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Abstract This paper presents the multidisciplinary opti-
mization of an aircraft carried sub-orbital spaceplane. The
optimization process focused on three disciplines: the aero-
dynamics, the structure and the trajectory. The optimization
of the spaceplane geometry was coupled with the optimiza-
tion of its trajectory. The structural weight was estimated
using empirical formulas. The trajectory was optimized
using a pseudo-spectral approach with an automated mesh
refinement that allowed for increasing the sparsity of the
Jacobian of the constraints. The aerodynamics of the space-
plane was computed using an Euler code and the results
were used to create a surrogate model based on a non-
stationary Gaussian process procedure that was specially
developed for this study.

Keywords Spaceplane multidisciplinary optimization ·
Optimal control · Surrogate modeling · Gaussian processes

1 Introduction

Access to space is one of the greatest challenge in todays
aerospace technologies. The prohibitive costs of current
systems led to the rise of new approaches. Reusable sys-
tems, such as the American Space Shuttle, were designed
to reduce the expenses of the access to Earth Orbit for
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satellite commissioning, science missions and ferry to the
International Space Station.

In the present study a novel launch system is consid-
ered. This system’s mission is represented in Fig. 1. An
air-launched suborbital winged spaceplane is mounted pig-
gyback on a conventional airliner. The airliner brings the
spaceplane up to its maximum altitude. Once the maximum
altitude for the airliner is reached, the spaceplane is released
and propelled by a rocket engine up to 80 kilometers at more
than 2 km/s. After all the fuel has been burned, which is
characterized by the main engine cut-off (MECO) point, the
spaceplane enters a weightless ballistic flight phase. Five
seconds after the MECO the Upper-Stage (US) is ejected
from the spaceplane payload bay. The US rocket engine is
ignited and brings the payload to its targeted orbit which is
assumed to be a sun-synchronous orbit at 700 km altitude
(SSO700) in this study.

Such a system is intrinsically multidisciplinary as the
design of the structure, the aerodynamics and the trajectory
are highly coupled sub-problems. Finding the best solution
requires to find the best compromise between the different
disciplines. Multidisciplinary Design Optimization (MDO)
addresses this issue by automating the design process and
applying the optimization theory (Sobieszczanski-Sobieski
and Haftka 1997) in order to find a better solution in less
time than conventional methods. Applying MDO in the
space industries can potentially lead to a large increase in
profits. Examples of using MDO for spaceplane design and
optimization can be found in the works of Yokoyama et al.
(2007), Tsuchiya et al. (2007), Takeshi and Mori (2004),
Rowell et al. (1999).

The MDO techniques were applied to the considered sys-
tem. Three disciplines were considered in the optimization
of the system. The trajectory, the aerodynamics and the
structure. In the latter, the weight of the spaceplane was
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Fig. 1 Studied system mission.
Courtesy of Swiss Space
Systems

estimated using an empirical approach based on winged-
space and hypersonic vehicles data developed by Harloff
and Berkowitz (1988). Despite the low fidelity of this
approach it encountered success in the similar study of
Yokoyama et al. (2007). Higher fidelity analysis methods
were employed to compute the aerodynamics. The cost of
these computations is not compatible with the large number
of aerodynamic evaluations required for the trajectory opti-
mization. In order to make the computational time practical
a surrogate model was employed to represent the aerody-
namics of the vehicle. The surrogate model was developed
based on Gradient Enhanced Gaussian process methodolo-
gies (Rasmussen 2006). A major drawback of using such
techniques for fitting aerodynamic data over the Mach num-
ber range that is required for a space vehicle, is the difficulty
of fitting properly both the sharply varying region in the
transonic regime and the wide plateau of the hypersonic
regime. The considered spaceplane in this study falls into
this category with Mach number varying from zero to 10.
This issue was addressed by Gramacy and Lee (2008) and
by Ying and et al (2007) by partitioning the design space
and by implementing a mapping function for the covariance
respectively. In the present study a new method is proposed
using the non-stationary kernel developed by Paciorek and
Schervish (2004), Plagemann et al. (2008) combined with a
set of sub-level stationary Gaussian processes based on the
gradients of the aerodynamic coefficients. This method shall
ensure both the continuity of the generated models and lim-
its the number of hyper-parameters to be optimized while
being able to capture accurately the local and global trends
of the aerodynamic characteristics of the spaceplane.

This paper will first present the optimization problem
and describe the architecture chosen to address the MDO
problem. The trajectory optimization procedure will be
described later. This will show the necessity of having quick
disciplinary evaluations because of the large number of
required calculations. The weight estimation procedure will
then be explained in more details. In a next section the aero-
dynamic analysis will be explained in details, for which
an Euler formulation was selected with an adjoint formula-
tion for the estimation of the gradients of the aerodynamic
coefficients. These methods had a significant success in
the field of aerospace optimization for which the work
of Martins et al. (2004) and Reuther and Jameson (1995)
are solid references. This will lead to the description of
the new non-stationary gradient enhanced Gaussian pro-
cess method which will show its successful use in solving
the optimization problem in the last section where the geo-
metrical modifications, optimal control problem results and
performance improvements will be presented.

2 Problem definition

The objective of the MDO problem is to maximize the mass
of the payload mpayload brought to the SSO700 orbit. This
section presents the mathematical definition of the prob-
lem as well as the assumptions that were use to solve the
optimization problem.

The space system is composed of three distinct elements,
the carrier, the spaceplane and the US. Several assumptions
were made on each of these elements. The carrier aircraft, a
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conventional airliner available on the market, is fixed. It is
assumed to have a maximum carrying capacity mmax,carrier

that imposed an upper limit on the possible spaceplane
mass. The spaceplane and the US are the two other parts
of the system to be optimized. The upper stage has been
designed by a different company, so there is no freedom to
modify and optimize it. Therefore the total mass of the US
is assumed to be fixed for this study.

