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Abstract

The GRACE/GRACE-FO mission has provided Earth’s monthly gravity field data for more than
20 years. It has been a major success and has enabled significant contributions across multiple
domains (e.g. water management, cryosphere monitoring, solid Earth sciences...). Nonetheless,
short-periodic effects are undersampled, and the data is noisy at high spatial frequencies,
leading to north-south stripes in gravity field functionals. Future gravity research missions aim
at improving both spatial and temporal resolution to fulfil increasingly demanding science and
societal needs. In this work, an analytical spectral methodology is employed to study gravity
field recovery capabilities of different configurations: GRACE-like, Bender configuration and
multi-satellite pairs configurations. The analytical model underestimates GRACE operational
performance by almost one order of magnitude. Application of NGGM performance to a
Bender configuration shows the observability of the atmospheric and ocean non-tidal signal
with a resolution of 200 km. Moreover, the theoretical feasibility of daily and 3-hour solutions
with 3 and 48 satellite pairs, respectively, is demonstrated, with a resolution of roughly 1000
km, assuming CubeSat performance. In this way, future missions might not only improve
spatio-temporal resolution but also mitigate other errors sources.

Gabriel Valles Valverde
Delft, July, 2025
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1
Introduction

Since the beginning of the space era, scientists have strived to improve our knowledge of Earth’s
gravity field. This not only enables more precise modelling of satellite orbits but can also
provide insightful knowledge about mass redistribution processes occurring in our planet.
In the 1960s, long-term integrated effects on satellite orbits were employed to determine the
Earth’s gravity field from ground observations (Whipple & Lundquist, 1967). Atmospheric
errors were, however, a limiting factor, and only coefficients up to approximately order 12 to 16
could be first retrieved (Gaposchkin & Lambeck, 1971). Further efforts combined with gravity
surveys on land and altimetry lead to solutions up to degree 36 (Lambeck & Coleman, 1983).
Wolff (1969) suggested the concept of Satellite-To-Satellite Tracking (SST) for the first time
to measure Earth’s gravity field. Gravity potential irregularities would appear as variations
mainly in the along-track velocity. In this way, the adverse effect of the atmosphere is prevented.
The concept was proven a decade later with GEOS-3/ATS-6 relative tracking (Hajela, 1978) and
Apollo/ATS-6 (Vonbun et al., 1980), consisting of high-low SST concepts. National Aeronautics
and Space Administration (NASA) proposed to launch a low-low architecture consisting of two
satellites flying in a collinear formation in a polar orbit as part of the Geopotential Research
Mission (Keating et al., 1986). The mission was, however, cancelled and later led to the Gravity
Recovery and Climate Experiment (GRACE) mission.
The GRACE mission was launched in 2002, and the first gravity field results were obtained
a few years later (Tapley et al., 2004). For this purpose, a Microwave Ranging Instrument
(MWI) and dual one-way phase measurements were employed (Kim & Tapley, 2002). While the
expected mission lifetime was 5 years, the mission provided monthly gravity field data until
June 2017 (Mayer-Gürr et al., 2016). The great success led to the launch of GRACE Follow-On
(GRACE-FO), which is operational since June 2018 (Landerer et al., 2020). Furthermore, it
carried a Laser Ranging Interferometer (LRI) that operated continuously for 50 days, showing
significantly less range noise (Abich et al., 2019) and paving the way for ranging systems for
future Gravity Research Missions (GRMs).
Alongside, two more GRMs have been launched. The German Challenging Minisatellite
Payload (CHAMP) mission flew in a slightly lower orbit than GRACE from 2000 to 2010. It
consisted of a high-low architecture based on GPS measurements and three-axis accelerometers
to accurately model non-gravitational accelerations (Reigber et al., 2002). The Gravity field
and steady-state Ocean Circulation Explorer (GOCE) mission was launched in 2009, and
employed an on-board three-axis gradiometer that enabled the retrieval of gravity field data
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with unprecedented accuracy thanks to a lower orbit and a drag-free system that compensated
non-gravitational accelerations (Battrick et al., 1999; Canuto, 2008).
While GRACE-FO continues to provide time-varying gravity field solutions, data have shown
some limitations for certain scientific applications. These are associated with insufficient spatial
or time resolution. For example, mass redistributions due to ocean and atmospheric tides
occur at higher temporal frequencies. Tidal models, although imperfect, aim at capturing their
contribution (Knudsen & Andersen, 2002; Stammer et al., 2014). Pressure redistributions and
continental hydrology also contribute to high-frequency mass variations at smaller spatial
scales. Atmospheric and ocean circulation contributions can be mitigated through de-aliasing
models such as the Atmosphere and Ocean Dealiasing Level-1B product (AOD1B) (Shihora
et al., 2022), which employs ground observations.
For this reason, new missions have been proposed in the past aiming to improve the spatial
and temporal resolution of gravity field products directly (Bender et al., 2008; Panet et al.,
2012). As a result, the NASA/ESA joint mission Mass Change and Geosciences International
Constellation (MAGIC)/Next Generation Gravity Mission (NGGM) is currently under de-
velopment (Haagmans et al., 2020; Massotti et al., 2021). The mission will employ Bender
configuration, consisting of two pairs of satellites flying in a collinear formation at a polar orbit
(Grace-Continuity) and an inclined orbit with 𝑖 = 65 − 75◦ (NGGM), which will be launched in
2028 and the early 2030s, respectively (Bender et al., 2025). Moreover, the ranging system will
consist of a laser interferometer capable of providing ranging measurements to nm accuracy
(Nicklaus et al., 2020).
The NGGM/MAGIC mission also aims to incorporate a drag-free system. This control system
allows a satellite to compensate for any non-gravitational accelerations such that it is in free-fall.
The system was successfully implemented in the GOCE mission (Canuto, 2008). Other missions,
such as Laser Interferometer Space Antenna (LISA) (Armano et al., 2016) or the Taĳi and
Taĳin missions, have also employed a drag-compensation system successfully (Jiao et al., 2024).
Drag-free feasibility analyses have also been conducted for the upcoming NGGM/MAGIC
mission (Cesare et al., 2022; Massotti et al., 2020), showing the need for such system, mainly in
the along-track component, and especially the need for fine pointing control to avoid instrument
performance degradation.
While the Bender configuration will certainly improve the current state of GRACE-FO gravity
data products, alternative formations to the collinear configuration have been proposed. Runge
et al. (2001) proposed a cartwheel formation first for interferometric purposes. Subsequently, it
was reconsidered for gravity research missions to also provide radial sensitivity (e.g. Sneeuw
et al., 2008; Wei et al., 2015; Wiese, Nerem, and Lemoine, 2011; Wiese et al., 2008). Alternatively,
pendulum configurations have been suggested as a variation of collinear formations with
cross-track sensitivity (e.g. Ellmer, 2011; Li et al., 2016; Sharifi et al., 2007). LISA-type formations
have also been considered to enable cross-track sensitivity (Sharifi et al., 2007; Sneeuw &
Schaub, 2005). Furthermore, Elsaka et al. (2013) suggested a so-called helix formation as well
as a slightly out-of-plane third satellite to the collinear formation, so-called GRAPEN. Liu et al.
(2024) also analysed the capabilities of a Starlink-like constellation for gravity field recovery.
Purkhauser and Pail (2020) analysed triple-pair constellations. Moreover, few studies have
combined different types of formations with the Bender configuration concept (Daras et al.,
2023). Lastly, it is important to account for the new design and operational problems that
alternative formations might pose on the mission and the satellite subsystems, likely more
challenging due to inherent formation complexity (e.g. Wiese et al., 2008).
In the past, gravity field error analysis has been performed using a spectral analytical approach
that is based on the lumped coefficient theory (Kaula, 1966). This approach relies on the
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computation of inclination (Gooding & Wagner, 2008; Kostelecký et al., 1986) and eccentricity
functions (Lian-da & Ming-jiang, 2022; Wnuk, 1997). The methodology was proposed to analyse
gravity field error from intersatellite range-rate observations (Colombo, 1984). This idea has
also been applied to satellite gradiometry (Rummel & Colombo, 1985) and GPS observations
(Colombo, 1986; Smith et al., 1989). Additional studies have explored the combined effect
of gradiometers and GPS (Schrama, 1990, 1991b). Sneeuw (2000) delved deeper into the
collinear formation and described a spectral approach to intersatellite ranging, among other
observations. Besides, the analytical methodology has recently been able to describe pendulum
formations through the convolution of the intrinsic time-varying behaviour of the formation
(Li et al., 2016).
However, with the improvement of computational capabilities, end-to-end simulation-based
studies have become much more frequent. Kim and Tapley (2002) performed such simulation-
based analysis for the GRACE mission. At the same time, the introduction of the Bender
configuration has raised the need for optimization techniques to define an optimal inclination
for the second satellite pair. Simulation-based approaches are computationally intense and not
well-posed for optimization algorithms, thus typically requiring a reduction of the search space.
Multiple studies have combined optimization techniques with a simulation-based approach
(e.g. Wiese, Nerem, and Lemoine, 2011; Iran Pour et al., 2019; Ellmer, 2011).
Another important aspect is the definition of the gravity field error. Typically, this has been
provided by summation over the order and plotting the error against the degree, so-called
degree variances. Alternatively, one could compute the Root Mean Square (RMS) per coefficient
per degree (Heiskanen & Moritz, 1967). Other approaches include spherical harmonic synthesis,
i.e. gravity field functionals projected into the sphere. In this way, gravity anomalies can be
retrieved. Here, north-south stripes can be observed, indicating spatial aliasing (e.g. Visser
et al., 2010). Moreover, geoid heights (Schrama & Visser, 2006) or equivalent water heights
could be retrieved (Wahr et al., 1998).

1.1. A look into GRACE data
GRACE/GRACE-FO mission provides monthly Earth’s gravity field solutions. In this work,
publicly available monthly solutions released by the Institute of Geodesy - TU Graz (ITSG) are
employed (Kvas et al., 2019; Mayer-Gürr et al., 2018).
Mainly, monthly gravity field variations are attributed to the water mass redistribution in
the atmosphere and oceans, as well as water and snow stored in land. Wahr et al. (1998)
associated gravity field variability with mass variations within a thin layer at the Earth’s
surface and the solid Earth deformation in response to these mass anomalies. This allows the
definition of Equivalent Water Height (EWH). The computation of EWH directly from GRACE
unconstrained data results in north-south striping patterns. Figure 1.1 shows the striping
pattern for two monthly solutions: September 2004 and March 2007. They correspond to a
resonant case and a non-resonant case, respectively.
In Figure 1.1b, the stripe patterns arise despite the non-resonant orbit of the formation in
March 2007. To explain these phenomena, it is paramount to introduce the concept of degree
variances. They describe the power of the gravity field at different spatial frequencies. Along
with the monthly gravity field solutions, error estimates for the gravity field coefficients are
provided. From degree variances, RMS per coefficient per degree can be employed to provide
error estimates in the frequency spectrum (Dickey et al., 1997). The latter metric is employed
in Figure 1.2 to compare the computed gravity solution and the error estimates for the two
months discussed. Both monthly solutions show that the signal is dominated by noise at higher
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(a) September 2004 (b) March 2007

Figure 1.1: EWH retrieved from ITSG-2018 GRACE solutions

(a) September 2004 (b) March 2007

Figure 1.2: RMS per coefficient per degree from ITSG-2018 GRACE: gravity field solution vs. commission error

frequencies. As a result, the characteristic stripes at the relevant frequencies appear (Schrama
et al., 2007).
The actual cause of the striping is unclear. Wahr et al. (2006) suggested two categories of errors.
Category (i) errors are associated with errors in GRACE monthly solutions, i.e., measurement
noise and aliasing. Category (ii) errors appear due to imperfect background models that
account for short-periodic gravity field variability. The striping patterns in EWH also arise
in gravity anomalies. The problem is typically circumvented by applying spatial smoothing
through a Gaussian filter that behaves as a low-pass filter in the spatial domain (Jekeli, 1981;
Wahr et al., 1998). In Figure 1.3, application of a half-width radius of 750 km removes the
previously observed striping, uncovering the monthly water variation signal. In addition, Wahr
et al. (2006) pointed out the correlation between even and odd degree coefficient pairs of the
same order and proposed to combine spatial smoothing with decorrelation filters. Alternative
filtering techniques include Decorrelation and Denoising Kernel (DDK) filters (Kusche et al.,
2009; Kusche, 2007), non-symmetric filters that incorporate full covariance information (Klees
et al., 2008), Empirical Orthogonal Functions (EOFs) filtering (Wouters & Schrama, 2007), or
mascon approaches (Schrama et al., 2014).
While both resonant and non-resonant orbits showed the striping patterns, comparison of the
two solutions depicts a much higher signal degradation for the resonant orbit of September
2004 (see Figure 1.2). Figure 1.1a also demonstrates a much higher noise level, especially in
equatorial regions. This is an indication of spatial aliasing.
Apart from the standard deviation of the gravity field parameters, full covariance information
can be retrieved by inversion of the released normal matrices. Subsequently, covariance
propagation to the sphere results in the expected error estimates for the spherical harmonics
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(a) September 2004 (b) March 2007

Figure 1.3: EWH with Gaussian spatial smoothing with 𝑟1/2=750 km computed from ITSG-2018 GRACE solutions

(a) September 2004 (b) March 2007

Figure 1.4: Covariance propagation to EWH from ITSG-2018 GRACE normal matrix

synthesis. Figure 1.4 presents EWH error estimates computed for the two monthly solutions at
hand.
The EWH error magnitudes on the sphere are consistent with the unsmoothed EWH from
Figure 1.1. Furthermore, it can be observed that the resonance gives rise to striping patterns
also in the propagated EWH error estimates, while this is not the case when the mission does
not fall into a resonance. Moreover, resonances have a more detrimental effect in equatorial
regions, whereas the March 2007 solution shows a constant error band that extends to higher
latitudes. This is in agreement with the fact that the stripes’ magnitude fades away at higher
latitudes in the EWH signal (see Figure 1.1a).

1.2. Relevance of measuring the Earth’s gravity field
For more than two decades, GRACE/GRACE-FO have provided monthly gravity field data
that has made a major impact across many disciplines (Chen et al., 2022; Doorn et al., 2016;
Tapley et al., 2019). In hydrology, annual and seasonal monitoring of water availability has
been crucial to water resource management. For example, Terrestrial Water Storage (TWS) is
applied to flood detection (Reager & Famiglietti, 2009) or drought monitoring (Houborg et al.,
2012; Vishwakarma, 2020). Moreover, determination of mass changes in ice sheets and glaciers,
as well as sea level rise, supports planning and mitigation strategies against global warming,
among other things, especially in coastal regions (WCRP Global Sea Level Budget Group, 2018).
Satellite gravimetry has also enabled multiple studies on solid Earth deformation from large
earthquakes (e.g., Han et al., 2006). It has also been essential to enhance our knowledge of plate
tectonics and mantle dynamics, especially through its capabilities to measure remote areas.
Moreover, Glacial Isostatic Adjustment (GIA) models can be improved through gravity field
data records. It consists of slow land uplift caused by Earth’s delayed viscoelastic response to
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the removal of ancient ice sheets loading after melting. Thus, they have led to advancements
in rheology as well as to enhanced insights on paleoclimates and past ice ages (Tamisiea
et al., 2007). In oceanography, GRACE data enabled global Ocean Bottom Pressure (OBP)
observations (Chambers & Willis, 2010). It provides information on ocean circulation, crucial to
understanding marine ecosystems and global climate, in particular, weather events such as El
Niño (Song & Zlotnicki, 2008). In geodesy, geocenter motion can be estimated and forecast from
variations in the degree 1 coefficients, key to defining precise reference systems, among other
applications (Heiskanen & Moritz, 1967; Sun et al., 2016; Swenson et al., 2008). Apart from
GRACE solutions, ancillary data products can also be employed for a variety of applications.
For instance, reconstruction of accelerometer data enables the retrieval of high-resolution
thermospheric density, especially near highly sampled regions such as the poles (March et al.,
2019).
While satellite gravimetry applications are numerous, there still exist high-frequency mass
variations that cannot be appropriately observed due to limited temporal or spatial aliasing.
For this reason, it is of high interest to identify the time and spatial scales at which the
different geophysical processes occur. Sneeuw et al. (2004) condensed this information into
Figure 1.5. Pail et al. (2015) performed an extensive analysis in terms of EWH and defined
science requirements for future gravity research missions according to societal needs.
Future GRMs shall improve current spatial and temporal resolution capabilities to unveil new
insights about our planet. Better spatial resolution is important to monitor the contribution of
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key catchment basins that are smaller or near the resolution limit of current satellite gravimetry
capabilities (Pail et al., 2015). This will also contribute to reducing signal leakage from adjacent
areas. Increasing the temporal resolution would represent a step towards near-real-time
gravimetry. In this way, less or no reliance on de-aliasing models would be required, thus
reducing uncertainty in the solutions (Pail et al., 2015). Errors induced by undersampling of
high-frequency processes will also be reduced, thereby causing an overall improvement in data
quality (Massotti et al., 2023), potentially mitigating observed noise at higher degrees (Wahr
et al., 2006). Furthermore, better signal separation would be possible with improved data (Pail
et al., 2015).
As satellite gravimetry data has multiple applications, improvements on the spatio-temporal
resolution of Earth’s gravity field data would similarly be beneficial across several domains.
In hydrology, accurate determination of medium and small river basins could bridge the gap
towards closing terrestrial water balance (Famiglietti & Rodell, 2013; Sheffield et al., 2009)
and open new research possibilities on unexplored topics such as atmospheric water balance
(C. Lorenz et al., 2014) and complex feedback behaviours intertwined in the Earth system
(Seneviratne et al., 2006). Concerning the cryosphere, permafrost thawing, snow melt, and
mountain glaciers typically occur at spatial scales below current spatial resolution capabilities
(Luthcke et al., 2013; Pail et al., 2015). Hence, the determination of its contribution is nowadays
challenging. Besides this, GIA needs better spatial resolution to separate its remnant effect
on the temporal gravity field from mass variations associated with present-day processes
(e.g., Ivins et al., 2013). Moreover, improvements in temporal resolution could eventually lead
to near real-time monitoring of natural disasters, which would also allow better forecasting
(Pail et al., 2015). In oceanography, coastal regions show different sea level signals than the
open ocean due to smaller spatial scales and the interaction with continental hydrology (e.g.,
Chambers and Willis, 2010). In this way, better spatial resolution would improve tidal models,
circumventing current altimetry limitations, especially near the coast (Killett et al., 2011; Pail
et al., 2015). Moreover, some main drivers of ocean circulation also occur at smaller spatial scales
(Saynisch et al., 2014). The Atlantic Meridional Overturning Circulation (AMOC) variability,
for example, is crucial to climate regulation in north-western Europe (Bingham & Hughes,
2008, 2009). Regarding plate tectonics, an improved spatial resolution would allow observation
of earthquakes with magnitudes greater than seven (Han et al., 2013). For example, this could
be significantly beneficial in the Mediterranean region, densely populated and characterized
by this type of seismic activity (Fullea et al., 2015). Furthermore, solid Earth sciences research
aims at creating a 4D dynamic Earth model that employs, among others, refined gravity field
constraints to predict near-surface motion, deformation, and derive insights into the interior of
our planet (see e.g., the “4D Dynamic Earth Project”, 2025).

1.3. Research questions
Despite the significant contributions of GRACE/GRACE-FO temporal gravity field data, it
presents spatial and temporal resolution limitations that do not meet current scientific and
societal needs. Therefore, new GRMs that improve present GRACE-FO capabilities must be
defined. For this purpose, plenty of simulation-based studies have analysed commission errors
in gravity field retrieval for different satellite formations as well as Bender-like constellations.
As has been discussed previously, more elaborate constellations require greater optimization
efforts to maximize mission performance. However, only a few of these studies have applied
optimization techniques to the proposed configurations, mainly due to the intense computa-
tional burden. Additionally, analytical approaches have been progressively abandoned due to
their limitations and the complexity compared to simulation-based approaches, which can be
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relatively quickly set up thanks to multiple available astrodynamics software. The application
of such analytical techniques to alternative formations has been identified as the main research
gap in literature. Moreover, this would enable refined optimization of orbital configuration
parameters.
As a result, the main research question and different subquestions have been formulated.

Can Bender configuration or other multi-satellite constellations better mitigate temporal
and spatial aliasing in a gravity research mission?

1. How can the analytical approach be applied to multi-satellite constellations? What are
the limitations of this methodology?

2. How can equatorial stripe errors be defined?

3. What are the optimal parameters for a Bender configuration? How does it perform in
terms of spatial aliasing errors?

4. What are the optimal parameters of a multi-satellite constellation for a high temporal
resolution GRM? How does it perform in terms of spatial aliasing errors?

5. How do instrument errors impact the selected optimal configurations?

1.4. Thesis overview
In this work, an analytical approach is employed to study alternative orbital configurations
that circumvent the observed spatial aliasing in equatorial regions as well as to enable gravity
field solutions at higher temporal frequencies. In chapter 2, the mathematical foundations of
the spectral observation model are developed for GPS and intersatellite ranging for a collinear
formation. In this way, analytical expressions for the lumped coefficients are formulated
in terms of the Spherical Harmonics (SH) coefficients. Chapter 3 presents the resulting
linear system. Subsequently, the gravity field error through the least squares methodology is
presented, relating errors in the lumped coefficients to errors in the SH coefficients. Moreover,
error models for the spectral observations and error sources are discussed. In chapter 4, a
simulation framework is presented to validate the analytical observation spectra through
Fourier analysis of a perfectly periodic orbit. The gravity field error analysis results are
examined in chapter 5. Three different configurations are studied: a single satellite collinear
pair, a Bender configuration, and a constellation of satellite pairs. Conclusions of the work and
future recommendations are outlined in chapter 6.



2
Analytical observation model

This chapter presents the derivation of the analytical expressions for the different observations
considered in this work. To begin with, the concept of gravity potential is introduced. Since
the gravity field is conservative, it can be expressed as the gradient of a scalar potential field.

®𝑔 = −∇𝑉 (2.1)

Gravity potentials of a certain body satisfy the Laplace equation outside the body at hand.

