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I. Het incentive mechanisme van BitTorrent is niet geschikt voor video-on-demand. [Dit proef­
schrift]

2. In een P2P swarrning systeem worden de prestaties van een peer achter een firewall of NAT
negatief beïnvloed inhet voordeel van peers die algeheel bereikbaar zijn. [Dit proefschrift]

3. P2PVoD systemen zijn niet eindeloos schaalbaar inhet geval van een flashcrowd. [Dit proef­
schrift]

4. In elk praktisch uitvoerbaar systeemkan worden ingebroken.

5. Het geven van dejuistehoeveelheid begeleiding aan promovendi is een uitdaging: teweinig
begeleiding leidt tot richtingsloosheid, terwijl teveel begeleiding hun creativiteit kan beperken.

6. De grootte van een onderzoeksgroep is geen garantie voor onderzoek van hoge kwaliteit.
Slimme mensen, zorgvuldige organisatie en dejuiste visie zijn de belangrijkste succesfac­
toren.

7. Niet anonieme recenties zal de kwaliteit van de geleverde aanmerkingen op wetenschappe­
lijke artikelen verbeteren.

8. Communicatie isbelangrijker dan intelligentie.

9. In Nederland heb je altijd tegenwind, onafhankelijk van de richting waarin je fietst.

10. Als lekker Nederlands eten bereid wordt door een Italiaan is het nog steeds heerlijk. An­
dersom is dat niet noodzakelijk waar.

Deze stellingen worden opponeerbaar en verdedigbaar geacht enzijn als zodanig goedgekeurd
door depromotor, Prof.dr.ir. H.l. Sips.
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Challenges, Design and Analysis
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I. The incentive mechanism of BitTorrent is not suitable for video-on-demand, [This thesis]

2. Ina P2P swarming system, residing behind a firewall ora NAT reduces a peer's performance
much to the benefit of those who are globally reachable. [This thesis]

3. P2PVoD systems cannot scale indefinitely when hit bya f1ashcrowd. [This thesis]

4. Every practically feasible system can behacked.

5. Giving the right amount of supervision to PhD students is achallenging task: too little can
lead them outof track, while too much can inhibit their creativity.

6. The size of a research group is not a guarantee for high quality research. Smart people, neat
organization and the right vision are the keys.

7. on-anonyrnous reviews will improve the quality of the comments provided to a scientific
article.

8. Communication is more important than intelligence.

9. When you bike inthe Netherlands you have the wind always against, independently from the
direction you choose.

10. Delicious Dutch food cooked by Italian people is still delicious. The opposite is not neces­
sarily true.

These propositions are regarded asopposable and defendable, and have been approved assuch
bythe supervisor, Prof.dr.ir. H.l. Sips.
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Chapter 1

Introduetion

In recent years, significant research effort has focused on the effective use of a peer-to-peer
(P2P) architecture to provide large-scale video-on-demand (VoD) services [13,20,26,30,65].

Current major VoD services like YouTube, Hulu, and NetFlix, which supply hundreds of
thousands of videos to millions of users everyday, make massive use of central servers for
content provisioning. However, a P2P-based approach, with its natural scalability, could

drastically cut the costs of service providers. ft has been demonstrated that, for instanee,
the MSN video server load can be reduced by roughly 95% through the use of a P2P-based
technology [19]. Furthermore, non-profit organizations like Wikipedia, that cannot afford
deploying the necessary servers to provide large-scale on-dernand media services, would
greatly benefit from such an approach [18].

Despite the potential benefits, providing on-de mand services using a P2P architecture
is also achallenging task. In fact, similar to the P2P live streaming case, some quality-of­
service (QoS) requirements have to be fulfilled, i.e. providing users with a high playback

continuity and a short startup delay. However, the data access pattem in the two cases is dif­
ferent. In live streaming, peers have a shared temporal content focus, meaning that they are
interested in watching the same part of the video file, independently from their joining time.
This gives peers a number of opportunities to collaborate among each other to download
a stream. On the other hand, in the VoD case, users requesting the same video at different
times will be interested in viewing different parts of it. As a consequence, it is more difficult
for peers to help each other and offload the service provider.

Since many of the early P2P systems have been built to efficiently distribute large files
among the participating users, trying to adapt the designs of these systems to the video

streaming case came as a natural choice. In particular BitTorrent, which has been shown to
make nearly optimal use of peers' upload bandwidth [14], has inspired many P2P protocols
for VoD [10,20,33,51,52,63]. In the context of traditional file-transfer, BitTorrent achieves a
high utilization of peers' upload bandwidth by means of a smart file retrieval mechanism and
contribution-based downloader selection. However, BitTorrent was not originally created
for streaming and adapting its design to VoD poses two conflicting goals: satisfying the
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fundamental QoS requirements for strearning, while still maintaining the high efficiency of

the original BitTorrent protocol. For this reason, previous work on this matter has mainly

focu sed on Bit'Iorrent's file retrieval strategy: the file should be received in a somewhat

sequential fashion to allow a view-as-you-download functionality, but different peers should

own different parts of it, in order to help each other.

In this thesis, we show that, to provide the nece ssary QoS to the users, Bit'Iorrent 's peer

selection mechanism should also be modified for its use in VoD. In fact, this mechanisrn,

based on bandwidth reciprocity between two peers, poses further challenges in heteroge­
neous P2PVoD sys tems. When peers have different upload bandwidths, for example, it can

happ en that nodes with low upload capacities cannot reach a download speed high enough

to sustain the video playback rate, while those with higher upload capacities download at

rates much higher than actually needed. Likewise, peers residing behind NATs or firewalls

blocking unsolicited inbound connections might experience poor performance, much to the

benefit of fully connectable node s. In this thesi s, we propose a solution that allow s peers

to "relax " their reciprocity-based mechanism when they are already experiencing a good
enough service, consequently serving low-capacity or unconnectable peers when enough

band width is available.

We further focus on the problems introduced by a sudden surge of new node s joining

a P2PVoD sys tem, a phenomenon known as flashcrowd. We show, both theoretically and

experimentally, that tlashcrowds can drastically reduc e the scalability and the QoS provided

by P2PVoD systems. Based on this analysi s, we pro pose a number of tlashcrowd-handling

algorithms that significantly improve peer QoS during tlashcrowds.

1.1 P2PVoD Systems

In this thesis, we aim at providing insights into the challenges and the design of P2P sys­

tems for on-dernand video streaming. We especially focus on a BitTorrent-based design, as

BitTorrent has pro ven to be very efficient in utilizing peer bandwidths, while requiring only

little effort from the deployer, both from a management and a bandwidth supply point of

view. Furthermore, our study is bounded to the problem of distributing a single video file,

although several of our contributions can offer insights that apply to multi -swarm (or multi ­

channel ) sys tems. In the following paragraphs, we first introduce the requirements for a

P2PVoD sys tern, and then we proceed with an overview of BitTorrent and BitTorrent-based

P2PVoD sys tems.
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1.1.1 Fundamental requirements for VoD

Any VoD system should try to meet, for each of its users, the following QoS requirements:

QoS requirement 1: smooth playback continuity

QoS requirement 2: short startup delay

A smooth playback continuity means that the stream must be received at least as fast as it is
viewed. Hence, a VoD system should try to maximize the number of downloaders that main­
tain a download rate of at least R, where R is the playback rate of the video file distributed

in the system. We argue that this should be the primary goal of such a system, because al­
lowing a peer to start the playback implies a commitment to provide a satisfactory playback
conti nuity to that peer. On the other hand, no commitment has been established with a peer
who has just jo ined and has not started viewing the video yet. Hence, when the bandwid th is

scarce (e.g. during a sudden surge of requests), it is more important to serve those peers that
have already started playing, rather than allowing new nodes in the system. Furthermore, by
doing so, we also avoid allowing in the system peers whose playback conti nuity cannot be
guaranteed due to bandwidth scarcity. On the other hand, when there is enough bandwidth
available, the secondary goal a VoD system is minimizing the startup delay of joining peers .

1.1.2 Scalability of P2PVoD systems

P2P systems are based on the principle that users are both consumers and producers of re­
sources. In the specific case of P2PVoD systems, the primary resource is bandwidth. Since

users need to receive the video stream at a certain minimum rate R to guarantee smooth play­
back continuity (I st QoS requirement for VoD), it follows that, for the P2PVoD system to be
scalabIe, the peers should contribute enough bandwidt h to alloweach downloader achieve a
download rate of at least R. We note that, while it is possible that some peers will remain
in the system after their download is complete and offer bandwidth without consuming any,
their actual presence and amount contributed are highly unpredictable, being dependent on
user behavior. Therefore, in this thesis, we only consider scalabIe those systems where the
bandwidth offered by the downloaders is enough to sustain all of them at the video playback
rate. Specifically, having defined the average peer upload bandwidth with J.l, in this thesis

we focus on scalabie P2PVoD systems where, by definition, R :s J.l holds.

1.1.3 BitTorrent

BitTorrent is a widely popular P2P protocol for file-transfer. In BitTorrent, files are split

into pieces, allowing peers which are still downloading content to serve the pieces they
already have to others. Corresponding to each file availab le for download, there is a central
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component called tracker that keeps track of the nodes currently in the system. When a new
peer joins, it contacts the tracker to obtain a list of a random subset of these nodes. Each
node establishes persistent connections with a large set of peers (typically between 40 and
80), called its neighborhood, and uploads data to a subset of this neighborhood.

Specifically, each peer equally divides its upload capacity into a number of upload slots.

There are two types of upload slots: regular unchoke slots and optimistic uncJzoke slots.

Regular unchoke slots are assigned according to a strategy based on direct reciprocity: peers
prefer other nodes that have recently provided data to them at the highest speeds. Each peer
re-evaluates the allocation of its regular unchoke slots every unchoke interval Ó(generally 10
seconds). Different from the regular unchoke slots, the optimistic unchoke ones are assigned
to randomly selected nodes. Also, their allocation is re-evaluated every optimistic unchoke

interval, which is generally set to 3ó. Optimistic unchoke slots serve the purposes of (i)
having peers discover new, potentially faster, nodes to unchoke so as to be reciprocated, and
(ii) bootstrapping newcomers (i.e. peers with no pieces yet) in the system. The number of
upload slots opened byeach peer is usually a fixed constant [9,21,42].

Each peer keeps its neighborhood informed about the pieces it owns. The information
received from this neighborhood is used to request pieces of the file according to the Local
Rarest First policy. This policy determines that each peer requests the pieces that are the
rarest among its neighbors. The emergent effect of this piece selection policy is that Iess­
available pieces get replicated fast among peers and each peer obtains first the pieces that
are most likely to interest its neighbors [8].

1.1.4 BitTorrent-based P2PVoD

Prior work on adapting BitTorrent to VoD mainly addresses piece selection [10,20,33,51,
52,63]. These studies focus on finding a policy that can achieve a good trade-off between the
need of sequential download progress, needed for stream continuity, and high piece diversity,
needed for efficiency. Although the approaches proposed to tackle this problem vary, they
all have in common that the resulting mechanism combines in-order piece selection with
rarest-first piece select ion. Furthermore, Carlsson et al. [48] also propose a policy to reduce
startup delays where newly joined peers are prioritized, and Yang et al. [65] study a number
of strategies that a peer can use to choose which other node a piece request should be sent ro,

in order to balance the load among requested nodes and increase the likelihood of receiving
the needed pieces before their playback is due.

1.2 Challenges in the design of P2PVoD systems

The decentralized, dynamic, and heterogeneous nature of P2P, together with the QoS re­
quirements of a VoD application, poses several chaIlenges in the design of P2PVoD sys-
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tems. In this section, we take a close look at these challenges, with a particular focus on
those faced by a BitTorrent-based P2PVoD design.

1.2.1 Incentives for contribution
The efficiency of P2P systems comes from users contributing their resources (files and band­
width). However, studies have shown that there are many users who are not willing to do so,
e.g. in Gnutella [11]. Therefore, a lot of effort in the P2P research community has focused
on how to incentivize user contribution [21,25,42,43,46,55].

While most of these works revolve around file-transfer, it is important to notice that a
high level of user contribution is even more important for P2PVoD systems, due to the QoS
requirements of VoD. In fact, as was demonstrated by Habib et al. [28], the QoS experienced
by peers at low levels of contribution is often below the requirements of a VoD application.
Since BitTorrent has been shown to achieve high levels of user contribution [14], its incen­
tive mechanism, based on direct bandwidth reciprocity between two interacting peers, has
been considered for P2PVoD designs as weil [10,20,51,52,63]. However, Mol et al. [33]
have argued that this mechanism is not suitable for VoD applications because, due its some­
what sequential download nature, it may be difficult for peers with lower level of download
progress to reciprocate peers with higher level of progress. Therefore, they proposed a dif­
ferent incentive seheme based on indirect reciprocity, in which peers prefer uploading to
other nodes that have fonvarded pieces to others at the highest rate in the past. In this thesis,
we demonstrate that neither of the two incentive mechanisms is perfectly suitable to VoD,
and explore methods that better match with the QoS requirements of the application.

Finally, we note that a number of other, more sophisticated, incentive mechanisms have
been proposed, which employ accounting systems to keep track of the contribution of each
user (e.g. [28,61 D. However, the presence of an accounting system, be it centralized or
distributed, introduces several other challenges, with respect to system management, infor­
mation dissernination, and security, which fall outside the scope of our work. Therefore, we
do not consider those designs in this thesis.

1.2.2 Peer heterogeneity

Internet access technology has become extremely heterogeneous nowadays. Different access
means, as weil as different ISP infrastructures, result in a high bandwidth heterogeneity
among Internet hosts. Furthermore, recent times have also witnessed an increase in the usage
of firewalls and Network Address Translators (NATs), which cause many hosts not to be
reachable at any routable address. In this section, we briefly discuss the implications of this
heterogeneity for Bit'Iorrent-based P2PVoD systems.
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Bandwidth heterogeneity

The incentive schemes introduced in the previous subsection are based on some kind of

bandwidth reciprocity between interacting peers. This directly affects the download perfor­

mance of the users, when they have different upload capacities. In fact, it has been observed

that the emergent behavior of such incentive mechanisms is that peers with higher upload

capacities typically achieve higher download speeds [9]. This is a desirabIe behavior in the

context of traditional file-transfer, because users wish to complete their downloads as soon

as possible , incentivizing them to contribute as much bandwidth as possible. However, we

note that, in a VoD application, users gain little utility from having a download speed higher

than the necessary to preserve stream continuity. Therefore, using this kind of incentives in

P2PVoD systems where peers have highly heterogeneous bandwidths can lead to situations

where, even if there is enough aggregate upload capacity to serve all peers in the system,

not all peers experience a satisfactory QoS. This happens when high-eapacity peers receive

download rates substantially higher than the video playback rate, while low-capacity peers

experience download rates that are too low to allow a smooth playback. Thus we need in­

centive schemes which explicitly take VoD into account.

Connectability

ATs and firewalls are becoming a default setting among home users. However, these de­

vices represent an obstacle to the operation of P2P applications, since their presence causes

the hosts sitting behind them not to be reachable at any routable address, unless the spe­

cific NAT/firewall has been configured to do so. For P2P swarming systems, where peers

collaborate to download a file, it means that not every peer is able to exchange data with ev­

ery other peer in the system, and this can create an unwanted imbalance in how bandwidth

is distributed across the users. An immediate consequence for P2PVoD systems is that the

QoS provided to the users will also be similarly imbalanced. Since these unconnectable

nodes represent a considerably large amount of P2P users (between 40% and 60%, accord­

ing to recent measurement studies [32,45,47]), the bandwidth dynamics and, consequently,

the QoS performance of P2PVoD systems will likely be dominated by the effects of their

presence.

1.2.3 Flashcrowds

Peer dynamics have always been an issue for P2P systems. In particular, e fiashcrowd. i.e.

a sudden surge of peers requesting content, could drastically affect the scalability and per­

formance of P2P systems, since the incoming peers all demand for bandwidth while having

Iittle or nothing to give in return. The impact of these phenomena is even more severe for

P2PVoD systems, because of the need of fulfilling QoS requirements. It is evident that, ac-
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commodating such a large numbe r of newco mers within a stringent time constraint, while

still maintaining the QoS of existing users high, is extremely difficult.

1.3 Problem statement

In this thesis, we address the research problem of how to deliver high quality on-dernand

video streaming using a decentralized P2P infrastructure that can be heterogeneous and

highly dynamic as weil. In order to accomplish this, we need to explore which factors pose

challenges to the design of P2PVoD systems and analyze their impact. This high-level prob­

lem statement can be detai led in the following research questions:

How do ATs and firewal1s affect the performance of P2P swarming sys tems? As

mentioned earlier (Section 1.2.2), NATs and firewalls represent a major obstacle to the op­

eration of P2P applications. While it is clear that the hosts residing behi nd NATs or firewalls

that have not been configured to receive inbound connections cannot be directly contacted

by other hosts in the Internet, it is not yet well understood how this phenomenon affects the

performance of P2P swarming sys terns, where peers need to collaborate to download a file

of interest. The fact that not every peer is abIe to exchange data with every other peer may

have implications on how bandwidth is distributed across the users. For P2PVoD systerns,

this means that the QoS provided to each user mayalso be affected by that specific user be­

ing or not connectable. The percentage of peers residing behind a NAT or firewall mayalso

influence how bandwidth is distributed and, ultimately, users QoS. Therefore, in order to

understand and improve the performance of P2P swarming systems in general and P2PVoD

systems in particular, it is important to understand how the presence of these unconnectable

peers affect the bandwidth dynamics in these systems.

How do currently proposed BitTorrent-based P2PVoD protocoIs work in practice?
Due to its high efficiency, BitTorrent has inspired a number of P2P protocols for VoD. AI­

though the approaches followed in these P2PVoD proposals vary, they all strive to achieve

a good trade-off between the individual need of sequential download progress (needed
for streaming) and high piece diversity (needed for efficiency). However, we note these

approaches have been evaluated under different circumstances, and in limited scenarios.

Hence, some methods might perform better than others under a certain set of conditions

and worse under another. Furthermore, it is unclear how well each of them would work in

real world conditions, where, for instance, peers have heterogeneous bandwidths and may

reside behind a NAT or a firewall. Similarly, it is still unknown to what extent each approach

really maintains the original BitTorrent's incentives for cooperation. Exposing the pros and

cons of each approach can guide in selecting the most appropriate protocol to use in a given

environment. Likewise, understandi ng the behavior of different Bit'Iorrent-based P2PVoD

protocols will help researchers and system designers in improving current approaches and/or

designing better ones .
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Is it possible to improve the QoS of heterogeneous BitTorrent-based P2PVoD sys­

tems while retaining the original BitTorrent's incentive for cooperation? As mentioned
in Section 1.2.2, the use of BitTorrent's original incentive mechanism in a VoD application
can lead to a situat ion where high-eapacity peers receive download rates substantially higher
than the video playback rate, while low-capacity peers experience download rates that are
too low to allow a smooth playback. Similarly, peers behind a firewall or NAT can experi­
ence much lower performance as compared to fully con nectab le nodes. On the other hand,
having high-eapacity (fully con nectab le) peers altruistica lly "help" lower-capacity (uncon­
nectable) ones will weaken the incentive to contribute: peers may easily freeride by pretend­
ing of having a low bandwidth capacity or residing behind a NAT or firewall, thereby leading

to a "tragedy of the cornmo ns", The challenge is to make peers help those in need, while
still guaranteeing that contributing more bandwidth or being fully connectab le are attractive
properties.

How do BitTorrent-based P2PVoD systems scale during Oashcrowds? Flashcrowds,
i.e. sudden surges of newly jo ined peers, may have serio us impact on P2PVoD syste ms,
since the newcomers all demand for bandwidth while having not much to give in return.
Therefore, knowing which parameters inftuence the scalability of these systems, as weil as
how they do so, is important for the appro priate management of P2PVoD systems.

Can decentralized BitTorrent-based P2PVoD systems provide high QoS under
Oashcrowds? P2P systems are decentralized entities, where each peer acts individually to­
wards reaching a certain goal. Therefore, it is natura l to wonder whether the nodes in such
systems are able to quickly detect and respond to a sudden surge of newcomers, and dis­
tribute the limited available bandwidth in such a way to keep providing a good QoS to
existing users. Furthermore, it is also interesting to investigate the role of the initial souree
of the video file, which is one of the few peers possessing a complete copy of the file and
often can be the bottleneck in the file distribution.

1.4 Research contributions and thesis outline

The contributions of this thesis are the following:
Modeling and analysis of the peer connectability problem in P2P swarming systems

(Chapter 2) We present a mathematical mode l to study the performance of a P2P swarming
system in the presence of unconnectable peers. We quantify the average download speeds
of peers and find that unconnectable peers achieve a lower average download speed com­
pared to connectable peers, and this difference increases hyperbolically as the percentage
of unconnectable peers grows. More interestingly, we notice that connectable peers actually
benefit from the existence of peers behind NATs/firewalls, since they alone can enjoy the
bandw idth that those peers offer to the system. Inspired by these observa tions, we propose
a new policy for the allocation of the system's bandwidth that can mitigate the performance
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issues of unconnectable peers. In doing so, we also find an intrinsic limitation in the speed

improvement that they can possibly achieve. This chapter is largely based on our work pub­

lished in [36].
BitTorrent-based P2P approaches for VoD: a comparative study (Chapter 3) We

propose a simulation based methodology which aims at putting forward a common base
for comparing the performance of different BitTorrent-based P2PVoD protocols under a
wide range of conditions. We show that, despite their considerabIe differences, existing

approaches all share some characteristics, such as that their bandwidth reciprocity based
methods to incentivize cooperation do not always yield an optimaloverall performance.
Furthermore, we demonstrate that in these protocols there is a trade-off between QoS and

resilience to freeriding and malicious attacks. Overall, our findings provide important impli­
cations for both service providers and future system designers. On the one hand, our results
can guide service providers in the selection of the most appropriate protocol for a given envi­
ronment. On the other hand, exposing the flaws of current approaches will help researchers
in improving them and/or designing better ones.

Peer selection strategies for improved QoS in heterogeneous BitTorrent-based
P2PVoD systems (Chapter 4) In this chapter, we extend the original peer selection mech­

anism of BitTorrent with techniques that allow peers to relax their reciprocity-based peer
selection and choose more random nodes when their current QoS is high. In this way, more
peers can be granted a good QoS and freeriding is tolerated only when bandwidth resources
are abundant. Similarly, unconnectable peers, who would typically be penalized much to
the advantage of connectable ones, can also benefit from such an approach. To demonstrate
the benefits of our solutions, we present extensive simulations of the introduced techniques.
This chapter is largely based on our work published in [37].

Analyzing the scalability of BitTorrent-based P2P VoD systems during Oashcrowds
(Cha pter 5) We analyze how the scalability of a general BitTorrent-based VoD system is

affected by a flashcrowd. Our study shows that, at the very beginning of a flashcrowd, the
system scale is intrinsically related to two fundamental system parameters, (i) the initial
service capacity and (ii) the efficiency of piece exchange of the underlying P2P protocol.
Finally, we illustrate the impact of peers tuming into seeders (i.e peers that have finished
downloading and remain in the system to upload) on the system scale. This chapter is largely
based on our work published in [39].