Before introducing the formulation of problem the fol-
lowing subsection will show how the US was treated in the
optimization and how the complexity of the problem was
reduced by the use a performance map.

2.1 Performance map of the US

The US total mass mUS,tot includes the US dry mass
mUS,dry , the mass of the payload mpayloadand the mass of
the US required fuel mUS,f uel :

mUS,tot = mUS,dry + mpayload + mUS,f uel (1)

The US dry mass includes a constant basic mass mUS,0

formed by the engine, the avionic, the reaction control sys-
tem, etc... and a fuel dependent mass that accounts for the
increase of tank and structure mass for an increased fuel vol-
ume. This dependency, modeled by a linear function with a
slope c. The basic US mass depends on the design of the US
and is assumed to be constant in this analysis. Therefore the
US dry mass is expressed as follows:

mUS,dry = mUS,0 + cmUS,f uel (2)

After the separation from the spaceplane the US is assumed
to completely burn its fuel before it reaches the required
orbit to release the payload. Therefore the total mass that
will reach the orbit is the dry mass of the US plus the pay-
load mass. This mass is called the mass injected into orbit
minjected :

minjected = mUS,dry + mpayload (3)

Consequently the payload mass can be expressed as:

mpayload = minjected (1 + c) − cmUS,tot − mUS,0(1 + c) (4)

As the total US mass mUS,tot is assumed to be fixed, max-
imizing the payload mass is equivalent to maximize to the
mass injected into orbit. This assumption is used to decouple
the optimization of the US segment from the optimization
of the spaceplane. Indeed the trajectory of the US solely
depends on the conditions at the separation point, namely
the flight path angle (γf ), the speed (vf ) and the altitude
(hf ). Consequently it is possible to optimize independently
the trajectory of the US according to the separation condi-
tions. The optimization of the spaceplane can be performed

separately because the final flight conditions of the space-
plane correspond to an optimal, pre-calculated, trajectory
for the US leading to a given injected mass.

A large number of US trajectory optimization with dif-
ferent initial conditions, representing the flight conditions
at the separation point, were pre-computed to obtain a 3D
performance map. In these optimizations the mass injected
into orbit is maximized according to the optimal control
vector. An example of these maps is shown in Fig. 2. This
approach allows for decoupling the trajectory optimization
of the US from the optimization of the spaceplane. The
injected mass into orbit being interpolated using the final
flight conditions of the spaceplane. This reduces the size of
the MDO problem, that makes it faster to be solved with
better convergence properties.

2.2 Spaceplane constraints and assumptions

Several assumption are made concerning the spaceplane.
It is assumed to be a rigid body where only longitudinal
dynamics are considered. It means that the roll rate, the roll
angle and the sideslip angle are always zero. It is worthwhile
to note that the yaw corresponds to the heading. The control
surfaces were considered to be always at their zero position.
The vehicle is controlled only with the use of thrust vector-
ing. During the initial glide phase the control surfaces are
still assumed to be at their zero position despite the fact that
the vehicle is unpowered. The errors associated to this initial
phase actuation are negligible.

The spaceplane is also subject to several constraints. Its
mass is limited by the capabilities of the carrier which can
lift up to mmax,carrier . Right after the spaceplane is separated

Fig. 2 US performance map depending on US segment initial velocity
vf vs. US segment initial flight path angle γf at an altitude of 80 km.
The contours represent the ratio M∗

injected of the total injected mass
with the baseline total injected mass
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from the carrier it must glide to a safe distance before ignit-
ing its engine. This glide phase is assumed to last from t = 0

to the time of the main engine ignition tMEI equal to five
seconds. During this phase, the glide ratio of the spaceplane
must be high enough to perform the separation maneuver.
This poses the constraint that L/D > 4 during the initial
glide.

During the reentry phase of the spaceplane, after the
US ejection, the spaceplane must be able to be naturally
trimmed and statically stable at angles of attack ensuring a
high drag. This drag is necessary to maximize the energy
dissipation before the more dense of the atmosphere are
encountered to limit the thermal and structural stress. This
poses the constraint that the pitching moment coefficient Cm

must have a zero value lying between 35 and 45 degrees
of angle of attack for Mach numbers between 5 and 10.
Also, the slope of the pitching moment coefficient with
respect to the angle of attack must be negative to ensure the
longitudinal static stability.

Lastly the spaceplane is constrained to burn all its fuel
when the MECO point, defined as the time tf , is reached.

2.3 Mathematical expression of the problem

The goal of the optimization is to maximize the payload
injected into a SS0700 orbit. This injected mass is calcu-
lated by interpolating the US performance map as a function
of the final state of the spaceplane at the separation point:
minjected = minjected (rf , vf , γf ). This final state, occurring at
tf depends on the spaceplane geometrical variables as well
as the optimal control solution for the spaceplane trajectory.

The geometry variables are selected to be the wing
span b, the length of the spaceplane Lref , the double
delta sweep angle at the nose λnose and the thickness-to-
chord ratio t/c of the wing. The design vector is therefore
α, b, Lref , λnose, t/c, where α = [α1, ..., αN ] is the optimal
control vector solution where N is the number of collocation
points.

