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Summary

In this report, based on the Polhamus leading-edge suction analogy and the Carlson
attainable thrust concept, closed-form relations are derived which provide a means to
calculate the lift and drag coefficient of flat swept or delta wings. The partial loss of the
leading-edge suction force caused by flow separation and the resulting occurrence of
leading-edge vortices have been taken into account. The method is valid both in subsonic
and supersonic flow. _
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Notation
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aspect ratio (b%/S)
wing span

. drag coefficient (3D)

lift coefficient (3D)
lift gradient (3D)

normal force coefficient (3D)

suction force coefficient normal to leading-edge (3D)
thrust (suction force) coefficient (3D) '
tangential force coefficient (3D)

chord

drag coefficient (2D)

lift coefficient (2D)

lift gradient (2D)

normal force coefficient (2D)
pressure coefficient

limiting value of leading-edge pressure coefficient

suction force coefficient perpendicular to leading-edge (2D)
local thrust (suction force) coefficient

drag

elliptical integral of the second kind

wing angle of incidence

attainable thrust factor

average attainable thrust factor over span

leading-edge thrust factor

vortex flow factor -

induced downwash factor

lift gradient in potential flow

profile definition coefficients

lift

lift per unit span

spanwise location of wing kink measured from root
Mach number

equivalent Mach number for vacuum limiting pressure
leading-edge parameter

normal force

normal force per unit span

Reynolds number based on chord
Reynolds number based on normal chord
leading-edge nose radius

wing area

semi net wing span

thrust force

local thrust force

tangential force per unit span

wing thickness

free stream velocity
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subscripts

fs<vosxg

induced downwash velocity
chordwise profile coordinate
spanwise coordinate

profile thickness coordinate

angle of attack

circulation strength

specific heat ratio of air

power in approximation of elliptical integral
sweep angle :

Mach angle

density of air

angle in definition of elliptical integral

wing span efficiency factor

at profile leading-edge

inner

induced

leading-edge

normal to wing leading-edge in wing plane
outer

potential

vortex

wing
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A method to account for partial leading-edge suction and vortex flow

1. Introduction

Since the design of airplanes capable of cruising at supersonic speeds involves finding a
compromise between the contradicting performance requirements at high-speed flight and
low-speed flight, it is very important to be able to predict the aircraft’s characteristics
accurately throughout the operational envelope. Therefore, especially for wave drag
calculations of configurations somewhat more complicated than the pure delta wing, more
advanced aerodynamic models than handbook methods like the USAF Stability and
Control DATCOM are often used. Also, in the case of wings with a supersonic leading-
edge, in those regions where Evvard’s principle applies (the area between the Mach line
from the tip leading-edge, the tip chord and the trailing-edge), the pressure distribution
differs from the two-dimensional case (constant loading) which applies elsewhere on the
section with the supersonic leading-edge. In order to account for this effect in the lift and
drag calculations, a method based on the near-field integration of the perturbation
potential, for instance a panel method, is needed. Furthermore, as far as the subsonic case
is concerned, many handbook methods have a limited applicability, usually with respect
to moderate sweep angles and not too small aspect ratios.

Unfortunately, even the more advanced computational aerodynamic models do not fully
account for an effect that is very important in the analysis of wings that are especially
designed for high speeds. In subsonic flow a leading-edge suction force occurs on leading-
edges that are sufficiently rounded off. Depending on the leading-edge sweep angle of the
wing, this force can be retained in supersonic flow, provided that the leading-edge flow
remains subsonic. As, in supersonic cruise, lift-to-drag ratio’s tend to be relatively low
because of the presence of wave drag, this can be very worthwhile for vehicles designed
for long range. ‘

If the leading-edge radius of the wing is small, however, the suction force cannot be
generated as the flow around the nose will separate, resulting in large vortices over the
wing. This will especially occur at high angles of attack, for instance during the landing
approach, where the vortex flow will provide a large amount of extra lift, thus enabling
a lower approach speed and accordingly shorter landing field length. As the aspect ratio
of the wing for supersonic cruising airplanes is usually relatively small, leading to high
approach angle of attacks, this is an important effect. The disadvantage of the develop-
ment of vortex flow is, however, that it results in a large increase in drag, as on the one
hand the suction force disappears, while on the other hand an extra component of induced
drag is generated.