Bandwidth alloca tion in BitTor rent-based P2PVo D systems during Oashcrowds
(Cha pter 6) We analyze how bandwidth should be allocated in a BitTorrent-based P2PVoD
system hit by a flashcrowd in order to fulfill the QoS requirements of the application. In par­
ticular, we find that there is a limit in the number of peers that can be admitted in the system
over time, if we want to guarantee a smooth playback continuity to previously joined users.
Furthermore, we show that there is a trade-off between having the initial souree minimize

the upload of pieces already injected recently and high peer QoS. Based on the insights
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gained from our analysis, we devise some fta shcrowd-handting algorithrns for the allocalion
of peer bandwidth 10 improve peer QoS during flashcrowd. We validate the effeetivene ss of
our proposals by means of simulations. This chapter is largely based on our work published
in [38].

Conclusions and future work (Chapter 7) We summarize our most important conclu ­
sions in the last chapter, and provide suggestions for future work based on our findings.



Chapter 2

Modeling and analysis of the peer
connectability problem in P2P swarming
systems

Over the last years, there has been a significant rise in the use and development of P2P tech­
nology, and a large number of analytical and measurement-based studies have been con­
ducted on analyzing the properties and the performance of P2P networks in general, as weil
as in specific applications, such as file sharing [41,53,66] and video streaming [15,32-34].
However, recent times have also witnessed an increase in the usage of firewalls and NATs.
These devices break the original model of lP end-to-end connectivity across the Internet,
causing many peers not to be reachable at any routable address, and therefore introducing
complications in P2P communication. Nevertheless, so far little research has been conducted

on how the problems that firewalls and NATs cause to P2P communication affect different
P2P systems. Mol et al. [47] show that the presence of NATs/firewalls in a P2P file-sharing
system correlates to the phenomenon of free-riding and suggest that unconnectable peers
might expect to achieve lower performance. Furthermore, they measured a high fraction
(above 60%) of unconnectable peers in both a popular public BitTorrent community and in
a P2P streaming system [32], which is also confirmed by other recent studies [17,45,60].
Skevik et al. [35] crawled several BitTorrent swarms and discovered that unconnectable
peers have a lower average speed than connectable peers. The model proposed by Liu et
al. [24] shows evidence that, in BitTorrent, the performance of peers is affected by their

connectability.
In this chapter, we extend this line of work and present a study of the download per­

formance of a generic P2P swarming system in the presence of unconnectable peers. Our
analysis aims at (i) providing a better understanding of the properties (and predicting the
behavior) of P2P systems in a realistic environment (that includes the presence of NATs
and firewalls), so to stimulate the (ii) design of P2P protocols that improve peer QoS. The
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contributions made in this chapter are the following :

1. We present a general model that captures the effects of NATs and firewalls in a broad

class of P2P swarming systems, including the most popular file-sharing applications,

like BitTorrent [21] and eDonkey [29], as weil as a number of streaming systems

derived from BitTorrent - e.g. BitTos [10], SwarmPlayer [33] (Section 2.4).

2. We show that the difference in speed between connectable and unconnectable peers

is a function of the fraction of unconnectable peers and increases hyperbolically as

this fraction grows. AIso, we show that connectable peers actually benefit from the

coexi stence with unconnectable peers (Section 2.5).

3. We propose a different bandwidth allocation policy that tries to reduce the perfor­

mance gap between the two types of peers and provide better QoS to unconnectable

peers; in doing so we discover that an upper bound exists for the improvement that

can be achieved by means of any bandwidth allocation policy (Section 2.7).

2.1 Problem description

This section provides a short description of NATs and firewalls and the problems they cause

to P2P communication. AIso, some techniques that have emerged to circumvent these issues

and their applicability are discussed.

2.2 NATs and firewalls

A Network Address Trans/ator (NAT) is a device that allows multiple machines on a private

network to communicate with the Internet using a single globally unique lP address. This

is accomplished by modifying the network information (namely lP address and port) in the

packets that transit through it. For an internal host to be able to receive packets from outside,

a mapping must be created in the NAT (i.e. the NAT must allocate an external port for the

traffic directedJgenerated by that internal host). This is dynamically done by the NAT itself

when an internal host initiates a connection. Unsolicited inbound conneetion attempts are
dropped, since the NAT has no way of knowing to which internal host the packet should

be forwarded t~. Even though NATs were originally introduced as a temporary solution for

alleviating the IPv4 address shortage, they are still widely used and will probably continue

to be part of the Internet in the future.

Afirewall is a device that inspects the network traffic passing through it and filters (i.e.

denie s or permits) the transmission based on a set of mies. In its most general implementa­

tion, a firewall allows outbound connections but blocks inbound connections.
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In the rest of this chapter we will, for ease of discussion, use the term unconnectable for

peers, either behind a firewall or a NAT, whose firewalVNAT is not configured to accept in­

bound connections. Likewise, we will use the term connectable to identify the peers who are

able to accept inbound connections. Finally, we will refer to connectability as the property

of a peer of being either unconnectable or connectable.

2.3 Workarounds

Many workarounds to the NAT/firewall problem have been proposed:

• manual configuration. In some cases it is possible to configure NATs and firewalls

so to receive inbound connections, for example by having the user manually enable

con nect ions on certain ports .

• UPnP. Another way to permit inbound connections is by means of UPnP [5]. UPnP

is a standard protocol that allows NATs and firewalls to open ports and route certain

traffic to certain hosts automatically.

• hole punching. Techniques known as hole punching or NAT traversal can be used to

establish a conneetion between two unconnectable peers. These techniques ge nerally

require the assistance of a connectable third party (either a well-known server or an­

other peer), having already a conneetion with both the unconnectable peers. The third

party provides each pee r with the other pee r's endpoint information (i.e. the external

address and port allocated by its NAT) and then both peers initiate a conneetion at the

same time. In this way each peer's NAT/firewall will allow the packets coming from

the other peer, if they are co nsidered to be part of a locally initiated connection.

2.3.1 Open issues

The presented workarounds happen to fail in various cases and for different reasons:

• manuaI configuration. Home users are often unaware that their NAT/firewall limits

the capability of receiving incoming connections or do not have the knowledge on

how to configure it to allow incoming traffic.

• UPnP. A recent measurement study [60] shows that the percentage of users having

UPnP enabled is below 20%. Furthermore, the NATs and the firewalls using it are

vulnerable to attacks, since UPnP lacks a standard authentication method.

• hole punching. Many approaches have been proposed to implement ho le punching [7,

16,58], but the results vary in relation to the particular NAT vendor, since NAT/firewall
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Table 2.1: Model parameters.

otation I Definition

n number of classes of peers .
z , number of leechers in c1ass i .
Yi number of seeders in class i.
Bj j bandwidth allocated to c1ass i by peers in c1ass j .
Bjj bandwidth allocated to c1ass i by unconnectable peers in c1ass j.
BJj bandwidth allocated to c1ass i by connectable peers in c1ass j .
bj i average download speed of a peer in class i due to the contribution of peers in c1ass j.
b'Jj average download speed of an unconnectable peer in c1ass i due to the contribution of

peers in c1ass j.
b'ji average download speed of a connectable peer in c1ass i due to the contribution of

peers in clas s j .
Dj fraction of unconnectable peers in c1ass i, constant among leechers and seeders.
Jj i fraction of BJ; that is allocated to the group of unconnectable leechers in c1ass i.

behavior is not standardized, as weil as in relation to the transport protocol used (UDP

or TCl') [16]. Furthermore, some NATs and firewalls do not allow hole punching at

all for security reasons.

To conclude, none of the techniques proposed in the literature so far solves the

NAT/firewall problem completely.

2.4 Modeling unconnectable peers

In this section, we present a mathematical model for a P2P swarming system in which a

fraction of peers are unconnectable. Our model is general enough to capture the main aspects

of different swarming systerns , and as such can be straightforwardly applied to popular file­

sharing P2P applications, like BitTorrent [21] and eDonkey [29], and to many streaming

systems derived from BitTorrent (e.g. BitTos [10], SwarmPlayer [33]).
In our analysis, all peers are able to initiate outgoing connections, whereas connectable

peers can accept incoming connections and unconnectable peers can not. Therefore we as­

sume that an unconnectable peer u can only be connected to a connectable peer c, by having

the conneetion originate from u.

2.4.1 Notation and assumptions

We consider a system where peers are sharing a single file. We assume the file to be parti­
tioned into pieces, allowing multi-part downloading, thus peers which are still in the process

of downloading, but already have part of the file, can serve this part to others. We refer to

these peers as leechers, while we call seeders those that have finished downloading the file
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E u

Figure 2.1: The allocation of bandwidth in a P2P swarming system with 3 classes.

and still remain in the system, contributing to the systern's bandwidth capacity. We study

peers' performance when the system is in steady state (i.e. when the number of peers in the
system remains constant).

In accordance with most of the recent Internet access technologies (e.g. ADSL) and
measurement studies of existing P2P systems [41), we make the common simplification that
the download capacity is not a bottleneck.

We model the P2P system as a multi-class network. A class is a set of peers which are
considered equal with respect to the particular system, both in the bandwidth they get and in
the bandwidth they provide. Classes are a useful feature which allows our model to be easily
applicable to many P2P swarming systems. For instance, in BitTorrent, classes can be groups
of peers having similar upload capacities, as the peer selection mechanism employed byeach
peer can not distinguish between two peers having roughly the same bandwidths [21).

In our analysis we make the assumption that each class i receives a given amount of
service from each other class j, in terms of download bandwidth, and provides in return a
given amount of upload bandwidth. We define Bj i as the bandwidth that class j allocates to
class i and bj i as the average download speed that a peer in class i gets from peers in class j .

The notation of our model is reported in Table 2.1 while Fig. 2.1 iIlustrates the allocation
of bandwidth in a P2P system with of 3 classes.

2.4.2 Bandwidth distribution and download speed

The total download speed di of a leecher in class i is determined by the contributions it gets
from the peers in all classes, i.e.:

n

di := Lbji.
j=1

(2.1)
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Figure 2.2: The allocation of the bandwidth B j ; among the connectable (C;) and the uncon­
nectable (Ui) Ieeehers in class i .

In a system where all peers are connectable, each Ieeeher in class i receives an equal share

bj ; of the total bandwidth B j ; , that c1ass j allocates to c1ass i , i.e.:

b, _ Bj i
) 1 -

X i
(2.2)

In a system where some peers are unconnectable, B j ; is equal to the sum of two components,

Bji and Bj;, from the unconnectable and the connectable peers respectively:

(2.3)

Assuming that each peer (connectable and unconnectable) offers the same amount of band­

width to the system, we have

Bj; := o j Bj;,

Bj; := (1 - o j)Bj;,

(2.4)

(2.5)

where D j is the fraction of unconnectable peers in c1ass j .
Let Oj ; be the fraction of Bj; that is allocated to the group of unconnectable Ieeehers

in class i (Fig. 2.2). Since the bandwidth of the connectable peers Bji is evenly distributed

among allieeehers in class i , it follows that Oj ; = 0 ; . Adversely, the bandwidth of the uncon­

nectable peers Bji is distributed among connectable Ieeehers only.
The average download speed of an unconnectable Ieeeher in c1ass i , due to the contribu­

tion of peers in c1ass j , is then given by:

(2 .6)

Likewise , the average download speed of a connectable Ieeeher in c1ass i, due to the contri-
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bution of peers in class i. is given by:

(2.7)

Once the quantities b'J; and bj; are known for all classes, the average download speeds
di and di, of an unconnectable leecher and a connectable leecher in each class i , can be
calculated as follows:

It is clear from Eqs. (2.6) and (2.7) that connectability influences peers performance and,
more specifically, the download speed of unconnectable leechers is lower than that of
connectable leechers. Furthermore, we can make the following observations:

2.5 Analysis

n

di = L b'J;,
j = l

n

di = L bj;.
j = l

(2.8)

(2.9)

I. As the fraction of unconnectable peers grows, the difference in performance be­
tween unconnectable and connectabie Ieeehers increases hyperbolically.

The difference between the average download speeds of a connectable leecher and an
unconnectable leecher can be expressed as follows:

(2. 10)

To analyze the trend of 6.j ; as a function of the fractions of unconnectable peers in
class j and class i , we distinguish between two cases:

(i) i i- j : when B j ; is the bandwidth going from a class j to another class i in the
system, 6.j ; grows hyperbolically with a; and linearly with aj, as it is visualized
in Figs. 2.3(a) and 2.3(b).

(ii) i = j: when Bj ; is the bandwidth that a class i provides to itself, 6. j ; grows
hyperbolically with a; (Fig. 2.4).

Hence, it follows that, as the fraction of unconnectab le peers in a given class i grows,
the difference in performance between connectable and unconnectable leechers in
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that class undergoes hyperbolic growth .
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simulations and the model predictions.

Hence, the download speed of connectable leechers in a system with unconnectable
peers is higher than in a system without unconnectable peers, as can be observed in
Figs. 2.3(a), 2.3(b) and Fig. 2.4.

2. Connecta ble leechers actually benefit from the presence of unconnectable peers.

Intuitively, one might think that the presence of unconnectable peers in a system would
degrade , on average, every peer's performance. However, our analysis shows that their
presence is beneficial to some peers in the system, namely the connectable peers.

If we define Gj j as the difference between the speed achieved by a connectable leecher
in a system with NATs/firewalls and that achieved by a connectable leecher in a system
without NATs/firewalls:

(2.11)

(2.12)Gj j = (---!!.L _aj ) B j j = ajaj Bj i ~ O.
1 - a j z, 1 - ai Xj

from Eqs. (2.2) and (2.7) , we have that:

2.6 Validation in BitTorrent

To assess the validity of our approach, we have evaluated our model employing a discrete­
event simulator that accurately emulates the behavior of BitTorrent at the level of piece
transfers. More specifically, we have performed various simulations of simple BitTorrent
swarrns with two classes (c1ass 1 and c1ass 2) and number of peers ranging from 100 to
600. For the analytical analysis, we have computed the bandwidths Bj j according to the
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Figure 2.6: The download speed distribution (CDF) for both connectable and unconnectable
leechers in c1ass 1 from a simulation run when (a) 0:1 = 0.4 and (b) 0:1 = 0.9.

BitTorrent model proposed by Meulpolder et al. [44], and then derived the average downlo ad

speeds of an unconnectable peer and a connectable peer as described in Eqs. (2.8) and (2.9).

Fig. 2.S plots the simulation results against the model predictions for a swarm consisting of

SSOpeers. Class I has SOO peers with upload capacity /11 = SI 2KB/s, and c1ass 2 has SO peers

with upload capacity /11 = 1024KB/s. In both classes, seeders represent 10% of the peers.
The average download speed of peers in class 1, per type (connectable or unconnectable), is

computed during the steady state. For each value of 0: 1, we repeated the simulation 10times,
and calculated the mean for the speeds over all runs. The confidence interval s (computed

with confidence level 9S%) for the mean values of the speeds for each simulation run are

also plotted, but they are hardly visible due to their small size. Other simulations performed

with different setups (e.g. different swarm size and peers capacities) gave similar results.

We can notice that, although the trends described by our model still hold, the predictions

are somehow a little "pess imistic" , since the performance gap between unconnectable and
connectable leechers, as resultin g from the simulations, is often smaller than expected. This

might depend on the fact that, as 0:1 grows, unconnectable leechers stay longer in the sys­

tem, becoming a more reliable souree for pieces in respect to connectable leechers, joining

and leaving faster. As a consequen ce, a connectable leecher will, on average, interact with

unconnectable leechers with a probability higher than 0:1. which determines a reduction in

the performance gap between the two types of peers.

Furthermore, in our model we made the assumption that, at any moment , all the available

upload bandwidth can be consumed by the peers, which is not the case in real systems (for

instance, the upload bandwidth of the newly joined peers cannot be used by anyone until

they have completed the download of their first piece).

Figure 2.6 shows the cumulative distribution of peers' speeds in a typical simulation
run, for different values of 0:1. The dotted vertical lines represent the mean values for the

speeds. We can observe that the gap between the speeds of the two types of peers increases
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when 0:1 goes from 0.4 to 0.9. In addition, we can also observe that, when the fraction of

unconnectable peers is larger, the download speed of connectable leechers exhibits a higher

variance, while the opposite happens to the download speed of unconnectable leechers.

2.7 Bandwidth allocation policy

In this section, we propose a different type of policy for the allocation of the system's band­

width that takes into account the presence of unconnectable peers, as weil as their fraction,

in order to mitigate the performance issue . In doing so, we find that there is an intrinsic

limitation in the speed improvement that unconnectable leechers can achieve, regardless of

the bandwidth allocation policy employed.

2.7.1 Preferential uploading

Bandwidth allocation policies can be designed to achieve two distinct and often conflicting

goals: a) maximizing the performance of individual peers, and b) maximizing social welfare

(the performance across all peers) [57]. It has been argued that the value judgments of system

designers determine which goal the system is designed to achieve [54].

One option is to give priority to goal a) and, for instance, leave the system as it is, with

connectable leechers downloading faster. This strategy is also justified by the fact that, being

them globally reachable, connectable peers could potentially contribute more in distributing

the shared file. However, a number of studies (see, for instance, [35] and [41)) show that the

peers downloading at high speed are also those leaving the system sooner, thus providing

only little contribution in return.

Another option is to pursue goal b) and try to maximize social welfare, rather than the

performance of individual peers, so that an overall satisfactory quality of service is reached

in the system. In VoD for example, peers are watching the video file while still in the process

of downloading it. Hence, there is no need for a connectable leecher to download much faster

than an unconnectable leecher (i.e. at a download rate that considerably exceeds the video

playback rate). Instead, it is necessary to provide all peers with a sufficient download speed

that allows them to enjoy the experience of the video without any stall times.

Here we opt to improve social welfare and therefore we seek a strategy for allocating

peers bandwidth that (i) minimizes the performance gap between connectable and uncon­

nectable leechers and (ii) prevents the opposite situation to be created (i.e connectable leech­

ers downloading slower than unconnectable leechers). This can be achieved by providing an

identical average performance to both types of peers. More precisely, the bandwidth in the

system can be allocated such that, for any class i, the following holds:

b'j; = bj; = bj;, for j = 1,2 , ..., n (2.13)
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For Eq. (2.13) to hold, we need a different policy for the allocation of (connectable)

peers bandwidth, i.e. a differe nt value for the allocation factor Oji'
However, in trying to allocate the bandwidth B'ji differently, we came across an impor­

tant result , which is outlined in the following theorem.

Theorem. It is impossible for all leechers in class i to obtain an equal bandwidth contribu­

tion from the peers in class j ij O i + O'j > 1.

Proof In order to achieve Eq. (2.13), the bandwidth going to the group of unconnectable

leechers should be O'iBj i. From Fig. 2.2 and Eq. (2.5), this bandwdith equals to:

Therefore:

a i
Oji = ---.

1 - O'j

(2.14)

(2.15)

Since Oji represents the fraction of B'ji which is allocated to the unconnectable leechers, it

must hold that Oji S 1. This is only true when:

a i + Oj S 1. (2.16)

When this is not the case, it is impossible to ac/lieve the equality in Eq. (2.13) and there is

no way from preventing unconnectable Ieeehers from having a worse average performance

than connectable leechers. D

In the particular case in which the fraction of unconnectable peers is the same in all n
classes (ai = 0' for i = 1,2, ... , n ), Eq. (2.16) becomes:

0' S 0.5. (2.17)

Interestingly, this is the same upper bound as the one found by Mol et al. [47] for the un­

connectable peers to have a fair sharing ratio . We believe that ours and their observations are

a consequence of the same phenomenon. When the number of unconnectable peers exceeds

that of the connectable peers, an unbalanced situation is created with a twofold implication.
On one hand, the bandwidth provided by connectable peers to unconnectable peers is not

sufficient to sustain them (thus causing their performance to drop). On the other hand, the

unconnectable peers are too many to upload, to a minority of connectable peers, as much as

they need to download. This results in a lower sharing ratio achieved by the unconnectable

peers.
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Table 2.2: Ratios bi/bii for the standard uploading policy vs the preferential uploading policy
for different values of a i '

a i standard /3i = 0.5 /3i = I /3i = 4 /3i = 16 all peers

0.3 1.61 1.36 1.25 1.09 1.03 1.00
0.4 2.11 1.61 1.42 1.14 1.04 1.00
0.5 3.00 2.00 1.67 1.22 1.06 1.00
0.6 4.75 3.6 1 3.19 2.58 2.34 2.25
0.7 8.78 7.39 6.82 5.94 5.58 5.44
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Figure 2.7: The download speed of leechers in c1ass i, due to the contribution of peers in
c1ass i itself, when (a) only seeders use the new policy (/3i = 1) and when (b) both leechers
and seeders do.

In the next two sections we analyze the performance of the two groups of peers (un­
connectable and connectable) when the preferential uploading policy is implemented by the
seeders only and by all peers respectively.

2.7.2 Seeders only

In relatively healthy networks (for instanee where there is a high fraction of seeders, or a
low fraction of unconnectable peers, or no stringent quality of service requirements), a rea­
sonable welfare for all peers can be reached even by having only the (connectable) seeders
employ the new bandwidth allocation policy. Fig. 2.7(a) shows the average speeds of leech­
ers in c1ass i when the new policy is used, for a scenario in which the number of seeders is

equal to that of leechers. Table 2.2 reports the ratios bi/ bY; between the speed of connectable
and unconnectable peers for different values of a i when different policies are used. The left­
most column shows the results when the standard uploading policy is used, while the next

four columns show the results when the preferential uploading is used by seeders only (for
different seeders/leechers ratios /3i )' Finally, the right-most column shows the results when
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the preferential uploading is used by all peers. For the "seeders only" case. we can notice

that, the lower the seederslleechers ratio, the closer the preferential uploading policy is to the

standard uploading policy. On the other hand, the larger the seeders/leechers ratio, the lower

the gap between the average speed of an unconnectable and a connectable leecher. Also we

observe that, when the fraction of unconnectable peers exceeds 0.5. the two average speeds

tend to diverge.

2.7.3 All peers

P2P networks in which there are stronger quality of service requirernents, such as VoD,

might benefit from the adoption of the preferential uploading policy by both (connectable)

seeders and leechers. In this case. the ratio of seeders does not influence the performance

gap between the two groups of peers. As we can see in Fig. 2.7(b) and Table 2.2. when the

fraction of unconnectable peers is lower than the critical value of 0.5, there is no difference

between connectable and unconnectable leechers, as they achieve the same average perfor­

mance. When the fraction of unconnectable peers exceeds of 0.5. equaI performance can not

be achieved any longer and the difference in performance grows again hyperbolically.

2.7.4 Considerations

Connectable peers can estimate the fraction of unconnectable peers in the system by making

a conneetion back to the peers that conneet to them. In this way, they can adapt their own

allocation factor c5j i depending on both the fraction of unconnectable peers and the specific

bandwidth allocation policy.

However, we want to point out that it is necessary to be extremely careful in the design

of a system where peers use a preferential uploading policy. Even though the policy has the

specific purpose of restoring the performance gap between connectable and unconnectable

leechers, the fact that peers actually prefer uploading to unconnectable leechers can lead

to the opposite situation, i.e. connectable leechers downloading slower than unconnectable

leechers. This can happen, for example, if connectable peers overestimate the fraction of

unconnectable peers. Furthermore, it has to be noticed that connectable peers only get con­

nected to the specific unconnectable peers that initiate the conneetion to them. If connectable

leechers cannot get from these peers the needed pieces, they might experience a low quality

of service.