The state vector is given by the flight parameters
[r, φ, θ, v,�], respectively the distance to the earth cen-
ter, the longitude, the latitude, the speed, and the heading.
The longitude, latitude and heading are taken into account
in order to add the effect of the rotation of the earth ω

as well as Coriolis effect. Because SSO is slightly retro-
grade, this impact negatively the performances of the system
with a magnitude depending on the initial coordinate. A
North-American launch site was selected for this study
corresponding to 100 m/s loss in velocity as an order of
magnitude estimate.

The classical equations of motions of a spaceplane (Betts

2010) with the addition of the Coriolis effect terms were used
in the wind frame. The atmosphere was modeled using the
United State Standard Atmosphere of 1976.

The problem is expressed as:

max
α,b,Lref ,λnose,t/c

minjected (rf , vf , γf ) (5)

subject to:

ṙ = v sin γ

φ̇ = v sin� cos γ

r cos θ

θ̇ = v cos� cos γ

r

v̇ = −g0

(
Re

r

)2

sin γ + T cosα − D

m

+ω2r cos θ(sin γ cos θ − cos γ sin θ cos�)

γ̇ = −g0

(
Re

r

)2 cos γ

v
+ T sinα + L

mv
+ v

r
cos γ

+2ω sin� cos θ

+ω2r cos θ

v
(cos γ cos θ + sin γ sin θ cos�)

�̇ = L sinβ + T sinα sinβ

mv cos γ
+ v cos γ sin� sin θ

r cos θ

+2ω(sin θ − cos θ cos� tan γ ) + ω2 r sin θ cos θ sin�

v cos γ

ḃ = 0

L̇ref = 0

λ̇nose = 0

ṫ/c = 0 (6)

Under the following constraints:

L

D

(
α0, ..., αt,MEI

) ≥ 4 (7)

Cm(α = 35) ≥ 0 for M > 4 (8)

Cm(α = 45) ≤ 0 for M > 4 (9)

mtotal(b, Lref , λnose, t/c) ≤ mmax,carrier (10)

tMECO − mf uel(Lref ) × Ispg0

T0
= 0 (11)

The lift and drag are calculated from the lift and drag
coefficient:

L = 0.5ρv2Sref CL(α, M, b, Lref , λnose, t/c) (12)

D = 0.5ρv2Sref CD(α, M, b, Lref , λnose, t/c) (13)

It is also assumed the fuel mass vary linearly with the
spaceplane length because, since a longer vehicle means
longer fuel tanks. The weight evolution with respect to the
geometrical changes is captured by an empirical method for
weight estimation. This method is fed with the design vec-
tor as well as a selected static load which will be explained
further. The aerodynamics of the vehicle is captured by the
use of a surrogate model.
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2.4 Optimization architecture

In order to solve the problem the Non-Linear-Programming
of the trajectory optimization characteristics were used.
This takes advantage from the fact that the trajectory opti-
mizer already solves thousands of constraints. By adding
the geometrical design variables as state variables in the
trajectory problem and by setting their derivatives to zero
the optimizer was able to take into account all the design
variables at once. This approach is simple, intuitive and par-
ticularly applicable to this problem. It gave good results
with good convergence properties. One drawback is that it
adds one constrain per discretization point per geometrical
design variable (derivative equals to zero). This might make
the problem unnecessary larger and this must be seriously

considered for higher dimension problems. The procedure
is shown in Fig. 3.

3 Optimal control problem

In order to solve the trajectory optimization problem the
work of Fahroo and Ross (2002) is followed. They proposed
a Chebyshev pseudo-spectral collocation method having the
advantages of using Legendre-Gauss-Lobatto (LGL) points
which are said to lead to a very high accuracy in the dis-
cretization and low computational costs. This method is
based on a discretization of the control and/or state history
which transforms the optimal control problem into a non-
linear programing problem (NLP). An interpolation scheme

Fig. 3 Optimization process
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is used to determine the time history of the control and the
state variables (Betts 2010). This approach is very efficient
and particularly applicable to the choice of architecture for
the MDO problem. A Python code with Fortran wrapped
routines was developed to solve this problem.

The optimal control problem can be stated as follows:
find the control vector u(τ) minimizing

J = M[x(τf ), τf ] +
∫ τf

τ0

L[x(τ), u(τ ), τ ]dτ (14)

The dynamic of the system is formulated as equality
constraints:

f [ẋ(τ ), x(τ ), u(τ ), τ ] = 0 (15)

If ∂f/∂ẋ is non-singular, this leads to the ordinary differ-
ential equation of the system:

ẋ(τ ) = f [x(τ), u(τ ), τ ] (16)

The pseudo-spectral approach transforms this problem
into a set of non-linear constraints, which leads to the
following NLP: find the coefficients

X = (x0, x1, ..., xN ), U = (u0, u1, ..., uN ) (17)

and the final time τf (if necessary) that minimize

JN(X,U, τf ) = M(xN, τf ) + τf − τ0

2

N∑
k=0

L(xk, uk, τk)wk (18)

subject to

f [2/(τf − τ0)dk, xk, uk, τk] = 0, k = 0, 1, ..., N (19)

gl ≤ g(xk, uk, τk) ≤ gu, k = 0, 1, ..., N (20)

ψl ≤ ψ[x0, xf , (τf − τ0)] ≥ ψu (21)

The LGL points and the optimal weights wi are given by
the Clenshaw-Curtis scheme (Clenshaw and Alan 1960). The
LGL points are required to lie within the [−1, 1] interval,
therefore the following time transformation is required with
t ∈ [−1, 1]:

τ(t) = (τf − τ0)t + (τf + τ0)

2
(22)

This creates a large set of constraints that has to be fed to
the optimizer.