At present, the only methods that are capable of taking these effects into account are
specially adapted panel methods or Euler methods. Since these methods require far too
much computational time to be suitable in the conceptual stage of the design proces, other
means have to be employed to take this phenomenon into account, which is very
important for supersonic airplanes. The purpose of the present report is to summarize
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available methods from literature, especially from [ref.3], [ref.4], [ref.12] and [ref.13] and
to use these in combination with a panel method (linearized potential flow) used at the
Delft University of Technology, the NLRAERO program, developed by the National
Aerospace Laboratory NLR ([ref.8], [ref.9] and [ref.11]).
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2. Leading-edge suction analogy

A very useful, though not entirely physically supported, theory to predict drag and lift
due to leading-edge vortices is the so-called leading-edge suction analogy, introduced by
Polhamus ([ref.12] and [ref.13]). The basis for this theory is the assumption, that the force
required to maintain the reattached flow behind the vortex is equal to the force required
to maintain the attached potential flow around the leading-edge. If this is the case, then
the lift and drag due to the vortex flow can be found by calculating the leading-edge
suction force as it occurs in potential flow and rotating it 90 degrees upward. It has been
established that this theory accounts very well for the strong non-linear behaviour of the
lift coefficient as observed in windtunnel tests with highly swept, sharp leading-edge
wings.

Polhamus analogy

e,

due to seporation

fig.1,2 and 3 Polhamus leading-edge suction analogy
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Subsonic flow

In two-dimensional potential flow, using Blasius’ theorem, the following two expressions
can be derived for the tangential and the normal force per unit span, acting on a flat plate:

t=pUTI'sina M

n=pUT'cosa ‘ @

The circulation T" follows from the Kutta-condition, which ensures a smooth, attached
trailing-edge flow:

I'=nUcsina : (3

Thus, the lift per unit span equals:

1=pUT @
or:
c;=2nsina (5)

In two-dimensional potential flow, the drag force equals zero (d’Alembert’s paradox,
fig.1). :

If, due to separation at a sharp leading-edge the suction force disappears, the following
results are obtained (fig.2):

pUT cosa .
cn=___=21rsmacosa
1 U2C (Y]
EP
c1=cncosa=21rsinacosza @
cd=cnsin(x=21tsin2acosa (8)
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Hereafter, these expressions will be given the subscript.p, as they represent the potential-
flow contribution.

According to the Polhamus leading-edge suction analogy, the contribution to drag and lift
due to the vortex flow, can be derived by taking the theoretical potential-flow suction
force that acts perpendicular to the leading-edge and rotate it 90 degrees upward (fig.3):

! cosa = sinzacosoc 9)

CosA COsA

¢, =Cc_cosa=
lv S

cdv=clvtana : . (10)

In three-dimensional flow, the drag is not zero. Due to the trailing vortices, an effective
downwash velocity is induced, normal to the chord. This will cause a reduction of the
magnitude of the suction force, according to:

T=pTbUsinc-w,) (11

The circulation strength is still determined by the Kutta-condition:

K, s

r=—Pusina (12)
2 b

Comparison with the expressions for two-dimensional potential flow shows that K, is
equal to the lift-gradient C; .
a

Substitution yields for the suction force coefficient:

w; :
Cr=|1- K sinZa _ (13)
Usina | P S

As the downwash depends on the circulation strength only, which according to the Kutta-
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condition is determined by U sina, the following relation may be introduced:

U“"i =K, K; (14)
sina

Then the following expression is found for the suction force coefficient in three-
dimensional potential flow:

oC
Cr=K -KZK-)sinzaz T2 (15)
T PP o

The three-dimensional vortex contribution to the lift coefficient can then be expressed as:

CLv =Kvsinzacosa (16)

with:

K, = _a& 1 (17)
do |COSAy,

The induced drag in three-dimensional potential flow is equal to:

CDi=CNsina-CTcosa (18)

The ratio of these two terms is shown in fig.4 which stresses the importance of retaining
the leading-edge suction force. It is obvious that in subsonic flow, the suction force can
be quite substantial and cause a large reduction of the induced drag. In supersonic flow,
on the other hand, although the suction force in comparison to the potential flow
contribution to the drag is not as large, very significant reductions of the induced drag can
be realized through geometrical adaptions.

it or
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With the previously deduced expressions, equation (18) may be written as:

=C, sin®aicoso.- . 19)
Cp,=Cy, sin“acosa-Creoso (
or:

_ 2 _ _ 2 1 _CT 20
Cp,=0?Cy, ~Cr=Ci| = | @

a L

using CL=CLaa, which applies in linearized flow. As, in subsonic flow, the induced drag
2

of flat wings can be expressed as CD_=TL, the following results can be obtained
i mAo

([ref.10]):

2 .
N Cr, A (21)
CT=(1 CLa—nA
¢
2
oC Cy
= _T =CL - o (22)
a2 o« TAQ
C? S 23
=> KV= CL - it 1 ( )

o TAQ |cosA,

If the subsonic lift gradient and the induced drag or the span efficiency factor ¢ have been
determined either from a panel method or from a simple approximating expression, the
vortex coefficient can be calculated.




A method to account for partial leading-edge suction and vortex flow

Cy cos a

CN sin a

fic.4 normal force and suction force contribution to induced drag ([ref.3])

Supersonic flow

In [ref.6] it is concluded that although leading-edge forces are not large in supersonic flow,
they can have a significant influence on the design. Especially the severely twisted and
cambered designs resulting from methods that do not take the leading-edge thrust into
account could be replaced by more moderate surfaces once it is acknowledged that the
leading-edge thrust does not equal zero.

For supersonic flow, an expression for the local suction force coefficient is given in [ref.3]
(originally from [ref.2]) for flat delta wings:

t=__tanA]e\f 28Xy (24)

based on the mean geometric chord, in which the last term represents the limiting value
of the pressure coefficient on the leading-edge. An empirical relation to estimate this value
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was given as:

_4sinq {YCOtAy, (25)
(ACP\/)—(')O =
7z E

in which E is the élliptical integral of the second kind defined as:

® /2
E(m) = f \/1 -(l —mz)sinz(p do A (26)
0 ‘ : :

According to [ref.3], this integral can be approximated as:

E=1+[E-1]m", n=1.226+0.15x(1 -/m ). (27)

2

Substituting equation (25) into equation (24) yields for the local suction force coefficient:

. | |
_IAVI-mTy 20 (28)
E2 b '

Cy

Integration over the wing span yields the following expression for the supersonic suction
force on delta wings:

CT=K_Azsin2a\/l -m? : (29)

4E

The relation for the limiting value of the pressure coefficient is based on theoretical results.
In reality, it was found that these theoretical values often overestimated the suction forces.
In order to cope with this problem, Carlson in [ref.4] introduced a method to correlate
theoretical values of subsonic and supersonic suction force coefficients with windtunnel
experiments. This method has become known as the Carlson attainable thrust concept,
which will be explained later.
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An expression for the vortex coefficient in supersonic flow can be derived from equations
(17) and (29):

K = xA {1-m? (30)

" 4E?2 coshy

For a delta wing this becomes:

K =FA J1-m? |1+ 16 (31)

4E2 A2

cotA,
The parameter m = o= lo, with p as Mach angle. For sonic leading-edges, the parameter
M

m becomes 1.

As stated before, the potential flow coefficient K is equal to the lift gradient. In
supersonic flow, according to [ref.14], this coefficienf can be taken as:

2xm
K= — — (32)

P EyM2-1

in which E is the previously defined elliptical integral of the second kind.

For a sonic leading-edge (or supersonic, as long as m is kept equal to 1), this relation
changes into:

4
K,= (33)

d yM2-1

which is in accordance with Ackeret’s linearized supersonic theory. For a delta wing the
relation for KP becomes: :

K_=TA (34)
P 3

10
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In order to obtain the lift and drag-due-to-lift coefficient in a flow with leading-edge
vortices, the contributions from the potential flow without leading-edge suction and the
Polhamus leading-edge suction analogy are to be added:

C.=C, +C_ =Kpsinacosza+K;,siﬁ2acosa (35)
P v

Cp=Cptana=K sin’ocoso+K,sin’a (36)

11



A method to account for partial leading-edge suction and vortex flow

3. Attainable Thrust Concept

According to Carlson ([ref.3], [ref.4], [ref.5] and [ref.6]), for a family of symmetric airfoils

defined by y=4+(k,yx +k,x +k,x¥ +k,x2) an expression can be derived for a factor K,
which is the ratio between the attainable and the theoretical local suction coefficient:

C,, Ka-C, (37)

In figure 5 a typical pressure distribution is sketched on the left hand side for an airfoil
at large angle of attack. The theoretical pressure peak can become quite large, often in
excess of the vacuum pressure coefficient, which is obviously unrealistic. In case the
pressure coefficient is limited, the picture as sketched at the right hand side of figure 5
remains.

fig.5 typical pressure distribution of airfoil at large angle of attack ([ref.4])

According to [ref.5] limiting the pressure peak to practically achievable pressures has a
relatively insignificant effect on the normal force but it severely limits the value of the
theoretical suction force, which will therefore be corrected according to equation (37).