∇2𝑉 = 0 (2.2)

As a result, the gravity potential is generally expressed in terms of spherical harmonics.

𝑉 =
𝜇

𝑟

∞∑
𝑙=0

𝑙∑
𝑚=0

(
𝑎𝑒

𝑟

) 𝑙
𝑃𝑙𝑚(sin 𝜙) (𝐶𝑙𝑚 cos𝑚𝜆 + 𝑆𝑙𝑚 sin𝑚𝜆) (2.3)

By definition, 𝐶00 = 1 is the central term of the potential, and 𝐶10 = 𝐶11 = 𝑆11 = 0 by appropriate
definition of the reference system. The expression can be rewritten as:

𝑉 = 𝑈 + 𝑇 =
𝜇

𝑟
+ 𝑇 (2.4)

with 𝑇 the disturbing potential.

𝑇 =
𝜇

𝑟

𝐿∑
𝑙=2

𝑙∑
𝑚=0

(
𝑎𝑒

𝑟

) 𝑙
𝑃̄𝑙𝑚(sin 𝜙)

(
𝐶̄𝑙𝑚 cos𝑚𝜆 + 𝑆̄𝑙𝑚 sin𝑚𝜆

)
(2.5)

Typically, the infinite summation over the degree 𝑙 is truncated to a cut-off degree 𝐿. The
evaluation of this expression requires the computation of the associated Legendre polynomials
𝑃𝑙𝑚 . Recursive formulations and the normalization employed are described in appendix A.
The subject of gravity field modelling consists of the estimation of the spherical harmonics
coefficients of the disturbing potential, so-called Stokes coefficients. For this purpose, this
chapter relates them to different observations through analytical expressions.

9
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2.1. The lumped series
To begin with, it is necessary to first introduce the concept of a lumped series. They consist of
the fundamental expression for any spectral observation.

𝑓 (𝑡) =
𝐿∑

𝑘=−𝐿

𝐿∑
𝑚=0

𝐴′
𝑘𝑚 cos𝜓𝑘𝑚 + 𝐵′

𝑘𝑚 sin𝜓𝑘𝑚 (2.6)

Their name arises from the fact that coefficients 𝐴𝑘𝑚 , 𝐵𝑘𝑚 consist of a summation over the
degree. The phase terms 𝜓𝑘𝑚 can be represented as an initial phase angle and a frequency
term:

𝜓𝑘𝑚 = 𝜓0
𝑘𝑚

+ ¤𝜓𝑘𝑚𝑡 (2.7)

As such, the lumped expression resembles a Fourier expansion over specific frequency terms, so-
called orbital frequencies. Thus, the observation analytical model is a spectral model. Instead
of considering observations in the time domain, the methodology focuses on developing
analytical formulations for the frequency-domain observations, the lumped coefficients. In
chapter 3, error models for the lumped coefficients are derived from the instrument error
spectra.

2.1.1. The initial phase angle
For the sake of simplicity, the observation expressions hereafter formulated consider no initial
phase angle, i.e. 𝜓0

𝑘𝑚
= 0. It can be shown that any lumped expression with a non-zero initial

phase angle can be rewritten as a new lumped series with no initial phase angle:

𝑓 (𝑡) =
𝐿∑

𝑘=−𝐿

𝐿∑
𝑚=0

𝐴𝑘𝑚 cos ¤𝜓𝑘𝑚𝑡 + 𝐵𝑘𝑚 sin ¤𝜓𝑘𝑚𝑡 (2.8)

where the coefficients can be related with a simple rotation matrix:[
𝐴𝑘𝑚
𝐵𝑘𝑚

]
=

[
cos𝜓0

𝑘𝑚
sin𝜓0

𝑘𝑚

− sin𝜓0
𝑘𝑚

cos𝜓0
𝑘𝑚

] [
𝐴′
𝑘𝑚

𝐵′
𝑘𝑚

]
(2.9)

2.2. Line potential
In this section, the concept of line potential is introduced. It is assumed that the potential along
the perturbed orbit can be represented as the potential along a nominal orbit. In this way, it is
possible to reformulate every term 𝑉𝑙𝑚 of the potential in terms of the mean orbital elements
(Kaula, 1966).

𝑉𝑙𝑚 =
𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙 𝑙∑
𝑝=0

𝐹𝑙𝑚𝑝(𝐼)
𝑞=∞∑
𝑞=−∞

𝐺𝑙𝑝𝑞(𝑒)𝑆𝑙𝑚𝑝𝑞(𝜔, 𝑀,Ω, 𝜃) (2.10)

where

𝑆𝑙𝑚𝑝𝑞(𝜔, 𝑀,Ω, 𝜃) =
[
𝐶𝑙𝑚
−𝑆𝑙𝑚

] 𝑙−𝑚:even

𝑙−𝑚:odd
cos

[
(𝑙 − 2𝑝)𝜔 + (𝑙 − 2𝑝 + 𝑞)𝑀 + 𝑚(Ω − 𝜃)

]
[
𝑆𝑙𝑚
𝐶𝑙𝑚

] 𝑙−𝑚:even

𝑙−𝑚:odd
sin

[
(𝑙 − 2𝑝)𝜔 + (𝑙 − 2𝑝 + 𝑞)𝑀 + 𝑚(Ω − 𝜃)

]
(2.11)
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and 𝐹𝑙𝑚𝑝(𝐼) and 𝐺𝑙𝑝𝑞(𝑒) are functions of the inclination and eccentricity, respectively.
Typically, eccentricities are small, and the summation over the 𝑞 index can be truncated to
𝑞 ± 2. For this work, a circular reference orbit is assumed. Therefore, terms with 𝑞 ≠ 0 are
zero, whereas 𝐺𝑙𝑝0(𝑒) = 1. Hence, only the computation of the inclination functions is required.
The simple approach based on the Fast Fourier Transform (FFT) proposed by Wagner (1983)
has been applied. Similarly, it is convenient to employ the normalized inclination functions.
Appendix B delves deeper into their computation. Additionally, the circular reference orbit
assumption enables the introduction of the argument of latitude 𝜔𝑜 . Moreover, the Earth-fixed
longitude of the ascending node 𝜔𝑒 is defined (see also Figure 2.1).

𝜔𝑜 = 𝑀 + 𝜔 = 𝜔0
𝑜 + ¤𝜔𝑜𝑡 (2.12)

𝜔𝑒 = Ω − 𝜃 = 𝜔0
𝑒 + ¤𝜔𝑒 𝑡 (2.13)

The rate of the longitude of the ascending node is negative, i.e. 𝜔𝑒 < 0, since ¤𝜃 > 0 and
| ¤Ω| << | ¤𝜃|. The orbital frequency is positive by definition, i.e., ¤𝜔𝑜 > 0.
Changing the index of the summation to 𝑘 = 𝑙 − 2𝑝 leads to a simplified expression of Eq. (2.10).

𝑉𝑙𝑚 =
𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙 𝑙∑
𝑘=−𝑙
𝑙−𝑘=2𝑝

𝐹̄𝑙𝑚𝑘(𝐼)
{
𝐶̃𝑙𝑚 cos (𝑘𝜔𝑜 + 𝑚𝜔𝑒) + 𝑆̃𝑙𝑚 sin (𝑘𝜔𝑜 + 𝑚𝜔𝑒)

}
(2.14)

where

𝐶̃𝑙𝑚 =

[
𝐶̄𝑙𝑚
−𝑆̄𝑙𝑚

] 𝑙−𝑚=even

𝑙−𝑚=odd
𝑆̃𝑙𝑚 =

[
𝑆̄𝑙𝑚
𝐶̄𝑙𝑚

] 𝑙−𝑚=even

𝑙−𝑚=odd
Note that the sum over 𝑘 is restricted to those terms where 𝑙 , 𝑘 have the same parity. Subse-
quently, it follows that the potential takes the form of a lumped series:

𝑉 =

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴𝑘𝑚 cos𝜓𝑘𝑚 + 𝐵𝑘𝑚 sin𝜓𝑘𝑚 (2.15)

with [
𝐴𝑘𝑚
𝐵𝑘𝑚

]
=

𝐿∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙
𝐹̄𝑙𝑚𝑘(𝐼)

[
𝐶̃𝑙𝑚
𝑆̃𝑙𝑚

]
(2.16)

𝜓𝑘𝑚 = 𝑘𝜔0 + 𝑚𝜔𝑒 (2.17)

The summation for the lumped coefficients 𝐴𝑘𝑚 , 𝐵𝑘𝑚 runs from 𝑙𝑚𝑖𝑛 = max (|𝑘|, 𝑚, 2)+ 𝛿 where
𝛿 = 0 when 𝑘 − max (|𝑘|, 𝑚, 2): even and 𝛿 = 1 when 𝑘 − max (|𝑘|, 𝑚, 2): odd.

2.3. Potential derivatives along the orbit
To introduce the potential contribution to the orbit dynamics perturbations, it is needed to
compute the potential gradient formulation. It is convenient to make use of a local orbital
frame for this purpose.
From Eq. (2.15), the position along the orbit is determined by 𝑟, 𝜔0 , 𝜔𝑒 , 𝐼. This defines a position
in the inertial space ®𝑥𝑠 as follows:

®𝑥𝑠 = 𝑅3(−𝜔𝑒)𝑅1(−𝐼)𝑅3(−𝜔0) ©­«
𝑟

0
0

ª®¬ (2.18)



2.3. Potential derivatives along the orbit 12

𝑥

𝑦

𝑧

𝑟

𝜔𝑒

𝜔𝑜

𝐼

𝑢
𝑣

𝑤

Figure 2.1: Orbital variables and local orbital frame

Alternatively, a perturbation Δ®𝑥𝑠 can be determined in a local orbital frame as (Balmino et al.,
1996):

®𝑥𝑠 + Δ®𝑥𝑠 = 𝑅3(−𝜔𝑒)𝑅1(−𝐼)𝑅3(−𝜔0) ©­«
𝑟 + 𝑢
𝑣

𝑤

ª®¬ (2.19)

To determine how a change in the local orbital frame variable set ®𝑥𝑖 = {𝑢, 𝑣, 𝑤} is related to the
orbital variables 𝑟, 𝜔0 , 𝜔𝑒 , 𝐼. Since there are four orbital variables, one can select 3 different
subsets: ®𝑥𝑎 = {𝑟, 𝜔0 , 𝜔𝑒}, ®𝑥𝑏 = {𝑟, 𝜔0 , 𝐼}, ®𝑥𝑐 = {𝑟, 𝜔𝑒 , 𝐼}. Applying the chain rule, therefore,
results in the following expressions for the three subsets (Balmino et al., 1996; Koop, 1993).


𝑑𝑟

𝑑𝜔𝑜

𝑑𝜔𝑒

 =


1 0 0

0 1
𝑟

cos 𝐼
𝑟 sin 𝐼 cos 𝜔𝑜

0 0 −1
𝑟 sin 𝐼 cos 𝜔𝑜



𝑑𝑢

𝑑𝑣

𝑑𝑤

 (2.20)


𝑑𝑟

𝑑𝜔𝑜

𝑑𝐼

 =


1 0 0

0 1
𝑟

0

0 0 1
𝑟 sin 𝜔𝑜



𝑑𝑢

𝑑𝑣

𝑑𝑤

 (2.21)


𝑑𝑟

𝑑𝜔𝑒

𝑑𝐼

 =


1 0 0

0 1
𝑟 cos 𝐼 0

0 sin 𝐼 cos 𝜔𝑜

𝑟 cos 𝐼 sin 𝜔𝑜

1
𝑟 sin 𝜔𝑜



𝑑𝑢

𝑑𝑣

𝑑𝑤

 (2.22)

From the above expressions, it follows directly that:

𝜕𝑉

𝜕𝑢
=

𝜕𝑉

𝜕𝑟
(2.23)
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Taking the partial derivative of Eq. (2.15) results in:

𝜕𝑉

𝜕𝑢
=

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴𝑢
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝑢
𝑘𝑚

sin𝜓𝑘𝑚[
𝐴𝑢
𝑘𝑚

𝐵𝑢
𝑘𝑚

]
=

∑
𝑙=𝑙𝑚𝑖𝑛 ,2

−(𝑙 + 1) 𝜇
𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹𝑙𝑚𝑘(𝐼)

[
𝐶̃𝑙𝑚
𝑆̃𝑙𝑚

] (2.24)

Similarly, the acceleration in the along-track component can be computed from Eq. (2.20):
𝜕𝑉

𝜕𝑣
=

1
𝑟

𝜕𝑉

𝜕𝜔𝑜
(2.25)

Analogously, partial differentiation of equation Eq. (2.15) leads to:

𝜕𝑉

𝜕𝑣
=

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴𝑣
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝑣
𝑘𝑚

sin𝜓𝑘𝑚[
𝐴𝑣
𝑘𝑚

𝐵𝑣
𝑘𝑚

]
=

∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹𝑙𝑚𝑘(𝐼) · 𝑘

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

] (2.26)

From Eqs. (2.20) and (2.22), the following expressions for the cross-track derivative are obtained.
𝜕𝑉

𝜕𝑤
=

1
𝑟 sin 𝜔𝑜

𝜕𝑉

𝜕𝐼
(2.27)

𝜕𝑉

𝜕𝑤
=

1
𝑟 sin 𝐼 cos 𝜔𝑜

(
𝜕𝑉

𝜕𝜔𝑜
cos 𝐼 − 𝜕𝑉

𝜕𝜔𝑒

)
(2.28)

However, both expressions contain 𝜔𝑜 singularities. Multiplication by sin2 𝜔𝑜 and cos2 𝜔𝑜

respectively yields a singular-free formulation of the cross-track derivative (Schrama, 1989).

𝜕𝑉

𝜕𝑤
=

1
𝑟

{
sin 𝜔𝑜

𝜕𝑉

𝜕𝐼
+ cos 𝜔𝑜

sin 𝐼

(
𝜕𝑉

𝜕𝜔𝑜
cos 𝐼 − 𝜕𝑉

𝜕𝜔𝑒

)}
(2.29)

After some algebraic manipulation, the cross-track derivative reads as:[
𝐴𝑤
𝑘𝑚

𝐵𝑤
𝑘𝑚

]
=

𝐿∑
𝑙=𝑙∗

𝑚𝑖𝑛
,2

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹∗𝑙𝑚𝑘(𝐼)

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

]
(2.30)

where 𝐹∗
𝑙𝑚𝑘

(𝐼) represents the cross-track inclination functions (Balmino et al., 1996). Appendix
B.3 derives them and develops the cross-track potential derivative formulation.

2.4. Hill equations
Once the observations for the gravity components have been computed, they can be introduced
to the dynamics to derive the position observations. For this purpose, the Hill equations are
employed. They consist of a linearized relative dynamics model that has the following form
for arbitrary forcing terms 𝑓𝑢 , 𝑓𝑣 , 𝑓𝑤 , corresponding to the radial, along-track, and cross-track
accelerations, respectively (Hill, 1878) :

¥𝑢 − 2𝑛 ¤𝑣 − 3𝑛2𝑢 = 𝑓𝑢

¥𝑣 + 2𝑛 ¤𝑢 = 𝑓𝑣

¥𝑤 + 𝑛2𝑤 = 𝑓𝑤

(2.31)
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2.4.1. Homogeneous solution

The homogeneous part of the solution is obtained when ( 𝑓𝑢 , 𝑓𝑣 , 𝑓𝑤) = ®0. It represents the
system response to an initial state perturbation (e.g., Schrama, 1989).

𝑢(𝑡) =
(
−3𝑢0 −

2
𝑛
¤𝑣0

)
cos 𝑛𝑡 + ¤𝑢0

𝑛
sin 𝑛𝑡 +

(
𝑢0 +

2
𝑛
¤𝑣0

)
𝑣(𝑡) = 2 ¤𝑢0

𝑛
cos 𝑛𝑡 +

(
6𝑢0 +

4¤𝑣0
𝑛

)
sin 𝑛𝑡 + (−6𝜈0 + 3¤𝑣0) 𝑡 +

(
𝑣0 −

2 ¤𝑢0
𝑛

)
𝑤(𝑡) = 𝑤0 cos 𝑛𝑡 + ¤𝑤0

𝑛
sin 𝑛𝑡

(2.32)

2.4.2. Non-resonant solution
In section 2.3, potential derivatives were derived in the local orbital frame. It was possible to
define them as a lumped series. Therefore, it is interesting to compute the system response to
periodic forcing terms. For an arbitrary periodic force, the system from Eq. (2.31) reads as:

¥𝑢 − 2𝑛 ¤𝑣 − 3𝑛2𝑢 = 𝑃𝑢 cos 𝜔𝑡 +𝑄𝑢 sin 𝜔𝑡

¥𝑣 + 2𝑛 ¤𝑢 = 𝑃𝑣 cos 𝜔𝑡 +𝑄𝑣 sin 𝜔𝑡

¥𝑤 + 𝑛2𝑤 = 𝑃𝑤 cos 𝜔𝑡 +𝑄𝑤 sin 𝜔𝑡

(2.33)

An analytical solution exists (e.g., Schrama, 1989).

𝑢(𝑡) = −2𝑛𝑄𝑣 + 𝜔𝑃𝑢
𝜔(𝑛2 − 𝜔2) cos 𝜔𝑡 + 2𝑛𝑃𝑣 + 𝜔𝑄𝑢

𝜔(𝑛2 − 𝜔2) sin 𝜔𝑡

𝑣(𝑡) = (3𝑛2 + 𝜔2)𝑃𝑣 + 2𝑛𝜔𝑄𝑢

𝜔2(𝑛2 − 𝜔2) cos 𝜔𝑡 + (3𝑛2 + 𝜔2)𝑄𝑣 − 2𝑛𝜔𝑃𝑢
𝜔2(𝑛2 − 𝜔2) sin 𝜔𝑡

𝑤(𝑡) = 𝑃𝑤

𝑛2 − 𝜔2 cos 𝜔𝑡 + 𝑄𝑤

𝑛2 − 𝜔2 sin 𝜔𝑡

(2.34)

2.4.3. Resonant solution
The solutions presented above are undefined for constant forcing terms as well as those that
match the orbital period, i.e., 𝜔 = 0,±𝑛. Such forcing terms need special treatment since they
give rise to the so-called resonant solutions. The Hill equations system takes the following
form for resonant forcing terms.

¥𝑢 − 2𝑛 ¤𝑣 − 3𝑛2𝑢 = 𝑃𝑢 cos 𝑛𝑡 +𝑄𝑢 sin 𝑛𝑡 + 𝑅𝑢
¥𝑣 + 2𝑛 ¤𝑢 = 𝑃𝑣 cos 𝑛𝑡 +𝑄𝑣 sin 𝑛𝑡 + 𝑅𝑣
¥𝑤 + 𝑛2𝑤 = 𝑃𝑤 cos 𝑛𝑡 +𝑄𝑤 sin 𝑛𝑡 + 𝑅𝑤

(2.35)

Resonant solutions exist in the following form:

𝑢(𝑡) = (𝑎0
𝑢 + 𝑎1

𝑢𝑡) cos 𝑛𝑡 + (𝑏0
𝑢 + 𝑏1

𝑢𝑡) sin 𝑛𝑡 + (𝑐0
𝑢 + 𝑐1

𝑢𝑡)
𝑣(𝑡) = (𝑎0

𝑣 + 𝑎1
𝑣𝑡) cos 𝑛𝑡 + (𝑏0

𝑣 + 𝑏1
𝑣𝑡) sin 𝑛𝑡 + (𝑐0

𝑣 + 𝑐1
𝑣𝑡 + 𝑐2

𝑣𝑡
2)

𝑤(𝑡) = (𝑎0
𝑤 + 𝑎1

𝑤𝑡) cos 𝑛𝑡 + (𝑏0
𝑤 + 𝑏1

𝑤𝑡) sin 𝑛𝑡 + 𝑐0
𝑤

(2.36)

where the explicit form of the coefficients can be found in Schrama (1989, pp. 57-58).
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2.5. GPS observations
Introducing the lumped expressions of the gradient of the potential for the non-resonant
solutions, the periodic displacements caused by the non-resonant terms of the perturbing
potential are obtained (Balmino et al., 1996; Colombo, 1984; Schrama, 1989). Note that the
resonant term observations are not to be considered for the error analysis.

𝑢(𝑡) =
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑢
𝑘𝑚

cos ( ¤𝜓𝑘𝑚𝑡) + 𝐵Δ𝑢
𝑘𝑚

sin ( ¤𝜓𝑘𝑚𝑡) (2.37)[
𝐴Δ𝑢
𝑘𝑚

𝐵Δ𝑢
𝑘𝑚

]
=

∑
𝑙=𝑙𝑚𝑖𝑛 ,2

−(𝑙 + 1) ¤𝜓𝑘𝑚 + 2𝑛𝑘
¤𝜓𝑘𝑚(𝑛2 − ¤𝜓2

𝑘𝑚
)

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹𝑙𝑚𝑘(𝐼)

[
𝐶̃𝑙𝑚
𝑆̃𝑙𝑚

]
(2.38)

𝑣(𝑡) =
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑣
𝑘𝑚

cos ( ¤𝜓𝑘𝑚𝑡) + 𝐵Δ𝑣
𝑘𝑚

sin ( ¤𝜓𝑘𝑚𝑡) (2.39)[
𝐴Δ𝑣
𝑘𝑚

𝐵Δ𝑣
𝑘𝑚

]
=

∑
𝑙=𝑙𝑚𝑖𝑛 ,2

−(𝑙 + 1)2𝑛 ¤𝜓𝑘𝑚 + 𝑘(3𝑛2 + ¤𝜓2
𝑘𝑚

)
¤𝜓2
𝑘𝑚

(𝑛2 − ¤𝜓2
𝑘𝑚

)
𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹𝑙𝑚𝑘(𝐼)

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

]
(2.40)

𝑤(𝑡) =
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑤
𝑘𝑚

cos ( ¤𝜓𝑘𝑚)𝑡 + 𝐵Δ𝑤
𝑘𝑚

sin ( ¤𝜓𝑘𝑚𝑡) (2.41)[
𝐴Δ𝑤
𝑘𝑚

𝐵Δ𝑤
𝑘𝑚

]
=

𝐿∑
𝑙∗
𝑚𝑖𝑛

,2

1
𝑛2 − ¤𝜓2

𝑘𝑚

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹∗𝑙𝑚𝑘(𝐼)

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

]
(2.42)

2.6. Collinear configuration
In this section, the intersatellite range lumped expressions are derived for a collinear configura-
tion following Sneeuw (2000). The collinear configuration corresponds to the formation used
in the GRACE mission. Two satellites are flying in the same orbital plane while tracking the
intersatellite range. Figure 2.2 outlines this configuration.