3.1 Jacobian sparsity

It is possible to transform a large problem with a large num-
ber of collocation points into a set of smaller problems with
less points. This leads to more precise and faster optimiza-
tion. For this purpose a knotting method (Ross and Fahroo

2004) was implemented. Assuming a knot to be placed
between two phases with �x1 and �x2 being the states and t1i
and t2i the i-th being the collocation points (which are the
time in most of the problem) of the phase one and the phase

two respectively. The system has K state variables and the
mass is the K-th plus one.

gk=1,...,K−1 = x1
k=1,...,K−1(t

1
f ) − x1

k=1,...,K−1(t
2
0 ) = 0 (23)

In order to account for the discontinuity the following
equation is required:

gK = x1
K(t1f ) − x1

K(t20 ) = 0 (24)

Having two different phases is the same as having
two separate smaller problems with supplementary con-
straints for the consistency of the problem. Under those
circumstances the Jacobian of the constraints has more zero-
element than the unsplit problem. When the optimizer is
able to recognize the zero-terms of the Jacobian, the evalu-
ation of this latter becomes much faster. Figure 4 shows a
typical problem without and with a knot placed in the mid-
dle of the trajectory. From this figure one can observe that
the sparsity of the Jacobian substantially increases by using
a knot. The advantage lies in the fact that as the number
of collocation points increases, the sparsity rises. The larger
the number of points the more accurate the results. Because
the sparsity increases, the problem, although much larger in
terms of number of points, is not significantly more difficult
to be solved by the optimizer.

Fig. 4 Jacobian sparsity without (top) and with (bottom) a knot placed
in the middle of the trajectory
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3.2 Adaptive collocation points mesh

The previously demonstrated advantages of splitting the
problem into several phases led to the implementation of an
adaptive collocation points mesh in the code. The problem
is solved at the first step on an initial mesh. Following an
existing work (Darby et al. 2011), a residual matrix R of this
initial solution is build up in the following way:

R =
∣∣∣∣D̄X̄ − ti − ti−1

2
F(X̄, Ū , τ )

∣∣∣∣ (25)

Where D̄ and X̄ are respectively the differentiation matrix
and the state values at the collocation points. t̄ is defined as

t̄i = ti + ti+1

2
(26)

With i = 1, ..., Nc − 1, Nc being the number of colloca-
tion points. The state values are interpolated on these points
using a Lagrange interpolation method.

The column of the obtained matrix leads to a metric
allowing for iteratively adapting the mesh:

1. If the metric values of q phase have the samemagnitude,
then the number of collocation points is increased in
that phase.

2. If the metric values present a peak value, then a knot is
placed at this peak separating the phase into two new
phases.

This mesh adaptation proved itself to ease the optimization
and to lead to smoother results for the optimal control.

The optimizer used to solve the NLP must be able to
deal with a large (thousands) number of constraints. For this
reason SNOPT (Gill et al. 2002) was chosen. This optimizer
will be the driver of the MDO problem solution. Because
the number of constraints to evaluate is high they must be
quickly evaluated in order to keep the computational time
practical. Consequently the estimation of the weight and the
evaluation of the aerodynamic must be rapidly carried out.

4 Spaceplane weight estimation

The weight of the spaceplane has a very large effect on its
performance and on the subsequent trajectory optimization
procedure. The spaceplane follows a sub-orbital trajectory.
Consequently the energy to dissipate is substantially smaller
than an orbital reentry. Most of its energy is expressed in
terms of potential energy instead of kinetic energy. The
chance of skipping-back into space is zero. The problem
due to heating is less severe but the load factor can be
problematic.

The reentry aerodynamic loads are used as the sizing load
case. Indeed a possible failure in the spaceplane mission is
the mis-ejection of the US. In this case, jettisoning the US

is not possible as it carries the most valuable item of the
flight: the payload. In this case, the spaceplane reenters the
atmosphere with its dry weight plus the weight of the US
fully wet.

High fidelity methods such as FEM do not provide read-
ily the overall weight of the splaceplane. An empirical
method was selected for the weight estimation. Such a
method had successful results in previous similar studies
(Yokoyama et al. 2007; Rowell and et al 1999).

The method selected for the weight estimation is based
on the hypersonic aerospace sizing analysis (HASA) (Harloff
and Berkowitz 1988). This method uses elements from Glatt
(1974), a empirical weight estimation method for advanced
transportation vehicle developed by NASA. HESA uses
a series of empirical equations to estimate the weight of
different weight groups of an spaceplane. These weight
groups are the structure, the propulsive stack, the hydraulics
and electrical systems, the avionics, the landing gear and
the thermal protection system. For each of these groups a
weight equation is derived from statistical regressions over
hypersonic vehicle data. The method has been tested against
real vehicle values (Space Shuttle) in Harloff and Berkowitz
(1988) with very good results.

Because the studied vehicle has no horizontal stabilizer
and a vertical stabilization assured by two winglets, the
method is slightly modified by averaging the contribution
of the vertical and horizontal stabilizers weighted respec-
tively by the cosine and sine of the wingtip angles. This
method proved itself to be quite efficient. The results it gave
were very close to the real mass estimate of the currently
studied vehicle that came from more classical design meth-
ods. The latter statement settled the decision to use it for
the global multidisciplinary optimization. The iterative pro-
cess only takes milli-seconds and was therefore carried out
online during the optimization.

5 Aerodynamic analysis

The Stanford’s University Unstructured Code (SU2) (Pala-
cios et al. ) was used to carry out the aerodynamic analysis. It
is a multi-physics code with a wide range of capabilities and
parallel computation support. It possesses an optimization
ready framework, which makes it very suitable for aircraft
optimization.