12
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Carlson and coworkers found that this attainable thrust coefficient correlated well with
the parameter: ‘

/ 2
ctn l—Mn

04 ' (38)
t .

c n

For the attainable thrust coefficient the following relation was found ([ref.4]):

[ 70.6

4
t T
3lellE (39)
2Q1 —Mn) ¢ lc
AT '
M
n ¢, y1 —Mrzl
L N J

fig.6 attainable thrust factor ([ref.4])

13
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The subscripts n refer to parameters normal to the leading-edge at a selected spanwise
station of the original wing. The reasoning behind this is that the flow conditions normal
to the wing leading-edge are considered to determine the leading-edge flow behaviour.
To obtain these parameters, a phantom wing is superimposed over the original wing in
such a way that the leading-edge and trailing-edge sweep angles are equal to those of the
original wing (see fig.7, taken from [ref.4]). The maximum thickness line of the phantom
wing is chosen such, that it runs through the maximum thickness location of the original
. wing at the selected spanwise location, while the maximum thickness of the normal
section of the phantom wing is placed at midchord. The required airfoil parameters follow
by means of simple geometrical relations, which can be found in [ref.4].

Supennmposed ArTow

7
Actual phnlortn\ ”/ 7
>
/ /
N
-
I

fig.7 definition of normal chord section

Equation (39) was derived for a vacuum limiting pressure. It can be extended to more
realistic limiting pressures, as experienced in windtunnel tests, by means of the Prandtl-
Glauert rule: the vacuum pressure which occurs at a certain equivalent Mach number M,,
can be related to an arbitrary limiting pressure at the normal Mach number under
consideration subject to the following condition:

c,. M)=c (40)

Plim im(M“)

Pl

HR

LN

1-M

14
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If the limiting pressure coefficient at the equivalent Mach number is set equal to the
vacuum pressure coefficient, the following relations hold:

[ 0.6

0.4 ‘
t r
2a-M))| |\ (a1)
K.=__

A
M
€ ¢, y1 -Mi
n

with:

Me=_;@_ \ll+yc. 1-M2] -1. (42)
1_M2 phm
chlim n

By examining various different profiles at a wide range of Mach numbers and Reynolds
numbers in the windtunnel, Carlson derived the following empirical relation for the
limiting pressure coefficient:

-2 Rn' 10_6 0.05+0.35(1 _Mn)Z
T 2-3M )
YM;[R_.10%+10° "

C
Plim

The Reynolds numbers in this expression are based on the mean aerodynamic chord and
transformed to a chord normal to the leading-edge, again using simple geometrical
relations. The correlation of the limiting pressure coefficient with the normal Mach
number and Reynolds number is shown in fig.8 which was taken from [ref.4].

In case the factor K, becomes greater than 1, it is kept equal to 1 (the attainable suction
force is never allowed to exceed the theoretical value).

15
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Empiri
Cp,lim pirical :isata
2 . Rn X 10
y M2 e} 2.0 —=6.0
n

O 1.0—2.0
O T 4—10

. Curve fit

fig.8 limiting pressure coefficient

Instead of calculating the attainable thrust factor for a large number of spanwise locations
and integrating over the span, in this application one representative arrow wing is
selected, leading to an average value K,. Consequently, for double-delta wings, this

could imply that in some cases where the average normal Mach number is supersonic, no
suction force is taken into account, although locally some wing sections might be
sufficiently swept to generate leading-edge suction. Therefore, in the next section,
alternative relations will be presented for double-delta wings.