2.8 Related work

Several analyticaI studies have been proposed to model various aspects of P2P systems. Ge

et al. [66] analyze performance and scalability of a generic P2P system and suggest that it
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can tolerate a significant amount of free-riders. Qiu et al. [53] use a fluid model to study
the performance of BitTorrent when peers have homogeneous capacities and Meulpo lder et

al. [44] extend this work to incorporate the dynamics of peers having different bandwidths.
Guo et al. [41] study the performance of BitTorrent through modeling and trace analysis
and they discover some faimess issues related to fast and slow peers. However, none of

these studies analyze the effects of firewalls and NATs in P2P systems.
So far, only little research has been conducted on the topic. Skevik et al. [35] examine

data collected through a BitTorrent crawler, finding evidence that unconnectable peers in­
deed have lower average speed compared to connectable peers, and propose the setup of

proxies to increase unconnectable peers' performance. Shami at al. [34] study the impact of
peer characteristics (namely bandwidth and connectability) on the scalability of streaming
P2P networks and conclude that such systems can not scale in the current Internet environ­

ment. At the analytical end, Mol et al. [47] demonstrate that, in a generic P2P file-sharing
system, it is impossible to prevent free-riding when more than half of the peers are uncon­
nectable. Liu et al. [24] are the first who analyze the performance issues of unconnectable
peers in BitTorrent, confirming some of our results on the disparity between the performance
of unconnectable leechers and that of connectable leechers. While their model is specific to
BitTorrent, OUfS is more general and shows that this phenomenon can affect a large c1ass of
P2P swarming systems, including streaming applications.

2.9 Conclusion

In this chapter, we have presented a mathematical model for a generic P2P swarming system
in which a certain fraction of peers are located behind a firewall or NAT. We have analyt­
ically shown that being unconnectable lowers the performance of a peer to the advantage

of those that are connectable, and this difference increases hyperbolically as the fraction of
unconnectable peers increases. More importantly, we have shown that, whatever policy for
the allocation of connectable peers bandwidth is used to reduce this gap, it will still be im­
possible to provide equal performance to unconnectable and connectable leechers if more
than a certain fraction of peers are unconnectable.
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Chapter 3

BitTorrent-based P2P approaches for
VoD: a comparative study

As mentioned in the introduetion of this thesis , BitTorrent was not designed for streaming
and adapting it to VoD poses two conflicting goals : satisfying the fundamental QoS require­
ments for streaming, while still maintaining the high efficiency of the original BitTorrent

protocol.
Most of the VoD designs inspired by BitTorrent have tackled the problem by revising the

components of BitTorrent commonly acknowledged for its high efficiency: piece selection
and peer selection. In particular, greater attention has been paid to piece selection, as the
use of local rarest-first would result in long startup delays [50]. The piece selection policies
for VoD proposed in literature can be broadly classified into: window-based, probabilistic,

and priority-based. Window-based policies work by defining a sliding window, just ahead
the playback position, within which pieces are downloaded, generalIy according to alocal
rarest-first rule. With probabilistic policies, pieces are downloaded according to some proba­
bility function, which normalIy is biased towards the first piece not yet downloaded. Finally,
priority-based policies give priority to pieces which are close to being played . For what con­
cerns peer selection, most VoD proposals [10,20,51,63] maintain the default BitTorrent's

policy, based on direct reciprocity. On the other hand, Mol et al. [33] argue that this policy
is not the best fit for VoD applications, as it may be difficult for peers with a lower level of
progress to reciprocate peers with a higher level of progress. To remedy that, they propose a
new peer selection policy based on indirect reciprocity, in which peers prefer uploading to
other nodes that have forwarded pieces to others at the highest rate in the past.

However, alI these approaches have been evaluated under different and limited scenarios.
Hence, some methods might perform better than others under a certain set of conditions and
worse under another. Furthermore, it is unclear how welI each of them would work in real
world conditions, where, for instance , peers have heterogeneous bandwidths and may reside
behind a NAT or a firewall. Similarly, it is still unknown to what extent each approach realIy
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maintains the original BitTorrent's incentives for cooperation and whether it is as secure

against malicious attacks. Exposing the pros and cons of each approach can guide in select­

ing the most appropriate protocol to use in a given environment. Likewise, understanding

the behavior of different BitTorrent-based VoD protocols will help researchers and system

designers in improving current approaches and/or designing better ones.

In this chapter, we take a first step in answering these questions. We study and corn­

pare different peer selection and piece selection policies used by the Bit'Iorrent-based VoD

approaches proposed so far, under a wide range of conditions reflecting real world environ­

ments, and under different system workloads. Our analysis shows that different approaches

all share some characteristics, such as that the current methods used to incentivize coop­

eration, based on bandwidth reciprocity, are not suitable for scenarios with heterogeneous

peers or peers behind firewalls and NATs. Furthermore, we demonstrate that a trade-off ex­

ists between QoS on one hand, and resilience to freeriding and malicious attacks on the

other. In particular, we find that indirect reciprocity is more robust against freeriding than

direct reciprocity, as it was conjectured in [33), but it is less secure against attacks. For what
concerns piece selection, the probabilistic policy generally seems to provide the best com­

promise between QoS and resilience to attacks and freeriding, at least in a system where

all participating peers retrieve the file in streaming mode. On the other hand, when peers

doing streaming coexist with peers doing traditional file transfer, the former generally ex­

perience worse QoS than they would in a system with only streaming, independently from

the specific protocol adopted by the VoD nodes. On the contrary, peers doing file transfer

reach faster download rates than they would if there were no streaming nodes. In particular,

the worst performance for streaming nodes (and thus the best performance for file transfer

ones) is achieved when peers employ the window-based policy.
To summarize, in this chapter we make the following contributions:

I. We propose a simulation based methodology which aims at putting forward a common

base for comparing the performance of different BitTorrent-based P2P protocols for

VoD under a wide range of conditions (Section 3.3);

2. We find out that, in general, a trade-off exists between QoS and freeriding resilience

and between QoS and security - i.e. a more QoS oriented design is more susceptible

to freeriding and/or malicious attacks (Sections 3.4-3.5);

3. We discover that the current approaches to incentivize cooperation result in overall
bad performance when peers have heterogeneous bandwidths or are unconnectable

(i.e. behind a firewall or NAT) (Sections 3.6-3.7);

4. Furthermore, we show that the coexistence of nodes doing streaming and nodes doing

traditional file transfer is disadvantageous for the former and advantageous for the
latter (Section 3.8);
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5. Finally, we discuss the implications of our findings for future system designs and for

service providers (Section 3.9).

3.1 Related work and motivation

Previous works on P2P VoD systems mostly focused on studying and improving their per­

formance, under the assumption that every peer would donate all its upload capacity and
could communicate with every other peer in the system. Early studies [19,27,50], for exam­

ple, show that, under this assumption on the nodes, the P2P approach is potentially effective
in distributing on-demand content and providing users with good QoS. On the same line of
work, Yang et al. [65] focus on the load balancing problem among P2P nodes as weil as on
the efficient scheduling of piece requests in order to further enhance QoS.

However, we note that these previous efforts do not take into account some important

factors that can drastically reduce the performance and scalability of P2P systems. The first
of these factors is user contribution. ft has been argued that peers will not contribute their
resources (namely files and upload bandwidth) unless they are given an incentive to do
so. A study conducted on the Gnutella P2P system [11] seems to confirm this hypothesis,
as it reports that a high percentage (> 70%) of users freeride (at the time, Gnutella did
not provide any incentives for users to contribute). On the other hand, it has been shown
that in Bit'Iorrent, which has an embedded incentive mechanism, only 10% of the users
freeride [67]. BitTorrent also makes nearly optimal use of peers' upload bandwidth [14].
Therefore, it is no surprise that it has attracted a lot of research in the past decade, and many
recent works on P2P VoD have been inspired by its design [10,20,33,51,52,63].

Another important aspect that has received little attention in P2P streaming literature is
the heterogeneity of P2P nodes. Part of this heterogeneity is intrinsically related to users'
Internet access rneans, which may result in different bandwidth capacities as weil as reduced
connectability of some nodes (hosts residing behind a firewall or a NAT, for exarnple, cannot
receive inbound connections, unless the firewalllNAT is configured to do so). In open sys­
tems there is also another kind ofheterogeneity related to the protocol used. In the BitTorrent
ecosystem, for example, it is not uncommon to have some nodes performing traditional file
transfer, while some others are requesting the same file in streaming mode (nowadays, the
streaming functionality is supported by many BitTorrent clients, such as BitTorrentDNA [I],
JlTorrent [2], and TribIer [4]).

To the best of our knowledge, there is only one previous work that recognized the impor­
tance of some of the aforementioned aspects for VoD systems [61]. In particular, the authors
focus on incentives and peer unconnectability. To incentivize users to contribute, they pro­

pose the setup of a special infrastructure to keep track of individu al peer contribution. For
what concerns unconnectable nodes, they introduce an approach to make these peers dis­
coverable by connectable ones. However, we will show in Section 3.7 that, already when
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the fraction of unconnectable nodes is a mere 30%, this is not enough to solve the problem.

The study presented here is different and complementary to these previous efforts in that

it aims at understanding to what extent a P2P (and, more specifically, a Bit'Iorrent-inspired)

approach is suitable for VoD, when the aforementioned factors come into play.

3.2 Protocol policies for BitTorrent-based VoD

In this section, we give an overview of the piece selection and peer selection policies used

in the Bit'Iorrent-based VoD protocols we consider.

3.2.1 Piece selection policies

A piece selection policy determines the next piece of the video file a peer selects for down­

load. The piece selection policies for VoD proposed in literature try to find a trade-off be­

tween in-order download (necessary for QoS) and high bartering opportunities among peers

(to ensure an efficient peer bandwidth utilization). In order to do so, they are all equipped

with a sequentiality parameter, which can be tuned to favor one aspect or the other. In this

work, we consider three categories of piece selection policies: I) window-based 2) proba­
bilistic , and 3) priority -based, as described below.

Window- based piece selection (WI )

Window-based solutions typically employ a sliding window within which pieces are cho­

sen [52]. The window advances from the beginning to the end of the file according to the

sequential download progress at the local peer. Normally, the window starts at the first piece

not yet downloaded. Within the window, rarest-first piece selection is often applied. Natu­

rally, a smaller window ensures close to sequential piece retrieval, but reduces piece diver­
sity and, hence, bartering opportunities among peers . On the other hand, a larger window

allows for higher bartering opportunities among peers but increases both their startup delays

and their chance of not being able to download the pieces before their playback is due. The
size (in pieces) of the window represents the sequentiality parameter of this piece select ion

policy and we denote it with w.

Probabilistic piece selection (PROB)

In probabilistic piece selection, pieces are chosen in relation to some probability distribution,

generally with a bias towards the first pieces not yet downloaded. In this work, we consider

the policy proposed in [48], where a Zipf probability distribution is used. Specifically, the

probability that a peer p selects to download a piece k is proportional to (k+ 1- ko)- Owhere

ko is the index of the first piece peer p has not yet downloaded. Similar to the window size w
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for the window-based policy, () represents the sequentiality parameter of this piece selection

policy and can be tuned to provide close to sequential piece retrieval, but low bartering
opportunities among peers (large ()), and vice versa (small ()).

Priority-based piece selection (PRIO)

With priority-based approaches, priority is given to pieces whieh are close to be played . We
use the method presented in [33], where a peer, whose current playback position is p, will

request a piece i on the first match in the following list of sets of pieces (known as priority

sets) :

• high priority: p ~ i < p + h: in-order piece selection if the local peer has already
started playback, rarest first otherwise;

• mid priority: p + h ~ i < p + 5h: with rarest first piece selection;

• low priority : p + 5h ~ i : with rarest first pieee selection.

In these definitions, h denotes the size (in pieces) of the high priority set and represents the
sequentiality parameter of this piece selection policy. Similarly to the previous policies, the
parameter h ean be tuned to give more emphasis to sequential piece retrieval (large h) or
high bartering opportunities among peers (small h).

3.2.2 Peer selection policies

A peer selection policy determines how a node selects another node to upload data to. In
BitTorrent-based systems, the peer selection poliey has the task of incentivizing peer coop­
eration, and therefore it is usually designed to favor good uploaders. In this work, we will

consider two policies, based on direct reciprocity and indirect reciprocity, respectively.

Direct reelprocity

When a node uses peer selection based on direct reciprocity, it will upload to other nodes
that have recently uploaded to it at the highest rates. As mentioned in the Introduetion, this
is the standard peer selection poliey employed in BitTorrent.

Direct reciprocity is easy to implement: eaeh peer takes its decisions only based on

the information locally available (i.e. the measured upload rates of other nodes) and no
long-term memory is required (normally peers re-evaluate the upload rates of other nodes
every 10 seconds). Many studies show that it works suceessfully in the context of traditional
file transfer [8,31 ,67]. However, it has been argued that in P2P VoD systems, due to the
somewhat in-order download progress of peers, it is more difficult for peers with lower
degrees of progress to reciprocate peers with higher degrees of progress [33]. Consequently,
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Figure 3.1: Data flow and feedback flow for indirect reciprocity.

it would be more difficult for a peer to detect whether another peer is freeriding or simply
has no interesting piece to barter for.

Indirect ree lprocity

When a node uses peer selection based on indirect reciprocity, it will upload to other nodes

that have recently forwarded data to others at the highest rates. In this work, we use the

method introduced in the give-to-get (G2G) protocol [33]. In G2G, a peer a discovers the

forwarding rate of a child node b by periodically asking its grandchildren about the pieces

received from b. Note that the child b is not asked directly as it could make false claims. This

process is depicted in Figure 3.1.

Indirect reciprocity is intuitively more suitable to a VoD scenario, since it does not nee­

essarily require nodes with lower levels of progress to reciprocate nodes with higher levels
of progress. However, since each peer needs to gather information from other nodes, it is

more costly to implement (especially in presence of NATs and firewalls) and is potentially

more vulnerable to various types of attacks, as we will show in Section 3.5.

3.3 Methodology

In this section, we describe the approach we use to compare and study different VoD pro­

tocols. First, we introduce some of the terms we wil! employ in our analysi s, as weil as the

model of the system we consider. Then , we illustrate in detail the experimental setup for

our analysis and how we tuned the sequentiality parameters of the piece selection policy
considered.

3.3.1 Definitions

In this subsection, we introduce the most important definitions which are used throughout

the whoIe chapter. The first three definitions are related to user behavior, which are followed
by definition s closer to the system level.
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A peer whose upload capacity is set to 0 is called freerider. A freerider follows the

specific protocol in all aspects. Freeriders generally correspond to users who configure their
network access in order not to share their upload capacity. The behavior of freeriders is

tenned as freeriding. A malicious peer does not follow (some of) the rules of the specific
protocol. Finally, an honest peer follows all the rules of the specific protocol and has upload
capacity larger than O. Honest peers do not try to manipulate the protocol and, whenever

possible, share all their upload capacity.
An unconnectable peer does not possess a globally reachable address. Usually, this hap­

pens when the peer resides behind a NAT or a Firewall that is not configured to accept

incoming connections. A missed piece is a piece whose download cannot be completed be­
fore the time it is due to be played. A node p is said to be interested in another node q when
q possesses a piece that p does not and has not missed. Similarly, q is said to be interesting
for p.

3.3.2 System model during steady state

We consider a system where the participating peers can retrieve the stream of a particular

video file, of playback rate Rand size F, which is split into n pieces of identical size. The
system is assumed to be in steady statel , with peers joining at a constant rate À and leaving
as soon as their download is complete. For the purpose of the analysis, we also assume that
the download capacity of peers is not a bottleneck and can be considered to be infinite. The
average upload capacity of peers in the system is denoted by /1. In addition to the peers,
the system contains a number of servers (or seeders) which contribute an aggregate upload
capacity of U';

Given the above notation, it is easy to see that the expected download speed u of a peer
in steady state is

Us
u = N +/1,

where N is the number of peers in the system. From Little's Law it follows that

N =À
F
u '

(3.1)

(3.2)

where FJuis the expected download time, and thus N increases as the arrival rate À of peers
increases.

Given the above observation, it is clear that, if the server bandwidth U; is constant,
the download speed u of peers in steady state decreases as their arrival rate À increases.
This would lead to an unfair comparison among scenarios characterized by different arrival

I a system is said to be in steady state when, although peers might join and leave , the total number of peers
remains constant over time .



34

rates , with peers in scenarios with small arrival rates having faster download speeds and,

consequently, better QoS, than peers in scenarios with higher arrival rates. To make the

comparison fair, the server bandwidth needs to be dimensioned to the peer arrival rate such

that, in all scenarios, peers reach a certain desired steady state download speed denoted with
u' :

o. = (1 - ~:) ÀF,

where this formula is obtained by combining Eqs. (3.1) and (3.2). For the system to be able

to provide a good QoS, it is necessary to have u' ~ R. In particular, the closer u' is to R,
the lower the server bandwidth. If we express u' as a function of R as follows

u" = "fR, with "f ~ 1

then the required server bandwidth U, can be calculated as

In this way, once the characteristics of the system are known, the service provider only needs

to set a value for the "ï parameter that suits the needs of the system.

3.3.3 Experimental setup

We compare the performance of different schemes of peer and piece selection policies by

means of simulations.
For this purpose, we have extended the BitTorrent simulator designed by Microsoft

Research [14] , in order to support VoD. This is a very detailed simulator, where all the

elements of a BitTorrent system are modelled with great accuracy, from the creation of

the overlay to the exchange of piece between peers. The overlay is created by means of

a tracker module operating in the classical BitTorrent fashion outlined in the introduc­

tion to this thesis: when it is contacted, the tracker returns a list of random nodes to the

requesting peer. Due to its great level of accuracy in reproducing the behavior of Bit­
Torrent system s, this simulator has been widely used, also for simulating BitTorrent-like

VoD protocol s [37,63,65]. Our extension supports all the piece selection policies pre­

sented in Section 3.2.1 and allows for the system to either adopt direct reciprocity or

indirect reciprocity as peer selection policies. We have made our extension available at

http ://www .pds .ewi .tudelft .nl/dacunto/research for those interested in
continuing this research .

The settings for our simulations are shown in Table 3. I. We consider a case where the
service provider has set up one seeder (or server) which is always online. For the computa­

tion of the server bandwidth Us, we use "ï = 1.3, in order to compensate for f1uctuations in
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Table 3.1: Simulation Setting s

Parameter I Value

Video playback rate R 800 kb/s
Video length L 50 min
Simulation time betwee n 250 and 750 min (5L and 15L)
Piece size Ps 256 kB
Initial buffer B 20 pieces (PROB) / w (WIN) / h (PRIO)
Upload rate JL 1000 kb/s ( 1.25R)
# upload slots 4

download speeds and to account for the fact that downloaders are not always able to upload
at their full capacities. To decide when playback can safely commence, we use the strategy
introduce d in [20]. Specifically, a peer will start playback only when it has obtai ned all the

pieces in an initial buffer of size Band its current sequential progress' is such that, if main­
tained, the download of the file will be completed before playback ends . The buffer size
B is equal to w or h for the window-based and the priori ty-based piece selection policies,
respectively, and is set to 20 pieces for the probabilistic one. The values for w and h used in
the simulations have been selected according to the method presented in the next subsection.

The performance of any combination of peer and piece selection policies is analyzed
using the following two metrics:

• continuity index, defined as the ratio of pieces received before their deadline over the
total number of pieces;

• startup delay, defined as the time a user has to wait before playback starts.

Each simulation run is executed 15 times, and then average values and confidence intervals
(with confidence level of 95%) for the above metrics are computed. The lower the arrival
rate, the longer it takes for the system to reach the steady state. Therefore, simulations times
are longer for lower arrival rates . Furthermore, for the results we have only considered the
peers who have joined after the first half of the simulation time and before the last L minutes
from the simulation end.

3.3.4 TIming the sequentiality parameters for the comparison

Reeall from Sectio n 3.2. 1 that each piece selection policy for VoD is characterized by a
sequentiality parameter which allows one to give more emphasis to sequential piece re­
trievalor to high bartering ability among peers . In order to fairly compare these policies

2a peer 's sequentia! progress is the speed at which the index of the first piece in the file not yet downloaded
grows and it represents the rate at which a continuous stream is received [501. It should not be confu sed with
the sequentiality parameter (defined in Section 3.2. 1) that characteri zes each piece selection policy.
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Figure 3.2: A scatter plot of startup delay vs continuity index for different piece selection

policy instances. Smaller points correspond to smaller values for the sequentiality parame­

ters of each piece selection policy. Peer arrival rate is 0.005 peer/s and the remaining simu­

lation settings are as in Table 3.1.

against each other, they need to be "tuned" in such a way that they exhibit a similar level

of sequentiality. To do so, we have performed several experiments where each policy uses a

wide range of values for its sequentiality parameter. For these experiments, the fraction of

freeriders was set to 10%, as this represents a typical value in BitTorrent systems [67] and

peer arrival rates are as follows : À =(>'0, >'b >'2, >'3) =(0.005, 0.0 I, 0.05, 0.1) peers/s. The

smaller values (0.005, 0.0 I) account for the case of not very popular videos, which generate

only little load in the system, while the larger values account for the case of very popular

video, which thus generate higher load.

To find a common baseline, we use the following approach: we select the sequentiality

parameter for each piece selection policy such that the startup delays experienced by honest

peers within each of them are similar. We first focus on the direct reciprocity case and then,

based on it, we tune the sequentiality parameters for the case of indirect reciprocity.

Direct reciprocity

Given the setup introduced in Section 3.3.3, we have tested the following values for the

sequentiality parameters:

• w : from 10 to 60, with step 5 (this set is denoted by W);

• (): from 1.5 to 4, with step 0.25 (this set is denoted by 8);

• h: 10, to 60, with step 5 (this set is denoted by H).
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As we can observe from Figure 3.2, the instances that produce short startup delays gen­

erally determine low continuity indexes as weIl. This confirms that a trade-off indeed exists

between sequentiality and bartering ability among peers (and thus between short startup

delay and high continuity index).

To select our policy instances, we start from the window-based one . For this policy,

increasing the sequentiality parameter w means longer startup delays but also higher con ­

tinuity index (Figure 3.2 and Section 3.2.1 ). We select the smallest sequentiality parameter

w for which at most 10% of the honest peers are experiencing a continuity index Iess than

0.95 . This choice is motivated by Habib et al. [28]: the user's overall perceived video qual­

ity is considered very good when the continuity index of a stream is not less than 0.95. This

selection leads to w' = 40.

Then, we calculate the Euclidean distance between the startup delay values of this par­

ticular instanee of the window-based policy and the startup delay values of the other two

policies, and select the istances that exhibit the smallest such a distance. Specifically, having

defined with D W
' = (Do', D'{, D:{, Dj') the vector containing the values for the startup

delays obtained with arrival rates À for the window-based policy characterized by w' = 40,

and with DO =(Dg, Df, Dg, Dg) and D h =(DS, D~, D~, D~) the startup delay veetors for

the generic probabilistic and priority-based policies, respectively, we find the veetors D O'
and tr: most similar to D W

' as follows:

3

D O' = min \ " (Dk' - D~)2 ,
OES Z::

k=O

and
3

h ' . L hD = min \ (Dk' - Dk )2.
h E H

k=O

Note that technically this means that for all parameters from the sets e and H we take the

magnitude of the four-dirnensional vectors D Oand o : and choose the one which has the

most similar magnitude to that of D W
' . Using this method, we obtain that the window-based

policy characterized by w' = 40 is mostly similar to the probabilistic and the priority-based

policies characterized bye' = 2 and h' = 25, respectively. Figure 3.3 shows the startup

delay and the continuity index for honest peers when the three policies use these selected

values for their sequential parameters.