In this study, an Euler formulation was used. Conse-
quently the viscous terms of the Navier-Stokes equations
were not considered. The choice for such a simulation can
be justified by the following reasons:

1. Most of the flight regimes are at very high Mach num-
bers. At these speeds, the viscous effects are largely
overcome by the wave drag. Consequently taking into
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account the viscous terms has less effect than at lower
airspeeds.

2. The discretization of the Euler equations creates a
second-derivative term from the Taylor expansion. This
term creates an artificial dissipation that partially simu-
lates the viscous drag.

3. The mesh deformation procedure for large geometry
deformations has a destructive effect on the viscous
layer of the mesh. Therefore a viscous mesh could not
be employed and fluid analysis such as RANS could not
be performed.

The CAD model of the spaceplane was used to generate
an unstructured, non-viscous mesh using Pointwise. Figure
5 shows an example of the results obtained with SU2 for
solving the Euler equations for a typical Mach number and
angle of attack. In this figure the spaceplane flies at Mach 4
and 25 degrees of angle of attack.

The gradients were obtained using the adjoint formu-
lation (Jameson 1988; Pironneau 1994) implemented in SU2.
Accurate gradients of the aerodynamic coefficients with
respect to the Mach number, α and geometrical defor-
mations were calculated using this method. The gradients
are used to provide information for the Gaussian process
gradient enhancement.

The geometry deformations were applied directly to
the computational mesh using the free-form deformation
(FFD)(Sederberg and Parry 1986) tool available in SU2.
Samareh (Samareh 2004) demonstrated the advantages of
these techniques: they avoid to place a CAD software in
the mesh deformation loop which greatly eases the pro-

Fig. 5 SU2 calculation results at Mach 4 and 25 degrees of angle of
attack

cess and they also reduce drastically the number of design
variables as the mesh nodes positions are parametrized by
a limited number of control points. Instead of deforming
directly the surface of the object, the FFD creates a defor-
mation field over the entire domain. Therefore the FFD
method deforms the object independently of its geometrical
description.

During the mesh deformation using FFD some possible
tangling of the mesh was observed, particularly when large
deformations were applied. To overcome this problem, a
mesh repairing technique was used (Escobar et al. 2005). An
optimization procedure is set up using a quality measure of
the mesh to repair any possible tangling of the mesh. This
method was used after every geometry deformation in order
to ensure that the mesh fed to the CFD solver does not have
negative volume cells.

One aerodynamic evaluation, including the sensitivities
calculation, takes approximately two minutes on a 700-core
cluster to converge (the convergence of the solution was
defined using a Cauchy criterion of ε = 10−5). Trajectory
optimization using the pseudo-spectral method as explained
earlier requires a large number of aerodynamic analysis (103

order of magnitude). This high number of evaluations is a
consequence of the pseudo-spectral method. It requires the
validation of thousands of constraints as the equation of
motions are expressed as a set of equality constraints on
every collocation point. These constraints and their Jacobian
must be evaluated for every optimizer iteration. The com-
putational burden can become significant if the evaluation
method is computationally demanding. To overcome this
problem a series of response surfaces of the aerodynamic
coefficients are created using a Gaussian process method-
ology where a new approach for a non-stationary kernel is
proposed.

6 Gaussian process regression for response surface
creation

The need for a prompt evaluation of the aerodynamic coeffi-
cient is answered by the creation of response surfaces. This
approach is commonly found in MDO problems and vari-
ous techniques were investigated as in the work of Colonno
(2007), Yokoyama et al. (2007) and Kaletta et al. (2004).

In this study a Gaussian process regression (GPR)
approach is selected due to its ability to fit a dimensionally
sparse dataset and to provide a covariance of the estimated
enabling a reading of the fit quality. Due to the avail-
ability of the gradients of the aerodynamic coefficients,
thanks to the adjoint formulations, the dataset information is
enriched with the derivatives information. The readiness of
the derivatives is also a motivation to take a novel approach
to the creation of a non-stationary kernel.
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6.1 Dataset sampling

In this study one of the most common methods for data
sampling was chosen: the Latin Hyper Cube sampling (or
LHC sampling), which was first proposed by McKay et al.
(1979). It is a popular Design of Experiment (DoE) meth-
ods for GPRs. However in the present study the physics
of the problem gives additional information. The aerody-
namic coefficients of the vehicle displayed a highly varying
behavior between Mach 0 and 2 and relatively constant
behavior for higher Mach numbers. Six design variables are
used to generate the samples: Mach number, angle of attack
and four geometrical variables b, Lref , λnose and t/c. The
design domain was split into two sub-domains, in which
different LHC sampling with different densities were per-
formed. This leads to a biased spatial uniformity of the
DoE in the dimension of the Mach number with the advan-
tage that the variations occurring during the transonic and
low supersonic phases have better chances to be properly
captured.

6.2 Gradient enhanced gaussian process

Using the obtained dataset x from the CFD calculations, the
GPR, as described by Rasmussen (2006), allows for inter-
polating any desired point x∗. Describing the dataset as a
multivariate Gaussian and the point of interest as another
Gaussian, it is possible to use the Bayesian inference rule
to obtain the following estimation distribution, with y∗ the
desired value, y the dataset andKij are the covariance matrix
between the points i and j .

p(y∗/y) ≡ N (Kx∗xK−1
xx y,Kxx − Kx∗xK−1

xx KT
x∗x) (27)

The expected value of y∗, ȳ∗ and its variance squared σ 2
y∗

are:

ȳ∗ = Kx∗xK−1
xx y (28)

σ 2
y∗ = Kxx − Kx∗xK−1

xx KT
x∗x (29)

Where Kxx and Kx∗x are the covariance matrices, or ker-
nels, respectively between the dataset and itself and the
interpolated point and the dataset.

