until the point of maximum deflection is reached.
Now the ice starts to fail, resulting in a velocity of the structure opposite to the ice motion.
During this phase the ice fails in a brittle manner, which results in a drop of the global ice
load. The relative velocity is high preventing the contact area to increase. The structure may
possibly vibrate around its equilibrium position until the relative velocity is low enough for
the ice to induce energy into the structure again. This process is then repeated, resulting in
the distinctive saw-tooth pattern of both the structural displacement and the global ice load
over time (Sodhi and Haehnel, 2003). The maximum global ice load is significantly higher
than observed during continuous brittle crushing.

Frequency lock-in

For slightly higher ice velocities frequency lock-in can develop. This regime extends over
a range of ice velocities. It is characterized by periodic oscillation of the structure at a
frequency close to or equal to one of the natural frequencies of the structure (Hendrikse, 2017).
This is because the timing of ductile loading synchronises or ’locks in’ with the sinusoidal
displacement of the structure. The vibrations of the structure are largely influenced by the
damping in the system (Marsman, 2018) and because a large amount of repetitions can occur
in this failure regime, FLI can cause structural fatigue (Willems, 2016; Hendrikse and Koot,
2019). FLI typically occurs for structural vibration modes up to 10 [Hz] (Hendrikse, 2017).
During FLI, there exists a linear relation between the ice velocity and the maximum structure
velocity. The relation is given by:

u̇max = βvice (2.16)

β [-] is found to be in the range of 1.0 to 1.5, according to multiple test campaigns (Hendrikse
and Nord, 2019).

Continuous brittle crushing

For even higher ice velocities, ice crushes continuously. The relative velocity remains high
which prevents the ice from deforming in a ductile manner. Therefore, the contact area can
not be increased up to the point where significant energy can be transferred into the structure.
The result is that the structure hardly responds to the ice loading and the induced forces to
the structure are relatively low, oscillating around a mean value. Therefore the effect in terms
of ULS and FLS due to CBR are insignificant in comparison to IC and FLI.



3
Ice action on a jacket substructure

In this chapter it will be quantified how many braces and legs in the jacket are subjected
to ice failing in crushing or bending as function of the approach angle (θ) and the threshold
angle (α). Bending failure is discussed in Section 2-1. The crushing failure mode is discussed
in Section 2-2.

Figure 3-1: Approach angle
θ and ice-jacket interaction

points

To model the jacket the OC4 reference jacket is used (Vorpahl
et al., 2013). For the remainder of this chapter, braces and legs
together are referred to as ’elements’. It is important to quan-
tify how many elements will cause ice bending and ice crushing
failure when ice interacts with the structure, since each failure
mode induces a different type of force to the structure. This
quantification depends on several parameters. In order to visu-
alise what happens, a model is presented that gives the interac-
tion per brace as function of the approach angle (θ, indicated
in Fig.3-1) of the ice relative to the structure.

3-1 Threshold angle

When an ice sheet encounters a sloping structure, the ice sheet
will be pushed downwards or upwards, depending on the geom-
etry, eventually causing the ice sheet to fail in bending. This
is illustrated for upward bending in Fig.3-2.

21
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Figure 3-2: Ice failing in upward bending

It is assumed that when an ice sheet runs up (or down) on the inclined x-brace of the jacket,
a similar event happens as with ice cones described in Section 2-1. When the ice sheet en-
counters a near vertical structure, the ice will fail in crushing rather than bending (Hendrikse,
2017). To identify whether bending or crushing occurs it is assumed that there is a ’thresh-
old angle’, α [deg], at which the failure mode switches from crushing into bending and vice
versa. This threshold angle is not a standard value that can be found in literature. There are
multiple studies regarding the bending of ice and it is found that no such value for α exists.
It depends on many variables, including ice properties and relative dimensions between ice
and structure (Timco and Weeks, 2010). In Fig.3-3 it is illustrated that more crushing will
take place when the value of α is decreased. In literature it is found that the angle of ice
cones installed on offshore structures ranges from 45 up to 70 [deg] relative to the waterline
(Goldstein et al., 2005; Hasegawa et al., 2019; Zhang et al., 2005; Ranta and Polojärvi, 2019;
Barker et al., 2005; Gravesen et al., 2005). In IEC 61400-3-1 (2019b), the international stan-
dard regarding design requirements for fixed offshore wind turbines, an equation is given to
calculate the horizontal load on a structure due to ice being bent upwards or downwards by
an ice cone. The formula quoted is valid for slopes in the range 0 < αs < 70 [deg]. Since it
is assumed that bending of ice on sloping braces can be compared to bending of ice on ice
cones, a representative value for α is assumed of 70 [deg]. This implies that when the angle
between drifting level ice and the brace of interest, αs (Fig.3-2), is between 70 and 110 [deg]
the ice is assumed to fail in crushing. When this angle is below 70 [deg], the ice is assumed
to fail in upward bending and when this angle is above 110 [deg] the ice fails in downward
bending. The sensitivity of the value for α is discussed in Section 3-4.

Figure 3-3: Visualized influence of the threshold angle α. A lower threshold angle will lead to
more crushing and less bending in the model
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3-2 Shielding

In the international standard (ISO 19906, 2019) and in other literature it is found that the
’shielding’ effect should be taken into account (Li et al., 2009; Huang et al., 2007; Kato, 1990;
Shi et al., 2002). When considering multi-element structures, the front elements provide a
shielding effect on any kind of environmental load acting on the back elements, for instance,
wind and wave loads (Huang et al., 2007). These shielding effects apply to ice loading as well
(Kato, 1990; Shi et al., 2002). The front elements that are interacting first with the ice create
slots in the ice. As the ice sheet is pushed towards the back elements by environmental driving
forces, it could be that the back elements are completely or partially positioned inside one of
these slots, i.e. shielded (Fig.3-4). Therefore, the load on the back elements will be lower than
on the front ones. The ratio between the forces on the shielded and the non-shielded elements
is called the shielding coefficient (Huang et al., 2007). According to literature, determining
the shielding coefficient is a complicated task. It depends on longitudinal an lateral spacing
between elements, the ice attack angle and the ratio of element diameter versus ice thickness
(Shi et al., 2002). The forcing at the back elements mainly influences the force on the total
system and therefore the response of the total jacket to ice loading. The focus in this thesis
is to assess what the response is in a single x-brace. Therefore, it is not necessary to compute
the force on the back elements precisely. The amount of shielding is determined using vector
calculus. The vector representing the approach angle of the ice and the vector from one front
element to one back element are compared. When the angle between them is less than 10
[deg] (to account for partially shielded back elements), it is assumed that the back element
is shielded by the front element. Note that this is structure dependent and 10 [deg] is found
suitable for this OC4 jacket. By investigating this for every element that crosses the water
line, the shielded members can be identified.

Figure 3-4: Shielding effect for multi-legged structures. Left: back legs fully sheltered by the
wake of the front legs. Right: Back leg partially loaded due to wake formed by front leg

(Hendrikse, 2017)
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3-3 Jamming

The closer the gaps between the elements are, the more shielding will take place. The wake
that will be created is then larger compared to the overall size of the structure. This results
in a lower total ice force on the jacket, because more elements will be shielded. However,
the danger of ice jamming in between the elements increases when they are spaced closer
together. When jamming occurs, the total ice load will increase significantly (Määttänen,
1991). According to ISO19906 (2019) ice jamming can usually be expected when the L/w is
less than 4. Here L [m] is the clear distance between two elements and w [m] is the diameter
of an element. The Type 1 and Type 2 jacket in this thesis have an L/w ratio of 5.5 and 2,
respectively. This implies that jamming is likely not to occur at the Type 1 jacket, but could
lead to severe forces acting on the Type 2 jacket. However, the reference jacket considered is
relatively small compared to the jackets used with the current high capacity wind turbines.
The trend towards using larger wind turbines and therefore larger size jackets will reduce the
susceptibility of jamming. Therefore, the effect of jamming ice is considered outside the scope
of this thesis.

3-4 Quantification of interaction

A MATLAB model is constructed to visualise the interaction as function of the approach angle, θ,
and the threshold angle, α. Depending on the input parameters, the model determines what
failure mode (bending or crushing) each element is subjected to, while taking into account
the shielding effect. The ice can approach the structure over a range of 360 [deg], but since
the OC4 jacket is symmetric, only a range of 90 [deg] is considered. In this OC4 model, when
the ice passes through the structure at z = 0 m (MSL), there are twelve elements crossing
the waterline (Fig.3-1), being four legs and eight braces. Computing for each element what
angle it makes with the ice direction (αs), assigning the corresponding failure mode to it and
taking into account the shielding effect, Fig.3-5 can be made.

Figure 3-5: Number of elements per failure mode as function of approach angle θ
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From this figure it can be seen that the structure is loaded differently depending on the ice
approach angle, θ. It was found that nine different failure mode combinations can occur,
better illustrated in Fig.3-7. The purple line in Fig.3-7 indicates the direction where the ice
is approaching from. A red element indicates that ice impacting this element is failing in
crushing. Cyan elements indicate ice failing in upward bending and yellow elements indicate
ice failing in downward bending. White elements are shielded by the other elements.

As illustrated in Fig.3-3, the assumed threshold value discussed in Section 3-1 has influence
on the amount of bending and crushing that occurs. A case study was performed to quantify
the influence of α. It was found that for the geometry of the OC4 jacket, a value of α of 55
[deg] and lower would result in crushing failure only. It is more likely to assume that bending
failure will start from higher threshold values, because the inclination angles of the ice cones
found in literature go up to values of 70 [deg]. The case study therefore focused on threshold
values between 56 and 82 [deg]. Fig.3-6 shows the influence of α, by quantifying the failure
modes for α ={58,70,82}.

Figure 3-6: Quantification of failure modes as function of θ for α ={58,70,82}
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Indeed, a higher threshold angle α will result in more bending and less ice crushing failure.
From these illustrations and figures it is deducted that ice crushing as well as ice bending
failure is equally significantly present when assuming α = 70 [deg]. Therefore, they should
both be included in the model.

The analysis in this chapter was performed on the Type 2 jacket, including braces. The Type
1 jacket does not have any braces crossing the waterline, only four legs, which are crossing
the waterline close to vertical. Therefore, αs is close to 90 [deg], resulting in only crushing
failure at the Type 1 jacket.
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Figure 3-7: Interaction per element for different approach angles θ, α = 70 [deg]. The purple
line indicates the ice approach angle θ. A red element indicates that ice impacting this element

is failing in crushing. Cyan elements indicate upward bending ice failure and yellow elements
indicate downward bending ice failure. White elements are shielded by other elements





4
Forces induced by failing ice

In Chapter 2 both ice bending failure and ice crushing failure have been described. In this
chapter it will be discussed how the force induced to the structure by both these ice failure
modes can be computed. First, the system of equations regarding ice bending failure will be
solved. After that, the force induced to the structure will be computed. At last, the numerical
implementation of the ice crushing failure model will be discussed and the forces induced by
crushing ice will be assessed.

4-1 Solve ice bending failure equations

In Section 2-1-1 the equation of motion for the ice beam displacement has been derived. To
be able to use the ODE45 solver in MATLAB to solve the system, the equation of motion and
the boundary conditions need to be rewritten into a system of two first order time derivatives
and discretised using the finite difference method. Since it is apparent that the deflection is
in the z direction, the subscript z will from now on be omitted from the equations. First,
the beam is divided into n elements of length ∆x = L/n [m]. Each node is indexed by i,
resulting in a displacement space of ui = u1...un. The velocities of all the nodes are named
un+1...u2n. Next, Eq.2.6 is rewritten to give the expression for the acceleration in the beam
for each node i. This is done by moving every term apart from the inertia term to the RHS
and then dividing the equation by ρA:

δ2u

δt2
= −EI

ρA

δ4u

δx4
− N

ρA

δ2u

δx2
− k

ρA
u+

cNvx
ρA

δ3u

δx3
− v2x

δ2u

δx2
+

cN

ρA

δ3u

δx2δt
− 2vx

δ2u

δxδt
(4.1)
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Each (higher order) derivative in Eq.4.1 can be approximated using the finite difference
method, which is explained in Appendix B. The central finite difference approximation of
Eq.4.1 is:

δ2ui
δt2

= − EI

ρA∆x4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)−

N

ρA∆x2
(ui+1 − 2ui + ui−1)

− k

ρA
(ui) +

cNvx
2ρA∆x3

(ui+2 − 2ui+1 + 2ui−1 − ui−2)−
v2x
∆x2

(ui+1 − 2ui + ui−1)

+
cN

ρA∆x2
(un+i+1 − 2un+i + un+i−1)−

vx
∆x

(un+i+1 − un+i−1) (4.2)

Here N (Eq.2.7) is approximated by backward difference equations at the right end of the
beam, since there is no information outside the domain to use central difference:

N =
−EIζ
∆x3 (un − 3un−1 + 3un−2 − un−3)

1 + ζ
∆x(un − un−1)− cζ

∆x(u2n − u2n−1)− cvxζ
∆x2 (un − 2un−1 + un−2)

(4.3)

Rewriting Eq.4.2 into a system of first order equations yields:

{
δui
δt = un+i
δun+i

δt = δ2ui
δt2

= Eq.4.2
(4.4)

For several values of i, information is needed from nodes that are outside the domain. To
obtain expressions for these nodes the boundary conditions are used, of which the derivations
can be found in Appendix B:

u−1 = u1 Deflection at i = 0 is zero
u0 = 0 Displacement at i = 0 is zero
un = −vx∆t sin(αs) Displacement at i = n is known

un+1 = 2un − un−1 +
hN∆x2

2EI Bending moment at i = n is known
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The complete discretisation can be formed into a matrix equation of the form:
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(4.5)

Reference is made to Appendix B for the complete matrix equation.