Indirect reciprocity

In the case of indirect reciprocity we have chosen, for each piece selection policy, a value

for the sequentiality parameter such that the startup delay of honest peers is similar to that of

the same policy in the case of direct reciprocity. To evaluate similarity, we have again used

the Euclidean distance. This approach led to the following values: w' = 30, e' = 2, and

h' = 20, which, as we can see in Figure 3.3, exhibit equal or slightly lower startup delays
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Figure 3.3: Performan ce of honest peers with piece selection policies using the selected
sequentiality parameters (Table 3.2).

as their counderparts in the case of direct reciprocity.
The selected values for the sequentiality parameters for both indirect and direct reci­

procity are summarized in Table 3.2. Unless otherwi se stated, we wil! use these values in

the remainder of this chapter.

3.4 Freeriding resilience

One of the key factors for the success of BitTorrent is its effective incentive mechanism
which induces peers to contribute bandwidth while downloading. This has motivated re­
searchers to apply the same design to the VoD case. However, to the best of our knowledge,
the research community stil! lacks of a clear understanding of whether, once applied to VoD,
this mechanism yields to the same degree of freeriding resilience as the original BitTorrent
protocol. In order to verify that, in this section, we analyze the performance of each combi ­
nation of piece and peer selection policy as we vary the fractions of freeriders. We wil! first
analyze the case of direct reciprocity and then the case of indirect reciprocity.
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Table 3.2: Setups for the Sequentiality Parameters

Direct reciprocity Indirect reciprocity

Figure 3.4 plots the continuity index and start up delay for different fractions of freeriders .

As we can observe, when the fraction of freeriders is small ( 10%), all the policies succeed in

providing optimal playback continuity (continuity index almost 1) to hone st peers. However,

as the fraction of freeriders increases, thei r continuity index worsens, especially for low ar­

rival rates. This can be explained as follows. When the arrival rate is low, newly joined peers

have a harder time in reciprocating older peers, because the latter have a significantly higher

level of progress. As a consequence, it is difficult for an older peer p to distinguish between

a freerider and a newly joined peer, who, although willi ng to reciprocate, is not doing so

because it does not have any inte resting piece for p. Intuitively, reducing the sequential­

ity of the piece selection policy will increase the bartering ability of peers, thus improving

freeriding resilience. We have analyzed in more detail the relationship between sequentiality

and number of bartering partners for different peer arriva l rates by means of mathematical

analysis, for which we refer the reader to Appendix A. Figure 3.5 demonstrates our analysis

for the window-based piece selection policy; with low arrival rate even a large window size

would result in only a few bartering partners.

For what co ncerns the specific piece selection policies, the probabilistic one performs

the best, providing the highest continuity index for honest peers , and a relatively low conti­

nuity index for freeriders. The priority-based policy, on the other hand, determines the worst

continuity indexes for honest peers. This is due to the fact that, different from the window­

based and probabilistic ones, in the priority-based policy, the down load point is relative to

the current playback position, rather than the first piece not yet downloaded. Hence, there

is a "less safe" distance between the download progress and the playback progress, which

causes peers to miss pieces more frequently.

Turning our attention to startup delay, we observe that , while for low arrival rates the

probabilistic policy provides the shortest startup delays to honest peers, for higher arrival

rates the window-based policy performs the best. Thi s is due to the fact that, with the prob­

abilistic approach, peers tend to download also piece s which are farther away. This will

increase their bartering ability when peer arrival rate is low but it will slow them down

when the arrival rate is high. In fact, in the latter case, down loading pieces farther away is

unnecessary, since peers have considerably more chance to meet peers with a similar level

h'
e:
w'

3.4.1 Direct reciprocity

25
2

40

20
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Figure 3.4: Performance of honest and freeriding peers in a system using direct reciprocity
with different fraction s of freeriders .

of progress. Finally, we observe that in all cases freeride rs experience much lange r startup

delays when the probabilistic policy is used, thus reducing their incentive to freeride even

further.
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Figure 3.5: Expected number of bartering partners for the window-based piece selection
policy with different window size and peer arrival rate . The parameters are taken from Table
3.1.

3.4.2 Indirect reciprocity

Figure 3.6 shows the simulation results when using indirect reciprocity. We observe that, in
general , this policy provides better QoS to honest peers, both in terms of continuity index
and startup delay, than direct reciprocity. At the same time, freeriders experience worse

performance. We also observe a lower negative influence of low arrival rates on honest
peers. This is due to the fact that peers are rewarded for forwarding, not for bartering. To
summarize, we can say that indirect reciprocity works better for VoD than direct reciprocity,
for what concerns freeridi ng resilience.

3.5 Sybil attack to indirect reciprocity

In this section, we focus on a potential vulnerability introduced by the indirect reciprocity­
based approach , namely the Sybil attack . Reeall that, in a system with a peer selection policy
based on indirect reciprocity, a peer uploads to those peers that have recently forwarded data
to others at the highest rates (Section 3.2.2 ). Therefore, a malicious peer b can game the
system by first creating Sybils Cl, ... , Cn which act as b's children. Whenever b downloads
a piece from another peer a, each of b's children c, immediately reports to a that b has
forwarded pieces to it at a fast rate. From a's perspective, b becomes a fast uploader and
hence a keeps uploading to b in the future rounds . As aresuIt, the maliciou s peer b can keep
downloading pieces without any incentive to actually forward or upload any data to other
peers; in other words, b is a freerider. Since this is a "dominant strategy" for any peer, it
results in a "trage dy of commons" if each peer adop ts this strategy.

To iIIustrate the impact of this attack, we compare the performance for honest and mali­
cious peers under the scenarios of freeriding and the proposed sybil attack . Figure 3.7 plots
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Figure 3.6: Performance ofhonesl and freeridin g peers in a systern using indirect reciprocity
with different fraction s of freeriders.

the continuity index and startup delay as we vary the peer arrival rate. We make the following

observations. First, the continuity index for malicious peers employing sybil attack strategy

is (i) comparable to that of honest peers and (ii) much better than that for freeriders. Second,

the startup delay for malicious peers under sybil attack is (i) lower than that for honest peers

and (ii) significantly lower compared to freeriders. Hence, even without uploading any data

to others, malicious peers have a similar performance to that of honest ones. This result
highlights that, albeit more free-riding resilient than direct reciprocity, indirect reciprocity
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comes at the price of a severe security drawback.

3.6 Heterogeneous environment

Reeall from Section 3.2.2 that the peer selection policies considered in this chapter are
both based on bandwidth reciprocity: i.e. a peer receives (roughly) as much bandwidth as

it provides to the system. In traditional file transfer, this mechanism incentivizes peers to
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Table 3.3: Setups for the heterogeneous scenario.

setup J11/ R J1s/ R

Homogeneous 1.25 1.25
Mild heterogeneity 1.625 0.875
High heterogeneity 2 0.5

upload as much as they can, in order to get faster downloads . A consequence of this approach

is that faster uploaders will download at faster rates and slower uploaders will download at

slower rates.

In VoD however, we note that peers do not need to download as fast as possible, but

rather maintain a download speed high enough to experience a continuous playback. Inother
words, a peer's only interest is to maintain a download speed above the video playback rate

R. Hence, it is natural to question this approach in the case of peers having heterogeneaus

bandwidths.

In this section, we investigate the performance of reciprocity-based peer selection mech­

anisms in VoD systems where peers have heterogeneous bandwidths. We consider a scenario

where 50% of the peers have high upload capacity and the other 50% have slow upload ca­

pacity. Although the bandwidths of fast and slow nodes, J11 and J1s respectively, are different
in each setup, the average peer upload capacity is always equal to J1 = 1.25R (from Table
3.1). This is larger than the average demand (which is equal the playback rate R). In each

setup, the difference between III and J1s is increased, in order to evaluate the impact of
higher heterogeneity. The homogeneous case, where all peers have upload capacity 1.25R,

is reported as weil for comparison. The details for these setups are shown in Table 3.3, while

all the other simulation settings are as in Table 3.1 and Table 3.2.
Figures 3.8 and 3.9 plot the continuity index and startup delay of peers, respectively.

We note that, as the heterogeneity in the system increases, the startup delay for all peers

increases while continuity index worsens only for slow peers. For what concerns peer se­
lection, indirect reciprocity performs better than direct reciprocity, with generally a higher

continuity index for slow peers and a lower startup delay for all peers. Regarding piece se­

lection policies, window-based exhibits the best continuity index and outperforms the other

two also for startup delay, at least when used in combination with indirect reciprocity. The

more "fair" performance of the window policy is due to the fact that peers only download

pieces from a small window, ahead the first piece not yet downloaded. Hence, a fast peer

cannot barter with other faster peers having lower or higher progress level, but only with

those peers (fast and slow) having similar progress level to itself.

However, the fact that startup delay increases with the heterogeneity is an undesired
drawback of these VoD approaches. To understand the reasons for this behavior, we looked

at the peers average download rates (Figure 3.10). The average speed of peers (especially of



I

- direct
• - indirect

•

45

x
~ 0.2 pollcy

~ 0.0 '-===7====::::::::::;;:::=::::::::::===:::::::::====~~=:::::;;;:::::::::==:::::::::::::::::;;:::=::::::::::===:::::::::====~:::: I"'::; PRIO
'5 1.0 r . .. . PROS
.s
ë 0.8 - . WIN8 ...

0.6

0.4

0.2

0.0 '-_ ...- -, ,-----' '---_,- .,- --y__......

homog mild helerog high helerog homog mild helerog high heterog

Figure 3.8: Continuity index in a scenario with heterogeneous peers. The peer arrival rate is
set to 0.05 peer/s.

direct

~_.- _. -.-.:.~ ....
=-. ~. ~ ::*:: .

indirect

20

10

o L--,------y-------,r--.JL--, ,- -,-_--L....
homog mild heterog high heterog homog mild heterog high heterog
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the fast ones) is generally far above the playback rate R (which is 800 kb/s). In particular,

for fast peers, we observe that the download speed is more or less constant (or in some cases

growing with the level ofheterogeneity) in all setups. Therefore, the increase of startup delay

in the heterogeneous scenarios can be explained with peers downloading at slower rates
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when at the beginning of the file, while downloading much faster when coming towards the
end.
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3.7 Environment with unconnectable peers

NATs and Firewalls are weil known for causing problems to P2P. communication, since
peers residing behind those devices are not abIe to receive inbound connections, unless the
NAT/firewall is properly configured.

In this section, we analyze the performance of the current BitTorrent-based VoD ap­
proaches in a system where a certain fraction Q of nodes are unconnectable. As Skevik et

al. [61] observed, one of the problems introduced by unconnectable nodes is that they are
not reachable by others and thus it is difficult to discove r their presence. To improve their
discoverability, in our experiments unconnectable peers request new nodes from the tracker
more frequent ly than connectable ones . In this way, more links betwee n the groups of con­
nectable and unconnectable peers are established.

Results for our experiments are depicted in Figures 4.6 and 4.7. For what concerns the
continuity index, connectable nodes are not affected, until their fraction drops below 10%.
The unconnectable nodes, on the other hand, start experiencing a bad continuity index al­
ready when their fraction reaches SO%, which has been measured to be a typical value in
BitTorrent as weil as Bit'Iorrent-based VoD systems [32,4S] . Simi larly, their startup delay

suffers a steep increase once past the SO% threshold. This phenomenon is due to the fact
that unconnectable nodes can only upload to connectable ones, while the latter can poten­
tially upload to any other peer. Hence, when the unconnectable peers are the majority, the
connectable ones receive a lot of bandwidth from them while giving only a smaller amount
of bandwidth in return. This result is in accordance with the study of genera I P2P swarming
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Figure 3.13: Download speed experienced by peers when some are unconnectable. The peer
arrival rate is set to 0.05 peer/s.

systems presented in Chapter 2. Consequently, it is clear that the presence of unconnectable

nodes severely affects the performance of P2P swarming systems, and VoD systems in par­
ticular, and must be kept into account when designing a new P2P system or protocol.

In order to explore avenues for possible improvements, we have looked again at the

download speeds of peers (Figure 3.13). While the download rate of unconnectable nodes

drops below the playback rate R (800 kb/s) already when their fraction reaches 50%, that

of connectable nodes stays above R, and actually increases, until a =90%. This implies

that connectable nodes often get more bandwidth than necessary to maintain a continuous
playback. It is intuitive that this bandwidth surplus could be used to "help" unconnectable

peers, as already suggested in the previous chapter.

3.8 Coexistence with traditional file transfer

In this section, we analyze the implications ofhaving a mixed environment, where peers do­

ing streaming coexist with those doing file transfer using the standard BitTorrent protocol.
In fact, nowadays many BitTorrent clients (e.g. BitTorrentDNA [I], IlTorrent [2], and Tri­

bIer [4]) already support streaming functionalities and more clients are Iikely to start doing

this in the future.

At a first glance, one would expect that introducing VoD nodes in a BitTorrent system

where peers do traditional file transfer will negatively affect piece availability and conse­

quently decrease the download speed of the original (non VoD) nodes. In order to verify
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whether this is really the case, we have performed experiments with increasing fractions of
VoD peers. Figure 3.l4 plots the download rates for both file transfer nodes and VoD nodes.
As we can observe, file transfer peers actually benefit from the presence of VoD ones: the

more the latter, the better for the former. The largest advantage is obtained when the VoD
nodes employ the window-based piece selection policy. In order to explain this result , we
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have taken a look at the peers interests. Figure 3.15 shows, for each group of peers, the

percentage of interesting peers belonging to the other group, in a scenario where VoD peers

are 50% of the total. While for the priority-based and the probabilistic policies the interest
of each group in the other one is more or less even, we observe that, for the window-based

policy, there are more file transfer nodes interested in VoD nodes (68%) than vice versa
(47%). We conjecture that the unbalanced interests between the two groups are the main

cause of the phenomenon, which can be explained as follows. At first, file transfer nodes

download the pieces towards the end of the file (as those pieces are more rare). Later, they

need to download the pieces towards the beginning of the file as well, in order to complete

their downloads. These pieces are owned mostly by VoD nodes, therefore file transfer peers

become very interested in them. On the other hand, VoD nodes using the window-based pol­
icy only download pieces within a relatively small window, therefore they will not be very

interested in file transfer peers. This unbalance between the two groups' interests causes the

VoD nodes to receive many more requests from file transfer nodes than other VoD nodes,

which then will be (as a group) optimistically unchoked more often. However, file transfer

peers will not have much to upload in return, given the myopie interest of VoD nodes using

the window-based policy. As a consequence, file transfer nodes download from VoD nodes

much more than they upload to them in return .
Furthermore, regardless of the piece selection policy employed, VoD nodes suffer from

longer startup delays. According to Figure 3.16, when the fraction of VoD nodes is 0.1, for

example, their startup delay is, for all piece selection policies, more than la times longer

than it would be in a system where all nodes are doing streaming. This is due to the fact

that, the more there are file transfer nodes, the lesser the availability of pieces near the

beginning of the file (sinee file transfer nodes download pieces according to the rarest-first

rule). Therefore, the longer it takes for the VoD nodes to complete the download of the initial
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pieces necessary for the sequential viewing.

Tuming our attention back to download rates (Figure 3.14), we see that the priority­
based and the probabilistic policies are able to maintain the rates of VoD nodes constantly
far above the playback rate (dashed horizontal line in Figure 3.14). This leaves room for

improvement for these two policies. In fact, similarly to the cases of heterogeneous and
unconnectable nodes, bandwidth can be allocated in a "smarter" way by having each VoD
peer help other VoD ones when its own QoS is good enough.

3.9 Summary of our findings

Table 3.4 summarizes all the experiments done for the tested policies. This table can aid the
selection of the best protocol to be used by a service provider, given its particular environ­
ment and system characteristics such as open/c1osed system, with or without unconnectable
nodes, or nodes with heterogeneous bandwidth, etc. For each test case we have selected the
best performing piece selection policy for both direct and indirect reciprocity (in the Di­
rect and Indirect columns, respectively). We also show, in the 'Overall' column, which pol­

icy combination performed the best for each scenario. The last column indicates how weil
Bit'Iorrent-based VoD performs in the given scenario in absolute terms (full circle means
'good', half circle stands for 'average' , and dash means 'bad' ). When using this tabIe, the
reader should be aware of two things. Firstly, the Sybil attack presented in this chapter can
only be performed in a protocol using indirect reciprocity, thus all protocols using direct
reciprocity are resilient to it. Secondly, traditional BitTorrent works with direct reciprocity
only. Therefore, in order to keep the VoD and the file transfer protocols homogeneous, we
have focused on the case of direct reciprocity only.

Table 3.4: Summary of findings.
I Direct Indirect OverallTest case

Freeriding resilience
Resilience to Sybil attack
Heterogeneous bandwidths
Unconnectable peers
Coexistence with trad. file transfer

3.10 Conclusion

PROB
all

WIN
WIN
PRIO

PROB
PRIO
WIN
WIN
n.a.

PROB, indirect
all, direct

WIN, indirect
WIN, direct
PRIO. direct

Absolute

•••••

In this chapter, we have taken the first steps towards developing a deeper understanding of
how the different Bit'Iorrent-based P2P approaches to VoD work.
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We have shown that in all current approaches a trade-off exists between QoS and

freeriding-resilience, and between QoS and security, especially at low peer arrival rates.

However, protocols using a probabilistic piece selection generally seem to offer the most

advantageous trade-off,

Furthermore, we have shown that the current incentive schemes adopted in Bit'Iorrent­

based VoD systems are not suitable to VoD when the system is heterogeneous. This is due

to the fact that current incentives are based on a general file transfer goal rather than a VoD

goal. In file transfer, the goal is to maximize the total download speed, therefore an incentive

based on bandwidth reciprocity induces peers to contribute as much as they can. On the other

hand, in VoD the goal is to have as many peers as possible experience a smooth playback. In

other words, a peer does not eam any benefit in downloading at much higher rates than the

playback rate. Similarly, we have discovered that unconnectable peers generally receive low

download speeds, and consequently experience low QoS, even when they are only 30-50%

(which is a realistic range in P2P swarming systems, see [45] and references therein) of the

total number of nodes in the system and even when methods to increase the reachability of

these nodes are in place. Connectable peers, on the other hand, download much faster than

needed to maintain a good playback continuity.
Finally, we have evaluated the case where one VoD protocol competes with the original

BitTorrent protocol and found out that, generally, this coexistence is disadvantageous for

VoD peers, much to the benefit of file-transfer peers.
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Chapter 4

Peer selection strategies for improved
QoS in heterogeneous BitTorrent-based
P2PVoD systems

In the previous chapter, we have observed that the approach to peer selection employed by

many BitTorrent-based P2PVoD protocols has limitations in providing a good QoS to users,
particularly when they have highly heterogeneous upload capacities or are located behind a
NAT/firewall that does not allow incoming connections.

The problem with peers having heterogeneous capacities resides in the fact that peer
selection is based on bandwidth reciprocity. In a file-transfer context , this principle ineen­
tivizes users to contribute more bandwidth by rewarding them with faster download speeds.
In this way, the users obtain the file of interest earlier. In VoD, however, a peer selec­
tion mechanism based on bandwidth reciprocity can result in high-eapacity peers receiving
download rates substantially higher than the video playback rate, and in low-capacity peers
experiencing download rates that are too low.

For what concern s system with unconnectable nodes, in Chapter 2 we have iIIustrated
that the problem lies in that connectable nodes provide their bandwidth to both connectable
and unconnectable ones, while unconnectable peers can only upload to the former. As a
result, connectable nodes achieve, on average, faster download rates than unconnectable
ones.

In this chapter, we focus on both these issues, and aim at increasing the number of peers
that are able to meet the QoS requirements needed for streaming, while maintaining the in­
centives for cooperation of the reciprocity-based piece selection mechanism. Our approach
is to let nodes act more altruistically if they are receiving a service that is higher than neces­
sary to preserve stream continuity. More specifically, our contributions are as follows :

I. We propose an adaptive strategy for peers to decide, in relation to their current
progress, whether relaxing the reciprocity-based peer selection and serve more ran-
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dom peers (Section 4.1 .2); in this way, when bandwidth is abundant, a larger fraction

of peers can achieve a satisfactory QoS, in terms of both startup delay and stream

continuity;

2. We extend this adaptive mechanism to have nodes give preferenee to newly joined

peers (Section 4.1.3); by doing so, the average start up delay can be reduced even

further, with little or no negative effect on the stream continuity;

3. We further extend the initial adaptive mechanism to have nodes give preferenee to

unconnectable peers, in this way increasing their QoS (Section 4.1.4);

Simulation results show that, in heterogeneous systems where bandwidth is abundant, our

adaptive peer selection policy significantly increases the number of low-capacity peers re­

ceiving a satisfactory QoS (up to 4 times), without affecting that of high-eapacity peers.

When extended to givc preferenee to newcomers, this strategy can reduce startup delays

(up to 48% in the scenarios considered) with no significant impact on the stream continuity.

When the preferenee is given to unconnectable peers, their QoS is increased without negative

effect for those that are connectable. Finally, we show that, if bandwidth is scarce, higher­

contributors are prioritized, proving that the incentive for cooperation is retained (Section

4.3).

4.1 Proposed Peer Selection Strategies

In this section, we present our proposed strategies to improve the QoS of peers in a hetero­

geneous environment.

4.1.1 Proportional slot number

The first step towards our adaptive strategies consists of adjusting the number of upload slots

each peer opens. In the original BitTorrent protocol, the number of upload slots is generally

set to a constant (normally 4) [9,21,42). Of these upload slots, usually one is reserved for

optimistic unchoke, while the others are used for regular unchokes.

However, this strategy may lead to a scenario where a high-eapacity peer will provide
each of its (few) children with a very high bandwidth, while some other nodes in the system

are experiencing insufficient speeds to achieve reasonable QoS. Since peers do not eam

more utility in downloading at rates substantially higher than the video playback rate and

balancing the service each peer receives is desirable, it makes more sense that a node limits

the bandwidth provided to each child and opens a number of upload slots according to its

total upload bandwidth, as well as the video playback rate. We propose the following rule to
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calculate how many upload slots 8 a peer p opens:

(4.1)

where J.L is p's upload capacity, R is the video playback rate and 80 is a protocol parameter
which represents the minimum number of upload slots each peer opens. With this rule, a
high-eapacity peer (J.L > R) will try to provide each of its children with an upload capacity
of rv fi. In this way, no peer will receive from another peer pieces at a rate higher than R

80

(unless the uploading peer has some more capacity left, i.e. if the other nodes it is uploading
to hold download bottlenecks) and the bandwidth of high-eapacity nodes can be shared

among more peers.
Given a number of slots, it is necessary also to determine how many of them are reserved

for optimistic unchoke. Leaving only one slot for this purpose means that, the larger a peer's
bandwidth, the smaller the fraction of it dedicated to optimistic unchoke. Jia et al. [12] show
that doing so leads to a larger service difference among heterogeneous peers . To avoid that,
nodes should reserve always the same fraction of their bandwidth to the optimistic unchoke.