In case the theoretical suction force is not fully developed (K , <1), for instance because
the leading-edge radius is too small, it is assumed that the theoretical suction force vector

is rotated upwards in such a way that the tangential force is equal to (see fig.9):

16
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This causes an extra normal force (compare with Polhamus’ leading-edge suction analogy)
that is equal to: ‘

ACy= sin(arccosK ) (45)

COSAle

or:

daCy
2 (46)
ACy= e sinza‘h —KzA .
cosA1 e .
For a representative arrow or delta wing this can be written as:

ACL=Kvsin2acosa‘/1 —Ki 47)

fie.9 attainable thrust concept ([ref.4])

17
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Using in this fashion Polhamus’ leading-edge suction analogy and Carlson’s attainable
leading-edge thrust concept it is possible to combine both effects, suction force and vortex
flow, into simple formulas for lift and lift dependent drag of flat wings:

CL=Kpsinacos2a +KTKAsin3a+KV«1 -Kisinzacosa (48)

Cp =Kpsin2acoscx -K;K Asinzoccosot +Ky ‘/ 1 —'KZA sin’a (49)

In these expressions, the thrust force coefficient was replaced by:

CT =KT Sinza with:

Kr= _\,/ for supersonic flow, and

2
P ) in subsonic flow.

Kp=(K,-K2K), or Kp=(K- .

As, for supersonic flow, both the local suction force coefficient and the attainable thrust

coefficient depend on the spanwise coordinate y, an average value should be deduced in
order to justify the previous notation. The attainable suction coefficient is defined as:

b/2
2 (50)
TA"g {KA(y)ct_dy

Substituting equation (28) then yields:

b/2 ‘
C 2% f1-m? sina nyA(y)dy = KTKAsinza G
~A gg2 J

In order to keep the supersonic suction force coefficient constant at its value at full suction

(Ky=1; K¢= E\/ m?), the average attainable thrust coefficient should be based on
.y=0.552.s,,, (see Appendix).

18




A method to account for partial leading-edge suction and vortex flow

The relation for the local suction force coefficient (based on the mean chord) as it features
in the formula for the attainable suction coefficient is:

E S

w

C =ﬁ 1-m? i sina _ (52)
t 2 2

It should be noted that K also depends on the angle of attack. In order to treat it purely
as a factor on the total suction force, this dependency was not elaborated in the above
expressions, but kept within the definition of K,. Should this definition of K, be
substituted, however, then it would turn out that the suction force term is proportional

4/5

to sin”'“a.

For supersonic flow, the two extreme cases will be compared hereafter:

Full leading-edge suction (no vortex lift K, =1)

Cp= Kpsinzoccosa -Ksin®acosc (53)
KT=_1_t_A_‘_ 1-m? (54)
2
4E
K -4 | (55)
P 2

C
Substituting a=K_L (which is only valid in linearized potential flow, but may be used

here as no non-linear vortex flow occurs) the following expression is obtained:

2

CD=?CAIZ(2E-\/1-m2) (56)

19
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No leading-edge suction (full vortex lift K, =0)

This situation may occur when sharp airfoils (zero leading-edge radius) are applied.

.2 .3 2 3
Cp=K_sin acosoc+Kvsm. a=K o +K, o (57)
CL A
Substituting a=.?2 yields, with equation (30) and KP=T:
P
CL 2 - 2
Cp=—2P 2E[1+ V"D ¢/ (58)
TA TACOsA, P
Since
Cp K
CL=CL 1 + v =CL "‘CL 2 _—v (59)
pi C. P TP k?
P P

the following expression can be obtained after solving for C; :
P

2C
C, = L

P (60)
’ 2
1+ 1+4_13_C

L
1tAcosAle

Substituting this, after some rewriting, the following formula for the total induced drag
of a wing developing non-linear lift according to the Polhamus leading-edge suction

20
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analogy is derived:

2
_ CL 4E
Cp= =
T : (61)

[__2
1+ |1+4 lmC

TACOsA,

L

Notice that the lift coefficient now features in the denominator as well. It can be verified
easily that if the vortex coefficient becomes zero (e.g. because the leading-edge of the wing
C 2
becomes sonic, resulting in m becoming equal to one), the drag equals CD=K_L.
P

21
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4. Application to double-delta wings

For double-delta wings, the integration of the product of the local supersonic suction force
coefficient and the attainable thrust coefficient should be carried out over the panel
inboard of the kink and over the panel outboard of the kink (see fig.10). Substituting
equation (28) in both parts of the integral yields:

Cr=(K, +KT°)sin2a (62)
L
K, =24 1-mf[_'_T 63)
' 4] Sw
L
K; ="A2 1-m} 1—[_']Z : (64)
° 4E,; Sw

For each panel an average value for K, as well as for K; must be selected. The value for
the average inner attainable thrust coefficient should be based on (see Appendix):

y=0.5521, (65)

whereas the average outer attainable thrust coefficient should be based on:

( /3

S
¥=0552s,, " (66)

in which 1, is the span of one inboard wing panel, measured from the wing root to the
spanwise location of the kink (see fig.10).