This system of equations is solved in MATLAB using the built-in ODE45 solver. The outcome
of this model gives the displacement of the beam as function of time. An example of such
an outcome for the input parameters listed in Table 4-1 is shown in Fig.4-1. The ice input
properties are based on IEC61400 (2019b), Xu et al (2015) for the ice-structure friction
coefficient µ and DNV GL (2014) for ice density ρ.

Table 4-1: Input parameters for the solved deflection in Fig.4-1.

Parameter Name Value Unit
αs Slope angle 70 [deg]
µ Ice-structure friction coefficient 0.15 [-]
ρ Ice density 917 [kg/m3]
ρw Water density 1025 [kg/m3]
b Beam width 1 [m]
c Damping coefficient 1000 [s]
E Yield strength 1e9 [Pa]
h Ice thickness 0.4 [m]
|T | Avg. surface temperature 5 [◦C]
vx Horizontal ice velocity 0.15 [m/s]
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Figure 4-1: Deflection of the ice beam as function of time

The deflection can be converted to bending stress by first computing the internal moment in
the beam using the following relation:

M = −EI
δ2uz
δx2

(4.6)

This internal moment can be converted to internal bending stress by (Hibbeler, 2013):

σb =
My

I
=

M · h
2

1
12bh

3
(4.7)

The axial force N induces a normal stress in the beam that can be computed by:

σn =
N

A
(4.8)

The total tensile stress is the added contribution of the bending stress and the normal stress,
illustrated in Fig.4-2.

Figure 4-2: Contribution of bending stress and normal stress to total tensile stress
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These stress profiles hold for a downward bending beam. The red dot indicates the location
of the maximum tensile stress. The resulting total tensile stress as function of time is shown
in Fig.4-3.

Figure 4-3: Tensile stress as function of time

These results are verified by the results found by Wille et al. (2011). It shows similar
behaviour of the deflection as well as the total tensile stress over time.

To determine at which timestamp the ice beam fails, the stress capacity of the ice has to be
determined. At the time instant where the total tensile stress exceeds this stress capacity, the
ice beam breaks off and the broken part is removed (numerically), i.e. no longer interacting
with the structure. It is assumed that the forces induced by broken ice pieces to the structure
are significantly smaller than during the interaction phase and can be neglected. The stress
capacity of the ice depends on the mechanical properties of the ice and on the ice thickness.
According to the research by Timco and O’Brien (1994), whose results are incorporated in
the ISO standard (ISO 19906, 2019) the flexural stress capacity of the ice, σf [MPa], can be
computed as follows:

σf = 1.76 exp(−5.88
√
Vb)

Vb = S

(
49.18

|T |
+ 0.53

)
S = 13.4− 17.4h for h ≤ 0.34 [m]
S = 8.0− 1.62h for h > 0.34 [m]

(4.9)
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Where Vb [ppt] is the brine volume fraction and S [ppt] the salinity. The brine volume fraction
equation is derived by Frankenstein and Garner (1967). The salinity equations were presented
by Timco and Frederking (1990). Since the Baltic Sea area is considered, |T | is set to 5 [◦C],
based on the observations by Leppäranta and Lewis (2007). The salinity is dependent on
the ice thickness h [m], which makes the flexural stress capacity also dependent of the ice
thickness.

4-2 Force induced by ice bending failure

The horizontal force that is acting on the structure (FH) can be deducted from the equation
of motion and the boundary condition at the right end of the beam. The value for FH can
be calculated by rewriting the first equation in Eq.2.10:

FH = − 2EI

h cos(αs)

δ2uz
δx2

(L, t) (4.10)

In Fig.4-4 the deflection, total tensile stress and horizontal force induced to the structure are
shown for the input parameters listed in Table 4-1.

Figure 4-4: Deflection, total tensile stress and horizontal force for an ice beam with parameters
listed in Table 4-1



4-2. Force induced by ice bending failure 35

The dashed line in the tensile stress plot indicates the stress capacity of the ice beam. At the
time instant where the total tensile stress exceeds this capacity, the beam breaks. For these
input parameters the beam breaks after t = 1 [s]. The breaking point is at ± 5 [m] from the
structure. Altering the input parameters will lead to different values for t and the breaking
length. As was discussed in Section 4-1 the part that breaks off is numerically removed and
no longer interacting with the structure. Therefore, the force induced to the structure occurs
with a certain frequency, dependent of the breaking length, the breaking time and the ice
velocity, which will be further discussed in Section 5-2.

The force induced to the structure is shown in the bottom plot of Fig.4-4. Upon impact with
the structure the force starts low, after which it gradually increases over time until the beam
breaks. The peak around t = 0 [s] is because of the sudden acceleration in the first time step,
representing the effect of the impact of the ice with the structure. The value of the maximum
force induced to the structure is compared to the reference provided in IEC61400-3-1 D.4.4.3
(2019b). Here an equation is provided that can be used to calculate the horizontal force
induced by level ice to an offshore structure equipped with an ice cone. The equation is based
on research by Ralston (1977, 1980). As is discussed previously, the ice failure at the braces is
assumed to be comparable with ice failure at an ice cone. Following the procedure in the IEC
code, a reference horizontal force value can be computed. This value is plotted at the bottom
of Fig.4-4. What can be seen is that the maximum horizontal force value found by solving
the set of equations provided in this thesis, corresponds well to the reference value that can
be deducted from the IEC code. Besides the information about the maximum induced force
to the structure, now also information is available about the breaking time and the breaking
length. These properties can not be deducted from the IEC code, but are important when
assessing the dynamic interaction between ice and structure, which is further discussed in
Section 5-2.

The force profile shown in Fig.4-4 can be computed for multiple ice velocities, of which the
results can be seen in Fig.4-5. What is interesting to see is that the maximum ice force does
not depend much on ice velocity and remains in good correspondence with the code, only the
breaking time decreases for faster moving ice.

Note that this is a rough approximation of the ice bending load since beam theory instead of
plate theory is used. Also, ice buckling is not included and the structure is assumed rigid and
not compliant. However, the forces correspond well to the design code and are also verified
with the work by Keijdener et al. (2019). Therefore, the forces are assumed sufficiently
accurate to use in this thesis.

The analysis in this chapter has been performed on downward bending ice. Instead of con-
structing a separate model for upward bending ice, the load induced is approximated by a
different method. Since it was found that the maximum ice load is corresponding well to the
IEC code, the ratio between maximum force induced by downward and upward bending ice
is deducted from the IEC as well. Here it was found that the horizontal force induced by
upward bending ice is a factor 1.2-1.4 higher than induced by downward bending ice. Infor-
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mation about the breaking time and length is not further assessed for upward bending ice
and should be investigated in further research. For now it is assumed that the characteristics
are comparable to downward bending ice.

Figure 4-5: Left: Induced horizontal force profiles for multiple ice velocities. Right: Breaking
time for multiple ice velocities

4-3 Force induced by ice crushing failure

In Section 2-2 the phenomenological ice model as described by Hendrikse and Nord (2019)
has been introduced. In this section the numerical implementation of this model will be
discussed.

4-3-1 OC4 model

Since the forces induced by ice crushing onto the structure are dependent of the motion of
the structure itself, first a structural model based on the OC4 reference jacket (Vorpahl et al.,
2013) is constructed that will be implemented in MATLAB. It consists of a jacket substructure,
a transition piece and a tower-RNA assembly, designed for a 5 [MW] wind turbine in waters of
50 [m] deep (Jonkman et al., 2009). All elements of the structure are modelled as Timoshenko
beam elements. The connection to the seabed is assumed rigid (clamped at seabed level) and
the RNA is modelled as a lumped mass, thereby not taking into account the (dynamics of
the) individual blades. Marine growth is added to the parts of the structure lower than 2 [m]
below mean sea level. The legs are flooded with water, increasing the mass of these elements.
The TP is modelled as a heavy rigid block by increasing the stiffness at interface. The mass
of the TP is represented by four lumped masses at the top corners of the jacket.
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Combining all elements and point masses in MATLAB yields the system of equations describing
the offshore wind turbine as:

Mẍ+Cẋ+Kx = f(t) (4.11)

Where M is the mass matrix, C is the damping matrix and K is the stiffness matrix. The
form of C will be Rayleigh damping, further discussed in Section 6-5.

4-3-2 Modal analysis

Instead of solving the system in the time domain, it is preferred to solve it in the modal
domain, for which there are two main reasons. Firstly, the equations of motion will decouple,
allowing to solve the set of equations separately. Secondly, the solution space can be truncated,
meaning that not all modes are included in the system of equations, yielding a smaller set of
equations to be solved, reducing computational time.

When a harmonic free vibration with frequency ω [rad/s] is assumed, the eigenvalue problem
of Eq.4.11 is:

(K − ω2
iM)ϕi = 0 (4.12)

Solving this system yields the eigenfrequencies ωi and the corresponding eigenvectors ϕi. The
solution of the equations of motion of the structure can then be expressed as a superposition
of the eigenmodes, written as:

x(t) =
N∑
i=1

ϕiηi(t) = Φη(t) (4.13)

Where N is the number of eigenmodes of the system, corresponding to the number of degrees
of freedom (DoFs). Φ is the eigenmatrix, containing the eigenmodes and η is the vector of
modal displacements.

The eigenmodes are orthogonal with respect to the mass and stiffness matrices. Therefore
the modal mass and modal stiffness matrices will be diagonal. Since the damping matrix is
constructed by means of Rayleigh damping (Section 6-5), it will be diagonal as well.
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When not all N eigenmodes are included in the modal system, the system is truncated. The
truncated solution will then be of the form:

x =

k∑
i=1

ϕiηi = Φη = xt (4.14)

Substituting this truncated solution in Eq.4.11 yields:

MΦtη̈t +CΦtη̇t +KΦtηt = f + r (4.15)

Because the system is truncated, a residual force r remains. However, because of the orthog-
onality principle, ΦTr = 0. Pre-multiplying by the truncated eigenmatrix will therefore yield
the reduced set of equations of motion:

ΦT
t MΦtη̈t +ΦT

t CΦtη̇t +ΦT
t KΦtηt = ΦT

t f

M∗
t η̈t +C∗

t η̇t +K∗
t ηt = f∗

t

(4.16)

This system of equations is solved in MATLAB by the implemented ODE45 solver. This is conve-
nient because the ice equations of motion will also be solved through this solver. Therefore,
both systems of equations can be solved simultaneously. The set of equations in Eq.4.16 is
first transformed into a system of first order differential equations by means of a state space
representation, of which the state vector is defined as:

y =

[
ηt

η̇t

]
(4.17)

Substituting this state vector in Eq.4.16 yields the set of first order equations:

ẏ =

[
η̇t
η̈t

]
=

[
0 I

−K∗
t −C∗

t

] [
ηt

η̇t

]
+

[
0

ΦT
t

]
f (4.18)

Where the ice force f is a function of the relative motion between ice and structure. Therefore,
a coupling has to be constructed, which is discussed in the next section.
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Coupling structure and ice

Since the displacement of the structure is computed in the modal domain and the ice equations
in the spatial domain, the modal displacements ηi need to be transferred to the spatial domain
again in order to couple both systems. Assume degree of freedom p is loaded by ice, then the
structural displacement at DoF p can be found by:

xs =
[
ϕp,1 ϕp,2 ϕp,3 . . . ϕp,k

]

η1
η2
η3
...
ηk

 = Φt,pηt (4.19)

The structural displacement of DoF p where the ice acts can be found by multiplying the
row in the eigenmatrix corresponding to DoF p by the vector of modal displacements. This
yields the value of the structural displacement at the ice-structure interaction point which is
needed as a value for xs in the ice equations, Eq.2.14 and 2.15.

Both the structural and the ice equations of motion can be incorporated in the same solver,
allowing to solve the coupled system simultaneously. The coupled system is solved until one
ice element breaks. The detection of breaking is handled by an event function, embedded
within the ODE45 solver. Upon breaking, the displacements, velocities and forces are stored.
The broken ice element is set-back as described in Section 2-2 and this procedure is repeated
for the full length of the simulation time.

Crushing load versus bending load

With this coupled system, ice-structure interaction problems can be solved. As an output,
the structural displacements and the global induced ice force can be deducted. The response
of the structure will be discussed in Chapter 5. When one computes the global ice force
induced to the structure for multiple ice velocities, the plot shown in Fig.4-6 can be made.
Here, ice with a thickness of h = 0.4 [m] is interacting with a Type 2 structure, assuming
an ice approach angle of θ = 0 [deg], thereby loading two legs and two braces in crushing
simultaneously (Fig.3-7). The force induced to one of the legs is divided by the leg diameter
to obtain the force induced per meter width of the structure.