Hence, we propose that each peer is initialized with 0 m in optimistic unchoke slots where

0min is:

°min = round (:J ' (4.2)

in this way, each peer will assign rv -!;; of its upload capacity to optimistic unchokes.
In the strategies that follow, we assume that a peer's upload slot number is always ini­

tialized according to this rule, which we call the proportional slot number rille (PSN).

4.1.2 Adaptive optimistic unchoke slot number

The core of this strategy is to have peers dynamically adjust the number of their optimistic
unchoke slots to their current QoS. To measure the QoS a peer is currently experiencing, we

use the peer's current sequential progress. Recall, from Chapter 3, that a peer's sequential
progress is defined as the speed at which the index of the first missing piece in the file
grows. Therefore, a peer's sequential progress is an indicator for the preservation of the
continuity of the stream: a sequential progress faster than the video playback rate implies a
continuous stream. At the same time, this metric is agnost ie with respect to the underlying
piece selection policy, making a strategy based on it directly portable to other P2PVoD
protocols.

Since a peer p does not earn more utility in having a sequential progress much higher
that the video playback rate R, we propose that, when this is the case, p will decide to "help"
other peers by increasing the number of its optimistic unchoke slots. On the other hand, it
will reduce its optimistic unchoke slots if its sequential progress has decreased past a limit.
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Algor ithm 1 Adapting optimistic unchoke slot number to sequential progress
I: for each optimistic unchoke round do
2: R := video playback rate
3: t := time now
4: w := window length
5: Tup := upper threshold for the sequential progress
6: 1110 := lower threshold for the sequential progress
7: s := total number of upload slots
8: 0 := number of optimistic unchoke slots
9: if sequential progress(t,w) > Tup th en

10: o<= min(s,o+ l)
11: if sequential progress(t, w) < 1110 then

12: 0 <= max(Omin , 0 - 1)
13: ifsequential progress(t,w) < R th en

14: 0 <= 0 m i"

To avoid switching too often between increasing and decreasing the number of optimistic

unchoke slots, we use the following approach. First, we define an interval CI/w, Tup ) for the
equilibrium value of the sequential progress. A peer p will then increase the number of its

optimistic unchoke slots only when its sequential progress is above the upper threshold Tup

and decrease it when its sequential progress goes below the lower threshold 7/10' Second, at

every optimistic unchoke round, the current sequential progress is calculated over the last w
seconds (Algorithm I). By opportunely tuning the thresholds 7/10 and Tu p and the length of
the window ui, the performance of other peers can irnprove, while that of peer p will stay

constant. In particular, in order to guarantee that peer p does not get worse off from being

too altruistic, it is advisable for 7/10 to have a value larger than R. Simi larly, the size of

the window w should be large enough to capture the trend of a peer's sequential progress,

besides eventual instantaneous oscillations, but small enough to be sensitive to a change of

trend. Finally, in order to proteet peers from a very rapid change in their bandwidth supply,

the number of a peer's optimistic unchoke slots will be immediately set to the minimum

value 0 m in, when its sequential progress becomes lower than the video playback rate R.

4.1.3 Priority to newcomers in optimistic unchoke slots

When a new peer joins the network, it needs to wait for a certain period of time to be opti­

mistically unchoked by other peers. Once a node has obtained the first piece, it can forward

it to other peers and get a chance of being selected by its parents in their regular unchoke

slots. We denote this time in which peers are waiting for the first piece as the "bootstrap

time". It has to be noticed that peers are subjected to a bootstrap time also in a regular
BitTorrent system. However, compared to the total download time that nodes have to wait

before they can access the file, the bootstrap time becomes insignificant. On the contrary,
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Aigorithm 2 Unchoke algorithm with priority to newcomers (PNC)
I : for each unchoke round do
2: s := total number of upload slots
3: 0 := number of optimistic unchoke slots
4: c {= number of newcomers that can be preferentially unchoked (c ~ 0)

5: P {= list of all choked neighbors having no pieces yet
6: Q {= list of all neighbors
7: sort(Q) /* sort list according to contribution (from high to low) */
8: d {= miut c, IPI) /* IPI is the number of peers in P */
9: for i = 1 to min(s - 0) do /* regular unchoke */

10: unchoke(Q[i j)
11 : for i = 1 to d do /* optimistic unchoke: first, unchoke the newcomers */
12: unchoke(P [ij)
13: N {= all choked interested neighbors
14: if (0 - d ) > 0 then /* if there are some slots left, then */
15: for i = 1 to (0 - c') do /* unchoke some other peers at random */
16: unchoke(N [ij)

in a VoD system, where playback starts wel1 before the file is completely downloaded, the

bootstrap time can represent an important fraction of the startup delay [63] .

Hence, the startup delay can be reduced by decreasing the bootstrap time. In order to do

so, we propose to extend the previous strategy with a mechanism where node s give priority

to newcomers when performing optimistic unchoke. In this way, newcomers will not need

to wait too long before bein g unchoked for the first time. Algorithm 2 ilIustrates the pseudo­

code for this strategy. When deciding how many newcomers will be given priority to, there

are two things to con sider: the new strategy should not (i) disrupt one of the original purpose

of optimistic unchoke slots, i.e . finding new, potential1y better, neighbors, nor (ii) neutralize

the benefits of the adaptive strategy introduced above. In order to do so, we propose a priority

to newcomers strategy (PNC) where the number c of newcomers that will be given priority

is calculated as fol1ows:

c = l°- ; m in J'
where ° is the current number of optimistic unchoke slots opened by a peer p.

Hence, when p has only 0 m in optimistic unchoke slots, it will assign them to randomly

selected peers, in this way we eliminate the risk that a node gets worse off from helping

newcomers. A node p wil1 favor newcomers only when it has at least 0min + 2 optimistic

unchoke slots (meaning that its current QoS is high) and will use at most half of them , so

that there are enough left for helping regular peers as wel!.

To prevent node s from Iying about being newcomers, a peer will only upload to new­

corners pieces from an initial buffer (i.e. any piece from the first h pieces of the file).
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Aigorithm 3 Unchoke algorithm with priority to unconnectable nodes (PUN)
I : for each optimistic unchoke round do
2: R := video playback rate
3: t := time now
4: W := window length
5: Tup := upper threshold for the sequential progress
6: 7lw:= lower threshold for the sequential progress
7: s := total number of upload slots
8: 0 := number of optimistic unchoke slots
9: § ç,:min(l 'l~O )

10: if sequential progress(t ,w ) > Tup then
11 : n Uç,:§(s -o)
12: if sequential progress(t,w) < 7lwthen
13: n Uç,: max (O, n U- 1)
14: if sequential progress(t,w) < R then
15: nUç,: 0

16: for each unchoke round do
17: U ç,: list of all unconnectable neighbors
18: sort( U) /* sort list according to contribution (from high to low) */
19: C ç,: list of all connectable neighbors
20 : sort(C) /* sort list according to contribution (from high to low) */
21 : for i = 1 to nU do /* unchoke the unconnectable nodes */
22 : unchoke(U[ij)
23: for i = 1 to s - 0 - n" do /* unchoke the connectable nodes */
24: unchoke(C [i j)
25: N ç,: all choked interested neighbors
26: for i = 1 to 0 do /* optimistic unchoke */
27: unchoke(N [ij)
28: put N[i] at the bottom of the list of connections /* so that at the next optimistic unchoke

round another peer is chosen */

4.1.4 Priority to unconnectable nodes in regular unchoke slots

We can apply the same adaptive principle to have connectable nodes give priority to un­

connectable ones when they are experiencing a good enough service . In Chapter 2 we have

suggested that connectable peers allocate a fraction 8 of their bandwidth to unconnectable

peers, where 8 depends on the fraction 0' of unconnectable peers in the system. For sim­

plicity, here we assume that peers have homogeneous bandwidths, and therefore we have

8 = min( l , l ~J .

Furthermore, we note that, different from slow peers, unconnectable peers have the po­

tent ialof being good bartering partners, as their upload capacity is as high as that of con­

nectable ones. They just need to be given a " larger chance" to prove it. Therefore, in this sec­

tion, we propose an adaptive strategy where connectable nodes that are already experiencing
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Table 4.1: Simulation Settings

Parameter

Video playback rate R
Video length L
Simulation time
Peer arrival rate
Min slot number 80

Piece size Ps
Piece selection
Peer selection
Initial buffer h
Upload rate of the service provider U,

I Value

800 kb/s
50 min
500 min (lOL)

0.45 peers/s
4
256 kB
PRIO
DIRECT
25 pieces
8000 kb/s (lOR)

a high QoS give priority to unconnectable nodes in their regular unchoke slots. Aigorithm 3
illustrates the pseudo-code for this strategy. The number of unconnectable peers to be give

priority to is weighted by the factior 6, which guarantees that such unconnectable peers are
not given more bandwidth than their fair share (see Chapter 2). Hence, according to this
priority to unconnectable nodes strategy (PUN), the number nUof unconnectable peers that
will be given priority is calculated as follows:

n" = 6(8 - 0), (4.4)

where 8 and 0 are the current numbers of total and optimistic unchoke slots, respectively,
opened by a peer p. The mechanism that regulates the level of altruism of a peer is similar
to the previous cases, so to avoid that a connectable nodes gets a bad performance from
helping unconnectable ones too much.

4.2 Methodology

We evaluate the effects of the proposed strategies by means of simulations.

4.2.1 Experimental setup

We have extended our version of the MSR BitTorrent simulator presented in the previous
chapter to support all the strategies introduced in Section 4.1.

The settings for our simulations are shown in Table 4.1. We consider the system to be
in steady state . For the results, we only take onto account the peers who have joined after
the first half of the simulation time and before the last L minutes from the simulation end.

For the adaptive strategies, we have used Ttw = 1.2R, Tu p = I .4R and w = 2min, as in
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our experiments these values have shown to provide a good trade-off between maximizing

altruism and retaining a good QoS for the altruistic peers .

Furthermore, in our simulations we assume that (i) all peers have a down load capacity

five times higher than their upload capacity, (ii) peers leave as soon as their download is

complete, (iii) there is one peer holding a complete copy of the file, set up by the provider,

which never leaves the system.

Each simulation run is executed 15 times, and then the average values and the confidence

intervals (with confidence level of 95%) for each of the following metrics are computed.

4.2.2 Performance metrics

Habib et al. [28] show that when the continuity index of a stream is 95%, a user's overa ll

perceived video quality is very good . Similarly, they show that a Cl ::; 75% leads to a poor

video quality. Hence, in this chapter, we evaluate the ability of the P2P VoD sys tem to max­

imize the number of peers receiving a high stream continuity by characterizing the fraction
of peers receiving a good service (i.e. whose Cl is above 95%) and poor service (i.e. whose

Cl index is below 75%).

To analyze how weil the startup delay minimization requirement is met, we measure the

average and the 95th percenti le of the startup delay.

4.3 Experiments and analysis

In this sectiom, we evaluate the performance of our strategies. We treat the cases of hetero­

geneous peers and unconnectable peers separatedly.

4.3.1 Heterogeneous environment

We consider three types of scenarios as described below:

Overprovision scena rio: the average peer upload capac ity is larger than the video

playback rate R;

Contention scenario: the average peer upload capaci ty is smaller than the video play­

back rate R;

Dynamic scenario: the average peer upload capaci ty is initially larger than the video

playback rate R but suddenly becomes smaller in the middle of the simu lation.
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or a poor service (Cl :::; 0.75).
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Figure 4.2: Overprovision scenario: average and 95th percentiIe of startup delay.

Overprovision scenario

In this scenario, we consider a system where 50% of the peers have a high upload capacity

and the other 50% have a slow upload capacity, and we denote with f.lf and f.ls the band­
widths of fast and slow nodes, respectively. In order to evaluate how the strategies perform
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with higher heterogeneity, we evaluate setups with different ratios between I-lf and /L s ' The

average peer upload capacity, howerver, is 1.25R in all setups . This is larger than the aver­

age demand (which is equal the playback rate R). The homogeneous case, where all peers

have upload capacity 1.25R, is reported as weil for comparison.

The fraction of peers receiving good (Cf ~ 0.95) and poor (Cf ~ 0.75) service is

depicted in Figure 4.1. From these graphs we can make the following observations:

• PSN alone can already provide a better QoS than the standard algorithm, at least for
low heterogeneity levels. For example, in the setup with heterogeneity I.S, the fraction

of slow peers receiving a good service increases by 100% (from 0.39 to 0.81), and that

of slow peers receiving poor service decreases by 80% (from 0.19 to 0.04).

• When using the adaptive policy, the gain is even higher, especially for high hetero­
geneity levels. When the heterogeneity is 4, we observe a four-fold increase in the

fraction of slow peers receiving good service (from 0.13 to 0.52).

• Inall setups, both PSN and ADAPTIVE do not significantly affect the service received
by fast peers .

• The fraction of peers receiving poor service decreases in all setups when using PSN
and the adaptive policy.

Contention scenario

In this scenario, we evaluate the performance of our strategies in a situation where the av­
erage upload capacity is smaller than the video playback rate. As for the overprovision

scenario, we consider a heterogeneous system with SO% fast and SO% slow peers. However,

this time, the average peer upload capacity is set to 0.8R.

Figure 4.3 shows that, with all our strategies, fast peers are able to retain a good QoS,

often better than with the standard policy. This is due to the fact that the number of upload

slots opened by the peers is proportional to their bandwidth. By opening more slots , fast

peers can barter with more partners and hence have a higher chance of receiving enough

bandwidth in return . Slow peers, on the contrary, suffer from a low QoS . This shows that,

when bandwidth is scarce, our adaptive strategies do retain the incentives for cooperation of
the original BitTorrent protocol. Furthermore, observing Figure 4.4, we can conclude that

our proposed strategies are able to reduce the overall startup delays, despite the contention

of resources in the system, and with only little effect on the CIs experienced by the peers .

Figure 4.2 reports the mean and the 9Sth percentile of the startup delay. We can notice that :

• In the homogeneous setup, ADAPTIVEIPNC can substantially reduce the startup de­

lays, (2S% for the average and SO% for the 9Sth percentile), with only little impact on

the respective CIs (see Figure 4.1) .
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Figure 4.3: Contention scenario: fraction of peers receiving good service (C l 2: 95%) and
poor service « r-: 75%).
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Figure 4.4: Contention scenario: average and 95th percentil e of startup delay.

• In the heterogeneous setups, using PSN or ADAPTIVE policy already results in de­
creased startup delays for all peers. In fact, by opening more upload slots (PSN) or
using them altruistically (ADAPTIVE), a higher fraction of peers will be chosen for
optimistic unchoke , includin g newcomers. This phenomenon becomes more and more
beneficial as the level of heterogeneity increases.

I1

11
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Figure 4.5: Dynamic scenario: fraction of slots fast peers dedicate to optimistic unchoke .

Dynamic scenario

In this scenario, we test the responsivenes s of our adaptive policy to a sudden change in
the total bandwidth capacity provided. More specifically, we simulate a system where peers

have all init ially an upload capacity of 2R. Then , after 5000 seconds from the start of the

simulation, the capacity of SO% of these peers is suddenly reduced to 0.5R. As a result,

the average peer upload capacity changes from 2R to O.SR. This configuration, i.e. SO%

slow peers and 20% fast peers, is then kept untill the end of the simulation. Figure 4.5

shows the average fraction of optimi stic unchoke slots opened by fast peers in time for

a typical simulation run. As we can observe, before the change in bandwidth supply, fast

peers dedicate, on average, 0.88 of their slots to optimi stic unchoke , which is more than

three times the minimum possible (and initial ) value, fc; = 0.25. After the change, fast
peers immedi ately start reducing the fraction of their optimi stic unchoke slots, reachin g a

minimum of 0.37 in about 6 minutes. This value then gradually approaches 0.6.

4.3.2 Scenario with unconnectable peers

In this scenario, all peers have an upload capacity J.i = 1.25R, but a fraction 0: of them are
unconnectable. Figures 4.6 and 4.7 show the continuity index and the startup delay, respec ­

tively, as we increase the fraction of unconnectable nodes. As we can see, for low values

of 0:, ADAPTIVEIPUN can significantly improve the QoS of unconnectable peers, with no

impact on the connectable ones. For example, when 0: = 0.5, the fraction of unconnectable

peers receiving a good QoS when using ADAPTIVEIPUN is double than when using the

standard policy ; similarly, the startup delay is reduced by 30%. Finally, we note that, as ex­

pected from our analysis in Section 2, when the fraction of unconnectable peers has gone
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Figure 4.7: Contention scenario: startup delay.

past 50%, their QoS drops significantly, even when using ADAPTIVEIPUN. This is due to

the fact that, no matter how bandwidth is allocated in the systern, a minority of connectable
peers can never sustain the bandwidth needs of a majority of unconnectable peers.
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4.4 Related work

Prior work on adapting BitTorrent to VoD mainly addresses the piece selection policy
(see [10,20,33, 51,52,63D.These studies focus on finding a policy that can achieve a good

trade-off between the need of sequential download progress and high piece diversity. AI­

though the approaches proposed to tackle this problem may vary, they all have in common

that the resulting strategy combines in-order piece selection with rarest-fi rst piece selection.

By doing so, they succeed in reaching a good compromise between sequential down load

progress and high utilization of peer upload capacity.

The problem of adapting the peer selection policy to peer heterogeneity has received less

attention. Shah et al. [52] propose a strategy where peers perform a new optimistic unchoke

round everytime a piece is played. We observe two issues with this approach: (i) frequent
unchoke rounds might weake n incent ives for cooperation, (ii) a peer can comprom isc its own

QoS by being too altruistic . In contrast, with our proposed strategies , a peer will behave

more altruistically only when it is receivi ng a service that is substa ntially better than the

necessary to preserve QoS. A different kind of peer selection problem is ana lyzed by Yang

et al. in [65]. Specifically, they study a number of strategies for a peer to choose which other

node a request should be sent to, in order to balance the load among requested nodes and

increase the likelihood of receiving the needed pieces before their deadlines.

With respect to reducing startup delays, Carlsson et al. [48] propose a policy where

newly joined peers are given the rarest pieces . In this way, once they have obtained their

first piece , these nodes become attractive bartering partners for other peers and are likely
to enjoy fast download speed sooner. Instead, we modify the peer selection mechanism in

order to reduce the time needed by newcomers to receive the first piece .

4.5 Conclusions

In this chapter, we have tackled the prob lem of improving the QoS delivered in BitTorrent­

based VoD systems with heterogeneous and unconnectable peers through better peer selec­

tion policies . We have show n that, when the resources in the system are abundant and peers

have heterogeneous bandwidths, rewarding them proportiona lly to their upload capacities

is neither (i) systern-wide efficient , since less peers are granted a satisfactory QoS, nor (ii)

individually profitable, since peers do not eam utility in down loading at rates much faster

than the video playback rate. Furthermore, we have also demonstrated that unconnectable

peers also receive poor service, due to the fact that they have to compete with connectable

peers for the upload capacity of the latter ones.

We have proposed a number of peer selection policies to overcome these effects, where

nodes that are already receiving a high enough QoS adaptively increase the fraction of their

bandwidth allocated to random peers or unconnectable ones. These strategies result in a
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more even distribution of bandwidth among peers and hence in a larger fraction of nodes
receiving satisfactory QoS. At the same time, the adaptiveness of our strategies allows peers

to become more selfish when resources are scarce, selecting less random or unconnectable
peers. In this way, if there is resource contention, high-eapacity (connectable) nodes are still
able to be prioritized and receive a good service, while low-capacity (unconnectable) nodes

or free-riders suffer of performance degradation. Furthermore, we have extended the idea
behind our strategies to decrease startup delays, by giving priority to newcomers.
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Chapter 5

Analyzing the scalability of
BitTorrent-based P2PVoD systems
during t1ashcrowds

While many studies have been conducted on the scalability of BitTorrent-based P2P live
video streaming systems, both during steady-state and during flashcrowds [24,59], the analy­
sis ofthe BitTorrent-based approach for VoD has mostly focused on the steady-state [50,64].
Since flashcrowds do occur in VoD systems as weil [30], it is important for service providers
that use P2P technology to know how weil such systems scale in these circumstances. In this

way, the appropriate measures can be taken to keep providing their users with an acceptable
level of service (e.g. by adding extra capacity or denying access to newcomers when the
system load is to high).

In this chapter, we take a first step towards analyzing this problem. We analytically study
the scalability of a Bit'Iorrent-based P2PVoD system during flashcrowds and characterize its
relationship with the underlying P2P protocol, the initial service capacity, and the creation
of new seeders. More specifically, the contributions of this chapter are the following:

I. We propose a simple model to study the effects of a flashcrowd on the startup delay
experienced by the users (Section 5.1);

2. Based on this model, we show that the scale of a Bit'Iorrent-based P2PVoD system
during flashcrowd is constrained by the efficiency of piece exchange of the underlying
P2P protocol as weil as the initial service capacity (Section 5.2).

3. We illustrate the impact of peers tuming into seeders on the system scale (Section 5.2).
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5.1 Flashcrowd model for a P2PVoD system

In this section, we will derive a model of a Bit'Iorrent-based P2PVoD system during a

f1ashcrowd. We distinguish two phases in a f1ashcrowd: an initial phase, with no seeders,

and a second phase where seeders have started appearing. For each phase, we present a set

of differential equations that describe the evolution of a typical Bit'Iorrent-based P2PVoD
system. We then analyze the average download speed of peers, and derive the average startup

delay from it. Finally, we provide explicit equations that characterize the dependancy of the

startup delay on different parameters, such as the peer arriva l rate, the initial service capac ity,

and the efficiency of the under lying P2P protocol.

5.1.1 General approach

We base our analys is on a Huid approximation of a Markov model which describes the arrival

and departure rates of the peers in the system. In this approac h, the discrete quantities of the

number of leechers and seeders in a swarm are mode led as a Markov chain. We follow a

similar modeling procedure as the c1assical f1 uid model for BitTorrent [53], as weil as the

P2PVoD models in [50,64].

5.1.2 Model description and assumptions

We consider a system where a group of peers joins to watch a specific video file with play­

back rate Rand duration L. We assume that there is an initial seeder or souree (consisting

of one or more servers) which contributes an aggregate upload capacity Cs. Peers have an

average upload capacity Jl and join the system at rate >.(t ) and do not leave before they
have become seeders. Seeders, on the other hand, depart from the system at a rate 'Y (hence,

we can consider ~ to be the average seeding time) . We also assume that each peer tries to

utilize its upload bandwidth as much as it can, a behavior which is enforced by most of

Bit'Iorrent-based P2PVoD systems by means of contribution incentives.

5.1.3 Flashcrowd scenario

When a f1ashcrowd occurs, the system enters a cri tical phase where the available bandwidth

is scarce. After some time, the appearance of seeders will alleviate the negative performance

impact, even if peers continue joining at a high rate. Therefore, similar to Lu et al. [64), in

our analysis we distinguish two phases in a f1as hcrowd, depending on whether seeders have

started appearing or not.