GPR can be greatly improved, especially when the num-
ber of dimensions is large, by adding the gradient infor-
mation to the Gaussian object. The additional information
allows for reaching a satisfactory fit with less data points.
This technique is sometimes referred to as co-Kriging or
gradient enhanced Kriging as the work of Dwight and
Han (2009). Because most of the disciplinary analysis in

aircraft design can usually provide gradients, these meth-
ods are particularly relevant when the gradient informa-
tion is added to the function value inside the regression
process.

As proposed by Solak et al. (2003) the kernel is extended
with the derivatives of the exponential covariance function:

k(
∂p

∂xi

, q) = ∂k(p, q)

∂xi

∣∣∣∣
q

(30)

k(p,
∂q

∂xj

) = ∂k(p, q)

∂xj

∣∣∣∣
p

(31)

k(
∂p

∂xi

,
∂q

∂xj

) = ∂

∂xi

(
∂k(p, q)

∂xj

∣∣∣∣
q

)∣∣∣∣∣
p

(32)

In order to add the gradient informations to the function
value it is assumed that the function and its gradients are
correlated. The covariance of the initial distribution is then
augmented with the covariance between the function and its
gradients forming the following composite kernel:

K =
[

k(p, q) k(
∂p
∂xi

, q)

k(p,
∂q
∂xj

) k(
∂p
∂xi

,
∂q
∂xj

)

]
(33)

The dataset is also augmented with the gradients ∇y. As
mentioned before, the gradients of the aerodynamic coef-
ficients are obtained using an adjoint formulation. This
method allows for a rapid evaluation of the derivatives of the
aerodynamic functions with respect to the angle of attack,
the Mach number and the geometrical parameters:

Y =
[

y

∇y

]
(34)

Fig. 6 Pitching moment coefficient of the spaceplane estimation using
GPR with a stationary Kernel as a function of the Mach number for
AoA of 15 degree. The red dots corresponds to the data sample. The
blue line is the GPR estimate
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Adding the gradients information greatly helps to reduce
the number of points needed for an acceptable fit. Here
lies a strong advantage of using the adjoint for the gradi-
ent estimations. Because the derivatives in every dimensions
can be obtained in only one calculation, the computational
time required to obtain an accurate surrogate model can
be greatly reduced as opposed to simply refining the data
sample by adding training points. However as identified
by Dwight and Han (2009) the gradient information can
deteriorate the quality of the fit if the derivatives are not
accurate enough. A very promising solution proposed by
Lukaczyk et al. (2013) is to relax the ’shoot-angle’ of the
gradient by adding noise. In other words the earlier assump-
tion of an exact correlation between the gradient and the
prior is relaxed. A new covariance matrix is used for the
GP:

K̄ = K + Kε (35)

Where Kε is a noise component added to the initial covari-
ance distribution. A useful noise model is an independent

Fig. 7 Pitch moment coefficient GPR and corresponding LGP as
function of the Mach number for AoA 15 degree. Non-Stationary
Kernel GPR

Gaussian noise with null mean (Lukaczyk et al. 2013). This
results in:

Kε =
[

σ 2
n,y 0

0 σ 2
n,∇y

]
(36)

where σn,y, σn,∇y are hyperparameters to be selected. The
fact of having two different noises for the objective and
the gradient relaxes the assumption on their correlation

Stationary Kernel GPR

Proposed Non-Stationary Kernel GPR

Fig. 8 Validation of the new GPR method and comparison with a
stationary GPR using an axial force coefficient dataset
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Fig. 9 Aerodynamic Response
Surface generation flowchart

and greatly improves the fit quality in case of inaccurate
gradients.

6.3 Stationary Kernel and Hyperparameters selection

A common choice to create the kernels in GPR is to use a
squared-exponential function. The covariance between the
point p and q is given by:

k(p, q) = σ 2
f exp

[
− 1

2θ2

N∑
k=1

(pk − qk)
2

]
(37)

where N is the spatial dimension, and pk and qk are the k-th
components of the p and q vectors respectively. σf and θ are
the parameters of the covariance function and consequently
the hyperparameters of the GPR.

The choice of the hyperparameters has a very large influ-
ence on the quality of the fit. To select the appropriate

hyperparameters, it is proposed to minimize the following
marginal likelihood function (Rasmussen 2006):

J = −1

2
YT [K̄]−1Y − 1

2
log ‖[K̄]‖ − n

2
log 2π, (38)

This results in an optimization problem:

min
σf ,θ,σn,y ,σn,∇y

J, (39)

This optimization problem is solved using the Covariance
Matrix Adaptation Evolution Strategy or CMA-ES (Hansen

2006). This method is a global optimization, which is ben-
eficial since it is difficult to give an initial solution for the
hyperparameters before-hand.

The selection of the hyperparameters enlightens one
of the main problems encountered when using GPR for
aerospace applications: because the hyperparameters are
chosen globally, they cannot be adapted for both a sharply
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Fig. 10 Drag coefficient response surface obtained with SU2

varying region (the transonic region) and a flat region (the
supersonic region). These type of results, which exhibit vari-
able smoothness and non-linearities, are very frequent in
the field of aerodynamics because of the transonic effects.
In our case, the trajectory is significantly impacted by the
sound barrier passage. Therefore it is important to capture
the Mach one region properly. An extreme example is given
in Fig. 6, which shows the evolution of the spaceplane pitch-
ing moment coefficient as a function of the Mach number
for a 15 degree angle of attack. In this figure it is clear that
the GPR cannot find the parameters that fit the sharply vary-
ing coefficient from Mach 0 to Mach 4 and the plateau for
higher speeds. Therefore in order to properly capture the
aerodynamic of the spaceplane a non-stationary kernel is
required.