In case of the presence of a fuselage, it should be noted that Ky; and Kr, are based on the
net wing area (integration was performed over the wetted wing span). '
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In the present context, it is assumed that the thickness-to-chord ratios and the nose radii
for the wing profiles are constant for the entire wing,. If this is not the case, either average
values can be taken, or the spanwise variation can be implemented in the integration.

gi
I

i
' |
//
|!|
| Bl
i
e

.

fig.10 double delta wing geometry definition

For subsonic flow, the relations for K (based on the gross wing area) become:

b sl - g

(] SW

K ={K,-KK Pz)[l -L] G

In case the leading-edge of the outer wing panel is supersonic, the lift gradient should be
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split as well. Using the previously introduced expression for K, this becomes:

m.S. S
K =__ 2" ( +_m_] (69)

M2-1S E; E

(]

If a fuselage is present, the lift gradient is based on the gross wing area. If supersonic tip
effects are to be taken into account as well, the lift gradient should be obtained from a
panel method, as explained in the introduction.

24
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5. Results

For a pure delta wing values of the attainable thrust coefficient as a function of the nose
radius are presented in fig.11. The attainable suction force coefficient, as discussed earlier,
is not permitted to exceed the theoretical value. The influence of the nose-radius is
obvious.

A
‘I 0 b A A N AN AANNANVAS ANNNNA N A N
. -y
r/c = 0.01 ~_ r7c = 0.025
- 1 l
|
rLc=0.0J;\\\\ N .
. - <]
L N \\ g
0.5 r/c = 0.001 \\ o §
delta wing T~ - %\ §
M=22 ) .
alfo = 1°°e \J\ §\
Re = 1.4 10 _ \\N
t/c = 0.05
L ]
0.5 1.0 1.5 2.0 A

fig.11 attainable thrust coefficient for a family of pure delta wings at M=2.2

The ratio of the lift-to-drag ratio’s for both extreme values of the attainable thrust
coefficient in supersonic flow is shown in fig.12, for a pure delta-wing with unit aspect
ratio.
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fig.12 ratio of full suction and full vortex L/D for a pure delta of unit aspect ratio

As might be expected, for low values of the lift coefficient, the presence of leading-edge
vortices will lead to poor lift-to-drag ratio’s due to the increased amount of drag.
However, at large values of the lift coefficient, a region exists in which the vortex flow
seems to be more efficient. Profiles with small leading-edge radii do not seem able to
compete with profiles equipped with round leading-edges, as far as maximum lift-to-drag
ratio is concerned, as the favourable region is that of high angles of attack, at values which
will in most cases lie beyond the values for maximum lift-to-drag ratio. However, thin
wings are favourable in order to keep supersonic wave drag due to volume as low as
possible. This implies that, in case a range constraint is imposed, an optimum value exists
for the thickness-to-chord ratio and the leading-edge radius. In that case, the optimal wing
angle of incidence might be taken relatively high if the optimal leading-edges are taken
relatively sharp, in order to remain in the favourable region of high lift coefficients. For
a given wing area and cruise weight, this might lead to higher cruise altitudes, an effect
that in turn will influence engine performance. It might therefore be concluded, that by
taking leading-edge suction and vortex flow into account, a very important variable, that
is, the leading-edge radius, can be introduced in the process of high-speed civil transport
optimization.

For a pure delta wing of unit aspect ratio, the induced drag polars are drawn in fig.13, for
the cases of full leading-edge suction, full leading-edge vortex flow and for vortex flow
with fifty percent of the theoretical suction force still present. As can be clearly seen, with
full leading-edge suction, the drag force is much lower than in case separation occurs. On
the other hand, in case full vortex flow occurs, a dramatic increase in lift is possible: in
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fig.13 and fig.14 at an angle of attack of 20 degrees, an increase of 50% is achieved.
Furthermore, it can be concluded, that the presence of leading-edge vortices can be very
advantageous for high wing loading/low aspect ratio vehicles in the low speed regime,
especially during take-off and landing. The increase of lift due to leading-edge vortices
enables Concorde to land without the use of flaps. This suggests the use of a high lift
device with zero leading-edge nose radius, which can be deployed during approach, thus
causing a large increase in lift and drag. In fact, the use of similar "vortex slats" is
currently studied on the F16 XL aircraft at the NASA Langley Research Centre for possible
use on a future High Speed Civil Transport ([ref.1]). On military aircraft, there is an
additional application during high wing loading manoeuvres. '
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fig.13 drag polars for different values of the attainable thrust coefficient