I. Starting phase (0 < t < ts)

Excluding the initial source, there is no seeder in the system until the first leechers
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complete the download of the entire video file (which happens at time ts ) , thus be­
coming the first seeders. Hence, at the very beginning of a flashcrowd , the evolution

of leechers x( t ) and seeders y(t ) in the system is characterized by the following equa­
tions

d~(t) = -\(t ),

dy(t ) = 0
dt '

x(O) = -\(0),y(O) = 0,

(5. 1)

and the average download speed can be computed as

()
_ Cs + J.LT/x(t) _ Cs

u t - x(t ) - x(t ) + J.LT/ . (5.2)

The parameter T/ indicate s the efficiency ofpiece exchange . When T/ = 0, the leecher s
do not get any data from each other, meaning that their upload bandwidth is com­
pletely unutilized.

From Eq. (5.2) it is also obvious that u(t ) is a non-increasing function in the time
interval (1,ts).

The time ts , at which the first leechers complete their downloads, can be calculated as
the time needed to download LR bytes of data (LR represents the size of the video
file)

(5.3)
LR

Cs
J~' -\(t )dt + J.LT/

LR LR
ts = -- = ---::::,----

u(ts) Cs +
x(ts) J.LTJ

Eq. (5.3) can be solved with numerical analysi s (e.g. by using the fixed point iteration
method).

2. Seeders appearance phase (t > ts)

In this phase, the number of Ieeehers that turn into seeders is determined by the total

upload capacity U(t) = Cs + J.L (T/x (t ) + y(t)) of the system divided by the file size
LR of the video file. Hence , we can describe the evolution of x(t ) and y(t) as follows

dx(t) = -\( ) _ U(t)
dt t LR '

dYlt) _ U(t) _ ()
dt - LR , y t ,

x(ts) = J~' -\(t )dt, y(ts) = 0,

(5.4)
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Figure 5.1: Average startup delay when u(t ) < R. The download speed and the video play­
back rate are represented, respecti vely, in terrns of pieces downloaded and played in time.

Consequently, the average download speed at time t is:

( )
_ Cs + p(T]x(t ) + y(t))

u t - x(t ) .

Sta r tup delay and sca lability

(5.5)

In principle, the system could scale indefinitely, if we let the average expected startup delay

D(t ) for a peer that joins at time t be large enough. However in practice , as mentioned in

the introduetion of this thesis, the startup delay should be as small as possible , to ensure the
playback to start nearly in real-tirne. On the other hand, the startup delay needs to be large

enough to allow the user to watch the video without subsequent stall times, in order to meet

the first QoS requirement for VoD.

Let T (t ) = LR /u (t ) be the expected total download time at time t . Then the minimum

startup delay that meets the QoS requirements is

D(t ) = max (0,(u7t )-1)L) . (5.6)

That is, when u(t ) ~ R the startup delay is 0, otherwise it can be calculated as the waiting

time necessary to have the expected download time be no longer than the duration of the

video (Figure 5.1) . This guarantees that, if current down load speeds are maintained, the

playback position is never greater than the download position, which in turn means that the

user will perceive a good stream quality.

Note that, in this analysis, we have assumed that a newcomer starts downloading im­

mediately at the system's average download speed. However, the initial speed of a newly

joined peer is likely to be lower than that, due to the peer selection mechani sms adopted in

real BitTorrent-based P2PVoD protocol s (which require that a peer with no pieces needs to

I

•
I

I
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be optimistically unchoked by another peer first ), Once a peer has collected a certain num­
ber of pieces, it will be abIe to barter with other peers and achieve a comparable download

speed. Therefore, we can consider the value for D(t ) presented in Eq. (5.6) as a lower bound
for the actual startup delay experienced by peers joining at time t.

From Eqs. (5.2) and (5.5) we can notice that the average download speed in the system,

and therefore peers' startup delay, is a function of two sets of parameters. On one side,
we have some parameters which depend on the peers behavior and cannot be controlled

by the service providers, like J.L, À(t ), and Î . On the other side, u(t) is related to some
parameters which are specific to the system design, namely the efficiency of piece exchange
TJ and the capacity Cs of the initial seeder. We will discuss them separatedly in the following

paragraphs.

5.1.4 System design parameters

System design parameters are those parameters that can be tuned by the service providers
to increase system scalability. For example , in order to make the best use of a downloader's
bandwidth, the system might adopt an underlying P2P protocol that realizes an efficient
piece selection strategy. In BitTorrent, this is achieved by means of a rarest-first strategy,
which allows leechers to utilize, on average, 90% of their upload bandwidth [14]. However,
to meet the QoS requirements for VoD, Bit'Iorrent-based P2PVoD systems use a variant of
this strategy, which is normally less efficient [13] (in any case, the piece exchange efficiency

cannot exceed I) . On the other hand, the service provider can directly control the value of
the initial seeder. Based on the average peer bandwidth, peer behavior, and efficiency of the
P2P protocol in use, the service provider can set the appropriate value for Cs to support a
certain number of peers at a given playback rate.

5.1.5 Peer behavior

Peer behavior can have a profound impact on the scalability of a P2P system. We wil! study
this aspect by considering different peer arrival and departure pattems in our Bit'Torrent­
based P2PVoD model.

More specifically, we assume that peers join the system at an exponentially decaying
rate, as proposed by Guo et al. [40]: À(t ) = Àoe- ~, where Ào is the initial arrival rate at
time 0 and T is the decaying factor. The total number of peers joining the system is T Ào. By
varying the parameter T , flashcrowds with different intensities can be simulated.

Analogously, the impact of different seeding behaviors can be studied by varying the
value of seeder departure rate, Î , between 00 (no seeding at all) and 0 (seeding for ever).
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5.2 Numerical results

Based on our model, in this section we will analyze the scalability of a BitTorrent-based

P2PVoD system during a flashcrowd .

5.2.1 The inftuence of system design parameters

We assume that, for the QoS requirements to be satisfied, the startup delay should be no

larger than a certain value Dm ax • If we express Dm ax as a fraction dof the duration Lof the

video, then we have the following QoS constraint

D (t ) S o-: = dL . (5 .7)

The average startup delay experienced by peers that join during the starting phase of a

flashcrowd is

( (
Rx(t ) ))

D (t ) = max 0, J.l1]x (t ) + Cs - 1 L (t E (O, t s ) ) . (5.8)

It is easy to see that the right most term in Eq. (5.8) is a strictly increasing function, since

its derivative is always positive for t E (0, ts ) ' This means that the average startup delay

is a monotonically increasing function in the starting phase, with upper bound in tsoIn the

second phase of a flashcrowd, with peers becoming seeders, the average startup delay is

likely to decrease (especially if seeders stay in the system long enough). Hence, we can

con sider the startup delay D(ts ) experienced by peers joining at time t s to be the worst

case. Then, in order to ensure that Eq. (5.7) is satisfied, it would be sufficient to enforce the

following condition

( (
Rx(ts) ))

D(t s ) = max 0, J.l1]x (t
s

) + Cs - 1 L

which can altematively be expressed as

S dL ,

{

(d+ l)Cs

x( ts) S N = ~- (d+ 1)J.l1]
if R > (d + 1)J.l1],

if R S (d + 1)J.l1].
(5.9)

Eq. (5.9) iIIustrates the intrinsic relation between the fundamental system design parame­

ters Cs and 1] and the maximum number of concurrent users N that can be supported at a

playback rate R during a flashcrowd.

Figure 5.2 plots the sustainable flashcrowd size in relation to the capacity of the initial

souree and the efficiency of piece exchange for a scenario where J.l = ï Mbps, R = O.SJ.l,
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Figure 5.2: Sustainable tlashcrowd size as a function of (a) the capacity of the initial seeder
or souree and (b) the efficiency of piece exchange TJ.

d = O. We can observe that, when R > (d + l )J.LTJ, N grows linearly as Cs increases
and hyperbolically as R - (d + l )J.LTJ approaches 0 (which, in this case , happens when TJ
moves towards 0.8). Hence, a natural solution to cheaply increase the system scale during a

tlashcrowd would be to have the playback rate R be nearly (d+ l )J.LTJ. However, considering
that TJ cannot be in any case larger than I, this approach would either lead to excessively
sacrificing the quality of the video (R smalI) or sacrificing the second QoS requirement
for VoD (d high). From this, it is then evident that, for the system to be able to sustain

areasonabie scale during tlashcrowds, a significant amount of service capacity has to be
initially provided by the source.

The importance of a high initial service capacity is also recognized by many
BitTorrent communities, which seek for volunteers to seed newly released content
(e.g. http ://eztv . i t ). The content is normally uploaded to these peers before its offi­
cial release date, which is per se an incentive to volunteer.

5.2.2 The inftuence of peer behavior

In this section, we will analyze the intluence of peer behavior on the startup delay. Figure 5.3
illustrates the impact of tlashcrowd intensity on the value of D(ts ) for a scenario where

L = 3600s, J.L = 1Mbps, TJ = 0.7, R = O.SJ.L, Cs = 50R, and the total number of peers
joining is 15000. The tlashcrowd intensity is defined as the fraction of peers joining the
system within the first L seconds from the first peer arrival, out of all the peers that will join
the system. For example, an intensity of 0.1 means that 10% of the arrivals occurs within
the first L seconds from the first peer arriva1.

For the same scenario, figure 5.4 shows the average startup delay of peers for different
values of seeding times during a tlashcrowd of intensity 0.5. As we can observe, if no peer
stays in the system to seed, the average startup delay remains high for a long time. Then it
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Figure 5.4 : Evolution of startup delay for different seeding behaviors. The vertical dotted
line represents the time ts when the first seeders appear in the system.

starts to slowly decrease, only due to the fact that there are less and less new peers joining.

However, when seeders contribute their bandwidth, even for as short a time as 5% of the

length L of the video, the startup delay rapidly decreases after ts' The situation gets better
as peers start seeding for longer times, although with diminishing returns. In particular, we

notice that a seeding time of 50% of the duration of the video L, is already sufficient to have

the startup delay of newcomers drop to 0 almost immediately after tso
The above findings sugge st that, once the systern scale has reached a reasonable level,

peer resources would be sufficient for the systern to be self sustainable and scale even further.

If we define up(t ) as the amount of u(t ) which only depends on peer contribution, then it is

evident that when up(t) ~ R the P2P systern has become self-sustainable and the capacity

provided by the initial seeder is not necessary anymore,

()
JlTJx (t ) + Jly(t ) R y(t) R - JlTJ

up t = ( ) ~ ~ -() .~ .
xt xt Jl

That is, areasonabIe seeders-to-leechers ratio has to be reached, if we want to provide

!

I
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VoD with a certain level of service using only the P2P infrastructure.

5.3 Related work

A few research papers have studied the scalability of BitTorrent-based live video streaming
systems during flashcrowds [24,59]. However, the analysis of the P2P approach for VoD

has mostly focused on the steady-state. Parvez et al. [50], for example, characterize these
systems in the steady-state and conclude that they are scalabie. Lu et al. [64] propose a fluid
model to study the evolution of leechers and seeders in a P2PVoD system in time, but do not
offer any scalability analysis.

5.4 Conclusions

In this chapter, we have analyzed the scalability of Bit'Iorrent-based P2PVoD systems dur­

ing flashcrowds and found out that, in the initial phase of such phenomena, scalability is
intrinsically related to the efficiency of the underlying P2P protocol and the initial service
capacity. In particular, although it is important to make the P2P protocol as efficient as pos­
sibIe, we have showed that a large initial service capacity is necessary, in order to support
an abrupt surge of joining peers . Our preliminary results also show that, once a sufficient
seeders-to-leechers ratio is reached , the system enters a new phase in which it has become
self-sustainable and the initial service capacity is no longer needed.
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Chapter 6

Bandwidth allocation in
BitTorrent-based P2PVoD systems
during flashcrowds

In Chapter 5, we have studied how a f1ashcrowd affects the scalability of BitTorrent-based
P2PVoD systems. From that analysis we have leamed that the initial phase of a f1ashcrowd
is the most critical one, due to the sharp increase of the demand and the shortage of seeders.
To face this challenge, service providers need to supply enough initial service capacity, as
weil as deploy an underlying P2P protocol that can effectively use the limited bandwidth
available, while at the same time enhance the QoS requirements necessary for VoD.

However, we have already observed several times throughout this thesis that the original

BitTorrent protocol has not been designed designed for streaming, and most of its adapta­
tions to VoDstilliack of a number of elements necessary to enhance the QoS requirements of
this application. For example, these proposals generally do not support any admission con­
trol mechanism, with the consequence that newcomers will continue being allowed to join
the systern, even when older peers struggle to maintaing a decent QoS. Similarly, not much
work has been done to make seeding more effective . While acknowledging that Carlsson et
al. [48] have proposed a new seeding policy in which seeders give priority to newcomers in
order to reduce their startup delay, we believe that this is not a good choice in a f1ashcrowd

I1 scenario. In fact, while seeders favor newcomers, there is a big chance that a large fraction
of older peers would still be struggling to maintain the necessary download speed to sustain

the video playback rate. We argue that, under this circumstance, a system should try first

to provide a good service to those users that are already in the system, and only then serve
newcomers.

Therefore, in this chapter, we will investigate how bandwidth allocation during a
f1ashcrowd can be made more effective in enhancing users' QoS. In particular, we focus
on the role of the initial seeder, which represent the major bottleneck in this phase [14,23].
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Our contributions in this chapter are the following:

I. We devise an analytical model that describes how bandwidth should be allocated in a

BitTorrent-based VoD system during a f1ashcrowd (Section 6.1).

2. Using this model, first we derive an upper bound to the number of newcomers that

can be admitted in the system over time (Section 6.1). Subsequently, we show that

a trade-off exists between having the initial seeder minimize the upload of pieces
already injected recently and a high peer QoS (Section 6.2).

3. Finally, employing the insights of our analysis, we present and evaluate a class

of distributed flashcrowd-handling algorithms to make bandwidth allocation during

f1ashcrowds more effective as weil as more QoS-oriented (Section 6.3).

6.1 Bandwidth allocation model for a BitTorrent-based
P2PVoD system

In this section, we present a discrete-time model to describe the bandwidth allocation in a

Bit'Iorrent-based P2PVoD system during f1ashcrowd. Then, based on the fundamental QoS

requirements for a VoD systern, we derive an upper bound for the system scale over time.

6.1.1 Approach

In the previous chapter, we have used a f1uid approximation of a Markov model to analyze

the bandwidth distribution in a generic BitTorrent-based system at a high level of abstrac­

tion, in order to draw general conclusions on the factors that affect its scalability. In this
chapter, instead, we seek to analyze how the bandwidth of each peer at each moment in

time should be allocated, in order to satisfy the fundamental requirements for VoD. Since

in Bit'Iorrent-based systems peers usually re-evaluate their decisions every unchoke interval

(see Chapter I), we utilize a discrete-time approach to model their bandwidth allocation and,

for sirnplicity, we assume that peers are synchronized.

6.1.2 Model description

We consider a Bit'Iorrent-based P2PVoD system consisting of an initial seeder or SOl/ree,

i.e. a peer with a complete copy of the file, with upload capacity AI, and a group of peers,

with upload capacity u, joining the system at a rate À(t ). The video file shared in this system

has playback rate R (Kbits/s), size F (Kbits) and is split into n pieces of equal size, allowing

peers who are still in the process of downloading to serve the pieces they already have to

others. The notation we use is shown in Table 6.1.
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Table 6.1: Mod el parameters.

Notation

F
n
R
No
AI
J.L
r

u, = LAI/rJ
Vp = LJ.L/rJ

A(t)
Z(tk)
Z(tk)
X(tk)
y(h)
U(tk)

I Definition

filesize (Kbits).
number of pieces the file is split into.
playback rate (Kbitsls).
number of sharers present in the system at the beginning of timeslot to.
initial seeders upload capacity (Kbitsls) .
peer upload capacity (Kbitsls) .
per-slot capacity (K bits/s).

number of upload slots opened by the initial seeder.
number of upload slots opened byeach peer.
arrival rate of peers in the system.
number of newcomers at timeslot tk .
number of newcomers admitted in the system at the end of timeslot tk.
number of sharers at timeslot tk .
number of seeders at timeslot tk.
total upload capacity available at timeslot tk (Kbits/s).

In the anal ysis, we assume that all peers utili ze upload slots of identical size, i.e. the

total number of uplo ad slots lis offered by the initial seeder and the numb er of upload slots

lip offered by a peer are defined as follow s

where r is the per-slot capacity, which, without loss of generality, we assume to be a sub­

multiple of the playback rate R . Thi s is equivalent to the concept of substreams used in

commercial P2P streaming systems (e.g. Cool streaming [62]) and in P2P streaming litera­

ture (e.g. [22,24]), where a video stream is divided into many substreams of equal size and

nodes can download different substreams from different peers.

If each uploader has at least as many unchoked peer s as upload slots, the minimum time

needed to upload a piece is equal to
F

Tp = - ,
nr

with Fin being the size (in Kbits) of a piece.

We assume that time is discrete, with the size of each timeslot tk being Tp , i.e. tk = kTp

and k E {O, 1, 2, .. . ,i, .. .] , and that the upload decisions are made at the beginning of

each timeslot. Consequently, in each time slot, a peer will upload to another peer exactly one

piece.

In this analy sis, we distinguish between two types of downloaders: newcomers, hav­

ing no piece yet, and sharers, having at least one piece. We denote with Z(tk), X(tk) and
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y(tk)' the number of newcomers, sharers, and seeders during timeslot u, respectively. In

this notation, y(tk) excludes the initial seeder supplied by the video provider. Furthermore,

we assume that , at timeslot to, there are already No initial sharers in the system and that

no peer leaves the system before its download is complete. Given this notation, the evolu­

tion of peers in the system can be described by means of the following set of disc rete-time

equations

Z(tk) = z(tk-d - Z(tk- i ) + À(tk- d ,

X( tk) = x( tk-d + z(tk- d - x(tk- d ,

y(tk) = y(tk- d + X( tk- i) - -y(tk- d,

z(to) = 0, x( to) = No, y(to) = 0,

where À(tk- d is the number of peers who joined within timeslot tk- h z(tk- d is the number
of newcomers that turned into sharers at the end of timeslot tk- i (i.e. they were admitted in

the sys tem), x(tk- i ) is the number of sharers that turned into seeders at the end of times lot

tk- h and -y(tk- d is the number of seeders who have left at the end of timeslot tk- i.
The total bandwidth available durin g a timeslot tk is given by the sum of the contribu­

tions of all the sharing peers (seeders and sharers) available at the beginning of timeslot t k>

i.e.

(6.1)

6.1.3 Upper bound for the system scale in time

Even for a scalabie system, only a limited number of newcomers can be admitted at each

timeslot. Thi s is due to the fact that newcomers consume bandwidth without providing any

bandwidth in return , until they complete the download of their first piece . In this section, we

will derive an upper bound for the number of newcom ers that can be admitted in the system

at each timeslot , assuming that all the bandwidth U(tk) available at a cert ain timeslot tk
is fully utilized . We proceed by first reserving the necessary bandwidth for the sharers to
satisfy the first QoS requirement for VoD. Then, based on the remaining bandwidth, we

calculate the number of newcomers that can be admitted in timeslot tk'

Reserving the necessary bandwidth for the sha rers

Reeall from the introduetion of this thesis that , when bandwidth is scarce, the primary goal

of a VoD system is to maximize the number of viewers that maintain a smooth playback

cont inuity. For the sake of simplicity, here we assume that all sharers have started playback.

It follows that a cert ain amount of bandwidth Ux(tk) needs to be reserved for the sharers at

timeslot tk' Thi s bandwidth should be such that each sharer can maintain a download speed
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of at least R. Hence we have
(6.2)

Admitt ing the newcomers and upper bound

After having reserved the necessary bandwidth for the sharers, the remaining bandwidth (if
any), can be used to admit newcomers in the system. To this end, we find the following

upper bound for the number of newcomers that can be admitted during timeslot tk .

Lemma 1. For a BitTorrent-based P2PVoD system with playba ck rate R and average peer

upload capacity J.l 2: R, the number ofnewcomers z(tk) that can be admitted durin g timeslot

tk has the follo wing upper bound

(6.3)

Proof. Taking Eg. (6.2) into account , the bandwidth available for newcomers at times lot tk

is at most U(tk) - Ux(tk) = U(tk) - Rx(tk) = M + J.ly (t k) + (J.l - R )X(tk). Since the
capacity of a peer upload slot is r , Eg. (6.3) follows. 0

From Lemma I, it is c1ear that, at the beginning of a huge flashcrowd, when there are

only few or no seeders (besides those supplied by the service provider) and few sharers who
can only provide a limited fraction of bandwidth to newcomers, the system can only admit
a small amount of newcomers per timeslot. In this case, it is impossible to avoid newcomers
experience longer startup delays, as we will show with our experiments in Section 6.4.

6.2 Initial seeder's piece allocation analysis

In this section, we will study the piece allocation strategy of the initial seeder in a BitTorrent­
based P2PVoD system during a flashcrowd. We focus on the initial seeder because its piece

allocation strategy is a crucial aspect during flashcrowd, being the seeder the only interesting
peer in that phase (all other peers have few or no pieces yet). Furthermore, studying the piece
allocation of each single peer in the system is unpractical, since the complete bandwidth
allocation problem in a Bit'Iorrent-based system has been proven to be NP-hard [23].

We proceed by first defining the relevant features of the BitTorrent-based P2PVoD pro­
tocol we consider and introduce a useful concept to understand the flow of data from the
seeder to the peers. Then, we analyze in detail the seeder's piece allocation.

6.2.1 Protocol features

For the purpose our analysis, we assume that, if there is more than one initial seeder, they
coordinate their behaviors so that we can consider them as one identity. The total capacity
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Figure 6.1: Seeder's piece allocation at timeslot tk.

provided by the initial seeder at each timeslot tk is denoted by Vs(tk) . We assume that the
initial seeder knows

I. the arrival rate À(tk), the leaving rate -y(tk);and

2. the last piece it has sent to the sharers.

Given our first assumption, the seeder always knows the exact number of peers in the system

at any moment in time.

In the followin g, we describe the piece allocation and the piece download schemes

adopted by this seeder and by the downloaders, respectively.

Seeder's piece a lloca tion

Having denoted vAtk) as the total number of upload slots provided by the seeder at timeslot

tk, we assume the seeder to adopt the following behavior

3) allocate each of these slots to a different peer;

4) unchoke, at each timeslot, the oldest Vs(tk) peers in the system; and

5) unless otherwise specified, at each timeslot tb upload pieces from i to i + Vs(tk) - 1,

where i - I is the piece with highest index uploaded at the previous timeslot tk-l .

Strategy 3) reflects the idea of serving as many peers as possib le. Strategy 4) is j ustified
by the fact that younger peers, having a lower level of progress than older peers, can down­

load their needed pieces from older peers, while the oldest peers can obtain the pieces they

need only from the seeder. As a consequence of our strategy 5), each of the Vs(tk) peers
unchoked by the seeder will receive a different piece , as illustrated in Figure 6.1. We note

that this scheme increases the bartering abilities among peers, hence allowing a high peer

bandwidth utilization.
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Pieee download seheme

According to QoS requirement I for VoD, a sharer should keep an average download rate of
at least R, in order to maintain a good stream continuity. However, pieces needed by peers

cannot always be downloaded in a strict sequential order, otherwise the bartering abilities
among nodes are hampered. To avoid this scenario, we assume that

6) each peer defines a download buffer Ba of size B which includes the pieces [i, i +B ­
1], where i = o.H,with a. E {O, 1,2 , ... , L1jJ}.