Fig. 11 Lift coefficient response surface obtained with SU2

Fig. 12 Optimal Control Problem solution

6.4 Non-stationary kernel

An important requirement for a non-stationary kernel is the
continuity of the second derivative of the resulting GPR.
The trajectory optimization can become ill-behaved if this
condition is not respected and the whole MDO can fail
(Betts 2010). Consequently splitting the domain and having
locally adapted kernels for each sub-domain is not desir-
able (Gramacy and Lee 2008). Instead a smoothly varying θ is
required. In this study a new technique is developed inspired
by the work of Plagemann et al. (Lang et al. 2007), that takes
advantages of the readily available gradients.

In order to develop a non-stationary kernel, the non-
stationary covariance function described by Paciorek and
Schervish (2004) is used as the starting point:

k(p, q) = σf |�p| 14 |�p| 14 |�q | 14
∣∣∣∣�p + �q

2

∣∣∣∣
− 1

2

× exp

[
−(p − q)T

(
�p + �q

2

)−1

(p − q)

]
(40)

The Local Adaptation Kernels (LAKs) �p and �q transmit
the local variation of the hyperparameters with respect to
the spatial variations between the points p and q to the GP
covariance matrix K.

Table 1 Optimized parameters and performance index gain

Parameters Optimized value ratio

b∗ 1.14719

l∗ 1.0324

λ∗ 0.9047

t/c∗ 0.942954

M∗
injected 1.0749
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Fig. 13 Optimized and baseline suborbital spaceplane shape

In order to obtain the LAKs the benefit of having access
to the gradient information is used. When the variation of
the process is high, the equivalent θ must be small. When
the variation of the process is small, the equivalent θ must be
high. This intuition leads to the following definition of �:

� = �

((∣∣∣∣∂y∂x
∣∣∣∣
)−1

)
(41)

With ∂y
∂x =

[
∂y
∂x1

, ...,
∂y

∂xN

]
, andN is the number of dimensions.

A simple yet efficient formulation is defined:

� =
[(∣∣∣∣ ∂y

∂x

∣∣∣∣
∣∣∣∣
)−1

]
·
[(∣∣∣∣ ∂y

∂x

∣∣∣∣
∣∣∣∣
)−1

]T

(42)

This leads to an N × N diagonal � matrix. Note that the
inverse operator acts element-wise here and | · | is the
element-wise absolute value operator.

The LAKs for the prior dataset are readily available
because the derivatives exist at the data points. However
when a new point must be interpolated the derivatives are
not available. For this reason Latent Gaussian Processes

Fig. 14 Pitch moment of the optimized vehicle above Mach 4 along
with the trim line

(LGPs) are used. For every dimension, a GP is created based
on the derivatives in this dimension on the global design
space. This allows for interpolating the derivatives at any
point in the design space and sending up this information to
the LAKs at this point. LAKs are then available at any point.
It is necessary to create a LAKs for every dimension because
the local variation can occur in only one dimension. For
example the drag coefficient presents such behavior only
along the Mach number whereas along the angle of attack
the behavior is smoothly quadratic.

The LAKs are defined at any point p of the design space
as:

�p = [
ξp

] · [
ξp

]T (43)

Where ξp = [
ξp,1, ..., ξp,N

]
is defined using a conventional

GPR described by (28):

ξp,i = K∗
p,xK∗−1

x,x ωi (44)

K∗ is the covariance matrix formed with the stationary
exponential covariance function described in (37). ωi , i =
1, ..., N is the metric constructed with the i-th derivative at
the m-point xs of the dataset defined as:

ωi =
[(∣∣∣∣ ∂y1

∂x1,i

∣∣∣∣
)−1

,

(∣∣∣∣ ∂y2

∂x2,i

∣∣∣∣
)−1

, ...,

(∣∣∣∣ ∂ym

∂xm,i

∣∣∣∣
)−1

]
(45)

In order to avoid ill-posed LGPs, a bandwidth factor is
used to damp strong variation in the derivative dataset. This
permits to avoid negative values in the LAKs and to reduce
undesirable oscillations in the LGP. The k-th metric of the
dataset in the i-th dimension ωk,i is damped with the factor
a as follow:

ωk,i = min(ωk,i , a · min(ωi)) (46)

The factor a is added to the hyperparameters to be opti-
mized. The hyperparameters of the LGPs also have to be
optimized. They are exponential covariance functions (3
hyperparameters) as well as a noise parameter. In this study,
only one dispersion parameter and noise parameter were
optimized for all the LGPs whereas one length scale per
LGP was added to the set of the hyperparameters. This
helps to reduce the exponentially increasing complexity of
the optimization process with the number of dimensions. As
pointed by Ying and et al (2007) an increasing number of
hyperparameters to optimize can lead to a difficult optimiza-
tion problem. With this approach this number is kept low
and the optimization of the hyperparameters can be solved
in approximatively 5 minutes on a standard workstation.
A new marginal likelihood function is defined, inspired by
Plagemann et al. (2008):

JNS = −1

2
YT [K̄]−1Y − 1

2
log ‖[K̄]‖

−
N∑

i=1

(
1

2
log ‖[K∗

i ]‖
)

− n

2
log 2π (47)
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Fig. 15 Optimized trajectory radius and longitude as functions of the time

Where K∗
i is the i-th LGP covariance matrix.

This defines a new optimization problem:

min
σf ,θ,σn,y ,σn,∇y ,σl ,σn,l ,θl,1,...,θl,N

JNS (48)

This proposed method led to very appreciable results. For
instance the previously described pitching moment coef-
ficient was very difficult to be fitted properly with the
stationary approach. Figure 7 shows the improvement on the
fit using the Latent GPs non-stationary approach.