What can be concluded from Fig.4-6 is that for low ice velocities below 0.03 [m/s], the
induced force is the highest, which will be further discussed in the next chapter. For higher
ice velocities, both the maximum and mean induced force are significantly lower, oscillating
around a mean value. What holds for all ice velocities, is that the induced force by ice
crushing is much higher than for the ice bending case. For an ice thickness of h = 0.4 [m],
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the induced force by ice bending is close to 30 [kN/m], for all ice velocities (Fig.4-5). For
ice crushing, the maximum induced force is a factor 20-40 higher, depending on ice velocity.
What can be concluded is that ice crushing load is much more significant to take into account
for the design of the structure than ice bending load.

Figure 4-6: Maximum and mean crushing force per meter structure width as function of ice
velocity, h = 0.4 [m]



5
Ice models applied to the structure

Now that it is defined what forces both ice failure types will induce to the structure, the
forces can be applied to the jacket model. This chapter will discuss the numerical simulations
performed, in order to answer the first research question. First, a global motion analysis
will be performed, indicating the difference in terms of global motion between the Type 1
and Type 2 jacket. After that, the forces induced by ice bending and ice crushing failure
will be applied to the Type 2 jacket in order to investigate the dynamic (local) response.
Furthermore, a base shear check is executed, as this is typically done for jacket substructures.
Finally, the ULS brace load will be assessed, which is found to be of great importance for the
design.

5-1 Global motion analyses

Two types of jackets are considered, Type 1 without and Type 2 with x-braces crossing the
waterline (Fig.1-5). Type 2 is represented by the OC4 jacket model and Type 1 is a modified
version of it, where the x-braces at waterlevel are removed and the remaining bays are changed
in height. Coupling each jacket to a tower-RNA assembly yields two different systems. It is
important to assess what the natural frequencies of both systems are and if any significant
differences exist between the global motion characteristics of the two systems. The first five
distinct eigenfrequencies and eigenmodes of both systems are given in Table 5-1. From the
table it can be deducted that both systems have similar global behaviour, only the Type 1
system is less stiff in the torsional direction, as is expected. From practice it is known that
the first bending mode can interfere with the rotor frequency and the second bending mode
is important because it has the largest amplitude around mean sea level, meaning that lots
of energy can be put into this second mode. It can also interfere with higher rotor dynamics,
for example the 6P rotor frequency.

41
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To analyse these modes a frequency response function (FRF) is used. First, a modal amplitude
FRF is obtained by applying a sinusoidal load with frequency Ω [rad/s] to node p in the system,
after which the response of node i is computed. The function in Eq.5.1 then demonstrates
how the quotient ûi

F̂p
depends on the load frequency Ω, where ûi is the response of node i in

the system and F̂p the load function (Spijkers et al., 2005).

HA
uiFp
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Ω
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+
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2ζi

Ω
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)2

1

ω2
i

x̂pi
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(5.1)

Here ωi, ξi and m∗
ii are the modal frequency, modal damping ratio and modal mass, respec-

tively. The amplitude FRF can then be obtained by:
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√
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In which:
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
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Here ϕi [rad] is the phase shift between applied load and response.

Table 5-1: First five eigenfrequencies of both systems

Type 1 Type 2
Mode Modeshape Frequency [Hz]
1 1st Bending mode 0.307 0.305
2 2nd Bending mode 1.161 1.245
3 1st Torsional mode 2.203 3.057
4 3rd Bending mode 3.952 4.002
5 1st Breathing mode 5.211 5.198
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By applying a symmetric load with respect to the vertical axis to the nodes at water level and
having the interface node as an output node, an energy spectrum can be formed (Fig.5-1).
Note that the tower-RNA assembly is not illustrated here.

Figure 5-1: Amplitude FRF for symmetrical load (→) around vertical axis - Type 1 vs Type 2

The yellow and green bands indicate the 1P, 3P and 6P rotor frequencies. These are based
on the 5 [MW] reference turbine that is used together with the OC4 jacket (Jonkman et al.,
2009). A 7% positive and negative margin is accounted for around the rotor frequencies,
resulting in a frequency band of rotor frequencies. The structure’s eigenfrequencies must not
coincide with the rotor frequencies, as resonance can occur accordingly, negatively affecting
the structure’s lifetime. Considering the FRF plots, around the first and second bending mode
there are no severe differences between both systems. The only difference is that the peak in
the second bending mode for the Type 2 system is higher due to the higher amount of loaded
elements, resulting in a larger response. It can also be seen that the second eigenfrequency
is interfering with the 6P frequency of the rotor, but since both a reference jacket and a
reference turbine that is designed for it is considered, it is assumed that this is poor design
in terms of 6P interference of the reference structures and this will not be further discussed.
No torsional mode is excited in this analysis, because the jackets are loaded symmetrically
around the vertical axis. To investigate the response in the torsional mode, both jackets are
loaded at a single side only, of which the amplitude FRF can be seen in Fig.5-2. Again the
tower-RNA assembly is not illustrated.

Figure 5-2: Amplitude FRF for unsymmetrical load (→) around vertical axis - Type 1 vs Type 2
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Here it can be seen that the FRF of the Type 1 system is higher in the first torsional mode
and that the natural frequency of that mode is lower, as expected. This could be important in
unsymmetrical ice loading, during yaw-errors in the RNA or during wind-wave misalignment,
as the Type 1 system is more susceptible to these kind of loads. Based on both these FRF
analyses it can be concluded that there is no significant difference between both systems,
resulting that the Type 2 jacket is equally as useful as the Type 1 jacket in terms of global
motion.

5-2 Local motion analyses - Ice bending failure

In order to investigate the local motion of the structure due to loads applied to it, the
Newmark method (Newmark, 1959) is used to solve the equations of motion representing the
structure. The procedure of the method is explained in Appendix C.

The forces illustrated in Fig.4-5 can be applied to the structure to analyse the response.
However, periodicity in the load due to the breaking time and length are not yet incorporated
in the force profile. In the numerical approximation of ice bending failure, it takes some time
for a new piece of ice to arrive when a piece of ice breaks off, inducing a periodic loading.
It is important to assess that this loading frequency does not coincide with the structure
frequency, as was also found by Yue and Bi (2000), Ji and Oterkus (2016), Xu et al (2015),
Kärnä and Jochmann (2003) and by Croasdale and Metge (1991), since this could result in
dynamic amplification. It was found that the bending model predicts the breaking length to
be 10 times the ice thickness (Fig.5-3, left). Combining that with the information about the
breaking time dependent of ice velocity (Fig.4-5, right), the failure frequency can be computed
as function of ice velocity, shown at the right in Fig.5-3.

Figure 5-3: Left: Relation of ice thickness versus breaking length, Right: Failure frequency as
function of ice velocity for L = 10h
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The first and second natural frequency of the Type 2 system are plotted too. It can be seen
that for small ice thicknesses the frequency of ice failing in bending could coincide with the
structure frequency. In literature it was found that the breaking length is between 5 and 10
times the ice thickness, indicating that this model predicts the strength of ice to be on the
stronger side, which is conservative. However, the influence on the failure frequency due to
weaker ice should be assessed as well. This is shown in Fig.5-4 in case the breaking length is
5 times the ice thickness. It can be seen that now also for thicker ice the failure frequency
could coincide with the structure frequency.

Figure 5-4: Failure frequency as function of ice
velocity for L = 5h

With this model, dynamic amplification
at individual braces can not be induced.
Since the brace eigenfrequency is > 10
[Hz], dynamic amplification could in the-
ory occur for very high ice velocities,
however these have never been observed
in the Baltic Sea.

Note that these findings hold for the as-
sumptions made in this thesis. In real-
ity, the broken off part of the ice keeps
interacting with the structure, instead
of being removed. Different ice failing
modes could be initiated, outside the
scope of this thesis. For example, a pile
of ice rubble could accumulate in front
of the interaction point, causing the ice
to fail in a different way than computed
by the model, due to the change of
boundary conditions. Small pieces of accumulated ice could for instance cause ice failing in
crushing, inducing a kind of damping, mitigating the failure frequency coinciding phenomenon
as seen before. On top of that, the ice could also fail due to splitting, also mitigating the
possibility of coinciding frequencies. Therefore, ice bending failure is likely not inducing any
dynamic amplification in reality. Crushing failure on the other hand is more critical in terms
of dynamic amplification, as will be discussed in the next section.
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Applying the loads taking into account the periodicity and solving the equations of motion
with the Newmark method, yields the displacement of all the nodes in the system over time,
as illustrated in Fig.5-5. In this example, an ice approach angle θ is assumed of 40 [deg],
resulting in having two braces causing upward and two braces causing downward ice bending
failure, indicated by cyan and yellow braces, respectively. An ice thickness h of 0.4 [m] is
considered moving with a horizontal velocity of 0.15 [m/s]. It can be seen that the response is
very small due to the loads induced, concluding that these ice bending loads are not important
for the design.

Figure 5-5: Structure responses due to periodic loads induced by ice failing in bending
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5-3 Local motion analyses - Ice crushing failure

In the research done by Marsman (2018) it was found that in terms of global motion, the three
regimes as described by Hendrikse and Nord (2019) and illustrated in Fig.2-6 can occur at
jacket supported wind turbines due to crushing ice loading. To assess whether these regimes
could also occur at local brace level, crushing ice load with a thickness of h = 0.4 [m] is
applied to the jacket structure at the legs as well as at the braces (Fig.5-6). The ice velocity
is varied from 0.005 [m/s] to 0.4 [m/s]. Next, the average maximum displacement (AMD) was
computed of the loaded legs and braces (Fig.5-6), as this is a good indicator to distinguish
the different regimes.

Figure 5-6: AMD of legs vs braces

What can be seen is that for ice velocities lower than 0.03 [m/s], IC occurs, characterised
by high displacements. Then, for ice velocities between 0.03 and 0.21 [m/s], FLI can be
distinguished. For higher ice velocities, the regime switches to CBR. It was expected that the
AMD plot of the braces would appear differently than that of the legs, however, they look
similar. This would indicate that no difference in terms of regime identification exist between
the response of the legs and braces. However, if the displacement plots are compared, as seen
in Fig.5-7 for an ice velocity of 0.075 [m/s], there is a clear difference. Now the legs are in FLI,
whereas the braces are in a mix of IC and FLI. This characteristic can not be traced back in
the AMD plot, which means that the regimes occurring at the braces are ’overshadowed’ by
the global motion of the structure.

Therefore, in order to better analyse the local regimes, the local motion is extracted from the
total motion. This is done by subtracting the average global displacement from the brace
displacement in order to obtain the local brace displacement. Essentially, the influence of the
global motion is removed from the total displacement, as indicated in Fig.5-8.
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Figure 5-7: Regime comparison between legs and braces for vice = 0.075 [m/s]

Figure 5-8: The global motion at interaction level is obtained by computing the average
displacement of the green nodes scaled to interaction level. This global motion is subtracted

from the total displacement of the red node, obtaining the local motion indicated in blue. Here
the ice velocity is 0.075 [m/s]
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An average maximum local displacement (AMLD) plot of this local motion as function of ice
velocity is shown in Fig.5-9. What can be deducted from this plot, is that the displacement
at the brace nodes is higher in comparison to the leg displacement and is more fluctuating,
however no clear local IIV regimes can be distinguished here.

What is however remarkable, is that the local displacement profile of the brace (Fig.5-8, blue)
matches exactly with the global brace ice load profile (Fig.5-7, orange), better illustrated in
Fig.5-10. In the simulation time plotted, the brace is loaded three times and pulled back
through the ice two times. The high peaks are corresponding to the second natural frequency
of the jacket, which is 1.245 [Hz], indicating that the jacket is vibrating globally in its second
bending mode. When the jacket oscillates back opposite to the direction of ice movement,
the brace is dragged through the ice and starts to vibrate in one of its eigenmodes. It was
found that the maximum velocity of the brace during this vibration matches the ice velocity,
which typically suggests FLI (Fig.5-11, bottom left). Therefore, this phenomenon can be
called local FLI.

Figure 5-9: AMLD of local leg and brace
displacement

Figure 5-10: Local displacement profile
matches with global ice load profile on the brace

However, this does not occur for all ice velocities, as illustrated in Fig.5-11. Here the brace
velocity and displacement are plotted for three different ice velocities, being 0.025, 0.075 and
0.145 [m/s]. What can be seen is that the brace is oscillating differently in these situations
when dragged back through the ice. For low ice velocities (0.025 [m/s]), the maximum brace
velocity does not match with the ice velocity and is even higher than the ice velocity, resulting
in short time-periods of no contact between ice and brace. For the intermediate ice velocity
(0.075 [m/s]), the maximum brace velocity matches with the ice velocity and as discussed,
this suggests local FLI. For higher ice velocities (0.145 [m/s]), the maximum brace velocity
is lower than the ice velocity, indicating that the brace is vibrating while in contact with the
ice, but not locked-in to the failure of ice. These vibrations are important to consider when
FLS is assessed, further discussed in Section 8-2.
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Figure 5-11: Loaded brace velocity and displacement for vice = {0.025, 0.075, 0.145} [m/s].
Although the brace is vibrating in one of its eigenmodes upon being dragged back through the
ice (caused by the global motion being opposite to the ice direction) for all ice velocities, the

vibration does not always correspond to local FLI

As is clear, in the situations where local FLI is occurring, it is not sustained, as it is governed
by the global motion of the jacket. Only local FLI could be observed when the structure is
globally vibrating opposite to the ice direction. Therefore, the case studies described in the
next section were performed to check whether sustained local FLI could develop.
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5-3-1 Case studies

Since no clear IC and no sustained local FLI could be identified in the braces of the regular
Type 2 jacket, a case study was performed on a modified jacket model having very stiff legs
and flexible braces to see whether these IIV could build up in the braces. The purpose of the
stiff legs is to ensure that the global motion is very limited and the flexibility of the braces
is to make them more susceptible to IIV. The brace frequency was adjusted from being 11.8
[Hz] to 4.9 [Hz], by reducing the wall thickness by a factor 20, as well as reducing the yield
strength by 25%. To make the legs more stiff, the wall thickness was increased by a factor
6. Again, crushing ice load was applied according to Fig.5-6 and the resulting AMD plot is
shown in Fig.5-12.