Since the attainable thrust coefficient depends on the angle of attack, it will normally
decrease as the wing is rotated toward higher angles of attack unless full leading-edge
suction can be retained under the circumstances. This implies that the leading-edge
suction vector rotates backwards with the wing. In order to illustrate this, the induced
drag polar and the lift versus angle of attack curve according to the attainable thrust
concept, are plotted in fig.14 for the same wing as used previously. The limits for full
leading-edge suction and full vortex flow are shown in this figure as well. According to
the right-hand figure, the full leading-edge suction force is retained up to an angle of
attack of approximately eight degrees. At this point, the curve leaves the line for K,=1
and bends toward the full vortex flow line which it approaches for high angles of attack.
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fig.14 drag polar and C;-a line according to attainable thrust concept

This behaviour is depicted in a somewhat different way in fig.15, in which, again for the
same wing, the lift dependent drag factor is plotted against the lift coefficient. Again, the
two extreme cases for K,=0 and K, =1 are plotted as well, for both cases the linear as well
as the non-linear relation. The linear relation for 100% leading-edge suction is:

CDi - 2E"'v1 —mz : ‘ (70)

CL2 TA

which is independent of the lift coefficient. The linearized relation for the full vortex case
depends on the lift coefficient, and so do (trivially) the non-linearized relations. Again, it
is clear that for a lift coefficient of approximately 0.20, the curve diverges from the full
leading-edge suction line.
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fig.15 induced drag factor as a function of the lift coefficient

A more clarifying picture of the influence of the leading-edge flow on the lift dependent
drag is found in fig.16. As far as the linearized equations are concerned, this is an often
published figure, in which the lift dependent drag factor divided by nA is plotted against
the leading-edge parameter m. The linearized relation for the full leading-edge suction
case is simply:

CD_ . )
_ D pfim | | o
C, %/ nA |

The case for no suction (which is only a theoretical one) then becomes:

Cp.
' =2E ' : : (72)
CLz/nA
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As soon as the leading-edge becomes sonic, the flow becomes two-dimensional (constant
wing loading) and leading-edge suction or vortex flow can no longer occur. At that point
the well known linear relations of Ackeret apply:

2
C.= da and Cp= da

YM2-1

, yielding:
M2-1

Cp=ayM2-1C,2 (73)

4

This figure clearly illustrates the importance of sufficiently swept wings with sufficiently '

rounded leading-edges. To reduce the lift dependent drag, high relative wing thicknesses
are advantageous too, however, this will negatively affect the wing zero lift wave drag.
With the equations derived in this report, curves can be drawn in the figure for the
nonlinear full leading-edge suction case and the full vortex case. The increase in drag
caused by the vortices is obvious. Since the nonlinear relations are dependent of the angle
of attack, they apply for a specified angle of attack only; in this example, for clarity, a
relative large value of ten degrees was chosen. Also, in this figure, the line according to
the attainable thrust concept was drawn, which closely follows the line for full leading-
edge suction.
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fig.16 induced drag factor for full suction, no suction, full vortex and attainable thrust
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The impact of the leading-edge parameter (or aspect ratio for a delta wing at constant
Mach number) and the wing nose radius and relative thickness is illustrated in fig.17,
where a fuselage (Sears-Haack body of length 60 m. and diameter 5 m.) was added to a
wing of constant area (400 m2) and varying aspect ratio. In this simple example, it is
assumed that all volume is carried inside the fuselage (wing zero lift wave drag
negligible), whereas all lift is generated by the wing (no fuselage lift induced drag). In the
figure the maximum cruise lift-to-drag ratio is plotted against the aspect ratio for the
linearized case of full leading-edge suction as well as for the case of full vortex flow. In
case of full leading-edge suction, the decrease of the induced drag with increasing aspect
ratio and the simultaneous decrease of the leading-edge suction forces leads to an optimal
value for the aspect ratio. In case, however, the leading-edge suction force cannot be
generated because the wing is too sharp or too thin (in order to reduce volume drag in
a practical design), the L/D ratio is drastically reduced due to the occurrence of vortex
flow, and no optimum exists for a subsonic leading-edge.