The deviation from the nominal range can be approximated as the projection along the nominal
line-of-sight.

𝜌(𝑡) =
√
(𝜌0 + Δ𝜌𝑥)2 + Δ𝜌2

𝑦 ≈ 𝜌0 + Δ𝜌𝑥 =⇒ Δ𝜌(𝑡) ≈ Δ𝜌𝑥 (2.43)

This can be expressed in terms of the respective local orbital coordinates.

Δ𝜌(𝑡) =(Δ𝑣𝐴 − Δ𝑣𝐵) cos𝜂 + (Δ𝑢𝐴 + Δ𝑢𝐵) sin𝜂 =

=(Δ𝑣(𝑡 + 𝜏) − Δ𝑣(𝑡 − 𝜏)) cos𝜂 + (Δ𝑢(𝑡 + 𝜏) + Δ𝑢(𝑡 − 𝜏)) sin𝜂 (2.44)

with 𝜏 = 𝜂/𝑛. Let’s now compute every term based on the lumped expressions. First, the radial
component is derived.

Δ𝑢(𝑡 + 𝜏) + Δ𝑢(𝑡 − 𝜏) =

=

𝐿∑
𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑢
𝑘𝑚

[
cos ¤𝜓𝑘𝑚(𝑡 + 𝜏) + cos ¤𝜓𝑘𝑚(𝑡 − 𝜏)

]
+ 𝐵Δ𝑢

𝑘𝑚

[
sin ¤𝜓𝑘𝑚(𝑡 + 𝜏) + sin ¤𝜓𝑘𝑚(𝑡 − 𝜏)

]
(2.45)
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𝑟

𝐵𝐴

𝜌0

𝜂𝜂

𝑢
𝑣

Δ®𝑥𝐵
𝑢

𝑣

Δ®𝑥𝐴 𝜌

Figure 2.2: Collinear configuration

Application of the trigonometric identities:

cos (𝑎 + 𝑏) + cos (𝑎 − 𝑏) = 2 cos 𝑎 cos 𝑏
sin (𝑎 + 𝑏) + sin (𝑎 − 𝑏) = 2 sin 𝑎 cos 𝑏

(2.46)

yields the following result for the radial difference:

Δ𝑢(𝑡 + 𝜏) + Δ𝑢(𝑡 − 𝜏) = 2
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

[
𝐴Δ𝑢
𝑘𝑚

cos ( ¤𝜓𝑘𝑚𝑡) + 𝐵Δ𝑢
𝑘𝑚

sin ( ¤𝜓𝑘𝑚𝑡)
]

cos ( ¤𝜓𝑘𝑚𝜏) (2.47)

Similarly, the along-track contribution is:

Δ𝑣(𝑡 + 𝜏) − Δ𝑣(𝑡 − 𝜏) =

=

𝐿∑
𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑣
𝑘𝑚

[
cos ¤𝜓𝑘𝑚(𝑡 + 𝜏) − cos ¤𝜓𝑘𝑚(𝑡 − 𝜏)

]
+ 𝐵Δ𝑣

𝑘𝑚

[
sin ¤𝜓𝑘𝑚(𝑡 + 𝜏) − sin ¤𝜓𝑘𝑚(𝑡 − 𝜏)

]
(2.48)

In this case, the following trigonometric identities are employed:

cos (𝑎 + 𝑏) − cos (𝑎 − 𝑏) = −2 sin 𝑎 sin 𝑏
sin (𝑎 + 𝑏) − sin (𝑎 − 𝑏) = 2 cos 𝑎 sin 𝑏

(2.49)

Δ𝑣(𝑡 + 𝜏) − Δ𝑣(𝑡 − 𝜏) = 2
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

[
−𝐴Δ𝑣

𝑘𝑚
sin ( ¤𝜓𝑘𝑚𝑡) + 𝐵Δ𝑣

𝑘𝑚
cos ( ¤𝜓𝑘𝑚𝑡)

]
sin ( ¤𝜓𝑘𝑚𝜏) (2.50)

Lastly, the range observation is developed as a lumped Fourier series.

Δ𝑝(𝑡) =
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

𝐴
Δ𝜌
𝑘𝑚

cos ( ¤𝜓𝑘𝑚𝑡) + 𝐵Δ𝜌
𝑘𝑚

sin ( ¤𝜓𝑘𝑚𝑡) (2.51)

[
𝐴

Δ𝜌
𝑘𝑚

𝐵
Δ𝜌
𝑘𝑚

]
= 2

[
𝐴Δ𝑢
𝑘𝑚

𝐵Δ𝑣
𝑘𝑚

𝐵Δ𝑢
𝑘𝑚

−𝐴Δ𝑣
𝑘𝑚

] [
cos ( ¤𝜓𝑘𝑚𝜏) sin𝜂
sin ( ¤𝜓𝑘𝑚𝜏) cos𝜂

]
(2.52)
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Substitution provides the final expression for the Fourier coefficients of the range.[
𝐴

Δ𝜌
𝑘𝑚

𝐵
Δ𝜌
𝑘𝑚

]
= 2

𝐿∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹𝑙𝑚𝑘𝛼𝑙𝑚𝑘

[
𝐶̃𝑙𝑚
𝑆̃𝑙𝑚

]

𝛼𝑙𝑚𝑘 =

[
−(𝑙 + 1) ¤𝜓𝑘𝑚 + 2𝑛𝑘

] ¤𝜓𝑘𝑚 cos ( ¤𝜓𝑘𝑚𝜏) sin𝜂 +
[
2(𝑙 + 1)𝑛 ¤𝜓𝑘𝑚 − 𝑘(3𝑛2 + ¤𝜓2

𝑘𝑚
)
]

sin ( ¤𝜓𝑘𝑚𝜏) cos𝜂
¤𝜓2
𝑘𝑚

(𝑛2 − ¤𝜓2
𝑘𝑚

)
(2.53)

It is convenient to express 𝛼𝑙𝑚𝑘 in terms of the normalized frequencies 𝛽𝑘𝑚 =
¤𝜓
𝑛 and the angular

separation 𝜂 = 𝑛𝜏.

𝛼𝑙𝑚𝑘 =

[
−(𝑙 + 1)𝛽𝑘𝑚 + 2𝑘

]
𝛽𝑘𝑚 cos (𝛽𝑘𝑚𝜂) sin𝜂 +

[
2(𝑙 + 1)𝛽𝑘𝑚 − 𝑘(3 + 𝛽2

𝑘𝑚
)
]

sin (𝛽𝑘𝑚𝜂) cos𝜂
𝑛2𝛽2

𝑘𝑚
(1 − 𝛽2

𝑘𝑚
)

(2.54)
This consists of the lumped coefficient observation for the GRACE observation equations.

2.6.1. Acceleration transfer functions
Apart from the intersatellite range observations in terms of the spherical harmonics coefficients,
it is also interesting to define the transfer function from the acceleration of every satellite to the
intersatellite range. As already discussed, only along-track and radial contributions are relevant
for the first-order approximation. For this purpose, let’s first write the transfer functions
from the along-track and radial acceleration observations to the respective displacements, as
described by the Hill non-resonant solutions in Eq. (2.34).[

𝐴Δ𝑢
𝑘𝑚

𝐵Δ𝑢
𝑘𝑚

]
=

1
¤𝜓𝑘𝑚(𝑛2 − ¤𝜓𝑘𝑚)

[
𝐴𝑢
𝑘𝑚

−𝐵𝑣
𝑘𝑚

𝐵𝑢
𝑘𝑚

𝐴𝑣
𝑘𝑚

] [ ¤𝜓𝑘𝑚

2𝑛

]
(2.55)[

𝐴Δ𝑣
𝑘𝑚

𝐵Δ𝑣
𝑘𝑚

]
=

1
¤𝜓2
𝑘𝑚

(𝑛2 − ¤𝜓𝑘𝑚)

[
𝐵𝑢
𝑘𝑚

𝐴𝑣
𝑘𝑚

−𝐴𝑢
𝑘𝑚

𝐵𝑣
𝑘𝑚

] [
2𝑛 ¤𝜓𝑘𝑚

3𝑛2 + ¤𝜓2
𝑘𝑚

]
(2.56)

Next, the transfer function from the radial and along-track acceleration of the leading satellite
is developed.

Δ𝜌(𝑡) = Δ𝑣𝐴 cos𝜂 + Δ𝑢𝐴 sin𝜂 = Δ𝑣(𝑡 + 𝜏) cos𝜂 + Δ𝑢(𝑡 + 𝜏) sin𝜂 (2.57)

Δ𝑢(𝑡 + 𝜏) =
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑢
𝑘𝑚

cos ¤𝜓𝑘𝑚(𝑡 + 𝜏) + 𝐵Δ𝑢
𝑘𝑚

sin ¤𝜓𝑘𝑚(𝑡 + 𝜏) (2.58)

Δ𝑣(𝑡 + 𝜏) =
𝐿∑

𝑚=0

𝐿∑
𝑘=−𝐿

𝐴Δ𝑣
𝑘𝑚

cos ¤𝜓𝑘𝑚(𝑡 + 𝜏) + 𝐵Δ𝑣
𝑘𝑚

sin ¤𝜓𝑘𝑚(𝑡 + 𝜏) (2.59)

This can be reformulated without a phase shift, defining Δ𝜓 = ¤𝜓𝑘𝑚𝜏 and applying the initial
phase angle rotation. Algebraic manipulation leads to:

Δ𝜌(𝑡) =
𝐿∑

𝑚=0

𝐿∑
𝑚=−𝐿

𝐴
Δ𝜌
𝑘𝑚

cos ¤𝜓𝑘𝑚𝑡 + 𝐵Δ𝜌
𝑘𝑚

sin ¤𝜓𝑘𝑚𝑡 (2.60)



2.6. Collinear configuration 18[
𝐴

Δ𝜌
𝑘𝑚

𝐵
Δ𝜌
𝑘𝑚

]
𝑢𝐴 ,𝑣𝐴

=

[
cos ¤𝜓𝑘𝑚𝜏 sin ¤𝜓𝑘𝑚𝜏
− sin ¤𝜓𝑘𝑚𝜏 cos ¤𝜓𝑘𝑚𝜏

] [
𝐴Δ𝑢
𝑘𝑚

𝐴Δ𝑣
𝑘𝑚

𝐵Δ𝑢
𝑘𝑚

𝐵Δ𝑣
𝑘𝑚

] [
sin𝜂
cos𝜂

]
(2.61)

Accounting for only the radial lumped coefficients contribution to the displacement, i.e.
𝐴𝑢
𝑘𝑚
, 𝐵𝑢

𝑘𝑚
, the transfer function from the leading satellite radial acceleration to the collinear

range is derived. The lower sign corresponds to the trailing satellite formulation. Note that
there exist two differences in the trailing satellite formulation as compared to the leading
satellite. First, the sign for the along-track contribution changes in Eq. (2.44). Moreover, the
initial phase angle is the opposite.[

𝐴
Δ𝜌
𝑘𝑚

𝐵
Δ𝜌
𝑘𝑚

]
𝑢

=
1

¤𝜓𝑘𝑚(𝑛2 − ¤𝜓2
𝑘𝑚

)

[
cos ¤𝜓𝑘𝑚𝜏 ± sin ¤𝜓𝑘𝑚𝜏
∓ sin ¤𝜓𝑘𝑚𝜏 cos ¤𝜓𝑘𝑚𝜏

] [ ¤𝜓𝑘𝑚 sin𝜂 2𝑛 cos𝜂
−2𝑛 cos𝜂 ¤𝜓𝑘𝑚 sin𝜂

] [
𝐴𝑢
𝑘𝑚

𝐵𝑢
𝑘𝑚

]
(2.62)

Similarly, for the along-track acceleration:[
𝐴

Δ𝜌
𝑘𝑚

𝐵
Δ𝜌
𝑘𝑚

]
𝑣

=
±1

¤𝜓𝑘𝑚(𝑛2 − ¤𝜓2
𝑘𝑚

)

[
cos ¤𝜓𝑘𝑚𝜏 ± sin ¤𝜓𝑘𝑚𝜏
∓ sin ¤𝜓𝑘𝑚𝜏 cos ¤𝜓𝑘𝑚𝜏

] [
(3𝑛2 + ¤𝜓2

𝑘𝑚
) cos𝜂 − ¤𝜓2

𝑘𝑚
sin𝜂

¤𝜓2
𝑘𝑚

sin𝜂 (3𝑛2 + ¤𝜓2
𝑘𝑚

) cos𝜂

] [
𝐴𝑣
𝑘𝑚

𝐵𝑣
𝑘𝑚

]
(2.63)



3
Least squares gravity field error

analysis

In the previous chapter, linear observation models have been developed for the lumped
coefficients as a function of the spherical harmonics coefficients. The linear system then reads
as:

𝑦̄ = 𝐴𝑥̄ + 𝜖̄ (3.1)

with 𝑦̄ the observation vector, 𝑥̄ the parameter vector, 𝐴 the design matrix and 𝜖̄ the vector of
residuals.
Given a set of observations, the objective is to fit the parameters such that the following cost
function is minimized.

𝐽 = 𝜖̄𝑇 𝜖̄ (3.2)

This consists of the unweighted least squares method. However, if the observations have
different noise levels, it is reasonable to give more importance to those observations with less
noise. For this purpose, the observation covariance matrix is introduced into the cost function
as:

𝐽 = 𝜖̄𝑇𝑃−1
𝑦𝑦 𝜖̄ (3.3)

where matrix𝑊 = 𝑃−1
𝑦𝑦 is called the weight matrix. Minimization of this cost function yields

the weighted least squares method. The solution becomes:

𝑥̂ =

(
𝐴𝑇𝑃−1

𝑦𝑦𝐴
)−1

𝐴𝑇𝑃−1
𝑦𝑦 𝑦̄ (3.4)

where matrix 𝑁 = 𝐴𝑇𝑃−1
𝑦𝑦𝐴 is the normal matrix.

3.1. Least squares error analysis
The least squares solution provides an estimation for the parameter vector from a set of
observations. Furthermore, it is possible to determine the error of the estimated parameter
vector. This is the main objective of the analytical model. The parameter covariance is computed
by inversion of the normal matrix.

𝑃𝑥𝑥 = (𝐴𝑇𝑃−1
𝑦𝑦𝐴)−1 (3.5)
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In this way, given an observation covariance for the lumped coefficients 𝐴𝑘𝑚 , 𝐵𝑘𝑚 , the predicted
error for the SH coefficients can be computed from the parameter covariance matrix. Section
3.6 delves into the definition of the observation covariance from different ranging instruments.
Moreover, the influence of other error sources is discussed in 3.7.

3.2. Blocking the linear system
From the final observation expressions, it follows that coefficients 𝐶̃𝑙𝑚 , 𝑆̃𝑙𝑚 can be solved
independently for a given order 𝑚 (Colombo, 1984). If the global indexing of the parameters in
the design matrix gathers coefficients of the same order together and uncorrelated observations
are assumed, i.e., 𝑃𝑦𝑦 diagonal, the resulting normal matrix is a block-diagonal matrix (see
Figure 3.1).

Figure 3.1: Block diagonal normal matrix

Time complexity of the full system is 𝒪(𝑥3) with 𝑥 = (2𝐿 + 1) · (𝐿 + 1) the size of the normal
matrix, i.e., 𝒪(𝐿6) in terms of the cut-off degree. The time complexity of the block-diagonal
system is

∑𝐿
𝑚=0 𝒪(𝑥3

𝑚) with 𝑥𝑚 = (2 − 𝛿0𝑚) · (𝐿 + 1 − 𝑚) the number of parameters per block,
with 𝛿0𝑚 the Kronecker delta. As a result, the block-diagonal system time complexity is 𝒪(𝐿4),
which consists of a significant improvement.

3.3. The repeating ground track constraint
As stated by Sneeuw (2000), if the orbit is not in a repeating ground track, the full torus formed
by (𝜔𝑜 , 𝜔𝑒) is covered in an infinite time. However, if the ground track is repeating, this
does not occur. This condition is paramount for the validity of the model, since the lumped
expressions assume the periodicity of the orbit in the Earth-fixed frame. While one might
think that the repeating ground track condition is implicitly defined in the orbit radius, it is
necessary to also match some non-resonant frequencies when building the design matrix. A
repeating ground track is defined by two parameters: the number of revolutions 𝑁𝑟 and the
nodal days 𝑁𝑑. A constraint can be introduced by defining integer frequencies, which can be
conceived as cycles per repeating ground track repeatability period:

𝛾𝑘𝑚 = 𝑁𝑟𝛽𝑘𝑚 = 𝑁𝑟(𝑘 + 𝑚
¤𝑤𝑒
¤𝑤𝑜

) = 𝑘𝑁𝑟 − 𝑚𝑁𝑑 (3.6)
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The negative sign arises due to the fact that ¤𝜔𝑒 < 0 (see section 2.2) and that 𝑁𝑑 is defined
positive.
Schrama (1990) points out that there exists frequency overlap when:

¤𝜓𝑘1𝑚1 = − ¤𝜓𝑘2𝑚2 (3.7)

In this work, this is called antisymmetric overlap. Employing integer frequencies introducing
the repeating ground track condition, it follows that:

𝑘1𝑁𝑟 − 𝑚1𝑁𝑑 = −𝑘2𝑁𝑟 + 𝑚2𝑁𝑑 =⇒ 𝑘2 + 𝑘1
𝑚2 + 𝑚1

=
𝑁𝑑

𝑁𝑟
(3.8)

Given that 𝑁𝑟 ≫ 𝑁𝑑, the condition on the denominator is more restrictive, and there is overlap
if the following holds:

𝑚2 + 𝑚1 = 𝑁𝑟 (3.9)

For an arbitrary cut-off degree 𝐿, the maximum value of the left-hand side is 𝑚2 +𝑚1 = 2𝐿, and
the condition for overlapping can be written as 𝐿 = 𝑁𝑟/2 (Schrama, 1990). This is known as the
Colombo-Nyquist rule for satellite gravimetry and defines a maximum resolvable spherical
harmonics degree for a satellite in a near-polar circular orbit (Colombo, 1984).
However, Visser et al. (2012) pointed out that the Colombo-Nyquist rule only indicates the
longitude homogeneity of the quality of the recovered gravity field. In fact, the maximum
resolvable degree is 𝐿 = 𝑘𝑁𝑟 + 1, with 𝑘 the number of observations (Visser et al., 2012).
This follows from the condition that there is a degenerate overlap.

¤𝜓𝑘1𝑚1 =
¤𝜓𝑘2𝑚2 (3.10)

Analogously, this leads to:

𝑘1𝑁𝑟 − 𝑚1𝑁𝑑 = 𝑘2𝑁𝑟 − 𝑚2𝑁𝑑 =⇒ 𝑘2 − 𝑘1
𝑚2 − 𝑚1

=
𝑁𝑑

𝑁𝑟
(3.11)

In this case, the maximum value of the denominator is 𝑚2 − 𝑚1 = 𝐿, and the same result as
Visser et al. (2012) is obtained: 𝐿 = 𝑁𝑟 .
The exact reason why the antisymmetric overlap condition does not imply the ill-posedness of
the linear system, while the degenerate overlap condition does, needs further investigation.
A plausible explanation is the fact that the new set of lumped coefficients is not linearly
independent of each other when there exists degenerate overlap:[

𝐴𝑘1𝑚
′
1

𝐵𝑘1𝑚
′
1

]
=

[
𝐴𝑘1𝑚1

𝐵𝑘1𝑚1

]
+

[
𝐴𝑘2𝑚2

𝐵𝑘2𝑚2

]
(3.12)

In contrast, the antisymmetric overlap results in the following combined lumped coefficients:[
𝐴𝑘1𝑚

′
1

𝐵𝑘1𝑚
′
1

]
=

[
𝐴𝑘1𝑚1

𝐵𝑘1𝑚1

]
+

[
𝐴𝑘2𝑚2

−𝐵𝑘2𝑚2

]
(3.13)

where the negative sign stems from sin𝜓𝑘1𝑚1 = − sin− ¤𝜓𝑘2𝑚2 and breaks the linear dependency
between both expressions.
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One important consequence of the frequency overlap is that the normal matrix is no longer
block-diagonal because there exists a correlation between certain order blocks, those that can
be expressed with the same 𝑚0. They can be represented as an interleaved arithmetic sequence:

𝑚 = (−1)𝑛 · 𝑚0 + 𝑁𝑟

⌈
𝑛

2

⌉
(3.14)

where 𝑚0 = 0, 1, . . . , 𝑁𝑟/2 represent the different blocks formed and 𝑛 = 0, 1, 2, . . . as long as
𝑚 ≤ 𝐿. As a result, the block-diagonal normal matrix becomes a kite matrix (Visser et al., 2012).
However, the system can still be solved in a block-wise approach for every base order 𝑚0.

Figure 3.2: Block-kite normal matrix with 𝑁𝑟/𝑁𝑑=16/1 repeating ground track constraint

3.4. Constrained solution
As a consequence of the repeating ground track, coefficients of different orders show certain
correlation. For cut-off degrees 𝐿 larger than the number of revolutions of the repeating ground
track, the system becomes ill-posed, i.e. 𝐿 > 𝑁𝑟 .
This can be circumvented constraining the least squares problem. A typical approach is to add
a-priori information about the parameters as a constraint equation. The constrained system of
equations then becomes: [

𝑦̄

𝑐

]
=

[
𝐴

𝐵

]
𝑥̄ +

[
𝜖̄𝑦
𝜖̄𝑐

]
(3.15)

The constrained least squares method accounts for the constraints in the cost function accord-
ingly:

𝐽 = 𝜖̄𝑇𝑦𝑃
−1
𝑦𝑦 𝜖̄ + 𝜖̄𝑇𝑐 𝑃

−1
𝑐𝑐 𝜖̄𝑐 (3.16)

Minimization of the cost function yields the solution to the constrained normal equations.