Figure 5-12: AMD of jacket with stiff legs and flexible braces

Now IC could be identified in the braces and for ice velocities higher than observed in the
Baltic Sea, CBR could be identified. Local brace FLI could not be identified. Despite the stiff
legs, FLI did build up in the global motion between vice = 0.3 − 0.5 [m/s]. This could have
an influence on the build up of local FLI in the braces or even prevent it from developing.

Therefore, to further assess whether sustained local FLI could build up in the braces, a second
case study was performed, now applying crushing ice load with varying ice thicknesses to a
structural model only representing the x-bracing (Fig.5-13). The outer nodes of the structural
model are clamped to completely eliminate the influence of the global motion. The natural
frequency of the brace was varied between 4.3 and 15 [Hz], achieved by either having the wall
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thickness reduced by a factor 8 or the yield strength reduced by a factor 2, in comparison
to the structural properties of the Type 2 jacket. The AMD results are shown in Fig.5-13,
where the different combinations of wall thickness, yield strength and ice thickness analysed
are shown in the legend. Again, only IC could be identified for low ice velocities (< 0.1 [m/s])
and CBR for higher ice velocities.

Figure 5-13: AMD of x-brace only for different structural properties

To conclude on the local FLI in the original Type 2 jacket, it appears that the global motion
of the jacket causes the dragging of the brace through the ice, thereby initiating the local FLI.
If one removes the influence of the global motion, as was done in the case studies, no brace
is dragged through the ice which keeps the initial relative velocity between brace and ice too
low in order to develop local FLI. Increasing the relative velocity by applying crushing ice
with a constant high ice velocity does not induce local FLI as the velocity then remains too
high. In local FLI, only the initial relative velocity is high, whereas after that the velocity
corresponds to the FLI profile, which is not a constant velocity.
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5-4 Base shear

In the previous sections the dynamic response of the jacket nodes have been investigated,
which are useful in further research when FLS analyses are performed. Next sections will
consider the static ULS loading on the jacket, starting with the assessment of the total base
shear in this section.

Figure 5-14: Worst
case situation for
θ = 15 [deg]

What is clear is that the contribution to the total horizontal force
is much higher for crushing ice than for bending ice (Section 4-3-2).
This holds for all ice velocities. To find the worst case situation for
the base shear, it needs to be defined in which situation the most
crushing is occurring. The model presented in Chapter 3 and the
results in Fig.3-5 can be used to find this situation. In this figure
it is clear that for ice approach angles of 11-34 and 56-79 [deg], the
most crushing is occurring and when the ranges 11-18 and 72-79
[deg] are considered, crushing is accompanied by the most bending
failure. Therefore, a value for θ of 15 [deg] can be assumed to find
the worst case situation for the base shear. In this situation there
are three legs and two braces loaded by crushing ice, two braces
by downward bending ice and two braces by upward bending ice
(Fig.5-14).

The contributions of all the bending and crushing ice forces on all
loaded elements are added together to find the total base shear value.
It was found that for an ice velocity of 0.01 [m/s] the peak base shear
force is maximum, with a magnitude of ≈ 6 [MN].

In order to say something about this magnitude, the total base shear due to wave loading was
computed to have a comparison value. To calculate the hydrodynamic actions on the slender
members in the jacket, the Morison equation is used (Vugts, 2013). The equation reads:

Fmor = fd + fi =
1

2
ρwCdDu|u|+ π

4
ρwCmD2u̇ (5.4)

Where:

fd Hydrodynamic drag action per unit length [N/m]
fi Hydrodynamic inertia action per unit length [N/m]
ρw Seawater density [kg/m3]
Cd Hydrodynamic drag coefficient [-]
Cm Hydrodynamic inertia coefficient [-]
D Cylinder diameter [m]
u Horizontal water particle velocity in the wave [m/s]
u̇ Horizontal water particle acceleration in the wave [m/s2]
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Figure 5-15: Equivalent
stick model

Determining the hydrodynamic load on each individual mem-
ber using the Morison equation is cumbersome. Therefore, an
equivalent stick model (Sliggers, 2019) was constructed repre-
senting the Type 2 jacket as a simple pile to reduce the difficulty
in using the Morison equation, illustrated in Fig.5-15.

It was found that for wave properties in the Baltic Sea (Lind-
gren et al., 2020), assuming linear Airy wave theory (Airy, 1845)
and a linear load distribution (for simplicity), the maximum
base shear would also have a value of ≈ 6 [MN]. Thus, the
base shear is of the same order of magnitude considering ice
loading and wave loading, which makes that ice loading is not
of particular severity for the base shear. However, in terms of
overturning moment the ice loading case is more severe. This
is because in contrast to wave loading, all the ice load is ap-
plied at the top of the jacket, resulting in a larger moment arm.
Thus, although the maximum base shear due to ice and wave
loading is found to be comparable, this is not the case for the
overturning moment. The overturning moment is not assessed
here and should be investigated in further research.

5-5 ULS brace load

Another difference between wave loading and ice loading is that for ice loading only a few
members are loaded, whereas in wave loading a large part of the structure is loaded. Therefore,
it is important to assess whether a single brace will be able to withstand the load so that
it will not be plastically deformed by the ice. In order to analyse this situation, the ULS
brace load was assessed. First, to simplify the problem, a single brace was extracted from
the jacket and represented by a simply supported beam, as illustrated in Fig.5-16. Assuming
a simply supported beam will result in the highest internal moment because the boundaries
can not carry any moment. As a result, the full load has to be covered by the beam itself.
The internal moment in the beam can then be calculated by Eq.5.5, which is maximum when
the length of a [m] is assumed equal to the length of b [m]. Then, when the appropriate
parameters for P [N] and L [m] are inserted a maximum internal moment, Mmax [Nm], can
be found. Since the load P [N] is a function of ice velocity, the maximum internal moment is
also dependent of ice velocity.

Mmax =
Pab

L
→ PL

4
(5.5)

According to the International standard for fixed steel offshore structures (ISO 19902, 2007),
tubular members subjected to bending moments must be designed to satisfy the condition
stated in Eq.5.6.
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σb =
M

Ze
≤ fb

γR,b
(5.6)

Where:

σb Bending stress [Pa]
M Internal bending moment [Nm]
Ze Elastic section modulus, Ze =

π
64

(
D4 − (D − 2t)4

)
/
(
D
2

)
[m3]

t Wall thickness [m]
fb Representative bending strength [Pa]
γR,b Partial resistance factor for bending strength, γR,b = 1.05 [-]

The value for fb is dependent of the structural properties and should be calculated according
to the design code. Since the internal bending moment is dependent of ice velocity, the
utilisation as defined in Eq.5.7 can be calculated as function of ice velocity, of which the
result is plotted in Fig.5-17. Here it can be seen that for low ice velocities, in the IC regime,
the utilisation is close to unity. A utilisation value below unity is considered safe enough,
which makes the Type 2 design suitable in sub-arctic waters, but it indicates that brace
utilisation should be carefully assessed when other jacket designs are investigated. Note that
the assumptions made here overestimate the maximum internal bending moment. In reality,
the welds in the structural modes are capable of carrying moment, reducing the maximum
moment in the brace. On top of that, the x-brace is supported in the middle by another
brace, which in turn reduces the maximum internal moment.

Um =
σb

fb/γR,b
=

M/Ze

fb/γR,b
(5.7)

Figure 5-16: ULS brace load simplification
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Figure 5-17: Brace utilisation as function of ice velocity



Part II

Dynamic substructuring in
modelling ice-structure interaction

57





6
Dynamic substructuring

In the previous chapters the dynamic behaviour of a jacket structure due to ice loading has
been investigated and several numerical models have been utilised to simulate the dynamics.
A full finite element model is used to represent the full structure, that is, the jacket attached
to a tower with a lumped RNA mass on top. This chapter will consider a Type 1 jacket, since
it is a bit more simple to explain the concept of dynamic substructuring having a structure
with less loaded nodes.

The full model of the Type 1 jacket consists of 61 nodes, having a total of 366 degrees of
freedom (DoFs), because each node of a 3D beam model has 6 DoFs. Soil stiffness is not
taken into account meaning that the four fixed bottom nodes of the legs will be constrained
at seabed level. Removing the 24 DoFs representing these nodes results in 342 free DoFs,
meaning that the model has 342 eigenmodes. Solving the dynamics taking into account all
eigenmodes is computationally expensive. One solution is to apply modal analysis. In this
way only a selection of all modes is taken into account, truncating the higher frequency
modes, still leading to sufficiently accurate results. Usually the higher modes are unreliable
anyway because of the unknown damping in the system. Performing computations in the
modal domain is computationally preferred. However, in complex structures it is convenient
to split the structure into smaller substructures. In this way the dynamics of the particular
substructure can be better investigated allowing for local optimisation of the design. On top
of that, model simplification can be used by eliminating local subsystem behaviour which is
of no influence to the assembled system. However, different (modally reduced) substructures
have to be assembled to a complete system to analyse the complete dynamics. This coupling
can be done using the Craig-Bampton method, which will be explained hereafter.
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6-1 The Craig-Bampton method

The Craig-Bampton method (Craig and Bampton, 1968) is a reduction method without coars-
ing the mesh. In other words, leaving out nodes would be coarsing the mesh, hence making
the structure stiffer and leading to unreliable results (Van der Valk, 2014a). Reduction meth-
ods without coarsing the mesh are known as component model reduction methods. In fact it
works the same as modal superposition (Section 4-3-2), only the modes are associated with
boundary nodes and internal nodes.

Figure 6-1: Jacket nodes
divided in boundary nodes

and internal nodes

To explain the theory of the Craig-Bampton method, consider
a stand-alone jacket model and a stand-alone tower-RNA model.
Typically only the jacket is reduced using the Craig-Bampton
method, hence from now on referred to as superelement. In prac-
tice, each part is designed by a different party. The jacket is
designed by the foundation designer, whereas the tower-RNA as-
sembly is designed by SGRE, after which load calculations need
to be performed on the integrated system. For both parties it
is desired to be able to model the full system, without having
to provide the full details of the design to the other party. The
superelement is modally truncated in a way similar to modal anal-
ysis, only the advantage of the Craig-Bampton method is that it
makes it possible to couple different superelements to other struc-
tural models, without the need to share the details of the design.
This is not possible with modal analysis, where it would be neces-
sary to combine the full subsystems with eachother, after which
modal truncation could be done.

Consider the system of equations of motion for the jacket (without
damping):

Mü(t) +Ku(t) = f(t) (6.1)

Here M is the mass matrix, K is the stiffness matrix, u is the vector of DoFs and f is the
external force vector. Next step is to split the DoFs into boundary DoFs (b) and internal
DoFs (i). Note that the time dependency (t) is omitted here for ease of reading.

[
Mbb Mbi

Mib Mii

] [
üb

üi

]
+

[
Kbb Kbi

Kib Kii

] [
ub

ui

]
=

[
fb
fi

]
(6.2)

In the case of the jacket, the boundary DoFs are associated to the interface node, where the
tower bottom will be attached to. The internal DoFs are all other DoFs in the jacket (Fig.6-1).
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The objective is to retain the boundary DoFs to ensure coupling through the interface between
jacket and tower and also describe the dynamics of the internal DoFs correctly. This is done
by assuming that the response of the internal DoFs can be captured by a static and a dynamic
part:

ui = ui,stat + ui,dyn (6.3)

Applying a unit displacement at the boundary node and then solving the equation of motion
yields the Constraint modes ΨC , also known as Guyan reduction modes (Guyan, 1965). The
constraint modes can be found by solving Eq.6.4. Here it is assumed that no external force
is applied to the internal DoFs.

ui,stat = −K−1
ii Kibub = ΨCub (6.4)

To find an approximation for the dynamic part of the response, the modal superposition
principle is used. The internal vibration modes Φ are computed by fixing the boundary node
and then solving the eigenvalue problem:

(
Kii − ω2

iMii

)
ϕi = 0 (6.5)

To actually reduce or truncate the problem, only the first mode shapes ϕi are retained. First,
it is investigated what the maximum frequency of interest is, because it is important that the
reduced system can still capture that frequency. In practice around 20-25 vibrational modes
are included in the reduced system. Combining the constraint modes and the fixed interface
vibration modes is what defines the Craig-Bampton method. The internal DoFs can therefore
be approximated by:

ui = ΨCub +Φiηi (6.6)

Here ηi are the modal amplitudes of the internal modes. In matrix format Eq.6.6 looks like:

[
ub

ui

]
=

[
ub

ΨCub +Φiηi

]
=

[
I 0
ΨC Φi

] [
ub

ηi

]
= Rq (6.7)

The vector of DoFs u can thus be described by u = Rq, where R is the reduction matrix,
consisting of constraint modes ΨC and vibrational modes Φ. Upon substitution the original
system of equations of motion for the jacket in Eq.6.1 can be written as:
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MRq̈ +KRq = f + r (6.8)

A residual force r is present because the accuracy of the reduced model is always less then
the full model so an error will exist. This error is however by definition orthogonal to the
space of eigenmodes used in the reduction matrix R and can therefore by eliminated by
pre-multiplying the equation with RT :

RTMRq̈ +RTKRq = RTf +RTr

M̃q̈ + K̃q = f̃
(6.9)

Now the original set of equations of motion have been reduced by making use of the reduction
matrix R. Since the interface DoFs are retained, this reduced model can be assembled to other
components. These components can still contain all modes or can also be reduced through
the same procedure. The possibility to couple these reduced components makes them referred
to as superelements (Van der Valk, 2014a).