Since the design of a supersonic airplane wing is always a compromise between high-
speed and low-speed performance requirements, it is important to be able to analyze the
low-speed characteristics of typical supersonic wing designs. With the use of the equations
presented in this report, it is possible to analyze the influence of certain parameters on the
approach lift coefficient. Delta wings and highly swept wings, if at all, only stall (because
of vortex breakdown) at very high angles of attack. Therefore, usually no maximum lift
coefficient is defined, but an approach lift coefficient which is based on a maximum
allowable approach angle of attack with respect to runway visibility. In this example it is
put at 12 degrees. In fig.18 the approach lift coefficient is plotted against the aspect ratio
of a family of pure delta wings.
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fig.17 effect of aspect ratio on maximum lift-to-drag ratio
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The results have been calculated for a Mach number of 0.5 for wings with a relative nose
radius of r/c=0.01 and a relative thickness of t/c=0.025. The subsonic lift gradient was
calculated using the following relation from [ref.7]:

2z
CL =
o /2
2 | 1-M? [2}z (74)
—t] ———— |
A coszAl/2 A

A constant elliptical span efficiency factor ¢=0.8 was used in order to obtain the theoretical
subsonic suction force. From the figure it follows, that up to an aspect ratio of 1.5, full
leading-edge suction can be retained. If the attainable suction coefficient is artificially set
equal to zero (by deploying the vortex slats) the approach lift coefficient increases, as
expected. It should be realized, however, that this is by no means trivial. If for a certain
wing at angle of attack, the attainable thrust coefficient happens to be such that the
upward rotated suction force vector points exactly vertical, then setting the attainable
suction coefficient equal to zero will cause the vector to rotate backwards until it acts
perpendicular to the wing chord, leading to a decrease in the vertical resultant. Using the
relations from this report, this effect can be investigated by examining the ratio of the
increase in lift coefficient with respect to the two-dimensional potential flow contribution,
with and without vortex slats deployed:

AC,

KX,.K
Ka>0 A T tano+ l—KAZ (75)
AC, K V

KA=

0 A%
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fig.18 effect of deploying vortex slat on approach lift coefficient
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6. Conclusions

The methods presented in this report enable the designer to account for the influence of
leading-edge vortices on the lift and drag coefficient of flat delta wings and derived
planforms, both at subsonic and supersonic speeds. Without this method, this effect which
is extremely important for any supersonic airplane design or optimization study, could
not as easy (and as cheap) be taken into account at the earliest stage of conceptual design.

No validation or verification of the method has been carried out in this report, since the
presented method is a combination of two established methods integrated over the wing
span, methods which have demonstrated the capability to capture the non-linear effects
very well.
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Appendix
Calculation of spanwise coordinates for mean attainable thrust coefficient
pure delta wings

According to equation (51), in order to use the mean attainable thrust coefficient as a
factor on the suction force coefficient for full suction (equation (54)), it must be equal to:

. b/2

2/54 (A1)
of y —3/5

in which K A Was written in accordance with equation (39) as a constant C times y'3/ 5

: /3
This yields after solving the integral: y= (%27/ ST b=0.276 b=0.552s,

double delta wings

For double delta wings, the integration of the local suction force coefficient is carried out
in two parts, over the inner and over the outer wing panel Usmg again equation (28) for
the local suction force coefficient and writing K, = C.y’ 3/5 the following expr&smn for
the attainable thrust coefficient on the inner wing panel is obtained:

A 2 2 2/5 2
Ta, E 1-m sin a_.._fy dy=Kr, 'KAsm o (A2)

After substituting equation (63), this yields for the mean value of the attainable thrust
coefficient of the inner wing panel:

li
2 C .
KA-=—§ny2/5dy="— | (A3)

—3/5
' © 0 Yi

After solving the integral, this yields: y,=0.5521,.
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For the outer panel follows in the same way, using equation (64):

Sw

_ 2/5,4,. C
o ny dy -~ 3/5

) 1. 0 Yo
1
Sw 1—.3_
w

After solving the integral, this yields for the spanwise coordinate
attainable thrust coefficient of the outer panel must be based:

( ¥/3

¥,=0.552s,,

(A4)

on which the mean

(A5)
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