𝑥̂ =

(
𝐴𝑇𝑃

−1
𝑦𝑦𝐴 + 𝐵𝑇𝑃−1

𝑐𝑐 𝐵
)−1 (

𝐴𝑇𝑃
−1
𝑦𝑦 𝑦̄ + 𝐵𝑇𝑃−1

𝑐𝑐 𝑐
)

(3.17)

The parameter covariance is also influenced by the constraint covariance.

𝑃𝑥𝑥 = (𝐴𝑇𝑃−1
𝑦𝑦𝐴 + 𝐵𝑇𝑃−1

𝑐𝑐 𝐵)−1 (3.18)
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For the estimation of the Stokes coefficients, only covariance information is considered. This
assumes that 𝐵 = 𝐼 and 𝑐 = 0 while 𝑃𝑐𝑐 provides some a-priori information of the parameters.
The selection of the parameter a-priori information is not trivial. Ideally, unconstrained
solutions are desirable. However, introducing constraints is not necessarily detrimental, but the
nature of the constraints and their consequences must always be accounted for. Two alternative
approaches have been considered in this work.

3.4.1. Kaula’s constraint
The first and simplest approach consists of introducing Kaula’s constraint (Kaula, 1966). It
defines an empirical degree power law for the variance of the spherical harmonics coefficients
from autocovariance analysis of gravimetry (Kaula, 1959; Kaula, 1963).

𝜎
{
𝐶̄𝑙𝑚 , 𝑆̄𝑙𝑚

}
≈ 10−5

𝑙2
(3.19)

Note that the coefficients with the same degree are therefore assumed to have the same variance.
This follows from the isotropic assumption of invariant variance under rotation around the
Earth’s axis (Kaula, 1963).
Eq. (3.19) applies to Earth’s gravity field. Alternative empirical rules exist for other planetary
bodies. Generally, Kaula’s rule of thumb describes that the gravity field power decreases for
shorter wavelengths. While this can be generally accepted, several studies have shown that, for
higher degrees, topography takes over, and the degree variance spectrum can deviate from
Kaula’s rule (e.g. Broquet and Wieczorek, 2019).

3.4.2. The AOD1B data product
For temporal gravity field modelling, it is more reasonable to include a-priori information
based on the expected variability of the temporal gravity field within the data accumulation
time window of the solution. Tidal variations are well-known and can be determined with
sufficient accuracy (e.g. Sulzbach et al., 2022). However, the behaviour of the non-tidal
component is difficult to model. For this reason, the AOD1B is employed as a constraint to the
normal equations (Shihora et al., 2022). It makes use of data from the operational Numerical
Weather Prediction (NWP) model of the European Centre for Medium-Range Weather Forecasts
(ECMWF) along with ocean bottom pressure derived from simulation with the ocean general
circulation model MPIOM (Jungclaus et al., 2013). AOD1B provides the gravity field anomalies
due to the mass redistributions predicted from those numerical models. In this way, AOD1B is
taken as a correction to GRACE observation data (L1B) to mitigate temporal aliasing into the
monthly solutions (e.g., Mayer-Gürr et al., 2018).
The limitations of the AOD1B product must be considered. Firstly, it only provides a-priori
knowledge. Besides this, part of the non-tidal signal is unmodelled, e.g., the contribution of
continental hydrology. However, AOD1B explicitly provides estimations of the atmosphere
contribution, thus allowing for better separation of continental mass anomalies.
The German Research Centre for Geosciences (GFZ) provides forecasts for the AOD1B product
that might be used for real-time gravity field modelling. However, since this work aims to
estimate gravity field error and whether the gravity signal can be well captured or not, another
approach is employed. AOD1B data every 3h since 1975 is available. The idea here presented
consists of analysing the data variability to define an a-priori parameter covariance. For this
purpose, an EOF analysis has been conducted to remove noise and compress the dataset. This
technique was first devised by Pearson (1901) and has become popular for studying weather
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patterns after the work of E. N. Lorenz (1956). Although the EOF method is not based on any
physical properties, it can unveil insights into the dataset by identifying the dominant modes.
AOD1B directly provides Stokes coefficients data. While the EOF is typically employed to
analyse spatial and temporal patterns in a dataset, studies have demonstrated that it can be
applied in the SH domain (Wouters & Schrama, 2007). The AOD1B data can be converted
into an 𝑚 × 𝑛 data matrix such that every column is associated with different times and every
row is associated to a certain spherical harmonics coefficient, or alternatively, a certain spatial
location.

𝐴 =


𝑥1(𝑡1) 𝑥1(𝑡2) · · · 𝑥1(𝑡𝑛)
𝑥2(𝑡1) 𝑥2(𝑡2) · · · 𝑥2(𝑡𝑛)
...

...
. . .

...

𝑥𝑚(𝑡1) 𝑥𝑚(𝑡2) · · · 𝑥𝑚(𝑡𝑛)

 (3.20)

Typically, the data matrix is first detrended, i.e., the mean over time of the spatial behaviour
is removed. Similarly, normalization might be applied. This is especially effective when
working in the SH domain. The EOF analysis then allows to identify the spatial patterns that
contribute the most to the unit variance of the data matrix. For this purpose, a singular value
decomposition is applied.

𝐴 = 𝑈Λ𝑉𝑇 (3.21)

where 𝑈 and 𝑉 are orthogonal matrices whose columns are left and right singular vectors
of A, respectively, and Λ is a non-square diagonal matrix with non-negative singular values
𝜎𝑖 = 𝜆2

𝑖
in descending order. Matrix𝑈 has size 𝑚 × 𝑚 and contains the spatial patterns as the

left singular vectors 𝑢𝑖 , while matrix 𝑉 has size 𝑛 × 𝑛 and contains the time patterns in the
right singular vectors 𝑣 𝑗 . Hence, the following holds:

𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖 (3.22)
𝐴𝑇𝑢𝑖 = 𝜎𝑖𝑣𝑖 (3.23)

The variance contribution of every mode can be computed as follows:

𝜖 =
𝜎2
𝑖∑
𝑖 𝜎

2
𝑖

(3.24)

Typically, the first singular values contribute to the majority of the variance. In this way, the
data matrix can be compressed while smoothing out data noise. A reduced data matrix that
only accounts for the first 𝑘 modes can be written as follows:

𝐴𝑟 = 𝑈



𝜎1 0 · · · 0 0 · · ·
0 𝜎2 · · · 0 0 · · · 0
...

...
. . .

...
...

...

0 0 · · · 𝜎𝑘 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
. . .

...

0 0 · · · 0 0 · · · 0


𝑉𝑇 (3.25)

A reduced data matrix also relaxes covariance computation:

1
𝑛 − 1𝐴𝐴

𝑇 =
1

𝑛 − 1𝑈Λ𝑉𝑇(𝑈Λ𝑉𝑇)𝑇 =
1

𝑛 − 1𝑈Λ𝑉𝑉𝑇Λ𝑈𝑇 =
1

𝑛 − 1𝑈Λ2𝑈𝑇 (3.26)
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Analogous development for the time covariance 𝐴𝑇𝐴 demonstrates that both covariances share
eigenvectors. Typically, variance analysis shows that a few eigenvectors dominate covariance
directions.
A spatial standard deviation map of the 𝑖-th mode can then be computed by projecting the
data matrix into the associated temporal mode 𝑣𝑖 or, alternatively, in the following way.

1√
𝑛 − 1

𝜎𝑖𝑢𝑖 (3.27)

The principal component time series associated with the 𝑖-th eigenvector can be computed by
applying Eq. (3.23). This indicates how similar the 𝑖-th spatial mode is to the dataset at any
instant of time.
Next, the EOF analysis of the AOD1B data is presented. First, the cumulative variance
contribution to AOD1B data from the first 1000 modes is depicted in the figure below.

Figure 3.3: AOD1B EOF variance analysis of the first 1000 modes

The first 200 modes contain around 90% of the variance of the SH coefficients. They have been
selected to define the reduced data matrix. Certain physical phenomena can be inferred from
analysis of the first modes. For this purpose, the SH coefficients patterns are projected into
EWH.

(a) 1st mode: spatial pattern EWH synthesis

(b) 1st mode: time series

(c) 2nd mode: spatial pattern EWH synthesis

(d) 2nd mode: time series

Figure 3.4: AOD1B contributions of the dominant modes

For example, the first mode reveals large contributions to the gravity field variance in Greenland.
Sea level variations in the Gulf of Thailand (Wouters & Chambers, 2010) and the Gulf of
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Carpentaria (Tregoning et al., 2008) are also comparatively significant. These phenomena are
dominated by an annual periodic component, as analysis of the associated temporal eigenvector
revealed. The second mode also shows an annual pattern along with much more variability at
lower timescales. Among the spatial patterns, sea level variability in the Mar del Plata, Red
Sea or North Sea, among others, stand out along with the contribution of the Scandinavian
Peninsula.
The reduced data matrix has been employed to compute the a-priori standard deviations of the
spherical harmonics coefficients for different integration times. The figure below illustrates the
standard deviation for every SH coefficient for an integration time of 3 hours.

Figure 3.5: Spherical harmonics coefficients a-priori standard deviation from AOD1B data

As the figure shows, a-priori standard deviations do vary for coefficients of the same degree,
indicating that the isotropy assumption is no longer implicit in the a-priori information
definition. Furthermore, the magnitude of the standard deviations is significantly lower than
that of Kaula’s rule. This results in a more stringent constraint when considering AOD1B
variability to solve the parameter covariance. In Figure 3.6, an overview of the amplitude in
the spatial spectrum is compared through RMS per coefficient per degree for a static gravity
field, Kaula’s power rule, and AOD1B variability for different integration times.

Figure 3.6: RMS per coefficient per degree comparison

A remarkable result is observed in the figure above. Lower integration times, such as 3 hours
or 1 day, result in higher variability of the mean gravity field. Synthesis into EWH indicates
that this variability mainly stems from non-tidal behaviours near coastal areas (see Figure 3.7).
Note, for example, Mar del Plata, North Sea, Bering Sea, or Hudson Bay. The origin of these
phenomena requires further investigation. Some studies have pointed out the limitations of
tidal models over the continental shelf (e.g. Chambers and Willis, 2010), and others have
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emphasized that inaccuracies of ocean tide models alias into gravity field solutions (e.g. Visser
et al., 2010).

(a) 3 hours (b) Daily

(c) Monthly (d) Annual

Figure 3.7: AOD1B variability standard deviation for different timescales

3.5. Combination of multiple observations
At the beginning of the chapter, the observation equation was introduced for a single set of
lumped coefficients. However, it might be interesting to combine multiple observations. This
is as simple as redefining a combined design matrix, vertically stacking the individual design
matrices of each observation type. For instance, the 3D GPS position observation equations
could be written as follows: 

Δ𝑢̄

Δ𝑣̄

Δ𝑤̄

 =


𝐴Δ𝑢

𝐴Δ𝑣

𝐴Δ𝑤

 𝑥̄ +

𝜖̄Δ𝑢
𝜖̄Δ𝑣
𝜖̄Δ𝑤

 (3.28)

For the error analysis, the parameter covariance propagation can be accomplished through
the definition of a combined observation covariance, assuming no correlation between the
observations:

𝑃𝑦𝑦 =


𝑃𝑢𝑢 0 0
0 𝑃𝑣𝑣 0
0 0 𝑃𝑤𝑤

 (3.29)

Another application of the combination of observations is modelling constellations. An
interesting example is the Bender configuration, which consists of two collinear formations, like
GRACE, where the second satellite pair is placed at a lower inclination 𝐼2 to mitigate equatorial
errors (Bender et al., 2008). In this way, the combined observation equations read as:[

Δ𝜌1
Δ𝜌2

]
=

[
𝐴Δ𝜌1

𝐴Δ𝜌2

]
𝑥̄ +

[
𝜖Δ𝜌1

𝜖Δ𝜌2

]
(3.30)
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Similarly, assuming that the range observations from the two satellite pairs are uncorrelated,
the combined observation covariance is formed through diagonal stacking:

𝑃𝑦𝑦 =

[
𝑃𝜌1𝜌1 0

0 𝑃𝜌2𝜌2

]
(3.31)

An arbitrary number of 𝑛 observations can be combined as follows:
𝑦̄0
𝑦̄1
...

𝑦̄𝑛

 =


𝐴0
𝐴1
...

𝐴𝑛

 𝑥̄ +

𝜖̄0
𝜖̄1
...

𝜖̄𝑛

 (3.32)

and the combined covariance, assuming uncorrelated observations, takes the form below.

𝑃𝑦𝑦 =


𝑃𝑦0𝑦0 0 · · · 0

0 𝑃𝑦1𝑦1 · · · 0
...

...
. . .

...

0 0 · · · 𝑃𝑦𝑛 𝑦𝑛

 (3.33)

To conclude, note that since the a-priori parameter information does not affect the observation
covariance in any sense, it can be similarly employed in the constrained normal equations with
the full observation covariance.

3.6. Power spectral density
Quantification of the error spectrum of intersatellite range observations is paramount to
defining the observation covariance. For a microwave ranging system, the error is commonly
dominated by the phase error 𝜙(𝑡) of the oscillator.

𝐴(𝑡) = 𝐴0 sin (2𝜋 𝑓0𝑡 + 𝜙(𝑡)) (3.34)

Note that frequency and amplitude also show a certain error, although typically not as
meaningful as the phase. As a result of the phase offset error, the instantaneous frequency
deviates from the nominal. This is typically expressed in relative frequency error:

𝑦(𝑡) = 1
2𝜋 𝑓0

𝜕𝜙(𝑡)
𝜕𝑡

(3.35)

A method to assess the stability of atomic oscillators is the Allan variance, which consists of
the time-infinite average of the sample variance of two adjacent averages of 𝑦(𝑡), also called
two-sample variance (Allan, 1966; Barnes et al., 1971).

𝑦̄𝑘 =
1
𝜏

∫ 𝑡𝑘+𝜏

𝑡𝑘

𝑦(𝑡) 𝑑𝑡 ≈
𝜙(𝑡𝑘 + 𝜏) − 𝜙(𝑡𝑘)

2𝜋 𝑓0𝜏
(3.36)

𝜎2
𝑦(𝜏) =

1
2⟨(𝑦̄𝑘+1 − 𝑦̄𝑘)2⟩ (3.37)

Three different regimes can be observed in the frequency stability behaviour of an atomic
oscillator (see Figure 3.8). The behaviour of each regime can be described by power laws
𝜎𝑦(𝜏) = 𝐾𝜏𝛼. Part I typically consists of white phase (𝛼 = −1) or frequency (𝛼 = −3/2) noise.
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Figure 3.8: Typical frequency stability behaviour of an atomic oscillator (Hellwig, 1975).

Part II is called the Flicker floor and is characterized by a constant Allan deviation, i.e. 𝛼 = 0.
For larger timescales, oscillators show a drift behaviour due to ageing described by 𝛼 = 1,
although reliable determination is complex given the long timescales (Hellwig, 1975). For this
work, only parts I and II of the spectrum are relevant since clock drift occurs at much longer
timescales than the integration time of a gravity field solution.
Tests allow the definition of Allan variances, which can be related to Power Spectral Density
(PSD) for the oscillators (Barnes et al., 1971). Subsequently, the oscillator noise can be
transferred into noise PSD for the intersatellite range measurements. PSD indicates the power
in an infinitesimal spectral band 𝑑𝑓 . The square root of the PSD, the Amplitude Spectral
Density (ASD), describes the amplitude of the noise for the infinitesimal spectral band. In
this work, it is of interest to define the noise variance 𝜎2

𝑘𝑚
associated with the different orbital

frequencies ¤𝜓𝑘𝑚 . While the orbital spectral lines are discrete, the error spectrum is continuous.
For a given orbital frequency, all the neighbouring frequencies that fall within the frequency
resolution limit Δ 𝑓 contribute to the associated power noise (Sneeuw, 2000). Integration over
the frequency band results in the observation variance.

𝜎2
𝑘𝑚

=

∫ 𝑓𝑘𝑚+Δ 𝑓 /2

𝑓𝑘𝑚−Δ 𝑓 /2
𝑆( 𝑓 ) 𝑑𝑓 ≈ 𝑆( 𝑓𝑘𝑚)Δ 𝑓 (3.38)

where 𝑓𝑘𝑚 = ¤𝜓𝑘𝑚/2𝜋 is the frequency in Hz associated with a given angular frequency ¤𝜓𝑘𝑚 .
Kim (2000) derived the transfer function for the GRACE dual one-way ranging instrument. By
means of a simulation-based approach, PSD for both range and range-rate measurements were
computed. The analysis also accounted for other observation error sources, namely multipath
effects, system noise and accelerometer errors. Accelerometer errors are discussed in section
3.7.1, as they are not pure errors associated with the ranging instrument. Along this work,
other instrument error sources are assumed to be incorporated in the intersatellite ranging
noise PSD.
For the sake of simplicity, GRACE/GRACE-FO ranging system noise will be modelled according
to the mission requirements error spectrum as provided in Kornfeld et al. (2019). ASD
formulations for the MWI and the LRI are defined.

𝐴MWI
𝜌 ( 𝑓 ) = 2.62 ·

√
1 +

(
0.003
𝑓

)2 𝜇m
√

Hz
(3.39)

𝐴LRI
𝜌 ( 𝑓 ) = 80 ·

√
1 +

(
0.003
𝑓

)2
√

1 +
(
0.01
𝑓

)2 nm√
Hz

(3.40)
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with 𝑓 the frequency in Hz.
Future GRMs will, however, carry better or alternative ranging systems. NGGM/MAGIC
mission will incorporate a LRI, technology demonstrated successfully in GRACE-FO with
significant noise reduction at higher frequencies compared to microwave ranging (Abich et al.,
2019). Technological advancements are expected to provide intersatellite ranging capabilities
surpassing NGGM mission requirements. Nicklaus et al. (2020) define an ASD goal as follows.

𝐴NGGM
𝜌 ( 𝑓 ) = 10 ·

√
1 +

(
0.001
𝑓

)2 nm√
Hz

(3.41)

Figure 3.9 depicts the different ASD for the ranging system employed throughout this work.
Note that GRACE-FO LRI outperforms the MWI at higher frequencies. Also, the expected
improvement in NGGM is significant throughout the whole spectrum.

Figure 3.9: Noise amplitude spectral density for different ranging system instruments

3.7. The influence of orbital perturbations
The dynamic model employed to derive the analytical observation model only incorporated
the perturbing potential into the acceleration terms. However, in reality, satellite dynamics
are also driven by other perturbations. Atmospheric drag, solar radiation pressure, Earth
radiation pressure, third-body perturbations, relativistic effects, or electromagnetic forces can
deviate satellite motion from pure motion under Earth’s gravity field. Some of these effects are
negligible for gravity field modelling, while others shall be accurately modelled to remove their
contribution to the intersatellite range spectrum. The contribution of third-body perturbations
is well-known, whereas effects such as radiation pressure or aerodynamic forces are subject to
high uncertainties.

3.7.1. Accelerometers
To circumvent the uncertainty in non-gravitational perturbations, GRACE/GRACE-FO carried
three-axis SuperSTAR accelerometers whose test mass is placed in the centre of mass of each
satellite (Touboul et al., 1999). Accelerometers measure the difference in acceleration between
the casing and a proof mass. In this way, they do not detect gravitational accelerations because
they are body forces. However, they do measure surface forces. In this way, non-gravitational
perturbations can be removed within the accuracy capabilities of the accelerometers. These
errors in the acceleration propagate into the intersatellite range observations.
Accelerometer noise ASD can be incorporated into the analytical observation model according
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to the Hill equations’ transfer functions and subsequent propagation of the transfer functions
from displacements to intersatellite range. Cross-track accelerations do not contribute to
first-order collinear intersatellite range observations. Therefore, only covariance information
regarding radial and along-track accelerations is needed. Subsection 2.6.1 relates the lumped
coefficients of the accelerations of the leading and trailing satellite to the range observation. For
example, the contribution to the intersatellite range observation error of the leading satellite
accelerometer error in the radial direction is defined below.

𝑃
𝑢𝐴
𝑦𝑦 = 𝐻Δ𝜌,𝑢𝐴𝑃𝑢𝐴𝑢𝐴𝐻

𝑇
Δ𝜌,𝑢𝐴

(3.42)

In this work, the GRACE-FO SuperSTAR-FO accelerometer ASD will be assumed to fulfil the
mission requirements as presented by Christophe et al. (2015).

𝐴
SuperSTAR-FO
¥𝑥 ( 𝑓 ) = 10 ·

√
1 +

(
𝑓

0.5

)4

+
(
0.005
𝑓

)
nm

s2/
√

Hz
(3.43)

Additionally, the new generation of accelerometers developed for future GRMs by Office
National d’Études et de Recherches Aérospatiales (ONERA) will be employed throughout this
work. Data has been adapted from Dalin et al. (2020), distributed under the Creative Commons
Attribution 4.0 International License (CC BY 4.0). NGGM will make use of the MicroSTAR
accelerometer (Christophe et al., 2018; Maquaire et al., 2025). Alternatively, the smaller, lighter,
and more affordable CubSTAR accelerometer is potentially a suitable candidate for future
constellation-based GRMs (Boulanger et al., 2025). According to the noise performance figures
provided in Dalin et al. (2020), the following empirical ASD have been derived.

𝐴CubSTAR
¥𝑥 = 0.01 ·

√(
0.1
𝑓

)
+ 1 +

(
𝑓

0.15

)4 nm
s2/

√
Hz

(3.44)

𝐴MicroSTAR
¥𝑥 = 0.02 ·

√(
0.002
𝑓

)
+ 1 +

(
𝑓

0.1

)4 nm
s2/

√
Hz

(3.45)

Figure 3.10 compares the ASD of the three accelerometers considered.

Figure 3.10: Noise amplitude spectral density for ONERA accelerometers. Data adapted from Dalin et al. (2020).