6-2 Assembly of (super)elements

In the previous section a superelement was created from a jacket model. The eventual objec-
tive is to perform time domain simulations with an integrated system consisting of a jacket,
tower and RNA. Therefore, the jacket superelement needs to be assembled to the tower-RNA
assembly. This section will explain the procedure of assembly.

The jacket superelement and the tower-RNA assembly are coupled through the interface
node (top of the jacket, bottom of the tower). Combining the equations of motion of both
components yields:

[
M (W ) 0

0 M̃ (J)

] [
ü(W )

q̈(J)

]
+

[
K(W ) 0

0 K̃(J)

] [
u(W )

q(J)

]
=

[
fwind

f̃wave/ice

]
+

[
g(W )

g(J)

]
(6.10)

The superscript (W ) indicates the tower-RNA assembly and (J) indicates the jacket model.
Again damping is neglected here for simplicity, but will be discussed in Section 6-5-1. The
force vector g indicates the interface forces that the jacket ’feels’ from the tower-RNA assembly
(Voormeeren et al., 2011). This force vector is therefore only non-zero at the coupling DoFs.
The connection forces g are unknown however, making it impossible to solve the system. Also,
the equations are not yet coupled. In order to solve the system in a coupled way, two different
assembly conditions are introduced (De Klerk et al., 2008):
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1. Compatibility: The displacements at the interface DoFs must be equal. This can be
expressed as: [

B(W ) B(J)
] [u(W )

q(J)

]
= 0 (6.11)

2. Equilibrium: The connection forces must be equal and opposite in direction. This can
be expressed as: [

L(W )T L(J)T
] [g(W )

g(J)

]
= 0 (6.12)

The matrices B are signed Boolean matrices indicating the location of the interface DoFs.
The matrices L are Boolean localization matrices, localizing the unique DoFs from the total
set of DoFs. It can be shown mathematically that the matrices B and L are in each other’s
nullspace. Constructing B is straightforward (Section 6-4), hence L can be computed easily
by executing L = null(B) in MATLAB for example.

[
B(W ) B(J)

] [L(W )

L(J)

]
= 0 (6.13)

Combining the assembly conditions (Eq.6.11 and Eq.6.12) with the combined equations of
motion of the jacket superelement and tower-RNA assembly in Eq.6.10 yields a coupled set of
equations to be solved. However, solving three sets of equations simultaneously is cumbersome.
In practice the equation can be more compact by performing a simplification. Two different
methods exist being the so-called primal and dual assembly. The primal assembly procedure
is almost always applied in practice due to its simplicity. Moreover, it was found doing
the calculations for this thesis that in terms of computational time, the primal assembly
procedure is approximately two times faster than the dual assembly procedure. However, the
use of interface force data is more clear using the dual assembly procedure. Therefore, both
procedures will be discussed.

6-2-1 Primal assembly

In the primal assembly method, the compatibility condition is satisfied a priori (Voormeeren
et al., 2011). In order to satisfy compatibility, a unique set of interface displacement DoFs uγ

is defined. Realizing that compatibility has to be enforced between the substructure boundary
DoFs and these unique set of interface displacements, a simple substitution based on Eq.6.11
and Eq.6.13 can be done:

ub = Lbuγ (6.14)
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Adding a second equation to enforce interface force equilibrium, results in the following cou-
pled system of equations:

{
MLüγ +CLu̇γ +KLuγ = f + g

LTg = 0
(6.15)

Pre-multiplying by LT will still satisfy both conditions and noting that LTg = 0, results in:

M̃üγ + C̃u̇γ + K̃uγ = LT


M̃ = LTML

C̃ = LTCL

K̃ = LTKL

(6.16)

Note that in Eq.6.15 and Eq.6.16 matrices M ,C and K are the block-diagonal matrices
formed by the individual matrices from the jacket superelement and tower-RNA assembly
(De Klerk et al., 2008):

M = diag
(
M (W ),M (J)

)
,C = diag

(
C(W ),C(J)

)
,K = diag

(
K(W ),K(J)

)
(6.17)

This system can be solved by using time stepping algorithms, for example Newmark implicit
linear (Newmark, 1959) explained in Appendix C, described relating to Craig-Bampton re-
duced systems by Gruber et al. (2017) or by built-in variable time stepping algorithms like
ODE45 in MATLAB.

6-2-2 Dual assembly

In the dual assembly method, the equilibrium condition is satisfied a priori, while including
the compatibility condition in the equations to be solved (De Klerk et al., 2008). The interface
forces are then expressed as:

[
g(W )

g(J)

]
= −

[
B(W )T

B(J)T

]
λ (6.18)

The vector λ represents the interface forces. The length of the vector is equal to the number
of DoFs of the boundary nodes. In this case the jacket and the tower-RNA assembly will be
coupled through one interface node, hence the length of λ will be 6.
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When the expression in Eq.6.18 is substituted in Eq.6.10 and combined into a single set of
equations, the ”dual assembled” equations of motion are:

M (W ) 0 0

0 M̃ (J) 0
0 0 0

ü(W )

q̈(J)

λ̈

+

K(W ) 0 B(W )T

0 K̃(J) B(J)T

B(W ) B(J) 0


u(W )

q(J)

λ

 =

 fwind

f̃wave/ice

0

 (6.19)

With the integrated model from Eq.6.19 time domain simulations can be performed. Again
the Newmark implicit linear method (Newmark, 1959)(Appendix C) can be used to solve the
system. The output of the simulation when damping is taken into account too consists of:

Tower-RNA assembly: ü(W ), u̇(W ), u(W )

Jacket: q̈(J), q̇(J), q(J)
Interface forces: λ

6-3 Dynamic post-processing

In practice, the integrated system as described in the previous section is solved by SGRE.
The interface load time series λ are then supplied by SGRE to the foundation designer. Using
the interface force time series, the dynamic response of the jacket can be reconstructed by
the foundation designer by applying these interface forces as an additional external force to
the jacket and then solve for the response:

M̃ (J)q̈(J) + K̃(J)q(J) = f̃wave/ice −B(J)Tλ (6.20)

This is equivalent to solving the second row in Eq.6.19. The response is therefore computed
correctly. Thus, by using only these interface forces it is possible for the foundation designer
to model the dynamics of the jacket structure as if it were connected to the tower-RNA
assembly. However, usually the foundation designer applies these interface forces to the full
jacket model instead of the reduced one. The system then becomes:

M (J)ü(J) +K(J)u(J) = fwave/ice −B
(J)T

full λ (6.21)

There will be a slight difference between the output q(J) and u(J). However, if the superele-
ment model is properly constructed, the difference will be negligible.
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6-4 Constructing signed Boolean matrices B

To illustrate the construction of Boolean matrices B and L, consider the system shown in
Fig.6-2. Substructure A consists of 5 nodes with 8 DoFs in total. Substructure B consists of
3 nodes with 4 DoFs in total. In this example, node 5 and node 6 will be coupled. In order
to do that, two compatibility conditions must be satisfied:

{
u5x = u6x

u5y = u6y
(6.22)

The total vector of degrees of freedom is:

u =
[
u1x u2x u3x u3y u4x u4y u5x u5y u6x u6y u7x u8x

]
(6.23)

Figure 6-2:
Coupling two
substructures

To express the compatibility condition as in Eq.6.11, the signed Boolean
matrix B must be:

B =

[
0 0 0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0

]
(6.24)

In case substructure A is reduced, the DoFs are localized differently than
initially. Constructing a reduced system will be done through reduction
matrix R:

u =

[
I 0
ΨC Φi

] [
ub

ηi

]
= Rq (6.25)

This means that the first two columns in the reduction matrix R will rep-
resent the static modes, associated to the boundary DoFs. The columns
right of the static modes are the internal vibration modes, associated to
the free DoFs. This makes that the Boolean matrix has to be constructed
slightly different:

B =

[
1 0 ... −1 0 0 0
0 1 ... 0 −1 0 0

]
(6.26)

Where ”. . .” are x columns of zeros with x equal to the number of vibration modes included
in the reduced system.
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6-5 Rayleigh damping

The concept of the Craig-Bampton method has been explained without taking damping into
account. However, assembling substructures with damping is not as straightforward as cou-
pling the mass and stiffness matrices. First, the concept of Rayleigh damping will be discussed,
as this type of damping is typically used in the industry, after which it will be explained how
the correct parameters can be found for further analyses.

Consider a full integrated FEM of a jacket with a tower-RNA assembly attached. The equa-
tions of motion can be expressed by:

Mẍ+Cẋ+Kx = f (6.27)

In modal analysis, the forced motion is represented as a superposition of normal modes of
free undamped vibrations multiplied by unknown functions in time:

x(t) = Φu(t) (6.28)

Substituting this assumption into the equations of motion and premultiplying by the matrix
of eigenmodes Φ yields:

M∗ü+C∗u̇+K∗u = ΦTf (6.29)

Where M∗ = ΦTMΦ, C∗ = ΦTCΦ, K∗ = ΦTKΦ.

Multiplying these equations of motion with the inverse of the modal mass matrix M∗:

üi +
c∗ii
m∗

ii

u̇i + ω2
i ui =

F ∗
i (t)

m∗
ii

(6.30)

It is then possible to introduce the Modal Damping Ratio ξi (Metrikine, 2020):

ξi =
c∗ii
ccritii

=
c∗ii

2
√
k∗iim

∗
ii

=
c∗ii

2m∗
iiωi

(6.31)

Where ccritii is the critical damping. Using this, Eq.6.30 can be rewritten to:

üi + 2ξiωiu̇i + ω2
i ui =

F ∗
i (t)

m∗
ii

(6.32)
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This equation has a general solution and can be solved. However, all this is based upon the
assumption that the Modal Damping Matrix is diagonal, which is usually not the case. This
prevents the possibility to decouple the equations of motion, which means modal analysis can
not be executed (Metrikine, 2020). To overcome this issue, the damping of the system can be
constructed by assuming Proportional Rayleigh Damping (PRD), which is defined as follows:

C = aM + bK (6.33)

Where a and b are unknown constants. The PRD assumes damping can be constructed by
assuming it to be a linear combination of mass and stiffness. Therefore, the modal damping
takes the form:

C∗ = ΦTCΦ = ΦT (aM + bK)Φ = aΦTMΦ+ bΦTKΦ = aM∗ + bK∗ (6.34)

In this way the damping matrix C∗ will be diagonal (M∗ and K∗ are also diagonal because
of modal decoupling), which allows for the decoupling of the total set of equations of motion,
after which modal analysis can be performed. The modal damping ratio takes the form:

ξi =
c∗ii

2m∗
iiωi

=
am∗

ii + bk∗ii
2m∗

iiωi
=

a

2ωi
+

bωi

2
(6.35)

To determine a and b, it is possible to assume that the modal damping ratios (ξi) for the first
two modes are known. Solving for a and b leads to:

a =
2ω1ω2 (ξ1ω2 − ξ2ω1)

ω2
2 − ω2

1

, b =
2 (ξ2ω2 − ξ1ω1)

ω2
2 − ω2

1

(6.36)

In this thesis the full model consisting of a jacket and a tower-RNA assembly was modelled
with both modal damping ratios set to ξ1 = ξ2 = 0.01. This value implies that the structural
damping in the complete system is 1% of critical. This lead to values for a and b of 0.0305 and
0.0022, respectively. These values are dependent of the first two natural frequencies of the
system, ω1 and ω2. When considering the jacket superelement and the tower-RNA assembly,
the natural frequencies of these systems naturally differ from the total assembled system:

Component ω1 [Hz] ω2 [Hz]
Full coupled model 0.307 1.161
Jacket superelement 1.136 2.258
Tower-RNA assembly 3.702 12.015
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Which implies that setting ξ1 = ξ2 = 0.01 for the jacket superelement and also for the
tower-RNA assembly and assembling the two will not lead to the same a en b values of the
full system, leading to a different overall damping matrix C. Therefore, ξ1 and ξ2 of both
superelements have to be tuned so that the eventual assembly of both superelements has the
same proportional damping as the full system.