Once all the pieces in the current buffer Ba are downloaded, a peer determines the next

buffer Bo+1 = Ba + B = [i+ B ,i +2B - 1]. Although pieces from outside the buffercan be
downloaded, it is necessary to enforce the buffer filling rate to be at least R, in order to satisfy
QoS requirement I. Even if the schemes used in practice are more practically convenient
(with the buffer being implemented as a sliding window following the playback position or
the first missing piece of the file [26,51,63]), a statie buffer makes the computation of its

filling rate easier, which we will use in the analysis in Section 6.2.3.

6.2.2 Organized view of an overlay mesh

To understand the flow of data from the seeder to the downloading peers, we use the con­
cept of organized view ofan overlay mesh, originally proposed for P2P live streaming sys­
tems [49]. In this view, downloaders are grouped into levels based on their shortest distance
from the seeder through an overlay, as shown in Figure 6.2. The set of peers on level i is
denoted by L j • L1 peers are directly served by the seeder, L2 peers are served by L1 peers,

and so on. The connections from L, peers to LH 1 peers are called diffusion connections,
since they are used for diffusing new pieces through the overlay. On the other hand, the
connections from L, peers to Lj peers, where j ~ i , are used to exchange missing content
through longer paths in the overlay (i.e. swarming). We call these connections swarming

connections.

6.2.3 Piece replication at the seeder

Aseeder might decide to only upload pieces not yet present in the overlay or upload again
some pieces already injected recently (a behavior which we term piece replication).

As observed earlier, a system where the seeder adopts the first strategy allows a higher
peer bandwidth utilization.

On the other hand, a higher piece replication at the seeder, when properly implemented,
allows a faster diffusion of pieces in the system and increases the system scale . In fact, if
the seeder serves to the peers the pieces they need in the immediate future (rather than new,

far-away ones), then these peers have a lower chance of missing a piece before its playback
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Figure 6.2: Organized view of an overlay mesh relative to a BitTorrent-based P2PVoD sys­
tem. Solid arrows and dashed arrows represents diffusion connections and swarming con­
nection s, respectively.

deadline. Furtherrnore, since these nodes obtain some of thc needed pieces directly from

the seeders, they need to obtain fewer pieces from their neighbors, which in turn can then

utilize a higher fraction of their bandwidth to serve newcomers, thereby reducing startup

delay s and increasing the system scale.

However, even if the seeder decide s to upload again some pieces already present in the

sys tem, a certain minimum number of new pieces has to be injected at each timeslot, to

allow older peers maintain a download speed of at least R.
Hence, a balanc e is necessary between injecting enough new pieces in the system and

serving pieces needed right away. We study this issue using the concept of seeder replication

f actor Fk at timeslot tk. which we define as the fraction of replicated pieces over the total
number of pieces that a seeder allocates in that timeslot. Thus, a seeder replication factor of

afb. for a seeder with b upload slots, means that a of the allocated pieces will be a replica

while the other b - a will be pieces not yet present in the system. In the following , we show

how to determine an upper and a lower bound for the seeder replication factor Fi:

Theorem 1. Let a Bit'Iorrent-based P2PVoD system with playback rate R consist. at the

beginning of times/ot tk. ofa seeder with upload capacity ru; 2: R and at least x( tk) 2: Vs

sharers with upload capacity rvp 2: R. Then, the maximum value of the seeder replication

fa ctor Fk guaranteeing that, independently from previous upload allocations , the sharers

keep a buffer filling rate of R at times/ot tk+l. is

(6.4)

R

Proof Let us assume that Fk > v. - r . This means that the number of replicated pieces
v.

uploaded by the seeder at timeslot tk is C(tk) 2: Vs :- ~, which in turn means that the

seeder has injected at most D(tk) < ~ new pieces. Now, let us assume that previou s upload
allocations are such that, by the end of timeslot tk, all L1 peers complete the download of
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all pieces until (and including) piece i , where i is the piece with highest index uploaded

by the seeder at timeslot tk-I' Consequently, at timeslot tk+lo the L I sharers can complete,

at most, the download of the D(tk) < ~ new pieces injected by the seeder at timeslot tk,
which means that their average download rate can be at most D(tk)r < R. Hence, we have

demonstrated that there exist at least one scenario in which the sharers will not be able to
R

maintain a piece buffer filling rate of at least R when Fk > v.-r . On the other hand, when
v.

R

Fk :::; v':' r , then D(tk) 2: ~ , which implies that the sharers can potentially reach an average

download rate of D(tk)r 2: R. 0
As we will see later on in this chapter (Section 6.4), the upper bound for the seeder

replication factor is also the value yielding the best playback continuity. In fact, on the one

hand this value allows enough replication to limit the number of pieces peers miss, and on

the other hand it guarantees that the oldest peers have enough new pieces to keep an average

download rate as high as the playback rate.

Theorem 2. Let a BitTorrent-based P2PVoD system with playback rate R consist. at the

beginning of timeslot tk> of aseeder with upload capacity rvs 2: R, X( tk) 2: Vs sharers

with upload capacity rvp 2: Rand Z( tk) newcomers. Then, the minimum value ofthe seeder

replication factor Fk at timeslot tk necessary to maximize the number of newcomers to be

admitted, while still guaranteeing the sharers a buffer filling rate of R, is

ij z(tk) :::; ZI (tk),

ij ZI (tk) < Z(tk) < Z2(tk),

ij Z(tk) 2: Z2(tk),

where

R
K = Vp - - ,

r
R

ZI(tk) = - + K X(tk),
r

Z2(tk) = u; + K X(tk)'

In order to prove Theorem 2, we need to introduce the following lemma

(6.5)

(6.6)

(6.7)

Lemma 2. Given a BitTorrent-based P2PVoD system under the same conditions as in The­

orem 2, ij the seeder does not replicate, then its average contribution of pieces within the

buffer ofeach L I sharer is

vs~ + K X( tk) - min{Z2(tk), Z(tk)}
V« - 1



88

pieces per timeslot, where [( and Z2(tk) are defined in Eq. (6.5) and (6.7), respectively.

For the proof of Lemma 2 we refer the reader to Appendix 8.

Proof ofTheorem 2. When the sharers are able to serve all the newcomers (with at least one

piece each), as weil as complete the download of the ~ pieces within their respective current

buffers necessary to maintain a good stream continuity (QoS requirement I), utilizing only

their aggregate bandwidth, then the seeder does not need to replicate and can inject new

pieces into the system.
Specifically, if the sharers serve the newcomers, they will be having a total of X I(tk) =

VpX(tk) - Zm(tk) slots left, being VpX( tk) the total number of slots offered by the sharers,

Zm(tk) := min{ Z2(tk), Z(tk) }, and Z2(tk) the maximum number of newcomers that can be
served at this timeslot (as derived from Lemma I applied to this case). Hence, it holds that

X I(tk) ~ vpx(tk) - Z2(tk) = ~x(td - v.· Of these slots, X2(tk) = (X(tk) - vs) ~ can be
used to provide the ~ needed pieces to the Lj sharers (j > 1), which are X(tk) - u, in total ,

Consequently, the number of slots from the sharers available for the L I peers are

(6.8)

Altem atively, X s(tk) can be considered as the maximum number ofpieces that L I peers can

receive through swann ing. Now, the piece replication at the seeder should be such to allow

each of these peers complete the download of the ~ pieces within their current buffers at the

end of timeslot tk. This makes a total of Rvs/ r needed pieces for all the L I peers. Of these
pieces, Xs(tk) can be obtained from swann ing, and, by Lemm a 2, at most other

Xs(td
u; - 1

pieces are provided by the seeder (when not taking replication into account). Hence , the total

amount of needed pieces minus those provided through swarming and by the non-replicating

activity of the seeder corresponds to the minimum number of pieces that the seeder needs to

replicate at timeslot tk

Hence, the minimum replication factor Fk is

(6.9)
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From Eq. (6.9) we notice that, when Z(tk) ::; Zl (tk) = ~ + J(X(tk), the seeder does not

need to perform any replication. Furthermore, we observe that, when Z( tk) 2: Z2(tk) =
R

v. + J(X( tk), the minimum seeder replication factor equals to ~:=..f , which completes our

proof. 0

6.3 Aigorithms for 8ashcrowds

In this section, we present a c1ass of flashcrowd-handling algorithms that use the insights

gained by our analysis to make the bandwidth allocation in BitTorrent-based P2PVoD sys­

tems during flashcrowds more effective in enhancing the QoS of peers. First, we explore

some methods to allow a peer to detect whether the system is under a flashcrowd. Subse­

quently, we describe our algorithms in detail.

6.3.1 Flashcrowd detection

Ideally, the bandwidth allocation of each peer at every moment in time should rely on some

global knowledge of the state of the system at that time (e.g. total number of peers, number

of newcomers, current download progress of all peers, etc.). However, providing all the

nodes in the system with this kind of information is not feasible in practice. Furthermore,

the bandwidth allocation problem in BitTorrent-based systems has been shown to be NP­

hard [23).

Hence, in this chapter, we will use a heuristic approach where each peer individually

considers the system to be either in "normal state" or "under flashcrowd". Depending on

which state the peer assumes the system is in, it will utilize a different bandwidth allocation

algorithm. To implement this mechanism, peers need some way to detect the occurrence of

a flashcrowd. Based on a peer's local knowIedge, a natural choice to identify a flashcrowd

would be to measure the following:

(a) Increase in the perceived number of newcome rs. A peer can track the number of

newcomers that conneet to it by checking the pieces owned by its neighbors.

However, when the peerlist provided by the tracker contains a constant number of nodes,

this is not a good metric for detecting a flashcrowd, as its accuracy decreases with the size

of the system (see Figure 6.3(a), obtained running the BitTorrent-based P2PVoD protocol

proposed in [63] under the settings described in Section 6.4.1 of this chapter). On the other

hand, since the tracker provides each peer with a random subset of the nodes, we can assume

that each peer encounters a random and therefore representative selection of other peers and

we can measure the following:
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Figure 6.3: Comparison between the real value and the value perceived by a peer for a
flashcrowd detection based on (a) the number of newcomers, and (b) the percentage of peers
with less than 50% of the file.

(b) Fraction of neighbors having less than 50 % of the file. Esposito et al. [23] observed

that in the BitTorrent file-sharing systern, the average file completion level of peers

during a flashcrowd is biased towards less than half of the file, i.e. there are many

more peers with few pieces than peers with many pieces.

Figure 6.3(b) illustrates the performance of both methods for a scenario where peers

join at rate À(t ) = Àoe- ~ with Ào = 5 and T = 1500 from time to = 5000 s in a sys tem
with aseeder and No = 7 initial peers. As we can see, our experiments corroborate the

findings of Esposito et al. [23]. Furtherrnore, our experiments also show that the difference

between the real value of peers having less than 50% of the file and the value perceived by

a peer (i.e. based on the nodes in its neighborhood) is barely visible. These results confirm

that (b) represents a good metric for a peer to detect a flashcrowd solely based on its local

inform ation. Furthermore, using this method, peers can estimate the end of a flashcrowd as

well , by checking when the fraction of neighbors with more than half of the file becomes

higher than that of peers with less than half of the file. Hence , in our experiments, we will

use this method to detect a flashcrowd.
Once detected a flashcrowd, a peer also needs to know whether the flashcrowd is nega­

tively affecting the system performance. In fact, the same Ilashcrowd might have a different

impact on the system performance depending on how many peers are already there when

the flashcrowd hits. Therefore, each sharer periodically measures its download performance

and checks whether it is enough to meetthe QoS requirement I for VoD. On the other hand,

a seeder does not download data nor it can trust information received by other peers (as they

mightlie). Therefore, a seeder will only use the flashcrowd detection method to activate its

flashcrowd-handling algorithm.

I
I

•
•

I

i
,
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6.3.2 Flashcrowd-handling algorithms

In om proposal, a peer runs a certain default algorithm until it detects both a flashcrowd

and (in the case of a sharer) that its own performance is low. When this happens, it will
switch to a flashcrowd-handling algorithm. More specifically, a peer will assume the system
to be under flashcrowd once the number of its neighbors having less than 50% of the file is

gone above a certain threshold T . If the peer is aseeder, this is enough for it to activate its
flashcowd-handling algorithm. If it is a sharer, it will only activate its flashcrowd-handling

algorithm if its sequential progress' is below the playback rate R. The sequential progress
is a good metric for a real-time check of the preservation of a peer's stream continuity.
Furthermore, it has the advantage of being agnostic with respect to the piece selection policy

adopted by the underlying Bit'Iorrent-based P2PVoD protocol.
In the following we present om flashcrowd-handling algorithms for the sharers and the

seeder respectively, which are derived from the insights gained from om analysis in Sections
6.1 and 6.2.3.

For the sharers

Since the priority of a BitTorrent-based P2PVoD system is to maximize the number of shar­
ers that keep a smooth playback continuity, newcomers should only be allowed in the sys­
tem if there is enough bandwidth available for them, after the necessary bandwidth for all
the current sharers has been reserved (Lemma I). Peers, however, do not have (nor it is
reasonable for them to have) global knowledge of what is happening in the system at a
certain instant in time (how many sharers and newcomers there are, how many newcomers

have been already unchoked, etc.). Therefore, we propose that, when a sharer is running
the flashcrowd-handling algorithm, it will choke all the newcomers and keep them choked
until it switches back to the default algorithm. Newcomers might still be unchoked by peers
who are not running the flashcrowd-handling algorithms, if any. This strategy avoids wast­
ing bandwidth to admit newcomers, when existing peers struggle to keep a smooth playback
continuity.

For the seeder

As we have observed in Section 6.2.3, the seeder's behavior is crucial during a flashcrowd.
Similarly to sharers, seeders choke all newcomers when they are running the flashcrowd­
handling algorithm. Furthermore, based on the observation from our analysis in Section 6.2
that older peers can only get their pieces from the seeder and given that the competition for
the seeder is higher during flashcrowd, we designed our flashcrowd-handling algorithm to

I a peer's sequential progress is defined as the rate at which the index of the first missing piece in the file
grows [201
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Figure 6.4: Seeder's piece allocation with 9 = !f; groups of peers.

have the seeder keep the oldest peers always unchoked. Then, we have implemented two
different classes of seeding behavior as described below.

I) Passive seeding (F HlPS): the seeder does not direct ly decide which pieces it will

upload and the decision is left to the requesting peers .

With this strategy we will evaluate the effectiveness during flashcrowd of the piece selection

strategy employed by peers.

2) Active seeding (FH/AS): the seeder decides which piece to send to each requesting

peer.

This second strategy allows us to evaluate the impact of different replication factors. For
what concerns the pieces to replicate, we have chosen a proportional approach, in order to
reduce the skewness of piece rarity : all pieces are replicated the same number of times. More
specifically, given a replication factor Fk at seeder's unchoking round k, the number of new
pieces the seeder injects in the system is w = (1 - Fk)vs , Vs being the number of upload
slots of the seeder. Then, the number of peers direct ly unchoked by the seeder is divided in

9 = !f; groups of size w each and peers within each group are assigned pieces from i to
i +w - 1, where i- I is the piece with highest index uploaded by the seeder in the previous
round . For an illustration see Figure 6.4.

For what concern s the coordination of multiple seeders, we make the following obser­
vations. Firstly, in a flashcrowd scenario, typically there are only one or a few seeders in the
system, i.e. the content injectors. In the case of only one seeder, no coordination is needed,
while in the case of few seeders, the coordination overhead is not very high. In fact, since
the seeders do not unchoke new nodes until some of the currently unchoked peers leave,
and since the behavior of the seeders is deterministic, they need to coordinate only at the
beginning, when getting their first connections, and every time an unchoked peer leaves.
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Figure 6.5: Percentage of peers experiencing perfect playback continuity (Cl = 100%) and
good playback continuity (Cl 2: 95%) for different replication factors and ftashcrowd inten­
sities.

Secondly, the creation of new seeders at a later stage, as a consequence of peers complet­

ing their downloads and remaining in the system to seed, indicates per se that more and

more bandwidth becomes available in the system. At that stage, the system would likely

be already able to deliver a reasonably good service even for short seeding time s and no

ftashcrowd-handling mechanism in place [39] . Thus, the coordination between these newly

created seeders and the initial seeder(s) can be avoided.

Final1y, we note that , even if aseeder activates its ftashcrowd-handling algorithm in a

ftashcrowd that would not affect the system very seriously, peer QoS will not degrade. In
fact , although the seeder does not unchoke any newcomers, they wil1 stil1 be unchoked by

many other sharers in the sys tem. Hence the impact on newcorners ' startup delay will be

minimal. Regarding the fact that older peers always remain unchoked, we believe that this is

not a problem either. In fact, as pointed out earlier, older peers can only obtain their pieces

from the seeders and , if they do not need to compete with other peers for the seeder's slots,

they are likely to experience better QoS , and hence able to serve more peers with a lower

level of progress.

6.4 Evaluation

In this section, we evaluate our proposed ftashcrowd-handling algorithms by means of sim­

ulations. First, we introduce the details of the experimental setup, the evaluation metrics,

and we describe the different ftashcrowd scenarios used. Then, we present and analyze the

simulation results. Inthe resuit s, we also included a case with heterogeneous peers, in which

a ftashcrowd handling algorithm is compared with a strategy favoring fast peers.



94

6.4.1 Experimental setup

We have implemented our flashcrowd-handling algorithms on top of our version of the MSR
BitTorrent simu lator introduced in Chapter 3. In all our experiments, we have utilized the

algorithm presented in [63] as our default BitTorrent-based P2PVoD protocol. This protocol

employes a peer selection based on indirect reciprocity and a window-based piece selection,

with alocal rarest-first strategy within the window ". We have set the f1ashcrowd detection

threshold value T to 0.5, since our simulations show that, in a steady state, the fraction of

a peer's neighbors having less than 50 % of the file lies, on average, below 0.5 (see Figure

6.3(b».
The settings for our experiments are shown in Table 6.2. The system is initially empty,

until a f1ashcrowd of N peers starts joining. In our simulations, we have utilized both an

exponentially decreasing arrival rate À(t ) = Àoe- ~, and an arrival rate with N peersjoining

altogether at time to = O. The simulation stops after the last peer completes its download. In
our experiments, we have assumed the worst case scenario of peers leaving immediately af­

ter their download is complete. On the other hand, the initial seeder never leaves the system.

Finally, to decide when playback can safely commence, the method introduced in [20] is

used. Specifically, a peer will start playback only when it has obtained all the pieces in the

initial buffer and its current sequential progress is such that, if maintained, the download of

the file will be completed before playback ends.

Each simulation run is executed la times and then average values and confidence inter­

vals (with confidence level of 95%) for the metrics introduced below are computed.

6.4.2 Evaluation metrics

To evaluate how weil our solutions meet the QoS requirements for VoD, we have utilized

again the continuity index (Cl) and the startup delay, defined in Chapter 3.

6.4.3 Scenarios

In our simulations, we have considered three scenarios characterized by three different

f1ashcrowd intensities:

• low intensity: exponentially decreasing arrival rate À(t) = Àoe- ~, with Ào =5 and

T = !:!.. = 300 '
>'0 '

• medium intensity: exponentially decreasing arrival rate À(t) = Àoe- ~, with Ào = 10

and T = fo = 150;

2The VoD protocol presented in [63] employes an adaptive mechanism to increase a peer's window size if
that peer is experiencing a good QoS. In this way, peers bartering abilities are increased when the conditions
are favorabIe. The parameter "initia! window size B" reported in Table 6.2 represents the default initial size of
each peer's window.
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Table 6.2: Simu lation Settings
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Flashcrowd size N
Video playback rate R
Video length L
Initial window size B
Piece size
Upload capacity of the initial seeder M
Peer upload capacity I-l
Per-slot capacity T

Flashcrowd detection threshold T

1500 peers
800 Kbits/s
I hour
20 pieces
256 KBytes
8000 Kbits/s (lOR)
1000 Kbits/s
200 Kbits/s
0.5

I '

1I

• high intensity: N peers joining altogether at time t~.

6.4.4 Results

We will first analyze the effect of different replication factors Fk over the performance

of our flashcrowd-handling algorithms and then we will evaluate the performance of our

flashcrowd-handling algorithms.

The effect of different replication factors

Figure 6.5 shows the percentage of peers experiencing perfect (Cl = 100%) and good (Cl

~ 95%) playback continuity for flashcrowd-handling algorithms with active seeding having

different replication factors under the three simulated scenarios. As we can see, no replica­

tion (i.e. Fk = 0) is not an optimal strategy, as it always causes a considerabie amount of

peers experience poor stream continu ity (in the case of flashcrowd of high intensity, for ex­

ample, only 36% of peers experience perfect playback continuity). On the other hand, when

the seeder perforrns replication, the playback continuity index of peers increases. In fact, as

we observed in Section 6.2, a higher piece replication at the seeder decreases the chance of

peers missing pieces. However, we have also showed that the seeder replication must not

be too high: the seeder needs to inject new pieces at a rate of at least R (which means a
R

replication factor Fk ~ v':' -;), in order to make sure that its unchoked peers keep a down-

load rate of at least R necessary to meet the first QoS requirement for VoD. Indeed, from

Figure 6.5 we can observe that, in all scenarios, the playback continuity index improves as
R R

the replication factor grows until it reaches the limit Fk v. - -; . When Fk > v. --; , the
v . V s

playback continuity index starts degrading again.
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Figure 6.6.

Default algorithm vs flashcrowd-handling algorithms

Figure 6.6 shows the CDF of peer playback continuity index for the default Bit'Iorrent-based

P2PVoD algorithm and our ftashcrowd-handling algorithms under the three simulated sce-
R

narios. The algorithm with active seeding has replication factor Fk = v' - r , which, as shown
v.

by the previously presented results, is the one that maximizes QoS requirement I. As we

can observe, the flashcrowd -handling algorithm with active seeding (FH/AS) consistently

outperforms the other ones , with never more than 10% of the peers receiving a playback

continuity index below 100%. By contrast, in the case of ftashcrowd with high intensity, the

default algorithm is not able to provide any peer with a Cl of 100%. Furthermore, we can

notice that, while the performance of the other two algorithms degrades with more intense

ftashcrowds, that ofFH/AS stays constant. FinaIly, we note that the ftashcrowd-handling al­

gorithm with passive seeding (FH/PS) works relatively weIl for not too intense ftashcrowds,

but suffers performance degradation with a very intense ftashcrowd. This is due to the fact

•

1
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that the seeder replication factor is controlled by the peers, which do not coordinate their

piece requests among each other. The local rarest-first strategy used byeach peer to select
a piece to download is supposed to smoothen this effect. However, since its effectiveness
only builds up once a peer has been in the system for some time, it is less powerful when

the system is under a heavy flashcrowd.
Regarding the startup delay (Figure 6.7), we can make the following observations. First

we note that, for a flashcrowd with low or medium intensity, FHJAS is able to maintain a

relatively low startup delay for all peers (comparable to that of the default algorithm). This
is a sign that an adequate replication of pieces at the seeder results in satisfying both QoS
requirements, when possible. On the other hand, FHJAS significantly increases the startup

delay of peers in the scenario of heavy flashcrowd. This is an experimental validation of
what is stated in Lemma I, the bandwidth available at the beginning of the flashcrowd is not
enough to serve all the joining peers, which, consequently, will experience longer startup
delays .