The total intersatellite range error, combining the contribution of the ranging instrument and
the accelerometers, is described below for the three mission scenarios considered along this
work.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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(a) GRACE-FO (b) CubeSat constellation (c) NGGM

Figure 3.11: Intersatellite range observation noise ASD: range instrument and accelerometer

While removing non-gravitational perturbations using accelerometer data has proven to be
successful for GRACE/GRACE-FO, it has also shown some limitations. The main disadvantage
lies in the accelerometers’ saturation threshold. The dynamic range shall enable measurements
of the full range of gravitational perturbations, which, in turn, compromises its resolution
(Dionisio et al., 2018; Nguyen & Conklin, 2015). Moreover, accelerometer bias can negatively
impact the attained solutions and requires careful calibration (Teixeira da Encarnação et al.,
2020). Other post-processing efforts are needed, e.g., outlier detection (Darbeheshti et al., 2024).
It would be ideal to be able to directly retrieve gravity field solutions from intersatellite range
data. This specifically requires thorough consideration for future GRMs that intend to provide
near-real-time gravity field solutions.

3.7.2. The drag-free satellite
A solution to improve the accelerometer resolution for future GRMs is the drag-free satellite
concept. The idea is to employ a test mass that is not subjected to surface forces, such that
it moves in continuous free fall under the influence of solely gravitational perturbations. In
practice, this is not fully true, and residual accelerations remain. These accelerations can
be measured and considered accordingly. The advantage lies in the fact that the residual
accelerations are comparatively much smaller than the non-gravitational disturbances. Hence,
the resolution of the accelerometers can be improved while maintaining the dynamic range
within the saturation threshold. For example, this is the case for the MicroSTAR accelerometer,
which has a significantly better resolution at the cost of a lower saturation threshold. Another
positive aspect of the Drag-Free Attitude and Orbit Control System (DFAOCS) is that it allows
flying at lower altitudes without compromising continuous intersatellite range measurements.
The orbit altitude puts additional constraints on the propulsion system, such as a large thruster
dynamic range (Smirnova et al., 2019), and compromises the mission lifetime (Wiese, Visser,
& Nerem, 2011). Cesare et al. (2022) demonstrated that fine-pointing attitude control and
full drag-free control are required to meet NGGM mission requirements and exploit the full
spectral capabilities of the accelerometers. In this work, this performance will be assumed.

3.8. Frequency spectrum observability
Some mission scenarios might compromise the observability of the frequency spectrum. Certain
orbital frequencies might not be observable, and they must be removed from the observation
vector to properly estimate the gravity field error. Alternatively, repeated observation of the
full spectrum leads to an enhanced determination of the lumped coefficients. The former
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phenomena arise due to limited sampling rate, while the latter is associated with the gravity
field solution time window.

3.8.1. Sampling time
The sampling time 𝑇𝑠 of the observations defines an upper limit for the observable frequencies,
according to the Nyquist-Shannon sampling theorem.

𝑓𝑚𝑎𝑥 = 2 𝑓𝑠 =
2
𝑇𝑠

(3.46)

For a gravity field with a cut-off degree 𝐿, the maximum orbital frequency in LEO, assuming
¤𝜔𝑜 ≫ ¤𝜔𝑒 , is approximated as:

¤𝜓𝑘𝑚 ≈ 𝐿 ¤𝜔𝑜 (3.47)

Typical values for the orbital frequency ¤𝜔𝑜 in LEO are around 12-16 revolutions per day, i.e., in
the order of 1 mHz. Therefore, considering typical cut-off degree values 𝐿 ∼ 100, maximum
orbital frequencies can reach orders of 0.1 Hz. To achieve a Nyquist frequency of the same
order of magnitude, instrument sampling rates in the order of a few seconds shall be enough
to observe all the high orbital frequencies.

3.8.2. Gravity field solution time window
If the measurements’ accumulation time 𝑇𝑜 to generate a gravity field solution exceeds the
repeatability period of the orbit 𝑇𝑟 , the same ground track would be sampled multiple times.
As a result, the frequency resolution would be improved. Eq. (3.38) indicates that the lumped
coefficients’ observation error can be assumed proportional to the frequency resolution.
Therefore, given an observation time 𝑇𝑜 = 𝑛𝑇𝑟 , the observation error variance is reduced by a
factor 𝑛.

𝑃𝑦𝑦,𝑇𝑜 =
1
𝑛
𝑃𝑦𝑦,𝑇𝑟 ∀𝑛 > 0 ∈ N (3.48)

Given the linearity of the system, the unconstrained solution for the parameter covariance also
displays this scaling factor.

𝑃𝑥𝑥,𝑇𝑜 =

(
𝐴𝑇

(
1
𝑛
𝑃𝑦𝑦,𝑇𝑟

)−1

𝐴

)−1

=
1
𝑛

(
𝐴𝑇𝑃−1

𝑦𝑦,𝑇𝑟
𝐴
)−1

=
1
𝑛
𝑃𝑥𝑥,𝑇𝑟 (3.49)

Optimally, the gravity field solution time window shall match the repeatability period of the
selected orbit. However, the intrinsic orbital properties of the Low Earth Orbit (LEO) regime
constrain this time window to a lower bound of roughly 1 day. An approach to circumvent
this problem is to place multiple satellites in the same ground track such that the full ground
track is covered in a shorter amount of time. In this work, this approach would be considered
analogous to a single satellite mapping the full ground track. This is necessary because the
analytical observation model imposes a periodicity condition in the observations that does
not hold from the perspective of a single satellite. Orbiting over only part of the ground
track compromises the frequency resolution and results in an overlap of the neighbouring
frequencies.

Δ 𝑓 =
1
𝑇𝑟

= 𝑓0 =⇒ Δ𝛾 = 1 (3.50)

This is essentially 1 cycle per repeating ground track. If the period of observation is limited
to a fraction 1/𝛼 of the repeating period, the frequency resolution degrades accordingly to 𝛼
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cycles per repeating orbit:

Δ 𝑓 =
1
𝑇

=⇒ Δ𝛾 = 𝛼 (3.51)

As previously observed, all the orbital frequencies are integer frequencies when normalized
by the number of revolutions. Therefore, an integer frequency resolution of 1 cycle per
repeatability period is always required.

3.9. Commission and omission errors
The spherical harmonics representation of the gravity field is a model that has been formulated
to model the real gravity field from the Stokes coefficients. To perfectly reproduce a gravity
field, infinite SH coefficients would be required. Instead, the SH series expansion is typically
truncated to a cut-off degree. As a result, there exists an error because those terms above
the maximum degree are omitted, so-called omission error (Ince et al., 2019; Jekeli, 1979).
Coefficients of a certain degree have an associated half-wavelength which defines the spatial
resolution of the model:

𝜆𝑙 =
𝜋𝑎𝑒
𝑙

(3.52)

Omission error arises due to the limited spatial resolution of the SH model.
The accuracy of a gravity field SH representation is also affected by the noise in the determined
coefficients. This is the commission error, and it is typically the major error source (Ince et al.,
2019). As discussed in chapter 1, estimated errors of higher degree coefficients are similar in
magnitude to the actual estimated value of the coefficient, which indicates that commission
error dominates the signal.
While the omission error reduces with increasing maximum degree due to fewer omitted terms,
the commission error shows the opposite behaviour. Solution of the parameter covariance as
described in section 3.1 provides an estimate of the commission error, but it does not account
for the omission errors. For this purpose, Figure 3.12 shows a degree variance analysis of the
AOD1B signal that is considered as a function of the cut-off degree.

(a) Geoid heights (b) Gravity anomalies (c) EWH

Figure 3.12: AOD1B omission noise variance analysis

For geoid height variances, the power is concentrated in the lower degrees, with more than
90% of the variance described up to degree 10. However, both gravity anomalies and EWH
show higher signal power at higher degrees. This is associated with degree common factors
(𝑙 − 1) and (2𝑙 + 1)/(1 + 𝑘′

𝑙
) respectively (see appendix C). As a result, higher cut-off degrees

are required to accurately model these gravity field functionals. This also explains that the
striping patterns observed in GRACE solutions (see section 1.1) arise for these two functionals,
while they do not for geoid heights.



4
Numerical verification

In this chapter, the implementation of the analytical observation models presented in chapter 2
is verified and its validity to represent the observation spectrum is assessed by means of
numerical simulations. For this purpose, the static gravity field model GOCO05c (Pail et al.,
2016) is employed to fill the parameter vector 𝑥̄. Based on the different design matrices,
analytical spectral observations can be generated following the linear system presented in
Eq. (3.1). Alongside, a numerical simulation is set up to generate the same spectral observations
by means of integration of the equations of motion. Subsequently, Fourier analysis of the
numerical range observations enables validation of the analytical observation model.

4.1. Numerical simulation setup
The numerical simulation will model the orbital dynamics under the influence of a spherical
harmonics potential. For this purpose, an Encke propagator has been selected. Moreover, a
Runge-Kutta-8 method is chosen for the integration of the equations of motion.

𝜕𝑥̄

𝜕𝑡
= 𝑓 (𝑥̄ , 𝑡) (4.1)

The solutions of the equations of motion also consider the influence of the resonant terms.
However, they are disregarded by the analytical model. As indicated by Colombo (1984), they
result in a bow-tie pattern (see e.g., Fig. 4.4, Schrama, 1989). The bow-tie pattern consists of
a long periodic modulation of resonant forcing and can be modelled through the resonant
solution of the Hill equations (Schrama, 1989). Visser (2005) presented a spectral comparison
based on Linear Perturbation Theory (LPT) formulated in orbital elements for intersatellite
range-rate measurements between an analytical model and a numerical simulation, where the
resonant terms are purposefully removed from the numerical simulation.
In this work, an alternative approach is presented, leveraging the periodicity of the lumped
coefficient series. If a periodic perturbed orbit could be computed, secular variations arising
due to resonant terms would be implicitly removed. In this way, the periodicity of the numerical
observations is guaranteed, therefore avoiding spectral leakage of the resonant patterns along
the frequency spectrum. This, however, does not guarantee a perfect match between the
numerical and the analytical spectra. For instance, the existence of high-order perturbations is
well-known (Brouwer, 1959), and their contribution to the frequency spectrum is not considered
in the analytical observations. The line potential assumption as well as the linear dynamic
model must not be disregarded.
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4.2. Periodic orbits in full potentials
The computation of a perturbed repeating orbit in the Earth-fixed frame is not a trivial problem.
It requires proper selection of an initial state such that the periodicity condition holds for a
state in the Earth-Centered, Earth-Fixed (ECEF) frame.

𝑥̄(𝑡 + 𝑇) = 𝑥̄(𝑡) (4.2)

with 𝑇 the repeating ground track period.
To achieve this condition, a differential correction algorithm following the approach of Russell
and Lara (2007) is employed. In this work, subtle modifications have been introduced. First,
the propagation of the variational equations has been conducted in an Earth-Centered Inertial
(ECI) frame to obtain a state transition matrix Φ(𝑇, 0).

𝜕

𝜕𝑡
Φ(𝑡 , 𝑡0) =

𝜕 𝑓 (𝑡 , 𝑥̄)
𝜕𝑥̄(𝑡) Φ(𝑡 , 𝑡0) (4.3)

This requires rotation of the state transition matrix as follows:

Φ𝑅(𝑡 , 𝑡0) = 𝑇𝐼𝑅(𝑡)Φ𝐼(𝑡 , 𝑡0)𝑇𝐼𝑅(𝑡0) (4.4)

where 𝑇𝐼𝑅(𝑡), 𝑇𝑅𝐼(𝑡) are rotation matrices for the full-state from and to the rotating frame,
respectively, which read as follows:

𝑇𝐼𝑅(𝑡) =
[
𝑀𝐼𝑅(𝑡) 03𝑥3
𝑆𝜔 𝑀𝐼𝑅(𝑡)

]
(4.5)

𝑇𝑅𝐼(𝑡) =
[

𝑀𝑅𝐼(𝑡) 03𝑥3
−𝑆𝜔𝑀𝑅𝐼(𝑡) 𝑀𝑅𝐼(𝑡)

]
(4.6)

with 𝑀𝑇
𝑅𝐼
(𝑡) = 𝑀𝐼𝑅(𝑡) = 𝑅3(𝜃(𝑡)) a passive rotation matrix around the Earth rotation axis and

𝑆𝜔 = [𝜔̄]× a skew-symmetric angular velocity matrix describing Earth rotation:

𝑆𝜔 =


0 −𝜔𝑧 0
𝜔𝑧 0 0
0 0 0

 (4.7)

with 𝜔𝑧 = ¤𝜃 the angular velocity of Earth rotation.
Therefore, a perturbation in the initial state vector in the rotating frame maps to an arbitrary
state as:

𝛿𝑥̄(𝑡) = Φ(𝑡 , 𝑡0)𝛿𝑥̄(𝑡0) (4.8)

Russell and Lara (2007) define the constraint that Δ𝑧(𝑇) = 0. To allow validation of any
initial state as given by 𝜔𝑜 , 𝜔𝑒 , this can be generalized to Δ𝑧(𝑇) = 𝑧0. This is accomplished
in the propagation by means of a root finder that terminates the simulation exactly when
𝑁𝑟 revolutions are completed, and the constraint is achieved. This results in a variation in
the propagation time 𝑇, which shall be taken into account as another variable. A first-order
expansion in 𝑡 yields.

𝛿𝑥̄(𝑡 + 𝛿𝑡) = 𝛿𝑥̄(𝑡) + 𝜕𝑥̄(𝑡)
𝜕𝑡

𝛿𝑡 (4.9)

Substitution of Eq. (4.8) results in the final state perturbation accounting for the propagation
time perturbation.

𝛿𝑥̄(𝑡 + 𝛿𝑡) = Φ(𝑡 , 𝑡0)𝛿𝑥̄(𝑡0) +
𝜕𝑥̄(𝑡)
𝜕𝑡

𝛿𝑡 (4.10)
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This expression allows to apply the constraint that Δ𝑧(𝑇) = Δ𝑧(0) = 0. From here onwards, the
𝑧 component is removed from the state vector: 𝑥̄ =

[
𝑥, 𝑦, ¤𝑥, ¤𝑦, ¤𝑧

]
.

𝛿𝑧(𝑇 + 𝛿𝑇) = 𝜕𝑧(𝑇)
𝜕𝑥̄(0) 𝛿𝑥̄(0) +

¤̄𝑧(𝑇)𝛿𝑇 = 0 =⇒ 𝛿𝑇 = − 1
¤̄𝑧(𝑇)

𝜕𝑧(𝑡)
𝜕𝑥̄(0)𝛿𝑥̄(0) (4.11)

Replacing the constraint in the time perturbation into Eq. (4.10) leads to:

Δ𝑥̄(𝑇 + 𝛿𝑇) =
(𝜕𝑥̄(𝑇)
𝜕𝑥̄(0) − 1

¤̄𝑧(𝑇)
𝜕𝑥̄(𝑇)
𝜕𝑇

𝜕𝑧(𝑇)
𝜕𝑥̄(0)

)
Δ𝑥̄(0) = 𝐽(𝑇)Δ𝑥̄(0) (4.12)

This defines the Jacobian matrix 𝐽(𝑇) for the differential corrector. Solving the following system
yields the initial state change to correct for a mismatch in the periodicity condition.

Δ𝑥̄(𝑇 + 𝛿𝑇) − Δ𝑥̄(0) = 𝐽(𝑇)Δ𝑥̄(0) =⇒ Δ𝑥̄(𝑇 + 𝛿𝑇) = (𝐽(𝑇) − 𝐼)Δ𝑥̄(0) = 𝐴Δ𝑥̄(0) (4.13)

Matrix 𝐴 is known in Floquet theory as the monodromy matrix, and it defines a Lyapunov
map for the periodic orbit. Eigenanalysis can provide insights into the stability properties of
the periodic orbit (e.g., Verhulst, 1996).
In some cases, it has been observed that the differential correction might get stuck near
the periodic solution without meeting the requirements criteria. The Levenberg-Marquardt
Algorithm (LMA) can be applied. It combines gradient descent and Gauss-Newton method by
means of a damping factor 𝜆 to balance robustness far from minima and faster convergence
near the minima (e.g., Press et al., 2007).
The initial state update through the LMA can be computed as:

Δ𝑥̄(0) = (𝐴𝑇𝐴 + 𝜆𝐼)𝐴𝑇Δ𝑥̄(𝑇) (4.14)

where the damping factor 𝜆 is adaptively selected with the following logic: it is reduced by a
factor 𝜅− if the error decreases, else it is increased by a factor 𝜅+. A suitable initial value for
the damping factor is 𝜆0 = 10−9, whereas the adaptive factors 𝜅− = 1.2 and 𝜅+ = 10 provide
convergence within 10 to 20 iterations for an arbitrary ground track.

4.2.1. Definition of the initial guess
The differential correction algorithm requires an initial guess to start the algorithm. A valid
approach consists of computing the mean elements for the repeating orbit by means of Kaula’s
linear perturbation theory. However, neglecting the second-order perturbation due to Earth’s
oblateness sometimes leads to a poor initial guess. Although it might suffice for most cases. To
mitigate this effect, 2nd order Brouwer theory can be applied to account for 𝐽22 effects (Brouwer,
1959).
Employing the secular rates, a root finder can determine the mean semi-major axis for a given
ground track with certain inclination 𝑖 and eccentricity 𝑒 such that:

𝑓 (𝑎) = 𝑁𝑟

𝑁𝑑
+ ¤𝜔𝑜(𝑎, 𝑒 , 𝑖)

¤𝜔𝑒(𝑎, 𝑒 , 𝑖)
= 0 (4.15)

Next, the mean elements shall be converted to osculating elements. For this purpose, Eckstein-
Ustinov theory has been applied following Spiridonova et al. (2014).
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4.3. The periodic reference orbit
In Colombo (1984), the concept of the periodic reference orbit was introduced as a mean
precessing ellipse. Nonetheless, in this work, the periodic reference orbit is obtained by
computing the mean precessing circular orbit from the numerical simulation, that is averaging
the orbital elements accordingly. This guarantees a perfect reference orbit for validation
purposes.
The mean secular rates and the mean radius can be computed by averaging the numerical
solution in time:

¤̂𝜔𝑜 =
1
𝑇𝑟

∫ 𝑇𝑟

0
¤𝜔𝑜(𝑡) 𝑑𝑡

¤̂Ω =
1
𝑇𝑟

∫ 𝑇𝑟

0
¤Ω(𝑡) 𝑑𝑡

𝑟 =
1
𝑇𝑟

∫ 𝑇𝑟

0
𝑟(𝑡) 𝑑𝑡

𝐼 =
1
𝑇𝑟

∫ 𝑇𝑟

0
𝐼(𝑡) 𝑑𝑡

(4.16)

Similarly, the initial values for the ascending node and argument of latitude can be defined by
averaging the difference with respect to the osculating elements:

𝜔0
𝑜 =

1
𝑇𝑟

∫ 𝑇𝑟

0

(
¤̂𝜔𝑜𝑡 − 𝜔𝑜(𝑡)

)
𝑑𝑡

Ω0 =
1
𝑇𝑟

∫ 𝑇𝑟

0

(
¤̂Ω𝑡 −Ω(𝑡)

)
𝑑𝑡

(4.17)

To conclude, the reference orbit can be determined as:

𝑟(𝑡) = 𝑅3(−Ω0 − ¤̂Ω𝑡)𝑅1(−𝐼)𝑅3(−𝜔0
𝑜 − ¤̂𝜔𝑜𝑡) ©­«

𝑟

0
0

ª®¬ (4.18)

4.4. Observation frequency spectrum comparison
In this section, the spectrum of the different observations is compared between the analytical
and the numerical results by means of relative errors. In this analysis, a 𝑁𝑟/𝑁𝑑=16/1 repeating
orbit has been considered. To keep the spectrum large enough such that the cross-terms of the
kite-matrix become relevant, i.e., 𝐿 > 𝑁𝑟/2, a cut-off degree 𝐿 = 30 has been selected. Moreover,
to verify the influence of the initial state, an arbitrary non-zero initial state has been employed
(𝜔0

𝑜 ≈ −138◦; 𝜔0
𝑒 ≈ 32◦). A repeating ground track has been computed for an inclination of

𝐼 ≈ 30◦. The value of the mean elements is approximate since they are slightly modified by
the differential corrector. Numerical continuation could be employed to attain exact mean
elements. This is not necessary for validation purposes. Also, note that a whole family of
repeating ground tracks exists for such initial conditions (Lara, 2003). The repeating orbit
period and initial state in the ECI frame are given below.

𝑇𝑟 = 84315.79958359114971s

𝑟0 =


−2117720.019494371366
−5803860.074538999993
−2191272.512207766282

 m
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𝑣̄0 =


+7114.620101870129280
−1541.263803270827711
−2801.407428554033319

 m/s

The computed orbit achieves errors in the periodicity condition of 10−9 m and 10−9 m/s when
employing extended double precision. Numerical errors associated with element conversions
have been detected when reconstructing the periodic orbit to compute the spectrum, causing
periodicity errors of 10−4 m.
Furthermore, both Fourier cosine and sine spectra are studied, i.e., the 𝐴𝑘𝑚 and 𝐵𝑘𝑚 spectra,
respectively, since the similar order of magnitude between coefficients could result in apparently
correct magnitudes, whereas the phasing might be incorrect.
To begin with, the relative error of the gravity potential spectrum computed along the reference
orbit is presented below. There is a nearly perfect match between numerical and analytical
frequency spectra. Given the modular implementation of the block-kite model for the different
observables, this already confirms the correct implementation of the linear system structure.
Additionally, the sudden increase in the magnitude of the relative error spectra at higher
frequencies can be attributed to numerical errors taking over. This is also associated with
omission error in the lumped series that causes a drop in the magnitude of the lumped
coefficients.