6-5-1 Tuning of Rayleigh damping parameters ξi,j

Since there are two structures considered, a jacket superelement and a tower-RNA assembly,
in total four modal damping ratios need to be found. These are referred to as ξi,j , where the
subscript i indicates the first (1) or second (2) damping ratio and the subscript j indicates
the jacket (j) or tower-RNA (t) component.

By assembling both substructures with help of the Boolean matrices explained in Section 6-4,
it is possible to compute the values for a and b for the jacket superelement and the tower-
RNA assembly, for different values of ξi,j . The goal is to find the damping ratios ξi,j for each
superelement so that the Rayleigh damping parameters a and b of each superelement match
with the a and b values in the full assembled system. This is illustrated in Fig.6-3.

The horizontal planes in the top four figures represent the target damping parameters a and
b of the full assembled system. The inclined planes are a result of calculating the damping
parameters for different modal damping ratios. It can be seen that the intersection between
the planes forms a straight line. That implies that the intersection point of these straight lines
indicate the combination of modal damping ratios that will result in the correct assembled
superelement damping. The intersection points are illustrated in the bottom two figures of
Fig.6-3.

Now that the procedure of constructing a superelement representation of a structural assembly
is known, the method can be applied to solve the coupled interaction between ice and structure.
Since specific adjustments have to be made regarding this coupled problem, the details will
be handled in a seperate chapter, namely Chapter 7.
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Figure 6-3: Rayleigh damping parameters a and b as function of modal damping ratio ξi,j



7
Ice models applied to the superelement

representation of the structure

In Chapter 6 the dynamic substructuring method has been discussed. The Type 1 jacket
has been represented by a superelement and a tower-RNA assembly has been coupled to it.
This chapter will discuss how numerical simulations regarding ice-structure interaction can
be performed with this superelement assembly.

The system described by Eq.6.19 can be solved easily when the force matrix is completely
known. This goes for wave loading (assuming wave loads are uncoupled due to the stiff nature
of the jacket) as well as loads induced by ice bending failure, described in Section 2-1. For
these types of loading the forces that will be induced on the structure can be pre-calculated
after which the system of equations can be solved by the Newmark method (Newmark, 1959,
Gruber et al., 2017) (Appendix C). This is not as straightforward when the forces induced
to the structure are coupled with the motion of the structure, because the forces can not
be computed a priori but have to be computed at every timestep. This is the case for ice
crushing failure, as described in Section 2-2.

Three main difficulties arise when modelling coupled interaction using a superelement model.
One is that the structural equations in the ’superelement domain’ and the ice equations in
the spatial domain have to be solved simultaneously. Second is that by definition, using the
superelement representation of a system will result in losing information about the internal
nodes, all contributing to the structural response at the interface node, which could lead to
inaccurate results. Third is that the ice crushing force is actually applied at the internal
nodes and the force induced to the structure is dependent on the motion of these loaded
nodes. Therefore, the force at the loaded nodes will not be computed correctly, since the
computed displacement at the internal nodes has a slight error. This is explained in Section
7-1.

71
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7-1 Non-reduced loaded DoFs

A problem often encountered in the field of dynamic substructuring is to properly represent
forces acting at the internal DoFs of a substructure (Van der Valk, 2014b). To illustrate that,
consider the following situation (Fig.7-1):

Figure 7-1: Force applied at internal node. The computed displacement of this loaded internal
node is compared to the computed displacement of a non-loaded internal node

A force is applied at the cyan (•) colored node in Fig.7-1. At the green (•) node a tower-RNA
assembly is attached, which is not shown in the figure. Next, the displacement at this loaded
node and at a random other internal node (•) is computed. This is done using the full model
as well as the superelement reduced model. When one compares the responses computed
by these different modelling approaches, one can see that the superelement reduced model
is capable of calculating the displacement at the (•) node correctly, but is not capable of
calculating the displacement at the loaded node (•) correctly during loading.

Because of this error, it is more convenient to not include this node in the subset of internal
DoFs, but instead include it in the subset of boundary DoFs. Retaining the nodes that will
be loaded as boundary nodes divides the structure in ub and ui as seen in Fig.7-2. Applying
the same force to the ’non-reduced loaded DoFs’ (NRLD) structure yields the computed
displacement at the (•) node shown in Fig.7-3. Now the displacement computed by the
reduced model has no error in comparison to the displacement computed by the full model.
This finding is fundamental in computing ice-structure interaction because the forces induced
to the structure depend on the displacement of these loaded nodes. It is therefore crucial to
compute the displacements of these nodes correctly.
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However, if a large part of the structure is loaded, i.e. lots of DoFs are excited, it is not
convenient anymore to include all these DoFs in the subset of retained DoFs. This would
lead to unacceptably large reduced superelements which takes down the effectiveness of the
dynamic substructuring algorithm. This is the case for wave loading, where almost the full
support structure will be loaded. Several methods exist to overcome this issue, for example
spectral decomposition, equivalent blocked forces or dual blocked forces. Reference is made to
the PhD thesis by Paul van der Valk (2014a) on these methods and will not be discussed
here. However, in ice loading, only a few nodes are loaded, which makes it convenient to use
the NRLD approach without taking down the effectiveness of the dynamic substructuring
algorithm. The methods to overcome the issue are therefore not needed regarding ice loading,
which is a very valuable finding.

Figure 7-2: Jacket nodes
divided in boundary nodes and

internal nodes with NRLD
approach

Figure 7-3: Force applied at internal node. Displacement
computed with NRLD superelement. The displacement is now

computed correctly
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7-2 Coupled simulations in superelement domain

In Section 4-3-2, it was described how structural computations in the modal domain could be
coupled to ice computations in the spatial domain. The same coupling must be done using the
dynamic substructuring method. Now structural computations in the ’superelement domain’
must be coupled to ice computations in the spatial domain. Think of the modal eigenmatrix
Φ as the ’transfer function’ between the modal domain and the spatial domain. The reduction
matrix R, can be interpreted as the transfer function between the superelement domain and
the spatial domain. Using this, the MATLAB model used to model ice-structure interaction
in the modal domain was successfully rewritten to model ice-structure interaction in the
superelement domain.

Two things are important to consider. One is that the primal assembly method described
in Section 6-2-1 should be used, as the ODE solver cannot deal with the singular matrices
resulting from the dual assembled equations, shown in Eq.6.19. Rewriting this equation into
state space form would require to divide the equation by the mass matrix. Since this mass
matrix is singular, the output would not be representative. The primal assembly system
in Eq.6.16 does not contain singular matrices. Therefore, this system of equations can be
rewritten into state-space form and implemented into the ODE solver accordingly. Second is
that the NRLD approach explained in Section 7-1 should be used to improve accuracy. The
differences in accuracy between the regular and the NRLD approach are considered in the
next section.

7-2-1 NRLD accuracy

To see the effect of the NRLD approach, the NRLD solution is compared to the modal
domain solution and to the regular superelement solution. In this example, the modal domain
solution including modes up to 1500 [Hz] is used as a reference solution. Almost all modes
are included in this way, leading to the most exact solution. Next, the solutions using the
NRLD superelement and the normal superelement are compared, of which the results can be
seen in Fig.7-4.

What can be seen is that coupled ice-structure interaction can be modelled using the Craig-
Bampton reduction method, as the solutions of both superelement models match with the
modal domain solution. However, using the NRLD approach leads to more accurate results,
as the regular superelement domain solution starts to diverge from the reference solution
after some simulation time. Note that both superelement models were constructed including
200 vibration modes, which is more than usual. It was found that including less vibration
modes in the reduction matrix, lead to diverging results earlier in the simulation, also for the
NRLD approach. To verify whether the nature of the accumulating errors is numerical and
not fundamental, the analysis explained in the next section was performed.
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Figure 7-4: Comparison between modal, NRLD superelement and regular superelement solution
for vice = 0.01 [m/s]

7-2-2 Numerical errors

Consider Fig.7-5, where interaction is modelled for an ice velocity of 0.01 [m/s], using both
modelling domains, i.e. modal domain and NRLD superelement domain. Again, the modal
domain solution including modes up to 1500 [Hz] is used as reference solution. In this example
less vibrational modes, namely 150 instead of 200, are included in the reduction matrix of the
NRLD superelement, which leads to correct results up to t = 16 [s], but starts diverging after
that. To check whether this is a fundamental error or a numerical error, an ’Initial conditions
check’ was performed. In this example, the data from the modal domain solution at t = 33 [s]
was extracted and implemented as initial conditions in the NRLD superelement model. The
NRLD superelement was re-run with these initial conditions, providing the output indicated
in green. What can be seen is that the solution now approaches the reference solution much
better than before, indicating that the deviation is due to an accumulating numerical error
and not a fundamental error. The error can be described as an accuracy error, not a stability
error.

The same behaviour is found when comparing two modal domain solutions, each with a differ-
ent number of modes included. Solutions start to diverge after some time, but implementing
the solution data at a certain point in time from the model that is truncated less as initial
conditions in the model that is truncated more will lead to the same results. The effect due
to a different order of truncation of the modally reduced systems and the effect of including
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a different number of vibration modes in the reduction matrix is thus comparable. Since the
accumulation of numerical errors is present both in the modal domain approach as well as
in the NRLD superelement approach, it is found that this error is not specific regarding the
superelement method.

Figure 7-5: Comparison between modal domain and superelement domain solution

To conclude and to answer the second research question of this thesis: it is possible to
model coupled dynamic ice-structure interaction using a dynamic substructuring modelling
technique. However, challenges related to the accumulation of numerical accuracy errors
arise with truncation of more higher frequency modes. Solving this numerical error is not
considered in the scope of this thesis. One hypothesis is that the slight difference in structural
response caused by truncating or including less vibrational modes results in the ice elements
breaking at a slightly different timing. The result of the different timing is that the force
induced to the structure slightly differs. The effect of this amplifies over time, resulting in
the diverging displacement profiles.



8
Conclusions and recommendations

In this thesis several models were constructed in order to answer two different research ques-
tions. This chapter will provide the conclusions to these questions as well as recommendations
for future research.

8-1 Conclusions

8-1-1 Part I

Part I of this thesis addressed the first research question defined as ”Can the use of the Type
1 design be justified or is a Type 2 jacket also suitable in sub-arctic areas?” To answer that
question, several models were constructed, each yielding a part of the answer.

First, a model was constructed that quantifies what types of ice failure are occurring simul-
taneously at a Type 2 jacket substructure, as function of the ice approach angle relative to
the structure and as function of an introduced threshold angle. The model quantified the
elements that would be loaded by ice failing in crushing or in bending, as those were the only
failure types considered in this research. Since both failure types induce a different type of
load to the structure, it is important to quantify the interaction in order to calculate the total
load on the structure. The influence of the threshold angle has been assessed, as the angle
can be assumed differently according to multiple design standards and previous research. As
a result, it was found that assuming of a threshold angle of 70 [deg], ice bending failure would
be equally significantly present as ice crushing failure. Therefore, both failure types had to
be accounted for in the research.

77
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Accordingly, ice models have been constructed for both ice bending and ice crushing failure.
To model ice bending failure, a slab of an ice sheet was represented by a beam, described
by Euler-Bernoulli beam theory. The equation of motion describing the beam was extended
with terms representing the buoyancy, axial compression force, convective velocity and pro-
portional damping. Using the finite difference method, this equation of motion was rewritten
into state-space form and solved through the ODE45 solver in MATLAB. The solution provided
the displacement of the ice beam over time upon interacting with a sloping structure. By com-
puting the tensile stress in the beam, it could be determined when the ice beam would break
and what the length would be of the broken off piece. Rewriting the boundary conditions
yielded the horizontal force induced to the structure, which could be calculated for multiple
ice velocities and thicknesses. It was found that the maximum horizontal forces induced
correspond well to the values that could be deducted using the design code (IEC 61400-3-1,
2019b) and that the maximum induced force does not depend on ice velocity. Only the break-
ing time reduces for higher ice velocities. The information regarding the breaking time and
length was used to assess whether dynamic amplification could develop upon loading a jacket
substructure by ice failing in bending. As a result, it was found that dynamic amplification
could in theory occur with the assumptions made in the model, however likely not in practice
as will be further discussed in Section 8-2.

To model ice crushing failure, the phenomenological ice model as described by Hendrikse
and Nord (2019) was implemented and coupled to the structural models representing both
jacket types. This allowed to compute the global ice load induced to the loaded parts of the
structure and to analyse which IIV regimes would develop globally and locally. It was found
that local IIV regimes can be recognised, including local FLI, but sustained local FLI could
not be observed, as the global motion of the jacket prevents sustained local FLI to build
up. However simultaneously, the global motion facilitates the build up of unsustained local
FLI. Several case studies were performed both on jackets with altered structural properties to
enhance the susceptibility to IIV and on a structural model representing only the bracing in
the jacket, to see if sustained FLI could build up. As a result, no sustained FLI was observed
in these case studies either.

The load induced by ice bending failure was found to be much lower than by ice crushing
failure. To assess the maximum base shear that could develop in the jacket, the contributions
of loads by bending ice and crushing ice were added. The situation yielding the highest peak
base shear load was found with help of the quantification model. Next, it was assessed that
the base shear due to ice loading is of the same order of magnitude in wave loading, concluding
that in terms of base shear, ice is not severe for a Type 2 jacket. Note that this holds for
the Type 2 jacket considered is this thesis. The base shear for a Type 2 jacket having other
dimensions should be reassessed.