The accuracy of the new regression method is investi-
gated using an ordered dataset of the axial force coefficient
CX. The ordered dataset is compared to the values obtained
using the GPR trained with 25 points sampled with a LHC
method. The comparison as well as the covariance of the
estimates is shown in Fig. 8 along with the regression of the
same dataset using a stationary kernel in order to show the
performances of the proposed method. None of the point
compared in the figure was part of the training dataset of

the GPR. Figure 8 shows clearly the better fit capability of
the non-stationary GPR. This validation showed an average
error of 1.19 % for the newly developed non-stationary GPR
against 12.67 % for the stationary GPR.

6.5 Aerodynamic response surfaces

The aerodynamic calculations were used to iteratively create
the response surfaces using the process pictured in Fig. 9.
This process is repeated until the fit quality converges.

Figures 10 and 11 respectively show the drag and the
lift response surfaces created using the results obtained with
SU2. The variable smoothness and non-linearities of these
phenomenon, a problem for the GPs as mentioned earlier,
is clear on these figures. Such response surfaces are created
for the aerodynamic coefficient with respect to the design
vector, i.e. the angle of attack, the Mach number and the
geometrical parameters. They are used to promptly obtained
the aerodynamic coefficients during the MDO process.

Fig. 16 Optimized trajectory latitude and velocity as functions of the time
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Fig. 17 Optimized trajectory flight path angle and azimuth as functions of the time

7 Optimization results

With the help of the previously described methods the
MDO problem was successfully solved. The optimal control
solution is given in Fig. 12.

The optimized parameters are given in Table 1 in the form
of the ratio between the optimal and the baseline. The opti-
mized shape is displayed in Fig. 13 on top of the baseline
shape. The red one is the optimized shape and the blue one
the baseline.

The pitching moment of the optimized vehicle is shown
in Fig. 14 along with the trim line (Cm = 0). It is clear on
this figure that over Mach 4 the vehicle is trimmed between
α = 35 and α = 45 and is longitudinally statically stable
(Cm,α < 0).

The results of this optimization led to the trajectory
presented in Figs. 15, 16 and 17.

Because of those constraints that are linked to the mis-
sion, mainly the separation from the carrier issue, the opti-
mizer did not tend to change the spaceplane into a pure
rocket. Despite the mass and drag gained by adding wings
this can be compensated by taking advantage of the lift
during the ascent. From the baseline, the optimal shape is
longer. This gives a larger quantity of fuel and the space-
plane is consequently able to have engine thrust for a longer
time. This comes with a drag and a mass penalty. However
the drag becomes really small in a short time as the space-
plane ascent due to the exponentially decreasing air density.
The span is broader, the main positive effect is a gain in L/D

ratio but comes with a mass penalty. Having a higher glide
ratio means that the spaceplane is able to have a better lift-
assisted climb. It is therefore able to reach quickly a very
low density atmosphere and consequently with very low
drag. This might compensate the drag penalty obtained with
the increase in length. The thinner wing, although heav-
ier, also compensates for the drag penalty. It seems that the

optimizer tended to increase as much as possible the aero-
dynamic efficiency in order to compensate the drag gained
by lengthening the spaceplane. Perhaps this compensation
stopped when the mass penalty because of increasing the
aerodynamic efficiency became too high and jeopardized
the process. The increase in the double delta has almost
no effect on the aerodynamic efficiency and has very little
effect on the mass. It seemed natural to say that its modifi-
cation was due to the constrain on the longitudinal stability
in the hypersonic regime and that having more double delta
was necessary to fulfill this constrain.

8 Conclusion

This study demonstrated the optimization of a sub-orbital
spaceplane using a coupling between a geometrical opti-
mization, mainly based on aerodynamic and structural
optimization, with an optimal control problem. The aero-
dynamics was calculated using an Euler code and used
Free-Form Deformation in order to apply the geometrical
changes directly to the mesh in a safe manner using a mesh
untangling procedure. The sensitivities of the aerodynamic
objectives, lift, drag and pitching moment were obtained
using an adjoint formulation of the Euler equations for
the aforementioned FFD transformations. The results were
then used to feed a Gradient Enhanced Gaussian Process
Regression algorithm for which a non-stationary Kernel
method based on local variation estimates using latent pro-
cesses was specifically developed and implemented in a
Python-Fortran combination. This non-stationary approach
has the advantage of being able to fit properly a vari-
able smoothness prior such the aerodynamic of the vehi-
cle over its whole Mach range. The weight estimation
was based on empirical methods developed by a NASA
contractor and the program Hypersonic Aerospace Sizing
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Analysis (HASA) was used. The trajectory optimal con-
trol problem was solved using a Chebyshev Pseudo-Spectral
method with collocation points mesh refinement and adap-
tation. For the latter analysis a dedicated program was
written as a combination, once more, of Python and For-
tran. The sequential quadratic programming optimizer used
was SNOPT which is very suited choices for solving
NLPs.

The multidisciplinary optimization problem was defined
as an integration of the geometry optimization and the
optimal control formulation. The optimizer of the opti-
mal control problem was used to optimize both the geo-
metrical and control parameters at the same time. The
obtained results were satisfactory. The geometrical param-
eters were modified less than a maximum of 15 %. The
main reason for the small modification in the geometri-
cal parameters is the fact the baseline shape originates
from a pre-existing design, the european space shuttle
project Hermes. The optimal trajectory coupled with the
optimal shape led to a 7.49 % increase in the injected
mass.
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