Figure 4.1: Numerical vs. analytical relative differences in gravity potential observation spectrum along the
reference orbit

Next, the numerical potential is computed along the perturbed orbit to assess the line potential
assumption. Figure 4.2 compares the numerical results to the analytical spectral observations.
While the majority of the spectrum shows good agreement, within 10%, high differences at
a few orbital frequencies can be observed. This indicates the limitations of the line potential
assumption. However, the behaviour of the spectrum is well captured overall.
Next, the GPS observation spectrum is computed for the three position components using the
analytical observation model. The implied periodicity in the radial, along-track, and cross-track
displacements is depicted in Figure 4.3, and the numerical and analytical observation spectra
are compared in Figures 4.4 to 4.6.
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Figure 4.2: Numerical vs. analytical relative differences in gravity potential observation spectrum along the
perturbed orbit

Figure 4.3: Time-series of numerical GPS observations

Figure 4.4: Numerical vs. analytical relative differences in radial observation spectrum
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Figure 4.5: Numerical vs. analytical relative differences in along-track observation spectrum

Figure 4.6: Numerical vs. analytical relative differences in cross-track observation spectrum

The analytical Global Positioning System (GPS) observations generally align with the numerical
results. Similarly, discrepancies at higher frequencies are observed due to numerical errors.
Compared to the potential observation along the perturbed orbit, the position spectra have
degraded slightly. While the attenuation factor might damp higher degree effects for the
potential, this could be compensated by the degree factors that appear in the transfer functions
for the GPS observations. Thus, previously undetected errors might be amplified. The nature
of these deviations could also be caused by the intrinsic linearization of the Hill equations as
well as by numerical error sources during post-processing. The results, although not identical,
suffice for verification purposes.
Lastly, the spectrum for the intersatellite range observation for a collinear formation is presented
in Figure 4.7. Again, the numerical and analytical spectra show slightly less agreement since
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errors have propagated from the radial and along-track observations. However, the analytical
model is capable of capturing the majority of the spectrum behaviour to a sufficient accuracy.

Figure 4.7: Collinear configuration: numerical vs. analytical relative differences in intersatellite range observation
spectrum

To conclude, it must be taken into account that the main purpose of the analytical model is
to propagate the error spectrum from the observations to the parameters. It is not intended
to model orbits accurately. Instead, the analytical model shall solely be able to describe
the magnitudes of the lumped coefficients’ spectrum to a sufficient accuracy such that the
error propagation is reliable. Further validation of the error propagation requires end-to-end
simulation of a gravity research mission and is out of the scope of this project.



5
Analysis of results

In this chapter, the analytical observation model described in chapter 2 is employed to simulate
the gravity recovery capabilities of different collinear configurations. For this purpose, the
least squares error analysis approach presented in chapter 3 is employed. Firstly, a GRACE-like
configuration consisting of a single satellite pair flying in a nearly polar orbit is analysed. In
second place, the effect of adding an extra pair in an orbit with a lower inclination is assessed.
This is the Bender configuration. An example of the mission design process, along with the
optimization of the second-pair inclination, is discussed. Lastly, adding additional planes
presents a possibility to bridge the gap towards near-real-time gravity field determination. For
this purpose, constellations of multiple satellite pairs are simulated. The observation errors
employed for every configuration are summarized in Figure 3.11 (see sections 3.6 and 3.7).

𝜌1

(a) GRACE

𝜌1

𝜌2

(b) Bender configuration

𝜌1𝑏

𝜌2𝑏

𝜌3𝑏

𝜌4𝑏

𝜌1𝑎

𝜌2𝑎

𝜌3𝑎

𝜌4𝑎

(c) Constellation example

Figure 5.1: Overview of orbital configurations

5.1. Single satellite pair
In this section, the error analysis results for a single pair of satellites flying in a collinear
formation are discussed. To begin with, a sensitivity analysis is undertaken to verify the
expected behaviour of the model. Next, a spherical harmonics error analysis is conducted to
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reproduce certain patterns observed in GRACE gravity field solutions.

5.1.1. Sensitivity analysis
To begin with, a sensitivity analysis studies the influence of the three relevant parameters of a
collinear configuration: inclination, semi-major axis (i.e. based on the repeating ground track
choice) and nominal satellite separation. For this purpose, every parameter is varied within a
reasonable range with respect to a reference configuration in a One-At-a-Time approach. For
the sake of simplicity, the RMS per coefficient per degree is assessed.

𝛿𝑙 =

√√√
𝑙∑

𝑚=0

𝜎2(𝐶̄𝑙𝑚) + 𝜎2(𝑆̄𝑙𝑚)
2𝑙 + 1 (5.1)

The reference values for the sensitivity analysis are given in the table below:

Table 5.1: Sensitivity analysis reference collinear configuration

Parameter Reference value
Inclination 88◦

Repeating orbit 295/19
Nominal separation 400 km

(a) Semimajor axis sensitivity (b) Baseline sensitivity (c) Inclination sensitivity

Figure 5.2: Collinear configuration sensitivity analysis

First, the sensitivity to the semi-major axis is studied. For this purpose, the number of
revolutions is varied accordingly while maintaining the same number of nodal days. This
aims at avoiding undesired effects due to the repeating ground track constraint. According to
Figure 5.2a, the effect of the attenuation factor is evident. The lower the altitude, the lower the
gravity field error. Aligned with the attenuation factor, the error difference generally becomes
more pronounced for higher degrees.
Next, different nominal separations are analysed. Figure 5.2b shows a wiggling pattern whose
frequency increases for larger intersatellite distances. This is the so-called common attenuation
mode, as described in Wolff (1969). Sneeuw (2000) provides an analytical expression for the
degree at which the common mode attenuation occurs.

𝑙𝑖 ≈
2𝜋𝑖𝑎𝑒
𝜌0

(5.2)
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with 𝑖 = 0, 1, 2, . . . referring to the 𝑖-th common mode attenuation. As shown in the figure,
the first common mode attenuation occurs at the predicted mode by the expression presented
above. Note also that the zeroth common mode attenuation is always present.
To conclude, Figure 5.2c depicts the sensitivity to the inclination. As expected, lower inclinations
suffer from limited global coverage, thus resulting in an ill-posed problem that cannot be
resolved. Such cases require constraining the normal equations to provide acceptable solutions.
Furthermore, it is remarkable that the perfectly polar orbit is not optimal. Near-polar orbits
such as 𝐼 = 88◦ show better degree variance performance. This can be associated with an
inefficient distribution of measurements in the polar region for true polar orbits.

5.1.2. GRACE simulation
In this section, a GRACE-like configuration is simulated. More precisely, the resonant and
non-resonant cases discussed in section 1.1 are simulated through the analytical model. The
objective is to be able to reproduce the operational results in the GRACE monthly solutions.

(a) September 2004 (b) March 2007

Figure 5.3: Analytical GRACE simulation: EWH commission error

The results from Figure 5.3 show the same pattern observed in the projected operational
commission error as in the operational data (see Figure 1.1). The reason for the north-south
error stripes for the resonant error is the correlation between different orders imposed with the
repeating ground track constraint through the block-kite matrix. As Visser et al. (2012) point
out for geoid heights, no longitude dependency appears if no cross-correlation between orders
is introduced. A block-kite matrix is a generalization of the block-diagonal matrix when there
is no correlation between order blocks. This occurs if the following condition holds 𝐿 < 𝑁𝑟/2,
i.e. only the bottom-left block-diagonal submatrix of the kite-matrix is considered.
To further analyse the results, the SH coefficients’ spatial power noise spectrum is compared to
the operational commission error in the figure below.
With respect to the non-resonant case, in light of Figure 5.4b, it provides a slightly optimistic
estimation of the commission errors compared to the operational results. The noise power
trend is, however, well captured. One possible explanation for the offset could be related to the
residual background model errors. Despite this, the estimated EWH commission error is in a
similar order of magnitude to that retrieved from ITSG-2018 data.
Regarding the resonant case, as shown in Figure 5.4a, the analytical model overestimates the
commission error power. However, it is noticeable that the trend throughout the spectrum is
also well described. A difference between the operational and analytical scenario lies in the
fact that, in reality, the mission will never fly along the perfectly repeating orbit but can deviate
during the time window of the gravity field solution. Indeed, the analytical model relies on
the a-priori covariance to solve for the parameter covariance. Kaula’s constraint has been
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(a) September 2004 (b) March 2007

Figure 5.4: Analytical GRACE simulation: RMS per coefficient per degree. Comparison with ITSG-2018 solution.

employed since it represents the least stringent constraint, considering that the operational
data consists of formal errors. At the same time, this can contribute to an overall growth of
the power noise estimated by the analytical model. In contrast, the operational case does not
require constraining the equations, since the system loses the ill-posedness as the satellite
pair moves away from the resonance. It could be argued that the operational result is a
weighted combination of the solutions of the different repeating ground tracks the satellites
have followed throughout the solution time window. In this way, the solutions associated to
other non-resonant repeating orbits act as constraints to the purely resonant solution, which
dominates the error spectrum.

5.2. Bender configuration
In this section, the Bender configuration is studied to mitigate the spatial aliasing problem
that causes equatorial comission error stripes due to insufficient ground track density. This
configuration adds a satellite pair to the GRACE-like collinear formation with a lower inclination,
thus improving the density of measurements near equatorial regions.

5.2.1. Sensitivity analysis
Analogously to the collinear formation, a sensitivity analysis of the Bender configuration is
conducted to assess the effect of the constellation parameters. The reference values for the
sensitivity analysis are given in the table below:

Table 5.2: Sensitivity analysis reference Bender configuration

Parameter Reference value
Inclination 1 90◦
Inclination 2 63◦

Repeating orbit 295/19
Nominal separation 400 km

Similarly, the RMS per coefficient per degree sensitivity is studied. Results are presented in
Figure 5.5.
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(a) Baseline sensitivity (b) Second pair inclination sensitivity

Figure 5.5: Bender configuration sensitivity analysis

As occured for the single satellite pair, the common mode attenuation appears at the expected
degrees for higher baselines. Moreover, the error spectrum performs better for an intermediate
range of inclinations 𝐼 ≈ 60◦.
Lastly, the longitude difference between ground tracks is studied through two different policies:
ground tracks overlap at the equator or ground tracks are interleaved at the equator (Wiese,
Nerem, & Lemoine, 2011). Moreover, there exists a distinction between odd and even repeating
ground tracks. The ascending and descending ground tracks from odd repeating ground
tracks overlap with themselves at the equator. For a given orbit and policy, the equatorial
ground track separation can be computed as follows:

Δ𝜆0 =
𝜋(𝑖 + 1)(𝑗 + 1)

2𝑁𝑟
(5.3)

where 𝑖 indicates the repeating ground track parity (𝑖 = mod (𝑁𝑟 · 𝑁𝑑 , 2)) and 𝑗 takes an even or
odd integer to define the even and odd policies, respectively. In this way, even means that there
is interleaving at the equator, while odd can be associated with overlapping at the equator.

(a) Even policy (b) Odd policy

Figure 5.6: Ground-track longitude separation policy: odd repeating ground track

(a) Even policy (b) Odd policy

Figure 5.7: Ground-track longitude separation policy: even repeating ground track
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In practice, the different longitude separation policies have little impact on the gravity field
solutions. This can be observed in Figure 5.8, which shows the relative difference in RMS per
coefficient per degree between the odd and even policies. The interleaving policy is taken as a
reference value. Two different ground tracks are studied. The 15/1 repeating orbit is chosen
because it is the most sparse ground track in LEO. Note that even for this case, the differences
in spatial power noise remain within 10%. Moreover, the denser the ground track, the less
impact the longitude separation policy has.

(a) 𝑁𝑟/𝑁𝑑=15/1 ground track (b) 𝑁𝑟/𝑁𝑑 =78/5 ground track

Figure 5.8: Relative RMS per coefficient per degree difference: odd vs. even policy comparison.

In Figure 5.9, Spherical Harmonics Synthesis (SHS) into gravity anomaly errors confirms that
the origin of the differences is the correlation between commission error and the ground track.

(a) Even policy (b) Odd policy

Figure 5.9: 𝑁𝑟/𝑁𝑑=15/1 repeating ground track longitude policy comparison: gravity anomaly commission error.

In light of the obtained results, an interleaving policy will always be considered to separate the
ground tracks of different planes.

5.2.2. Condition number analysis
Introducing an additional satellite pair shall not only improve the gravity field error, but it also
mitigates the ill-posedness of the normal equations. This is depicted in Figure 5.10, where the
condition number as a function of the cut-off degree is shown for a repeating ground track
of 15/1 and 31/2, respectively. The condition number is the ratio between the largest and
smallest singular values of a matrix. The larger the condition number, the more input errors
are amplified in the output. When it approaches computer precision limits, the matrix cannot
be reliably inverted, and the problem is ill-posed.
While unconstrained solutions for single-pair collinear configurations were unfeasible for
𝐿 > 𝑁𝑟 , this no longer holds for Bender configurations. Moreover, it might be expected that
constraining the Bender observation equations might be needed for 𝐿 > 2𝑁𝑟 because of two
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(a) 𝑁𝑟/𝑁𝑑=15/1 repeating ground track (b) 𝑁𝑟/𝑁𝑑=31/2 repeating ground track

Figure 5.10: Condition number analysis

times more observations. Nonetheless, the effect of the different inclinations relaxes this
expectation (see specifically Figure 5.10a), thus facilitating unconstrained solutions even with
lower spatial resolution.

5.2.3. Mission case scenario: optimal inclination
In this section, the inclination for the second satellite pair is optimized. To select the remaining
parameters that define a Bender configuration, a mission case scenario is considered based on
example mission requirements listed below.

Table 5.3: Mission requirements for an example GRM

ID Requirement
MISS-01 The mission shall operate for 10 years
MISS-02 The satellites’ mass propellant ratio shall not exceed 0.18
MISS-03 Gravity field solutions shall be provided every 5 days
MISS-04 Gravity field solutions up to degree 100 shall be computed

Requirements MISS-01 and MISS-02 define an orbit altitude lower limit. Several simulation
studies have shown how mission lifetime relates to orbit altitude for a given mass-propellant
ratio available for the drag-free system (Marchetti et al., 2008; Rock et al., 2006). They were
gathered in Wiese, Nerem, and Lemoine (2011), where an exponential trend was identified (see
Figure 5.11). As such, and taking some safety margin, an orbit requirement is introduced: the
orbit altitude shall be greater than 300 km (ORB-01).

Figure 5.11: Mission lifetime vs. altitude: initial mass propellant fraction of 0.18 (Wiese, Nerem, & Lemoine, 2011)
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Next, the combination of requirements MISS-03 and ORB-01 allows to define an optimal
repeating ground track from the set of available periodic orbits in LEO. Requirement MISS-03
defines the repeating orbit period, that is, essentially the nodal days, considering that in
LEO the following holds: ¤Ω ≪ ¤𝜃. Besides this, to simplify operations, both satellite pairs
are assumed to fly in the same repeating orbit. Studying different inclinations such that the
semi-major axis is representative of the whole search space, referring to Figure 5.12, a ground
track condition of 78/5 has been selected.

(a) Inclination = 10◦ (b) Inclination = 50◦ (c) Inclination = 90◦

Figure 5.12: Repeating ground track selection

To conclude, an upper limit to the nominal intersatellite distance for both pairs can be computed
from requirement MISS-04 such that the first-common mode attenuation is avoided. In this
way, the nominal separation shall fulfil that 𝜌0 < 400𝑘𝑚. Further analysis of the search space is
required to define an optimal baseline.
At this point, it is necessary to find an optimal value for the inclination of the second pair and
the baseline between the satellites. For this purpose, a cost function is defined as the average of
an arbitrary gravity field functional error (see appendix C) over the Earth’s surface. This can be
expressed as:

𝜎̂2
𝑦 =

1
4𝜋

∫
Ω

𝜎2
𝑦(𝜙,𝜆) 𝑑Ω (5.4)

Substitution of the general expression for the gravity functionals partials w.r.t. the parameters,
developing covariance propagation into summations and reformulating the integral in polar
coordinates leads to (e.g. Haagmans and van Gelderen, 1991):

𝜎̂2
𝑦 =

1
4𝜋

∫ 𝜋
2

− 𝜋
2

∫ 2𝜋

0

𝐿∑
𝑙=2

𝑙∑
𝑚=0

𝐿∑
𝑙′=2

𝑙′∑
𝑚′=0

𝑓𝑦(𝑙) 𝑓𝑦(𝑙′) × 𝑃̄𝑙𝑚(sin 𝜙)𝑃̄𝑙′𝑚′(sin 𝜙)×(
𝜎(𝐶̄𝑙𝑚 , 𝐶̄𝑙′𝑚′) cos𝑚𝜆 cos𝑚′𝜆+

𝜎(𝑆̄𝑙𝑚 , 𝑆̄𝑙′𝑚′) sin𝑚𝜆 sin𝑚′𝜆

2𝜎(𝐶̄𝑙𝑚 , 𝑆̄𝑙′𝑚′) cos𝑚𝜆 sin𝑚′𝜆
)

sin 𝜙 𝑑𝜆 𝑑𝜙

(5.5)

Application of the orthogonal properties of spherical harmonics leaves that the integral is
non-zero solely for 𝑙 = 𝑙′, 𝑚 = 𝑚′, 𝑎 = 𝑎′. Moreover, given the normalization employed, it is 1
elsewhere (see appendix A). Therefore, it follows that:

𝜎̂𝑦 =

√√√
𝐿∑
𝑙=2

𝑙∑
𝑚=0

𝑓 2
𝑦 (𝑙)

(
𝜎2(𝐶̄𝑙𝑚) + 𝜎2(𝑆̄𝑙𝑚)

)
(5.6)
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This expression does not require the computationally expensive covariance propagation, while
it captures the functional behaviour over the Earth’s surface, thus facilitating the optimization
performance.
As a result, the full search space can be quickly explored, as Figure 5.13 presents. Hence, no
elaborate optimization techniques are required, and the global minima can be selected directly.
In this work, EWH has been used as the gravity functional. Figure 5.13a shows cost function
sensitivity to the inclination at the optimal baseline, while Figure 5.13b describes the sensitivity
to the nominal intersatellite distance at the optimal inclination.

(a) Optimal inclination (b) Optimal nominal intersatellite distance

Figure 5.13: Bender mission case scenario: optimal parameters

The optimal inclination has been defined to 𝐼 = 60◦. This value is similar to the chosen value
for the NGGM that NASA is planning to launch (Bender et al., 2025). The optimal nominal
separation is 𝜌0 = 290km, while the NGGM mission is aiming at a slightly smaller baseline.
Nonetheless, the optimal region both for the baseline and the inclination is rather flat, which
allows comparatively similar performance for alternative nearby values that might favour other
mission aspects.
To conclude, Figure 5.14 shows the commission error map for EWHs. There is a subtle
longitudinal anisotropy associated with the combined ground track footprint. Moreover, there
are certain latitudes that suffer from larger errors. As expected due to ground track density,
latitudes exactly above the inclination of the second pair, as well as equatorial areas, are the
most affected ones. It must be highlighted that the optimal inclination achieves to balance

(a) EWH commission error (b) RMS per coefficient per degree:
commission error vs. AOD1B signal

Figure 5.14: Mission case scenario optimal Bender configuration
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commission errors at these two areas. A lower inclination of the second pair would give rise to
higher commission errors above latitudes not covered by the second pair. On the contrary, an
excessively high inclination of the second pair would result in commission errors dominating
in equatorial regions.
The obtained results, with commission errors in the order of millimetres for EWH, are similar
to Li et al. (2016), who also analyse Bender configurations considering NGGM performance by
means of an analytical approach. Some simulation-based studies also yield similar mission
capabilities from instrument errors (Cesare et al., 2022; Daras et al., 2023). However, full noise
simulations indicate that actual performance is degraded (Bender et al., 2025; Daras et al.,
2023), for example, due to aliasing of tidal and non-tidal effects (Daras et al., 2023).

5.3. Multi-satellite constellations
In section 3.8.2, the intrinsic lower bound for time-varying gravity field solutions was discussed.
This is implicitly restricted by the LEO repeating ground track characteristics (see Figure 5.12)
that do not achieve nodal days below 24 hours. In this chapter, multi-satellite constellations
are studied with the aim of mitigating the time aliasing problem, but also to solve the spatial
aliasing problem of orbits with short repeatability periods. The time resolution can be solved
by placing several satellites in the same repeating ground track such that measurements over
the full ground track are retrieved in times below the repeatability period. For example, for a
ground track with a repeating period of 1 day, if gravity field solutions every 3 hours were
intended, 8 satellites would be required. To circumvent the sparsity of these ground tracks,
more orbital planes can be added, similarly to the Bender configuration. Analogously, they
require proper selection of optimal inclinations.
While launching that many satellites might seem far-fetched due to elevated mission costs, the
technological advancements towards miniaturization could eventually allow the feasibility
of this mission concept. For instance, if each satellite cost was reduced by a factor of 10 to
100 times, the idea could be financially viable. Pfaffenzeller and Pail (2023) claim that, in
the future, a miniaturized version of the K-Band Ranging (KBR) instrument of GRACE-FO
could be available. Moreover, ONERA is currently developing an accelerometer, CubSTAR,
aimed at being employed in CubeSats, and that surpasses current GRACE-FO capabilities.
The performance of GRACE-FO MWI and the CubSTAR accelerometer will be assumed for a
constellation-based GRM. The gravity field recovery capabilities of an arbitrary constellation of
CubeSat collinear pairs will be assessed.
Ideally, missions with daily or sub-daily gravity field solutions should make use of repeating
orbits with nodal periods of 1 day. In this way, more satellites could be placed in alternative
planes to exploit the benefits of using a variety of inclinations. The 16/1 repeating orbit could
be a suitable orbit, which implies an orbit altitude between 180-260 km. For a CubeSat-based
mission that is assumed not to fly drag-free, this is considered excessively low. As a result,
the 15/1 repeating orbit, although at higher orbital altitudes, around 500 km, consists of a
more plausible selection, and it has been chosen for the simulations presented in this section.
Alternatively, the 31/2 repeating orbit could be a trade-off solution that would, however, require
placing two times more satellites in the same plane to achieve similar temporal resolutions.
First, the baseline separation will be assumed constant for any configuration. Arbitrarily and
aligned with GRACE-FO, a nominal intersatellite distance of 𝜌0 = 220km is defined.
The optimization of the inclinations of the multiple planes becomes a multivariate optimization
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problem:
Minimize: 𝑓 (𝑥̄)
Subject to: 0◦ < 𝑥𝑁−1 < 𝑥𝑁−2 < · · · < 𝑥0 < 90◦

𝑥̄ ∈ R𝑁

with 𝑥̄ = 𝐼1 , 𝐼2 , · · · , 𝐼𝑁𝑝−1 the decision variables. They are the inclinations of every plane except
for one plane that is fixed to provide global coverage, i.e. 𝐼0 = 90◦. Therefore, the search space
has dimension 𝑁 = 𝑁𝑝 − 1, with 𝑁𝑝 the number of orbital planes. The inequality conditions
are aimed at reducing the search space, avoiding nearly symmetric solutions. The cost function
is chosen to be the averaged EWH, analogously to the Bender optimal solution. A cut-off
degree is selected following condition number analysis, such that the system is guaranteed to
be well-posed.