Next, the ULS brace load was assessed and using a simplified approach the maximum induced
bending moment in the brace could be calculated. This bending moment was then used to
verify whether it would be safe enough according to the bending check provided in the ISO
code (ISO 19902, 2007). It was found that the utilisation is below unity for all ice velocities,
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however close to unity for low ice velocities in the IC regime. Therefore, the ULS brace load
should be assessed with care when considering other jacket designs.

To conclude on the first research question, a Type 2 jacket is suitable to be used in sub-arctic
areas but the ULS brace load should be carefully assessed as the utilisation is close to unity.

8-1-2 Part II

Part II of this thesis addressed the second research question defined as ”Can coupled dynamic
ice-structure interaction be modelled by a dynamic substructuring modelling technique?”

To answer that question, first a study was performed to understand the concept and the
limitations of the Craig-Bampton method. In this way, it could be assessed what is important
to take into account and which difficulties would arise trying to implement the method in
coupled ice-structure interaction. With this knowledge a superelement model representing the
jacket could be set up and the coupling of this jacket superelement to a tower-RNA assembly
was realised. This integrated model allowed for performing dynamic simulations.

However, it was found that the dynamics of the internal loaded DoFs could not be captured
well, something that is crucial in coupled ice-structure interaction. This problem was solved
by including the loaded DoFs in the subset of retained boundary nodes instead of in the
subset of reduced nodes, named the NRLD approach. This NRLD approach is convenient
considering ice loading because few DoFs are loaded, maintaining the effectiveness of the
reduction. As a result, the NRLD approach yielded more accurate results compared to the
superelement assembly obtained earlier.

Furthermore, it was found that the primal assembly method should be used, because of two
reasons. One is because the computational time was found to be two times faster compared
to simulations performed with the a dual assembled system. Second is that the dual assembly
procedure yields singular mass and damping matrices, which can not be implemented in
the ODE45 solver solving the ice equations. This would prevent simultaneous solving of ice
and structure displacements. The primal assembly method yields a system that can be
implemented in this solver, allowing for simultaneous solving of ice and structure equations.

Next, the solutions of the superelement model have been compared with modal domain solu-
tions. It was found that the method is able to solve coupled ice-structure problems, however
accumulating numerical accuracy errors develop over time. Besides, accumulating numerical
errors were found both in modal domain solutions and in superelement domain solutions,
leading to inaccurate, but not unstable results. Since this numerical error does exist in modal
domain solutions too, the effectiveness of the superelement domain method is substantiate.
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To conclude on the second research question, it is possible to model coupled ice-structure
interaction using a dynamic substructuring modelling technique and a framework to do so
is provided. The implementation of the dynamic substructuring modelling technique was
successfully done and coupled ice-structure interaction can be modelled with it. However, the
accumulating numerical errors should be resolved.

8-2 Recommendations

The models presented in Part I can be improved and expanded and the errors found in Part
II can be resolved. In this section, suggestions are posed for further research.

8-2-1 Part I

To start, in this research the contributions of ice bending failure and ice crushing failure to the
structural response have been considered separately, according to the superposition principle.
In reality, both ice failure types will occur at a jacket simultaneously. The response induced
by ice bending failure will then influence the response due ice crushing failure. It could then
for instance be investigated whether global IIV due to ice crushing failure will be disturbed
by the influence of ice bending failure. The quantification model presented in Chapter 3 could
in future research be used to determine to what extend bending and crushing are related, in
order to couple both ice failure types in a single model.

Next, the ice bending model could be further improved. Now, the broken off part is removed
numerically, whereas in reality this piece of ice would continue to interact with the structure.
For example, these parts could be piling up or cause jamming between the jacket braces. This
is not considered in this thesis, but could have a reducing effect on the dynamic amplifica-
tion induced by ice bending failure. Furthermore, the bending model could be improved by
assuming plate theory instead of beam theory. Then the influence of radial cracks and cir-
cumferential cracks can be included in the model, better representing the failure behaviour of
ice on sloping surfaces. It is expected that including these failure modes will result in shorter
breaking lengths, better corresponding to the breaking lengths found in literature. Besides,
only a downward ice bending model was constructed. In this thesis the loads induced by
upward bending ice were found by applying a factor to the computed downward bending ice
load, according to IEC61400 (2019b). In future research, an upward ice bending model should
be constructed as well, to better compare the differences between downward and upward ice
bending. Moreover, unlike the ice crushing model, the ice bending model constructed is not
coupled to the displacement of the structure and the structure is assumed to be rigid while
loaded. In reality, the structure will deflect upon interaction, influencing the failure behaviour
of the ice because the boundary conditions change. The obtained breaking times and lengths
could therefore be calculated more realistically.
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Also, apart from only ice bending and ice crushing failure, other failure modes should be
added to the model, i.e. splitting ice between jacket elements and buckling at vertically sided
structures. The contribution and influence of these failure modes and the effect of jamming
to the total load on the structure should be assessed.

Regarding the structural model, the OC4 reference jacket was used as input for the structural
model, but considering the rapid development and increasing size of offshore wind turbines,
this is a relatively small structure. Future research should focus on larger structures, leading
to increased loads on the members but reducing the effect of jamming for example. Another
remark regarding the structural model, is that the RNA is modelled as a lumped mass,
disregarding the blade dynamics which are important to include, as they can interfere with the
load frequencies. Besides that, aerodynamic damping is not considered, which does influence
the structural vibrations. However, this mainly influences the global response of the structure
and not the local brace response, which was the main objective of research in this thesis.
In future research, the RNA should be modelled as a complete assembly and aerodynamic
damping should be included in the model. Another remark regarding the structure is that
only one structural damping value is assumed. In future research the influence of structural
damping on the results should be assessed. Final remark regarding the structure, is that
soil-structure interaction is not taken into account in this research. The jacket is instead
fixed to the ground at seabed level, increasing the stiffness of the structure and disregarding
the soil damping. In this thesis the mass of the TP could be tuned, influencing the natural
frequency of the structure. In future research, the soil dynamics should be included, leading
to more accurate results. Again, this mainly influences the global response of the structure
and not the local brace response, which was the main objective of research in this thesis.

With the models constructed in this thesis it is possible to obtain the structural responses at
each node in the jacket due to forces induced by bending ice and crushing ice. It is however
more difficult to obtain the stresses in the structural members because the model is not
refined enough on local level. Future research could update the structural model with more
refined methods, for example using FEM software like ANSYS. This would make it possible
to compute the stresses induced in the braces and nodes by dynamic and static ice loading.
A thorough fatigue assessment can then be performed to assess the contribution to fatigue by
the unsustained local FLI. Besides that, a more refined ULS brace bending assessment can
be performed making use of the computed stresses in the braces.

Finally, the overturning moment was not assessed in this thesis, but could be severe regarding
ice loading. This is because in contrast to wave loading, all the load is applied at the top of
the jacket, resulting in large overturning moment. So, although the maximum base shear was
found to be comparable between ice and wave loading, this is not the case for the overturning
moment, as should be investigated in further research.
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8-2-2 Part II

The dynamic substructuring technique was successfully implemented to model coupled ice-
structure interaction. However, accumulating numerical errors exist and should be fixed in
future work. One cause of the diverging results between differently modally truncated models
could be that the slight difference in structural response caused by the different truncation
results in the ice elements breaking at a slightly different timing. As a result, the force
induced to the structure slightly differs, of which the effect amplifies over time, resulting in the
diverging displacement profiles. The same observation can be made regarding superelement
models, which are differently ’truncated’ by including a different number of vibrational modes
in the reduction matrix. Further research is required to investigate this hypothesis.

When this accuracy problem is solved, a study could be performed on optimizing the reduction
method. It should be further investigated what the most optimal reduction method is in terms
of which nodes to exclude from the subset of reduced DoFs and thus retain as boundary DoFs
(NRLD approach). In this research only two DoFs were retained as boundary DoFs, as these
were the only DoFs that were loaded in the simulation. In reality, all nodes at the waterline
could be loaded by ice and an NRLD superelement should be constructed accordingly.

Additionally, the amount of included vibration modes in the reduction matrix should be
optimised. Including less vibrational modes will result in less computational time, but it
should be ensured that the result is still accurate and that the highest frequency of interest
can still be captured by the reduced model, also known as spectral convergence. On top
of that, the amount of vibrational modes should be optimised through spatial convergence.
Then not only the correct frequencies can be captured by the superelement model, but also the
spatial distribution of the ice loading is represented correctly. It is expected that the spatial
distribution of the ice loading is of less importance compared to wave loading, because the
load is applied at one level only, but this should be verified in future research.

At last, in the superelement assembly model the RNA should be represented by a turbine
consisting of blades too, instead of by a lumped mass. Then the blade dynamics are also
included in the model. The coupling of the tower and RNA can be done in the same way as
was done coupling the jacket superelement and the tower-RNA assembly in this thesis, but
then having three substructures instead of two.



A
Derivations

Convective term derivation

Let u be the displacement of the beam in vertical direction and x the displacement of the
beam in horizontal direction. The total vertical convective displacement of the beam is then
expressed as:

uconv = u+ u(∆x) = u+∆x
δu

δx
(A.1)

The vertical convective velocity then becomes:

vconv =
du

dt
=

δ

δt
uconv =

δu

δt
+

δu

δt
(∆x) =

δu

δt
+

∆x

∆t

δu

δx
=

δu

δt
+ vx(t)

δu

δx
(A.2)

Where vx(t) is the horizontal velocity. The acceleration is then:

d2u

dt2
=

d

dt

(
du

dt

)
=

d

dt

(
δu

δt

)
+

d

dt

(
vx(t)

δu

δx

)
(A.3)

Where:
d

dt

(
δu

δt

)
=

δ

δt

(
δu

δt

)
+

δx

δt

δ

δx

(
δu

δt

)
=

δ2u

δt2
+ vx(t)

δ2u

δxδt
(A.4)
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And:

d

dt

(
vx(t)

δu

δx

)
=

δ

δt

(
vx(t)

δu

δx

)
+

δx

δt

δ

δx

(
vx(t)

δu

δx

)
δ

δt

(
vx(t)

δu

δx

)
=

δu

δx

δ

δt
(vx(t)) + vx(t)

δ

δt

(
δu

δx

)
=

δu

δx
ax(t) + vx(t)

δ2u

δxδt

δx

δt

δ

δx

(
vx(t)

δu

δx

)
= vx(t)

(
vx(t)

δ

δx

δu

δx

)
= vx(t)

2 δ
2u

δx2

(A.5)

Ultimately, this leads to the convective acceleration as:

d2u

dt2
=

δ2u

δt2
+ vx(t)

δ2u

δxδt
+

δu

δx
ax(t) + vx(t)

δ2u

δxδt
+ vx(t)

2 δ
2u

δx2

=
δ2u

δt2
+ 2vx(t)

δ2u

δxδt
+

δu

δx
ax(t) + vx(t)

2 δ
2u

δx2

(A.6)

In this research, the horizontal velocity of the ice is assumed constant. This means that the
acceleration is zero and that the horizontal velocity is independent of time:

d2u

dt2
=

δ2u

δt2
+ 2vx

δ2u

δxδt
+ v2x

δ2u

δx2
(A.7)
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Derivation of ζ

When it is assumed that the sheet of ice glides continuously along the structure slope (no stick-
slip), the relation between the normal force FH and transversal force FV can be expressed
as:

FV = RT sinαs −RN cosαs

FH = RT cosαs +RN sinαs

RT = µ ·RN

(A.8)

Leading to:

ζ =
FH

FV
=

sinαs + µ cosαs

− cosαs + µ sinαs
(A.9)

In which:

αs Structure angle [rad]
µ Ice-structure friction coefficient [-]
FV Transversal force [N]
FH Normal force [N]
RT Tangential reaction force [N]
RN Normal reaction force [N]
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Damping term derivation

The damping term is set proportional to the first derivative in time of the axial compression
term in the equation of motion of the beam:

Fdamping = c
d

dt

(
N

δ2u

δx2

)
(A.10)

The first derivative in time (convective velocity) was defined as:

du

dt
=

δu

δt
+ vx

δu

δx
(A.11)

The damping term can then be further derived as:

Fdamping = c
d

dt

(
N

δ2u

δx2

)
= c

δ

δt

(
N

δ2w

δx2

)
+ cvx

δ

δx

(
N

δ2w

δx2

)
= cN

δ3w

δtδx2
+ cvxN

δ3w

δx3

= cN

(
δ3w

δtδx2
+ vx

δ3w

δx3

) (A.12)

Here c [s] is the material damping coefficient of the ice. The minus sign in the equation of
motion is because the damping has to dissipate energy from the system.