We have simulated each of the three flashcrowd scenarios 10 times and found out that
the behavior of the different algorithms is very stable, with the standard deviation never

exceeding 1.6 and 3.4 of the mean values of Cl and startup delay, respectively.

Heterogeneous case: active seeding vs favoring fast peers

In our model and algorithm design we have considered, for the sake of simplicity, the case
of an homogeneous system, where all peers have the same upload capacity 11 = 1000kbits/s.
In order to verify the effectiveness of our approach in a more general setting, in this para­
graph we present results for a set of simulations involving heterogeneous peers. Specifically,
two groups of peers are considered for this experiment: Jast peers, having upload capac­

ity I1f = 2R = 1600 Kbits/s, and slow peers, having upload capacity 111 = ~ = 400
Kbits/s . Every time a new peer joins, it will be a fast peer with probability 0.5. Hence, on
average, there will be an equal number of fast and slow peers in the system at any mo­
ment in time. Consequently, the average peer upload capacity in the system will be roughly
PI ;'" = 1000kbits/s, i.e. the same as for the homogeneous case.

Along with our flashcrowd-handling with active seeding (FHJAS) strategy, we have in­
vestigated another strategy where downloaders have the defau lt behavior and the seeder
favors fast peers (FF), i.e. it uploads data preferably to fast nodes. The reason for consid­
ering this latter strategy is due to the fact that, intuitively, favoring fast peers seems a good
idea for spreading pieces faster, and hence reaching the steady-state sooner.

Results for a low intensity flashcrowd are shown in Figure 6.8. As we can observe, Ac­

tive Seeding has a similar performance as for the homogeneous case. On the other hand,
Favoring Fast Peers results in an overall worse performance (even worse than the default
algorithm with no flashcrowd-handling) for both metrics considered. This phenomenon can
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hit by a low intensity flashcrowd .

be explained as follows. When the seeder favors a fast peer, this peer will choose to down­

load the pieces it needs in the immediate future , rather than pieces further away in the file.

As a consequence, the number of replicas for the pieces at the end of the file becomes too

low, and many peers whose playback position is towards the end of the file suffer of bad

viewing quality. As these peers are left with too Iittle or no pieces to exchange, the overall

efficiency of the P2P protocol decreases, which in turn determines longer startup delays.

6.5 Related work

Extensive work has been done on modeling and analyzing BitTorrent-based P2PVoO sys­

tems . Parvez et al. [50) study the performance of such systems and conclude that they are

scalabIe in steady state. Lu et al. [64) propose a fluid model to analyze the evolution of peers

over time. However, they do not consider the QoS requirements for VoD in their analysis

nor focus on flashcrowd scenarios.
With respect to flashcrowds, Liu et al. [24] study the inherent relationship between time

and scale in a generic P2P live streaming system and find an upper bound for the system

scale over time. Esposito et al. [23] recognize the seeders to be the major bottlenecks in

BitTorrent systems under flashcrowds and propose a new classof scheduling algorithms at

the seeders in order reduce peer download times. However, none of these previous works

analyzes the case of P2PVoO applications.

J
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6.6 Conclusion

In this chapter, we have studied the allocation of bandwidth in a BitTorrent-based P2PVoD

system during a tlashcrowd. We have shown that, in order to satisfy the QoS requirements
described in the introduetion of this thesis, there is an upper bound for the number of new
peers that can be admitted in the system in time. Furtherrnore, we have demonstrated that

a trade-off exists between low piece replication at the seeders and high peer QoS. In par­
ticular, we have shown that, the larger a tlashcrowd, the more pieces (up to a certain limit)

the seeders need to replicate, in order to have peers experience an acceptable QoS. Then ,
we have used the insights gained from our analysis to design a class of ful1y decentral­
ized tlashcrowd-handling algorithms that improve peer QoS when the system is under a

tlashcrowd.
On a different note, our study also shows that heavy tlashcrowds have a huge impact on

BitTorrent-based P2PVoD systems, although peers are incentivized to contribute their band­
width to the network . We therefore expect that systems which do not incorporate such in­
centives are (i) either likely to provide lower QoS to their users, since peers are not "foreed"
to contribute their bandwidth (and might decide not to), or (ii) they need to supply consid­
erably more server bandwidth in order to have their service scale with the tlashcrowd size,
as compared to BitTorrent-based (incentivized) systems.



\00



Chapter 7

Conclusion

In this thesis, we have investigated the problem of delivering high quality on-demand
streaming by means of a highly dece ntralized P2P architecture. We have first identified
the major factors that challenge the design of such systerns , and we have quantified their

impact. Then , for each of these issues, we have proposed robust and light-weight algorithms
that lead to significant improvement in the QoS delivered by P2PVoD systems.

In this chapter, we present our conclu sions, which will answer the research questions
identified in the introduetion of this thesis, and also propose suggestions for future work in

this field.

7.1 Conclusions

Based on the research presented in this thesis, we draw the following major conclusions:

I. Bandwidth distribution in P2P swarming systems is highly dependent on the presence,
as weil as the arnount, of unconnectable nodes. Since connectable peers can upload
data both to connectable and unconnectable nodes, while the latter can only upload to
the former, it follows that connectable nodes receive, on average, more bandwidth than

unconnectable ones. Consequently, connectable nodes also experience faster down­
load speeds and better QoS. Also, because the bandwidth of unconnectable peers can
only be consumed by connectable ones, a larger fraction of unconnectable nodes de­
termines a larger performance gap between the two types of peers. Furthermore, al­
though bandwidth can be redistributed more evenly by means of connectability-aware
policies, it will be in any case impossible for unconnectable peers to experience as
good performance as connectable ones once the fraction of unconnectable nodes has
gone past 50%.

2. Current BitTorrent-based P2PVoD approaches all share some similarities, such as
that, although in different degrees, they all trade a QoS-oriented design with lower
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freeriding-resilience or security. Our analysis also shows that current peer selection

policies based on bandwidth reciprocity are not suitable to provide high QoS in hetero ­

geneous systems where peers have different upload bandwidths or are unconnectable.

Finally, we have observed that, when VoD peers coexi st with file-sharing peers, the

former experience poor performance while the latter usually benefit from it.

3. We have developed a set of adaptive algorithms to allow peers that are already re­

ceiving a high enough QoS to dynamically increase the fraction of their bandwidth
allocated to random peers or unconnectable ones. By doing so, when the bandwidth

in the system is abundant, it will be distributed more evenly among peers and hence

a larger fraction of users will receive satisfactory QoS. At the same time, the adap­

tiveness of our strategies allows peers to become more selfish when resources are
scarce, selectin g less random or unconnectable peers. In this way, if there is resource

contention, high-eapacity (connectable) nodes are still abIe to receive a good service,

while low-capacity (unconnectable) nodes or freeriders suffer of performance degra­

dation. We have also shown that this adaptive mechani sm can be used to significantly

reduce startup delay s, by giving priority to newcomers.

4. The scalability of BitTorrent-based P2PVoD systems during f1ashcrowds is intrinsi­

cally related to the efficiency of the underl ying P2P protocol and the initial service

capacity, especia lly in the initial phase of such phenomena. In particular, althou gh it

is important to make the P2P protocol as efficient as possible , a large initial service

capacity is always necessary to support an abrupt surge of joining peers. However,

once a sufficient seeders-to-leechers ratio is reached , the system enters a new phase in

which it has become self-sustainable and the bandwidth contribution from the service

provider is no longer needed.

5. We have proposed a set of decentralized algorithms to enable peers to quickl y ad­
ju st their behavior to a f1ashcrowd scenario. The quick response of our algorithms is

due to an efficient f1ashcrowd-detection mechani sm, that allows peers to immediately

determine its occurrence. In downloaders, such a f1ashcrowd-detection mechanims is

coupled with a more selfish behavior as their current QoS decreases. In seeders, the

flahscrowd-detection mechanism is coup led with a more efficient piece dissemination

strategy. Altogether, the algorithms implemented in downloaders and seeders allow

the system to meet the QoS requirements for VoD as outlined in the introduetion of

this thesis.
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7.2 Suggestions for future work

There are several directions for further studies relative to the topics presented in this thesis.

Here, we list the following:

I. We have shown that the current incentive schemes adopted in BitTorrent-based VoD

systems, based on bandwidth reciprocity, are not suitable to VoD. This is due to the

fact that they pursue a general file-transfer goal rather than a VoD goal. While in file­

transfer the goal is to maximize the total download speed, in VoD the goal is to have

as many peers as possible experience a smooth playback. Hence, as opposed to file­

transfer, in VoD a peer does not earn any benefit in downloading at much higher rates

than the playback rate. In this thesis, we have proposed a way to relax the reciprocity

of these mechanisms when bandwidth is abundant, in order to grant more peers with

a satisfac tory QoS. Based on this line of work, researchers in this field should focus

on creating ince ntives that bette r fit the VoD case.

2. The performance of unconnectable peers can get really low, even when they are only

30-50% (which is a realistic range in P2P swarming systems, see [45] and references

therein) of the tota l and even when connectable peers use all their bandwidth to serve

them. Therefore, in order to improve their QoS, it is important to make these nodes

completely open, which calls for the need of NAT traversal. This is probably one of

the reasons behind the rece nt deve lopme nt of UDP-based P2P swarming protocols

(NAT traversal is much easier to implement in UDP than TC P [7]), such as Swift [3]

and the uTP protocol in the J.LTorrent elient [6].

3. A system where mixed policies are used can drastically change the performance of

these policies. We have evaluated the case where one VoD protocol competes with the

original BitTorrent protocol. However, an interesting direction for future research is to

test other scenarios too, where, for example, different VoD protocols compete against

each other. A similar approach has been used by Rahman et al. [56] for testing perfor­

mance and robustness of P2P swarming systems. This kind of analysis will eventually

help system designers in creating VoD protocols that better suit the sce narios in which

they are going to be deployed.

4. In Chaper 6 we have presented a distributed tlashcrowd-detection mechanism that al­

lows peers to individually determine the occurrence of a tlashcrowd based on the file

completion levels of their neighbors. Although effective, this mechanism assmumes

that the file size is known in advance, and therefore it is not applicable to all P2P sys­

tems, such as those that deliver live streaming content. Hence, we suggest to research

other distributed mechanisms for tlashcrowd-detection to adopt in these systems. An­

other interesting direction for further studies is using flashcrowd-detection as a mecha-
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nism for implementing distributed load-balancing algorithms for multi swarmlchannel

systems. For example, a peer that is active in multiple swarms/channels can allocate

its bandwidth to each of them proportionally to their current "flashcrowd level".



Appendix A

Here we present a mathematical investigation that aims to characterize and understand the

bartering ability of peers and its relation to the fundamental properties of BitTorrent-based

VoD systems. The bartering ability of a given peer i is expressed by the expected value of

the number of peers in the system with which peer i can exchange pieces of the file.

In the following we analyze the window-based piece selection policy. First, we derive

the average number of potential bartering partners Nb for any peer in the system. In order to

do so, we notice that each peer i joins 1/>' seconds after its predecessor i- I to the system.

Assuming that each peer i downloads pieces at a rate at least equal to the playback rate R,
then i is, on average, brnin = R/ (>'Ps) pieces behind its predecessor i- I , where Ps is the

size (in Kb) of a piece. This implies that a peer has overlapping window with r~1- 1
m m

many of its predecessors. The same holds for the succe ssors of peer i. Therefore, the average

number of potential bartering partners for any peer i is

This concept is exemplified in Figure 7.1 for a case with w = 6 and >. = 2~. (which implie s
that each peer i is 2 pieces behind its predecessor and thus has Nb = 2(!!!ff>. - 1) = 4
bartering partners).

This simple analysis shows that low arrival rate can easily lead to Nb = 0, thus giving

no chance for bartering, if the system parameters R, P, and w are not set up carefully.

Furthermore, it is desired in VoD systems that Nb 2: u holds, i.e., the number of potential

bartering partners should be more than the number of upload slots of the peers, otherwise

peers would start allocating upload slots to randomly chosen neighbors making the system

less resilient to freeriding. Note that it is not given that a peer can actually barter with Nb
many peers, that needs to be analyzed below. However, we can already see that Nb depends

on the arrival rate >. and the sequentiality parameter w, thus it can be adjusted to be high

enough (meaning high probability of possible piece exchange between peers in the system),

but that can lead to longer startup delays . Hence, we argue that adopting a reciprocity-based
approach, in a VoD system characterized by low peer arrival rates, implies that a trade-oif
exists betweenfreeriding resilience and peer QoS.
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Figure 7.1: Example of overlapping windows among consecutive peers. Peers are numbered
according to the time they joined the system.

Knowing the number of potential peers for bartering, we are interested now in the prob­

ability that two peers can exchange pieces between each other, assuming they have overlap­

ping windows. For the window-based piece selection policy we can assume that both peers

have downloaded half of the piece s of their current window, and that peer i is behind peer

j in d 2: bmin pieces. Using the fact that the probability that two peers, i and j , cannot ex­

change any piece is the same as the probability that peer i cannot give pieces to peer j, we

obtain

P [two peers can exchange] =

= 1 - P [peer i cannot give piece to peer j ] =

= 1 _ min {d- l ,w/ 2} ( d - 1) (w- d - 1) (w/ 2 + k - 1) B *,
L k w/ 2 - k k

k= rnax{O,d+ l -w/2}

(7.1)

(7.2)

(7.3)

where B* = ('::;j;r 2
and we assume that W > d holds. In this sum, the first term counts

the number of cases that pieces can be located within the first d slots at peer i , the second

term is the number of cases that pieces can be located within the overlapping area of peer i
and peer j , the third term is the number of cases that the still missing pieces of peer j can

be located, and finally 1/B* counts the total number of possible cases. As this probability

depends on w and on d, in the following we are using the notation P (w, d) for it.

Note that P (w,d) is monotonically decreasing with the increase of d; it stays very close

to I up to d = w / 2 and start s decreasing quickly from there on .

Using the number of potential bartering peers Nb and the probability P (w,d) that two

overlapping peers can barter, we are ready now to calculate the expected value of the number
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of peers with whieh peer i ean barter, that is

E [numbcr of bar tering par tners of ij = 2L P (w,d),
dED

where D = {bmin , . . . , w - I}. Here, for the sake of simplieity, we assume that the proba­

bilities that peer i ean barter with its potential partners are independent from eaeh other.
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AppendixB

In order to give the proof of Lemma 2, first we introduce the following notations . Let TB

be the average number of timeslots needed by a L, peer to download a piece buffer of size
Band let SB be the total number of pieces allocated in the buffer by a non replicating
seeder within the time interval T B, Then, the average buffer filling rate dB of a L , peer can
be calculated as the sum of the total contribution through swarming and seeder over the

number of timeslots TB needed to complete the download of the buffer, i.e.

where t j is the timeslot when the current buffer Bo was defined, X s(tk) is given in Eq. (6.8),
and finally X , and ~ are the average buffer filling rates provided through swarrning and by
the seeder, respectively , over the time frame TB .

Proof of Lemma 2. A non replicating seeder will provide consecutive pieces to the down­

loaders. This means that in timeslot tb it will give piece i + ku, to downloader Pj, piece

i + ku, + 1 to downloader PHl and so on; then at timeslot tk+l the scheme will be repeated
starting from piece i + (k + l )vs • This allocation results in the seeder uploading, to each
peer at each timeslot, an average number of pieces within the buffer equal to

(7.4)

Since at each timeslot tk , each peer receives from the seeder a piece with index Vs higher than

the piece received at the previous timeslot (Figure 7.2 shows an example where B = 2vs

and the seeder allocates to peer i the pieces ku; + i, with k positive integer, meaning that the
seeder allocates to peer i a total of SB = ê: = 2 pieces) , then we have

11,

B
SB =-'

V s
(7.5)

On the other hand, T B depends on the buffer size Band on de- Though we gave the
definition of de. its exact value can only be calculated after the download of the current
buffer Bo is completed. Since , at timeslot tb we do not know the bandwidth allocation for
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Figure 7.2: Representation of peer i's current buffer Ba.

any timeslot t j > t k, we approximate de to the instantaneous buffer filling rate at timeslot

tk :

(7.6)

which is areasonabie approximation for small B, that can be downloaded in a few rounds

(i.e. B < 5vp ) .

We can now calculate TB as follows:

which yields

o

(7.7)

(7.8)

which concludes our proof.

T ~ T ( ) _ B - SB _ Btv, - 1)
B ~ B tk - - ---'-::-':--,----:-'-

X..(td VsXs(tk) .

Plugging into Eq. (7.4) the expressions for SB and TB as calculated in Eqs. (7.5) and
(7.7), gives
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Summary
Challenges, Design and Analysis of Peer-to-Peer Video-on-Dema nd Systems

Recently, significant research effort has focused on the effective use of a peer-to-peer

(P2P) architecture to provide large-scale video-on -demand (VoD) services. In fact, the nat­
ural scalability of a P2P approach could drastically decrease the costs of video service
providers. However, delivering on-demand services using P2P is also achallenging task.
Similar to live P2P streaming systems, some quality-of-service (QoS) requirements have to
be fulfilled, namely providing users with a high playback continuity and a short startup de­

lay. But in VoD, different from live-streaming, the playback positions of nodes that request
a video at different times would differ greatly.

Since early P2P systems had been built for file-sharing applications, trying to adapt the
designs of these systems to the VoD case came as a natural choice. In particular BitTorrent,
making nearly optimal use of peers' upload bandwidth, has inspired many P2P protocols for
VoD. BitTorrent achieves a high utilization of peers' upload bandwidth by means of a smart
piece retrieval mechanism and strong incentives for cooperation. In this context, previous

work on BitTorrent-like P2P VoD systems mainly focuses on adapting BitTorrent's piece
retrieval mechanism to make it suitable for streaming.

In this thesis we direct our attention on Bit'Iorrent's incentive mechanism. In fact, this
mechanism, based on bandwidth reciprocity , has also been clearly designed with a file­
sharing goal in mind. Here we show that, in the heterogeneity of today's internet, this
approach poses further challenges to VoD applications. When peers have different upload

bandwidths, for example, it can happen that nodes with low upload capacities cannot reach a
download speed high enough to sustain the video playback rate, while those with higher up­
load capacities download at rates much higher than actua lly needed. Likewise, peers residing
behind NATs or firewalls blocking unsolicited inbound connections might experience poor
performance, much to the benefit of fully connectable nodes. In this thesis, we propose a so­
lution that allows peers to "relax" their reciprocity-based mechanism when they are already

experiencing a good enough service, consequently serving low-capacity or unconnectable
peers. Our solution maintains the robustness against freeriding of the original mechanism,

since the nodes who contribute less are only served when there is enough capacity availab le
in the system .

Furthermore, for systems that need to fulfill QoS requirements, flashcrowds represent an
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additional issue. In fact, when a sudden surge of new peers joins the system, the average

peer download speed likely become s lower than necessary to maintain a smooth playback

continuity, since the new peers all demand for bandwidth while having Iittle or nothing to

provide in return . In this scenario, most peers will experience a poor QoS, unless the avail­

able bandwidth is properl y allocated. In this thesis, we analyze this aspect in detail in the

context of VoD sys tems and we present a set of distributed flashcrowd-handling algorithms

that considerably improve peer QoS during flashcrowds.
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Samenvatting
Uitdagingen, Ontwerp en Analyse van Peer-to -Peer Video-on-Demand Systemen

De afgelopen jaren is er een significante hoeveelheid onderzoek uitgevoerd gericht op het

effectief gebruiken van peer-to-peer (P2P) architectuur om grootschalige video-on-demand
(VoD) diensten te leveren. Vooral omdat de intrinsieke schaalbaarheid van een P2P opzet
de kosten van video service providers drastisch kan verlagen . Het leveren van on-de mand
diensten met P2P is echter ook een uitdaging. Zoals ook in P2P live-streaming systemen

het geval is, moet er aan een aantal servicekwaliteitseisen (QoS) worden voldaan, namelijk
een ononderbroken afspeel-continuïteit en een korte wachttijd voordat de video start . Maar
VoD heeft als extra uitdaging ten opzicht van live-streaming dat er grote verschillen tussen
de afspeelposities van peers bestaan, wanneer die hun video op verschillende momenten

hebben opgevraagd.
Omdat de eerste P2P systemen gebouwd waren voor file-sharing programma's, lag

het voor de hand om deze ontwerpen te gebruiken als basis voor video-on-demand syste­
men. Vooral Bit'Iorrent, een systeem dat vrijwel optimaal gebruik maakt van de upload­
bandbreedte van peers, is een inspiratiebron voor veel P2P VoD protocollen. BitTorrent kan
de upload-bandbreedte van peers efficiënt inzetten door bestand-stukjes slim op te vragen en
sterke incentives te geven om elkaar te helpen. In dit kader richtte eerder onderzoek naar P2P
VoD systemen op basis van BitTorrent zich vooral op het geschikt maken van BitTorrents
opvraag-mechanisme voor het gebruik in video-streaming.

In dit proefschrift gaat onze aandacht uit naar BitTorrents incentive mechanisme. Dit
mechanisme, gebaseerd op reciprociteit van bandbreedte, is duidelijk ontworpen met file­
sharing in gedachte. We tonen aan dat in de verscheidenheid van het hedendaags Internet het
ene uitdaging is dit mechanisme toe te passen in VoD programma's. Als peers bijvoorbeeld
verschillende upload bandbreedtes hebben, kan het gebeuren dat nodes met lage upload
capaciteit niet genoeg download snelheid kunnen verkrijgen om de video ononderbroken
te kunnen afspelen, terwijl de peers met hogere upload capaciteit in veel hogere snelheden
downloaden dan nodig is. Zo worden ook peers die verbonden zijn achter NATs of firewalls
die ongewenste inkomende verbindingen blokkeren negatief benvloed in het voordeel van

de peers die algeheel bereikbaar zijn. In dit proefschrift stellen we een oplossing voor die
peers toestaat om hun reciprociteits-mechanisme te versoepelen in het geval dat zij al een
goede video kwaliteit ervaren, en hiermee peers met lage capaciteit of bereikbaarheid te
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ondersteunen. Onze oplossing behoudt de robuustheid van het originele mechanisme tegen

freeriding, omdat de nodes die minder bijdragen alleen worden ondersteund als er genoeg

capaciteit beschikbaar is in het systeem.
Voor systemen die aan servicekwaliteitseisen (QoS) dien te voldoen vormen verder

flashcrowds een uitdaging. Als tijdens een flashcrowd een plotselinge stroom van nieuwe

peers toetreedt tot het systeem, wordt de gemiddelde download snelheid van peers nor­

maliter lager dan nodig is om de video ononderbroken te laten afspelen, omdat de toetre­

dende peers allemaal vragen om bandbreedte terwijl ze weinig tot niets kunnen teruggeven.
In dit scenario zal het merendeel van de peers een slechte servicekwaliteit ervaren, tenzij

de beschikbare bandbreedte correct wordt toegewezen. In dit proefschrift analyseren we

flashcrowds in detail in de context van VoD systemen en presenteren we een verzameling

gedistribueerde flashcrowd-handling algoritmen die de ervaren servicekwaliteit van peers

significant verbeteren tijdens flashcrowds.
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