Figure 5.15: Constellation condition number analysis

As previously discussed for the Bender configuration, additional planes add observations to
the system that allow for solving gravity fields of higher degree. In principle, a single pair
system results in ill-posedness for 𝐿 > 𝑁𝑟 . Adding a satellite pair delays the ill-conditioned
behaviour to roughly 𝐿 > 2𝑁𝑟 . However, the effect of a different inclination relaxes this criterion.
According to Figure 5.15, this can be extrapolated to constellations. As a general rule, a system
will be well-conditioned for 𝐿 < 𝑁𝑟𝑁𝑝 . In this way, several optimizations will be simulated
for an increasing number of planes such that more resolution is intended, i.e., higher cut-off
degree.
Exploration of the whole search space becomes exponentially expensive with the number of
decision variables. Considering that the evaluation of the cost function can take up to 2 seconds
for higher cut-off degrees, efficient optimization techniques are required. Unfortunately,
analysis of the design space of the Bender configuration optimization already showed the
non-convex behaviour of the cost function. Therefore, global optimization algorithms such as
evolutionary algorithms represent a reasonable optimizer choice (e.g. Glover and Sörensen,
2015). These population-based algorithms are inspired by natural evolution. They contain a
population of individuals (solutions) that are evolved by means of genetic operations such as
mutation or crossover. At the end of every generation, the fittest individuals in terms of the
cost function are selected, and their genetic material will be employed for the next generation.
The aim of this section is not to provide the best solution but rather to assess the capabilities
of a nearly optimal solution and study its properties. Moreover, the Bender configuration
already showed a rather flat region near the optimal solution, which still maintained similar
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performance. In summary, exhaustive optimization has not been intended. The optimizer
has been selected conveniently as the self-adaptive Differential Evolution algorithm (Brest
et al., 2006; Elsayed et al., 2011) with default settings from ESA’s optimization library PyGMO
(Biscani & Izzo, 2020). Differential Evolution algorithms iteratively improve solutions using
differences between population members. The algorithm is self-adaptive because mutation and
crossover parameters are adapted on-the-fly to balance exploration and exploitation. Moreover,
a stopping criterion has been defined as 10 iterations without improving the cost function by
more than 0.1%.
While smaller design spaces allows for the finding of an optimal solution within 2 to 3 iterations,
more orbital planes imply slower convergence. Figure 5.16 shows the population evolution for
a 6-plane constellation and illustrates the slower convergence behaviour.

(a) Cost function (b) Design variables: constellation planes inclinations

Figure 5.16: Constellation with 6 planes in a 𝑁𝑟/𝑁𝑑=15/1 repeating orbit: generation champion evolution.

The resulting optimal inclinations for up to 6 orbital planes are presented in Figure 5.17. As
one could expect, the inclinations span over the whole domain for higher planes. Similarly,
higher inclinations are preferred over lower inclinations, which are more spaced out.

Figure 5.17: Optimal constellations in a 𝑁𝑟/𝑁𝑑=15/1 repeating orbit

To conclude, the obtained spatial noise power is compared to the AOD1B signal to assess the
recovery capabilities of the computed constellations. In light of the results shown in Figure 5.18,
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the CubeSat constellation would be able to retrieve the daily atmospheric and ocean non-tidal
signal almost up to degree 25, which would consist of spatial resolutions of slightly above 800
km. For this purpose, 3 planes with 1 satellite pair each would be sufficient. Furthermore, the
power of sub-daily phenomena (e.g., 3h period) is lower than the variability associated with
the mean daily field. As a result, the aliasing of these short-periodic events would not play a
limiting role. Regarding solutions at 3-hour intervals, they would require placing 8 satellite
pairs per plane. Three orbital planes would provide a solution without noise, approximately
up to degree 15, that is roughly 1300 km spatial resolution. Employing a total of 48 satellite
pairs would suffice to observe the AOD1B signal up to degree 20 or roughly a spatial resolution
of 1000 km. The improvements associated with a higher number of planes are minimal, and
such constellations are not advised for the instrument performance considered. Improvement
of the accelerometers and ranging system performance is paramount to attain the observability
of higher degrees at the temporal resolutions considered.

Figure 5.18: RMS per coefficient per degree: constellation noise vs. AOD1B signal comparison



6
Conclusion

In this thesis, orbital configurations for GRM with the aim of improving spatial and temporal
resolution have been studied by means of an analytical spectral observation model.
In chapter 1, the current limitations of temporal gravity field data were introduced and put
into perspective with science and societal demands. Section 1.3 formulated a main research
question along with several sub-questions. Chapters 2 to 5 have addressed these questions. In
this chapter, the answers to the research questions are presented along with additional insights
gained in this work. To conclude, recommendations for future work are outlined.

6.1. Research questions

How can the analytical approach be applied to multi-satellite constellations? What are the
limitations of this methodology?

In chapter 2, the analytical observation model was formulated for GPS observations and
intersatellite range for collinear formations. Subsequently, the linear system was introduced,
and the least squares methodology was explained in chapter 3. Section 3.5 specifically delves
deeper into this question by defining a framework to combine any set of observations. A
constellation of satellites or satellite pairs would also imply the combination of multiple
observations. The individual linear systems can be combined simply by stacking the design
matrices vertically. Moreover, assuming no correlation between the observations, diagonally
stacking the individual observation covariances results in the full observation covariance for
the constellation.
Regarding the limitations of the methodology, the assumptions of the analytical observation
model are stated in chapter 2. First, the line potential assumption consists of approximating
the potential along the perturbed orbit as a potential along a reference orbit. Secondly, the
linearized Hill equations do not account for higher-order terms. Lastly, the collinear formation
intersatellite range observations rely on a first-order approximation that can be interpreted as
projecting the range variations along the satellites’ line of sight. This fact, for example, neglects
the cross-track contribution. Subsequently, chapter 4 has verified the implementation of the
analytical model by means of numerical simulation of the lumped coefficients’ spectrum for the
different observables. The line potential assumption introduces noticeable differences between
the numerical and analytical potential observations. They propagate to GPS observations and

56



6.1. Research questions 57

collinear observations, which show additional degradation because of the other assumptions.
Overall, while there are significant deviations at a few frequencies, the behaviour of the spectra
is well captured. The least squares error propagation does not require refined estimation of the
partial derivatives with respect to the parameters. Further analysis of the validity of the model
to gravity field error analysis would require end-to-end simulations and has been considered
out of the scope of the project.

How can equatorial stripe errors be defined?

This question was almost completely addressed in chapter 1 itself, with the description of the
striping pattern problem in GRACE data. Two types of striping patterns were identified.
First, striping patterns arise in the process of SHS into gravity anomalies and EWH. They are
attributed to commission error dominating the gravity field solution at higher frequencies.
Furthermore, it was shown how Gaussian smoothing is typically applied to mitigate this issue
as a low-pass filter in the spatial domain.
Secondly, equatorial stripes can be observed in the commission error synthesis for resonant
orbits. The lumped theory successfully explained this pattern by means of the repeating
ground-track constraint that introduces correlation between SH coefficients of different orders.
The definition of the stripe errors has been limited to the commission errors themselves. The
methodology does not explain the stripes for non-resonant cases since it implies longitude
homogeneity of the commission errors (Visser et al., 2012). However, the commission errors
can provide an estimation of the magnitude of the stripes. As long as this is smaller than the
actual signal, the stripes will not appear. This comparison has been conducted in terms of RMS
per coefficient per degree for Bender and multi-satellite constellation configurations, which can
describe the amplitude spectrum of the signal and commission errors in the spatial domain.

What are the optimal parameters for a Bender configuration? How does it perform in
terms of spatial aliasing errors?

The analytical model has been employed to simulate Bender configurations for sub-weekly
solutions. Several factors that drive Bender configuration design have been discussed through
a mission case scenario. A challenge posed by this question is the definition of optimality.
Depending on the purpose of the mission, this might differ significantly. Moreover, trade-offs
between different mission goals might be required. For simplicity in this work, the objective
has been defined as the global determination of EWH. As a result, a unit sphere average of the
EWH commission error has been chosen as the cost function for the optimization problems
discussed.
An optimal inclination has been found at 𝐼 = 60◦ and the optimal nominal intersatellite distance
has been calculated to be 𝜌0 = 290 km. However, this only applies to the mission performance
and requirements considered. A flat area near the global optimum has also been identified. This
provides a range of both inclinations and nominal intersatellite distance with nearly-optimal
performance, which could be beneficial when considering other mission trade-offs.
As a result, the feasibility of recovering the atmosphere and ocean non-tidal signals up to
degree 100 was demonstrated, making use of the NGGM instrument performance for 5-day
solutions, i.e., a spatial resolution of 200 km. While agreement with previously published
results was achieved (Cesare et al., 2022; Daras et al., 2023; Li et al., 2016), the analytical model
does not account for temporal aliasing effects, which can significantly degrade commission
errors (Daras et al., 2023).
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What are the optimal parameters of a multi-satellite constellation for a high temporal
resolution GRM? How does it perform in terms of spatial aliasing errors?

Multi-satellite CubeSat constellations were studied as an alternative to improve time resolution
while maintaining affordable mission costs.
The previous discussion about optimality also applies to this question. Similarly, EWH
averaged commission error has been considered as the cost function for this problem. Optimal
inclinations have been computed for up to 6 different repeating orbits. It has been identified that
they spread out in the range of inclinations favouring higher inclinations over less advantageous
lower inclinations.
In light of current technological progress in small satellites, realizability of daily and sub-daily
gravity field monitoring has been proven up to roughly degree 20, i.e., a resolution of around
1000 km.

How do instrument errors impact the selected optimal configurations?

Chapter 3 assumed that the intersatellite range observation noise ASD consists of the combined
contribution of the ranging instrument itself and the onboard accelerometers of the satellites.
However, it has been discussed that this assumption neglects other error sources that can
dominate the observation error spectrum, in particular, background error models.
Regarding only instrument errors, the accelerometers’ error drives the range error spectrum at
lower frequencies, while the ranging instrument is the main contributor at higher frequencies.
In this way, for example, LRIs would significantly reduce noise at higher frequencies, while a
DFAOCS, along with a refined accelerometer, benefits the lower frequencies.
Moreover, a scaling factor applied to the observation covariance, i.e., the observation PSD,
scales the parameter covariance by the same factor. This holds as long as the solutions are
unconstrained, and explains, for example, the significantly better performance of the Bender
configuration analysed under NGGM performance.
The exact influence on the studied optimal configurations requires further consideration.

6.2. Future recommendations and final remarks
The science community and society would benefit from spatial and temporal resolution
improvement in Earth gravity field measurements. However, high mission costs, engineering
complexities, and limited commercial applications of gravity field data compromise future
GRMs. Cutting-edge ranging systems based on lasers, along with high resolution accelerometers
and an advanced DFAOCS, can pave the way towards mitigating noise at higher spatial
frequencies while also achieving better temporal resolution. However, short-periodic events
can still affect the recovered gravity signal. CubeSats constellations are a potential solution to
avoid reliance on background models and enable accurate retrieval of fast variations in Earth’s
gravity field.
Although the findings of this study are promising for the future of Earth-based GRM, the
limitations of this work must not be ignored. To begin with, end-to-end simulations must
be undertaken to assess the validity of the analytical model implemented to estimate gravity
field errors. Furthermore, the analytical model does not include the effects of background
error models, which have shown a major impact on GRACE/GRACE-FO performance. This
could be achieved by characterization of an acceleration power noise spectrum and subsequent
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propagation into collinear range errors. In this way, analytical model power noise estimations
might increase and, eventually, match operational results. Besides this, a limited range of
orbital configurations and mission scenarios has been investigated. For example, the 31/2
repeating orbit is a promising selection for near real-time gravity field recovery, and it might
outperform the 15/1 repeating orbit discussed here because of the impact of the attenuation
factor. Moreover, this work has only considered collinear configurations. Li et al. (2016)
formulated the analytical observation equations for the pendulum configuration, and the
methodology could be extended to other formations such as cartwheel orbits. Although
complex from the engineering perspective, the analytical model provides a unique tool to
quickly estimate their gravity recovery capabilities. Combinations of the different formations
could improve gravity field measurements to an extent that must be defined. Another important
aspect lies in the instrument errors considered. The use of other instruments such as quantum
accelerometers (e.g., Zahzam et al., 2022), characterized by lower noise at lower frequencies,
or simplified gravity reference sensors (Dávila Álvarez et al., 2022) must be assessed. In
addition, studying the commission error sensitivity to the different parts of the observation
error spectrum is crucial to identifying technological needs for future missions. Lastly, studies
have included alternative observations such as range-rate or range acceleration (e.g., Li et al.,
2016; Sneeuw, 2000). Their applications to constellation-based GRM could also improve
performance.
This work has shown the benefits of the analytical methodology for future GRMs that demand
intense optimization. It has also been particularly efficient to model constellations, which
represent a plausible scenario for the future of satellite gravimetry on Earth. This has
allowed identifying potential solutions to solve spatial aliasing errors by means of the Bender
configuration, but also to demonstrate that CubeSat constellations could be an affordable
alternative to improve temporal resolution.



A
Associated Legendre polynomials

A.1. Recursive relationships
To evaluate the spherical harmonics expansion of the gravity potential it is necessary to
compute the associated Legendre polynomials. The efficient computation of such polynomials
is paramount for any software routine aiming at modelling a gravity field. For this purpose,
recursive relationships are leveraged. Here, the Fixed-Order-Increasing-Degree (FOID) ap-
proach, or alternatively standard forward column method, is described (Holmes & Featherstone,
2002). Other algorithms exist, for instance, the standard forward row method, or Clenshaw
approaches. The formulation here described can become numerically unstable for 𝑚 > 1900
due to underflow in the sectorial terms (Gleason, 1985). This is sufficient for the purpose of
this work.

Order

Degree

Figure A.1: Standard forward column method

First, the following auxiliary variables are defined:

𝑎𝑙𝑚 =

√
(2𝑙 − 1)(2𝑙 + 1)
(𝑙 − 𝑚)(𝑙 + 𝑚)

𝑏𝑙𝑚 =

√
(2𝑙 + 1)(𝑙 + 𝑚 − 1)(𝑙 − 𝑚 − 1)

(𝑙 − 𝑚)(𝑙 + 𝑚)(2𝑙 − 3)

Also, given the colatitude 𝜃, sine and cosine values are stored:

𝑡 = cos𝜃 𝑢 = sin𝜃
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Two recursion formulas are then applied. First a recursion over the sectorial terms is carried
out:

𝑃̄𝑙𝑚(𝜃) = 𝑢
√

2𝑚 + 1
2𝑚 𝑃̄𝑚−1,𝑚−1(𝜃), ∀𝑚 > 1 (A.1)

This recursion is initialized with 𝑃̄0,0(𝜃) = 1 and 𝑃̄1,1(𝜃) =
√

3𝑢.

Subsequently, for every sectorial term, the order is fixed and a recursion over increasing degrees
is applied.

𝑃̄𝑙𝑚(𝜃) = 𝑎𝑙𝑚𝑡𝑃̄𝑙−1,𝑚(𝜃) − 𝑏𝑙𝑚 𝑃̄𝑙−2,𝑚(𝜃), ∀𝑙 > 𝑚 (A.2)

A.2. Derivatives of Legendre polynomials
For certain applications in astrodynamics, it is of interest to compute derivatives of associated
Legendre polynomials. Some examples are the derivatives of the inclination functions that are
required in the GPS cross-track observations. Here, the derivative with respect to the colatitude
is presented. It suffices to compute:

𝑑𝑃𝑙𝑚(𝜃)
𝑑𝜃

=
1
𝑢

(
𝑙𝑡𝑃̄𝑙𝑚(𝜃) − 𝑓𝑙𝑚 𝑃̄𝑙−1,𝑚(𝜃)

)
, ∀𝑙 ≥ 𝑚 (A.3)

where

𝑓𝑙𝑚 =

√
(𝑙2 − 𝑚2)(2𝑙 + 1)

(2𝑙 − 1) (A.4)

For sectorial terms, 𝑓𝑚𝑚 = 0 and expression simplifies to

𝑑𝑃̄𝑙𝑚(𝜃)
𝑑𝜃

= 𝑚
𝑡

𝑢
𝑃̄𝑚,𝑚(𝜃), ∀𝑚 ≥ 0 (A.5)

A.3. 2nd order derivatives of Legendre polynomials
Similarly, the 2nd order derivatives are required for certain applications. They are of special
interest to compute the gravity gradient tensor, which is required in gradiometry as well as to
formulate variational equations.

Recursive formulations follow from the derivation of Eqs. (A.3) and (A.5).

𝑑2𝑃̄𝑙𝑚(𝜃)
𝑑𝜃2 =

1
𝑢

(
(𝑙 − 1)𝑡 𝑑𝑃̄𝑙𝑚(𝜃)

𝑑𝜃
− 𝑓𝑙𝑚

𝑑𝑃̄𝑙−1,𝑚(𝜃)
𝑑𝜃

)
− 𝑙𝑃̄𝑙𝑚(𝜃) (A.6)

Analogously to the sectorial first order derivatives, 𝑓𝑚𝑚 = 0 and expression takes a simpler
form:

𝑑2𝑃̄𝑚𝑚(𝜃)
𝑑𝜃2 = (𝑚 − 1) 𝑡

𝑢

𝑑𝑃̄𝑚𝑚(𝜃)
𝑑𝜃

− 𝑚𝑃̄𝑚𝑚(𝜃) (A.7)

A.4. Normalization
The recursion relationships exist for normalized associated Legendre functions. The normal-
ization arise from the orthogonal properties of spherical harmonics (Heiskanen & Moritz,
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1967).

𝑌𝑙𝑚𝑎(𝜃,𝜆) =
{

cos𝑚𝜆
sin𝑚𝜆

}𝑎=1

𝑎=0

𝑃𝑙𝑚(cos𝜃) (A.8)

∫
Ω

𝑌𝑙𝑚𝑎(𝜃,𝜆)𝑌𝑙′𝑚′𝑎′(𝜃,𝜆) 𝑑Ω =
4𝜋(𝑙 + 𝑚)!

(2𝑙 + 1)(2 − 𝛿0𝑚)(𝑙 − 𝑚)! (A.9)

This defines the normalization constant 𝑁𝑙𝑚 :

𝑁𝑙𝑚 =

√
(2 − 𝛿0𝑚)(2𝑙 + 1)(𝑙 − 𝑚)!

(𝑙 + 𝑚)! (A.10)

that defines the fully-normalised versions of spherical harmonics, associated Legendre functions
and Stokes coefficients as:

𝑃̄𝑙𝑚 = 𝑁𝑙𝑚𝑃𝑙𝑚 (A.11)
𝑌̄𝑙𝑚𝑎 = 𝑁𝑙𝑚𝑌𝑙𝑚𝑎 (A.12)

𝐶̄𝑙𝑚𝑎 =
1
𝑁𝑙𝑚

𝐶𝑙𝑚𝑎 (A.13)

In this way, the following holds:

1
4𝜋

∫
Ω

𝑌̄𝑙𝑚𝑎𝑌̄𝑙′𝑚′𝑎′ 𝑑Ω = 1 (A.14)

The normalization is leveraged in the recursive relationships to avoid overflow due to factorials
computation.



B
Inclination functions

B.1. Inclination functions and the FFT
Alternative formulations of a potential term for an arbitrary order 𝑙 and degree 𝑚 have been
presented in this work.

𝑉𝑙𝑚 =
𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙
𝑃̄𝑙𝑚

(
sin 𝜙

) [
𝐶̄𝑙𝑚 cos𝑚𝜆 + 𝑆̄𝑙𝑚 sin𝑚𝜆

]
(B.1)

𝑉𝑙𝑚 =
𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙 𝑙∑
𝑝=0

𝐹̄𝑙𝑚𝑝(𝐼) ·
{ [

𝐶̄𝑙𝑚
−𝑆̄𝑙𝑚

] 𝑙−𝑚=even

𝑙−𝑚=odd
cos

[
(𝑙 − 2𝑝)𝑢 + 𝑚(𝜔 − 𝜃)

]
+

[
𝑆̄𝑙𝑚
𝐶̄𝑙𝑚

] 𝑙−𝑚=even

𝑙−𝑚=odd
sin

[
(𝑙 − 2𝑝)𝑢 + 𝑚(𝜔 − 𝜃)

] }
(B.2)

Wagner (1983) proposes to compute the inclination functions applying a FFT to a unit
perturbing potential computed along an inclined great circle. For this purpose, setting
𝜇 = 1, 𝑎𝑒 = 1, 𝑟 = 1, 𝐶̄𝑙𝑚 = 1, 𝑆̄𝑙𝑚 = 1,Ω − 𝜃 = 0 the following holds:

𝑇 = 𝑃̄𝑙𝑚(sin 𝜙) [cos𝑚𝜆 + sin𝑚𝜆] =
𝑙∑

𝑝=0
𝐹̄𝑙𝑚𝑝(𝐼) ·

{ [
1
−1

] 𝑙−𝑚=even

𝑙−𝑚=odd
cos (𝑙 − 2𝑝)𝑢 + sin (𝑙 − 2𝑝)𝑢

}
(B.3)

where 𝑇 is the unit disturbing potential. The right-hand side looks very similar to a Fourier
series. Indeed, taking 𝑖 = 𝑙 − 2𝑝 one could express:

𝑇 = 𝐶0 +
𝑙∑
𝑖=1

𝐶𝑖 cos 𝑖𝑢 + 𝑆𝑖 sin 𝑖𝑢 (B.4)

Note that 𝑖 might take negative values. However, those terms can be rewritten applying

cos 𝑥 = cos (−𝑥) sin 𝑥 = − sin (−𝑥)

Let’s take an example for 𝑙 = 5.