B
Finite difference approximation

Finite difference method

The finite difference method is a technique for solving differential equations by approximating
(higher order) derivatives by finite differences. In this way, the system is converted into a set
of linear equations that can be solved by matrix algebra techniques. The system is divided
into n elements, each indicated by an index i. The (central) finite difference equations used
are:

δui
δx

=
1

2∆x
(ui+1 − ui−1)

δ2ui
δx2

=
1

∆x2
(ui+1 − 2ui + ui−1)

δ3ui
δx3

=
1

2∆x3
(ui+2 − 2ui+1 + 2ui−1 − ui−2)

δ4ui
δx4

=
1

∆x4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)

(B.1)

For i = 1...n.
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Discretisation of the equation of motion

The total equation of motion representing a slab of ice as an Euler-Bernoulli beam as derived
in section 2-1 is:

ρA

δ2uz

δt2︸ ︷︷ ︸
mass

+ 2vx
δ2uz

δxδt
+ v2x

δ2uz

δx2︸ ︷︷ ︸
convective

+ EI
δ4uz

δx4︸ ︷︷ ︸
beam stiffness

+ kuz︸︷︷︸
buoyancy

+ N
δ2uz
δx2︸ ︷︷ ︸

axial compression

− cN

(
δ3uz
δx2δt

+ vx
δ3uz
δx3

)
︸ ︷︷ ︸

damping

= 0 (B.2)

The subscript z indicating that the deformation is in the vertical direction will be omitted in
further equations. Working out parentheses in Eq.B.2 yields:

ρA
δ2u

δt2
+ ρA2vx

δ2u

δxδt
+ ρAv2x

δ2u

δx2
+ EI

δ4u

δx4
+ ku+N

δ2u

δx2
− cN

δ3u

δx2δt
− cNvx

δ3u

δx3
= 0 (B.3)

Isolating the acceleration yields:

δ2u

δt2
= −EI

ρA

δ4u

δx4
− N

ρA

δ2u

δx2
− k

ρA
u+

cNvx
ρA

δ3u

δx3
− v2x

δ2u

δx2
+

cN

ρA

δ3u

δx2δt
− 2vx

δ2u

δxδt
(B.4)

For each node i in the beam the acceleration can be calculated through the finite difference
approximation. This yields:

δ2ui
δt2

= − EI

ρA∆x4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)−

N

ρA∆x2
(ui+1 − 2ui + ui−1)

− k

ρA
(ui) +

cNvx
2ρA∆x3

(ui+2 − 2ui+1 + 2ui−1 − ui−2)−
v2x
∆x2

(ui+1 − 2ui + ui−1)

+
cN

ρA∆x2
(un+i+1 − 2un+i + un+i−1)−

vx
∆x

(un+i+1 − un+i−1) (B.5)
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This second order differential equation can be represented by a system of first order differential
equations as:

δui
δt

= un+i

δun+i

δt
=

δ2ui
δt2

= Eq.B.5

(B.6)

The axial compression is approximated using backward differences, since not enough informa-
tion is available here to use central differences:

N =
−EIζ
∆x3 (un − 3un−1 + 3un−2 − un−3)

1 + ζ
∆x(un − un−1)− cζ

∆x(u2n − u2n−1)− cvxζ
∆x2 (un − 2un−1 + un−2)

(B.7)

Initial conditions

For each node i the initial conditions are:

at t = 0: ui = u̇i = un+i = 0 (B.8)

Boundary conditions

For several values of i, information is needed from nodes that are outside the domain. To
obtain expressions for these nodes the boundary conditions are used. To compute i = 1, the
deflection at i = −1 is required. The boundary condition at i = 0 can be used to find an
expression for u−1:

for i = 1
δu0
δx

=
1

∆x
(u1 − u−1) = 0

u−1 = u1

(B.9)

The deflection at node i = 0 does not have to be computed since it is a boundary condition
itself. Now the left end of the beam is defined.

At the right end of the beam, i = n does not have to be solved since this is also a boundary
condition of the system. For i = n− 1, for some terms the deflection at i = n+ 1 is needed.
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Since this point lies outside the domain the moment boundary condition at the right end of
the beam must be used to find an expression for un+1:

for i = n− 1 − EI
δ2un
δx2

= −hFH

2
δ2un
δx2

=
1

∆x2
(un+1 − 2un + un−1) =

hFH

2EI

un+1 =
hFH∆x2

2EI
+ 2wn − wn−1

(B.10)

Matrix representation

To explain the matrix representation of the finite difference discretisation, consider the fol-
lowing simple beam equation:

ρA
δ2ui
δx2

+ EI
δ4ui
δx4

= 0 (B.11)

Applying the finite difference method and representing the resulting second order differential
equation as a system of first order differential equations yields:

δui
δt

= un+i

δun+i

δt
=

δ2ui
δt2

= − EI

ρA∆x4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2)

(B.12)

In the example illustrated in the figure above, there are seven nodes in the domain of the
beam, of which the displacements are named u0...u6. Without applying boundary conditions,
the matrix form of the equation would be:
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

ü−2

ü−1

ü0

ü1

ü2

ü3

ü4

ü5

ü6

ü7

ü8


= − EI

ρA∆x4



1 −4 6 −4 1 0 0 0 0 0 0
0 1 −4 6 −4 1 0 0 0 0 0
0 0 1 −4 6 −4 1 0 0 0 0
0 0 0 1 −4 6 −4 1 0 0 0
0 0 0 0 1 −4 6 −4 1 0 0
0 0 0 0 0 1 −4 6 −4 1 0
0 0 0 0 0 0 1 −4 6 −4 1





u−2

u−1

u0

u1

u2

u3

u4

u5

u6

u7

u8


(B.13)

The displacement u0 is a boundary condition of the system, therefore it does not have to be
solved and u−2 is not needed anymore. To solve u1, u−1 is needed. Here the left boundary
condition derived in ’Boundary conditions’ can be applied, where it was found that u−1 = u1.
Including this boundary condition results in the following matrix equation:



ü1

ü2

ü3

ü4

ü5

ü6

ü7

ü8


= − EI

ρA∆x4


7 −4 1 0 0 0 0 0
−4 6 −4 1 0 0 0 0
1 −4 6 −4 1 0 0 0
0 1 −4 6 −4 1 0 0
0 0 1 −4 6 −4 1 0
0 0 0 1 −4 6 −4 1





u1

u2

u3

u4

u5

u6

u7

u8


(B.14)

The displacement u6 is a boundary condition of the system, therefore it does not have to
be solved and u8 is not needed anymore. To solve u5, information about displacement u7 is
required. Here the right moment boundary condition derived in ’Boundary conditions’ can
be applied, where it was found that un+1 =

hFH∆x2

2EI + 2wn − wn−1. Implementing this result
yields the matrix equation:


ü1

ü2

ü3

ü4

ü5

ü6

 = − EI

ρA∆x4


7 −4 1 0 0 0
−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 5 −2
0 0 0 0 0 0




u1

u2

u3

u4

u5

u6

− hFH∆x2

2EI


0
0
0
0
1
0

 (B.15)

The displacement u6 is dependent of time. It is therefore convenient to leave it inside the
matrix because then the value can be updated inside the ODE45 loop in MATLAB.
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The matrix representation of the system from Eq.B.12 is then:



u̇1

u̇2

u̇3

u̇4

u̇5

u̇6

ü1

ü2

ü3

ü4

ü5

ü6


=



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
7K −4K 1K 0 0 0 0 0 0 0 0 0
−4K 6K −4K 1K 0 0 0 0 0 0 0 0
1K −4K 6K −4K 1K 0 0 0 0 0 0 0
0 1K −4K 6K −4K 1K 0 0 0 0 0 0
0 0 1K −4K 5K −2K 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0





u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12


− hFH∆x2

2EI



0
0
0
0
1
0
0
0
0
0
0
0


(B.16)

Where K = − EI
ρA∆x4 .

The same procedure can be done for the remaining terms in the full equation of motion of
the beam, resulting in an extensive matrix representation that can be solved by MATLAB.
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Complete matrix as implemented in MATLAB

When the remaining terms are included in the discretisation, the complete equation of motion
can be expressed in a matrix equation as in Eq.B.17. Note that this is the full matrix for
n = 6 elements. In this research, a beam of length L = 1000 [m] is considered with 1000 free
nodes.



u̇1

u̇2

u̇3

u̇4

u̇5

u̇6

ü1

ü2

ü3

ü4

ü5

ü6


=



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

K11 K12 K13 0 0 0 C11 C12 0 0 0 0
K21 K22 K23 K24 0 0 C21 C22 C23 0 0 0
K31 K32 K33 K34 K35 0 0 C32 C33 C34 0 0
0 K42 K43 K44 K45 K46 0 0 C43 C44 C45 0
0 0 K53 K54 K55 K56 0 0 0 C54 C55 C56

0 0 0 0 0 0 0 0 0 0 0 0





u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12


+



0
0
0
0
F5

0
0
0
0
0
0
0


(B.17)

Where:

K11 = 7K1 +K3− 2K5− 2K2N −K4N C11 = −2C1N
K21 = K5− 4K1 +K2N + 2K4N C21 = C2 + C1N
K31 = K1−K4N C12 = C1N − C2
K12 = K5− 4K1 +K2N − 2K4N C22 = −2C1N
K22 = 6K1 +K3− 2K5− 2K2N C32 = C2 + C1N
K32 = K5− 4K1 +K2N + 2K4N C23 = C1N − C2
K42 = K1−K4N C33 = −2C1N
K13 = K1 +K4N C43 = C2 + C1N
K23 = K5− 4K1 +K2N − 2K4N C34 = C1N − C2
K33 = 6K1 +K3− 2K5− 2K2N C44 = −2C1N
K43 = K5− 4K1 +K2N + 2K4N C54 = C2 + C1N
K53 = K1−K4N C45 = C1N − C2
K24 = K1 +K4N C55 = −2C1N
K34 = K5− 4K1 +K2N − 2K4N C56 = C1N − C2

K44 = 6K1 +K3− 2K5− 2K2N F5 = − N
2ρ∆x2 + N2cvx

4EI∆x

K54 = K5− 4K1 +K2N + 2K4N
K35 = K1 +K4N Where:
K45 = K5− 4K1 +K2N − 2K4N K1 = − EI

ρA∆x4 K5 = − v2x
∆x2

K55 = 5K1 +K3− 2K5− 2K2N −K4N K2 = − N
ρA∆x2 C1 = Nc

ρA∆x2

K46 = K1 +K4N K3 = −ρwg
ρA C2 = − vx

∆x

K56 = K5− 2K1 +K2N K4 = Ncvx
2ρA∆x3





C
Newmark method

The Newmark method is one of the most widely used time integration algorithms for structural
analysis. This is because the method is easy to use, second order accurate and unconditionally
stable assuming average constant acceleration (Nickel, 1971). The concept of average constant
acceleration and the procedure of the method is discussed hereafter. Consider the set of
equations of motion that needs to be solved:

Mü+Cu̇+Ku = f(t) (C.1)

At time t, the values for u, u̇ and ü are known, also referred to as initial conditions. The
objective is to obtain the solution at a time t + ∆t in the future, where ∆t is the time
increment, resulting in the following system:{

Müt+∆t +Cu̇t+∆t +Kut+∆t = f t+∆t

u(t) = ut, u̇(t) = u̇t
(C.2)

When one assumes the acceleration to be changing linearly between t and t+∆t, as illustrated
in the figure above, the average acceleration üavg can be expressed as:

üavg =
1

2

(
üt + üt+∆t

)
(C.3)
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The velocity and displacement at t+∆t can then be approximated by:

u̇t+∆t = u̇t + üavg∆t = u̇t +
1

2
∆t

(
üt + üt+∆t

)
ut+∆t = ut + u̇t∆t+

1

2
üavg∆t2 = ut + u̇t∆t+

1

4
∆t2

(
üt + üt+∆t

) (C.4)

Both expressions in Eq.C.4 can be split into parts depending on known time step values (t)
and on unknown time step values (t + ∆t). Accordingly, predictors and correctors can be
constructed, where the predictors depend on the values at t and the correctors determine the
solution at t+∆t.

Predictors: {
˜̇ut+∆t = u̇t + 1

2∆tüt

ũt+∆t = ut + u̇t∆t+ 1
4∆t2üt

(C.5)

Correctors: {
u̇t+∆t = ˜̇ut+∆t + 1

2∆tüt+∆t

ut+∆t = ũt+∆t + 1
4∆t2üt+∆t

(C.6)

Now üt+∆t is still unknown, but can be found by rewriting the system of equations of motion
from Eq.C.2 as:

Müt+∆t +Cu̇t+∆t +Kut+∆t = f t+∆t

Müt+∆t +C

(
˜̇u
t+∆t

+
1

2
∆tüt+∆t

)
+K

(
ũt+∆t +

1

4
∆t2üt+∆t

)
= f t+∆t

Müt+∆t +C ˜̇u
t+∆t

+C

(
1

2
∆tüt+∆t

)
+Kũt+∆t +K

(
1

4
∆t2üt+∆t

)
= f t+∆t

üt+∆t

(
M +C

1

2
∆t+K

1

4
∆t2

)
= f t+∆t −C ˜̇u

t+∆t −Kũt+∆t

üt+∆t =

(
M +C

1

2
∆t+K

1

4
∆t2

)−1 (
f t+∆t −C ˜̇u

t+∆t −Kũt+∆t
)

(C.7)

Thus, the system described by Eq.C.2 can be solved through:

Step 1 Calculate predictors using known conditions with Eq.C.5
Step 2 Solve linear problem to obtain unknown acceleration according to Eq.C.7
Step 3 Calculate correctors to obtain solution at next time step with Eq.C.6

These steps have to be repeated for the full length of the simulation.
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