63
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𝑝 0 1 2 3 4 5

𝑖
5 3 1 −1 −3 −5

Terms cos 5𝑢, sin 5𝑢 are obtained from the unit perturbing potential for 𝑝 = 0, 𝑝 = 5, i.e.
𝑝 = 𝑙−𝑖

2 ,
𝑙+𝑖
2 for 𝑖 = ±5:

𝐹̄𝑙𝑚0(𝐼)
{[

1
−1

]
cos 5𝑢 + sin 5𝑢

}
𝐹̄𝑙𝑚5(𝐼)

{[
1
−1

]
cos 5𝑢 − sin 5𝑢

}
Solving for cosine and sine terms respectively yields:

(𝐹̄𝑙𝑚0 + 𝐹̄𝑙𝑚5) cos 5𝑢 ·
[

1
−1

]
=𝐶5 cos 5𝑢

(𝐹̄𝑙𝑚0 − 𝐹̄𝑙𝑚5) sin 5𝑢 =𝑆5 sin 5𝑢

Then, it is possible to solve for 𝐹𝑙𝑚0 and 𝐹𝑙𝑚5 as follows:

𝐹̄𝑙𝑚0 =

𝐶5

[
1
−1

]
+ 𝑆5

2 𝐹̄𝑙𝑚5 =

𝐶5

[
1
−1

]
− 𝑆5

2

This solution can be extrapolated to any pair 𝑝 = 𝑙−𝑖
2 ,

𝑙+𝑖
2 .

𝐹̄𝑙𝑚, 𝑙−𝑖2
=

𝐶𝑖

[
1
−1

]
+ 𝑆𝑖

2 𝐹̄𝑙𝑚, 𝑙+𝑖2
=

𝐶𝑖

[
1
−1

]
− 𝑆𝑖

2 (B.5)

Also note that since 𝑙 is odd, even terms 𝐶𝑖 do not exist and are taken to zero. Let’s now take
an example where 𝐶0 does exist, i.e. 𝑙 even, for example 𝑙 = 4

𝑝 0 1 2 3 4

𝑖
4 2 0 −2 −4

Then, it follows that

𝐹̄𝑙𝑚2

[
1
−1

]
= 𝐶0 =⇒ 𝐹̄𝑙𝑚2 = 𝐶0

[
1
−1

]
This can be generalized for the central 𝑝 point whenever 𝑙 is even.

𝐹̄𝑙𝑚, 𝑙2
= 𝐶0

[
1
−1

]
(B.6)
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B.2. Derivatives of the inclination functions
For certain applications, it is useful to compute the derivative of the inclination functions. For
this purpose, the principle based on the FFT of a unit perturbing potential computed along a
great circle is applied. Instead, the Fourier transform is applied to the inclination derivative of
the unit perturbing potential. Derivation of both sides of Eq. (B.3) leads to:

𝑑𝑇

𝑑𝐼
=
𝑑𝑃̄𝑙𝑚(cos𝜃)

𝑑𝜃
𝑑𝜃
𝑑𝐼

[cos𝑚𝜆 + sin𝑚𝜆] + 𝑃̄𝑙𝑚(cos𝜃)𝑚 [− sin𝑚𝜆 + cos𝑚𝜆] 𝑑𝜆
𝑑𝐼

= (B.7)

=

𝑙∑
𝑝=0

𝑑𝐹̄𝑙𝑚𝑝(𝐼)
𝑑𝐼

·
{ [

1
−1

] 𝑙−𝑚=even

𝑙−𝑚=odd
cos (𝑙 − 2𝑝)𝑢 + sin (𝑙 − 2𝑝)𝑢

}
(B.8)

where
cos𝜃 = sin 𝜙 = sin 𝐼 sin 𝑢 tan𝜆 = tan 𝑢 cos 𝐼 (B.9)

and therefore the derivatives read as (Lian-Da & Hong-Bo, 2012):

𝑑𝜃
𝑑𝐼

=
− sin 𝑢 cos 𝐼√

1 − sin2 𝐼 sin2 𝑢

𝑑𝜆
𝑑𝐼

=
− tan 𝑢 sin 𝐼√

1 − cos2 𝐼 tan2 𝑢
(B.10)

Derivatives of the associated Legendre polynomials are calculated according to section A.2.
Similarly, it is concluded that the unit perturbing potential takes the form of a Fourier series:

𝑑𝑇

𝑑𝐼
= 𝐶0 +

𝑙∑
𝑖=1

𝐶𝑖 cos 𝑖𝑢 + 𝑆𝑖 sin 𝑖𝑢 (B.11)

Therefore the following expressions hold:

𝑑𝐹̄𝑙𝑚, 𝑙−𝑖2

𝑑𝐼
=

𝐶𝑖

[
1
−1

]
+ 𝑆𝑖

2

𝑑𝐹̄𝑙𝑚, 𝑙+𝑖2

𝑑𝐼
=

𝐶𝑖

[
1
−1

]
− 𝑆𝑖

2 (B.12)

Moreover, whenever 𝑙 is even.
𝑑𝐹̄𝑙𝑚, 𝑙2
𝑑𝐼

= 𝐶0

[
1
−1

]
(B.13)

B.3. Cross-track derivatives and cross-track inclination functions
In section 2.3 the following expression for the potential cross-track derivative was presented.

𝜕𝑉

𝜕𝑤
=

1
𝑟

{
sin 𝜔𝑜

𝜕𝑉

𝜕𝐼
+ cos 𝜔𝑜

sin 𝐼

(
𝜕𝑉

𝜕𝜔𝑜
cos 𝐼 − 𝜕𝑉

𝜕𝜔𝑒

)}
(B.14)

Here, the reformulation of the cross-track derivative is described in detailed. In this way,
this section deals with the derivation of the cross-track inclination functions that significantly
simplify the notation of the cross-track potential derivative observation.
The partial derivatives with respect to the orbital elements 𝜔𝑜 , 𝜔𝑒 , 𝐼 can be developed from
Eq. (2.15).

𝜕𝑉

𝜕𝐼
=

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴𝐼
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝐼
𝑘𝑚

sin𝜓𝑘𝑚[
𝐴𝐼
𝑘𝑚

𝐵𝐼
𝑘𝑚

]
=

∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙 𝜕𝐹̄𝑙𝑚𝑘(𝐼)
𝜕𝐼

[
𝐶̃𝑙𝑚
𝑆̃𝑙𝑚

] (B.15)
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𝜕𝑉

𝜕𝜔𝑜
=

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴
𝜔𝑜
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝜔𝑜
𝑘𝑚

sin𝜓𝑘𝑚[
𝐴

𝜔𝑜
𝑘𝑚

𝐵
𝜔𝑜
𝑘𝑚

]
=

𝐿∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙
· 𝑘 · 𝐹̄𝑙𝑚𝑘(𝐼)

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

] (B.16)

𝜕𝑉

𝜕𝜔𝑒
=

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴
𝜔𝑒
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝜔𝑒
𝑘𝑚

sin𝜓𝑘𝑚[
𝐴

𝜔𝑒
𝑘𝑚

𝐵
𝜔𝑒
𝑘𝑚

]
=

𝐿∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟

(
𝑎𝑒

𝑟

) 𝑙
· 𝑚 · 𝐹̄𝑙𝑚𝑘(𝐼)

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

] (B.17)

The cross-track potential derivative can then be written in the following form:

𝜕𝑉

𝜕𝑤
=

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

(𝐴𝑐
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝑐
𝑘𝑚

sin𝜓𝑘𝑚) cos 𝜔𝑜 + (𝐴𝑠
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝑠
𝑘𝑚

sin𝜓𝑘𝑚) sin 𝜔𝑜 (B.18)

with the following lumped coefficients[
𝐴𝑐
𝑘𝑚

𝐵𝑐
𝑘𝑚

]
=

𝐿∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹̄𝑙𝑚𝑘(𝐼) ·

𝑘 cos 𝐼 − 𝑚
sin 𝐼

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

]
[
𝐴𝑠
𝑘𝑚

𝐵𝑠
𝑘𝑚

]
=

∑
𝑙=𝑙𝑚𝑖𝑛 ,2

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙 𝜕𝐹̄𝑙𝑚𝑘(𝐼)
𝜕𝐼

[
𝐶̃𝑙𝑚
𝑆̃𝑙𝑚

] (B.19)

Next, the following trigonometric identities are applied, with 𝑎 = 𝜓𝑘𝑚 , 𝑏 = 𝜔𝑜 :

cos 𝑎 cos 𝑏 = 1
2 (cos (𝑎 + 𝑏) + cos (𝑎 − 𝑏))

sin 𝑎 cos 𝑏 = 1
2 (sin (𝑎 + 𝑏) + sin (𝑎 − 𝑏))

cos 𝑎 sin 𝑏 = 1
2 (sin (𝑎 + 𝑏) − sin (𝑎 − 𝑏))

sin 𝑎 sin 𝑏 = 1
2 (cos (𝑎 − 𝑏) − cos (𝑎 + 𝑏))

(B.20)

Introducing also that 𝜓𝑘𝑚 + 𝜔𝑜 = 𝜓𝑘+1,𝑚 and 𝜓𝑘𝑚 − 𝜔𝑜 = 𝜓𝑘−1,𝑚 , the following expressions are
obtained.

𝜕𝑉

𝜕𝑤
=

1
2

𝐿∑
𝑘=−𝐿

𝐿∑
𝑚=0

𝐴𝑐
𝑘𝑚

(
cos𝜓𝑘+1,𝑚 + cos𝜓𝑘−1,𝑚

)
+

𝐵𝑐
𝑘𝑚

(
sin𝜓𝑘+1,𝑚 + sin𝜓𝑘−1,𝑚

)
+

𝐴𝑠
𝑘𝑚

(
sin𝜓𝑘+1,𝑚 − sin𝜓𝑘−1,𝑚

)
+

𝐵𝑠
𝑘𝑚

(
cos𝜓𝑘−1,𝑚 − cos𝜓𝑘+1,𝑚

)
(B.21)

Grouping terms with same 𝜓𝑘𝑚 results in (Schrama, 1989):

𝜕𝑉

𝜕𝑤
=

𝐿+1∑
𝑘=−𝐿−1

𝐿∑
𝑚=0

𝐴𝑤
𝑘𝑚

cos𝜓𝑘𝑚 + 𝐵𝑤
𝑘𝑚

sin𝜓𝑘𝑚

𝐴𝑤
𝑘𝑚

=
1
2

(
𝐴𝑐
𝑘−1,𝑚 + 𝐴𝑐

𝑘+1,𝑚 + 𝐵𝑠
𝑘+1,𝑚 − 𝐵𝑠

𝑘−1,𝑚

)
𝐵𝑤
𝑘𝑚

=
1
2 (𝐵

𝑐
𝑘−1,𝑚 + 𝐵𝑐

𝑘+1,𝑚 + 𝐴𝑠
𝑘−1,𝑚 − 𝐴𝑠

𝑘+1,𝑚)

(B.22)
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with 𝐴𝑐,𝑠
𝑘𝑚

= 𝐵𝑐,𝑠
𝑘𝑚

= 0 for |𝑘| > 𝐿. The expression can be simplified employing the cross-track
inclination functions.

𝐹̄∗𝑙𝑚𝑘(𝐼) =
1
2

{
(𝑘 − 1) cos 𝐼 − 𝑚

sin 𝐼 𝐹̄𝑙𝑚,𝑘−1 +
(𝑘 + 1) cos 𝐼 − 𝑚

sin 𝐼 𝐹̄𝑙𝑚,𝑘+1(𝐼) − 𝐹̄′𝑙𝑚,𝑘−1(𝐼) + 𝐹̄
′
𝑙𝑚,𝑘+1(𝐼)

}
(B.23)[

𝐴𝑤
𝑘𝑚

𝐵𝑤
𝑘𝑚

]
=

𝐿∑
𝑙=𝑙∗

𝑚𝑖𝑛
,2

𝜇

𝑟2

(
𝑎𝑒

𝑟

) 𝑙
𝐹̄∗𝑙𝑚𝑘(𝐼)

[
𝑆̃𝑙𝑚
−𝐶̃𝑙𝑚

]
(B.24)

Summation over 𝑙 starts at 𝑙∗
𝑚𝑖𝑛

= min(𝑙𝑚𝑖𝑛,𝑘−1 , 𝑙𝑚𝑖𝑛,𝑘+1) as defined at the start of chapter 2.
Also, the cross-track inclination functions should handle forbidden inclination function indices.
This can be achieved by 𝐹̄𝑙𝑚𝑘(𝐼) = 𝐹̄′

𝑙𝑚𝑘
(𝐼) = 0 for |𝑘| > 𝑙.



C
Spherical harmonics synthesis

A function on a sphere 𝑓 (𝜃,𝜆) can be formulated in terms of a spherical harmonics expansion.
This is known as SHS.

𝑓 (𝜃,𝜆) =
∞∑
𝑙=0

𝑙∑
𝑚=0

𝑃̄𝑙𝑚(cos𝜃)
(
𝐶̄𝑙𝑚 cos𝑚𝜆 + 𝑆̄𝑙𝑚 sin𝑚𝜆

)
(C.1)

In physics, the SH coefficients of the potential are employed to compute different gravity fields
functionals that allow to interpret the retrieved gravity field data.

C.1. Geoid height
The term geoid was first proposed by Gauss and defines an equipotential surface for the gravity
field that is followed by mean sea level (Heiskanen & Moritz, 1967).

𝑊(𝑥, 𝑦, 𝑧) =𝑊0 (C.2)

A reference ellipsoid can then be defined as the best fitting ellipsoid. Also, it follows from the
equipotential surface definition from a normal gravity potential.

𝑈(𝑥, 𝑦, 𝑧) =𝑊0 (C.3)

The difference between the geoid and the reference ellipsoid is defined in terms of geoid heights
𝑁 . This deviation arises due to different mass distributions across the globe. Its definition is
relevant to provide a consistent framework to determine elevation measurements.
Geoid heights can be derived from a perturbing potential 𝑇 with the Bruns equation.

𝑁 =
𝑇

𝛾
(C.4)

with 𝛾 = 𝛾𝑃 the normal gravity at the reference ellipsoid. Geoid heights can be computed
through SH as follows.

𝑁(𝜃,𝜆) = 𝑎𝑒

∞∑
𝑙=2

𝑙∑
𝑚=0

𝑃̄𝑙𝑚(cos𝜃)
(
𝐶̄𝑙𝑚 cos𝑚𝜆 + 𝑆̄𝑙𝑚 sin𝑚𝜆

)
(C.5)
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𝑈(𝑥, 𝑦, 𝑧) =𝑊0
Ellipsoid

𝑛

𝑊(𝑥, 𝑦, 𝑧) =𝑊0
Geoid

®𝛾𝑃

®𝑔𝑄
𝑁

𝑛′

𝑄

𝑃

Figure C.1: Geoid and reference ellipsoid (Heiskanen & Moritz, 1967)

C.2. Gravity anomalies
The gravity anomaly vector is defined as the difference between the gravity vector at the geoid
and the normal gravity vector at the reference ellipsoid.

Δ®𝑔 = ®𝑔𝑃 − ®𝛾𝑄 (C.6)

The difference in magnitude is the gravity anomaly.

Δ𝑔 = 𝑔𝑃 − 𝛾𝑄 (C.7)

It can also be computed from the perturbing potential.

Δ𝑔 = −𝜕𝑇

𝜕𝑟
− 2
𝑟
𝑇 (C.8)

Therefore, they can be expressed (in milligals) through SHS.

Δ𝑔(𝜃,𝜆) = 105 ×
𝐿∑
𝑙=2

𝑙∑
𝑚=0

𝜇

𝑎2
𝑒

(𝑙 − 1) ×
(
𝐶̄𝑙𝑚 cos𝑚𝜆 + 𝑆̄𝑙𝑚 sin𝑚𝜆

)
(C.9)

C.3. Equivalent water height
Observed changes in gravity field can be assumed to be associated to mass redistribution in a
thin layer on the Earth’s surface. This allows the definition of surface mass density anomalies
(e.g. Wahr et al. (1998)). In short timescales, mass redistribution can be mainly attributed
to water redistribution. Therefore, it is more intuitive to define EWH dividing surface mass
densities by water density 𝜌𝑤 .

𝐻(𝜃,𝜆) = 𝑎𝑒𝜌𝑒
3𝜌𝑤

∞∑
𝑙=2

𝑙∑
𝑚=0

𝑃̄𝑙𝑚(cos𝜃)2𝑙 + 1
1 + 𝑘′

𝑙

×
(
Δ𝐶̄𝑙𝑚 cos𝑚𝜆 + Δ𝑆̄𝑙𝑚

)
(C.10)

where Δ𝐶̄𝑙𝑚 ,Δ𝑆̄𝑙𝑚 are the difference in the SH coefficients with respect to a static reference
gravity field, 𝜌𝑒 = 5300 kg/m3 and 𝜌𝑤 = 1000 kg/m3 are average Earth and water densities,
and 𝑘′

𝑙
are the elastic Love numbers (see Wahr et al., 1998, Table 1).
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C.4. Gaussian spatial smoothing
GRACE monthly unconstrained solutions suffer from high noise at higher SH coefficients, as
a result, a north-south striping pattern arises in the gravity anomalies or EWH maps. An
approach to circumvent this issue consists of applying spatial smoothing through the isotropic
Gaussian averaging filter described by the Green function (Jekeli, 1981; Wahr et al., 1998).

𝑊(𝜓) = 2𝑏𝑒−𝑏(1−cos𝜓)

1 − 𝑒−2𝑏 (C.11)

where 𝜓 is a spherical distance and 𝑏 is a parameter that defines the extent of the spatial
smoothing in terms of the smoothing radius 𝑟.

𝑏 =
ln 2

1 − cos 𝑟/𝑎𝑒
(C.12)

By definition,𝑊(0) = 1 and the smoothing radius is the distance at which the kernel value has
dropped to𝑊(𝜓) = 0.5.
Smoothing can be applied directly in the SH domain through degree dependent terms𝑊𝑙(𝜓),
defined as follows:

𝑊𝑙 =

∫ 𝜋

0
𝑊(𝜓)𝑃𝑙(cos𝜓) sin 𝛼 𝑑𝛼 (C.13)

Jekeli (1981) proposes a recursive computation of the coefficients𝑊𝑙 . However, it can become
unstable at higher degrees. Piretzidis and Sideris (2019) discusses different stable methodologies.
The continued fraction with backward recursion approach has been employed in this work
(Piretzidis & Sideris, 2019). First, backward recursion is applied from the maximum degree 𝐿.

𝜌𝑙−1 =
1

1
𝑏 + 2𝑙

𝑏 + 𝜌𝑙
, 𝐿 ≥ 𝑙 ≥ 1 (C.14)

with the initial condition 𝜌𝐿 = 0. Then, the second step consists of a forward recursion relation.

𝑊𝑙 = 𝜌𝑙−1𝑊𝑙−1 , 𝐿 ≥ 𝑙 ≥ 1 (C.15)

starting off with𝑊0 = 1.

C.5. Global spherical harmonic synthesis computation
There exist efficient computation techniques to evaluate the different gravity field functionals
on a global spherical grid. Rizos (1979) observed that latitude and longitude dependent terms
could be handled separately redefining the summation:

∞∑
𝑙=0

𝑙∑
𝑚=0

→
∞∑
𝑚=0

∞∑
𝑙=𝑚

(C.16)

In this way, one could redefine the synthesis in a two-step process (e.g. Sneeuw, 1994).

𝐴𝑚(𝜃)
𝐵𝑚(𝜃)

}
=

∞∑
𝑙=𝑚

𝑃̄𝑙𝑚(cos𝜃)
{
𝐶̄𝑙𝑚
𝑆̄𝑙𝑚

(C.17)

𝑓 (𝜃,𝜆) =
∞∑
𝑚=0

𝐴𝑚(𝜃) cos𝑚𝜆 + 𝐵𝑚(𝜃) sin𝑚𝜆 (C.18)

Further acceleration can be obtained when computing Eq. (C.18) with the inverse FFT.



C.6. Covariance propagation 71

C.6. Covariance propagation
In this work, SHS is not too computationally expensive. However, since the work deals with an
error analysis, error propagation from the parameter vector of SH coefficients to the gravity
field functionals is of interest. This process can become very intense. The efficient global
SHS computation described in the previous section can be applied to covariance propagation
(Schrama, 1991a).
First, covariance propagation is conducted as follows.

𝜎2
𝑦(𝜃,𝜆) = 𝑣̄𝑇𝑃𝑥𝑥 𝑣̄ (C.19)

where 𝑃𝑥𝑥 is the covariance matrix of the SH coefficients and 𝑣̄ is a column vector that consists
of the partials with respect to the SH coefficients.
This can be reformulated into:

𝜎2
𝑦(𝜃,𝜆) = 𝑣̄𝑇𝑤̄ (C.20)

The elements of 𝑤̄ have the following form:

𝑤𝑖 =

∞∑
𝑙=0

𝑙∑
𝑚=0

𝑃̄𝑙𝑚(cos𝜃) (𝐴𝑙𝑚 cos𝑚𝜆 + 𝐵𝑙𝑚 sin𝑚𝜆) (C.21)

where 𝐴𝑙𝑚 , 𝐵𝑙𝑚 follow from the specific functional along with the elements of the 𝑖-th row of
𝑃𝑥𝑥 . The two-step fold can be applied to every element 𝑤𝑖 .

𝐶𝑚(𝜃)
𝐵𝑚(𝜃)

}
=

∞∑
𝑙=𝑚

𝑃̄𝑙𝑚(cos𝜃)
{
𝐴𝑙𝑚
𝐵𝑙𝑚

(C.22)

𝑤𝑖 =

∞∑
𝑚=0

𝐶𝑚(𝜃) cos𝑚𝜆 + 𝐷𝑚(𝜃) sin𝑚𝜆 (C.23)

While application of the inverse FFT to Eq. (C.23) significantly speeds up the propagation of a
dense covariance, in this work, sparse parameter covariances appear. This can cause the direct
evaluation of the summation to be more efficient.
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